12.12.2012 Views

Analysis of Ancient Mosaic Images for Dedicated ... - Institut Fresnel

Analysis of Ancient Mosaic Images for Dedicated ... - Institut Fresnel

Analysis of Ancient Mosaic Images for Dedicated ... - Institut Fresnel

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Filippo Stanco, Sebastiano Battiato, Giovanni Gallo<br />

Digital Imaging <strong>for</strong> Cultural Heritage<br />

Preservation


Contributors<br />

Sebastiano Battiato<br />

University <strong>of</strong> Catania<br />

Catania, Italy<br />

Lamia Benyoussef<br />

Ecole Centrale Marseille<br />

Marseille, France<br />

Simone Bianco<br />

University <strong>of</strong> Milano Bicocca<br />

Milan, Italy<br />

Vittoria Bruni<br />

Consiglio Nazionale delle Ricerche<br />

Rome, Italy<br />

Yang Cai<br />

Carnegie Mellon University<br />

Pittsburgh, USA<br />

Roberto Caldelli<br />

University <strong>of</strong> Florence<br />

Florence, Italy<br />

Marco Callieri<br />

Consiglio Nazionale delle Ricerche<br />

Pisa, Italy<br />

Vito Cappellini<br />

University <strong>of</strong> Florence<br />

Florence, Italy<br />

Paolo Cignoni<br />

Consiglio Nazionale delle Ricerche<br />

Pisa, Italy<br />

Jacob Collins<br />

c/o Adelson Galleries<br />

New York, USA<br />

Alessandro Colombo<br />

University <strong>of</strong> Milano Bicocca<br />

Milan, Italy<br />

David Corrigan<br />

Trinity College<br />

Dublin, Ireland<br />

Massimiliano Corsini<br />

Consiglio Nazionale delle Ricerche<br />

Pisa, Italy<br />

Andrew Craw<strong>for</strong>d<br />

Consiglio Nazionale delle Ricerche<br />

Rome, Italy<br />

Paul Debevec<br />

University <strong>of</strong> Southern Cali<strong>for</strong>nia<br />

Playa Vista, USA<br />

Andrea Del Mastio<br />

University <strong>of</strong> Florence<br />

Florence, Italy<br />

Andrey Del Pozo<br />

Univesity <strong>of</strong> Illinois at Urbana-Champaign<br />

Urbana, USA<br />

Matteo Dellepiane<br />

Consiglio Nazionale delle Ricerche<br />

Pisa, Italy<br />

Stéphane Derrode<br />

École Centrale Marseille<br />

Marseille, France<br />

Gianpiero Di Blasi<br />

University <strong>of</strong> Palermo<br />

Palermo, Italy<br />

vii


viii<br />

Marco Duarte<br />

Princeton University<br />

Princeton, USA<br />

Per Einarsson<br />

University <strong>of</strong> Southern Cali<strong>for</strong>nia<br />

Playa Vista, USA<br />

Marcos Fajardo<br />

University <strong>of</strong> Southern Cali<strong>for</strong>nia<br />

Playa Vista, USA<br />

Yasuo Furuichi<br />

Kanagawa, Japan<br />

Giovanni Gallo<br />

University <strong>of</strong> Catania<br />

Catania, Italy<br />

Andrew Gardner<br />

University <strong>of</strong> Southern Cali<strong>for</strong>nia<br />

Playa Vista, USA<br />

Francesca Gasparini<br />

University <strong>of</strong> Milano Bicocca<br />

Milan, Italy<br />

Tim Hawkins<br />

University <strong>of</strong> Southern Cali<strong>for</strong>nia<br />

Playa Vista, USA<br />

Andrew Jones<br />

University <strong>of</strong> Southern Cali<strong>for</strong>nia<br />

Playa Vista, USA<br />

Dave Kale<br />

Stan<strong>for</strong>d University<br />

Stan<strong>for</strong>d, USA<br />

Anil Kokaram<br />

Trinity College<br />

Dublin, Ireland<br />

Ashutosh Kulkarni<br />

Stan<strong>for</strong>d University<br />

Stan<strong>for</strong>d, USA<br />

Therese Lundgren<br />

University <strong>of</strong> Southern Cali<strong>for</strong>nia<br />

Playa Vista, USA<br />

Philippe Martinez<br />

Ecole Normale Superieure<br />

Paris, France<br />

Nikos Nikolaidis<br />

Aristotle University <strong>of</strong> Thessaloniki<br />

Thessaloniki, Greece<br />

Ioannis Pitas<br />

Aristotle University <strong>of</strong> Thessaloniki<br />

Thessaloniki, Greece<br />

Francois Pitie<br />

Trinity College<br />

Dublin, Ireland<br />

Charis Poullis<br />

University <strong>of</strong> Southern Cali<strong>for</strong>nia<br />

Playa Vista, USA<br />

Giovanni Puglisi<br />

University <strong>of</strong> Catania<br />

Catania, Italy<br />

Giovanni Ramponi<br />

University <strong>of</strong> Trieste<br />

Trieste, Italy<br />

Fabio Remondino<br />

B. Kessler Foundation (FBK)<br />

Trento, Italy<br />

Alfredo Restrepo Palacios<br />

Universidad de los Andes<br />

Bogotá, Colombia<br />

M. Dirk Robinson<br />

Ricoh Innovations<br />

Menlo Park, USA<br />

Silvio Savarese<br />

University <strong>of</strong> Michigan<br />

Ann Arbor, USA<br />

Sara J. Schechner<br />

Harvard University


Cambridge, USA<br />

Raimondo Schettini<br />

University <strong>of</strong> Milano Bicocca<br />

Milan, Italy<br />

Roberto Scopigno<br />

Consiglio Nazionale delle Ricerche<br />

Pisa, Italy<br />

Ron Spronk<br />

Queen’s University,<br />

Kingston, Canada<br />

Filippo Stanco<br />

University <strong>of</strong> Catania<br />

Catania, Italy<br />

David G. Stork<br />

Ricoh Innovations<br />

Menlo Park, USA<br />

Jessi Stumpfel<br />

University <strong>of</strong> Southern Cali<strong>for</strong>nia<br />

Playa Vista, USA<br />

Davide Tanasi<br />

University <strong>of</strong> Catania<br />

Catania, Italy<br />

Chris Tchou<br />

University <strong>of</strong> Southern Cali<strong>for</strong>nia<br />

Playa Vista, USA<br />

David Tingdahl<br />

Katholieke Universiteit Leuven<br />

Leuven, Belgium<br />

Efthymia Tsamoura<br />

Aristotle University <strong>of</strong> Thessaloniki<br />

Thessaloniki, Greece<br />

Christopher W. Tyler<br />

Smith-Kettlewell Eye Research <strong>Institut</strong>e<br />

San Francisco, USA<br />

Francesca Uccheddu<br />

University <strong>of</strong> Florence<br />

Florence, Italy<br />

Luc Van Gool<br />

Katholieke Universiteit Leuven<br />

Leuven, Belgium<br />

Maarten Vergauwen<br />

GeoAutomation<br />

Leuven, Belgium<br />

Domenico Vitulano<br />

Consiglio Nazionale delle Ricerche<br />

Rome, Italy<br />

Nathaniel Yun<br />

University <strong>of</strong> Southern Cali<strong>for</strong>nia<br />

Playa Vista, USA<br />

Nicholas C. Williams<br />

Towan Headland<br />

Cornwall, UK<br />

Andrew R. Willis<br />

University <strong>of</strong> North Carolina at Charlotte<br />

Charlotte, USA<br />

Silvia Zuffi<br />

ITC CNR<br />

Milan, Italy<br />

ix


Contents<br />

1 Experiencing the Past. Computer Graphics in Archaeology 1<br />

Filippo Stanco, Davide Tanasi<br />

1.1 The Past and the Future. Archaeology and Computer Science . . . . . . . . . . . . . . . . 1<br />

1.2 From the Field to the Screen: 3D Computer Graphics and the Archaeological Heritage . . 2<br />

1.2.1 Computer Graphics 3D and the Archaeological Fieldwork . . . . . . . . . . . . . 2<br />

1.2.2 Monitoring the Heritage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

1.2.3 The Virtual Museum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

1.2.4 3D Modeling as Cognitive Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

1.3 The Archeomatica Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

1.4 Archaeological 3D Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

1.5 Haghia Triada, Crete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

1.5.1 Propylon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

1.5.2 House <strong>of</strong> the Razed Rooms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

1.5.3 VAP house . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br />

1.6 Polizzello Mountain, Sicily . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

1.6.1 Buildings A, B, C, D, E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

1.6.2 Temenos and Room III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

1.6.3 Precinct F, East House, Temenos House . . . . . . . . . . . . . . . . . . . . . . . 16<br />

1.6.4 The Virtual Acropolis and the Multilayered 3D Model . . . . . . . . . . . . . . . 18<br />

1.7 Digital Restoration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

1.7.1 Minoan Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

1.7.2 Asclepius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

1.7.3 Female Torso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

1.7.4 Hellenistic Thysia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

1.8 Dealing with Image Data in Archaeology: New Perspectives . . . . . . . . . . . . . . . . . 27<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br />

2 Using Digital 3D Models <strong>for</strong> Study and Restoration <strong>of</strong> Cultural Heritage Artifacts 39<br />

Matteo Dellepiane, Marco Callieri, Massimiliano Corsini, Roberto Scopigno<br />

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39<br />

2.2 Visual Communication <strong>of</strong> Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br />

2.2.1 Computer-generated Animations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br />

2.2.2 Interactive Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

2.2.3 Geographic Web Browsers Deploying 3D Models . . . . . . . . . . . . . . . . . 45<br />

2.3 Art Catalogs and Digital Repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

2.4 Digital 3D as a Tool <strong>for</strong> Art Scholars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br />

2.4.1 Using 3D Scanning to Analyze an Attribution Proposal . . . . . . . . . . . . . . . . 47<br />

xi


xii<br />

2.4.2 The CENOBIUM Project: an Integrated Visual Comparison <strong>of</strong> Historiated Capitals 50<br />

2.4.3 Classifying and Archiving Carved Faces: the Bayon Digital Archival Project . . . . 51<br />

2.5 Physical Reproduction from the Digital Model . . . . . . . . . . . . . . . . . . . . . . . 52<br />

2.6 Virtual Reconstruction and Re-assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br />

2.6.1 Virtual Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br />

2.6.2 Virtual Re-assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55<br />

2.6.3 Virtual Repainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57<br />

2.7 Supporting the Restoration Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br />

2.7.1 Tools <strong>for</strong> Investigation and Diagnostics . . . . . . . . . . . . . . . . . . . . . . . 59<br />

2.7.2 Tools Supporting Knowledge Management . . . . . . . . . . . . . . . . . . . . . 62<br />

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67<br />

3 Accurate and Detailed Image-Based 3D Documentation <strong>of</strong> Large Sites and Complex Objects 73<br />

Fabio Remondino<br />

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73<br />

3.2 Reality-based 3D Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74<br />

3.2.1 Techniques and Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75<br />

3.2.2 Multi-sensor and Multi-source Data Integration . . . . . . . . . . . . . . . . . . . 76<br />

3.2.3 Standards in Digital 3D Documentation . . . . . . . . . . . . . . . . . . . . . . . 78<br />

3.3 Photogrammetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br />

3.3.1 Image Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80<br />

3.3.2 Camera Calibration and Image Orientation . . . . . . . . . . . . . . . . . . . . . 82<br />

3.3.3 3D Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87<br />

3.3.4 Structuring and Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89<br />

3.3.5 Texturing and Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90<br />

3.3.6 Main Applications and Actual Problems . . . . . . . . . . . . . . . . . . . . . . . 93<br />

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96<br />

4 Processing Sampled 3D Data: Reconstruction and Visualization Technologies 105<br />

Marco Callieri, Matteo Dellepiane, Paolo Cignoni, Roberto Scopigno<br />

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106<br />

4.1.1 Sources <strong>of</strong> Sampled 3D Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106<br />

4.2 Basic Geometric Processing <strong>of</strong> Scanned Data . . . . . . . . . . . . . . . . . . . . . . . . 108<br />

4.2.1 The 3D Scanning Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109<br />

4.2.2 Implementing Range Maps Alignment as an Automatic Process . . . . . . . . . . 113<br />

4.2.3 Enhancing Incomplete Surface Sampling . . . . . . . . . . . . . . . . . . . . . . 115<br />

4.3 Color Sampling and Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116<br />

4.3.1 Basic Acquisition <strong>of</strong> Color Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 116<br />

4.3.2 Recovering Camera Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117<br />

4.3.3 Mapping Complex Photographic Detail on 3D Models . . . . . . . . . . . . . . . 119<br />

4.3.4 Advanced Color Data Acquisition: Sampling Surface Reflection Properties . . . . 120<br />

4.4 MeshLab: an Open Source Tool <strong>for</strong> Processing 3D Scanned Data . . . . . . . . . . . . . . 121<br />

4.5 Efficient Visualization and Management <strong>of</strong> Sampled 3D Data . . . . . . . . . . . . . . . 123<br />

4.5.1 Simplification and Multiresolution Management <strong>of</strong> Huge Models . . . . . . . . . 124


4.5.2 Mesh-based vs. Point-based Encoding and Rendering . . . . . . . . . . . . . . . . 125<br />

4.5.3 Usability <strong>of</strong> Virtual Heritage Worlds . . . . . . . . . . . . . . . . . . . . . . . . . 126<br />

4.5.4 Not Just 3D Data: Adding Other Knowledge . . . . . . . . . . . . . . . . . . . . . 127<br />

4.5.5 Presenting 3D Data on the Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127<br />

4.6 3D Digitization: How to Improve Current Procedures and Make It More Practical and<br />

Successful . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128<br />

4.6.1 Technology - Limitations Perceived by Practitioners . . . . . . . . . . . . . . . . 128<br />

4.6.2 Misuse <strong>of</strong> Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129<br />

4.6.3 Better Management <strong>of</strong> 3D Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 129<br />

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131<br />

5 Digitizing the Parthenon: Estimating Surface Reflectance under Measured Natural Illumination<br />

137<br />

Paul Debevec, Chris Tchou, Andrew Gardner, Tim Hawkins, Charis Poullis, Jessi Stumpfel, Andrew Jones,<br />

Nathaniel Yun, Per Einarsson, Therese Lundgren, Marcos Fajardo and Philippe Martinez<br />

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138<br />

5.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139<br />

5.3 Data Acquisiton and Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140<br />

5.3.1 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140<br />

5.3.2 BRDF Measurement and Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 141<br />

5.3.3 Natural Illumination Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145<br />

5.3.4 3D Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149<br />

5.3.5 Photograph Acquisition and Alignment . . . . . . . . . . . . . . . . . . . . . . . . 151<br />

5.4 Reflectometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152<br />

5.4.1 General Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152<br />

5.4.2 Multiresolution Reflectance Solving . . . . . . . . . . . . . . . . . . . . . . . . . 153<br />

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155<br />

5.6 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156<br />

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160<br />

6 ARC3D: a Public Web Service that Turns Photos into 3D Models 163<br />

David Tingdahl, Maarten Vergauwen, and Luc Van Gool<br />

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164<br />

6.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165<br />

6.2.1 System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165<br />

6.2.2 Upload Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167<br />

6.2.3 Modelviewer Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167<br />

6.3 Automatic Reconstruction Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169<br />

6.3.1 Pipeline Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171<br />

6.3.2 Opportunistic Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171<br />

6.3.3 Hierarchical Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171<br />

6.3.4 Parallel Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172<br />

6.4 Practical Guidelines <strong>for</strong> Shooting <strong>Images</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . 173<br />

6.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173<br />

xiii


xiv<br />

6.4.2 Image Shooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173<br />

6.4.3 Scene Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174<br />

6.5 Case Study: Reconstruction <strong>of</strong> the Mogao Caves <strong>of</strong> Dunhuang . . . . . . . . . . . . . . . 175<br />

6.5.1 3D Reconstruction <strong>of</strong> Mogao Cave 322 . . . . . . . . . . . . . . . . . . . . . . . 175<br />

6.5.2 Image Capturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176<br />

6.5.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181<br />

6.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181<br />

6.6.1 A Complete Building: Arc de Triomphe . . . . . . . . . . . . . . . . . . . . . . . . 181<br />

6.6.2 Environment Scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183<br />

6.6.3 Further Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183<br />

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189<br />

7 Pattern Discovery from Eroded Rock Art 191<br />

Yang Cai<br />

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191<br />

7.2 Surface Imaging Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192<br />

7.2.1 Laser Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193<br />

7.2.2 Pattern Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195<br />

7.2.3 Stick Shadow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196<br />

7.2.4 Multiview Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197<br />

7.2.5 Polynomial Texture Maps (PTM) . . . . . . . . . . . . . . . . . . . . . . . . . . 199<br />

7.3 Pattern Discovery Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200<br />

7.3.1 Simulated Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201<br />

7.3.2 Data Trans<strong>for</strong>mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201<br />

7.3.3 Trans<strong>for</strong>mation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202<br />

7.3.4 Off-Line Handwriting Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 205<br />

7.3.5 Interactive Versus Automatic Discovery . . . . . . . . . . . . . . . . . . . . . . . . 207<br />

7.4 From Reconstruction to Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208<br />

7.5 Interaction Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208<br />

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210<br />

8 Computational <strong>Analysis</strong> <strong>of</strong> Archaeological Ceramic Vessels and their Fragments 215<br />

Andrew R. Willis<br />

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216<br />

8.1.1 Significance <strong>of</strong> Generic Artifact Reconstruction . . . . . . . . . . . . . . . . . . . . 217<br />

8.1.2 Significance <strong>of</strong> Ceramic Vessel Reconstruction . . . . . . . . . . . . . . . . . . . . 217<br />

8.1.3 Traditional Puzzle Solving and Artifact Reconstruction . . . . . . . . . . . . . . . 218<br />

8.2 Artifact Reconstruction Systems: Basic Components and Concepts . . . . . . . . . . . . 219<br />

8.2.1 Digitizing Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220<br />

8.2.2 Approaches <strong>for</strong> Computational Sherd <strong>Analysis</strong> . . . . . . . . . . . . . . . . . . . 220<br />

8.2.3 Computerized Typology <strong>for</strong> Automated Sherd Classification . . . . . . . . . . . . 222<br />

8.2.4 Computerized Vessel Reconstruction by Fragment Matching . . . . . . . . . . . . 224<br />

8.3 Computational Models <strong>for</strong> Vessels and their Fragments . . . . . . . . . . . . . . . . . . . 225<br />

8.3.1 Modeling Ceramic Vessels as Surfaces <strong>of</strong> Revolution . . . . . . . . . . . . . . . . 225


8.3.2 Estimating the Vessel Axis from Digitized Sherds . . . . . . . . . . . . . . . . . . 226<br />

8.3.3 Estimating Pr<strong>of</strong>ile Curves from Digitized Sherds . . . . . . . . . . . . . . . . . . . 227<br />

8.3.4 Simultaneously Solving <strong>for</strong> the Axis and Pr<strong>of</strong>ile Curve . . . . . . . . . . . . . . . 230<br />

8.3.5 Dealing with Asymmetries in Archaeological Ceramic Sherds . . . . . . . . . . . 232<br />

8.3.6 Vessel Reconstruction by Matching Axis/Pr<strong>of</strong>ile Curve Models . . . . . . . . . . . 233<br />

8.4 Vessel Reconstruction by Sherd Matching: 3D Puzzle Solving . . . . . . . . . . . . . . . 234<br />

8.4.1 The Bayesian Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235<br />

8.4.2 Searching <strong>for</strong> the Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236<br />

8.5 Current Trends in Computational Artifact Reconstruction . . . . . . . . . . . . . . . . . . . 237<br />

8.5.1 Going Beyond Geometry: Textures and Patterns on Sherd Surfaces . . . . . . . . . 238<br />

8.5.2 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238<br />

8.5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241<br />

9 Digital Reconstruction and <strong>Mosaic</strong>ing <strong>of</strong> Cultural Artifacts 245<br />

Efthymia Tsamoura, Nikos Nikolaidis, Ioannis Pitas<br />

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245<br />

9.2 The Three-step Object Reconstruction Procedure . . . . . . . . . . . . . . . . . . . . . . 250<br />

9.2.1 Fragments Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253<br />

9.2.2 Matching <strong>of</strong> Candidate Adjacent Fragments . . . . . . . . . . . . . . . . . . . . . 253<br />

9.2.3 Multi-fragment Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254<br />

9.3 Approaches <strong>for</strong> Object Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254<br />

9.3.1 Torn by Hand Document Reassembly . . . . . . . . . . . . . . . . . . . . . . . . 255<br />

9.3.2 3D Objects Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255<br />

9.3.3 2D Puzzles Reassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258<br />

9.3.4 2D Objects Reassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258<br />

9.4 Automatic Color Based Reassembly <strong>of</strong> Fragmented <strong>Images</strong> and Paintings . . . . . . . . . 259<br />

9.4.1 Discovery <strong>of</strong> Adjacent Image Fragments . . . . . . . . . . . . . . . . . . . . . . . 259<br />

9.4.2 Discovery <strong>of</strong> Matching Contour Segments <strong>of</strong> Adjacent Image Fragments . . . . . 260<br />

9.4.3 Contour Alignment <strong>of</strong> Fragments . . . . . . . . . . . . . . . . . . . . . . . . . . 262<br />

9.4.4 Overall Image Reassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263<br />

9.4.5 Image Reassembly Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 264<br />

9.5 Reduced Complexity Image <strong>Mosaic</strong>ing Utilizing Spanning Trees . . . . . . . . . . . . . . 266<br />

9.5.1 Two-Image <strong>Mosaic</strong>ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268<br />

9.5.2 Spanning Tree <strong>Mosaic</strong>ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269<br />

9.5.3 Sub-graph Spanning Tree <strong>Mosaic</strong>ing . . . . . . . . . . . . . . . . . . . . . . . . . 270<br />

9.5.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271<br />

9.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275<br />

10 Virtual Restoration <strong>of</strong> Antique Books and Photographs 281<br />

Filippo Stanco, Alfredo Restrepo Palacios, and Giovanni Ramponi<br />

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282<br />

10.1.1 Photographic Prints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282<br />

10.1.2 Antique Books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284<br />

10.2 Detection <strong>of</strong> the Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285<br />

xv


xvi<br />

10.2.1 Foxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285<br />

10.2.2 Water Blotches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287<br />

10.2.3 Cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288<br />

10.2.4 Fragmented Glass Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292<br />

10.3 Virtual Restoration <strong>of</strong> Antique Photographic Prints Affected by Foxing and Water Blotches 293<br />

10.3.1 Inpainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294<br />

10.3.2 Additive/Multiplicative Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295<br />

10.3.3 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295<br />

10.4 Restoration <strong>of</strong> the Fragmented Glass Plate Photographs . . . . . . . . . . . . . . . . . . . 296<br />

10.5 Restoration <strong>of</strong> Yellowing and Foxing in Antique Books . . . . . . . . . . . . . . . . . . . 299<br />

10.5.1 Foxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302<br />

10.5.2 Page Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303<br />

10.5.3 OCR in Antique Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304<br />

10.6 On Image Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306<br />

10.6.1 On the Measurement <strong>of</strong> Local Luminance and Local Contrast (Statistics <strong>of</strong> Location<br />

and Dispersion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307<br />

10.6.2 On the Relationship Between Local Contrast and Local Luminance . . . . . . . . 308<br />

10.6.3 Effect <strong>of</strong> γ-Correction on Scatter Plots <strong>of</strong> Local Contrast Versus Local Luminance 310<br />

10.6.4 Word Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311<br />

10.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315<br />

11 Advances in Automated Restoration <strong>of</strong> Archived Video 321<br />

Anil Kokaram, Francois Pitie, David Corrigan and Domenico Vitulano, Vittoria Bruni, Andrew Craw<strong>for</strong>d<br />

11.1 Dirt and Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322<br />

11.1.1 Simple Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324<br />

11.1.2 Better Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325<br />

11.1.3 Further Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327<br />

11.2 Semi-transparent Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329<br />

11.2.1 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331<br />

11.3 Line Scratches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333<br />

11.4 Global Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336<br />

11.4.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339<br />

11.5 An Evolving Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341<br />

12 Applications <strong>of</strong> Spectral Imaging and Reproduction to Cultural Heritage 347<br />

Simone Bianco, Alessandro Colombo, Francesca Gasparini, Raimondo Schettini, and Silvia Zuffi<br />

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348<br />

12.2 Colorimetric and Multispectral Color Imaging . . . . . . . . . . . . . . . . . . . . . . . 349<br />

12.3 Capturing a Multispectral Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350<br />

12.4 Imaging and Signal Processing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 353<br />

12.4.1 ’Narrow-band’ Multispectral Imaging . . . . . . . . . . . . . . . . . . . . . . . . 353<br />

12.4.2 ’Wide-band’ Multispectral Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 354<br />

12.4.3 Training Set Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356<br />

12.4.4 Filters Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357


12.5 Recovery Multispectral In<strong>for</strong>mation from RGB <strong>Images</strong> . . . . . . . . . . . . . . . . . . . 359<br />

12.5.1 Spectral Based Color Imaging Using RGB Digital Still Cameras . . . . . . . . . . 359<br />

12.6 Storing a Multispectral Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361<br />

12.7 Evaluating System Per<strong>for</strong>mance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363<br />

12.8 Multispectral Image Reproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364<br />

12.8.1 Colorimetric Reproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364<br />

12.8.2 Spectral Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364<br />

12.8.3 Spectral Reproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366<br />

12.8.4 Viewpoint and Lighting Position Invariant Reproduction . . . . . . . . . . . . . . 366<br />

12.9 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369<br />

13 Did Early Renaissance Painters Trace Optically Projected <strong>Images</strong>? The Conclusion <strong>of</strong> Independent<br />

Scientists, Art Historians and Artists 379<br />

David G. Stork, Jacob Collins, Marco Duarte, Yasuo Furuichi, Dave Kale, Ashutosh Kulkarni, M. Dirk<br />

Robinson, Christopher W. Tyler, Sara J. Schechner, and Nicholas C. Williams<br />

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380<br />

13.2 The Projection Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382<br />

13.2.1 Philosophical and Logical Foundations <strong>of</strong> the Projection Theory . . . . . . . . . . 382<br />

13.3 Image Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387<br />

13.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387<br />

13.3.2 Lorenzo Lotto, Husband and wife (1543) . . . . . . . . . . . . . . . . . . . . . . . 387<br />

13.3.3 Jan van Eyck, Portrait <strong>of</strong> Giovanni (?) Arnolfini and his wife (1434) . . . . . . . . 389<br />

13.3.4 Jan van Eyck, Portrait <strong>of</strong> Niccolò Albergati (1431 & 1432) . . . . . . . . . . . . . . 391<br />

13.3.5 Robert Campin, The Mérode altarpiece (1430) . . . . . . . . . . . . . . . . . . . 392<br />

13.3.6 Georges de la Tour, Christ in the carpenter’s studio (1645) . . . . . . . . . . . . . 393<br />

13.3.7 Caravaggio, The calling <strong>of</strong> St. Matthew (1599–1600) . . . . . . . . . . . . . . . . 394<br />

13.3.8 Hans Memling, Flower still-life (c. 1490) . . . . . . . . . . . . . . . . . . . . . . 395<br />

13.3.9 Hans Holbein, The Ambassadors (1533) . . . . . . . . . . . . . . . . . . . . . . . 395<br />

13.3.10 Hans Holbein, George Gisze (1532) . . . . . . . . . . . . . . . . . . . . . . . . . 396<br />

13.4 Documentary Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397<br />

13.5 Material Culture and Renactments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398<br />

13.5.1 Reenactments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399<br />

13.6 Non-Optical Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400<br />

13.7 The “Value” in Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400<br />

13.8 Scholarly Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401<br />

13.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402<br />

14 A Computer <strong>Analysis</strong> <strong>of</strong> the Mirror in Hans Memling’s Virgin and Child and Maarten van<br />

Nieuwenhove 409<br />

Silvio Savarese, David G. Stork, Andrey Del Pozo, and Ron Spronk<br />

14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410<br />

14.2 Memling’s Diptych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412<br />

14.3 Computer Vision <strong>Analysis</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415<br />

14.4 Modeling Reflections Off a Mirror Surface . . . . . . . . . . . . . . . . . . . . . . . . . 416<br />

xvii


xviii<br />

14.4.1 Direct Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419<br />

14.4.2 Inverse Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419<br />

14.4.3 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421<br />

14.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423<br />

14.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426<br />

15 Digital Reproduction <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong>s 431<br />

Sebastiano Battiato, Gianpiero Di Blasi, and Giovanni Gallo, Giovanni Puglisi<br />

15.1 Art and Computer Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431<br />

15.2 History <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432<br />

15.3 The Digital <strong>Mosaic</strong> Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434<br />

15.4 The Crystallization <strong>Mosaic</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435<br />

15.5 The <strong>Ancient</strong> <strong>Mosaic</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438<br />

15.6 The <strong>Ancient</strong> <strong>Mosaic</strong>s in a 3D environment . . . . . . . . . . . . . . . . . . . . . . . . . 442<br />

15.7 Final Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446<br />

15.7.1 Final Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449<br />

16 <strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 453<br />

Lamia Benyoussef and Stéphane Derrode<br />

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453<br />

16.1.1 Some Historical Facts about <strong>Mosaic</strong>s . . . . . . . . . . . . . . . . . . . . . . . . 454<br />

16.1.2 <strong>Mosaic</strong>s, <strong>Images</strong> and Digital Applications . . . . . . . . . . . . . . . . . . . . . . 455<br />

16.2 Recent Image Processing Projects Concerned with <strong>Mosaic</strong>s . . . . . . . . . . . . . . . . . 457<br />

16.2.1 St. Vitus Cathedral <strong>Mosaic</strong> Restoration . . . . . . . . . . . . . . . . . . . . . . . 458<br />

16.2.2 Arabo-moresque and Islamic <strong>Mosaic</strong> Pattern Classification . . . . . . . . . . . . . 458<br />

16.2.3 Roman <strong>Mosaic</strong>s Indexation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459<br />

16.3 Tesserae Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460<br />

16.4 Tessera-based Segmentation and Coding . . . . . . . . . . . . . . . . . . . . . . . . . . 462<br />

16.4.1 Segmentation <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> . . . . . . . . . . . . . . . . . . . . . . 464<br />

16.4.2 Tessera-based Coding and Lossy Compression . . . . . . . . . . . . . . . . . . . 464<br />

16.5 Guidelines Estimation <strong>for</strong> <strong>Mosaic</strong> Structure Retrieval . . . . . . . . . . . . . . . . . . . . 468<br />

16.6 Open Issues and Research Directions in <strong>Mosaic</strong> Image <strong>Analysis</strong> . . . . . . . . . . . . . . 470<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474<br />

17 Copyright Protection <strong>of</strong> Digital <strong>Images</strong> <strong>of</strong> Cultural Heritage 479<br />

Vito Cappellini, Roberto Caldelli, Andrea Del Mastio, Francesca Uccheddu<br />

17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480<br />

17.1.1 A Brief History <strong>of</strong> Watermarking . . . . . . . . . . . . . . . . . . . . . . . . . . 480<br />

17.1.2 Watermarking Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480<br />

17.1.3 Watermarking Application Scenarios . . . . . . . . . . . . . . . . . . . . . . . . 482<br />

17.2 2D Watermarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485<br />

17.2.1 Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486<br />

17.2.2 Insertion <strong>of</strong> Multiple Watermarking Codes . . . . . . . . . . . . . . . . . . . . . . 487<br />

17.2.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487<br />

17.2.4 Blind and Non-blind Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 489


17.2.5 Private and Public Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489<br />

17.2.6 Readable and Detectable Watermarks . . . . . . . . . . . . . . . . . . . . . . . . 489<br />

17.2.7 Invertibility and Quasi-invertibility . . . . . . . . . . . . . . . . . . . . . . . . . 490<br />

17.2.8 Reversibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491<br />

17.2.9 Asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491<br />

17.2.10 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496<br />

17.3 3D Watermarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496<br />

17.3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496<br />

17.3.2 3D Objects Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499<br />

17.3.3 State <strong>of</strong> the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502<br />

17.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509<br />

Index 515<br />

xix


16<br />

<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong><br />

Applications<br />

Lamia Benyoussef and Stéphane Derrode<br />

<strong>Institut</strong> <strong>Fresnel</strong> (CNRS UMR 6133)<br />

École Centrale Marseille<br />

Marseille, France<br />

Email: lbenyoussef@ec-marseille.fr, sderrode@ec-marseille.fr<br />

CONTENTS<br />

16.1 Introduction . . ................................................. . . . . ....................... 453<br />

16.1.1 Some Historical Facts about <strong>Mosaic</strong>s . . ............................................... 454<br />

16.1.2 <strong>Mosaic</strong>s, <strong>Images</strong> and Digital Applications . . ........................................... 455<br />

16.2 Recent Image Processing Projects Concerned with <strong>Mosaic</strong>s . . ................................... 457<br />

16.2.1 St. Vitus Cathedral <strong>Mosaic</strong> Restoration . . .............................................. 457<br />

16.2.2 Arabo-moresque and Islamic <strong>Mosaic</strong> Pattern Classification . . ............................ 458<br />

16.2.3 Roman <strong>Mosaic</strong>s Indexation . . ................................................. . . . .... 459<br />

16.3 Tesserae Extraction . .................................................. . . . ................. 460<br />

16.4 Tessera-based Segmentation and Coding . . ................................................. . . 462<br />

16.4.1 Segmentation <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> . . ............................................ 462<br />

16.4.2 Tessera-based Coding and Lossy Compression . . ....................................... 464<br />

16.5 Guidelines Estimation <strong>for</strong> <strong>Mosaic</strong> Structure Retrieval . . ........................................ 468<br />

16.6 Open Issues and Research Directions in <strong>Mosaic</strong> Image <strong>Analysis</strong> . . ............................... 470<br />

Bibliography . . ................................................. . . . ....................... 474<br />

16.1 Introduction<br />

<strong>Mosaic</strong> is a <strong>for</strong>m <strong>of</strong> art to produce decorative images or patterns out <strong>of</strong> small components. It requires a great<br />

deal <strong>of</strong> time and labor and it is <strong>of</strong>ten very expensive. <strong>Mosaic</strong> is, in return, far more durable in time than<br />

painting, so it can be used in places where painting cannot be <strong>of</strong> practical use, such as floors. <strong>Mosaic</strong> moreover<br />

allows the realization <strong>of</strong> light effects that are impossible with other media. The success <strong>of</strong> the mosaic art <strong>for</strong>m<br />

through the ages is at the origin <strong>of</strong> large collections in several museums, among them we can cite the “Great<br />

Palace <strong>Mosaic</strong> Museum” (Istanbul, Turkey) and the “Musée du Bardo” (Tunis, Tunisia).<br />

Recently, questions rise about the virtual conservation and management <strong>of</strong> collections and their accessibility<br />

to experts such as archeologists or art historians, and even to the large public. Requirements concern<br />

facilities<br />

• <strong>for</strong> cataloging collections and distant consultation, and <strong>for</strong> intelligent retrieval tools (e.g., the extraction<br />

<strong>of</strong> objects with a semantic meaning, such as animal or human, in a complex mosaic scene);<br />

453


454 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

• <strong>for</strong> virtual conservation (e.g., restoration <strong>of</strong> tesserae color), reconstruction (e.g., missing patches) and<br />

anastylosis <strong>of</strong> ancient mosaics.<br />

The aim <strong>of</strong> this Chapter is to draw an overview <strong>of</strong> image processing based methods dedicated to the specificities<br />

<strong>of</strong> mosaic images <strong>for</strong> applications to restoration and cataloging <strong>of</strong> ancient mosaics.<br />

16.1.1 Some Historical Facts about <strong>Mosaic</strong>s<br />

The following description only intends to give some basis entries about history <strong>of</strong> mosaics. And so, it is quite<br />

superficial and partial. Interested readers should consult the numerous books covering the subject, among<br />

them we can cite the following books [11,16,26]. The worldwide web gives also access to very complete lists<br />

<strong>of</strong> bibliographical references on ancient mosaics (e.g., [44]).<br />

The earliest mosaics were installed as floors or pavements, occasionally as walls. Later, ceilings were also<br />

decorated. Originally, mosaics were used strictly in an architectural context. <strong>Mosaic</strong>king smaller, portable<br />

items such as panels or portraits is a later development, though there are a few rare instances <strong>of</strong> items such as<br />

icons from the late Byzantine era. The first mosaics that we know <strong>of</strong> are from what is now the Middle East.<br />

Temple columns in ancient Babylon (present day Iraq) had thousands <strong>of</strong> small clay cones pressed into wet<br />

plaster in decorative and geometric patterns. These date from five thousand years ago. From these humble<br />

beginnings, mosaic developed into a major art <strong>for</strong>m. It was the Greeks, in the four centuries BC, who raised<br />

the pebble technique to an art <strong>for</strong>m, with precise geometric patterns and detailed scenes <strong>of</strong> people and animals.<br />

By 200 BC, specially manufactured pieces “tessera” were being used to give extra detail and range <strong>of</strong> color to<br />

the work. Using small tesserae, sometimes only a few millimeters in size, meant that mosaics could imitate<br />

paintings. Many <strong>of</strong> the mosaics preserved at, <strong>for</strong> example, Pompeii were the work <strong>of</strong> Greek artists. The<br />

expansion <strong>of</strong> the Roman Empire took mosaics further afield, although the level <strong>of</strong> skill and artistry was diluted.<br />

Typically Roman subjects were scenes celebrating their gods, domestic themes and geometric designs.<br />

With the rise <strong>of</strong> the Byzantine Empire from the 5 th century onwards, centered on Byzantium (present day<br />

Istanbul, Turkey), the art <strong>for</strong>m took on new characteristics. These included Eastern influences in style and<br />

the use <strong>of</strong> special glass tesserae called “smalti”, manufactured in northern Italy, made from thick sheets <strong>of</strong><br />

colored glass. Smalti have a rough surface and contain tiny air bubbles. They are sometimes backed with<br />

reflective silver or gold leaf. Whereas Roman mosaics were mostly used as floors, the Byzantines specialized<br />

in covering walls and ceilings. The smalti were ungrouted, allowing light to reflect and refract within the<br />

glass. Also, they were set at slight angles to the wall, so that they caught the light in different ways. The<br />

gold tesserae sparkle as the viewer moves around within the building. Roman images were absorbed into the<br />

typical Christian themes <strong>of</strong> the Byzantine mosaics, although some work is decorative and some incorporates<br />

portraits <strong>of</strong> Emperors and Empresses.<br />

In the west <strong>of</strong> Europe, the Moors brought Islamic mosaic and tile art into the Iberian peninsula in the 8 th<br />

century, while elsewhere in the Muslim world, stone, glass and ceramic were all used in mosaics. In contrast<br />

to the figurative representations in Byzantine art, Islamic motifs are mainly geometric. Examples can be seen<br />

in Spain at the Great Mosque at Cordoba, the Alhambra Palace and Meknes in Morocco (Figure 16.4(b)).<br />

In Arabic countries a distinctive decorative style called “zillij” uses purpose-made ceramic shapes that are<br />

further worked by hand to allow them to tessellate (fit together perfectly to cover a surface).<br />

In the rest <strong>of</strong> Europe, mosaic went into decline throughout the Middle Ages, although some tiling patterns<br />

in abbeys, <strong>for</strong> example, used mosaic effects. In the 19 th century there was a revival <strong>of</strong> interest, particularly in<br />

the Byzantine style, with buildings such as Westminster Cathedral in London and Sacre-Cœur in Paris. The<br />

“Art Nouveau” movement also embraced mosaic art. In Barcelona, Antoni Gaudí worked with Josep Maria<br />

Jujol to produce the stunning ceramic mosaics <strong>of</strong> the Guell Park in the first two decades <strong>of</strong> the 20 th century.<br />

These used a technique known as trencadis in which tiles (purpose-made and waste tiles) covered surfaces <strong>of</strong>


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 455<br />

buildings. They also incorporated broken crockery and other found objects, a revolutionary idea in <strong>for</strong>mal art<br />

and architecture.<br />

<strong>Mosaic</strong> still continue to interest artists but also crafts people because it is a very accessible, non-elitist<br />

<strong>for</strong>m <strong>of</strong> creativity. The field is rich with new ideas and approaches, and organisations such as the British<br />

Association <strong>for</strong> Modern <strong>Mosaic</strong> (BAMM) [2] and the Society <strong>of</strong> American <strong>Mosaic</strong> Artists (SAMA) [1] exist<br />

to promote mosaic. As a recent example, we can cite the development <strong>of</strong> algorithms <strong>for</strong> computer-aided<br />

generation <strong>of</strong> mosaic images from a raster image, simulating ancient or modern styles [6].<br />

16.1.2 <strong>Mosaic</strong>s, <strong>Images</strong> and Digital Applications<br />

<strong>Mosaic</strong>s are made <strong>of</strong> colored tiles, called tessera or tessella, usually <strong>for</strong>med in the shape <strong>of</strong> a cube <strong>of</strong> materials<br />

separated by a joint <strong>of</strong> mortar. The earliest known mosaic materials were small cones <strong>of</strong> clay pressed into<br />

wet plaster. Semi-precious stones such as lapis lazuli and onyx, as well as shells and terra cotta were also<br />

used. As the art developed, glass, ceramic and stone tesserae were the most common materials, along with<br />

pebbles. Modernly, any small singular component can be used: traditional materials, glass or ceramic cast or<br />

cut into tiles, plus plastic, polymer clay (such as Sculpey or Fimo), beads, buttons, bottle caps, pearls, etc.<br />

The physical study <strong>of</strong> materials used in mosaics continue to be an active research field [10, 17, 38].<br />

Structure characteristics<br />

<strong>Mosaic</strong>s can be built on different natural ground made <strong>of</strong> soil or rock, or on top <strong>of</strong> a previous pavement.<br />

The mosaic itself is composed <strong>of</strong> a variety <strong>of</strong> foundation or preparatory layers and a layer <strong>of</strong> tesserae. Also,<br />

the mosaic surface exhibits irregular hollows (tesserae) and bumps (mortar) through the scene. Hence, a<br />

mosaic can not be considered as a plane surface, as <strong>for</strong> paintings, but has numerous <strong>for</strong>ms <strong>of</strong> irregularities,<br />

typical <strong>of</strong> the artwork style:<br />

• Shape <strong>of</strong> tesserae, The shapes <strong>of</strong> tesserae are irregular, from square shapes to polygonal ones.<br />

• Organization <strong>of</strong> tesserae, Tesserae are not positioned according to a regular lattice. On the contrary, the<br />

smart and judicious choice in the orientation, size and positioning <strong>of</strong> tesserae characterize the artwork<br />

style and exhibit the “general flow” (guidelines) <strong>of</strong> the mosaic chosen by the mosaicist.<br />

• Mortar joint, This positioning makes the joints appear as an irregular network with numerous interconnections<br />

throughout the mosaic. Network color intensity, mainly middle gray, is however not uni<strong>for</strong>m<br />

through the scene.<br />

• Color <strong>of</strong> tesserae, Because <strong>of</strong> materials used and their oldness, tesserae <strong>of</strong> ancient mosaics are generally<br />

characterized by pastel colors, with low contrast.<br />

Oldness characteristics<br />

Other artifacts can be associated to the wear, erosion and oldness <strong>of</strong> ancient mosaics (some <strong>of</strong> them are<br />

illustrated by images in Figures 16.1 and 16.2):<br />

• Disaggregated tesserae, Some tesserae can display a loss <strong>of</strong> cohesion <strong>of</strong> their surfaces, disintegrated into<br />

powder or small grains. Also erosion and patinae deteriorations are commonly encountered in studying<br />

ancient mosaics.<br />

• Missing tessera patches, Most <strong>of</strong> mosaics are not completely preserved and, as a consequence <strong>of</strong><br />

disaggregation, lacunas generally corrupted mosaic scenes.<br />

• Color alteration, Alteration <strong>of</strong> the mosaic surface characterized by a localized change in color (due to fire<br />

damage, graffiti, etc.).


456 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

FIGURE 16.1<br />

Excerpt <strong>of</strong> an ancient Greek mosaic scene (from Paphos, Cyprus), showing missing patches and geometric<br />

de<strong>for</strong>mation due to slant acquisition [25], public domain image.<br />

(a) Disaggregated (b) Eroded (c) Altered in color<br />

FIGURE 16.2<br />

Three examples <strong>of</strong> deteriorated tesserae, from [34].


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 457<br />

Data acquisition<br />

For latter processing and virtual anastylosis, mosaic scene must first be digitized using camera. All<br />

peculiarities cited above have a strong and complex impact on acquisition and the way mosaic scenes appear<br />

in an image with a limited resolution:<br />

• Relief shadows, During snapshot acquisition, the relief <strong>of</strong> tesserae generates shadows on mortar which<br />

does not appear nearly uni<strong>for</strong>m in intensity all over the image, as it should be.<br />

• Indoor/outdoor acquisition, Previous item is further accentuated by indoor acquisition with flash. In<br />

outdoor acquisition, light is not controlled and one should expect severe contrast variations in acquisitions.<br />

• Geometric de<strong>for</strong>mation, Another degradation comes from the snapshot acquisition angle, especially <strong>for</strong><br />

very large mosaic scenes lying on the floor. This point produces perspective (rotation, scaling and shearing)<br />

de<strong>for</strong>mations <strong>of</strong> tesserae shape in image and the thinning down <strong>of</strong> the mortar width (till disappearing).<br />

• Tessera resolution, The resolution <strong>of</strong> tesserae in an image (i.e., the number <strong>of</strong> pixels to describe a tessera)<br />

should not be too low <strong>for</strong> latter processing. On the other hand, a too high resolution will only able to<br />

capture partial scene.<br />

As a consequence, very large mosaic scenes have to be recorded using multiple overlapping images that<br />

are subsequently co-registered in geometry and color to produce the entire digital scene. An interesting<br />

complementary approach to camera acquisition is given by laser scanning. This technique, used recently <strong>for</strong><br />

ancient mosaics analysis [23, 37], can produce a 3D mesh <strong>of</strong> the mosaic surface and material <strong>for</strong> a detailed<br />

shape analysis.<br />

Hence, dedicated processing methods are required to take into account the specificities <strong>of</strong> mosaic and<br />

the specificities <strong>of</strong> mosaic images, and to adopt image processing strategies suited to the tiling organisation<br />

<strong>of</strong> tesserae. This way, one can expect better per<strong>for</strong>mances than general purpose algorithms. The nature and<br />

the artifacts in mosaic images make segmentation methods based on pixel intensities inefficient (e.g., pixels<br />

associated to the mortar interfere with the classification process <strong>of</strong> tesserae). A strategy better suited to mosaic<br />

images is to consider tesserae as indivisible entities with an almost uni<strong>for</strong>m gray-level value.<br />

The remaining <strong>of</strong> the Chapter starts in Section 16.2 with a brief description <strong>of</strong> several projects involving<br />

image processing methods <strong>for</strong> restoration, preservation and indexation <strong>of</strong> ancient mosaics. Then we present<br />

in details some fondamental applications <strong>of</strong> the tessera-oriented point-<strong>of</strong>-view on mosaic images proposed<br />

by the authors, according to the diagram in Figure 16.3. Section 16.3 presents an effective way to extract<br />

tesserae, while Section 16.4 exposes two direct applications <strong>of</strong> this strategy <strong>for</strong> mosaic image segmentation<br />

and coding. Section 16.5 presents an effective way to retrieve the main guidelines <strong>of</strong> a mosaic which can be<br />

helpful <strong>for</strong> delimitating semantic objects present in a complex scene. Finally, the conclusion in Section 16.6<br />

examines some open issues and suggests future research directions to succeed in providing appropriated tools<br />

to museums and experts.<br />

16.2 Recent Image Processing Projects Concerned with <strong>Mosaic</strong>s<br />

A few project involving computer science and image processing <strong>for</strong> mosaic conservation, restoration or<br />

cataloging are reported in the literature. Here is a short description <strong>of</strong> them.


458 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

FIGURE 16.3<br />

Organization <strong>of</strong> Chapter with the processing pipeline.<br />

16.2.1 St. Vitus Cathedral <strong>Mosaic</strong> Restoration<br />

The more accomplished project concerns the restoration <strong>of</strong> the St. Vitus cathedral mosaics, in Prague (Czech<br />

Republic), reported in [49]. The Golden Gate (the southern entrance to the cathedral) is decorated with a<br />

unique work <strong>of</strong> art: a colored, richly gilded mosaic representing the Last Judgement, see Figure 16.4(a). In<br />

1992 the Office <strong>of</strong> the President <strong>of</strong> the Czech Republic and the Getty Conservation <strong>Institut</strong>e [3] began to<br />

cooperate to restore and conserve the mosaic.<br />

Having the historical photo <strong>of</strong> the mosaic from the end <strong>of</strong> the 19 th century and the photos <strong>of</strong> the current<br />

state, authors study the evolution <strong>of</strong> the mosaic, which was several times reconstructed and conserved. Firstly<br />

they tried to restore the historical photograph - remove noise , deblur the image, increase the contrast. Then,<br />

they remove the geometrical difference between images by means <strong>of</strong> the multi-modal registration using<br />

mutual in<strong>for</strong>mation. Finally, they identify mutual differences between the photos, which indicate the changes<br />

on the mosaic during the centuries.<br />

16.2.2 Arabo-moresque and Islamic <strong>Mosaic</strong> Pattern Classification<br />

Lot <strong>of</strong> attention has also been paid to islamic mosaics, <strong>of</strong> which artwork style is illustrated through Figure<br />

16.4(b). The particularities <strong>of</strong> such mosaics come from the periodicity and symmetry <strong>of</strong> tile patterns.<br />

A. Zarghili et al, [47, 48] propose a method to index an Arabo-Moresque decor database which is not<br />

based on symmetry. They use a supervised mosaicking technique to capture the whole principal geometric<br />

in<strong>for</strong>mation (connected set <strong>of</strong> polygonal shapes, called “spine”) <strong>of</strong> a pattern. The spine is then described<br />

by using Fourier shape descriptors [35] to allow retrieving <strong>of</strong> images even under translation, rotation and<br />

scale. But, according to [14], the method cannot be automatized and does not allow the classification <strong>of</strong> these<br />

patterns according to any criterion.<br />

In [21], the authors propose image processing techniques to restore mosaic patterns. Image analysis<br />

tools are developed to obtain in<strong>for</strong>mation about design patterns which are used to recover missing motifs or


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 459<br />

(a) (b)<br />

FIGURE 16.4<br />

(a) Photo <strong>of</strong> the “Last Judgement” mosaic in the St. Vitus cathedral (Prague, Czech Republic), from [4]. (b)<br />

Islamic mosaic (Meknes, Morocco).<br />

tesserae. One difficulty was to propose methods robust to the discrepancies between equal object shapes (due<br />

to manual artwork, oldness, etc.). The symmetry, once recovered, allows virtual reconstruction by inpainting<br />

methods and physical restoration <strong>of</strong> damaged parts <strong>of</strong> mosaics.<br />

To study Islamic geometrical patterns, and all periodic patterns such as those encountered in textile<br />

patterns [41] or wallpapers, several works are based on the symmetry group theory. In [14], authors first<br />

classify patterns into one <strong>of</strong> the three following categories: (i) pattern generated by translation along one<br />

dimension, (ii) patterns which contain translational symmetries in two independent directions (refers to the<br />

seventeen wallpaper groups), and (iii) “rosettes” that describes patterns which begin at a central point and<br />

grow radially outward. For every pattern, authors extract the symmetry group and the fundamental region (i.e.,<br />

a representative region in the image from which the whole image can be regenerated). Finally, they describe<br />

the fundamental region by a simple color histogram and build the feature vector which is a combination <strong>of</strong> the<br />

symmetry feature and histogram in<strong>for</strong>mation. Authors shows promising experiments <strong>for</strong> either classification<br />

or indexing.<br />

In [15], authors exploit symmetry and auto-similarity <strong>of</strong> motifs to design a system to index Arabo-<br />

Moresque mosaic images based on the fractal dimension. <strong>Mosaic</strong>s are first segmented automatically using<br />

color in<strong>for</strong>mation. The classification decomposes the initial motif into a set <strong>of</strong> basic shapes. Contours <strong>of</strong> those<br />

shapes are then characterized by their fractal dimension which gives, according to the authors, a relevant<br />

measure <strong>of</strong> the geometric structure <strong>of</strong> the tile pattern. Some retrieval per<strong>for</strong>mances are also reported.<br />

16.2.3 Roman <strong>Mosaic</strong>s Indexation<br />

Recently, two Content-Based Image Retrieval (CBIR) systems have been proposed to catalog and index<br />

Roman mosaic images.<br />

The first one, proposed in [32], details a complete CBIR system which include (i) object extraction from<br />

a complex mosaic scene by using unsupervised statistical segmentation and (ii) invariant description <strong>of</strong><br />

semantic objects using the analytical Fourier-Mellin trans<strong>for</strong>m [13, 20]. Similarity between querying mosaic<br />

and the database is based on an index constructed from the invariant descriptors and an appropriate metric<br />

(Euclidean and Hausdorff).


460 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

(a) (b)<br />

FIGURE 16.5<br />

Excerpt <strong>of</strong> an ancient mosaic showing a wild boar (a) and a zoom on its hind legs (b).<br />

The second CBIR [27, 28] is a general system to index and retrieve by the content historic document<br />

images. While the object annotation in database images is done manually and <strong>of</strong>f-line, the indexation is done<br />

automatically using an extended curvature scale space descriptor [33] suitable <strong>for</strong> concave and convex shapes.<br />

The query/retrieval <strong>of</strong> pertinent shapes from the database starts with a user drawing query (with a computer<br />

mouse or a pen) that is compared to entries in the database using a fuzzy similarity measure. The system<br />

integrates an XML Database con<strong>for</strong>m to the MPEG7 standard, and experiments on large databases providing<br />

by the National Library <strong>of</strong> Tunisia and some Tunisian museums are reported.<br />

One key-point <strong>for</strong> such systems to be effective is to improve semantic objects extraction. Pixel-based<br />

methods, as the one used in [32], require heavy post-processing to detect shapes <strong>of</strong> interest from pixels classe.<br />

Recently, a new viewpoint on mosaic images, based directly on tesserae, have been proposed [8]. Once tessera<br />

extraction is achieved, this strategy facilitates basic steps toward CBIR applications, as described in the<br />

following.<br />

16.3 Tesserae Extraction<br />

A “natural way” to describe mosaics is to consider tesserae in their own instead <strong>of</strong> groups <strong>of</strong> isolated pixels,<br />

allowing to develop tessera-oriented processing. Indeed, a mosaic image can be seen as an irregular lattice<br />

in which a node is a tessera (Figure 16.5). The grid structure has been superposed to the zoomed image in<br />

Figure 16.5(b) to illustrate the complexity <strong>of</strong> the neighborhood system, both in the number <strong>of</strong> neighbors and<br />

in their orientation. To adopt this point <strong>of</strong> view on mosaic images, a robust method is required to extract<br />

tesserae from the network <strong>of</strong> mortar surrounding them.<br />

A way to consider this problem is to deal with the dual problem (i.e., the extraction <strong>of</strong> the network <strong>of</strong><br />

mortar) which is close to recurrent problems encountered in several image processing applications (i.e., in<br />

medical imaging: vascular network segmentation from angiographies [12, 46], or in satellite imaging: road<br />

extraction in urban scenes [29, 30]).<br />

Several approaches have been proposed. Methods based on contour extraction are widely used and mainly


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 461<br />

FIGURE 16.6<br />

Processing chain involved in tessera extraction, using gray-scale morphology tools.<br />

rely on the assumption that the network pixels and neighboring ones have different gray levels in order to<br />

compute gradients. But methods based on high-pass filter, such as Harris’s corner detector, highlight pixels<br />

belonging to the network, not connected components. Higher-level processings detect lines with varying<br />

widths [18, 39]. Strategies that track the entire network from a starting point [7, 45] are difficult to justify in<br />

the mosaic image case due to the high number <strong>of</strong> interconnections in a mosaic network graph.<br />

Numerous methods based on Markov modeling [19,40] or active contours [36,42] have also been proposed.<br />

These methods are quite efficient but time consuming. In the case <strong>of</strong> mosaics, these methods are not suited<br />

because <strong>of</strong> the high density <strong>of</strong> the network to be extracted in images. In [19], a Markov model is applied<br />

on a graph <strong>of</strong> adjacency crests, detected by a Watershed Trans<strong>for</strong>mation applied on a criterion image. This<br />

criterion image, computed from the original one, exhibits the potential <strong>of</strong> each pixel to belong to the network.<br />

A study <strong>of</strong> tessera extraction has been conducted in [8]. The solution adopted, and preferred over other<br />

experimented strategies, is based on gray-level morphology which is suited to the tiling organisation <strong>of</strong><br />

mosaics. The Watershed Trans<strong>for</strong>mation (WT) approach [31] appeared interesting <strong>for</strong> mosaic images since<br />

this method is a good compromise between low-level methods (contour detection) and approaches by energy<br />

minimization (Markov model or active contours). But to work well, the WT needs to be computed on a<br />

criterion image (processed from the original one) that shows tesserae as catchment basins and the mortar<br />

network as watershed crests.<br />

The entire algorithm is sketched in Figure 16.6. The goal is to present to the WT a potential image that<br />

exhibits tesserae as catchment basins and the network as a crest crossing the entire image. The pre-processings<br />

are: (i) Contrast enhancement, based on top-hat and bottom-hat trans<strong>for</strong>ms; (ii) Potential criterion computation<br />

to exhibit the network as a crest; and (iii) Area closing [43] to reduce over-detection by WT.<br />

The extraction quality highly depends on the way mosaic images have been acquired. It should be taken<br />

not too far from the mosaic since individual tiles will not be visible: according to experiments, tesserae should<br />

appear with a resolution <strong>of</strong> not less than 10 × 10 pixels. Parameter h is a threshold used by the area closing


462 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

FIGURE 16.7<br />

Criterion image obtained from Figure 16.5. This processing improves the contrat between tessera and the<br />

network <strong>of</strong> mortar.<br />

operator [43]. Its value has an impact on the number <strong>of</strong> extracted tiles: a small value gives an over-detection<br />

whereas a big one produces an under-detection one. Hence, it should be (roughly) adjusted according to the<br />

mean size α <strong>of</strong> tesserae in the image (in number <strong>of</strong> pixels), assuming that α almost constant in a mosaic.<br />

Parameter h should be less than α 2 to avoid small tesserae to be deleted by the morphological operator. In<br />

experiments, value h = α 2 /2 gives good results.<br />

Figure 16.7 shows the criterion image obtained by applying the method to the wild boar image. As can be<br />

seen in this example, the network appears in dark. However tesserae are not uni<strong>for</strong>m in texture and show local<br />

gray-level crests that should be deleted be<strong>for</strong>e WT in order to avoid over-segmentation. Following [19], an<br />

area closing [43] in first computed on the criterion image. This processing gives fewer minima while retaining<br />

crest locations as illustrated in Figure 16.8. The crest contours now represent correctly the network, which is<br />

confirmed by the zoom in Figure 16.9(a). To determine the width <strong>of</strong> the network (and not only a one-pixel<br />

skeleton as done by WT), which varies through the image, a simple threshold is applied on neighboring pixels<br />

<strong>of</strong> crests: a pixel is aggregated to the crest if its gray value is no more different by 10% <strong>of</strong> the skeleton mean<br />

gray value. The result <strong>of</strong> applying such a threshold can be observed in Figure 16.9(b).<br />

A second example <strong>of</strong> tessera extraction based on gray-level morphological processing in given in Figure<br />

16.10.<br />

16.4 Tessera-based Segmentation and Coding<br />

This Section describes two simple and direct applications <strong>of</strong> the tessera-oriented representation <strong>of</strong> ancient<br />

mosaic images: segmentation and coding. Especially, these applications preserve the irregularity <strong>of</strong> tiles shape<br />

and so the mosaic effect perception. From now, we assume that all tesserae in a mosaic image have been<br />

extracted successfully (i.e., one can access the coordinates <strong>of</strong> every pixel belonging to the contour <strong>of</strong> each tile<br />

in the mosaic). Each pixel that does not belong to a tessera is assumed to be a background pixel (i.e., a mortar<br />

network pixel).


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 463<br />

(a) (b)<br />

FIGURE 16.8<br />

Extraction <strong>of</strong> tesserae from the criterion image in Figure 16.7, without (a) and with (b) area closing operator.<br />

(a) (b)<br />

FIGURE 16.9<br />

Result <strong>of</strong> tessera extraction on the zoom in Figure 16.5(a) in (a), and network/tesserae classification in (b).


464 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

(a) (b)<br />

FIGURE 16.10<br />

Illustration <strong>of</strong> the tessera extraction algorithm on the mosaic image <strong>of</strong> a Deer.<br />

16.4.1 Segmentation <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong><br />

Instead <strong>of</strong> using all pixels from the tesserae, and since tesserae are almost homogeneous in color, classification<br />

can be per<strong>for</strong>med directly on tesserae, not on pixels, by using some dedicated features. Tesserae can be<br />

characterized by several features, among them the mean and variance <strong>of</strong> gray-level values. Also one can take<br />

into account the number <strong>of</strong> pixels in the tessera, using a multi-features classification. All pixels belonging to<br />

the mortar network are directly associated to a unique class (they do not participate to the classification). The<br />

class color corresponds to the mean color <strong>of</strong> the mortar pixels.<br />

In Figure 16.11, a simple K-means algorithm based on the mean gray-level value <strong>of</strong> tesserae was sufficient<br />

to get an interesting segmentation. From a semantic point <strong>of</strong> view, this segmentation outper<strong>for</strong>ms the result<br />

obtained by a classical pixel-based K-means strategy. A second example that confirms such interesting<br />

behavior is provided in Figure 16.12. Once again, the segmentation quality depends on the robustness <strong>of</strong><br />

tessera extraction.<br />

16.4.2 Tessera-based Coding and Lossy Compression<br />

Another direct application <strong>of</strong> the WT tessera labeling is to develop a compact and efficient coding representation<br />

<strong>of</strong> ancient mosaic images [9]. This kind <strong>of</strong> module can be useful <strong>for</strong> rapid thumbnails transmission in<br />

case <strong>of</strong> distant catalog browsing application. The compression proposed is lossy but preserves the specificities<br />

<strong>of</strong> mosaic images, especially the irregularity <strong>of</strong> tesserae shape. In a way, the strategy described below is better<br />

suited to ancient mosaic images than a general purpose lossy compression algorithm, such asjpeg which is<br />

based on square-blocks.<br />

We still consider that all tesserae in a mosaic have been extracted successfully (i.e., we can access the<br />

coordinates <strong>of</strong> every pixel belonging to the contour <strong>of</strong> each tile in the mosaic). The network can be seen as<br />

the mosaic image background (i.e., each pixel that does not belong to a tessera is assumed to be a background<br />

pixel). Let I be a mosaic image with dimensions L × C, made <strong>of</strong> N colored tiles. The tessera-based<br />

lossy-compression specificity has been designed in order to take into account the two following observations:<br />

• A tile n, n ∈ [1, N], is usually <strong>for</strong>med in the shape <strong>of</strong> a cube <strong>of</strong> material, mostly with uni<strong>for</strong>m color.


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 465<br />

(a) Pixel-based K-means segmentation (b) Tile-based K-means segmentation<br />

FIGURE 16.11<br />

Segmentation comparison <strong>of</strong> the mosaic image in Figure 16.5(a) with a pixel-based strategy (a) and the<br />

tessera-based strategy presented in Section 16.3 (b). Both pixel- and tile-based segmentations make use <strong>of</strong> an<br />

unsupervised K-means classification algorithm, the first one with 3 classes, and the second one only with 2<br />

classes since the mortar is already extracted.<br />

Hence a vector <strong>of</strong> three intensity colors (Rn, Gn, Bn) is enough to describe the color <strong>of</strong> tessera n. This<br />

color can be easily estimated by computing the mean intensity <strong>of</strong> pixels belonging to the tessera.<br />

• The mortar intensity, mainly middle gray, is not uni<strong>for</strong>m throughout the image because <strong>of</strong> shadows due to<br />

non-flat mosaic surfaces and snapshot acquisition angle. However, the network intensity should appear<br />

the same everywhere in the image. Hence, all pixels belonging to the mortar network is coded by the<br />

same color vector (Rb, Gb, Bb), b stands <strong>for</strong> background. This value can be estimated by computing<br />

the mean intensity <strong>of</strong> network.<br />

Coding file structure<br />

Thecms (“Compressed MoSaic”) <strong>for</strong>mat is structured as follows (see Figure 16.13) :<br />

• Header: The header is made <strong>of</strong><br />

1. The original image size in pixels (2 × 2 bytes).<br />

2. The number N <strong>of</strong> tesserae in the image (2 bytes).<br />

3. The mean color values (Rb, Gb, Bb) <strong>of</strong> the network (3 bytes).<br />

Hence, nine bytes are necessary to code the header. Other in<strong>for</strong>mation such as the name <strong>of</strong> the original<br />

image or a comment can be added.<br />

• Body: each tessera n has the following code structure<br />

1. Tessera header contains the number <strong>of</strong> pixels Nn <strong>of</strong> the contour (1 byte), and the mean color values<br />

(Rn, Gn, Bn) <strong>of</strong> the tessera (3 bytes).


466 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

(a) (b) (c)<br />

FIGURE 16.12<br />

K-means segmentation <strong>of</strong> a mosaic representing a bird (a) with the pixel-based (b) and the tile-based (c)<br />

strategies.<br />

FIGURE 16.13<br />

Sketch <strong>of</strong> thecms file <strong>for</strong>mat to compress images <strong>of</strong> ancient mosaics (without Huffman coding).<br />

2. Tessera body codes the closed-contour using the coordinates (l1,c1) <strong>of</strong> the first pixel (4 bytes) and<br />

Freeman chain code (or whatever code) <strong>for</strong> the subsequent Nn − 1 pixels. If no Huffman coding<br />

technic is applied, only 3 bits per contour pixels are necessary.<br />

(Nn−1) 3<br />

Counting the number <strong>of</strong> bytes necessary to code a tessera n gives: 8 + rounded to the ceil<br />

8<br />

value. The last byte is filled in to start the next tessera coding on a new byte. Hence, 21 bytes are needed<br />

to code a tessera with Nn = 34.<br />

<strong>Mosaic</strong> image reconstruction from the compressed file is done by reconstructing the image background<br />

using the network color intensity, on which each tessera with its own color is superposed. The order tesserae<br />

are saved or read in the body <strong>of</strong> thecms file has no influence on the reconstruction quality, but can be changed<br />

<strong>for</strong> a desired application. For example, one can think organizing tesserae by grouping tiles in the file according<br />

to the semantic object they belong to (e.g., human, animal, etc.). Hence reconstruction will progressively show<br />

the different objects present in the mosaic scene. Tesserae dedicated to the background, mainly <strong>of</strong> uni<strong>for</strong>m<br />

color as illustrated in Figures 16.5(a), 16.10(a) and 16.12(a), can be saved at the end <strong>of</strong> the file since their<br />

semantic meaning is, in general, less interesting than the one from objects tesserae. Specific organization<br />

<strong>of</strong> tesserae within the file can also be <strong>of</strong> interest <strong>for</strong> mosaic database indexing and text- or content-based<br />

retrieval, see Section 16.6. Hence, we get a compact and easy-to-handle lossy-compressed representation <strong>of</strong><br />

mosaic image. The compression <strong>of</strong> a mosaic image and its reconstruction from acms file are summed up in<br />

Algorithms 1 and 2.<br />

Experimental results<br />

To evaluate the compression algorithm, we process on the Deer mosaic image in Figure 16.10(a). The<br />

decoding result is shown in Figure 16.14 and must to be compared with the original image. Pixels attributed


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 467<br />

Algorithm 1cms <strong>for</strong>mat coding.<br />

Require: <strong>Mosaic</strong> image I.<br />

Ensure: Tessera-oriented coding <strong>of</strong> I in filef.<br />

Tessera extraction (cf. Section 16.3).<br />

<strong>for</strong> n = 1, . . . , N do<br />

Write the number <strong>of</strong> contour pixels Nn ←f.<br />

Write the mean color value Vn ←f.<br />

Write the first contour pixel coordinates ln, cn ←f.<br />

<strong>for</strong> i = 2, . . . , Nn do<br />

Compute chain code direction <strong>for</strong> pixel i.<br />

Write direction ←f.<br />

end <strong>for</strong><br />

end <strong>for</strong><br />

Algorithm 2cms <strong>for</strong>mat decoding.<br />

Require: Compressed filef.<br />

Ensure: Tessera-oriented decoding <strong>of</strong> filefinto image I.<br />

Read file header → L, C, N, Rb, Gb, Bb.<br />

Create an image I with dimensions L × C and background color (Rb, Gb, Bb).<br />

<strong>for</strong> n = 1, . . . , N do<br />

Read tessera header → Nn, Rn, Gn, Bn, ln, cn.<br />

Set pixel (ln, cn) with color (Rn, Gn, Bn).<br />

<strong>for</strong> i = 2, . . . , Nn do<br />

Compute coordinates (li, ci).<br />

Set pixel (li, ci) with color (Rn, Gn, Bn).<br />

end <strong>for</strong><br />

Fill in the closed contour with color (Rn, Gn, Bn).<br />

end <strong>for</strong><br />

FIGURE 16.14<br />

Result <strong>of</strong> coding/decoding <strong>of</strong> the Deer image in Figure 16.10(a).


468 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

to the network represent 27.5% <strong>of</strong> the total number <strong>of</strong> pixels in the image (255 × 394). The number <strong>of</strong><br />

tesserae detected is 314. The image produces a cms file size <strong>of</strong> 8766 bytes, which gives a compression<br />

factor <strong>of</strong> about 11.5 with respect to a raw coding <strong>of</strong> pixels (e.g.,ppm file <strong>for</strong>mat). The compression ratio<br />

depends on the mean tessera size in the mosaic image. The bigger the tiles, the higher the compression ratio<br />

is expected to be.<br />

From a qualitative point <strong>of</strong> view, some remarks can be pointed out. As expected the shape <strong>of</strong> the network<br />

and tesserae is kept very similar to the original ones. The mean colors used to describe network and tesserae<br />

intensities makes the decoded image appears pastel with respect to the original one, since artifacts such as<br />

shadow or dirties are cleaned. Nevertheless the global aspect <strong>of</strong> the mosaic is respected and <strong>of</strong> sufficient<br />

quality to understand the scene content. Lacunas and missing patches are not taken into account by the actual<br />

algorithm. It considers holes as tesserae but should better associate them to the mortar network since we<br />

observe the preparatory layer mortar appears behind. One solution is to fuse the network with tesserae that<br />

show mean color close to the mean network color.<br />

16.5 Guidelines Estimation <strong>for</strong> <strong>Mosaic</strong> Structure Retrieval<br />

<strong>Ancient</strong> mosaicists avoided to align their tiles according to rectangular grids. Indeed, such grids emphasize<br />

only horizontal and vertical lines and may distract the observer from seeing the overall picture. Hence, they<br />

placed tiles in order to emphasis the strong edges <strong>of</strong> the subject to be represented, influencing the overall<br />

perception <strong>of</strong> the mosaic [5]. Hence, organization and positioning <strong>of</strong> tesserae are interesting in<strong>for</strong>mation <strong>for</strong><br />

experts since they emphasize the main directional guidelines chosen by the artist (characteristic <strong>of</strong> the style).<br />

This in<strong>for</strong>mation is <strong>of</strong> crucial interest <strong>for</strong> mosaic dedicated applications such as content-based retrieval <strong>of</strong><br />

semantic elements or region-based mosaic image coding.<br />

To get directional guidelines, one can first think using the principal axes <strong>of</strong> an ellipse-equivalent shape <strong>of</strong><br />

each tessera, using well-known <strong>for</strong>mulae based on geometrical moments (minor and majors axes). However,<br />

ancient mosaic tesserae are not box- neither regular-shaped and principal axes quickly appear not enough<br />

robust. One major drawback <strong>of</strong> such method is that it does not take into account in<strong>for</strong>mation <strong>of</strong> neighboring<br />

tesserae, which is <strong>of</strong> great importance <strong>for</strong> regularization and <strong>for</strong> recovering the main guidelines that emphasize<br />

the “general flow” <strong>of</strong> a mosaic.<br />

Hence, an energy-based contextual algorithm <strong>for</strong> retrieving main directional guidelines in a mosaic has<br />

been proposed [8]. The energy to be minimized is constructed by using two key-features: the mean-gray value<br />

and borders directions <strong>of</strong> each tessera. The optimization is done either by gradient descent or by simulated<br />

annealing.<br />

Methodology<br />

Each tessera n is represented by<br />

• Its barycenter (xn, yn) computed on the support Ωn <strong>of</strong> n.<br />

• The list <strong>of</strong> its neighboring tesserae: Vn = {vn,1, . . . , vn,Tn}. A neighbor is a tessera that shares at<br />

least one pixel <strong>of</strong> mortar network with n.<br />

It should be noted that the number <strong>of</strong> neighbors Tn is different from one tile to the other since tesserae are not<br />

organized according to a regular grid. Each tessera n is characterized by an energy <strong>of</strong> configuration which<br />

links itself to each <strong>of</strong> its neighbor vn,t ∈ Vn. This energy, denoted by En,t with t ∈ [1, . . . , Tn], is the<br />

sum <strong>of</strong> two complementary terms:


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 469<br />

FIGURE 16.15<br />

Plot <strong>of</strong> the regularized and normalized histogram <strong>of</strong> the contour orientation <strong>of</strong> one tile from the boar mosaic<br />

image in Figure 16.5(a).<br />

• The first term Q is based on the mean-gray value <strong>of</strong> tesserae. It is proportional to the sum <strong>of</strong> the difference<br />

<strong>of</strong> gray-level means (1) between n and vn,t, and (2) between n and the symmetrical tessera <strong>of</strong> vn,t with<br />

respect to n. This feature favors alinement <strong>of</strong> tesserae with low contrast, which is a characteristic <strong>of</strong><br />

directional guidelines.<br />

• The second term R is based on the orientation <strong>of</strong> tessera contours. We compute the histogram <strong>of</strong> the<br />

orientation <strong>of</strong> segments constituting the contour <strong>of</strong> tessera n. This histogram is regularized using a<br />

Gaussian kernel, result <strong>of</strong> which is illustrated in Figure 16.15. It should be noted that the two modes <strong>of</strong><br />

the histogram, at approximatively 90 0 each other, correspond to the two ambiguous orthogonal main<br />

directions <strong>of</strong> a square-shaped tile. It is then possible to estimate the p.d.f. at angle αn,t given by the<br />

barycenter <strong>of</strong> n and the one <strong>of</strong> vn,t.<br />

Terms Q and R are normalized to belong to range [0, 1]. We can then initialize the “main direction” <strong>of</strong> a tile<br />

(i.e., the direction <strong>of</strong> the neighboring tessera which gives the highest Q + R value):<br />

tn,max = arg max<br />

t∈[1,...,Tn] En,t<br />

(16.1)<br />

The energy <strong>of</strong> a tessera is then defined as Cn = (2 − En,tn,max) + λ Vn, with λ a weighting factor<br />

set manually. Term Vn is defined as<br />

Vn = 1<br />

Tn<br />

Tn� �<br />

t=1<br />

� αn,tn,max<br />

�<br />

− � αt,tt,max<br />

(16.2)<br />

which is the normalized sum <strong>of</strong> absolute difference between the main direction <strong>of</strong> tile n and the main direction<br />

<strong>of</strong> its neighbor t.<br />

The next step to to minimize the mosaic energy, defined as the sum <strong>of</strong> Cn <strong>for</strong> all tesserae in the mosaic.<br />

This is done by selecting the tessera n which gives the highest value <strong>for</strong> Vn. To reduce the contribution <strong>of</strong><br />

this tessera, we try another main direction and recompute the mosaic energy. At that point, two strategies<br />

have been tested:


470 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

• Deterministic framework (Gradient Descent): if the mosaic energy reduces then the new main direction is<br />

validated, otherwise another main direction is tested. When all directions <strong>for</strong> this tile have been tested, we<br />

repeat the process <strong>for</strong> the next tile with high Vn value.<br />

• Stochastic framework (Simulated Annealing): a configuration which gives a higher mosaic energy can<br />

be validated according to the simulated annealing principle [24]. This strategy allows to search <strong>for</strong> the<br />

global minimum, which can not be reached with previous strategy since the mosaic energy function is not<br />

convex.<br />

The process is iterated until the mosaic energy is almost constant. The cartography <strong>of</strong> tessera orientation is<br />

made <strong>of</strong> the main direction <strong>of</strong> each tile at the last iteration.<br />

Figure 16.16 illustrates the application <strong>of</strong> the tessera orientation methodology on the detail <strong>of</strong> the boar<br />

image in Figure 16.5(a). From the initial configuration <strong>of</strong> tesserae (a) we get the final configuration (b) using<br />

Simulated Annealing (SA) <strong>for</strong> optimization. Figure 16.16(c) shows the evolution <strong>of</strong> the computed energy<br />

during iterations <strong>of</strong> both gradient descent (GD) algorithm and simulated annealing one. As expected, SA<br />

reaches a lower minimum than GD but to the detriment <strong>of</strong> numerous additional iterations (approximately 150<br />

<strong>for</strong> SA versus 50 <strong>for</strong> GD). Indeed, GD searches <strong>for</strong> a local minimum and is highly dependent on the initial<br />

configuration, whereas SA is expected to reach the global minimum due to its stochastic nature.<br />

The tessera cartography obtained with SA optimization is really satisfying when visually compared to the<br />

main directional guidelines <strong>of</strong> the mosaic. This is especially true <strong>for</strong> regions at the borders between classes.<br />

A second example <strong>of</strong> cartography is proposed in Figure 16.17, after both simulated annealing and gradient<br />

descent optimizations. Results are very similar except <strong>for</strong> some guidelines where SA gives a better result.<br />

Once again, the tessera orientation estimation methodology, which makes use <strong>of</strong> contextual in<strong>for</strong>mation, gives<br />

regularized results that emphasize the mosaic guidelines. Nevertheless, confusions can be found on areas<br />

with homogeneous colors and where tesserae are square-like shaped. Indeed, <strong>for</strong> those kinds <strong>of</strong> tesserae two<br />

orthogonal directions are equally probable, which generally gives ambiguous results. However, these areas <strong>of</strong><br />

uni<strong>for</strong>m color are <strong>of</strong> limited interest <strong>for</strong> object-based scene applications, such as mosaic pattern recognition.<br />

Finally, Figure 16.18 shows a failure case in tessera orientation estimation. Indeed, the result will not allow<br />

to find the main directional guidelines in the mosaic, that can be more easily observed in Figure 16.12(a). The<br />

main reason comes from an over-detection <strong>of</strong> tesserae from the extraction step. This behavior is observed on<br />

mosaics built with tesserae <strong>of</strong> different sizes (e.g. large tesserae <strong>for</strong> the background and small ones <strong>for</strong> objects<br />

or details). Hence the shape <strong>of</strong> extracted tiles does not correspond to the shape <strong>of</strong> tesserae and the orientation<br />

is corrupted, showing no particular guideline in the mosaic.<br />

16.6 Open Issues and Research Directions in <strong>Mosaic</strong> Image <strong>Analysis</strong><br />

In this Chapter, an overview <strong>of</strong> image processing methods <strong>for</strong> images <strong>of</strong> ancient mosaics has been proposed.<br />

The analysis <strong>of</strong> such images is a difficult task due to many reasons, among them the irregularity <strong>of</strong> shapes, the<br />

particular organization <strong>of</strong> tesserae and the degradation <strong>of</strong> tiles due to their oldness. Also, the way snapshot<br />

acquisition is per<strong>for</strong>med has a crucial impact on the subsequent processings.<br />

A few works only are reported in the literature regarding the numerous problems that experts (museum<br />

curators, archeologists, art historians, etc.) face about possibly virtual restoration/lifting, conservation and<br />

cataloging <strong>of</strong> ancient mosaics. Each artwork style and period requires the development <strong>of</strong> dedicated processing<br />

methods to take into account a priori in<strong>for</strong>mation <strong>of</strong> materials, shape, color, etc. An interesting point <strong>of</strong> view


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 471<br />

(a) Configuration at initialization (b) Configuration after SA<br />

(c) Energy evolution <strong>for</strong> GD and SA<br />

FIGURE 16.16<br />

Cartography <strong>of</strong> tesserae orientation. Each tessera is characterized by its center <strong>of</strong> mass (circle) and its<br />

orientation (segment crossing the circle).


472 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

(a) Configuration after SA (b) Configuration after GD<br />

FIGURE 16.17<br />

Another example <strong>of</strong> tesserae orientation cartography with (a) simulated annealing optimization and (b)<br />

gradient descent optimization.<br />

FIGURE 16.18<br />

Result <strong>of</strong> guidelines detection <strong>for</strong> the “bird” mosaic in Figure 16.12(a).


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 473<br />

FIGURE 16.19<br />

Example <strong>of</strong> querying a distant mosaic catalog by keyword.<br />

on the problem is to consider, within the processings, that a mosaic is a collection <strong>of</strong> tiles and not only a series<br />

<strong>of</strong> image pixels. If this tessera-oriented strategy seems suited in numerous cases, improvement regarding the<br />

robustness <strong>of</strong> tesserae extraction are still required, especially when mosaic tiles show a large difference in<br />

size and a high level <strong>of</strong> degradation.<br />

The algorithms described within Sections 16.3 to 16.5 are only a few basic, but crucial, steps toward<br />

complete applications expected by experts such as (i) ancient mosaic restoration with virtual “inpainting”<br />

tools taking into account main guidelines and tesserae shapes, and (ii) multi-site and distant catalog browsing<br />

with “intelligent” retrieval capabilities <strong>of</strong> semantic objects. A simplehtml interface has been designed to<br />

illustrate the possible use <strong>of</strong> basic modules <strong>for</strong> browsing, in situ, a distant database <strong>of</strong> Roman-style mosaics. A<br />

simple query using textual keywords like “human”, “face” or “animal” allows to visualize the corresponding<br />

mosaics in a distant database. Figure 16.19 shows an example <strong>of</strong> this application with the word “bird” as<br />

query. Of course, one goal <strong>of</strong> the project is to replace keywords by self-content indexing using semantic<br />

objects extraction and characterization, based on segmentation, main guidelines estimation and connected<br />

components labeling algorithms [22]. The mosaic coding strategy exposed above can be used to construct a<br />

tile-oriented CBIR application. If the CBIR can work directly on the coded stream (without reconstruction),<br />

one can expect to reduce drastically the RAM and/or hard disk memory requirements.<br />

The problem <strong>of</strong> quality <strong>of</strong> processings <strong>for</strong> segmentation and lossy coding has not been addressed in this<br />

Chapter. Particular attention should be paid to this issue in order to quantify the effectiveness <strong>of</strong> the approach.<br />

To that goal, specific quality metrics <strong>for</strong> tesserae shape and color have to be defined with experts and evaluated<br />

against image resolution. Cumulative error impact should then be analyzed along the complete processing<br />

chain to evaluate the level <strong>of</strong> accuracy <strong>for</strong> the targeted application. Note that fully automatic tools are not<br />

always required and applications piloted by users can be <strong>of</strong> interest.<br />

An interesting open issue is the construction <strong>of</strong> an invariant representation <strong>of</strong> semantic mosaic objects<br />

which is robust to the tiling organisation <strong>of</strong> shapes. Such a module will help CBIR systems to retrieve mosaic


474 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

objects independently <strong>of</strong> their orientation, pose and size in the scenes. <strong>Dedicated</strong> registration algorithms<br />

to reconstruct a complete mosaic scene from a set <strong>of</strong> sub-images can also be <strong>of</strong> interest in case <strong>of</strong> in situ<br />

acquisition <strong>of</strong> a large mosaic <strong>for</strong> example.<br />

Finally, one very promising research direction is to develop new image processing methods to automatically<br />

learn ancient mosaicists’ way <strong>of</strong> working and style (e.g., tessera color and size, organisation, guidelines,<br />

etc.). These tools could first be used to virtually fill in missing patches or restore deteriorated patches in<br />

a mosaic scene, using tessera-dedicated inpainting methods. They could also be exploited <strong>for</strong> emulating a<br />

mosaic artwork style from a raster input image using computer-aided algorithms, cf. [6] <strong>for</strong> an overview <strong>of</strong><br />

digital mosaic creation.<br />

Bibliography<br />

[1] http://www.americanmosaics.org/, Last visit on Apr. 2010. The Society <strong>of</strong> American <strong>Mosaic</strong> Artists.<br />

[2] http://www.bamm.org.uk/, Last visit on Apr. 2010. The British Association <strong>for</strong> Modern <strong>Mosaic</strong>.<br />

[3] http://www.getty.edu/conservation/, Last visit on Apr. 2010. The Getty Conservation <strong>Institut</strong>e.<br />

[4] http://zoi.utia.cas.cz/mosaic.html, Last visit on Apr. 2010. <strong>Institut</strong>e <strong>of</strong> In<strong>for</strong>mation Theory and Automation,<br />

Academy <strong>of</strong> Sciences <strong>of</strong> the Czech Republic.<br />

[5] S. Battiato, G. Di Blasi, G. M. Farinella, and G. Gallo. A novel technique <strong>for</strong> Opus Vermiculatum<br />

mosaic rendering. In Proc. <strong>of</strong> the 14th Int. Conf. on Computer Graphics, Visualization and Computer<br />

Vision (WSCG’06), Plzen, Czech Republic, 2006.<br />

[6] S. Battiato, G. Di Blasi, G. M. Farinella, and G. Gallo. Digital mosaic frameworks: an overview.<br />

Computer Graphic Forum, 26(4):794–812, December 2007.<br />

[7] A. Baumgartner, S. Hinz, and C. Wiedemann. Efficient methods and interfaces <strong>for</strong> road tracking. In<br />

Photogrammetric Computer Vision (PCV’02), page B:28, Graz, Austria, 2002.<br />

[8] L. Benyoussef and S. Derrode. Tessella-oriented segmentation and guideline estimation <strong>of</strong> ancient<br />

mosaic images. J. <strong>of</strong> Electronic Imaging, 17(4), 2008.<br />

[9] L. Benyoussef and S. Derrode. Représentation orientée tesselle d’images de mosaiques anciennes. In<br />

GRETSI’09, Dijon, France, 8-11 September 2009.<br />

[10] Cristina Boschettia, Cristina Leonellib, Michele Macchiarolac, Paolo Veronesiband Anna Corradib, and<br />

Cinzia Sada. Early evidences <strong>of</strong> vitreous materials in Roman mosaics from Italy: An archaeological and<br />

archaeometric integrated study. Journal <strong>of</strong> Cultural Heritage, 9(sup. 1):e21–e26, 2008.<br />

[11] P. Bruneau. La mosaïque antique. Presses de l’université de Paris-Sorbonne, 1987.<br />

[12] A. C. S. Chung. Image segmentation methods <strong>for</strong> detecting blood vessels in angiography. In IEEE Int.<br />

Conf. on Automation, Robotics and Computer Vision (ICARCV’06), pages 1–6, Singapore, 2006.


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 475<br />

[13] S. Derrode and F. Ghorbel. Robust and efficient Fourier-Mellin trans<strong>for</strong>m approximations <strong>for</strong> invariant<br />

grey-level image description and reconstruction. Computer Vision and Image Understanding, 83(1):57–<br />

78, 2001.<br />

[14] M. O. Djibril and R. O. H. Thami. Islamic geometrical patterns indexing and classification using discrete<br />

symmetry groups. Journal on Computing and Cultural Heritage, 1(2):1–14, 2008.<br />

[15] M. O. Djibril, R. O. H. Thami, R. Benslimane, and M. Daoudi. Une nouvelle technique pour l’indexation<br />

des arabesques basée sur la dimension fractale. In Compression et Représentation des Signaux Audiovisuels<br />

(CORESA’05), Rennes, France, 2005.<br />

[16] K. M. D. Dunbain. <strong>Mosaic</strong>s <strong>of</strong> the Greek and Roman world. Cambridge University Press, 1999.<br />

[17] Cesare Fiori, Mariangela Vandini, Silvia Prati, and Giuseppe Chiavari. Vaterite in the mortars <strong>of</strong> a<br />

mosaic in the Saint Peter basilica, Vatican (Rome). Journal <strong>of</strong> Cultural Heritage, 10(2):248–257, 2009.<br />

[18] M. A. Fischler, J. M. Tenenbaum, and H. C. Wolf. Detection <strong>of</strong> road and linear structures in low<br />

resolution aerial images using multi-source knowledge integration techniques. Computer Graphics and<br />

Image Processing, 15(3):201–223, 1981.<br />

[19] T. Géraud and J. B. Mouret. Fast road network extraction in satellite images using mathematical<br />

morphology and Markov random fields. EURASIP Journal on Applied Signal Processing, 2004(16):2503–<br />

2514, 2004.<br />

[20] F. Ghorbel. A complete invariant description <strong>for</strong> gray-level images by the harmonic analysis approach.<br />

Pattern Recognition Letters, 15:1043–1051, 1994.<br />

[21] F. A. Gil, J. M. Gomis, and M. Pérez. Reconstruction techniques <strong>for</strong> image analysis <strong>of</strong> ancient islamic<br />

mosaics. Int. Journal <strong>of</strong> Virtual Reality, 8(3):5–12, 2009.<br />

[22] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison-Wesley Publishing Company,<br />

1992.<br />

[23] R. Kadobayashi, N. Kochi, H. Otani, and R. Furukawa. Comparison and evaluation <strong>of</strong> laser scanning<br />

and photogrammetry and their combined use <strong>for</strong> digital recording <strong>of</strong> Cultural Heritage. In Proc. <strong>of</strong> the<br />

ISPRS Congress, Istanbul, Turkey, 2004.<br />

[24] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, New<br />

Series, 220(4598):671–680, May 1983.<br />

[25] P. Kratochvil. Greek mosaic from paphos, cyprus, Last visit on Apr. 2010.<br />

http://www.publicdomainpictures.net/view-image.php?image=4512&picture=mosaiquesgrecques&large=1.<br />

[26] R.J. Ling. <strong>Ancient</strong> <strong>Mosaic</strong>s. British Musuem, 1998.<br />

[27] W. Maghrebi, L. Baccour, M. A. Khabou, and A. M. Alimi. An indexing and retrieval system <strong>of</strong> historic<br />

art images based on fuzzy shape similarity. In 6th Mexican Int. Conf. on Artificial Intelligence (MICAI<br />

2007), pages 623–633, Aguascalientes, Mexico, 2007.


476 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

[28] Wafa Maghrebi, Anis Borchani, Mohamed A. Khabou, and Adel M. Alimi. A system <strong>for</strong> historic<br />

document image indexing and retrieval based on XML database con<strong>for</strong>ming to MPEG7 standard. In 7th<br />

Int. Workshop on Graphics Recognition. Recent Advances and New Opportunities (GREC’07), pages<br />

114–125, Curitiba, Brazil, 2007.<br />

[29] H. Mayer, S. Hinz, U. Bacher, and E. Baltsavias. A test <strong>of</strong> automatic road extraction approaches. In<br />

Photogrammetric Computer Vision (PCV’06), Bonn, Germany, 2006.<br />

[30] J. B. Mena and J. A. Malpica. An automatic method <strong>for</strong> road extraction in rural and semi-urban areas<br />

starting from high resolution satellite imagery. Pattern Recognition Letters, 26(9):1201–1220, July<br />

2005.<br />

[31] F. Meyer and S. Beucher. The Morphological Approach <strong>of</strong> Segmentation: the Watershed Trans<strong>for</strong>mation,<br />

chapter Mathematical Morphology in Image Processing, Dougherty E. Editor. Marcel Dekker, New<br />

York, 1992.<br />

[32] M. M’hedhbi, R. Mezhoud, S. M’hiri, and F. Ghorbel. A new content-based image indexing and retrieval<br />

system <strong>of</strong> mosaic images. In 3rd Int. Conf. on In<strong>for</strong>mation and Communication Technologies: from<br />

Theroy to Applications (ICT-TA’06), pages 1715–1719, Damascus, Syria, 24-28 April 2006.<br />

[33] F. Mokhtarian and A. Mackworth. A theory <strong>of</strong> multiscale, curvature-based shape representation <strong>for</strong><br />

planar curves. IEEE Trans. on Pattern <strong>Analysis</strong> and Machine Intelligence, 14(8):789–805, 1992.<br />

[34] noname. <strong>Mosaic</strong>s In Situ project - illustrated glossary. Technical report [3], The Getty Conservation<br />

<strong>Institut</strong>e and the Israel Antiquities Authority, 2003.<br />

[35] Eric Persoon and K.-S. Fu. Shape discrimination using Fourier descriptors. IEEE trans. On Systems,<br />

Man and Cybernetics, 7(3):170–179, 1977.<br />

[36] M. Rochery, I. H. Jermyn, and J. Zerubia. Higher order active contours. Int. J. <strong>of</strong> Computer Vision,<br />

69(1):27–42, August 2006.<br />

[37] G. Salemi, V. Achilli, M. Ferrarese, and G. Boatto. High resolution morphometric reconstruction <strong>of</strong><br />

multimaterial tiles <strong>of</strong> an ancient mosaic. In Proc. <strong>of</strong> the ISPRS Congress, page B5: 303 ff, Beijing,<br />

China, 2008.<br />

[38] Carlo Stefano Salerno, Cesare Moretti, Teresa Medici, Teresa Morna, and Marco Verità. Glass weathering<br />

in 18 th century mosaics: The São João Chapel in the São Roque Church in Lisbon. Journal <strong>of</strong> Cultural<br />

Heritage, 9(sup. 1):e37–e40, 2008.<br />

[39] C. Steger. An unbiased detector <strong>of</strong> curvilinear structures. IEEE trans. on Image Processing, 20(2):113–<br />

125, February 1998.<br />

[40] F. Tupin, H. Maitre, J. F. Mangin, J. M. Nicolas, and E. Pechersky. Detection <strong>of</strong> linear features in<br />

SAR images: application to road network extraction. IEEE trans. on Geoscience and Remote Sensing,<br />

36(2):434–453, 1998.<br />

[41] J. M. Valiente, F. Albert, and J. M. Gomis. A computational model <strong>for</strong> pattern and tile designs<br />

classification using plane symmetry groups. In Proc. <strong>of</strong> the Ibero American Congress on Pattern<br />

Recognition (CIARP), Havana, Cuba, 2005.


<strong>Analysis</strong> <strong>of</strong> <strong>Ancient</strong> <strong>Mosaic</strong> <strong>Images</strong> <strong>for</strong> <strong>Dedicated</strong> Applications 477<br />

[42] C. M. Van Bemmel, L. J. Spreeuwers, M. A. Viergever, and W. J. Niessen. Level-set-based artery-vein<br />

separation in blood pool agent CE-MR angiograms. IEEE trans. on Medical Imaging, 22:1224–1234,<br />

2003.<br />

[43] L. Vincent. Grayscale area openings and closings: their applications and efficient implementation. In<br />

Proc. EURASIP Workshop on Mathematical Morphology and its Applications to Signal Processing,<br />

pages 22–27, Barcelona, Spain, May 1993.<br />

[44] R. Westgate. <strong>Ancient</strong> mosaics - a bibliography, Last visit on Apr. 2010.<br />

http://www.cardiff.ac.uk/hisar/people/rw/mosaicbibliog.html.<br />

[45] O. Wink, W. Niessen, and M. A. Viergever. Multiscale vessel tracking. IEEE trans. on Medical Imaging,<br />

23(1):130–133, 2004.<br />

[46] P. J. Yim, G. Boudewijn, C. Vasbinder, V. B. Ho, and P. L. Choyke. Isosurfaces as de<strong>for</strong>mable models<br />

<strong>for</strong> magnetic resonance angiography. IEEE trans. on Medical Imaging, 22(7):875–881, July 2003.<br />

[47] A. Zarghili, N. Gadi, R. Bensliman, and K. Bouatouch. Arabo-Moresque decor image retrieval system<br />

based on mosaic representations. Journal <strong>of</strong> Cultural Heritage, 2(2):149–154, 2001.<br />

[48] A. Zarghili, J. Kharroubia, and R. Bensliman. Arabo-Moresque decor images retrieval system based on<br />

spatial relationships indexing. Journal <strong>of</strong> Cultural Heritage, 9(3):317–325, 2008.<br />

[49] B. Zitová, J. Flusser, and F. ˇSroubek. An application <strong>of</strong> image processing in the medieval mosaic<br />

conservation. Pattern Analalysis and Applications, 7(1):18–25, 2004.


Index<br />

γ-Correction, 310<br />

2D, 5, 47, 51, 58, 63, 65, 74, 75, 79, 80, 86, 87, 92,<br />

95, 117, 121, 128, 129, 151, 153, 193, 220,<br />

222–225, 229, 230, 232, 234–236, 238, 240,<br />

246–248, 250, 253, 256, 258, 259, 268, 271,<br />

275, 338, 480, 485, 506, 508<br />

Objects reassembly, 258<br />

Puzzles reassembly, 258<br />

3D, 2, 5, 20, 27, 40, 41, 45, 46, 52, 53, 58, 73, 74, 79,<br />

95, 106, 109, 116, 121, 123, 124, 128, 130,<br />

139, 142, 149, 151, 153, 164, 165, 169, 174,<br />

175, 181, 189, 193, 201, 216, 225, 238, 246,<br />

275, 289, 329, 336, 366, 368, 416, 432, 442,<br />

457, 480, 499, 506<br />

Acquisition, 106, 107<br />

Catalogs, 45<br />

Investigation and diagnostics, 59<br />

Modeling, 2, 5, 24, 40, 52, 53, 74, 80, 96, 123,<br />

126<br />

Objects reconstruction, 255<br />

Puzzle Solving, 234<br />

Scanner, 128, 129<br />

Scanning pipeline, 109, 111, 113<br />

Scanning technologies, 106<br />

Visualization, 124<br />

Watermarking, 496<br />

Web, 127<br />

Aberration<br />

Astigmatism, 389<br />

Coma, 389<br />

Off-axis, 388<br />

Spherical, 383<br />

Additional parameters, 82, 85<br />

Additive/Multiplicative Model, 295<br />

Alvarez extinction theory, 385<br />

Anamorphic, 395, 396, 419<br />

Antique book, 284, 285, 299, 304<br />

Arc de Triomphe, 181<br />

ARC3D, 107, 164–166, 169, 173, 175, 181<br />

Archaeology, 1–5, 27, 253<br />

Archeomatica, 5, 21, 22, 25<br />

Area closing, 461<br />

Artificial Lighting, 158, 195, 205<br />

Asclepius, 22<br />

Asymmetry, 230, 491<br />

Authentication, 482, 483, 485, 488, 504<br />

Automatic reproduction, 52<br />

Betacam Dropout, 322, 323<br />

Blender, 6, 21, 25, 26, 43, 123, 181<br />

Blind techniques, 489, 490, 508<br />

Blotch, 282, 283, 288, 294–296, 322, 324, 325, 327–<br />

332, 336, 338<br />

Water, 282–285, 287, 288, 293, 297<br />

Bobeche, see Candelier389<br />

Bosch, Hieronymus, 410<br />

BRDF, 42, 92, 113, 120, 121, 138–144, 152, 153, 156,<br />

159, 366–369<br />

Break point, 253, 255<br />

Bruegel, Pieter, 410<br />

BTF, 367<br />

Bundle adjustment, 79, 82, 85, 87<br />

Cabanel, Alexandre, 386<br />

Camera<br />

Calibration, 79, 80, 82, 83, 85–87, 140, 196, 198<br />

Lucida, 386<br />

Campin, Robert, 383, 392, 398, 410<br />

Capacity, 95, 217, 480, 483, 485–487, 489, 503, 505<br />

Caravaggio, 394, 410<br />

Carracci, Annibale, 392<br />

CBIR, 459, 473<br />

CCD, 81, 82, 106, 289, 338, 348, 352, 368<br />

Chandelier, 384<br />

Candle holder, 389<br />

Perspective, 384<br />

515


516 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

Chiaroscuro, 400<br />

Christus, Petrus, 410<br />

CIE, 348, 350<br />

Closing by reconstruction, 288<br />

CMOS, 81, 82<br />

Color, 289<br />

Apparent, 112, 116, 120<br />

Filtering, 303<br />

Mapping, 65, 110, 112, 117, 118, 121<br />

Resampling, 120<br />

Sampling, 107, 116, 119<br />

Computer graphics, 2, 4, 5, 28, 74, 92, 120, 138, 223,<br />

366, 394, 410, 414, 415, 431, 434, 438, 496<br />

Computer-generated animations, 41<br />

Contrast, 198, 202, 282, 289, 306, 329, 331, 333, 455,<br />

458, 461, 469, 488<br />

Copyright, v, 46, 53, 479, 485<br />

Cormon, Fernand, 386<br />

Crack, 60, 62, 191, 240, 282, 283, 285, 288<br />

Cranach, Lucas, 387<br />

Crocket, 384<br />

Cultural artifacts, 245, 275<br />

Dürer, Albrecht, 392<br />

Data preservation, 45<br />

Decentering distortion, 83<br />

Depth <strong>of</strong> field, 176, 388, 395, 401, 412<br />

Detection, 79, 113, 114, 122, 198, 200, 205, 207, 210,<br />

232, 285, 287–289, 291–293, 295, 302, 314,<br />

322, 324, 326, 327, 329, 333, 441, 461, 470,<br />

482, 489–491, 498, 502, 506<br />

Dinanderie, 384<br />

Dirt, 191–193, 232, 321–324, 327, 338, 340, 341, 388,<br />

468<br />

Disparity, 173<br />

Documents reassembly, 255<br />

Donatello, 111, 400<br />

DTM/DSM, 76, 87, 89<br />

Dunhuang, 175<br />

Eroded Rock, 192, 207, 208<br />

Exterior parameters, 82<br />

Eyck, Jan van, 383–385, 387, 389–392, 397–401, 410,<br />

412, 414, 416<br />

Fabriano, Gentile da, 387, 397<br />

Film tear, 322, 323<br />

Fingerprinting, 482–484<br />

Flash, 120, 322, 457<br />

Flicker, 322, 336, 341<br />

Foxing, 282–285, 287, 293–295, 299, 300, 302–305<br />

Fracture, 55, 234, 235, 238–240, 246, 248, 250, 251,<br />

253, 255–257, 283, 284, 298<br />

Fragment, 4, 10, 12, 13, 21, 22, 55, 57, 106, 108, 216,<br />

218–220, 224, 225, 227, 231–235, 237, 238,<br />

245, 247, 250, 251, 253, 255, 259, 260, 263,<br />

266, 285, 292, 296, 432<br />

Fromentin, Eugène, 386<br />

Furtenagel, Laux, 410<br />

Fusion, 77, 78, 89, 201, 291, 329<br />

Gabor Filter Bank, 289, 291<br />

Geographic Web browsers, 45<br />

Geometric triangulation, 106<br />

GIS, 74, 93<br />

Glass plate, 283, 292, 296<br />

Gradient Vector, 238, 294, 442<br />

Graph Cuts, 257, 331, 441, 442<br />

Grid construction, 386<br />

Haghia Triada, 6<br />

Handwriting Recognition, 205<br />

Hartrick, A. S., 386<br />

Hidden notations, 485<br />

Histogram, 206, 260, 285, 303, 307, 339, 459, 469,<br />

488<br />

Hockney, David, 380, 410<br />

Holbein, Hans, 395, 396<br />

Hole filling, 110, 115<br />

Hot spots, 127<br />

Hypermedia, 127<br />

Image<br />

Matching, 76, 87, 89<br />

Quality, 306, 313, 314<br />

Image-based rendering, 121, 152, 248<br />

Image-to-geometry registration, 92, 117, 119<br />

Ingres, Jean Auguste Dominiques, 386<br />

Inpainting, 116, 253, 294, 336, 459<br />

Interactive visualization, 43, 92, 112, 202, 369<br />

Interior parameters, 82<br />

Interpolation, 111, 125, 156, 294–296, 310, 322, 334,<br />

335, 338, 341, 366<br />

Invertibility, 481, 490


Copyright Protection <strong>of</strong> Digital <strong>Images</strong> <strong>of</strong> CH 517<br />

Iron, 283, 285<br />

Iterative Closest Point, 76, 149, 254, 262<br />

Kemp, Martin, 401<br />

Kinescope Moire, 322<br />

Laser scanner, 3, 5, 21, 24, 25, 45, 75, 200, 250, 368<br />

Laser scanner, 193, 221<br />

Least squares matching, 89<br />

Light field rendering, 121<br />

Lighting analysis, 394<br />

Local contrast, 307, 310<br />

Local luminance, 307, 310<br />

LOD, 77, 93<br />

Long term preservation, 130<br />

Lotto, Lorenzo, 387–389<br />

Mahl stick, 393<br />

Mantegna, 387<br />

Mapping photos on 3D models, 119<br />

Melozzo da Forlì, 387<br />

Memling, Hans, 395, 410, 413<br />

Mesh, 40, 65, 90, 110, 112, 116, 123, 124, 139, 150,<br />

165, 193, 200, 220, 457, 496, 501<br />

MeshLab, 60, 62, 64, 65, 116, 121, 123, 124, 164,<br />

165, 181, 201<br />

Metadata, 46, 127, 129, 141<br />

Metsys, Quentin, 410<br />

Michelangelo, 43, 65, 117, 400<br />

Microcrack, 288, 289<br />

Mirror<br />

Concave, 388, 398<br />

Convex, 384, 399<br />

Modelviewer, 165<br />

Mogao caves, 175<br />

Monet, Claude, 401<br />

Moroni, Giovanni Battista, 387<br />

<strong>Mosaic</strong>, 246, 247, 282, 292, 348, 431–435, 437–442,<br />

446–449, 453–462, 464–470, 472–474<br />

Acquisition, 457<br />

<strong>Ancient</strong>, 432–434, 438–445, 448, 454, 455, 457,<br />

460, 462, 464, 466, 468, 470, 473, 474<br />

Byzantine, 454<br />

Coding, 464, 465<br />

De<strong>for</strong>mation, 457<br />

Digital, 432, 434<br />

Greek, 454<br />

Guidelines, 468<br />

Inpainting, 459<br />

Islamic, 454<br />

Material, 455<br />

Medieval, 458<br />

Photo-mosaic, 434, 448<br />

Puzzle Image <strong>Mosaic</strong>, 434<br />

Resolution, 457<br />

Restoration, 458<br />

Roman, 454, 459<br />

Segmentation, 464<br />

Symmetry, 459<br />

Zillij, 454<br />

<strong>Mosaic</strong>ing, 248, 266, 268–272, 274, 275, 352, 368<br />

Spanning tree, 269<br />

Sub-graph spanning tree, 270<br />

Multi-image matching, 89<br />

Multimedia, 3, 5, 24, 41, 50, 58, 124, 127, 480, 485,<br />

496<br />

Multiresolution, 44, 65, 75, 77, 110, 112, 119, 124,<br />

138, 140, 151, 153, 502<br />

Narrow-band, 350, 353<br />

Neugebauer, 365<br />

Nieuwenhove, Maarten van, 410, 412–414<br />

Noise, 76, 85, 110, 125, 129, 155, 165, 176, 206, 223,<br />

230, 260, 307, 322, 326, 335, 340, 352, 355,<br />

360, 439, 458, 488, 497<br />

Non-blind techniques, 489, 490, 502<br />

Non-falsifiability, 383<br />

Non-Photorealistic Rendering, 431<br />

Non-pictorial matching, 253<br />

OCR, 205, 210, 299, 300, 304–306<br />

Opening by reconstruction, 288<br />

Optical style in painting, 382, 400<br />

Opus<br />

Musivum, 438, 439<br />

Palladium, 442<br />

Vermiculatum, 438, 439<br />

Ownership <strong>of</strong> the rights, 482<br />

Parmigianino, 410<br />

Parthenon, 3, 21, 41, 138, 157<br />

Pathological Motion, 327<br />

PCA, 143, 355, 357, 361, 362<br />

Perspective


518 Digital Imaging <strong>for</strong> Cultural Heritage Preservation<br />

<strong>Analysis</strong>, 395, 396, 412<br />

Error, 383<br />

Photogrammetry, 45, 52, 55, 74, 79, 95, 111, 140,<br />

142, 250, 384<br />

Photographic Prints, 282, 285, 293<br />

Pictorial matching, 253<br />

Pinprick hole evidence, 392<br />

Pisanello, 387<br />

Poisson Reconstruction, 181<br />

Polizzello Mountain, 6<br />

Porta, Giambattista della, 389, 398<br />

Portaels, Jean-François, 386<br />

Private techniques, 489<br />

Public techniques, 489<br />

Queuing system, 172<br />

Radial distortion, 83<br />

Range map, 108, 109, 111, 113–115, 117, 123–125,<br />

368<br />

Alignment, 109, 111, 113<br />

Automatic alignment, 113<br />

Global registration, 111<br />

Local registration, 111<br />

Merge, 110, 112<br />

Reconstruction, 112<br />

Reconstruction from, 110<br />

Raphael, 387<br />

Rapid prototyping, 52<br />

Rational filter, 288, 302, 303<br />

Re-ordering, 498<br />

Re-triangulation, 497<br />

Reconstruction pipeline, 169<br />

Red chrominance matrix, 285, 287<br />

Reducing compass, 385, 392<br />

Refinement, 326, 327, 385, 499<br />

Relative alignment, 238, 257, 263, 264<br />

Relative <strong>of</strong>fset evidence, 391<br />

Rembrandt, 400<br />

Remeshing, 497, 499, 501, 506, 507<br />

Rendering, 6, 40, 42, 47, 55, 77, 92, 111, 117, 124,<br />

125, 138, 140, 144, 147, 152, 156, 159, 193,<br />

200, 246, 365, 368, 394, 431, 439, 496<br />

Restoration, 3, 5, 12, 20, 22, 25, 40, 43, 46, 57–60,<br />

62, 63, 65, 74, 78, 93, 95, 117, 138, 218,<br />

246, 248, 274, 282, 284, 289, 292–296, 299,<br />

300, 302, 303, 306, 314, 321, 322, 325, 327,<br />

329, 331, 335, 338, 340, 348, 368, 369, 454,<br />

457, 459<br />

Reversibility, 491<br />

Reynolds, Joshua, 397<br />

Robustness, 116, 169, 223, 231, 237, 309, 350, 464,<br />

479, 485, 487, 502<br />

Rock Art, 193<br />

Rock art, 191, 192, 194, 198, 200, 202, 205, 208<br />

ROD, 324, 325<br />

Roman de la Rose, 398<br />

Roto-translation, 65, 114, 296<br />

Sampling, 64, 77, 90, 106, 108, 116, 123, 129, 143,<br />

156, 171, 349, 350, 354, 361, 436, 499<br />

Scaling, 65, 85, 141, 172, 198, 248, 266, 385, 457,<br />

488, 497<br />

Scratch, 333<br />

SDI, 324<br />

Segmentation, 127, 231, 235, 257, 288, 436, 448, 457,<br />

459, 460, 462, 464–466, 473<br />

Self-calibration, 173<br />

Sepia, 285, 288, 289<br />

Sfumato, 400<br />

Shadow, 87, 116, 139, 152, 181, 193, 250, 367, 393,<br />

394, 412, 457, 465<br />

Shake, 322, 336, 341<br />

Similarity, 48, 89, 117, 119, 200, 223, 250, 255, 261,<br />

432, 440, 459, 499<br />

Simplification, 77, 93, 110, 123, 124, 129, 164, 230,<br />

497, 506<br />

simplification, 499<br />

Smith Waterman algorithm, 261<br />

Spanning tree, 266, 269–272, 274<br />

Sparkle, 322–324, 433, 454<br />

Spectacle, 381, 382, 399, 400<br />

Spectral, 77, 80, 92, 140, 146, 156, 300, 348–350,<br />

353–366, 368, 369, 506<br />

Stelae, 183<br />

Structure from motion, 80, 82<br />

Structure-from-motion, 164<br />

Surface reflection properties, 112, 116, 120, 128<br />

Surveying, 74–76, 78, 80, 93, 200, 382<br />

Tessera, 454, 455, 457, 460–466, 468–471, 473, 474<br />

Altered, 456<br />

Disaggregated, 456<br />

Extraction, 460


Copyright Protection <strong>of</strong> Digital <strong>Images</strong> <strong>of</strong> CH 519<br />

Smalti, 454<br />

Wear, 456<br />

Texture, 63, 74, 75, 80, 112, 116, 119–121, 123, 139,<br />

150, 153–155, 175, 176, 183, 193, 195, 199,<br />

238, 250, 253, 283, 288, 300, 312, 322, 335,<br />

367, 397, 419, 446, 462, 496, 499, 505, 508<br />

Thresholding, 206, 287, 288, 292, 293, 303, 334<br />

Thysia, 25<br />

TOF, 106, 107, 110, 125<br />

Tonal adjustment, 303, 304<br />

Tour, Georges de la, 393<br />

Tracing theory<br />

Burden <strong>of</strong> pro<strong>of</strong>, 386<br />

Direct tracing, 381<br />

Documentary evidence, 382<br />

Ghent symposium, 381, 401<br />

Indirect influence, 381, 402<br />

Philosophical foundations, 382<br />

Revisions, 385<br />

Timing, 387<br />

Trade secrets, 387, 398<br />

Triangulation, 21, 24, 52, 53, 75, 85, 106, 119, 124,<br />

138, 167, 193, 208, 220<br />

UAV, 81, 82, 95<br />

Upload tool, 165<br />

Usability, 40, 44, 75, 76, 90, 126, 282<br />

UV, 58, 63, 77, 299<br />

Velàzquez, Diego, 392<br />

Vermeer, Jan, 382, 412<br />

Vinegar Syndrome, 322, 323<br />

Virtual<br />

Inspector, 43, 64, 65, 125, 126<br />

Re-assembly, 55<br />

Reality, 4, 27, 28, 45, 80, 209<br />

Reconstruction, 10, 12, 53, 55, 247, 459<br />

Repainting, 57<br />

Visual communication, 3, 41, 46<br />

Voronoi, 435, 436, 441<br />

Diagrams, 435, 439, 440<br />

Water-tight reconstruction, 116<br />

Watermarking, 479, 482, 485–490, 496, 502, 506<br />

Watershed, 461<br />

Web GIS, 45<br />

Web service, 165<br />

WebGL, 127<br />

Wide-band, 350–354, 359<br />

Yellowing, 282, 284, 299, 300, 303, 306

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!