12.12.2012 Views

Analysis of Ancient Mosaic Images for Dedicated ... - Institut Fresnel

Analysis of Ancient Mosaic Images for Dedicated ... - Institut Fresnel

Analysis of Ancient Mosaic Images for Dedicated ... - Institut Fresnel

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Filippo Stanco, Sebastiano Battiato, Giovanni Gallo<br />

Digital Imaging <strong>for</strong> Cultural Heritage<br />

Preservation


Contributors<br />

Sebastiano Battiato<br />

University <strong>of</strong> Catania<br />

Catania, Italy<br />

Lamia Benyoussef<br />

Ecole Centrale Marseille<br />

Marseille, France<br />

Simone Bianco<br />

University <strong>of</strong> Milano Bicocca<br />

Milan, Italy<br />

Vittoria Bruni<br />

Consiglio Nazionale delle Ricerche<br />

Rome, Italy<br />

Yang Cai<br />

Carnegie Mellon University<br />

Pittsburgh, USA<br />

Roberto Caldelli<br />

University <strong>of</strong> Florence<br />

Florence, Italy<br />

Marco Callieri<br />

Consiglio Nazionale delle Ricerche<br />

Pisa, Italy<br />

Vito Cappellini<br />

University <strong>of</strong> Florence<br />

Florence, Italy<br />

Paolo Cignoni<br />

Consiglio Nazionale delle Ricerche<br />

Pisa, Italy<br />

Jacob Collins<br />

c/o Adelson Galleries<br />

New York, USA<br />

Alessandro Colombo<br />

University <strong>of</strong> Milano Bicocca<br />

Milan, Italy<br />

David Corrigan<br />

Trinity College<br />

Dublin, Ireland<br />

Massimiliano Corsini<br />

Consiglio Nazionale delle Ricerche<br />

Pisa, Italy<br />

Andrew Craw<strong>for</strong>d<br />

Consiglio Nazionale delle Ricerche<br />

Rome, Italy<br />

Paul Debevec<br />

University <strong>of</strong> Southern Cali<strong>for</strong>nia<br />

Playa Vista, USA<br />

Andrea Del Mastio<br />

University <strong>of</strong> Florence<br />

Florence, Italy<br />

Andrey Del Pozo<br />

Univesity <strong>of</strong> Illinois at Urbana-Champaign<br />

Urbana, USA<br />

Matteo Dellepiane<br />

Consiglio Nazionale delle Ricerche<br />

Pisa, Italy<br />

Stéphane Derrode<br />

École Centrale Marseille<br />

Marseille, France<br />

Gianpiero Di Blasi<br />

University <strong>of</strong> Palermo<br />

Palermo, Italy<br />

vii


viii<br />

Marco Duarte<br />

Princeton University<br />

Princeton, USA<br />

Per Einarsson<br />

University <strong>of</strong> Southern Cali<strong>for</strong>nia<br />

Playa Vista, USA<br />

Marcos Fajardo<br />

University <strong>of</strong> Southern Cali<strong>for</strong>nia<br />

Playa Vista, USA<br />

Yasuo Furuichi<br />

Kanagawa, Japan<br />

Giovanni Gallo<br />

University <strong>of</strong> Catania<br />

Catania, Italy<br />

Andrew Gardner<br />

University <strong>of</strong> Southern Cali<strong>for</strong>nia<br />

Playa Vista, USA<br />

Francesca Gasparini<br />

University <strong>of</strong> Milano Bicocca<br />

Milan, Italy<br />

Tim Hawkins<br />

University <strong>of</strong> Southern Cali<strong>for</strong>nia<br />

Playa Vista, USA<br />

Andrew Jones<br />

University <strong>of</strong> Southern Cali<strong>for</strong>nia<br />

Playa Vista, USA<br />

Dave Kale<br />

Stan<strong>for</strong>d University<br />

Stan<strong>for</strong>d, USA<br />

Anil Kokaram<br />

Trinity College<br />

Dublin, Ireland<br />

Ashutosh Kulkarni<br />

Stan<strong>for</strong>d University<br />

Stan<strong>for</strong>d, USA<br />

Therese Lundgren<br />

University <strong>of</strong> Southern Cali<strong>for</strong>nia<br />

Playa Vista, USA<br />

Philippe Martinez<br />

Ecole Normale Superieure<br />

Paris, France<br />

Nikos Nikolaidis<br />

Aristotle University <strong>of</strong> Thessaloniki<br />

Thessaloniki, Greece<br />

Ioannis Pitas<br />

Aristotle University <strong>of</strong> Thessaloniki<br />

Thessaloniki, Greece<br />

Francois Pitie<br />

Trinity College<br />

Dublin, Ireland<br />

Charis Poullis<br />

University <strong>of</strong> Southern Cali<strong>for</strong>nia<br />

Playa Vista, USA<br />

Giovanni Puglisi<br />

University <strong>of</strong> Catania<br />

Catania, Italy<br />

Giovanni Ramponi<br />

University <strong>of</strong> Trieste<br />

Trieste, Italy<br />

Fabio Remondino<br />

B. Kessler Foundation (FBK)<br />

Trento, Italy<br />

Alfredo Restrepo Palacios<br />

Universidad de los Andes<br />

Bogotá, Colombia<br />

M. Dirk Robinson<br />

Ricoh Innovations<br />

Menlo Park, USA<br />

Silvio Savarese<br />

University <strong>of</strong> Michigan<br />

Ann Arbor, USA<br />

Sara J. Schechner<br />

Harvard University


Cambridge, USA<br />

Raimondo Schettini<br />

University <strong>of</strong> Milano Bicocca<br />

Milan, Italy<br />

Roberto Scopigno<br />

Consiglio Nazionale delle Ricerche<br />

Pisa, Italy<br />

Ron Spronk<br />

Queen’s University,<br />

Kingston, Canada<br />

Filippo Stanco<br />

University <strong>of</strong> Catania<br />

Catania, Italy<br />

David G. Stork<br />

Ricoh Innovations<br />

Menlo Park, USA<br />

Jessi Stumpfel<br />

University <strong>of</strong> Southern Cali<strong>for</strong>nia<br />

Playa Vista, USA<br />

Davide Tanasi<br />

University <strong>of</strong> Catania<br />

Catania, Italy<br />

Chris Tchou<br />

University <strong>of</strong> Southern Cali<strong>for</strong>nia<br />

Playa Vista, USA<br />

David Tingdahl<br />

Katholieke Universiteit Leuven<br />

Leuven, Belgium<br />

Efthymia Tsamoura<br />

Aristotle University <strong>of</strong> Thessaloniki<br />

Thessaloniki, Greece<br />

Christopher W. Tyler<br />

Smith-Kettlewell Eye Research <strong>Institut</strong>e<br />

San Francisco, USA<br />

Francesca Uccheddu<br />

University <strong>of</strong> Florence<br />

Florence, Italy<br />

Luc Van Gool<br />

Katholieke Universiteit Leuven<br />

Leuven, Belgium<br />

Maarten Vergauwen<br />

GeoAutomation<br />

Leuven, Belgium<br />

Domenico Vitulano<br />

Consiglio Nazionale delle Ricerche<br />

Rome, Italy<br />

Nathaniel Yun<br />

University <strong>of</strong> Southern Cali<strong>for</strong>nia<br />

Playa Vista, USA<br />

Nicholas C. Williams<br />

Towan Headland<br />

Cornwall, UK<br />

Andrew R. Willis<br />

University <strong>of</strong> North Carolina at Charlotte<br />

Charlotte, USA<br />

Silvia Zuffi<br />

ITC CNR<br />

Milan, Italy<br />

ix


Contents<br />

1 Experiencing the Past. Computer Graphics in Archaeology 1<br />

Filippo Stanco, Davide Tanasi<br />

1.1 The Past and the Future. Archaeology and Computer Science . . . . . . . . . . . . . . . . 1<br />

1.2 From the Field to the Screen: 3D Computer Graphics and the Archaeological Heritage . . 2<br />

1.2.1 Computer Graphics 3D and the Archaeological Fieldwork . . . . . . . . . . . . . 2<br />

1.2.2 Monitoring the Heritage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

1.2.3 The Virtual Museum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

1.2.4 3D Modeling as Cognitive Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

1.3 The Archeomatica Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

1.4 Archaeological 3D Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

1.5 Haghia Triada, Crete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

1.5.1 Propylon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

1.5.2 House <strong>of</strong> the Razed Rooms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

1.5.3 VAP house . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br />

1.6 Polizzello Mountain, Sicily . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

1.6.1 Buildings A, B, C, D, E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

1.6.2 Temenos and Room III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

1.6.3 Precinct F, East House, Temenos House . . . . . . . . . . . . . . . . . . . . . . . 16<br />

1.6.4 The Virtual Acropolis and the Multilayered 3D Model . . . . . . . . . . . . . . . 18<br />

1.7 Digital Restoration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

1.7.1 Minoan Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

1.7.2 Asclepius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

1.7.3 Female Torso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

1.7.4 Hellenistic Thysia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

1.8 Dealing with Image Data in Archaeology: New Perspectives . . . . . . . . . . . . . . . . . 27<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br />

2 Using Digital 3D Models <strong>for</strong> Study and Restoration <strong>of</strong> Cultural Heritage Artifacts 39<br />

Matteo Dellepiane, Marco Callieri, Massimiliano Corsini, Roberto Scopigno<br />

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39<br />

2.2 Visual Communication <strong>of</strong> Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br />

2.2.1 Computer-generated Animations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br />

2.2.2 Interactive Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

2.2.3 Geographic Web Browsers Deploying 3D Models . . . . . . . . . . . . . . . . . 45<br />

2.3 Art Catalogs and Digital Repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

2.4 Digital 3D as a Tool <strong>for</strong> Art Scholars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br />

2.4.1 Using 3D Scanning to Analyze an Attribution Proposal . . . . . . . . . . . . . . . . 47<br />

xi


xii<br />

2.4.2 The CENOBIUM Project: an Integrated Visual Comparison <strong>of</strong> Historiated Capitals 50<br />

2.4.3 Classifying and Archiving Carved Faces: the Bayon Digital Archival Project . . . . 51<br />

2.5 Physical Reproduction from the Digital Model . . . . . . . . . . . . . . . . . . . . . . . 52<br />

2.6 Virtual Reconstruction and Re-assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br />

2.6.1 Virtual Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br />

2.6.2 Virtual Re-assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55<br />

2.6.3 Virtual Repainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57<br />

2.7 Supporting the Restoration Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br />

2.7.1 Tools <strong>for</strong> Investigation and Diagnostics . . . . . . . . . . . . . . . . . . . . . . . 59<br />

2.7.2 Tools Supporting Knowledge Management . . . . . . . . . . . . . . . . . . . . . 62<br />

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67<br />

3 Accurate and Detailed Image-Based 3D Documentation <strong>of</strong> Large Sites and Complex Objects 73<br />

Fabio Remondino<br />

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73<br />

3.2 Reality-based 3D Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74<br />

3.2.1 Techniques and Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75<br />

3.2.2 Multi-sensor and Multi-source Data Integration . . . . . . . . . . . . . . . . . . . 76<br />

3.2.3 Standards in Digital 3D Documentation . . . . . . . . . . . . . . . . . . . . . . . 78<br />

3.3 Photogrammetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br />

3.3.1 Image Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80<br />

3.3.2 Camera Calibration and Image Orientation . . . . . . . . . . . . . . . . . . . . . 82<br />

3.3.3 3D Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87<br />

3.3.4 Structuring and Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89<br />

3.3.5 Texturing and Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90<br />

3.3.6 Main Applications and Actual Problems . . . . . . . . . . . . . . . . . . . . . . . 93<br />

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96<br />

4 Processing Sampled 3D Data: Reconstruction and Visualization Technologies 105<br />

Marco Callieri, Matteo Dellepiane, Paolo Cignoni, Roberto Scopigno<br />

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106<br />

4.1.1 Sources <strong>of</strong> Sampled 3D Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106<br />

4.2 Basic Geometric Processing <strong>of</strong> Scanned Data . . . . . . . . . . . . . . . . . . . . . . . . 108<br />

4.2.1 The 3D Scanning Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109<br />

4.2.2 Implementing Range Maps Alignment as an Automatic Process . . . . . . . . . . 113<br />

4.2.3 Enhancing Incomplete Surface Sampling . . . . . . . . . . . . . . . . . . . . . . 115<br />

4.3 Color Sampling and Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116<br />

4.3.1 Basic Acquisition <strong>of</strong> Color Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 116<br />

4.3.2 Recovering Camera Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117<br />

4.3.3 Mapping Complex Photographic Detail on 3D Models . . . . . . . . . . . . . . . 119<br />

4.3.4 Advanced Color Data Acquisition: Sampling Surface Reflection Properties . . . . 120<br />

4.4 MeshLab: an Open Source Tool <strong>for</strong> Processing 3D Scanned Data . . . . . . . . . . . . . . 121<br />

4.5 Efficient Visualization and Management <strong>of</strong> Sampled 3D Data . . . . . . . . . . . . . . . 123<br />

4.5.1 Simplification and Multiresolution Management <strong>of</strong> Huge Models . . . . . . . . . 124


4.5.2 Mesh-based vs. Point-based Encoding and Rendering . . . . . . . . . . . . . . . . 125<br />

4.5.3 Usability <strong>of</strong> Virtual Heritage Worlds . . . . . . . . . . . . . . . . . . . . . . . . . 126<br />

4.5.4 Not Just 3D Data: Adding Other Knowledge . . . . . . . . . . . . . . . . . . . . . 127<br />

4.5.5 Presenting 3D Data on the Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127<br />

4.6 3D Digitization: How to Improve Current Procedures and Make It More Practical and<br />

Successful . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128<br />

4.6.1 Technology - Limitations Perceived by Practitioners . . . . . . . . . . . . . . . . 128<br />

4.6.2 Misuse <strong>of</strong> Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129<br />

4.6.3 Better Management <strong>of</strong> 3D Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 129<br />

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131<br />

5 Digitizing the Parthenon: Estimating Surface Reflectance under Measured Natural Illumination<br />

137<br />

Paul Debevec, Chris Tchou, Andrew Gardner, Tim Hawkins, Charis Poullis, Jessi Stumpfel, Andrew Jones,<br />

Nathaniel Yun, Per Einarsson, Therese Lundgren, Marcos Fajardo and Philippe Martinez<br />

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138<br />

5.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139<br />

5.3 Data Acquisiton and Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140<br />

5.3.1 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140<br />

5.3.2 BRDF Measurement and Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 141<br />

5.3.3 Natural Illumination Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145<br />

5.3.4 3D Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149<br />

5.3.5 Photograph Acquisition and Alignment . . . . . . . . . . . . . . . . . . . . . . . . 151<br />

5.4 Reflectometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152<br />

5.4.1 General Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152<br />

5.4.2 Multiresolution Reflectance Solving . . . . . . . . . . . . . . . . . . . . . . . . . 153<br />

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155<br />

5.6 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156<br />

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160<br />

6 ARC3D: a Public Web Service that Turns Photos into 3D Models 163<br />

David Tingdahl, Maarten Vergauwen, and Luc Van Gool<br />

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164<br />

6.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165<br />

6.2.1 System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165<br />

6.2.2 Upload Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167<br />

6.2.3 Modelviewer Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167<br />

6.3 Automatic Reconstruction Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169<br />

6.3.1 Pipeline Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171<br />

6.3.2 Opportunistic Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171<br />

6.3.3 Hierarchical Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171<br />

6.3.4 Parallel Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172<br />

6.4 Practical Guidelines <strong>for</strong> Shooting <strong>Images</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . 173<br />

6.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173<br />

xiii


xiv<br />

6.4.2 Image Shooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173<br />

6.4.3 Scene Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174<br />

6.5 Case Study: Reconstruction <strong>of</strong> the Mogao Caves <strong>of</strong> Dunhuang . . . . . . . . . . . . . . . 175<br />

6.5.1 3D Reconstruction <strong>of</strong> Mogao Cave 322 . . . . . . . . . . . . . . . . . . . . . . . 175<br />

6.5.2 Image Capturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176<br />

6.5.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181<br />

6.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181<br />

6.6.1 A Complete Building: Arc de Triomphe . . . . . . . . . . . . . . . . . . . . . . . . 181<br />

6.6.2 Environment Scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183<br />

6.6.3 Further Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183<br />

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189<br />

7 Pattern Discovery from Eroded Rock Art 191<br />

Yang Cai<br />

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191<br />

7.2 Surface Imaging Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192<br />

7.2.1 Laser Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193<br />

7.2.2 Pattern Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195<br />

7.2.3 Stick Shadow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196<br />

7.2.4 Multiview Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197<br />

7.2.5 Polynomial Texture Maps (PTM) . . . . . . . . . . . . . . . . . . . . . . . . . . 199<br />

7.3 Pattern Discovery Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200<br />

7.3.1 Simulated Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201<br />

7.3.2 Data Trans<strong>for</strong>mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201<br />

7.3.3 Trans<strong>for</strong>mation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202<br />

7.3.4 Off-Line Handwriting Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 205<br />

7.3.5 Interactive Versus Automatic Discovery . . . . . . . . . . . . . . . . . . . . . . . . 207<br />

7.4 From Reconstruction to Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208<br />

7.5 Interaction Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208<br />

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210<br />

8 Computational <strong>Analysis</strong> <strong>of</strong> Archaeological Ceramic Vessels and their Fragments 215<br />

Andrew R. Willis<br />

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216<br />

8.1.1 Significance <strong>of</strong> Generic Artifact Reconstruction . . . . . . . . . . . . . . . . . . . . 217<br />

8.1.2 Significance <strong>of</strong> Ceramic Vessel Reconstruction . . . . . . . . . . . . . . . . . . . . 217<br />

8.1.3 Traditional Puzzle Solving and Artifact Reconstruction . . . . . . . . . . . . . . . 218<br />

8.2 Artifact Reconstruction Systems: Basic Components and Concepts . . . . . . . . . . . . 219<br />

8.2.1 Digitizing Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220<br />

8.2.2 Approaches <strong>for</strong> Computational Sherd <strong>Analysis</strong> . . . . . . . . . . . . . . . . . . . 220<br />

8.2.3 Computerized Typology <strong>for</strong> Automated Sherd Classification . . . . . . . . . . . . 222<br />

8.2.4 Computerized Vessel Reconstruction by Fragment Matching . . . . . . . . . . . . 224<br />

8.3 Computational Models <strong>for</strong> Vessels and their Fragments . . . . . . . . . . . . . . . . . . . 225<br />

8.3.1 Modeling Ceramic Vessels as Surfaces <strong>of</strong> Revolution . . . . . . . . . . . . . . . . 225


8.3.2 Estimating the Vessel Axis from Digitized Sherds . . . . . . . . . . . . . . . . . . 226<br />

8.3.3 Estimating Pr<strong>of</strong>ile Curves from Digitized Sherds . . . . . . . . . . . . . . . . . . . 227<br />

8.3.4 Simultaneously Solving <strong>for</strong> the Axis and Pr<strong>of</strong>ile Curve . . . . . . . . . . . . . . . 230<br />

8.3.5 Dealing with Asymmetries in Archaeological Ceramic Sherds . . . . . . . . . . . 232<br />

8.3.6 Vessel Reconstruction by Matching Axis/Pr<strong>of</strong>ile Curve Models . . . . . . . . . . . 233<br />

8.4 Vessel Reconstruction by Sherd Matching: 3D Puzzle Solving . . . . . . . . . . . . . . . 234<br />

8.4.1 The Bayesian Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235<br />

8.4.2 Searching <strong>for</strong> the Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236<br />

8.5 Current Trends in Computational Artifact Reconstruction . . . . . . . . . . . . . . . . . . . 237<br />

8.5.1 Going Beyond Geometry: Textures and Patterns on Sherd Surfaces . . . . . . . . . 238<br />

8.5.2 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238<br />

8.5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241<br />

9 Digital Reconstruction and <strong>Mosaic</strong>ing <strong>of</strong> Cultural Artifacts 245<br />

Efthymia Tsamoura, Nikos Nikolaidis, Ioannis Pitas<br />

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245<br />

9.2 The Three-step Object Reconstruction Procedure . . . . . . . . . . . . . . . . . . . . . . 250<br />

9.2.1 Fragments Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253<br />

9.2.2 Matching <strong>of</strong> Candidate Adjacent Fragments . . . . . . . . . . . . . . . . . . . . . 253<br />

9.2.3 Multi-fragment Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254<br />

9.3 Approaches <strong>for</strong> Object Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254<br />

9.3.1 Torn by Hand Document Reassembly . . . . . . . . . . . . . . . . . . . . . . . . 255<br />

9.3.2 3D Objects Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255<br />

9.3.3 2D Puzzles Reassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258<br />

9.3.4 2D Objects Reassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258<br />

9.4 Automatic Color Based Reassembly <strong>of</strong> Fragmented <strong>Images</strong> and Paintings . . . . . . . . . 259<br />

9.4.1 Discovery <strong>of</strong> Adjacent Image Fragments . . . . . . . . . . . . . . . . . . . . . . . 259<br />

9.4.2 Discovery <strong>of</strong> Matching Contour Segments <strong>of</strong> Adjacent Image Fragments . . . . . 260<br />

9.4.3 Contour Alignment <strong>of</strong> Fragments . . . . . . . . . . . . . . . . . . . . . . . . . . 262<br />

9.4.4 Overall Image Reassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263<br />

9.4.5 Image Reassembly Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 264<br />

9.5 Reduced Complexity Image <strong>Mosaic</strong>ing Utilizing Spanning Trees . . . . . . . . . . . . . . 266<br />

9.5.1 Two-Image <strong>Mosaic</strong>ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268<br />

9.5.2 Spanning Tree <strong>Mosaic</strong>ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269<br />

9.5.3 Sub-graph Spanning Tree <strong>Mosaic</strong>ing . . . . . . . . . . . . . . . . . . . . . . . . . 270<br />

9.5.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271<br />

9.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275<br />

10 Virtual Restoration <strong>of</strong> Antique Books and Photographs 281<br />

Filippo Stanco, Alfredo Restrepo Palacios, and Giovanni Ramponi<br />

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282<br />

10.1.1 Photographic Prints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282<br />

10.1.2 Antique Books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284<br />

10.2 Detection <strong>of</strong> the Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285<br />

xv


xvi<br />

10.2.1 Foxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285<br />

10.2.2 Water Blotches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287<br />

10.2.3 Cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288<br />

10.2.4 Fragmented Glass Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292<br />

10.3 Virtual Restoration <strong>of</strong> Antique Photographic Prints Affected by Foxing and Water Blotches 293<br />

10.3.1 Inpainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294<br />

10.3.2 Additive/Multiplicative Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295<br />

10.3.3 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295<br />

10.4 Restoration <strong>of</strong> the Fragmented Glass Plate Photographs . . . . . . . . . . . . . . . . . . . 296<br />

10.5 Restoration <strong>of</strong> Yellowing and Foxing in Antique Books . . . . . . . . . . . . . . . . . . . 299<br />

10.5.1 Foxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302<br />

10.5.2 Page Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303<br />

10.5.3 OCR in Antique Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304<br />

10.6 On Image Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306<br />

10.6.1 On the Measurement <strong>of</strong> Local Luminance and Local Contrast (Statistics <strong>of</strong> Location<br />

and Dispersion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307<br />

10.6.2 On the Relationship Between Local Contrast and Local Luminance . . . . . . . . 308<br />

10.6.3 Effect <strong>of</strong> γ-Correction on Scatter Plots <strong>of</strong> Local Contrast Versus Local Luminance 310<br />

10.6.4 Word Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311<br />

10.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315<br />

11 Advances in Automated Restoration <strong>of</strong> Archived Video 321<br />

Anil Kokaram, Francois Pitie, David Corrigan and Domenico Vitulano, Vittoria Bruni, Andrew Craw<strong>for</strong>d<br />

11.1 Dirt and Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322<br />

11.1.1 Simple Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324<br />

11.1.2 Better Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325<br />

11.1.3 Further Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327<br />

11.2 Semi-transparent Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329<br />

11.2.1 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331<br />

11.3 Line Scratches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333<br />

11.4 Global Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336<br />

11.4.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339<br />

11.5 An Evolving Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341<br />

12 Applications <strong>of</strong> Spectral Imaging and Reproduction to Cultural Heritage 347<br />

Simone Bianco, Alessandro Colombo, Francesca Gasparini, Raimondo Schettini, and Silvia Zuffi<br />

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348<br />

12.2 Colorimetric and Multispectral Color Imaging . . . . . . . . . . . . . . . . . . . . . . . 349<br />

12.3 Capturing a Multispectral Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350<br />

12.4 Imaging and Signal Processing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 353<br />

12.4.1 ’Narrow-band’ Multispectral Imaging . . . . . . . . . . . . . . . . . . . . . . . . 353<br />

12.4.2 ’Wide-band’ Multispectral Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 354<br />

12.4.3 Training Set Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356<br />

12.4.4 Filters Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357


12.5 Recovery Multispectral In<strong>for</strong>mation from RGB <strong>Images</strong> . . . . . . . . . . . . . . . . . . . 359<br />

12.5.1 Spectral Based Color Imaging Using RGB Digital Still Cameras . . . . . . . . . . 359<br />

12.6 Storing a Multispectral Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361<br />

12.7 Evaluating System Per<strong>for</strong>mance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363<br />

12.8 Multispectral Image Reproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364<br />

12.8.1 Colorimetric Reproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364<br />

12.8.2 Spectral Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364<br />

12.8.3 Spectral Reproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366<br />

12.8.4 Viewpoint and Lighting Position Invariant Reproduction . . . . . . . . . . . . . . 366<br />

12.9 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369<br />

13 Did Early Renaissance Painters Trace Optically Projected <strong>Images</strong>? The Conclusion <strong>of</strong> Independent<br />

Scientists, Art Historians and Artists 379<br />

David G. Stork, Jacob Collins, Marco Duarte, Yasuo Furuichi, Dave Kale, Ashutosh Kulkarni, M. Dirk<br />

Robinson, Christopher W. Tyler, Sara J. Schechner, and Nicholas C. Williams<br />

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380<br />

13.2 The Projection Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382<br />

13.2.1 Philosophical and Logical Foundations <strong>of</strong> the Projection Theory . . . . . . . . . . 382<br />

13.3 Image Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387<br />

13.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387<br />

13.3.2 Lorenzo Lotto, Husband and wife (1543) . . . . . . . . . . . . . . . . . . . . . . . 387<br />

13.3.3 Jan van Eyck, Portrait <strong>of</strong> Giovanni (?) Arnolfini and his wife (1434) . . . . . . . . 389<br />

13.3.4 Jan van Eyck, Portrait <strong>of</strong> Niccolò Albergati (1431 & 1432) . . . . . . . . . . . . . . 391<br />

13.3.5 Robert Campin, The Mérode altarpiece (1430) . . . . . . . . . . . . . . . . . . . 392<br />

13.3.6 Georges de la Tour, Christ in the carpenter’s studio (1645) . . . . . . . . . . . . . 393<br />

13.3.7 Caravaggio, The calling <strong>of</strong> St. Matthew (1599–1600) . . . . . . . . . . . . . . . . 394<br />

13.3.8 Hans Memling, Flower still-life (c. 1490) . . . . . . . . . . . . . . . . . . . . . . 395<br />

13.3.9 Hans Holbein, The Ambassadors (1533) . . . . . . . . . . . . . . . . . . . . . . . 395<br />

13.3.10 Hans Holbein, George Gisze (1532) . . . . . . . . . . . . . . . . . . . . . . . . . 396<br />

13.4 Documentary Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397<br />

13.5 Material Culture and Renactments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398<br />

13.5.1 Reenactments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399<br />

13.6 Non-Optical Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400<br />

13.7 The “Value” in Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400<br />

13.8 Scholarly Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401<br />

13.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402<br />

14 A Computer <strong>Analysis</strong> <strong>of</strong> the Mirror in Hans Memling’s Virgin and Child and Maarten van<br />

Nieuwenhove 409<br />

Silvio Savarese, David G. Stork, Andrey Del Pozo, and Ron Spronk<br />

14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410<br />

14.2 Memling’s Diptych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412<br />

14.3 Computer Vision <strong>Analysis</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415<br />

14.4 Modeling Reflections Off a Mirror Surface . . . . . . . . . . . . . . . . . . . . . . . . . 416<br />

xvii


xviii<br />

14.4.1 Direct Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419<br />

14.4.2 Inverse Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419<br />

14.4.3 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421<br />

14.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423<br />

14.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426<br />

15 Digital Reproduction <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong>s 431<br />

Sebastiano Battiato, Gianpiero Di Blasi, and Giovanni Gallo, Giovanni Puglisi<br />

15.1 Art and Computer Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431<br />

15.2 History <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432<br />

15.3 The Digital <strong>Mosaic</strong> Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434<br />

15.4 The Crystallization <strong>Mosaic</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435<br />

15.5 The <strong>Ancient</strong> <strong>Mosaic</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438<br />

15.6 The <strong>Ancient</strong> <strong>Mosaic</strong>s in a 3D environment . . . . . . . . . . . . . . . . . . . . . . . . . 442<br />

15.7 Final Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446<br />

15.7.1 Final Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449<br />

16 <strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 453<br />

Lamia Benyoussef and Stéphane Derrode<br />

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453<br />

16.1.1 Some Historical Facts about <strong>Mosaic</strong>s . . . . . . . . . . . . . . . . . . . . . . . . 454<br />

16.1.2 <strong>Mosaic</strong>s, <strong>Images</strong> and Digital Applications . . . . . . . . . . . . . . . . . . . . . . 455<br />

16.2 Recent Image Processing Projects Concerned with <strong>Mosaic</strong>s . . . . . . . . . . . . . . . . . 457<br />

16.2.1 St. Vitus Cathedral <strong>Mosaic</strong> Restoration . . . . . . . . . . . . . . . . . . . . . . . 458<br />

16.2.2 Arabo-moresque and Islamic <strong>Mosaic</strong> Pattern Classification . . . . . . . . . . . . . 458<br />

16.2.3 Roman <strong>Mosaic</strong>s Indexation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459<br />

16.3 Tesserae Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460<br />

16.4 Tessera-based Segmentation and Coding . . . . . . . . . . . . . . . . . . . . . . . . . . 462<br />

16.4.1 Segmentation <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> . . . . . . . . . . . . . . . . . . . . . . 464<br />

16.4.2 Tessera-based Coding and Lossy Compression . . . . . . . . . . . . . . . . . . . 464<br />

16.5 Guidelines Estimation <strong>for</strong> <strong>Mosaic</strong> Structure Retrieval . . . . . . . . . . . . . . . . . . . . 468<br />

16.6 Open Issues and Research Directions in <strong>Mosaic</strong> Image <strong>Analysis</strong> . . . . . . . . . . . . . . 470<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474<br />

17 Copyright Protection <strong>of</strong> Digital <strong>Images</strong> <strong>of</strong> Cultural Heritage 479<br />

Vito Cappellini, Roberto Caldelli, Andrea Del Mastio, Francesca Uccheddu<br />

17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480<br />

17.1.1 A Brief History <strong>of</strong> Watermarking . . . . . . . . . . . . . . . . . . . . . . . . . . 480<br />

17.1.2 Watermarking Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480<br />

17.1.3 Watermarking Application Scenarios . . . . . . . . . . . . . . . . . . . . . . . . 482<br />

17.2 2D Watermarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485<br />

17.2.1 Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486<br />

17.2.2 Insertion <strong>of</strong> Multiple Watermarking Codes . . . . . . . . . . . . . . . . . . . . . . 487<br />

17.2.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487<br />

17.2.4 Blind and Non-blind Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 489


17.2.5 Private and Public Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489<br />

17.2.6 Readable and Detectable Watermarks . . . . . . . . . . . . . . . . . . . . . . . . 489<br />

17.2.7 Invertibility and Quasi-invertibility . . . . . . . . . . . . . . . . . . . . . . . . . 490<br />

17.2.8 Reversibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491<br />

17.2.9 Asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491<br />

17.2.10 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496<br />

17.3 3D Watermarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496<br />

17.3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496<br />

17.3.2 3D Objects Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499<br />

17.3.3 State <strong>of</strong> the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502<br />

17.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509<br />

Index 515<br />

xix


16<br />

<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong><br />

Applications<br />

Lamia Benyoussef and Stéphane Derrode<br />

<strong>Institut</strong> <strong>Fresnel</strong> (CNRS UMR 6133)<br />

École Centrale Marseille<br />

Marseille, France<br />

Email: lbenyoussef@ec-marseille.fr, sderrode@ec-marseille.fr<br />

CONTENTS<br />

16.1 Introduction . . ................................................. . . . . ....................... 453<br />

16.1.1 Some Historical Facts about <strong>Mosaic</strong>s . . ............................................... 454<br />

16.1.2 <strong>Mosaic</strong>s, <strong>Images</strong> and Digital Applications . . ........................................... 455<br />

16.2 Recent Image Processing Projects Concerned with <strong>Mosaic</strong>s . . ................................... 457<br />

16.2.1 St. Vitus Cathedral <strong>Mosaic</strong> Restoration . . .............................................. 457<br />

16.2.2 Arabo-moresque and Islamic <strong>Mosaic</strong> Pattern Classification . . ............................ 458<br />

16.2.3 Roman <strong>Mosaic</strong>s Indexation . . ................................................. . . . .... 459<br />

16.3 Tesserae Extraction . .................................................. . . . ................. 460<br />

16.4 Tessera-based Segmentation and Coding . . ................................................. . . 462<br />

16.4.1 Segmentation <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> . . ............................................ 462<br />

16.4.2 Tessera-based Coding and Lossy Compression . . ....................................... 464<br />

16.5 Guidelines Estimation <strong>for</strong> <strong>Mosaic</strong> Structure Retrieval . . ........................................ 468<br />

16.6 Open Issues and Research Directions in <strong>Mosaic</strong> Image <strong>Analysis</strong> . . ............................... 470<br />

Bibliography . . ................................................. . . . ....................... 474<br />

16.1 Introduction<br />

<strong>Mosaic</strong> is a <strong>for</strong>m <strong>of</strong> art to produce decorative images or patterns out <strong>of</strong> small components. It requires a great<br />

deal <strong>of</strong> time and labor and it is <strong>of</strong>ten very expensive. <strong>Mosaic</strong> is, in return, far more durable in time than<br />

painting, so it can be used in places where painting cannot be <strong>of</strong> practical use, such as floors. <strong>Mosaic</strong> moreover<br />

allows the realization <strong>of</strong> light effects that are impossible with other media. The success <strong>of</strong> the mosaic art <strong>for</strong>m<br />

through the ages is at the origin <strong>of</strong> large collections in several museums, among them we can cite the “Great<br />

Palace <strong>Mosaic</strong> Museum” (Istanbul, Turkey) and the “Musée du Bardo” (Tunis, Tunisia).<br />

Recently, questions rise about the virtual conservation and management <strong>of</strong> collections and their accessibility<br />

to experts such as archeologists or art historians, and even to the large public. Requirements concern<br />

facilities<br />

• <strong>for</strong> cataloging collections and distant consultation, and <strong>for</strong> intelligent retrieval tools (e.g., the extraction<br />

<strong>of</strong> objects with a semantic meaning, such as animal or human, in a complex mosaic scene);<br />

453


454 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

• <strong>for</strong> virtual conservation (e.g., restoration <strong>of</strong> tesserae color), reconstruction (e.g., missing patches) and<br />

anastylosis <strong>of</strong> ancient mosaics.<br />

The aim <strong>of</strong> this Chapter is to draw an overview <strong>of</strong> image processing based methods dedicated to the specificities<br />

<strong>of</strong> mosaic images <strong>for</strong> applications to restoration and cataloging <strong>of</strong> ancient mosaics.<br />

16.1.1 Some Historical Facts about <strong>Mosaic</strong>s<br />

The following description only intends to give some basis entries about history <strong>of</strong> mosaics. And so, it is quite<br />

superficial and partial. Interested readers should consult the numerous books covering the subject, among<br />

them we can cite the following books [11,16,26]. The worldwide web gives also access to very complete lists<br />

<strong>of</strong> bibliographical references on ancient mosaics (e.g., [44]).<br />

The earliest mosaics were installed as floors or pavements, occasionally as walls. Later, ceilings were also<br />

decorated. Originally, mosaics were used strictly in an architectural context. <strong>Mosaic</strong>king smaller, portable<br />

items such as panels or portraits is a later development, though there are a few rare instances <strong>of</strong> items such as<br />

icons from the late Byzantine era. The first mosaics that we know <strong>of</strong> are from what is now the Middle East.<br />

Temple columns in ancient Babylon (present day Iraq) had thousands <strong>of</strong> small clay cones pressed into wet<br />

plaster in decorative and geometric patterns. These date from five thousand years ago. From these humble<br />

beginnings, mosaic developed into a major art <strong>for</strong>m. It was the Greeks, in the four centuries BC, who raised<br />

the pebble technique to an art <strong>for</strong>m, with precise geometric patterns and detailed scenes <strong>of</strong> people and animals.<br />

By 200 BC, specially manufactured pieces “tessera” were being used to give extra detail and range <strong>of</strong> color to<br />

the work. Using small tesserae, sometimes only a few millimeters in size, meant that mosaics could imitate<br />

paintings. Many <strong>of</strong> the mosaics preserved at, <strong>for</strong> example, Pompeii were the work <strong>of</strong> Greek artists. The<br />

expansion <strong>of</strong> the Roman Empire took mosaics further afield, although the level <strong>of</strong> skill and artistry was diluted.<br />

Typically Roman subjects were scenes celebrating their gods, domestic themes and geometric designs.<br />

With the rise <strong>of</strong> the Byzantine Empire from the 5 th century onwards, centered on Byzantium (present day<br />

Istanbul, Turkey), the art <strong>for</strong>m took on new characteristics. These included Eastern influences in style and<br />

the use <strong>of</strong> special glass tesserae called “smalti”, manufactured in northern Italy, made from thick sheets <strong>of</strong><br />

colored glass. Smalti have a rough surface and contain tiny air bubbles. They are sometimes backed with<br />

reflective silver or gold leaf. Whereas Roman mosaics were mostly used as floors, the Byzantines specialized<br />

in covering walls and ceilings. The smalti were ungrouted, allowing light to reflect and refract within the<br />

glass. Also, they were set at slight angles to the wall, so that they caught the light in different ways. The<br />

gold tesserae sparkle as the viewer moves around within the building. Roman images were absorbed into the<br />

typical Christian themes <strong>of</strong> the Byzantine mosaics, although some work is decorative and some incorporates<br />

portraits <strong>of</strong> Emperors and Empresses.<br />

In the west <strong>of</strong> Europe, the Moors brought Islamic mosaic and tile art into the Iberian peninsula in the 8 th<br />

century, while elsewhere in the Muslim world, stone, glass and ceramic were all used in mosaics. In contrast<br />

to the figurative representations in Byzantine art, Islamic motifs are mainly geometric. Examples can be seen<br />

in Spain at the Great Mosque at Cordoba, the Alhambra Palace and Meknes in Morocco (Figure 16.4(b)).<br />

In Arabic countries a distinctive decorative style called “zillij” uses purpose-made ceramic shapes that are<br />

further worked by hand to allow them to tessellate (fit together perfectly to cover a surface).<br />

In the rest <strong>of</strong> Europe, mosaic went into decline throughout the Middle Ages, although some tiling patterns<br />

in abbeys, <strong>for</strong> example, used mosaic effects. In the 19 th century there was a revival <strong>of</strong> interest, particularly in<br />

the Byzantine style, with buildings such as Westminster Cathedral in London and Sacre-Cœur in Paris. The<br />

“Art Nouveau” movement also embraced mosaic art. In Barcelona, Antoni Gaudí worked with Josep Maria<br />

Jujol to produce the stunning ceramic mosaics <strong>of</strong> the Guell Park in the first two decades <strong>of</strong> the 20 th century.<br />

These used a technique known as trencadis in which tiles (purpose-made and waste tiles) covered surfaces <strong>of</strong>


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 455<br />

buildings. They also incorporated broken crockery and other found objects, a revolutionary idea in <strong>for</strong>mal art<br />

and architecture.<br />

<strong>Mosaic</strong> still continue to interest artists but also crafts people because it is a very accessible, non-elitist<br />

<strong>for</strong>m <strong>of</strong> creativity. The field is rich with new ideas and approaches, and organisations such as the British<br />

Association <strong>for</strong> Modern <strong>Mosaic</strong> (BAMM) [2] and the Society <strong>of</strong> American <strong>Mosaic</strong> Artists (SAMA) [1] exist<br />

to promote mosaic. As a recent example, we can cite the development <strong>of</strong> algorithms <strong>for</strong> computer-aided<br />

generation <strong>of</strong> mosaic images from a raster image, simulating ancient or modern styles [6].<br />

16.1.2 <strong>Mosaic</strong>s, <strong>Images</strong> and Digital Applications<br />

<strong>Mosaic</strong>s are made <strong>of</strong> colored tiles, called tessera or tessella, usually <strong>for</strong>med in the shape <strong>of</strong> a cube <strong>of</strong> materials<br />

separated by a joint <strong>of</strong> mortar. The earliest known mosaic materials were small cones <strong>of</strong> clay pressed into<br />

wet plaster. Semi-precious stones such as lapis lazuli and onyx, as well as shells and terra cotta were also<br />

used. As the art developed, glass, ceramic and stone tesserae were the most common materials, along with<br />

pebbles. Modernly, any small singular component can be used: traditional materials, glass or ceramic cast or<br />

cut into tiles, plus plastic, polymer clay (such as Sculpey or Fimo), beads, buttons, bottle caps, pearls, etc.<br />

The physical study <strong>of</strong> materials used in mosaics continue to be an active research field [10, 17, 38].<br />

Structure characteristics<br />

<strong>Mosaic</strong>s can be built on different natural ground made <strong>of</strong> soil or rock, or on top <strong>of</strong> a previous pavement.<br />

The mosaic itself is composed <strong>of</strong> a variety <strong>of</strong> foundation or preparatory layers and a layer <strong>of</strong> tesserae. Also,<br />

the mosaic surface exhibits irregular hollows (tesserae) and bumps (mortar) through the scene. Hence, a<br />

mosaic can not be considered as a plane surface, as <strong>for</strong> paintings, but has numerous <strong>for</strong>ms <strong>of</strong> irregularities,<br />

typical <strong>of</strong> the artwork style:<br />

• Shape <strong>of</strong> tesserae, The shapes <strong>of</strong> tesserae are irregular, from square shapes to polygonal ones.<br />

• Organization <strong>of</strong> tesserae, Tesserae are not positioned according to a regular lattice. On the contrary, the<br />

smart and judicious choice in the orientation, size and positioning <strong>of</strong> tesserae characterize the artwork<br />

style and exhibit the “general flow” (guidelines) <strong>of</strong> the mosaic chosen by the mosaicist.<br />

• Mortar joint, This positioning makes the joints appear as an irregular network with numerous interconnections<br />

throughout the mosaic. Network color intensity, mainly middle gray, is however not uni<strong>for</strong>m<br />

through the scene.<br />

• Color <strong>of</strong> tesserae, Because <strong>of</strong> materials used and their oldness, tesserae <strong>of</strong> ancient mosaics are generally<br />

characterized by pastel colors, with low contrast.<br />

Oldness characteristics<br />

Other artifacts can be associated to the wear, erosion and oldness <strong>of</strong> ancient mosaics (some <strong>of</strong> them are<br />

illustrated by images in Figures 16.1 and 16.2):<br />

• Disaggregated tesserae, Some tesserae can display a loss <strong>of</strong> cohesion <strong>of</strong> their surfaces, disintegrated into<br />

powder or small grains. Also erosion and patinae deteriorations are commonly encountered in studying<br />

ancient mosaics.<br />

• Missing tessera patches, Most <strong>of</strong> mosaics are not completely preserved and, as a consequence <strong>of</strong><br />

disaggregation, lacunas generally corrupted mosaic scenes.<br />

• Color alteration, Alteration <strong>of</strong> the mosaic surface characterized by a localized change in color (due to fire<br />

damage, graffiti, etc.).


456 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

FIGURE 16.1<br />

Excerpt <strong>of</strong> an ancient Greek mosaic scene (from Paphos, Cyprus), showing missing patches and geometric<br />

de<strong>for</strong>mation due to slant acquisition [25], public domain image.<br />

(a) Disaggregated (b) Eroded (c) Altered in color<br />

FIGURE 16.2<br />

Three examples <strong>of</strong> deteriorated tesserae, from [34].


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 457<br />

Data acquisition<br />

For latter processing and virtual anastylosis, mosaic scene must first be digitized using camera. All<br />

peculiarities cited above have a strong and complex impact on acquisition and the way mosaic scenes appear<br />

in an image with a limited resolution:<br />

• Relief shadows, During snapshot acquisition, the relief <strong>of</strong> tesserae generates shadows on mortar which<br />

does not appear nearly uni<strong>for</strong>m in intensity all over the image, as it should be.<br />

• Indoor/outdoor acquisition, Previous item is further accentuated by indoor acquisition with flash. In<br />

outdoor acquisition, light is not controlled and one should expect severe contrast variations in acquisitions.<br />

• Geometric de<strong>for</strong>mation, Another degradation comes from the snapshot acquisition angle, especially <strong>for</strong><br />

very large mosaic scenes lying on the floor. This point produces perspective (rotation, scaling and shearing)<br />

de<strong>for</strong>mations <strong>of</strong> tesserae shape in image and the thinning down <strong>of</strong> the mortar width (till disappearing).<br />

• Tessera resolution, The resolution <strong>of</strong> tesserae in an image (i.e., the number <strong>of</strong> pixels to describe a tessera)<br />

should not be too low <strong>for</strong> latter processing. On the other hand, a too high resolution will only able to<br />

capture partial scene.<br />

As a consequence, very large mosaic scenes have to be recorded using multiple overlapping images that<br />

are subsequently co-registered in geometry and color to produce the entire digital scene. An interesting<br />

complementary approach to camera acquisition is given by laser scanning. This technique, used recently <strong>for</strong><br />

ancient mosaics analysis [23, 37], can produce a 3D mesh <strong>of</strong> the mosaic surface and material <strong>for</strong> a detailed<br />

shape analysis.<br />

Hence, dedicated processing methods are required to take into account the specificities <strong>of</strong> mosaic and<br />

the specificities <strong>of</strong> mosaic images, and to adopt image processing strategies suited to the tiling organisation<br />

<strong>of</strong> tesserae. This way, one can expect better per<strong>for</strong>mances than general purpose algorithms. The nature and<br />

the artifacts in mosaic images make segmentation methods based on pixel intensities inefficient (e.g., pixels<br />

associated to the mortar interfere with the classification process <strong>of</strong> tesserae). A strategy better suited to mosaic<br />

images is to consider tesserae as indivisible entities with an almost uni<strong>for</strong>m gray-level value.<br />

The remaining <strong>of</strong> the Chapter starts in Section 16.2 with a brief description <strong>of</strong> several projects involving<br />

image processing methods <strong>for</strong> restoration, preservation and indexation <strong>of</strong> ancient mosaics. Then we present<br />

in details some fondamental applications <strong>of</strong> the tessera-oriented point-<strong>of</strong>-view on mosaic images proposed<br />

by the authors, according to the diagram in Figure 16.3. Section 16.3 presents an effective way to extract<br />

tesserae, while Section 16.4 exposes two direct applications <strong>of</strong> this strategy <strong>for</strong> mosaic image segmentation<br />

and coding. Section 16.5 presents an effective way to retrieve the main guidelines <strong>of</strong> a mosaic which can be<br />

helpful <strong>for</strong> delimitating semantic objects present in a complex scene. Finally, the conclusion in Section 16.6<br />

examines some open issues and suggests future research directions to succeed in providing appropriated tools<br />

to museums and experts.<br />

16.2 Recent Image Processing Projects Concerned with <strong>Mosaic</strong>s<br />

A few project involving computer science and image processing <strong>for</strong> mosaic conservation, restoration or<br />

cataloging are reported in the literature. Here is a short description <strong>of</strong> them.


458 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

FIGURE 16.3<br />

Organization <strong>of</strong> Chapter with the processing pipeline.<br />

16.2.1 St. Vitus Cathedral <strong>Mosaic</strong> Restoration<br />

The more accomplished project concerns the restoration <strong>of</strong> the St. Vitus cathedral mosaics, in Prague (Czech<br />

Republic), reported in [49]. The Golden Gate (the southern entrance to the cathedral) is decorated with a<br />

unique work <strong>of</strong> art: a colored, richly gilded mosaic representing the Last Judgement, see Figure 16.4(a). In<br />

1992 the Office <strong>of</strong> the President <strong>of</strong> the Czech Republic and the Getty Conservation <strong>Institut</strong>e [3] began to<br />

cooperate to restore and conserve the mosaic.<br />

Having the historical photo <strong>of</strong> the mosaic from the end <strong>of</strong> the 19 th century and the photos <strong>of</strong> the current<br />

state, authors study the evolution <strong>of</strong> the mosaic, which was several times reconstructed and conserved. Firstly<br />

they tried to restore the historical photograph - remove noise , deblur the image, increase the contrast. Then,<br />

they remove the geometrical difference between images by means <strong>of</strong> the multi-modal registration using<br />

mutual in<strong>for</strong>mation. Finally, they identify mutual differences between the photos, which indicate the changes<br />

on the mosaic during the centuries.<br />

16.2.2 Arabo-moresque and Islamic <strong>Mosaic</strong> Pattern Classification<br />

Lot <strong>of</strong> attention has also been paid to islamic mosaics, <strong>of</strong> which artwork style is illustrated through Figure<br />

16.4(b). The particularities <strong>of</strong> such mosaics come from the periodicity and symmetry <strong>of</strong> tile patterns.<br />

A. Zarghili et al, [47, 48] propose a method to index an Arabo-Moresque decor database which is not<br />

based on symmetry. They use a supervised mosaicking technique to capture the whole principal geometric<br />

in<strong>for</strong>mation (connected set <strong>of</strong> polygonal shapes, called “spine”) <strong>of</strong> a pattern. The spine is then described<br />

by using Fourier shape descriptors [35] to allow retrieving <strong>of</strong> images even under translation, rotation and<br />

scale. But, according to [14], the method cannot be automatized and does not allow the classification <strong>of</strong> these<br />

patterns according to any criterion.<br />

In [21], the authors propose image processing techniques to restore mosaic patterns. Image analysis<br />

tools are developed to obtain in<strong>for</strong>mation about design patterns which are used to recover missing motifs or


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 459<br />

(a) (b)<br />

FIGURE 16.4<br />

(a) Photo <strong>of</strong> the “Last Judgement” mosaic in the St. Vitus cathedral (Prague, Czech Republic), from [4]. (b)<br />

Islamic mosaic (Meknes, Morocco).<br />

tesserae. One difficulty was to propose methods robust to the discrepancies between equal object shapes (due<br />

to manual artwork, oldness, etc.). The symmetry, once recovered, allows virtual reconstruction by inpainting<br />

methods and physical restoration <strong>of</strong> damaged parts <strong>of</strong> mosaics.<br />

To study Islamic geometrical patterns, and all periodic patterns such as those encountered in textile<br />

patterns [41] or wallpapers, several works are based on the symmetry group theory. In [14], authors first<br />

classify patterns into one <strong>of</strong> the three following categories: (i) pattern generated by translation along one<br />

dimension, (ii) patterns which contain translational symmetries in two independent directions (refers to the<br />

seventeen wallpaper groups), and (iii) “rosettes” that describes patterns which begin at a central point and<br />

grow radially outward. For every pattern, authors extract the symmetry group and the fundamental region (i.e.,<br />

a representative region in the image from which the whole image can be regenerated). Finally, they describe<br />

the fundamental region by a simple color histogram and build the feature vector which is a combination <strong>of</strong> the<br />

symmetry feature and histogram in<strong>for</strong>mation. Authors shows promising experiments <strong>for</strong> either classification<br />

or indexing.<br />

In [15], authors exploit symmetry and auto-similarity <strong>of</strong> motifs to design a system to index Arabo-<br />

Moresque mosaic images based on the fractal dimension. <strong>Mosaic</strong>s are first segmented automatically using<br />

color in<strong>for</strong>mation. The classification decomposes the initial motif into a set <strong>of</strong> basic shapes. Contours <strong>of</strong> those<br />

shapes are then characterized by their fractal dimension which gives, according to the authors, a relevant<br />

measure <strong>of</strong> the geometric structure <strong>of</strong> the tile pattern. Some retrieval per<strong>for</strong>mances are also reported.<br />

16.2.3 Roman <strong>Mosaic</strong>s Indexation<br />

Recently, two Content-Based Image Retrieval (CBIR) systems have been proposed to catalog and index<br />

Roman mosaic images.<br />

The first one, proposed in [32], details a complete CBIR system which include (i) object extraction from<br />

a complex mosaic scene by using unsupervised statistical segmentation and (ii) invariant description <strong>of</strong><br />

semantic objects using the analytical Fourier-Mellin trans<strong>for</strong>m [13, 20]. Similarity between querying mosaic<br />

and the database is based on an index constructed from the invariant descriptors and an appropriate metric<br />

(Euclidean and Hausdorff).


460 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

(a) (b)<br />

FIGURE 16.5<br />

Excerpt <strong>of</strong> an ancient mosaic showing a wild boar (a) and a zoom on its hind legs (b).<br />

The second CBIR [27, 28] is a general system to index and retrieve by the content historic document<br />

images. While the object annotation in database images is done manually and <strong>of</strong>f-line, the indexation is done<br />

automatically using an extended curvature scale space descriptor [33] suitable <strong>for</strong> concave and convex shapes.<br />

The query/retrieval <strong>of</strong> pertinent shapes from the database starts with a user drawing query (with a computer<br />

mouse or a pen) that is compared to entries in the database using a fuzzy similarity measure. The system<br />

integrates an XML Database con<strong>for</strong>m to the MPEG7 standard, and experiments on large databases providing<br />

by the National Library <strong>of</strong> Tunisia and some Tunisian museums are reported.<br />

One key-point <strong>for</strong> such systems to be effective is to improve semantic objects extraction. Pixel-based<br />

methods, as the one used in [32], require heavy post-processing to detect shapes <strong>of</strong> interest from pixels classe.<br />

Recently, a new viewpoint on mosaic images, based directly on tesserae, have been proposed [8]. Once tessera<br />

extraction is achieved, this strategy facilitates basic steps toward CBIR applications, as described in the<br />

following.<br />

16.3 Tesserae Extraction<br />

A “natural way” to describe mosaics is to consider tesserae in their own instead <strong>of</strong> groups <strong>of</strong> isolated pixels,<br />

allowing to develop tessera-oriented processing. Indeed, a mosaic image can be seen as an irregular lattice<br />

in which a node is a tessera (Figure 16.5). The grid structure has been superposed to the zoomed image in<br />

Figure 16.5(b) to illustrate the complexity <strong>of</strong> the neighborhood system, both in the number <strong>of</strong> neighbors and<br />

in their orientation. To adopt this point <strong>of</strong> view on mosaic images, a robust method is required to extract<br />

tesserae from the network <strong>of</strong> mortar surrounding them.<br />

A way to consider this problem is to deal with the dual problem (i.e., the extraction <strong>of</strong> the network <strong>of</strong><br />

mortar) which is close to recurrent problems encountered in several image processing applications (i.e., in<br />

medical imaging: vascular network segmentation from angiographies [12, 46], or in satellite imaging: road<br />

extraction in urban scenes [29, 30]).<br />

Several approaches have been proposed. Methods based on contour extraction are widely used and mainly


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 461<br />

FIGURE 16.6<br />

Processing chain involved in tessera extraction, using gray-scale morphology tools.<br />

rely on the assumption that the network pixels and neighboring ones have different gray levels in order to<br />

compute gradients. But methods based on high-pass filter, such as Harris’s corner detector, highlight pixels<br />

belonging to the network, not connected components. Higher-level processings detect lines with varying<br />

widths [18, 39]. Strategies that track the entire network from a starting point [7, 45] are difficult to justify in<br />

the mosaic image case due to the high number <strong>of</strong> interconnections in a mosaic network graph.<br />

Numerous methods based on Markov modeling [19,40] or active contours [36,42] have also been proposed.<br />

These methods are quite efficient but time consuming. In the case <strong>of</strong> mosaics, these methods are not suited<br />

because <strong>of</strong> the high density <strong>of</strong> the network to be extracted in images. In [19], a Markov model is applied<br />

on a graph <strong>of</strong> adjacency crests, detected by a Watershed Trans<strong>for</strong>mation applied on a criterion image. This<br />

criterion image, computed from the original one, exhibits the potential <strong>of</strong> each pixel to belong to the network.<br />

A study <strong>of</strong> tessera extraction has been conducted in [8]. The solution adopted, and preferred over other<br />

experimented strategies, is based on gray-level morphology which is suited to the tiling organisation <strong>of</strong><br />

mosaics. The Watershed Trans<strong>for</strong>mation (WT) approach [31] appeared interesting <strong>for</strong> mosaic images since<br />

this method is a good compromise between low-level methods (contour detection) and approaches by energy<br />

minimization (Markov model or active contours). But to work well, the WT needs to be computed on a<br />

criterion image (processed from the original one) that shows tesserae as catchment basins and the mortar<br />

network as watershed crests.<br />

The entire algorithm is sketched in Figure 16.6. The goal is to present to the WT a potential image that<br />

exhibits tesserae as catchment basins and the network as a crest crossing the entire image. The pre-processings<br />

are: (i) Contrast enhancement, based on top-hat and bottom-hat trans<strong>for</strong>ms; (ii) Potential criterion computation<br />

to exhibit the network as a crest; and (iii) Area closing [43] to reduce over-detection by WT.<br />

The extraction quality highly depends on the way mosaic images have been acquired. It should be taken<br />

not too far from the mosaic since individual tiles will not be visible: according to experiments, tesserae should<br />

appear with a resolution <strong>of</strong> not less than 10 × 10 pixels. Parameter h is a threshold used by the area closing


462 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

FIGURE 16.7<br />

Criterion image obtained from Figure 16.5. This processing improves the contrat between tessera and the<br />

network <strong>of</strong> mortar.<br />

operator [43]. Its value has an impact on the number <strong>of</strong> extracted tiles: a small value gives an over-detection<br />

whereas a big one produces an under-detection one. Hence, it should be (roughly) adjusted according to the<br />

mean size α <strong>of</strong> tesserae in the image (in number <strong>of</strong> pixels), assuming that α almost constant in a mosaic.<br />

Parameter h should be less than α 2 to avoid small tesserae to be deleted by the morphological operator. In<br />

experiments, value h = α 2 /2 gives good results.<br />

Figure 16.7 shows the criterion image obtained by applying the method to the wild boar image. As can be<br />

seen in this example, the network appears in dark. However tesserae are not uni<strong>for</strong>m in texture and show local<br />

gray-level crests that should be deleted be<strong>for</strong>e WT in order to avoid over-segmentation. Following [19], an<br />

area closing [43] in first computed on the criterion image. This processing gives fewer minima while retaining<br />

crest locations as illustrated in Figure 16.8. The crest contours now represent correctly the network, which is<br />

confirmed by the zoom in Figure 16.9(a). To determine the width <strong>of</strong> the network (and not only a one-pixel<br />

skeleton as done by WT), which varies through the image, a simple threshold is applied on neighboring pixels<br />

<strong>of</strong> crests: a pixel is aggregated to the crest if its gray value is no more different by 10% <strong>of</strong> the skeleton mean<br />

gray value. The result <strong>of</strong> applying such a threshold can be observed in Figure 16.9(b).<br />

A second example <strong>of</strong> tessera extraction based on gray-level morphological processing in given in Figure<br />

16.10.<br />

16.4 Tessera-based Segmentation and Coding<br />

This Section describes two simple and direct applications <strong>of</strong> the tessera-oriented representation <strong>of</strong> ancient<br />

mosaic images: segmentation and coding. Especially, these applications preserve the irregularity <strong>of</strong> tiles shape<br />

and so the mosaic effect perception. From now, we assume that all tesserae in a mosaic image have been<br />

extracted successfully (i.e., one can access the coordinates <strong>of</strong> every pixel belonging to the contour <strong>of</strong> each tile<br />

in the mosaic). Each pixel that does not belong to a tessera is assumed to be a background pixel (i.e., a mortar<br />

network pixel).


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 463<br />

(a) (b)<br />

FIGURE 16.8<br />

Extraction <strong>of</strong> tesserae from the criterion image in Figure 16.7, without (a) and with (b) area closing operator.<br />

(a) (b)<br />

FIGURE 16.9<br />

Result <strong>of</strong> tessera extraction on the zoom in Figure 16.5(a) in (a), and network/tesserae classification in (b).


464 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

(a) (b)<br />

FIGURE 16.10<br />

Illustration <strong>of</strong> the tessera extraction algorithm on the mosaic image <strong>of</strong> a Deer.<br />

16.4.1 Segmentation <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong><br />

Instead <strong>of</strong> using all pixels from the tesserae, and since tesserae are almost homogeneous in color, classification<br />

can be per<strong>for</strong>med directly on tesserae, not on pixels, by using some dedicated features. Tesserae can be<br />

characterized by several features, among them the mean and variance <strong>of</strong> gray-level values. Also one can take<br />

into account the number <strong>of</strong> pixels in the tessera, using a multi-features classification. All pixels belonging to<br />

the mortar network are directly associated to a unique class (they do not participate to the classification). The<br />

class color corresponds to the mean color <strong>of</strong> the mortar pixels.<br />

In Figure 16.11, a simple K-means algorithm based on the mean gray-level value <strong>of</strong> tesserae was sufficient<br />

to get an interesting segmentation. From a semantic point <strong>of</strong> view, this segmentation outper<strong>for</strong>ms the result<br />

obtained by a classical pixel-based K-means strategy. A second example that confirms such interesting<br />

behavior is provided in Figure 16.12. Once again, the segmentation quality depends on the robustness <strong>of</strong><br />

tessera extraction.<br />

16.4.2 Tessera-based Coding and Lossy Compression<br />

Another direct application <strong>of</strong> the WT tessera labeling is to develop a compact and efficient coding representation<br />

<strong>of</strong> ancient mosaic images [9]. This kind <strong>of</strong> module can be useful <strong>for</strong> rapid thumbnails transmission in<br />

case <strong>of</strong> distant catalog browsing application. The compression proposed is lossy but preserves the specificities<br />

<strong>of</strong> mosaic images, especially the irregularity <strong>of</strong> tesserae shape. In a way, the strategy described below is better<br />

suited to ancient mosaic images than a general purpose lossy compression algorithm, such asjpeg which is<br />

based on square-blocks.<br />

We still consider that all tesserae in a mosaic have been extracted successfully (i.e., we can access the<br />

coordinates <strong>of</strong> every pixel belonging to the contour <strong>of</strong> each tile in the mosaic). The network can be seen as<br />

the mosaic image background (i.e., each pixel that does not belong to a tessera is assumed to be a background<br />

pixel). Let I be a mosaic image with dimensions L × C, made <strong>of</strong> N colored tiles. The tessera-based<br />

lossy-compression specificity has been designed in order to take into account the two following observations:<br />

• A tile n, n ∈ [1, N], is usually <strong>for</strong>med in the shape <strong>of</strong> a cube <strong>of</strong> material, mostly with uni<strong>for</strong>m color.


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 465<br />

(a) Pixel-based K-means segmentation (b) Tile-based K-means segmentation<br />

FIGURE 16.11<br />

Segmentation comparison <strong>of</strong> the mosaic image in Figure 16.5(a) with a pixel-based strategy (a) and the<br />

tessera-based strategy presented in Section 16.3 (b). Both pixel- and tile-based segmentations make use <strong>of</strong> an<br />

unsupervised K-means classification algorithm, the first one with 3 classes, and the second one only with 2<br />

classes since the mortar is already extracted.<br />

Hence a vector <strong>of</strong> three intensity colors (Rn, Gn, Bn) is enough to describe the color <strong>of</strong> tessera n. This<br />

color can be easily estimated by computing the mean intensity <strong>of</strong> pixels belonging to the tessera.<br />

• The mortar intensity, mainly middle gray, is not uni<strong>for</strong>m throughout the image because <strong>of</strong> shadows due to<br />

non-flat mosaic surfaces and snapshot acquisition angle. However, the network intensity should appear<br />

the same everywhere in the image. Hence, all pixels belonging to the mortar network is coded by the<br />

same color vector (Rb, Gb, Bb), b stands <strong>for</strong> background. This value can be estimated by computing<br />

the mean intensity <strong>of</strong> network.<br />

Coding file structure<br />

Thecms (“Compressed MoSaic”) <strong>for</strong>mat is structured as follows (see Figure 16.13) :<br />

• Header: The header is made <strong>of</strong><br />

1. The original image size in pixels (2 × 2 bytes).<br />

2. The number N <strong>of</strong> tesserae in the image (2 bytes).<br />

3. The mean color values (Rb, Gb, Bb) <strong>of</strong> the network (3 bytes).<br />

Hence, nine bytes are necessary to code the header. Other in<strong>for</strong>mation such as the name <strong>of</strong> the original<br />

image or a comment can be added.<br />

• Body: each tessera n has the following code structure<br />

1. Tessera header contains the number <strong>of</strong> pixels Nn <strong>of</strong> the contour (1 byte), and the mean color values<br />

(Rn, Gn, Bn) <strong>of</strong> the tessera (3 bytes).


466 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

(a) (b) (c)<br />

FIGURE 16.12<br />

K-means segmentation <strong>of</strong> a mosaic representing a bird (a) with the pixel-based (b) and the tile-based (c)<br />

strategies.<br />

FIGURE 16.13<br />

Sketch <strong>of</strong> thecms file <strong>for</strong>mat to compress images <strong>of</strong> ancient mosaics (without Huffman coding).<br />

2. Tessera body codes the closed-contour using the coordinates (l1,c1) <strong>of</strong> the first pixel (4 bytes) and<br />

Freeman chain code (or whatever code) <strong>for</strong> the subsequent Nn − 1 pixels. If no Huffman coding<br />

technic is applied, only 3 bits per contour pixels are necessary.<br />

(Nn−1) 3<br />

Counting the number <strong>of</strong> bytes necessary to code a tessera n gives: 8 + rounded to the ceil<br />

8<br />

value. The last byte is filled in to start the next tessera coding on a new byte. Hence, 21 bytes are needed<br />

to code a tessera with Nn = 34.<br />

<strong>Mosaic</strong> image reconstruction from the compressed file is done by reconstructing the image background<br />

using the network color intensity, on which each tessera with its own color is superposed. The order tesserae<br />

are saved or read in the body <strong>of</strong> thecms file has no influence on the reconstruction quality, but can be changed<br />

<strong>for</strong> a desired application. For example, one can think organizing tesserae by grouping tiles in the file according<br />

to the semantic object they belong to (e.g., human, animal, etc.). Hence reconstruction will progressively show<br />

the different objects present in the mosaic scene. Tesserae dedicated to the background, mainly <strong>of</strong> uni<strong>for</strong>m<br />

color as illustrated in Figures 16.5(a), 16.10(a) and 16.12(a), can be saved at the end <strong>of</strong> the file since their<br />

semantic meaning is, in general, less interesting than the one from objects tesserae. Specific organization<br />

<strong>of</strong> tesserae within the file can also be <strong>of</strong> interest <strong>for</strong> mosaic database indexing and text- or content-based<br />

retrieval, see Section 16.6. Hence, we get a compact and easy-to-handle lossy-compressed representation <strong>of</strong><br />

mosaic image. The compression <strong>of</strong> a mosaic image and its reconstruction from acms file are summed up in<br />

Algorithms 1 and 2.<br />

Experimental results<br />

To evaluate the compression algorithm, we process on the Deer mosaic image in Figure 16.10(a). The<br />

decoding result is shown in Figure 16.14 and must to be compared with the original image. Pixels attributed


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 467<br />

Algorithm 1cms <strong>for</strong>mat coding.<br />

Require: <strong>Mosaic</strong> image I.<br />

Ensure: Tessera-oriented coding <strong>of</strong> I in filef.<br />

Tessera extraction (cf. Section 16.3).<br />

<strong>for</strong> n = 1, . . . , N do<br />

Write the number <strong>of</strong> contour pixels Nn ←f.<br />

Write the mean color value Vn ←f.<br />

Write the first contour pixel coordinates ln, cn ←f.<br />

<strong>for</strong> i = 2, . . . , Nn do<br />

Compute chain code direction <strong>for</strong> pixel i.<br />

Write direction ←f.<br />

end <strong>for</strong><br />

end <strong>for</strong><br />

Algorithm 2cms <strong>for</strong>mat decoding.<br />

Require: Compressed filef.<br />

Ensure: Tessera-oriented decoding <strong>of</strong> filefinto image I.<br />

Read file header → L, C, N, Rb, Gb, Bb.<br />

Create an image I with dimensions L × C and background color (Rb, Gb, Bb).<br />

<strong>for</strong> n = 1, . . . , N do<br />

Read tessera header → Nn, Rn, Gn, Bn, ln, cn.<br />

Set pixel (ln, cn) with color (Rn, Gn, Bn).<br />

<strong>for</strong> i = 2, . . . , Nn do<br />

Compute coordinates (li, ci).<br />

Set pixel (li, ci) with color (Rn, Gn, Bn).<br />

end <strong>for</strong><br />

Fill in the closed contour with color (Rn, Gn, Bn).<br />

end <strong>for</strong><br />

FIGURE 16.14<br />

Result <strong>of</strong> coding/decoding <strong>of</strong> the Deer image in Figure 16.10(a).


468 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

to the network represent 27.5% <strong>of</strong> the total number <strong>of</strong> pixels in the image (255 × 394). The number <strong>of</strong><br />

tesserae detected is 314. The image produces a cms file size <strong>of</strong> 8766 bytes, which gives a compression<br />

factor <strong>of</strong> about 11.5 with respect to a raw coding <strong>of</strong> pixels (e.g.,ppm file <strong>for</strong>mat). The compression ratio<br />

depends on the mean tessera size in the mosaic image. The bigger the tiles, the higher the compression ratio<br />

is expected to be.<br />

From a qualitative point <strong>of</strong> view, some remarks can be pointed out. As expected the shape <strong>of</strong> the network<br />

and tesserae is kept very similar to the original ones. The mean colors used to describe network and tesserae<br />

intensities makes the decoded image appears pastel with respect to the original one, since artifacts such as<br />

shadow or dirties are cleaned. Nevertheless the global aspect <strong>of</strong> the mosaic is respected and <strong>of</strong> sufficient<br />

quality to understand the scene content. Lacunas and missing patches are not taken into account by the actual<br />

algorithm. It considers holes as tesserae but should better associate them to the mortar network since we<br />

observe the preparatory layer mortar appears behind. One solution is to fuse the network with tesserae that<br />

show mean color close to the mean network color.<br />

16.5 Guidelines Estimation <strong>for</strong> <strong>Mosaic</strong> Structure Retrieval<br />

<strong>Ancient</strong> mosaicists avoided to align their tiles according to rectangular grids. Indeed, such grids emphasize<br />

only horizontal and vertical lines and may distract the observer from seeing the overall picture. Hence, they<br />

placed tiles in order to emphasis the strong edges <strong>of</strong> the subject to be represented, influencing the overall<br />

perception <strong>of</strong> the mosaic [5]. Hence, organization and positioning <strong>of</strong> tesserae are interesting in<strong>for</strong>mation <strong>for</strong><br />

experts since they emphasize the main directional guidelines chosen by the artist (characteristic <strong>of</strong> the style).<br />

This in<strong>for</strong>mation is <strong>of</strong> crucial interest <strong>for</strong> mosaic dedicated applications such as content-based retrieval <strong>of</strong><br />

semantic elements or region-based mosaic image coding.<br />

To get directional guidelines, one can first think using the principal axes <strong>of</strong> an ellipse-equivalent shape <strong>of</strong><br />

each tessera, using well-known <strong>for</strong>mulae based on geometrical moments (minor and majors axes). However,<br />

ancient mosaic tesserae are not box- neither regular-shaped and principal axes quickly appear not enough<br />

robust. One major drawback <strong>of</strong> such method is that it does not take into account in<strong>for</strong>mation <strong>of</strong> neighboring<br />

tesserae, which is <strong>of</strong> great importance <strong>for</strong> regularization and <strong>for</strong> recovering the main guidelines that emphasize<br />

the “general flow” <strong>of</strong> a mosaic.<br />

Hence, an energy-based contextual algorithm <strong>for</strong> retrieving main directional guidelines in a mosaic has<br />

been proposed [8]. The energy to be minimized is constructed by using two key-features: the mean-gray value<br />

and borders directions <strong>of</strong> each tessera. The optimization is done either by gradient descent or by simulated<br />

annealing.<br />

Methodology<br />

Each tessera n is represented by<br />

• Its barycenter (xn, yn) computed on the support Ωn <strong>of</strong> n.<br />

• The list <strong>of</strong> its neighboring tesserae: Vn = {vn,1, . . . , vn,Tn}. A neighbor is a tessera that shares at<br />

least one pixel <strong>of</strong> mortar network with n.<br />

It should be noted that the number <strong>of</strong> neighbors Tn is different from one tile to the other since tesserae are not<br />

organized according to a regular grid. Each tessera n is characterized by an energy <strong>of</strong> configuration which<br />

links itself to each <strong>of</strong> its neighbor vn,t ∈ Vn. This energy, denoted by En,t with t ∈ [1, . . . , Tn], is the<br />

sum <strong>of</strong> two complementary terms:


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 469<br />

FIGURE 16.15<br />

Plot <strong>of</strong> the regularized and normalized histogram <strong>of</strong> the contour orientation <strong>of</strong> one tile from the boar mosaic<br />

image in Figure 16.5(a).<br />

• The first term Q is based on the mean-gray value <strong>of</strong> tesserae. It is proportional to the sum <strong>of</strong> the difference<br />

<strong>of</strong> gray-level means (1) between n and vn,t, and (2) between n and the symmetrical tessera <strong>of</strong> vn,t with<br />

respect to n. This feature favors alinement <strong>of</strong> tesserae with low contrast, which is a characteristic <strong>of</strong><br />

directional guidelines.<br />

• The second term R is based on the orientation <strong>of</strong> tessera contours. We compute the histogram <strong>of</strong> the<br />

orientation <strong>of</strong> segments constituting the contour <strong>of</strong> tessera n. This histogram is regularized using a<br />

Gaussian kernel, result <strong>of</strong> which is illustrated in Figure 16.15. It should be noted that the two modes <strong>of</strong><br />

the histogram, at approximatively 90 0 each other, correspond to the two ambiguous orthogonal main<br />

directions <strong>of</strong> a square-shaped tile. It is then possible to estimate the p.d.f. at angle αn,t given by the<br />

barycenter <strong>of</strong> n and the one <strong>of</strong> vn,t.<br />

Terms Q and R are normalized to belong to range [0, 1]. We can then initialize the “main direction” <strong>of</strong> a tile<br />

(i.e., the direction <strong>of</strong> the neighboring tessera which gives the highest Q + R value):<br />

tn,max = arg max<br />

t∈[1,...,Tn] En,t<br />

(16.1)<br />

The energy <strong>of</strong> a tessera is then defined as Cn = (2 − En,tn,max) + λ Vn, with λ a weighting factor<br />

set manually. Term Vn is defined as<br />

Vn = 1<br />

Tn<br />

Tn� �<br />

t=1<br />

� αn,tn,max<br />

�<br />

− � αt,tt,max<br />

(16.2)<br />

which is the normalized sum <strong>of</strong> absolute difference between the main direction <strong>of</strong> tile n and the main direction<br />

<strong>of</strong> its neighbor t.<br />

The next step to to minimize the mosaic energy, defined as the sum <strong>of</strong> Cn <strong>for</strong> all tesserae in the mosaic.<br />

This is done by selecting the tessera n which gives the highest value <strong>for</strong> Vn. To reduce the contribution <strong>of</strong><br />

this tessera, we try another main direction and recompute the mosaic energy. At that point, two strategies<br />

have been tested:


470 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

• Deterministic framework (Gradient Descent): if the mosaic energy reduces then the new main direction is<br />

validated, otherwise another main direction is tested. When all directions <strong>for</strong> this tile have been tested, we<br />

repeat the process <strong>for</strong> the next tile with high Vn value.<br />

• Stochastic framework (Simulated Annealing): a configuration which gives a higher mosaic energy can<br />

be validated according to the simulated annealing principle [24]. This strategy allows to search <strong>for</strong> the<br />

global minimum, which can not be reached with previous strategy since the mosaic energy function is not<br />

convex.<br />

The process is iterated until the mosaic energy is almost constant. The cartography <strong>of</strong> tessera orientation is<br />

made <strong>of</strong> the main direction <strong>of</strong> each tile at the last iteration.<br />

Figure 16.16 illustrates the application <strong>of</strong> the tessera orientation methodology on the detail <strong>of</strong> the boar<br />

image in Figure 16.5(a). From the initial configuration <strong>of</strong> tesserae (a) we get the final configuration (b) using<br />

Simulated Annealing (SA) <strong>for</strong> optimization. Figure 16.16(c) shows the evolution <strong>of</strong> the computed energy<br />

during iterations <strong>of</strong> both gradient descent (GD) algorithm and simulated annealing one. As expected, SA<br />

reaches a lower minimum than GD but to the detriment <strong>of</strong> numerous additional iterations (approximately 150<br />

<strong>for</strong> SA versus 50 <strong>for</strong> GD). Indeed, GD searches <strong>for</strong> a local minimum and is highly dependent on the initial<br />

configuration, whereas SA is expected to reach the global minimum due to its stochastic nature.<br />

The tessera cartography obtained with SA optimization is really satisfying when visually compared to the<br />

main directional guidelines <strong>of</strong> the mosaic. This is especially true <strong>for</strong> regions at the borders between classes.<br />

A second example <strong>of</strong> cartography is proposed in Figure 16.17, after both simulated annealing and gradient<br />

descent optimizations. Results are very similar except <strong>for</strong> some guidelines where SA gives a better result.<br />

Once again, the tessera orientation estimation methodology, which makes use <strong>of</strong> contextual in<strong>for</strong>mation, gives<br />

regularized results that emphasize the mosaic guidelines. Nevertheless, confusions can be found on areas<br />

with homogeneous colors and where tesserae are square-like shaped. Indeed, <strong>for</strong> those kinds <strong>of</strong> tesserae two<br />

orthogonal directions are equally probable, which generally gives ambiguous results. However, these areas <strong>of</strong><br />

uni<strong>for</strong>m color are <strong>of</strong> limited interest <strong>for</strong> object-based scene applications, such as mosaic pattern recognition.<br />

Finally, Figure 16.18 shows a failure case in tessera orientation estimation. Indeed, the result will not allow<br />

to find the main directional guidelines in the mosaic, that can be more easily observed in Figure 16.12(a). The<br />

main reason comes from an over-detection <strong>of</strong> tesserae from the extraction step. This behavior is observed on<br />

mosaics built with tesserae <strong>of</strong> different sizes (e.g. large tesserae <strong>for</strong> the background and small ones <strong>for</strong> objects<br />

or details). Hence the shape <strong>of</strong> extracted tiles does not correspond to the shape <strong>of</strong> tesserae and the orientation<br />

is corrupted, showing no particular guideline in the mosaic.<br />

16.6 Open Issues and Research Directions in <strong>Mosaic</strong> Image <strong>Analysis</strong><br />

In this Chapter, an overview <strong>of</strong> image processing methods <strong>for</strong> images <strong>of</strong> ancient mosaics has been proposed.<br />

The analysis <strong>of</strong> such images is a difficult task due to many reasons, among them the irregularity <strong>of</strong> shapes, the<br />

particular organization <strong>of</strong> tesserae and the degradation <strong>of</strong> tiles due to their oldness. Also, the way snapshot<br />

acquisition is per<strong>for</strong>med has a crucial impact on the subsequent processings.<br />

A few works only are reported in the literature regarding the numerous problems that experts (museum<br />

curators, archeologists, art historians, etc.) face about possibly virtual restoration/lifting, conservation and<br />

cataloging <strong>of</strong> ancient mosaics. Each artwork style and period requires the development <strong>of</strong> dedicated processing<br />

methods to take into account a priori in<strong>for</strong>mation <strong>of</strong> materials, shape, color, etc. An interesting point <strong>of</strong> view


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 471<br />

(a) Configuration at initialization (b) Configuration after SA<br />

(c) Energy evolution <strong>for</strong> GD and SA<br />

FIGURE 16.16<br />

Cartography <strong>of</strong> tesserae orientation. Each tessera is characterized by its center <strong>of</strong> mass (circle) and its<br />

orientation (segment crossing the circle).


472 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

(a) Configuration after SA (b) Configuration after GD<br />

FIGURE 16.17<br />

Another example <strong>of</strong> tesserae orientation cartography with (a) simulated annealing optimization and (b)<br />

gradient descent optimization.<br />

FIGURE 16.18<br />

Result <strong>of</strong> guidelines detection <strong>for</strong> the “bird” mosaic in Figure 16.12(a).


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 473<br />

FIGURE 16.19<br />

Example <strong>of</strong> querying a distant mosaic catalog by keyword.<br />

on the problem is to consider, within the processings, that a mosaic is a collection <strong>of</strong> tiles and not only a series<br />

<strong>of</strong> image pixels. If this tessera-oriented strategy seems suited in numerous cases, improvement regarding the<br />

robustness <strong>of</strong> tesserae extraction are still required, especially when mosaic tiles show a large difference in<br />

size and a high level <strong>of</strong> degradation.<br />

The algorithms described within Sections 16.3 to 16.5 are only a few basic, but crucial, steps toward<br />

complete applications expected by experts such as (i) ancient mosaic restoration with virtual “inpainting”<br />

tools taking into account main guidelines and tesserae shapes, and (ii) multi-site and distant catalog browsing<br />

with “intelligent” retrieval capabilities <strong>of</strong> semantic objects. A simplehtml interface has been designed to<br />

illustrate the possible use <strong>of</strong> basic modules <strong>for</strong> browsing, in situ, a distant database <strong>of</strong> Roman-style mosaics. A<br />

simple query using textual keywords like “human”, “face” or “animal” allows to visualize the corresponding<br />

mosaics in a distant database. Figure 16.19 shows an example <strong>of</strong> this application with the word “bird” as<br />

query. Of course, one goal <strong>of</strong> the project is to replace keywords by self-content indexing using semantic<br />

objects extraction and characterization, based on segmentation, main guidelines estimation and connected<br />

components labeling algorithms [22]. The mosaic coding strategy exposed above can be used to construct a<br />

tile-oriented CBIR application. If the CBIR can work directly on the coded stream (without reconstruction),<br />

one can expect to reduce drastically the RAM and/or hard disk memory requirements.<br />

The problem <strong>of</strong> quality <strong>of</strong> processings <strong>for</strong> segmentation and lossy coding has not been addressed in this<br />

Chapter. Particular attention should be paid to this issue in order to quantify the effectiveness <strong>of</strong> the approach.<br />

To that goal, specific quality metrics <strong>for</strong> tesserae shape and color have to be defined with experts and evaluated<br />

against image resolution. Cumulative error impact should then be analyzed along the complete processing<br />

chain to evaluate the level <strong>of</strong> accuracy <strong>for</strong> the targeted application. Note that fully automatic tools are not<br />

always required and applications piloted by users can be <strong>of</strong> interest.<br />

An interesting open issue is the construction <strong>of</strong> an invariant representation <strong>of</strong> semantic mosaic objects<br />

which is robust to the tiling organisation <strong>of</strong> shapes. Such a module will help CBIR systems to retrieve mosaic


474 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

objects independently <strong>of</strong> their orientation, pose and size in the scenes. <strong>Dedicated</strong> registration algorithms<br />

to reconstruct a complete mosaic scene from a set <strong>of</strong> sub-images can also be <strong>of</strong> interest in case <strong>of</strong> in situ<br />

acquisition <strong>of</strong> a large mosaic <strong>for</strong> example.<br />

Finally, one very promising research direction is to develop new image processing methods to automatically<br />

learn ancient mosaicists’ way <strong>of</strong> working and style (e.g., tessera color and size, organisation, guidelines,<br />

etc.). These tools could first be used to virtually fill in missing patches or restore deteriorated patches in<br />

a mosaic scene, using tessera-dedicated inpainting methods. They could also be exploited <strong>for</strong> emulating a<br />

mosaic artwork style from a raster input image using computer-aided algorithms, cf. [6] <strong>for</strong> an overview <strong>of</strong><br />

digital mosaic creation.<br />

Bibliography<br />

[1] http://www.americanmosaics.org/, Last visit on Apr. 2010. The Society <strong>of</strong> American <strong>Mosaic</strong> Artists.<br />

[2] http://www.bamm.org.uk/, Last visit on Apr. 2010. The British Association <strong>for</strong> Modern <strong>Mosaic</strong>.<br />

[3] http://www.getty.edu/conservation/, Last visit on Apr. 2010. The Getty Conservation <strong>Institut</strong>e.<br />

[4] http://zoi.utia.cas.cz/mosaic.html, Last visit on Apr. 2010. <strong>Institut</strong>e <strong>of</strong> In<strong>for</strong>mation Theory and Automation,<br />

Academy <strong>of</strong> Sciences <strong>of</strong> the Czech Republic.<br />

[5] S. Battiato, G. Di Blasi, G. M. Farinella, and G. Gallo. A novel technique <strong>for</strong> Opus Vermiculatum<br />

mosaic rendering. In Proc. <strong>of</strong> the 14th Int. Conf. on Computer Graphics, Visualization and Computer<br />

Vision (WSCG’06), Plzen, Czech Republic, 2006.<br />

[6] S. Battiato, G. Di Blasi, G. M. Farinella, and G. Gallo. Digital mosaic frameworks: an overview.<br />

Computer Graphic Forum, 26(4):794–812, December 2007.<br />

[7] A. Baumgartner, S. Hinz, and C. Wiedemann. Efficient methods and interfaces <strong>for</strong> road tracking. In<br />

Photogrammetric Computer Vision (PCV’02), page B:28, Graz, Austria, 2002.<br />

[8] L. Benyoussef and S. Derrode. Tessella-oriented segmentation and guideline estimation <strong>of</strong> ancient<br />

mosaic images. J. <strong>of</strong> Electronic Imaging, 17(4), 2008.<br />

[9] L. Benyoussef and S. Derrode. Représentation orientée tesselle d’images de mosaiques anciennes. In<br />

GRETSI’09, Dijon, France, 8-11 September 2009.<br />

[10] Cristina Boschettia, Cristina Leonellib, Michele Macchiarolac, Paolo Veronesiband Anna Corradib, and<br />

Cinzia Sada. Early evidences <strong>of</strong> vitreous materials in Roman mosaics from Italy: An archaeological and<br />

archaeometric integrated study. Journal <strong>of</strong> Cultural Heritage, 9(sup. 1):e21–e26, 2008.<br />

[11] P. Bruneau. La mosaïque antique. Presses de l’université de Paris-Sorbonne, 1987.<br />

[12] A. C. S. Chung. Image segmentation methods <strong>for</strong> detecting blood vessels in angiography. In IEEE Int.<br />

Conf. on Automation, Robotics and Computer Vision (ICARCV’06), pages 1–6, Singapore, 2006.


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 475<br />

[13] S. Derrode and F. Ghorbel. Robust and efficient Fourier-Mellin trans<strong>for</strong>m approximations <strong>for</strong> invariant<br />

grey-level image description and reconstruction. Computer Vision and Image Understanding, 83(1):57–<br />

78, 2001.<br />

[14] M. O. Djibril and R. O. H. Thami. Islamic geometrical patterns indexing and classification using discrete<br />

symmetry groups. Journal on Computing and Cultural Heritage, 1(2):1–14, 2008.<br />

[15] M. O. Djibril, R. O. H. Thami, R. Benslimane, and M. Daoudi. Une nouvelle technique pour l’indexation<br />

des arabesques basée sur la dimension fractale. In Compression et Représentation des Signaux Audiovisuels<br />

(CORESA’05), Rennes, France, 2005.<br />

[16] K. M. D. Dunbain. <strong>Mosaic</strong>s <strong>of</strong> the Greek and Roman world. Cambridge University Press, 1999.<br />

[17] Cesare Fiori, Mariangela Vandini, Silvia Prati, and Giuseppe Chiavari. Vaterite in the mortars <strong>of</strong> a<br />

mosaic in the Saint Peter basilica, Vatican (Rome). Journal <strong>of</strong> Cultural Heritage, 10(2):248–257, 2009.<br />

[18] M. A. Fischler, J. M. Tenenbaum, and H. C. Wolf. Detection <strong>of</strong> road and linear structures in low<br />

resolution aerial images using multi-source knowledge integration techniques. Computer Graphics and<br />

Image Processing, 15(3):201–223, 1981.<br />

[19] T. Géraud and J. B. Mouret. Fast road network extraction in satellite images using mathematical<br />

morphology and Markov random fields. EURASIP Journal on Applied Signal Processing, 2004(16):2503–<br />

2514, 2004.<br />

[20] F. Ghorbel. A complete invariant description <strong>for</strong> gray-level images by the harmonic analysis approach.<br />

Pattern Recognition Letters, 15:1043–1051, 1994.<br />

[21] F. A. Gil, J. M. Gomis, and M. Pérez. Reconstruction techniques <strong>for</strong> image analysis <strong>of</strong> ancient islamic<br />

mosaics. Int. Journal <strong>of</strong> Virtual Reality, 8(3):5–12, 2009.<br />

[22] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison-Wesley Publishing Company,<br />

1992.<br />

[23] R. Kadobayashi, N. Kochi, H. Otani, and R. Furukawa. Comparison and evaluation <strong>of</strong> laser scanning<br />

and photogrammetry and their combined use <strong>for</strong> digital recording <strong>of</strong> Cultural Heritage. In Proc. <strong>of</strong> the<br />

ISPRS Congress, Istanbul, Turkey, 2004.<br />

[24] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, New<br />

Series, 220(4598):671–680, May 1983.<br />

[25] P. Kratochvil. Greek mosaic from paphos, cyprus, Last visit on Apr. 2010.<br />

http://www.publicdomainpictures.net/view-image.php?image=4512&picture=mosaiquesgrecques&large=1.<br />

[26] R.J. Ling. <strong>Ancient</strong> <strong>Mosaic</strong>s. British Musuem, 1998.<br />

[27] W. Maghrebi, L. Baccour, M. A. Khabou, and A. M. Alimi. An indexing and retrieval system <strong>of</strong> historic<br />

art images based on fuzzy shape similarity. In 6th Mexican Int. Conf. on Artificial Intelligence (MICAI<br />

2007), pages 623–633, Aguascalientes, Mexico, 2007.


476 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

[28] Wafa Maghrebi, Anis Borchani, Mohamed A. Khabou, and Adel M. Alimi. A system <strong>for</strong> historic<br />

document image indexing and retrieval based on XML database con<strong>for</strong>ming to MPEG7 standard. In 7th<br />

Int. Workshop on Graphics Recognition. Recent Advances and New Opportunities (GREC’07), pages<br />

114–125, Curitiba, Brazil, 2007.<br />

[29] H. Mayer, S. Hinz, U. Bacher, and E. Baltsavias. A test <strong>of</strong> automatic road extraction approaches. In<br />

Photogrammetric Computer Vision (PCV’06), Bonn, Germany, 2006.<br />

[30] J. B. Mena and J. A. Malpica. An automatic method <strong>for</strong> road extraction in rural and semi-urban areas<br />

starting from high resolution satellite imagery. Pattern Recognition Letters, 26(9):1201–1220, July<br />

2005.<br />

[31] F. Meyer and S. Beucher. The Morphological Approach <strong>of</strong> Segmentation: the Watershed Trans<strong>for</strong>mation,<br />

chapter Mathematical Morphology in Image Processing, Dougherty E. Editor. Marcel Dekker, New<br />

York, 1992.<br />

[32] M. M’hedhbi, R. Mezhoud, S. M’hiri, and F. Ghorbel. A new content-based image indexing and retrieval<br />

system <strong>of</strong> mosaic images. In 3rd Int. Conf. on In<strong>for</strong>mation and Communication Technologies: from<br />

Theroy to Applications (ICT-TA’06), pages 1715–1719, Damascus, Syria, 24-28 April 2006.<br />

[33] F. Mokhtarian and A. Mackworth. A theory <strong>of</strong> multiscale, curvature-based shape representation <strong>for</strong><br />

planar curves. IEEE Trans. on Pattern <strong>Analysis</strong> and Machine Intelligence, 14(8):789–805, 1992.<br />

[34] noname. <strong>Mosaic</strong>s In Situ project - illustrated glossary. Technical report [3], The Getty Conservation<br />

<strong>Institut</strong>e and the Israel Antiquities Authority, 2003.<br />

[35] Eric Persoon and K.-S. Fu. Shape discrimination using Fourier descriptors. IEEE trans. On Systems,<br />

Man and Cybernetics, 7(3):170–179, 1977.<br />

[36] M. Rochery, I. H. Jermyn, and J. Zerubia. Higher order active contours. Int. J. <strong>of</strong> Computer Vision,<br />

69(1):27–42, August 2006.<br />

[37] G. Salemi, V. Achilli, M. Ferrarese, and G. Boatto. High resolution morphometric reconstruction <strong>of</strong><br />

multimaterial tiles <strong>of</strong> an ancient mosaic. In Proc. <strong>of</strong> the ISPRS Congress, page B5: 303 ff, Beijing,<br />

China, 2008.<br />

[38] Carlo Stefano Salerno, Cesare Moretti, Teresa Medici, Teresa Morna, and Marco Verità. Glass weathering<br />

in 18 th century mosaics: The São João Chapel in the São Roque Church in Lisbon. Journal <strong>of</strong> Cultural<br />

Heritage, 9(sup. 1):e37–e40, 2008.<br />

[39] C. Steger. An unbiased detector <strong>of</strong> curvilinear structures. IEEE trans. on Image Processing, 20(2):113–<br />

125, February 1998.<br />

[40] F. Tupin, H. Maitre, J. F. Mangin, J. M. Nicolas, and E. Pechersky. Detection <strong>of</strong> linear features in<br />

SAR images: application to road network extraction. IEEE trans. on Geoscience and Remote Sensing,<br />

36(2):434–453, 1998.<br />

[41] J. M. Valiente, F. Albert, and J. M. Gomis. A computational model <strong>for</strong> pattern and tile designs<br />

classification using plane symmetry groups. In Proc. <strong>of</strong> the Ibero American Congress on Pattern<br />

Recognition (CIARP), Havana, Cuba, 2005.


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 477<br />

[42] C. M. Van Bemmel, L. J. Spreeuwers, M. A. Viergever, and W. J. Niessen. Level-set-based artery-vein<br />

separation in blood pool agent CE-MR angiograms. IEEE trans. on Medical Imaging, 22:1224–1234,<br />

2003.<br />

[43] L. Vincent. Grayscale area openings and closings: their applications and efficient implementation. In<br />

Proc. EURASIP Workshop on Mathematical Morphology and its Applications to Signal Processing,<br />

pages 22–27, Barcelona, Spain, May 1993.<br />

[44] R. Westgate. <strong>Ancient</strong> mosaics - a bibliography, Last visit on Apr. 2010.<br />

http://www.cardiff.ac.uk/hisar/people/rw/mosaicbibliog.html.<br />

[45] O. Wink, W. Niessen, and M. A. Viergever. Multiscale vessel tracking. IEEE trans. on Medical Imaging,<br />

23(1):130–133, 2004.<br />

[46] P. J. Yim, G. Boudewijn, C. Vasbinder, V. B. Ho, and P. L. Choyke. Isosurfaces as de<strong>for</strong>mable models<br />

<strong>for</strong> magnetic resonance angiography. IEEE trans. on Medical Imaging, 22(7):875–881, July 2003.<br />

[47] A. Zarghili, N. Gadi, R. Bensliman, and K. Bouatouch. Arabo-Moresque decor image retrieval system<br />

based on mosaic representations. Journal <strong>of</strong> Cultural Heritage, 2(2):149–154, 2001.<br />

[48] A. Zarghili, J. Kharroubia, and R. Bensliman. Arabo-Moresque decor images retrieval system based on<br />

spatial relationships indexing. Journal <strong>of</strong> Cultural Heritage, 9(3):317–325, 2008.<br />

[49] B. Zitová, J. Flusser, and F. ˇSroubek. An application <strong>of</strong> image processing in the medieval mosaic<br />

conservation. Pattern Analalysis and Applications, 7(1):18–25, 2004.


Index<br />

γ-Correction, 310<br />

2D, 5, 47, 51, 58, 63, 65, 74, 75, 79, 80, 86, 87, 92,<br />

95, 117, 121, 128, 129, 151, 153, 193, 220,<br />

222–225, 229, 230, 232, 234–236, 238, 240,<br />

246–248, 250, 253, 256, 258, 259, 268, 271,<br />

275, 338, 480, 485, 506, 508<br />

Objects reassembly, 258<br />

Puzzles reassembly, 258<br />

3D, 2, 5, 20, 27, 40, 41, 45, 46, 52, 53, 58, 73, 74, 79,<br />

95, 106, 109, 116, 121, 123, 124, 128, 130,<br />

139, 142, 149, 151, 153, 164, 165, 169, 174,<br />

175, 181, 189, 193, 201, 216, 225, 238, 246,<br />

275, 289, 329, 336, 366, 368, 416, 432, 442,<br />

457, 480, 499, 506<br />

Acquisition, 106, 107<br />

Catalogs, 45<br />

Investigation and diagnostics, 59<br />

Modeling, 2, 5, 24, 40, 52, 53, 74, 80, 96, 123,<br />

126<br />

Objects reconstruction, 255<br />

Puzzle Solving, 234<br />

Scanner, 128, 129<br />

Scanning pipeline, 109, 111, 113<br />

Scanning technologies, 106<br />

Visualization, 124<br />

Watermarking, 496<br />

Web, 127<br />

Aberration<br />

Astigmatism, 389<br />

Coma, 389<br />

Off-axis, 388<br />

Spherical, 383<br />

Additional parameters, 82, 85<br />

Additive/Multiplicative Model, 295<br />

Alvarez extinction theory, 385<br />

Anamorphic, 395, 396, 419<br />

Antique book, 284, 285, 299, 304<br />

Arc de Triomphe, 181<br />

ARC3D, 107, 164–166, 169, 173, 175, 181<br />

Archaeology, 1–5, 27, 253<br />

Archeomatica, 5, 21, 22, 25<br />

Area closing, 461<br />

Artificial Lighting, 158, 195, 205<br />

Asclepius, 22<br />

Asymmetry, 230, 491<br />

Authentication, 482, 483, 485, 488, 504<br />

Automatic reproduction, 52<br />

Betacam Dropout, 322, 323<br />

Blender, 6, 21, 25, 26, 43, 123, 181<br />

Blind techniques, 489, 490, 508<br />

Blotch, 282, 283, 288, 294–296, 322, 324, 325, 327–<br />

332, 336, 338<br />

Water, 282–285, 287, 288, 293, 297<br />

Bobeche, see Candelier389<br />

Bosch, Hieronymus, 410<br />

BRDF, 42, 92, 113, 120, 121, 138–144, 152, 153, 156,<br />

159, 366–369<br />

Break point, 253, 255<br />

Bruegel, Pieter, 410<br />

BTF, 367<br />

Bundle adjustment, 79, 82, 85, 87<br />

Cabanel, Alexandre, 386<br />

Camera<br />

Calibration, 79, 80, 82, 83, 85–87, 140, 196, 198<br />

Lucida, 386<br />

Campin, Robert, 383, 392, 398, 410<br />

Capacity, 95, 217, 480, 483, 485–487, 489, 503, 505<br />

Caravaggio, 394, 410<br />

Carracci, Annibale, 392<br />

CBIR, 459, 473<br />

CCD, 81, 82, 106, 289, 338, 348, 352, 368<br />

Chandelier, 384<br />

Candle holder, 389<br />

Perspective, 384<br />

515


516 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

Chiaroscuro, 400<br />

Christus, Petrus, 410<br />

CIE, 348, 350<br />

Closing by reconstruction, 288<br />

CMOS, 81, 82<br />

Color, 289<br />

Apparent, 112, 116, 120<br />

Filtering, 303<br />

Mapping, 65, 110, 112, 117, 118, 121<br />

Resampling, 120<br />

Sampling, 107, 116, 119<br />

Computer graphics, 2, 4, 5, 28, 74, 92, 120, 138, 223,<br />

366, 394, 410, 414, 415, 431, 434, 438, 496<br />

Computer-generated animations, 41<br />

Contrast, 198, 202, 282, 289, 306, 329, 331, 333, 455,<br />

458, 461, 469, 488<br />

Copyright, v, 46, 53, 479, 485<br />

Cormon, Fernand, 386<br />

Crack, 60, 62, 191, 240, 282, 283, 285, 288<br />

Cranach, Lucas, 387<br />

Crocket, 384<br />

Cultural artifacts, 245, 275<br />

Dürer, Albrecht, 392<br />

Data preservation, 45<br />

Decentering distortion, 83<br />

Depth <strong>of</strong> field, 176, 388, 395, 401, 412<br />

Detection, 79, 113, 114, 122, 198, 200, 205, 207, 210,<br />

232, 285, 287–289, 291–293, 295, 302, 314,<br />

322, 324, 326, 327, 329, 333, 441, 461, 470,<br />

482, 489–491, 498, 502, 506<br />

Dinanderie, 384<br />

Dirt, 191–193, 232, 321–324, 327, 338, 340, 341, 388,<br />

468<br />

Disparity, 173<br />

Documents reassembly, 255<br />

Donatello, 111, 400<br />

DTM/DSM, 76, 87, 89<br />

Dunhuang, 175<br />

Eroded Rock, 192, 207, 208<br />

Exterior parameters, 82<br />

Eyck, Jan van, 383–385, 387, 389–392, 397–401, 410,<br />

412, 414, 416<br />

Fabriano, Gentile da, 387, 397<br />

Film tear, 322, 323<br />

Fingerprinting, 482–484<br />

Flash, 120, 322, 457<br />

Flicker, 322, 336, 341<br />

Foxing, 282–285, 287, 293–295, 299, 300, 302–305<br />

Fracture, 55, 234, 235, 238–240, 246, 248, 250, 251,<br />

253, 255–257, 283, 284, 298<br />

Fragment, 4, 10, 12, 13, 21, 22, 55, 57, 106, 108, 216,<br />

218–220, 224, 225, 227, 231–235, 237, 238,<br />

245, 247, 250, 251, 253, 255, 259, 260, 263,<br />

266, 285, 292, 296, 432<br />

Fromentin, Eugène, 386<br />

Furtenagel, Laux, 410<br />

Fusion, 77, 78, 89, 201, 291, 329<br />

Gabor Filter Bank, 289, 291<br />

Geographic Web browsers, 45<br />

Geometric triangulation, 106<br />

GIS, 74, 93<br />

Glass plate, 283, 292, 296<br />

Gradient Vector, 238, 294, 442<br />

Graph Cuts, 257, 331, 441, 442<br />

Grid construction, 386<br />

Haghia Triada, 6<br />

Handwriting Recognition, 205<br />

Hartrick, A. S., 386<br />

Hidden notations, 485<br />

Histogram, 206, 260, 285, 303, 307, 339, 459, 469,<br />

488<br />

Hockney, David, 380, 410<br />

Holbein, Hans, 395, 396<br />

Hole filling, 110, 115<br />

Hot spots, 127<br />

Hypermedia, 127<br />

Image<br />

Matching, 76, 87, 89<br />

Quality, 306, 313, 314<br />

Image-based rendering, 121, 152, 248<br />

Image-to-geometry registration, 92, 117, 119<br />

Ingres, Jean Auguste Dominiques, 386<br />

Inpainting, 116, 253, 294, 336, 459<br />

Interactive visualization, 43, 92, 112, 202, 369<br />

Interior parameters, 82<br />

Interpolation, 111, 125, 156, 294–296, 310, 322, 334,<br />

335, 338, 341, 366<br />

Invertibility, 481, 490


Copyright Protection <strong>of</strong> Digital <strong>Images</strong> <strong>of</strong> CH 517<br />

Iron, 283, 285<br />

Iterative Closest Point, 76, 149, 254, 262<br />

Kemp, Martin, 401<br />

Kinescope Moire, 322<br />

Laser scanner, 3, 5, 21, 24, 25, 45, 75, 200, 250, 368<br />

Laser scanner, 193, 221<br />

Least squares matching, 89<br />

Light field rendering, 121<br />

Lighting analysis, 394<br />

Local contrast, 307, 310<br />

Local luminance, 307, 310<br />

LOD, 77, 93<br />

Long term preservation, 130<br />

Lotto, Lorenzo, 387–389<br />

Mahl stick, 393<br />

Mantegna, 387<br />

Mapping photos on 3D models, 119<br />

Melozzo da Forlì, 387<br />

Memling, Hans, 395, 410, 413<br />

Mesh, 40, 65, 90, 110, 112, 116, 123, 124, 139, 150,<br />

165, 193, 200, 220, 457, 496, 501<br />

MeshLab, 60, 62, 64, 65, 116, 121, 123, 124, 164,<br />

165, 181, 201<br />

Metadata, 46, 127, 129, 141<br />

Metsys, Quentin, 410<br />

Michelangelo, 43, 65, 117, 400<br />

Microcrack, 288, 289<br />

Mirror<br />

Concave, 388, 398<br />

Convex, 384, 399<br />

Modelviewer, 165<br />

Mogao caves, 175<br />

Monet, Claude, 401<br />

Moroni, Giovanni Battista, 387<br />

<strong>Mosaic</strong>, 246, 247, 282, 292, 348, 431–435, 437–442,<br />

446–449, 453–462, 464–470, 472–474<br />

Acquisition, 457<br />

<strong>Ancient</strong>, 432–434, 438–445, 448, 454, 455, 457,<br />

460, 462, 464, 466, 468, 470, 473, 474<br />

Byzantine, 454<br />

Coding, 464, 465<br />

De<strong>for</strong>mation, 457<br />

Digital, 432, 434<br />

Greek, 454<br />

Guidelines, 468<br />

Inpainting, 459<br />

Islamic, 454<br />

Material, 455<br />

Medieval, 458<br />

Photo-mosaic, 434, 448<br />

Puzzle Image <strong>Mosaic</strong>, 434<br />

Resolution, 457<br />

Restoration, 458<br />

Roman, 454, 459<br />

Segmentation, 464<br />

Symmetry, 459<br />

Zillij, 454<br />

<strong>Mosaic</strong>ing, 248, 266, 268–272, 274, 275, 352, 368<br />

Spanning tree, 269<br />

Sub-graph spanning tree, 270<br />

Multi-image matching, 89<br />

Multimedia, 3, 5, 24, 41, 50, 58, 124, 127, 480, 485,<br />

496<br />

Multiresolution, 44, 65, 75, 77, 110, 112, 119, 124,<br />

138, 140, 151, 153, 502<br />

Narrow-band, 350, 353<br />

Neugebauer, 365<br />

Nieuwenhove, Maarten van, 410, 412–414<br />

Noise, 76, 85, 110, 125, 129, 155, 165, 176, 206, 223,<br />

230, 260, 307, 322, 326, 335, 340, 352, 355,<br />

360, 439, 458, 488, 497<br />

Non-blind techniques, 489, 490, 502<br />

Non-falsifiability, 383<br />

Non-Photorealistic Rendering, 431<br />

Non-pictorial matching, 253<br />

OCR, 205, 210, 299, 300, 304–306<br />

Opening by reconstruction, 288<br />

Optical style in painting, 382, 400<br />

Opus<br />

Musivum, 438, 439<br />

Palladium, 442<br />

Vermiculatum, 438, 439<br />

Ownership <strong>of</strong> the rights, 482<br />

Parmigianino, 410<br />

Parthenon, 3, 21, 41, 138, 157<br />

Pathological Motion, 327<br />

PCA, 143, 355, 357, 361, 362<br />

Perspective


518 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

<strong>Analysis</strong>, 395, 396, 412<br />

Error, 383<br />

Photogrammetry, 45, 52, 55, 74, 79, 95, 111, 140,<br />

142, 250, 384<br />

Photographic Prints, 282, 285, 293<br />

Pictorial matching, 253<br />

Pinprick hole evidence, 392<br />

Pisanello, 387<br />

Poisson Reconstruction, 181<br />

Polizzello Mountain, 6<br />

Porta, Giambattista della, 389, 398<br />

Portaels, Jean-François, 386<br />

Private techniques, 489<br />

Public techniques, 489<br />

Queuing system, 172<br />

Radial distortion, 83<br />

Range map, 108, 109, 111, 113–115, 117, 123–125,<br />

368<br />

Alignment, 109, 111, 113<br />

Automatic alignment, 113<br />

Global registration, 111<br />

Local registration, 111<br />

Merge, 110, 112<br />

Reconstruction, 112<br />

Reconstruction from, 110<br />

Raphael, 387<br />

Rapid prototyping, 52<br />

Rational filter, 288, 302, 303<br />

Re-ordering, 498<br />

Re-triangulation, 497<br />

Reconstruction pipeline, 169<br />

Red chrominance matrix, 285, 287<br />

Reducing compass, 385, 392<br />

Refinement, 326, 327, 385, 499<br />

Relative alignment, 238, 257, 263, 264<br />

Relative <strong>of</strong>fset evidence, 391<br />

Rembrandt, 400<br />

Remeshing, 497, 499, 501, 506, 507<br />

Rendering, 6, 40, 42, 47, 55, 77, 92, 111, 117, 124,<br />

125, 138, 140, 144, 147, 152, 156, 159, 193,<br />

200, 246, 365, 368, 394, 431, 439, 496<br />

Restoration, 3, 5, 12, 20, 22, 25, 40, 43, 46, 57–60,<br />

62, 63, 65, 74, 78, 93, 95, 117, 138, 218,<br />

246, 248, 274, 282, 284, 289, 292–296, 299,<br />

300, 302, 303, 306, 314, 321, 322, 325, 327,<br />

329, 331, 335, 338, 340, 348, 368, 369, 454,<br />

457, 459<br />

Reversibility, 491<br />

Reynolds, Joshua, 397<br />

Robustness, 116, 169, 223, 231, 237, 309, 350, 464,<br />

479, 485, 487, 502<br />

Rock Art, 193<br />

Rock art, 191, 192, 194, 198, 200, 202, 205, 208<br />

ROD, 324, 325<br />

Roman de la Rose, 398<br />

Roto-translation, 65, 114, 296<br />

Sampling, 64, 77, 90, 106, 108, 116, 123, 129, 143,<br />

156, 171, 349, 350, 354, 361, 436, 499<br />

Scaling, 65, 85, 141, 172, 198, 248, 266, 385, 457,<br />

488, 497<br />

Scratch, 333<br />

SDI, 324<br />

Segmentation, 127, 231, 235, 257, 288, 436, 448, 457,<br />

459, 460, 462, 464–466, 473<br />

Self-calibration, 173<br />

Sepia, 285, 288, 289<br />

Sfumato, 400<br />

Shadow, 87, 116, 139, 152, 181, 193, 250, 367, 393,<br />

394, 412, 457, 465<br />

Shake, 322, 336, 341<br />

Similarity, 48, 89, 117, 119, 200, 223, 250, 255, 261,<br />

432, 440, 459, 499<br />

Simplification, 77, 93, 110, 123, 124, 129, 164, 230,<br />

497, 506<br />

simplification, 499<br />

Smith Waterman algorithm, 261<br />

Spanning tree, 266, 269–272, 274<br />

Sparkle, 322–324, 433, 454<br />

Spectacle, 381, 382, 399, 400<br />

Spectral, 77, 80, 92, 140, 146, 156, 300, 348–350,<br />

353–366, 368, 369, 506<br />

Stelae, 183<br />

Structure from motion, 80, 82<br />

Structure-from-motion, 164<br />

Surface reflection properties, 112, 116, 120, 128<br />

Surveying, 74–76, 78, 80, 93, 200, 382<br />

Tessera, 454, 455, 457, 460–466, 468–471, 473, 474<br />

Altered, 456<br />

Disaggregated, 456<br />

Extraction, 460


Copyright Protection <strong>of</strong> Digital <strong>Images</strong> <strong>of</strong> CH 519<br />

Smalti, 454<br />

Wear, 456<br />

Texture, 63, 74, 75, 80, 112, 116, 119–121, 123, 139,<br />

150, 153–155, 175, 176, 183, 193, 195, 199,<br />

238, 250, 253, 283, 288, 300, 312, 322, 335,<br />

367, 397, 419, 446, 462, 496, 499, 505, 508<br />

Thresholding, 206, 287, 288, 292, 293, 303, 334<br />

Thysia, 25<br />

TOF, 106, 107, 110, 125<br />

Tonal adjustment, 303, 304<br />

Tour, Georges de la, 393<br />

Tracing theory<br />

Burden <strong>of</strong> pro<strong>of</strong>, 386<br />

Direct tracing, 381<br />

Documentary evidence, 382<br />

Ghent symposium, 381, 401<br />

Indirect influence, 381, 402<br />

Philosophical foundations, 382<br />

Revisions, 385<br />

Timing, 387<br />

Trade secrets, 387, 398<br />

Triangulation, 21, 24, 52, 53, 75, 85, 106, 119, 124,<br />

138, 167, 193, 208, 220<br />

UAV, 81, 82, 95<br />

Upload tool, 165<br />

Usability, 40, 44, 75, 76, 90, 126, 282<br />

UV, 58, 63, 77, 299<br />

Velàzquez, Diego, 392<br />

Vermeer, Jan, 382, 412<br />

Vinegar Syndrome, 322, 323<br />

Virtual<br />

Inspector, 43, 64, 65, 125, 126<br />

Re-assembly, 55<br />

Reality, 4, 27, 28, 45, 80, 209<br />

Reconstruction, 10, 12, 53, 55, 247, 459<br />

Repainting, 57<br />

Visual communication, 3, 41, 46<br />

Voronoi, 435, 436, 441<br />

Diagrams, 435, 439, 440<br />

Water-tight reconstruction, 116<br />

Watermarking, 479, 482, 485–490, 496, 502, 506<br />

Watershed, 461<br />

Web GIS, 45<br />

Web service, 165<br />

WebGL, 127<br />

Wide-band, 350–354, 359<br />

Yellowing, 282, 284, 299, 300, 303, 306

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!