02.03.2018 Views

atw 2018-03v6

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

nucmag.com<br />

<strong>2018</strong><br />

3<br />

149<br />

Nuclear Energy<br />

Technologies<br />

for the Arctic<br />

153 ı Spotlight on Nuclear Law<br />

U.S. Regulators Reject Proposal to Subsidize<br />

Nuclear and Coal Power Prices<br />

154 ı Environment and Safety<br />

Integrated Risk Informed Decision Making in Nuclear Reactors<br />

ISSN · 1431-5254<br />

24.– €<br />

163 ı Decommissioning and Waste Management<br />

Investigations on the Influence of the Geometry<br />

of Carbide Lamellae in Concrete Milling<br />

182 ı Report<br />

2017 Nuclear Power Plant Compact Statistic


The International Expert Conference on Nuclear Technology<br />

Who you will meet<br />

Exhibitors, Sponsors and Media Partners<br />

3 Silver Sponsor<br />

3 Media Partners<br />

3 Czech Pavilion<br />

3 United Kingdom Pavilion<br />

More Organizations tba.<br />

Outstanding<br />

Know-How &<br />

Sustainable<br />

Innovations<br />

Enhanced<br />

Safety &<br />

Operation<br />

Excellence<br />

Decommissioning<br />

Experience &<br />

Waste Management<br />

Solutions<br />

Don’t miss this key event of the global nuclear energy community.<br />

29 – 30 May <strong>2018</strong><br />

Estrel Convention Center Berlin<br />

Germany<br />

www.nucleartech-meeting.com


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

Twilight of the Experts<br />

Dear reader, With the political phase-out from the peaceful use of nuclear energy in Germany in 2011, a few weeks<br />

after the catastrophic earthquake and tsunami in Japan and the resulting accidents at the Fukushima nuclear power<br />

plants, the country not only loses a reliable, domestic, environmentally friendly and inexpensive energy source, it also<br />

leaves a gap for those whose main objective is the fundamental rejection of nuclear energy.<br />

Although the German anti-nuclear scene is keeping itself<br />

afloat with constant demands for an even earlier complete<br />

phase-out before 2022, the recurrence of such demands<br />

like a prayer wheel does not seem to be very satisfying, also<br />

thanks to the unspectacular and accident-free operation of<br />

the German nuclear power plants.<br />

Creativity is called for here when there are – geographically<br />

speaking – such obvious new thematic objects. After<br />

all, the German phase-out of nuclear power with its<br />

coupled “energy turnaround” should also become another<br />

export hit for German policymakers; whatever other<br />

successful concepts from Germany may have asserted<br />

themselves on the world political stage. Clearly, then,<br />

targeted actionism against nuclear power plants close to<br />

the border is an obvious course of action. Europe continues<br />

to be the world's leading region with 182 nuclear power<br />

plants and 26 % of Europe's electricity comes from nuclear<br />

energy. As a result, the neighbouring countries of Germany,<br />

the Netherlands, Belgium, France, Switzerland, the Czech<br />

Republic, the Slovak Republic and, as a newcomer, Poland<br />

can be brought into the spotlight.<br />

Belgium's seven nuclear power plants at the Doel and<br />

Tihange sites, among others, are continually being taken<br />

up with striking consistency and selective targeted actions.<br />

The plants supply about 50 % of the country's own<br />

electricity supply, experience with the operation of nuclear<br />

power plants has existed since 1962 and the operational<br />

lifetime of the plants has been extended several times.<br />

Belgian realism and pragmatism are also evident here:<br />

individual governments have repeatedly considered the<br />

early shut-down of nuclear power plants, but also under<br />

the premiss that the security of electricity supply is not<br />

compromised. Exit: None!<br />

First of all, the nuclear power plant units Tihange-2 and<br />

Doel-3 were made subject around Christmas 2015: Realted<br />

with new findings on the material of the two reactor<br />

pressure vessels and production-related inconsistencies,<br />

catchy keywords were generated: The terms “clapped-out”<br />

reactor pressure vessels and “crumbling reactors”, introduced<br />

by relevant anti atomic protagonists, made the<br />

round. Nonetheless, the expertise and the very open communication<br />

on the subject by the Belgian supervisory<br />

authority Federaal Agentschap voor Nucleaire Controle<br />

(FANC) were lost in most of the media. Hydrogen flakes,<br />

brittle fracture characteristics and preheated emergency<br />

cooling water are simply not attractive topics. Nevertheless,<br />

comprehensive factual information is also available in<br />

Germany, for example on the websites of the Federal<br />

Ministry for the Environment, Nature Conservation,<br />

Construction and Nuclear Safety (BMUB).<br />

As a next coup against Tihange, the German antinuclear<br />

scene then landed the extensive distribution of<br />

iodine tablets in the Aachen area as a “precautionary<br />

measure” against the imminent nuclear “Super-GAU” from<br />

Belgium in order to promote nuclear anxiety culture. The<br />

action was successful if fears were to be stirred up. In more<br />

than 50 years of nuclear energy use in Germany, such an<br />

action had been judged to make little sense in expert<br />

circles, also with consideration of the risks of uncontrolled<br />

self-medication with iodine.<br />

At the beginning of February <strong>2018</strong> a letter from the<br />

FANC was opportune. The letter was passed to “investigative”<br />

press and showed that there had recently been<br />

an accumulation of “precursor” events in the Tihange-1<br />

nuclear power plant block.<br />

The “investigative” press quickly published the headline<br />

“Tihange-1 more dangerous than previously known”.<br />

Without going into the safety-related details of “precursor<br />

events”, the BMUB is quoted here:“... The current reporting<br />

gives the impression that, based on the number of<br />

so-called precursor events, it is possible to draw conclusions<br />

about the safety of a plant. But this is not the case.<br />

Rather, they are probabilistically calculated events that<br />

help to take a closer look at a particular scenario. These<br />

very complex precursor calculations are an element of a<br />

comprehensive security architecture. Probability calculations<br />

can help to further optimize a learning safety system<br />

of this or other facilities...” (translation, original text only<br />

available in German language).<br />

Further discomfort among the population will nevertheless<br />

remain; goal achieved.<br />

However, there are two other aspects to consider<br />

related with the reporting, which already leave a very<br />

negative connotation. On the one hand, the driving journalists<br />

like to call themselves “investigative” and “experts”.<br />

The outlined reports show that the term “investigative” has<br />

little impact, for example, the same anti-nuclear protagonists<br />

are constantly being presented and the opposite is<br />

more likely to be measured. If the “investigative” journalist<br />

were to act as an expert on his own behalf, a mystery of the<br />

Middle Ages would finally be solved: squaring the circle.<br />

Another negative connotation remains when “experts”<br />

appear in coverage who offer their services elsewhere on<br />

the subject...<br />

Nuclear energy continues to be used and operated<br />

safely in Belgium. If you want to get your own impression<br />

of the situation, you can access the web today and access a<br />

wide range of sources; from the EU stress tests according<br />

to Fukushima, through the documents on the nuclear<br />

safety conferences of the International Atomic Energy<br />

Agency to the supervisory authorities and technical expert<br />

organisations.<br />

If you are looking for more cabaret, please refer to<br />

Twitter and the 280-character opinions there (e.g.<br />

# tihange), which also complete the picture of atomic<br />

expertise shown here.<br />

Christopher Weßelmann<br />

– Editor in Chief –<br />

139<br />

EDITORIAL<br />

Editorial<br />

Twilight of the Experts


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

EDITORIAL 140<br />

Expertendämmerung<br />

Liebe Leserin, lieber Leser, mit dem politischen Ausstieg aus der friedlichen Nutzung der Kernenergie in<br />

Deutschland im Jahr 2011, wenige Wochen nach dem katastrophalen Erdbeben mit Tsunami in Japan, und der dadurch<br />

ausgelösten Unfälle in den Fukushima-Kernkraftwerken verliert das Land nicht nur eine verlässliche, heimische,<br />

umweltschonende und preisgünstige Energiequelle, er hinterlässt auch eine Lücke für diejenigen, deren inhaltliches<br />

Hauptziel die fundamentale Ablehnung der Kernenergienutzung ist.<br />

Zwar hält sich die deutsche Anti-Atomszene mit<br />

fortwährenden Forderungen nach einem noch früheren<br />

vollständigen Ausstieg vor 2022 über Wasser, aber das<br />

gebetsmühlenartige Wiederholen solcher Forderungen<br />

scheint auch dank des unspektakulären und störfallfreien<br />

Betriebs der deutschen Kernkraftwerke nicht sehr<br />

erfüllend zu sein.<br />

Hier ist dann Kreativität gefragt, wenn es – geografisch<br />

– so naheliegende neue Themenobjekte gibt. Sollte doch<br />

der deutsche Atomausstieg mit seiner gekoppelten „Energie<br />

wende“ auch ein weiterer Exportschlager deutscher<br />

Politik werden; welche anderen Erfolgskonzepte aus<br />

Deutschland sich auf der Weltbühne der Politik auch<br />

immer durchgesetzt haben mögen. Naheliegend ist also<br />

gezielter Aktionismus gegen grenznahe Kernkraftwerke.<br />

Ein Unterfangen mit nicht unerheblichem Potenzial, ist<br />

Europa doch weiterhin mit 182 Kernkraftwerken bei der<br />

Nutzung als Region weltweit führend und 26 % des<br />

europäischen Stroms stammten aus der Kernenergie.<br />

Somit können die Nachbarländer Niederlande, Belgien,<br />

Frankreich, die Schweiz, die Tschechische Republik, die<br />

Slowakische Republik und als Newcomer Polen bequem in<br />

den Fokus gerückt werden.<br />

Mit auffälliger Beständigkeit und punktuell gezielten<br />

Aktionen werden unter anderem die sieben Kernkraftwerke<br />

Belgiens an den Standorten Doel und Tihange<br />

fortwährend aufgegriffen. Die Anlagen liefern rund 50 %<br />

der landeseigenen Versorgung, Erfahrungen mit dem<br />

Betrieb von Kernkraftwerken bestehen seit 1962 und für<br />

die in Betrieb befindlichen Anlagen wurden mehrfach<br />

Laufzeitverlängerungen beschlossen. Hier zeigen sich<br />

auch belgischer Realismus und Pragmatismus: Zwar<br />

wurde von einzelnen Regierungen immer wieder eine<br />

vorzeitige Abschaltung von Kernkraftwerken in Erwägung<br />

gezogen, aber auch unter der Maßgabe, dass die Stromversorgungssicherheit<br />

nicht beeinträchtigt wird. Ausstieg:<br />

Fehlanzeige!<br />

Als erstes wurden die Kernkraftwerksblöcke Tihange 2<br />

sowie Doel 3 um Weihnachten 2015 zum zugkräftigen<br />

Thema gemacht: Im Zusammenhang mit neuen Erkenntnissen<br />

zum Material der beiden Reaktordruckbehälter und<br />

fertigungsbedingten Inkonsistenzen wurden einprägsame<br />

Schlagworte generiert: Die Begriffe „marode“ Reaktordruckbehälter<br />

und „Bröckelreaktoren“ machten, von<br />

einschlägigen Anti-Atom-Protagonisten eingebracht, die<br />

Runde. Gleichwohl blieben Fachexpertise und die sehr<br />

offene Kommunikation zum Thema seitens der belgischen<br />

Aufsichtsbehörde Federaal Agentschap voor Nucleaire<br />

Controle (FANC) in den meisten Medien auf der Strecke.<br />

Wasserstoff-Flocken, Sprödbruch-Kennlinien und vorgeheiztes<br />

Notkühlwasser sind halt keine attraktiven Themen.<br />

Gleichwohl ist umfassende sachliche Information auch in<br />

Deutschland dazu verfügbar, so auf den Webseiten des<br />

Bundesministeriums für Umwelt, Naturschutz, Bau und<br />

Reaktorsicherheit (BMUB).<br />

Als nächsten Coup gegen Tihange landete die deutsche<br />

Anti-Atom-Szene dann zur Förderung der Atom- Angstkultur<br />

die flächige Verteilung von Jod-Tabletten im<br />

Großraum Aachen als „Vorsorgemaßnahme“ gegenüber<br />

dem drohenden nuklearen „Super-Gau“ aus Belgien. Galt<br />

es Ängste zu schüren, war die Aktion erfolgreich. In mehr<br />

als 50 Jahren Kernenergienutzung in Deutschland war<br />

eine solche Aktion als wenig sinnvoll in Expertenkreisen<br />

beurteilt worden, auch mit der Abwägung mit den Risiken<br />

unkontrollierter Selbstmedikamentation.<br />

Um dann noch nachzulegen kam Anfang Februar <strong>2018</strong><br />

ein Schreiben der FANC wie gelegen. Dieses sei „investigativer“<br />

Presse zugespielt worden und zeige, dass es im<br />

Kernkraftwerksblock Tihange 1 jüngst zu Häufungen von<br />

„Precursor“-Ereignissen gekommen sei.<br />

Schnell publizierte die geneigte „investigative“ Presse<br />

die Schlagzeile „Tihange 1 gefährlicher als bislang<br />

bekannt“. Ohne auf die sicherheitstechnische Bedeutung<br />

von „Precursor-Ereignissen“ einzugehen, sei hier das BMUB<br />

zitiert: „... In der aktuellen Berichterstattung entsteht der<br />

Eindruck, dass man auf Grundlage der Anzahl von<br />

sogenannten Precursor-Ereignissen auf die Sicherheit einer<br />

Anlage schließen könne. Das ist aber nicht der Fall. Sie sind<br />

vielmehr probabilistisch durchgerechnete Anlässe, die<br />

dabei helfen, sich ein bestimmtes Szenario genauer<br />

anzusehen. Diese sehr komplexen Precursor-Berech nungen<br />

sind ein Element einer umfassenden Sicherheits architektur.<br />

Die Wahrscheinlichkeitsberechnungen können helfen,<br />

weitere Optimierungen an einem lernenden Sicherheitssystem<br />

dieser oder anderer Anlagen vorzunehmen ...“<br />

Weiteres Unbehagen bei der Bevölkerung wird dennoch<br />

verbleiben; Ziel erreicht.<br />

Zu betrachten sind aber noch zwei weitere Aspekte in<br />

Zusammenhang mit der Berichterstattung, die schon<br />

einen zusätzlichen sehr faden Beigeschmack hinterlassen.<br />

Da sind zum einen die treibenden Journalisten, sich selbst<br />

gerne als „investigativ“ und „Experten“ bezeichnend.<br />

Dabei zeigen die umrissenen Berichterstattungen, dass<br />

vom Begriff „Investigativ“ wenig zu spüren ist, werden<br />

doch z. B. fortwährend dieselben Anti-Atom-Akteure<br />

präsentiert und Gegenstimmen misst man eher. Wenn<br />

dann zudem der „investigative“ Journalist als „Experte“ in<br />

eigener Sache auftritt, dann wäre endlich ein Mysterium<br />

des Mittelalters gelöst: Die Quadratur des Kreises. Ein<br />

weiterer fader Nebengeschmack verbleibt, wenn „Experten“<br />

auftreten, die an anderer Stelle ihre Dienstleistungen<br />

zum Thema anbieten ...<br />

Kernenergie wird in Belgien weiterhin sicher genutzt<br />

und betrieben. Wer sich ein eigenes Bild dazu machen<br />

möchte, kann auf das Web zurückgreifen und viel fältige<br />

Quellen; von den EU-Stresstests nach Fukushima, über die<br />

Dokumente zu den Nuklearen Sicherheits konferenzen der<br />

Internationalen Atomenergie-Organisation bis hin zu<br />

den Aufsichtsbehörden und Technischen Gutachter organisationen.<br />

Wer mehr Kabarett sucht, sei auf Twitter und die<br />

dortigen 280-Zeichen-Meinungen verwiesen (z. B.<br />

# tihange), die das hier angerissene Bild von „Atomexpertise“<br />

gelungen abrunden.<br />

Christopher Weßelmann<br />

– Chefredakteur –<br />

Editorial<br />

Twilight of the Experts


Kommunikation und<br />

Training für Kerntechnik<br />

Suchen Sie die passende Weiter bildungs maßnahme<br />

im Bereich Kerntechnik?<br />

Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort<br />

3 Atomrecht<br />

Das Recht der radioaktiven Abfälle RA Dr. Christian Raetzke 06.03.<strong>2018</strong> Berlin<br />

23.10.<strong>2018</strong><br />

Ihr Weg durch Genehmigungs- und Aufsichtsverfahren RA Dr. Christian Raetzke 24.04.<strong>2018</strong> Berlin<br />

18.09.<strong>2018</strong><br />

Navigation im internationalen nuklearen Vertragsrecht Akos Frank LL. M. 25.04.<strong>2018</strong> Berlin<br />

Atomrecht – Was Sie wissen müssen RA Dr. Christian Raetzke 12.06.<strong>2018</strong> Berlin<br />

3 Energie, Politik und Kommunikation<br />

Schlüsselfaktor Interkulturelle Kompetenz –<br />

International verstehen und verstanden werden<br />

Public Hearing Workshop –<br />

Öffentliche Anhörungen erfolgreich meistern<br />

Kerntechnik und Energiepolitik im gesellschaftlichen Diskurs<br />

– Themen und Formate<br />

Angela Lloyd 26.09.<strong>2018</strong> Berlin<br />

Dr. Nikolai A. Behr 16.10. - 17.10.<strong>2018</strong> Berlin<br />

N.N. 12.11. - 13.11.<strong>2018</strong> Gronau/Lingen<br />

3 Kerntechnik, Rückbau und Strahlenschutz<br />

Export kerntechnischer Produkte und Dienstleistungen –<br />

Chancen und Regularien<br />

In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:<br />

Das neue Strahlenschutzgesetz –<br />

Folgen für Recht und Praxis<br />

Stilllegung, Rückbau und Entsorgung –<br />

Recht und Praxis<br />

RA Kay Höft, M.A.,<br />

RA Olaf L. Kreuzer<br />

RA Dr. Christian Raetzke,<br />

Maria Poetsch<br />

RA Dr. Christian Raetzke,<br />

Dr. Matthias Bauerfeind<br />

20.06. - 21.06.<strong>2018</strong> Berlin<br />

05.06. - 06.06.<strong>2018</strong> Berlin<br />

24.09. - 25.09.<strong>2018</strong> Berlin<br />

3 Nuclear English<br />

Advancing Your Nuclear English (Aufbaukurs) Devika Kataja 11.04. - 12.04.<strong>2018</strong> Berlin<br />

10.10. - 11.10.<strong>2018</strong><br />

Enhancing Your Nuclear English Devika Kataja 04.07. - 05.07.<strong>2018</strong> Berlin<br />

3 Wissenstransfer und Veränderungsmanagement<br />

Erfolgreicher Wissenstransfer in der Kern technik –<br />

Methoden und praktische Anwendung<br />

Veränderungsprozesse gestalten – Heraus forderungen<br />

meistern, Beteiligte gewinnen<br />

Dr. Christien Zedler,<br />

Dr. Tanja-Vera Herking<br />

Dr. Christien Zedler,<br />

Dr. Tanja-Vera Herking<br />

21.03. - 22.03.<strong>2018</strong> Berlin<br />

28.11. - 29.11.<strong>2018</strong> Berlin<br />

Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30<br />

Kontakt<br />

INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin<br />

Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı seminare@kernenergie.de<br />

Die INFORUM-Seminare können je nach<br />

Inhalt ggf. als Beitrag zur Aktualisierung<br />

der Fachkunde geeignet sein.


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

142<br />

Issue 3<br />

March<br />

CONTENTS<br />

149<br />

Nuclear Energy<br />

Technologies<br />

for the Arctic<br />

| | Vogtle Unit 3 construction site in Waynesboro, Burke County, Georgia, U.S.A. Two AP1000 reactors are under construction<br />

with an capacity of appr. 1,250 MW (gross) each. Start of operation is scheduled for 2022. (Courtesy: Georgia Power Company)<br />

Editorial<br />

Twilight of the Experts . . . . . . . . . . . . . . . . . 139<br />

Expertendämmerung . . . . . . . . . . . . . . . . . . 140<br />

Abstracts | English . . . . . . . . . . . . . . . . . . . 144<br />

Abstracts | German . . . . . . . . . . . . . . . . . . . 145<br />

Inside Nuclear with NucNet<br />

The Nuclear Option:<br />

Can This Be Africa’s Energy Future? . . . . . . . . . 146<br />

NucNet<br />

154<br />

| | Integrated risk informed decision making.<br />

Calendar . . . . . . . . . . . . . . . . . . . . . . . 148<br />

DAtF Notes. . . . . . . . . . . . . . . . . . . . . .147<br />

Energy Policy, Economy and Law<br />

Russian Nuclear Energy Technologies<br />

for the Development of the Arctic . . . . . . . . . . 149<br />

Andrej Yurjewitsch Gagarinskiy<br />

Spotlight on Nuclear Law<br />

U.S. Regulators Reject Proposal to Subsidize Nuclear<br />

and Coal Power Prices. . . . . . . . . . . . . . . . . . 153<br />

149<br />

Jay R. Kraemer<br />

| | The Russian floating nuclear power plant.<br />

Contents


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

143<br />

Environment and Safety<br />

The Importance of Integration of Deterministic<br />

and Probabilistic Approaches in the Framework<br />

of Integrated Risk Informed Decision Making<br />

in Nuclear Reactors . . . . . . . . . . . . . . . . . . . 154<br />

CONTENTS<br />

Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia<br />

and Ehsan Zarifi<br />

Applied Reliability Assessment for the Passive<br />

Safety Systems of Nuclear Power Plants (NPPs)<br />

Using System Dynamics (SD) . . . . . . . . . . . . . . 158<br />

168<br />

| | Composition of a TRISO-pebble.<br />

Yun Il Kim and Tae Ho Woo<br />

Zur Rationalität des Deutschen<br />

Kernenergieausstieges . . . . . . . . . . . . . . . . . 178<br />

Wolfgang Stoll<br />

Statistics<br />

Nuclear Power Plants:<br />

2017 <strong>atw</strong> Compact Statistics . . . . . . . . . . . . . . 182<br />

|158<br />

163<br />

| | Passive systems in NPP’s.<br />

Decommissioning and Waste Management<br />

Studies on the Geometric Influence on Hard<br />

Metal Shavers During Concrete Shaving . . . . . . 163<br />

Untersuchungen zum Geometrieeinfluss<br />

von Hartmetalllamellen beim Betonfräsen . . . . 163<br />

Simone Müller and Sascha Gentes<br />

| Tungsten carbide lamella with variable mass.<br />

Editorial<br />

Country<br />

Location/<br />

Station name<br />

Status Reactor type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1st<br />

Criticality<br />

[Year]<br />

Argentina<br />

Atucha 1 p D2O-PWR 357 341 1974<br />

Embalse p Candu 648 600 1983<br />

Atucha 2 p D2O-PWR 745 692 2014<br />

CAREM25 P PWR 29 25 (2020)<br />

Armenia<br />

Metsamor 2 p VVER-PWR 408 376 1980<br />

Belarus<br />

Belarusian 1 P VVER-PWR 1 194 1 109 (2019)<br />

Belarusian 2 P VVER-PWR 1 194 1 109 (2021)<br />

Bangladesh<br />

Rooppur 1 [2] P VVER-PWR 1 200 1 080 (2022)<br />

182<br />

KTG Inside . . . . . . . . . . . . . . . . . . . . . . 186<br />

News . . . . . . . . . . . . . . . . . . . . . . . . . 188<br />

Nuclear Today<br />

Could Our Nuclear Vision Benefit<br />

From a Spell of Tesla Magic? . . . . . . . . . . . . . . 202<br />

John Shepherd<br />

Research and Innovation<br />

The Technology of TVHTR-Nuclear- Power<br />

Stations With Pebble Fuel Elements . . . . . . . . . 168<br />

Urban Cleve<br />

Imprint . . . . . . . . . . . . . . . . . . . . . . . . . . . 180<br />

AMNT <strong>2018</strong>: Registration Form . . . . . . . . . . . Insert<br />

Contents


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

144<br />

ABSTRACTS | ENGLISH<br />

The Nuclear Option:<br />

Can this Be Africa’s Energy Future?<br />

NucNet | Page 146<br />

There are worldwide 448 commercial nuclear<br />

reactors in operation today, but only two of them, at<br />

Koeberg, in Africa. Yet if ambitious policymakers<br />

have their way, that could change. For the first time,<br />

many African countries have expressed an interest<br />

in developing nuclear power for peaceful energy<br />

generation. According to the IAEA, more than 30<br />

member states are considering or preparing nuclear<br />

power programmes for the first time, a third of them<br />

in Africa. One thing does seem certain. If Africa<br />

starts to commission new nuclear reactors, China<br />

and Russia, and their affiliated state-run enterprises,<br />

will be at the front of the queue to provide<br />

the technology. Scott Firsing, an international<br />

relations and security expert focusing on foreign<br />

power involvement in Africa, says their interest is<br />

linked to the projection of strategic power and<br />

investment into Africa, but also to secure access to<br />

uranium reserves.<br />

Russian Nuclear Energy Technologies<br />

for the Development of the Arctic<br />

Andrej Yurjewitsch Gagarinskiy | Page 149<br />

Small nuclear facilities have become an integral<br />

part of two important areas of human activities,<br />

namely, they are the basis of nuclear ships and<br />

scientific/educational research reactors that are in<br />

fact the main training facilities for new nuclear<br />

specialists all over the world. However, despite<br />

great and justified expectations of their developers,<br />

small nuclear power plants (SNPPs), with their<br />

obvious advantages (compared to conventional<br />

energy sources) in hardly-accessible areas, have not<br />

yet managed to start playing a notable role in the<br />

power industry. This is also completely true as<br />

concerns the task of using nuclear technologies for<br />

the development of the Arctic, where only the<br />

nuclear ship propulsion can be considered as an<br />

accomplished technology. Russia is the world’s only<br />

country that has civil nuclear ships in operation.<br />

U.S. Regulators Reject Proposal to Subsidize<br />

Nuclear and Coal Power Prices<br />

Jay R. Kraemer | Page 152<br />

On January 8, <strong>2018</strong>, the U.S. Federal Energy Regulatory<br />

Commission (“FERC”) unanimously rejected<br />

a rulemaking proposed by Secretary of Energy Rick<br />

Perry designed to enable the owners of coal and<br />

nuclear power plants to charge higher prices for<br />

their output, and thereby to prevent further premature<br />

retirements of such plants. The FERC has<br />

exclusive authority, under the Federal Power Act, to<br />

establish rules for interstate wholesale sales of<br />

electricity. Although the FERC simultaneously initiated<br />

a new proceeding to consider how to enhance<br />

the resilience of electricity supply and delivery in<br />

the U.S., that proceeding seems unlikely to offer<br />

near-term relief to nuclear plants that are approaching<br />

closure due to their inability to compete economically<br />

both with facilities fueled by low-priced<br />

natural gas and with renewable power sources<br />

benefitting from favorable tax provisions. Accordingly,<br />

the American nuclear power industry will<br />

probably have to look elsewhere for relief from its<br />

present dire economic circumstances.<br />

The Importance of Integration of Deterministic<br />

and Probabilistic Approaches in the<br />

Framework of Integrated Risk Informed<br />

Decision Making in Nuclear Reactors<br />

Mohsen Esfandiari, Kamran Sepanloo,<br />

Gholamreza Jahanfarnia and Ehsan Zarifi | Page 154<br />

Analysis of nuclear reactor accidents and transients<br />

are very necessary for prediction of emergency<br />

conditions, being used to control and respond to<br />

extreme conditions. The nuclear accident investigation<br />

and safety analysis have been performed by<br />

either probabilistic or deterministic approaches. In<br />

this paper, the recent investigations on combining<br />

deterministic, probabilistic approaches and integrated<br />

risk informed decision-making (IRIDM) are<br />

reviewed in studying of events and making decisions<br />

in nuclear reactors. Then, the importance of the<br />

combined approaches for more comprehensive integrated<br />

risk informed decisions making are presented.<br />

By combination of both approaches and<br />

using IRIDM, the analysis of nuclear accident can be<br />

more realistic and, contrasting design basis accidents<br />

(DBAs) and beyond design basis accidents<br />

(BDBAs) with high accuracy is possible. Generally,<br />

the IRIDM approach can confidently be used in<br />

assurance of safety of any type of nuclear reactors.<br />

Applied Reliability Assessment for the<br />

Passive Safety Systems of Nuclear Power<br />

Plants (NPPs) Using System Dynamics (SD)<br />

Yun Il Kim and Tae Ho Woo | Page 158<br />

The passive system by the free-fall is investigated in<br />

the accident of nuclear power plants (NPPs). The<br />

complex algorithm of the system dynamics (SD)<br />

modeling is done in the passive cooling system. The<br />

nuclear passive system by free-fall is successfully<br />

modeled for the loss of coolant accident (LOCA).<br />

Conventional passive system of gravity or natural<br />

circulation is working only when the piping systems<br />

is in the good condition. The external coolant<br />

supply system is introduced in the case of the piping<br />

system failure. The water is poured into the reactor<br />

through the guiding piping or tube. If the explosion<br />

happens, the coolants could be showering into the<br />

reactor core and its building. New kind of passive<br />

system is expected successfully in the on-site black<br />

out where the drone could be operated by battery or<br />

engine.<br />

Studies on the Geometric Influence on Hard<br />

Metal Shavers During Concrete Shaving<br />

Simone Müller and Sascha Gentes | Page 163<br />

Minimising contaminated waste is a top priority in<br />

decommissioning projects in the nuclear sector. In<br />

the area of building decontamination, efficient processing<br />

of all affected concrete ceilings, walls and<br />

floors is essential and quickly results in a surface<br />

area of several thousand square metres to be processed.<br />

Decontamination is mainly carried out by<br />

using milling machines, e. g. rotary cultivators.<br />

Within the scope of a research project (BMWI, ZIM,<br />

funding code: KF2286004LL3) the project partners<br />

Karlsruher Institut für Technologie (KIT) and Contec<br />

Maschinenbau & Entwicklungstechnik GmbH<br />

(Alsdorf/Sieg) investigated the influence of the<br />

geometry of the cutting tools on concrete removal.<br />

This article shows results from the test program<br />

conducted at the Institute for Technology and<br />

Management in Construction (TMB) of the KIT,<br />

Department of Deconstruction of Conventional and<br />

Nuclear Structures.<br />

The Technology of TVHTR-Nuclear-Power<br />

Stations With Pebble Fuel Elements<br />

Urban Cleve | Page 168<br />

The German development of TVHTR Power Stations<br />

was primarily initiated through the ideas of Prof. Dr.<br />

R. Schulten. He developed this technology in the<br />

1950's while employed by Brown Boveri. Dr. Schulten<br />

became CTO at the new BBC/Krupp Reaktorbau<br />

GmbH in Mannheim and later as Professor and Director<br />

of KFA-Jülich Nuclear Research Department.<br />

Two HTR nuclear power plants have been build in<br />

Germany, comissioned and success fully operated:<br />

The AVR in Jülich and the THRT-300 in Hamm-<br />

Schmehausen. Well know seawater desalination<br />

plants can be installed, working as distillation process<br />

so as MSF (multi-stage-flash)-plant. The heat<br />

would be supplied by HTR reactors. Additionally the<br />

co-installation of solar plants is possible.<br />

On the Rationality of the<br />

German Nuclear Phase-out<br />

Wolfgang Stoll | Page 178<br />

Our state of mind appears to be in equilibrium when<br />

it is balanced between opportunity and risk. The<br />

relationship between individual expectations of<br />

happiness and risk endured varies greatly depending<br />

on the state of mind of the individual. It is<br />

our understanding of ourselves that manageable<br />

individual risks are more likely to be taken than<br />

risks imposed by external forces. The anti-nuclear<br />

protesters operate skillfully with this superextension<br />

of the term to create general anxiety.<br />

However, the problem is of a general nature. Classical<br />

scientific findings come mainly from the field of<br />

very high probability, which we simply describe as<br />

the causal link between cause and effect. In general,<br />

however, in the advance of our knowledge into ever<br />

more complicated contexts, right down to the<br />

so-called statistical “noise”, the connection between<br />

cause and effect is becoming less and less clear. This<br />

vagueness opens up a great deal of discretion.<br />

Nuclear Power Plants:<br />

2017 <strong>atw</strong> Compact Statistics<br />

Editorial | Page 182<br />

At the end of the last year 2017, nuclear power<br />

plants were operating in 31 countries worldwide. In<br />

total, 448 nuclear power plants were operating on<br />

the key date. This means that the number declined<br />

slightly by 2 units compared to the previous year’s<br />

number on 31 December 2016. 3 units started<br />

operation, 5 units stopped operation. The installed<br />

nuclear capacity is still high that with 420 GWe<br />

gross. 56 plants in 16 countries were under construction.<br />

In addition, there are about 125 nuclear<br />

power plant units in 25 countries worldwide under<br />

development.<br />

Could Our Nuclear Vision Benefit From<br />

a Spell of Tesla Magic?<br />

John Shepherd | Page 202<br />

As I put the finishing touches to this latest article, US<br />

entrepreneur and boss of the Tesla car giant, Elon<br />

Musk, successfully launched a new rocket, the<br />

Falcon Heavy, from the Kennedy Space Center in<br />

Florida. What this has to do with nuclear today?<br />

Technologically speaking nothing. But think ‘outside<br />

the box’ – as I’m sure many of you have been told in<br />

those corporate management-training classes. The<br />

answer is: ‘vision’. The unabashed vision to be bold,<br />

daring, imaginative. The vision to believe in technology<br />

and to be unafraid to build on the experience<br />

and knowledge gained to date, including the failures,<br />

as we take the next steps forward.<br />

Abstracts | English


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

Die Option Kernenergie:<br />

Kann das die Energiezukunft Afrikas sein?<br />

NucNet | Seite 146<br />

Heute sind 448 kommerzielle Kernreaktoren weltweit<br />

in Betrieb, aber nur zwei davon, in Koeberg/<br />

Südafrika, in Afrika. Wenn ehrgeizige Politiker ihre<br />

Visionen durchsetzen, könnte sich dies bald ändern.<br />

Zum ersten Mal haben viele afrikanische Länder ihr<br />

Interesse an der friedlichen Entwicklung und<br />

Anwendung der Kernenergie für die Energieerzeugung<br />

deutlich gemacht. Nach Angaben der IAEO erwägen<br />

bzw. bereiten mehr als 30 Mitgliedsstaaten<br />

erstmals Kernenergieprogramme vor, ein Drittel<br />

davon in Afrika. Eines scheint sicher zu sein. Wenn<br />

Afrika beginnt, Kernreaktoren in Betrieb zu<br />

nehmen, werden China und Russland und ihre<br />

angeschlossenen staatlichen Unternehmen an der<br />

Spitze der beteiligten Unternehmen stehen, um die<br />

Technologie bereitzustellen. Scott Firsing, ein<br />

Experte für internationale Beziehungen und Sicherheit,<br />

der sich auf das Engagement ausländischer<br />

Staaten in Afrika konzentriert, sagt, dass ihr Interesse<br />

mit der Projektion strategischer Interessen und<br />

Investitionen in Afrika verbunden ist, aber auch mit<br />

der Sicherung des Zugangs zu Uranreserven.<br />

Russische Kernenergietechnologien<br />

für die Entwicklung der Arktis<br />

Andrej Yurjewitsch Gagarinskiy | Seite 149<br />

Kernkraftwerke im unteren Leistungsbereich sind<br />

zu einem integralen Bestandteil von zwei wichtigen<br />

Bereichen geworden, nämlich als Basis von nuklear<br />

angetriebenen Schiffen und Forschungsreaktoren.<br />

Letztere sind die Hauptausbildungsstätten für neue<br />

Nuklearexperten auf der ganzen Welt sind. Trotz<br />

großer und berechtigter Erwartungen ihrer Entwickler<br />

ist es den kleinen Kernkraftwerken (SMR)<br />

mit ihren offensichtlichen Vorteilen (gegenüber<br />

konventionellen Energieträgern) z. B. in schwer<br />

zugänglichen Gebieten jedoch noch nicht gelungen,<br />

eine nennenswerte Rolle in der Energiewirtschaft<br />

zu spielen. Dies gilt auch für die Aufgabe der<br />

Nutzung von Nukleartechnologien für die Entwicklung<br />

der Arktis, wo nur der nukleare Schiffsantrieb<br />

als geeignete Technologie im Transportsektor<br />

betrachtet werden kann. Russland ist das einzige<br />

Land der Welt, in dem zivile Nuklearschiffe in<br />

Betrieb sind.<br />

US-Regulierungsbehörden lehnen<br />

Vorschlag zur Subventionierung<br />

von Kern- und Kohlekraftwerken ab<br />

Jay R. Kraemer | Seite 152<br />

Am 8. Januar <strong>2018</strong> lehnte die U.S. Federal Energy<br />

Regulatory Commission („FERC“) einstimmig eine<br />

vom Energieminister Rick Perry vorgeschlagene<br />

Regelung ab, die es den Eigentümern von Kohleund<br />

Kernkraftwerken ermöglichen sollte, höhere<br />

Preise für den erzeugten Strom zu verlangen und<br />

damit weitere vorzeitige Stilllegungen solcher<br />

Anlagen zu verhindern. Der FERC hat die ausschließliche<br />

Befugnis, im Rahmen des Bundesgesetzes<br />

über die Energieversorgung Regeln für den<br />

zwischenstaatlichen Großhandelsverkauf von Elektrizität<br />

aufzustellen. Obwohl die FERC gleichzeitig<br />

ein neues Verfahren einleitete, um zu prüfen, wie<br />

die Verlässlichkeit der Stromversorgung und -lieferung<br />

in den USA verbessert werden kann, erscheint<br />

es unwahrscheinlich, dass dieses Verfahren den<br />

Kernkraftwerken, für die eine Stilllegung ansteht,<br />

aufgrund derzeit nicht gegebener wirtschaftlicher<br />

Konkurrenzfähig kurzfristig Entlastungen bietet.<br />

Hintergrund ist der Marktdruck aufgrund preisgünstigem<br />

Erdgas als auch günstigen Steuerregelungen<br />

für Erneuerbare.<br />

Die Bedeutung der Integration von<br />

deterministischen und probabilistischen<br />

Ansätzen im Rahmen der integrierten<br />

risikogerechten Entscheidungsfindung<br />

für Kernreaktoren<br />

Mohsen Esfandiari, Kamran Sepanloo,<br />

Gholamreza Jahanfarnia und Ehsan Zarifi | Seite 154<br />

Die Analyse von Unfällen und Transienten in Kernreaktoren<br />

ist für die Analyse von Notfallbedingungen<br />

sehr wichtig, da sie zur Kontrolle und Reaktion von<br />

extremen Anlagenzuständen eingesetzt wird. Die<br />

Unfalluntersuchung und die Sicherheitsanalyse<br />

werden entweder mit probabilistischen oder deterministischen<br />

Ansätzen durchgeführt. In diesem<br />

Beitrag werden Untersuchungen zur Kombination<br />

deterministischer und probabilistischer Ansätze und<br />

integrierter risikoorientierter Entscheidungsfindung<br />

(IRIDM) bei der Untersuchung von Ereignissen und<br />

der Entscheidungsfindung für Kernreaktoren vorgestellt.<br />

Die Bedeutung der kombinierten Ansätze<br />

für eine umfassendere integrierte risikoorientierte<br />

Entscheidungsfindung wird dargestellt. Durch die<br />

Kombination beider Ansätze und den Einsatz von<br />

IRIDM kann die Analyse von Nuklearunfällen angepasster<br />

durchgeführt werden und es ist möglich,<br />

Störfallszenarien mit hoher Genauigkeit abzuwägen.<br />

Im Allgemeinen kann der IRIDM-Ansatz zum<br />

Nachweis der Sicherheit von Kernreaktoren aller Art<br />

verwendet werden.<br />

Angewandte Zuverlässigkeitsbewertung<br />

für passive Sicherheitssysteme von<br />

Kernkraftwerken (KKW) unter Verwendung<br />

von Systemdynamik (SD)<br />

Yun Il Kim und Tae Ho Woo | Seite 158<br />

Ein passives auf der Schwerkraft basierendes Sicherheitssystem<br />

wird für Unfallszenarien von Kernkraftwerken<br />

untersucht. Der komplexe Algorithmus der<br />

Modellierung der Systemdynamik (SD) erfolgt im<br />

passiven Kühlsystem. Die Eignung des Passivsystems<br />

wird erfolgreich für den Verlust von Kühlmittelunfällen<br />

(LOCA) modelliert. Konventionelle passive<br />

System oder natürliche Zirkulation sind nur dann<br />

zuverlässig, wenn die Rohrleitungssysteme in gutem<br />

Zustand sind. Das externe Kühlmittelversorgungssystem<br />

wird bei Ausfall des Rohrleitungssystems<br />

aktiviert. Das Wasser wird in den Reaktor eingespeist.<br />

Untersuchungen zum Geometrieeinfluss<br />

von Hartmetalllamellen beim Betonfräsen<br />

Simone Müller und Sascha Gentes | Seite 163<br />

Die Minimierung kontaminierter Abfälle ist bei<br />

Rückbauvorhaben im kerntechnischen Bereich von<br />

höchster Priorität. Im Bereich der Gebäudedekontamination<br />

ist hierbei eine effiziente Bearbeitung<br />

aller betroffenen Betondecken, -wände und -böden<br />

unerlässlich und führt schnell zu einer zu bearbeitenden<br />

Fläche von mehreren tausend Quadratmetern.<br />

Die Dekontamination erfolgt überwiegend<br />

durch den Einsatz von Fräsen, z.B. Bodenfräsen. Im<br />

Rahmen eines Forschungsprojektes (BMWI, ZIM,<br />

Förderkennzeichen: KF2286004LL3) untersuchten<br />

die Projektpartner Karlsruher Institut für Technologie<br />

(KIT) und die Contec Maschinenbau &<br />

Entwicklungstechnik GmbH (Alsdorf/Sieg) den<br />

Geometrieeinfluss der Abtragswerkzeuge auf den<br />

Betonabtrag. Dieser Artikel zeigt Ergebnisse aus<br />

dem am Institut für Technologie und Management<br />

im Baubetrieb (TMB) des KIT, Abteilung Rückbau<br />

konventioneller und kerntechnischer Bauwerke<br />

durchgeführten Versuchsprogramms.<br />

Die Technologie der TVHTR-Kernkraftwerke<br />

mit Kieselstein-Brennelementen<br />

Urban Cleve | Seite 168<br />

Die deutsche Entwicklung der HTR-Kraftwerke<br />

wurde in erster Linie durch die Ideen von Prof. Dr.<br />

R. Schulten initiiert. Er entwickelte diese Technologie<br />

in den 1950er Jahrenbei Brown Boveri<br />

beschäftigt war. Zwei HTR-Kernkraftwerke wurden<br />

in Deutschland gebaut, in Betrieb genommen und<br />

erfolgreich betrieben: Der AVR in Jülich und der<br />

THRT-300 in Hamm-Schmehausen. HTR-Anlagen<br />

sind geeignet, Energie für Meerwasserentsalzungsanlagen<br />

bereit zu stellen, die mit dem Destillationsverfahren<br />

oder als MSF (Multi-Stage-Flash)-Anlage<br />

ausgeführt sind. Zusätzlich ist z.B. die Mitnutzung<br />

von Solaranlagen möglich.<br />

Zur Rationalität des<br />

Deutschen Kernenergieausstieges<br />

Wolfgang Stoll | Seite 178<br />

Unsere Befindlichkeit erscheint dann im Gleichgewicht,<br />

wenn sie sich zwischen Chance und Risiko<br />

einpendelt. Dabei ist das Verhältnis zwischen individuellen<br />

Glückserwartungen und ertragenem Risiko<br />

je nach dem Gemütszustand des Einzelnen sehr verschieden.<br />

Es liegt in unserem Selbstverständnis,<br />

dass überschaubare individuelle Risiken eher eingegangen<br />

werden als von außen unsteuerbar aufgezwungene.<br />

Die Kernenergiegegner operieren zur<br />

allgemeinen Angstmache geschickt mit dieser<br />

Begriffsüberdehnung. Das Problem ist aber von<br />

ganz allgemeiner Natur. Klassische wissenschaftliche<br />

Erkenntnisse kommen überwiegend aus dem<br />

Bereich der sehr hohen Wahrscheinlichkeit, die wir<br />

vereinfacht als kausale Verknüpfung von Ursache<br />

und Wirkung kennzeichnen. Ganz allgemein wird<br />

aber im Vordringen unseren Wissens in immer<br />

kompliziertere Zusammenhänge bis in das so<br />

genannte statistische „Rauschen“ der Zusammenhang<br />

von Ursache und Wirkung immer weniger<br />

eindeutig. Diese Unschärfe eröffnet einen großen<br />

Ermessensspielraum.<br />

Kernkraftwerke: 2017 <strong>atw</strong> Kompaktstatistik<br />

Editorial | Seite 182<br />

Ende 2017 waren Kernkraftwerke in 31 Ländern<br />

weltweit in Betrieb. Zum Stichtag waren 448 Kernkraftwerke<br />

in Betrieb. Die Zahl hat sich im Vergleich<br />

zum Vorjahresstichtag um 2 Blöcke verringert.<br />

3 Kernkraftwerksblöcke haben den Betrieb aufgenommen,<br />

5 Blöcke wurden stillgelegt. Die installierte<br />

Kernkraftkapazität ist weiterhin auf sehr<br />

hohem Niveau mit 420 GWe brutto. 56 Anlagen in<br />

16 Ländern befanden sich in Bau. Darüber hinaus<br />

befinden sich weltweit rund 125 Kernkraftwerksblöcke<br />

in 25 Ländern in der Entwicklung.<br />

Könnte unsere nukleare Vision von einem<br />

Zauber der Tesla-Magie profitieren?<br />

John Shepherd | Seite 202<br />

Als ich diesem neuesten Artikel den letzten Schliff<br />

gab, startete der US-Unternehmer und Chef des Tesla-Autoherstellers<br />

Elon Musk erfolgreich eine neue<br />

Rakete. Was hat das mit der Kernenergie zu tun?<br />

Technologisch gesehen nichts. Aber denken Sie<br />

über den Tellerrand hinaus – viele von Ihnen haben<br />

in Corporate Management-Trainingskursen davon<br />

erfahren haben. Die Antwort lautet:“Vision“. Die<br />

Vision, kühn, gewagt und fantasievoll zu sein. Die<br />

Vision, an die Technologie zu glauben und sich<br />

nicht zu scheuen, auf den bisherigen Erfahrungen<br />

und Kenntnissen aufzubauen, einschließlich der<br />

Misserfolge, wenn die nächsten Schritte nach vorn<br />

gemacht werden.<br />

145<br />

ABSTRACTS | GERMAN<br />

Abstracts | German


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

146<br />

INSIDE NUCLEAR WITH NUCNET<br />

* Egypt, Ghana,<br />

Kenya, Morocco,<br />

Niger, Nigeria,<br />

South Africa, Sudan,<br />

Tunisia and Uganda<br />

The Nuclear Option:<br />

Can This Be Africa’s Energy Future?<br />

NucNet<br />

Uranium first left Africa’s shores for wealthier nations in the 1940s, when the U.S. shipped 30,000 tonnes<br />

of it from the Shinkolobwe mine in Katanga province in the Democratic Republic of Congo to be used in the<br />

first atomic bombs. In return, the U.S. helped the DRC build Africa’s first nuclear reactor – a research unit at<br />

the University of Kinshasa – in 1958.<br />

Niger began mining uranium in 1971, with all the output<br />

going to French nuclear reactors. Around 19 % of the<br />

world’s uranium reserves are held by three African nations:<br />

Niger, Namibia, and South Africa. In 2015, the International<br />

Atomic Energy Agency (IAEA) began a project to<br />

increase and improve the current capacity of member<br />

states in Africa for “optimising production, implementation<br />

of good practices and overall effective management of<br />

the region’s natural uranium endowment”.<br />

And yet while the rest of the world used Africa’s uranium<br />

resources to embrace nuclear technology, South Africa was<br />

the only country on the continent to develop domestic<br />

nuclear energy generation, with its Koeberg nuclear station<br />

beginning commercial operation in the mid-1980s.<br />

There are 448 commercial nuclear reactors in operation<br />

today, but only two of them, at Koeberg, in Africa. Yet if<br />

ambitious policymakers have their way, that could change.<br />

For the first time, many African countries have expressed<br />

an interest in developing nuclear power for peaceful<br />

energy generation. According to the IAEA, more than 30<br />

member states are considering or preparing nuclear power<br />

programmes for the first time, a third of them in Africa.<br />

In January 2017, the IAEA conducted an eight-day<br />

review of Ghana’s nuclear programme, following similar<br />

reviews in South Africa, Nigeria and Kenya. The rest of the<br />

continent is enthusiastic – some 150 officials from 35<br />

African countries gathered under the IAEA in Kenya in<br />

April 2015 to chart a way forward. Ten African countries*<br />

formed the African Network for Enhancing Nuclear Power<br />

Programme Development. The network intends to build and<br />

strengthen national and regional capacity for planning,<br />

developing and managing the infrastructure for new and<br />

expanding nuclear power programmes.<br />

For Africa, the driving factor behind plans for new<br />

nuclear is evident. The continent’s inability to generate<br />

enough electricity continues to hamper economic growth,<br />

cutting 2 to 4 % off GDP every year, according to the Africa<br />

Progress Panel. The panel estimates that some 600 million<br />

people on the continent do not have access to electricity, a<br />

figure that will require $ 55 bn per year in investment by<br />

2030 to fix.<br />

The IAEA says that in sub-Saharan Africa, only about a<br />

third of the population have access to electricity and the<br />

number of people without access is on the rise. This<br />

presents a significant barrier to economic and social<br />

development and so governments across the continent are<br />

seeking ways to improve their existing energy infrastructure,<br />

and develop new or diverse energy sources that<br />

are reliable, affordable and sustainable.<br />

Against this backdrop, nuclear technology has acquired<br />

a reputation among policymakers as a cost-effective and<br />

environmentally friendly fix. “Nuclear power is considered<br />

a prominent alternative and a more environmentally<br />

beneficial solution since it emits far less greenhouse gases<br />

during electricity generation than coal or other traditional<br />

power plants,” Ogbonnaya Onu, Nigeria’s Minister of<br />

Science and Technology, told local media in December<br />

2017. “It is a manageable source of generating electricity<br />

and has large power-generating capacity that can meet<br />

industrial and city needs.”<br />

Yet not all are so enamoured with Africa’s nuclear plans.<br />

Opponents point to the high upfront costs of nuclear power<br />

stations, the security and safety issues of hosting plants in<br />

volatile countries, and the technological and political<br />

improvement that will be required to bring legislative and<br />

regulatory systems up to date.<br />

Nigeria is typical. Africa’s most populous country has<br />

decided to include nuclear power in its energy mix to meet<br />

an increasing demand for electricity and support economic<br />

development. The country has been developing its nuclear<br />

power infrastructure for several years.<br />

But last year the IAEA said Nigeria’s nuclear regulator<br />

faces challenges related to its independence and in<br />

developing the skills to carry out regulatory activities.<br />

Nigeria’s government needs to ensure that the Nigerian<br />

Nuclear Regulatory Authority is independent and<br />

functionally separate from organisations that could<br />

influence its decision-making. The IAEA highlighted the<br />

fact that Nigeria has no national policy on safety that<br />

is in line with global safety standards.<br />

Charles Adesanmi, retired former director of Nigeria’s<br />

Nuclear Technology Centre, believes there are two issues<br />

that are inhibiting Africa’s use of nuclear energy for<br />

electricity: cost and public opinion.<br />

He said: “First of all, anything that has to do with power<br />

generation requires a lot of money. If we are unable to<br />

adequately fund hydro, solar, coal, gas, how can we be<br />

talking of funding nuclear which is more expensive?”<br />

The issue of cost is the big one. South Africa’s<br />

state-owned utility Eskom has given itself the internal<br />

target that for new nuclear to make sense, the levelised<br />

cost of electricity (LCOE) from the project must be<br />

between $ 60 and $ 80 per MWh for the first two reactor<br />

units.<br />

The IAEA has put the LCOE for the construction of new<br />

nuclear power plants in a range from $ 40 to $ 100 per<br />

MWh. It says there is “significant overlap” in the range of<br />

the average LCOE produced by various energy technologies,<br />

but despite its significant up-front costs nuclear is<br />

competitive. (LCOE is the long-term price at which the<br />

electricity produced by a power plant will have to be sold at<br />

for the investor to cover all their costs).<br />

Opponents to new nuclear in South Africa say the<br />

procurement deal would be the largest in the country’s<br />

history at an estimated $ 77 bn (€ 72 bn). The government,<br />

which has said it wants to generate 9,600 MW of energy<br />

from as many as eight reactors, has put the total cost at<br />

anything from $ 37 bn (€ 34.8 bn) to $ 100 bn (€ 94 bn).<br />

Inside Nuclear with NucNet<br />

The Nuclear Option: Can This Be Africa’s Energy Future? ı NucNet


DAtF DTL-Poster <strong>2018</strong>-01 297x420v4.indd 1 23.02.18 11:10<br />

<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

Critics argue that this is too much to spend for a country<br />

where the economy is fragile and political turbulence is<br />

worrying investors. The counterargument is that the LCOE<br />

for other forms of energy is in the same range as nuclear<br />

and that South Africa is already losing money through<br />

power outages and slowed industrial growth. Eskom<br />

published figures last year claiming a net loss to the<br />

economy of around $ 700 m in 2016 as a result of its<br />

renewable power purchases from producers.<br />

“If these [nuclear plants] are not built, instability of<br />

electricity supply and rising prices will slow economic<br />

growth, and this will come with increasing poverty and<br />

political instability,” says Rob Jeffrey, an independent<br />

energy economist.<br />

While Eskom has commissioned dozens of private<br />

renewable projects to provide wind, solar and other forms<br />

of energy, these will never provide enough electricity,<br />

Mr ,Jeffrey says. “Wind only supplies electricity at best on<br />

average 34 % of the time. It is highly variable, unreliable<br />

and unpredictable. Solar is only available to generate<br />

electricity on average 26 % of the time.<br />

For Africa’s only true industrial economy, the outages<br />

have been devastating. In just one quarter during 2015<br />

when power cuts were at their height, the South African<br />

economy contracted 14 %, according to Bloomberg.<br />

From debates around the upfront costs of three new<br />

plants to media claims of foreign influence over the bidding<br />

process, the battle to expand South Africa’s industry is<br />

likely to offer lessons for countries across the continent.<br />

“Nuclear in the long term has low costs as you amortise<br />

the plant,” Phumzile Tshelane, chief executive of the<br />

government-owned South African Nuclear Energy Corporation<br />

(NECSA), told African Business. “If African countries<br />

are going to leapfrog to much more profitable economic<br />

development, they will have to choose sources of energy<br />

that are relatively cheap in the long term. I believe that<br />

when you look at the lifecycle costs, nuclear is cheaper.”<br />

One thing does seem certain. If Africa starts to commission<br />

new nuclear reactors, China and Russia, and their<br />

affiliated state-run enterprises, will be at the front of the<br />

queue to provide the technology. Scott Firsing, an international<br />

relations and security expert focusing on foreign<br />

power involvement in Africa, says their interest is linked to<br />

the projection of strategic power and investment into<br />

Africa, but also to secure access to uranium reserves.<br />

“Together, China and Russia are leading the drive for<br />

global energy security. At the same time they are solidifying<br />

their overall political and trade relationships with African<br />

countries and their leaders.”<br />

Author<br />

NucNet<br />

The Independent Global Nuclear News Agency<br />

Editor responsible for this story: David Dalton<br />

Editor in Chief, NucNet<br />

Avenue des Arts 56<br />

1000 Brussels, Belgium<br />

www.nucnet.org<br />

DATF EDITORIAL NOTES<br />

147<br />

New Poster<br />

Notes<br />

Nuclear Energy in Germany<br />

The DAtF has published the new poster Nuclear Energy in Germany<br />

| Status: February <strong>2018</strong>. This poster is not just an update to the<br />

January 2017 edition of Nuclear Power in Germany concerning the<br />

status of NPPs, waste disposal and of selected interim storage<br />

facilities but is a new product consolidating other maps into one.<br />

The poster now features research reactors, a more comprehensive<br />

overview on interim storage and conditioning facilities and state<br />

collection centers for radioactive waste from medicine, research and<br />

industry.<br />

3 It can be downloaded and ordered at kernenergie.de.<br />

Kernenergie in Deutschland<br />

Nuclear Energy in Germany<br />

SCHLESWIG- Kiel<br />

HOLSTEIN<br />

Brunsbüttel<br />

Greifswald/ C C D<br />

C<br />

Rubenow<br />

Brokdorf C<br />

MECKLENBURG-<br />

HAMBURG Schwerin VORPOMMERN<br />

Krümmel<br />

C<br />

Stade<br />

Geesthacht<br />

Unterweser<br />

D<br />

BREMEN<br />

Gorleben<br />

Rheinsberg<br />

Munster C C D E<br />

1)<br />

Emsland<br />

NIEDERSACHSEN<br />

A C<br />

Berlin<br />

Leese<br />

BERLIN<br />

Lingen<br />

Hannover Braunschweig<br />

D<br />

Potsdam<br />

Grohnde<br />

E Morsleben<br />

A D Gronau<br />

Asse E<br />

Magdeburg<br />

C<br />

BRANDENBURG<br />

Konrad<br />

C<br />

E<br />

Ahaus<br />

2)<br />

SACHSEN-ANHALT<br />

Hamm-<br />

Würgassen<br />

Krefeld<br />

Uentrop<br />

D<br />

NORDRHEIN-<br />

Düsseldorf WESTFALEN<br />

Jülich<br />

THÜRINGEN<br />

Dresden<br />

C D<br />

SACHSEN<br />

Dresden<br />

3)<br />

HESSEN<br />

Erfurt<br />

D<br />

Ebsdorfergrund<br />

Mülheim-<br />

Hanau<br />

Kärlich<br />

A Großwelzheim<br />

Wiesbaden<br />

Ellweiler<br />

Kahl<br />

Mainz<br />

D<br />

C<br />

Mainz<br />

C<br />

Biblis<br />

Karlstein Grafenrheinfeld<br />

C<br />

Mitterteich<br />

RHEINLAND-<br />

SAARLAND PFALZ<br />

Elm-Derlen<br />

Obrigheim<br />

BAYERN<br />

Saarbrücken<br />

C Neckarwestheim<br />

Philippsburg<br />

C<br />

B C D<br />

Niederaichbach<br />

Karlsruhe Stuttgart<br />

C<br />

Isar<br />

C D<br />

BADEN-<br />

Gundremmingen<br />

Garching<br />

WÜRTTEMBERG<br />

Neuherberg<br />

München<br />

KKW in Betrieb Leistung Betriebsbeginn<br />

brutto (kommerziell)<br />

NPP in operation<br />

Rated Start of<br />

capacity commercial<br />

gross operation<br />

(MWe)<br />

Brokdorf 1.480 1986<br />

Emsland 1.406 1988<br />

Grohnde 1.430 1985<br />

Gundremmingen C 1.344 1985<br />

Isar 2 1.485 1988<br />

Neckarwestheim II 1.400 1989<br />

Philippsburg 2 1.468 1985<br />

Gesamt ı Total 10.013<br />

Stand: Februar <strong>2018</strong> ı Status: February <strong>2018</strong><br />

In Deutschland sind 7 Kernkraftwerke mit einer<br />

Leistung von insgesamt 10.013 MWe (brutto)<br />

in Betrieb.<br />

In Germany 7 nuclear power plants are in operation<br />

with a total installed capacity of 10,013 MWe (gross).<br />

For further details<br />

please contact:<br />

Nicolas Wendler<br />

DAtF<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Germany<br />

E-mail: presse@<br />

kernenergie.de<br />

www.kernenergie.de<br />

Kernkraftwerk<br />

Nuclear<br />

power plant<br />

Forschungsreaktor<br />

Research<br />

reactor<br />

A<br />

Kernbrennstoffversorgung<br />

Nuclear fuel<br />

supply facility<br />

B<br />

Wiederaufarbeitungsanlage<br />

Reprocessing<br />

plant<br />

C<br />

Zwischenlager<br />

Interim storage<br />

facility<br />

D<br />

Konditionierung<br />

Conditioning<br />

E<br />

Endlager<br />

Final<br />

repository<br />

• Landessammelstelle<br />

Federal state<br />

collection centers<br />

In Betrieb<br />

In operation<br />

Abgeschaltet/<br />

Stilllegung<br />

End of operation/<br />

Decommissioning<br />

Rückbau<br />

Dismantling<br />

«Grüne Wiese»<br />

Greenfield site<br />

Errichtung<br />

Construction<br />

Bergwerk in Erkundung<br />

(seit 2013 eingestellt)<br />

Exploration mine<br />

(discontinued since 2013)<br />

1) Pilot-Konditionierungsanlage ı Pilot conditioning plant<br />

2) Bereitstellung Mitte der 2020er-Jahre ı Operational by the mid 2020s<br />

3) AVR-Behälterlager ı AVR flask store<br />

info@<br />

www. kernenergie.de<br />

DAtF Notes


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

148<br />

Calendar<br />

<strong>2018</strong><br />

CALENDAR<br />

04.03.-09.03.<strong>2018</strong><br />

82. Jahrestagung der DPG. Erlangen, Germany,<br />

Deutsche Physikalische Gesellschaft (DPG),<br />

www.dpg-physik.de<br />

11.03.-17.03.<strong>2018</strong><br />

International Youth Nuclear Congress (IYNC).<br />

Bariloche, Argentina, IYNC and WiN Global,<br />

www.iync.org/category/iync<strong>2018</strong>/<br />

26.03.-27.03.<strong>2018</strong><br />

Fusion energy using tokamaks: can development<br />

be accelerated? London, United Kingdom,<br />

The Royal Society, royalsociety.org<br />

08.04.-11.04.<strong>2018</strong><br />

International Congress on Advances in Nuclear<br />

Power Plants – ICAPP 18. Charlotte, NC, USA,<br />

American Nuclear Society (ANS), www.ans.org<br />

08.04.-13.04.<strong>2018</strong><br />

11 th International Conference on Methods and<br />

Applications of Radioanalytical Chemistry –<br />

MARC XI. Kailua-Kona, HI, USA, American Nuclear<br />

Society (ANS), www.ans.org<br />

16.04.-19.04.<strong>2018</strong><br />

Einführung in die Kerntechnik. Mannheim,<br />

Germany, TÜV SÜD, nucleartraining@tuev-sued.de<br />

16.04.-17.04.<strong>2018</strong><br />

VdTÜV Forum Kerntechnik – Sicherheit im Fokus.<br />

Berlin, Germany, VdTÜV mit Unterstützung des<br />

TÜV NORD, des TÜV SÜD und des TÜV Rheinland,<br />

www.tuev-sued.de/tagungen<br />

17.04.-19.04.<strong>2018</strong><br />

World Nuclear Fuel Cycle <strong>2018</strong>. Madrid, Spain,<br />

World Nuclear Association (WNA),<br />

www.world-nuclear.org<br />

18.04.-19.04.<strong>2018</strong><br />

9. Symposium zur Endlagerung radioaktiver<br />

Abfälle. Vorbereitung auf KONRAD – Wege zum<br />

G2-Gebinde. Hanover, Germany, TÜV NORD<br />

Akademie, www.tuev-nord.de/tk-era<br />

22.04.-26.04.<strong>2018</strong><br />

Reactor Physics Paving the Way Towards More<br />

Efficient Systems – PHYSOR <strong>2018</strong>. Cancun, Mexico,<br />

www.physor<strong>2018</strong>.mx<br />

08.05.-10.05.<strong>2018</strong><br />

29 th Conference of the Nuclear Societies in Israel.<br />

Herzliya, Israel. Israel Nuclear Society and Israel<br />

Society for Radiation Protection, ins-conference.com<br />

13.05.-19.05.<strong>2018</strong><br />

BEPU-<strong>2018</strong> – ANS International Conference on<br />

Best-Estimate Plus Uncertainties Methods. Lucca,<br />

Italy, NINE – Nuclear and INdustrial Engineering S.r.l.,<br />

ANS, IAEA, NEA, www.nineeng.com/bepu/<br />

13.05.-18.05.<strong>2018</strong><br />

RadChem <strong>2018</strong> – 18 th Radiochemical Conference.<br />

Marianske Lazne, Czech Republic, www.radchem.cz<br />

14.05.-16.05.<strong>2018</strong><br />

ATOMEXPO <strong>2018</strong>. Sochi, Russia, atomexpo.ru<br />

15.05.-17.05.<strong>2018</strong><br />

11 th International Conference on the Transport,<br />

Storage, and Disposal of Radioactive Materials.<br />

London, United Kingdom, Nuclear Institute,<br />

www.nuclearinst.com<br />

20.05.-23.05.<strong>2018</strong><br />

5 th Asian and Oceanic IRPA Regional Congress<br />

on Radiation Protection – AOCRP5. Melbourne,<br />

Australia, Australian Radiation Protection Society<br />

(ARPS) and International Radiation Protection<br />

Association (IRPA), www.aocrp-5.org<br />

29.05.-30.05.<strong>2018</strong><br />

49 th Annual Meeting on Nuclear Technology<br />

AMNT <strong>2018</strong> | 49. Jahrestagung Kerntechnik.<br />

Berlin, Germany, DAtF and KTG,<br />

www.nucleartech-meeting.com<br />

03.06.-07.06.<strong>2018</strong><br />

38 th CNS Annual Conference and 42 nd CNS-CNA<br />

Student Conference. Saskotoon, SK, Canada,<br />

Candian Nuclear Society CNS, www.cns-snc.ca<br />

03.06.-06.06.<strong>2018</strong><br />

HND<strong>2018</strong> 12 th International Conference of the<br />

Croatian Nuclear Society. Zadar, Croatia, Croatian<br />

Nuclear Society, www.nuklearno-drustvo.hr<br />

04.06.-07.06.<strong>2018</strong><br />

10 th Symposium on CBRNE Threats. Rovaniemi,<br />

Finland, Finnish Nuclear Society, ats-fns.fi<br />

04.06.-08.06.<strong>2018</strong><br />

5 th European IRPA Congress – Encouraging<br />

Sustainability in Radiation Protection. The Hague,<br />

The Netherlands, Dutch Society for Radiation<br />

Protection (NVS), local organiser, irpa<strong>2018</strong>europe.com<br />

06.06.-08.06.<strong>2018</strong><br />

2 nd Workshop on Safety of Extended Dry Storage<br />

of Spent Nuclear Fuel. Garching near Munich,<br />

Germany, GRS, www.grs.de<br />

25.06.-26.06.<strong>2018</strong><br />

index<strong>2018</strong> – International Nuclear Digital<br />

Experience. Paris, France, Société Française d’Energie<br />

Nucléaire, www.sfen.org, www.sfen-index<strong>2018</strong>.org<br />

27.06.-29.06.<strong>2018</strong><br />

EEM – <strong>2018</strong> 15 th International Conference on the<br />

European Energy Market. Lodz, Poland, Lodz<br />

University of Technology, Institute of Electrical Power<br />

Engineering, Association of Polish Electrical<br />

Engineers (SEP), www.eem18.eu<br />

29.07.-02.08.<strong>2018</strong><br />

International Nuclear Physics Conference 2019.<br />

Glasgow, United Kingdom, www.iop.org<br />

05.08.-08.08.<strong>2018</strong><br />

Utility Working Conference and Vendor<br />

Technology Expo. Amelia Island, FL, USA, American<br />

Nuclear Society (ANS), www.ans.org<br />

22.08.-31.08.<strong>2018</strong><br />

Frédéric Joliot/Otto Hahn (FJOH) Summer School<br />

FJOH-<strong>2018</strong> – Maximizing the Benefits of<br />

Experiments for the Simulation, Design and<br />

Analysis of Reactors. Aix-en-Provence, France,<br />

Nuclear Energy Division of Commissariat à l’énergie<br />

atomique et aux énergies alternatives (CEA) and Karlsruher<br />

Institut für Technologie (KIT), www.fjohss.eu<br />

28.08.-31.08.<strong>2018</strong><br />

TINCE <strong>2018</strong> – Technological Innovations in<br />

Nuclear Civil Engineering. Paris Saclay, France,<br />

Société Française d’Energie Nucléaire, www.sfen.org,<br />

www.sfen-tince<strong>2018</strong>.org<br />

05.09.-07.09.<strong>2018</strong><br />

World Nuclear Association Symposium <strong>2018</strong>.<br />

London, United Kingdom, World Nuclear Association<br />

(WNA), www.world-nuclear.org<br />

09.09.-14.09.<strong>2018</strong><br />

21 st International Conference on Water Chemistry<br />

in Nuclear Reactor Systems. San Francisco, CA, USA,<br />

EPRI – Electric Power Research Institute, www.epri.com<br />

10.09.-13.09.<strong>2018</strong><br />

Nuclear Energy in New Europe – NENE <strong>2018</strong>.<br />

Portoroz, Slovenia, Nuclear Society of Slovenia,<br />

www.nss.si/nene<strong>2018</strong>/<br />

17.09.-21.09.<strong>2018</strong><br />

62 nd IAEA General Conference. Vienna, Austria.<br />

International Atomic Energy Agency (IAEA),<br />

www.iaea.org<br />

17.09.-20.09.<strong>2018</strong><br />

FONTEVRAUD 9. Avignon, France,<br />

Société Française d’Energie Nucléaire (SFEN),<br />

www.sfen-fontevraud9.org<br />

17.09.-19.09.<strong>2018</strong><br />

4 th International Conference on Physics and<br />

Technology of Reactors and Applications –<br />

PHYTRA4. Marrakech, Morocco, Moroccan<br />

Association for Nuclear Engineering and Reactor<br />

Technology (GMTR), National Center for Energy,<br />

Sciences and Nuclear Techniques (CNESTEN) and<br />

Moroccan Agency for Nuclear and Radiological<br />

Safety and Security (AMSSNuR), phytra4.gmtr.ma<br />

30.09.-04.10.<strong>2018</strong><br />

TopFuel <strong>2018</strong>. Prague, Czech Republic, European<br />

Nuclear Society (ENS), American Nuclear Society<br />

(ANS). Atomic Energy Society of Japan, Chinese<br />

Nuclear Society and Korean Nuclear Society,<br />

www.euronuclear.org<br />

02.10.-04.10.<strong>2018</strong><br />

7 th EU Nuclear Power Plant Simulation ENPPS<br />

Forum. Birmingham, United Kingdom,<br />

Nuclear Training & Simulation Group,<br />

www.enpps.tech<br />

14.10.-18.10.<strong>2018</strong><br />

12 th International Topical Meeting on Nuclear<br />

Reactor Thermal-Hydraulics, Operation and<br />

Safety – NUTHOS-12. Qingdao, China, Elsevier,<br />

www.nuthos-12.org<br />

14.10.-18.10.<strong>2018</strong><br />

NuMat <strong>2018</strong>. Seattle, United States,<br />

www.elsevier.com<br />

16.10.-17.10.<strong>2018</strong><br />

4 th GIF Symposium at the 8 th edition of Atoms<br />

for the Future. Paris, France,<br />

www.gen-4.org<br />

22.10.-24.10.<strong>2018</strong><br />

DEM <strong>2018</strong> Dismantling Challenges: Industrial<br />

Reality, Prospects and Feedback Experience. Paris<br />

Saclay, France, Société Française d’Energie Nucléaire,<br />

www.sfen.org, www.sfen-dem<strong>2018</strong>.org<br />

22.10.-26.10.<strong>2018</strong><br />

NUWCEM <strong>2018</strong> Cement-based Materials for<br />

Nuclear Waste. Avignon, France, French<br />

Commission for Atomic and Alternative Energies<br />

and Société Française d’Energie Nucléaire,<br />

www.sfen-nuwcem<strong>2018</strong>.org<br />

24.10.-25.10.<strong>2018</strong><br />

Chemistry in Power Plant. Magdeburg, Germany,<br />

VGB PowerTech e.V., www.vgb.org<br />

05.11.-08.11.<strong>2018</strong><br />

International Conference on Nuclear Decommissioning<br />

– ICOND <strong>2018</strong>. Aachen, Eurogress,<br />

Germany, achen Institute for Nuclear Training GmbH,<br />

www.icond.de<br />

Calendar


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

Russian Nuclear Energy Technologies<br />

for the Development of the Arctic<br />

Andrej Yurjewitsch Gagarinskiy<br />

Small nuclear facilities have become an integral part of two important areas of human activities, namely, they are the<br />

basis of nuclear ships and scientific/educational research reactors that are in fact the main training facilities for new<br />

nuclear specialists all over the world. However, despite great and justified expectations of their developers, small<br />

nuclear power plants (SNPPs), with their obvious advantages (compared to conventional energy sources) in hardlyaccessible<br />

areas, have not yet managed to start playing a notable role in the power industry.<br />

This is also completely true as concerns the task of using<br />

nuclear technologies for the development of the Arctic,<br />

where only the nuclear ship propulsion can be considered<br />

as an accomplished technology [1].<br />

1 Civil nuclear ships<br />

Russia is the world’s only country that has civil nuclear<br />

ships in operation. Nuclear shipbuilding experience of<br />

other countries (Savannah, 1962–1979, USA; Otto Hahn,<br />

1968–1980, FRG; and Mutsu, 1974 –1991, Japan) was<br />

relatively brief. Plans to construct nuclear icebreakers<br />

repeatedly declared by countries such as USA, Canada,<br />

Argentina and China are still just intentions.<br />

Table 1 presents both the past (starting from the<br />

world’s first nuclear icebreaker Lenin) and the present of<br />

Russia’s civil nuclear fleet, which is intended exclusively<br />

for the development of the country’s Arctic regions.<br />

Currently the Russian civil nuclear shipbuilding is<br />

resurging. To timely replace the existing icebreakers to<br />

enable reliable continuous navigation and year-round<br />

delivery of goods via the Northern Sea Route, the<br />

government in the summer of 2011 has decided to build<br />

and launch three universal nuclear icebreakers: the pilot<br />

one in 2017 and two serial ones in 2019 and 2020,<br />

respectively. The pilot icebreaker’s keel was laid at the<br />

Baltic Plant in 2013.<br />

The Iceberg Design Bureau has developed a detailed<br />

design of a nuclear icebreaker with improved icebreaking<br />

capability and variable draught (from 10.5 m in deep<br />

waters to 8.5 m in shallow ones). This variable draught<br />

would allow this icebreaker to operate not only in Arctic<br />

seas, but also in the mouths of northern rivers. The new<br />

nuclear facility – RITM-200 – developed by OKBM<br />

Afrikantov for this icebreaker includes two integral PWRs<br />

of 175 MWth each; its lifetime makes up to 40 years and its<br />

period of continuous operation is 26,000 hours.<br />

Icebreaker parameters are: displacement – 23,000 t;<br />

length – 172.2 m, width – 33 m, height – 15 m, speed – 22<br />

knots. This ship – that would allow for up to 6 months of<br />

independent sailing – is intended for operation in the<br />

Western Arctic (Barents Sea, Pechora Sea, Kara Sea, mouth<br />

of the Yenissei and the Ob Bay region). This pilot icebreaker<br />

Arktika (Figure 1), already afloat, is currently<br />

under construction at the Baltic Plant, as well as two serial<br />

icebreakers of the same design, Sibir (Arktika’s successor<br />

on the berth) and Ural (keel laid). As by late 2017, their<br />

commissioning was expected between 2019 and 2021.<br />

| | Fig. 1.<br />

Launching of the new Arktika, 2016.<br />

Revised version of a<br />

paper presented at<br />

the Annual Meeting<br />

of Nuclear Technology<br />

(AMNT 2017), Berlin.<br />

149<br />

ENERGY POLICY, ECONOMY AND LAW<br />

Ship Year of commissioning Power facility Current status<br />

Lenin 1959 2 OK-900 reactors,<br />

32.4 MW (44,000 hp)<br />

Arktika 1975 2 reactors,<br />

55 MW (75,000 hp)<br />

Decommissioned in 1989<br />

Museum since 2010<br />

Decommissioned in 2008<br />

Sibir 1977 same Decommissioned in 1992<br />

Sent for disposal in 2016<br />

Rossiya 1985 same Decommissioned in 2013<br />

Sovetsky Soyuz 1989 same Decommissioned in 2010<br />

Restoration being considered<br />

Yamal 1989 2 OK-900A reactors In operation<br />

Taymyr 1989 KLT-40 reactor,<br />

36.8 MW (50,000 hp.)<br />

In operation<br />

Vaygach 1990 same In operation<br />

50 Let Pobedy 2007 2 reactors,<br />

55 MW (75,000 hp)<br />

In operation<br />

Sevmorput (LASH) 1988 29.4 MW (39,000 hp) In operation<br />

(restored in 2013–2015<br />

| | Tab. 1.<br />

Russian civil nuclear fleet.<br />

Energy Policy, Economy and Law<br />

Russian Nuclear Energy Technologies for the Development of the Arctic ı Andrej Yurjewitsch Gagarinskiy


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

ENERGY POLICY, ECONOMY AND LAW 150<br />

Renovation of the country’s icebreaker fleet will<br />

continue. Currently another icebreaker, Leader, is being<br />

developed. This ship would enable year-round navigation<br />

of ships with up to 100,000 t deadweight and up to<br />

50-m-wide hull over the whole Northern Sea Route. This<br />

would be a huge ship over 200 m long and about 40 m<br />

wide. Its capacity – 120 MW – would be unprecedented for<br />

icebreakers (though such military ships and passenger<br />

liners do exist). Russia already has an engineering design<br />

ready for the Leader. Negotiations are currently underway<br />

to identify its manufacturer plant and construction<br />

schedule. Powerful icebreaker fleet became increasingly<br />

demanded following the start of the Yamal-LNG Project<br />

that “opened new horizons for our national economy”,<br />

according to President Putin.<br />

2 Nuclear power plants for the Arctic<br />

As concerns nuclear energy for hardly-accessible areas,<br />

decades of RD&D have not yet yielded any significant<br />

advancement of nuclear sources in this seemingly obvious<br />

consumption sector.<br />

Initially, all works related to the development of both<br />

stationary and transportable SNPPs were concentrated in<br />

the USA and the USSR.<br />

At the very beginning of 1950ies, the United States have<br />

for the first time started to pay serious attention to SNPPs,<br />

exclusively because of their army’s interest. Such SNPPs<br />

(with capacities ranging from 0.3 to 3 MW) intended as<br />

energy sources for remote military bases have been<br />

deployed in Alaska, Greenland and even the Antarctic, but<br />

in the sixties all of them have been shut down. In 1968, the<br />

United States have installed a floating NPP – MH-1A<br />

Sturgis (10 MW) – in a lake near the Panama Canal. It has<br />

operated for 8 years (Figure 2)<br />

operation since 1974, but the concept of building small<br />

stationary NPPs similarly to large ones was abandoned.<br />

Rosenergoatom Concern (the Russian nuclear generating<br />

company) considers this NPP, with its low efficiency and<br />

too many workers required per power capita, rather as an<br />

encumbrance than as a prototype for the future.<br />

The global situation with SNPPs is quite similar. The<br />

IAEA small- & medium-sized reactor (SMR) database [2]<br />

(IAEA: International Atomic Energy Agency) contains<br />

information on dozens of designs – but virtually all of them<br />

are still paper designs at various stages of development.<br />

There are still no market signals to confirm enthusiastic<br />

forecasts of some experts and companies (such as, e.g., the<br />

U.S. NuScale Power) who predict good commercial future<br />

for SMRs. Only the 25-MWe CAREM (that demonstrates<br />

obvious features of a prototype ship reactor) and pilot<br />

high-temperature reactors are currently under construction<br />

in Argentina (since 2014) and China (since 2012 –<br />

two-module Shidao-Bay-1), respectively.<br />

| | Fig. 3.<br />

Finally the FNPP construction is nearing completion.<br />

| | Fig. 2.<br />

Mobile and transportable NPPs.<br />

As for the Soviet Union, it has launched its strategic<br />

R&D on small reactors in the middle of 1950ies. In October<br />

1956, a governmental decision on SNPP deployment has<br />

been adopted.<br />

Figure 2 presents some interesting designs (TES-3,<br />

PAMIR, ARBUS) that have achieved the implementation<br />

stage. However, all these facilities were demonstrationonly.<br />

The only exclusion is the Bilibino NPP with its four<br />

12 MWe water-graphite reactor units. The plant is in<br />

In 1990ies, Russia has adopted a long-ranging decision<br />

of principle: to build a floating NPP (FNPP) to demonstrate<br />

the advantages the nuclear energy offers for remote<br />

isolated regions. This NPP was to be barge-based, factorybuilt<br />

and returned to the special site for every refueling<br />

and repairs [3]. KLT-40, a nuclear icebreaker reactor<br />

with proven high reliability and safety, was chosen for<br />

installation at this FNPP. After its start in 2007, the FNPP<br />

construction went on with great difficulties – it has<br />

survived not only the change of the manufacturer plant<br />

and multiple changes of the first operating site<br />

( Severodvinsk, Vilyuchinsk, Pevek), but also what was<br />

maybe the worst – on-the-go redesign to allow for use of<br />

low-enriched fuel. In 2016, the FNPP – Akademik<br />

Lomonosov – achieved the stage of dock trials (Figure 3).<br />

Unfortunately, this redesign reduced the capacity and<br />

hence the refueling interval (to 2–3 years) of the FNPP, so<br />

that it had to be equipped with refueling equipment and<br />

spent fuel storage. This contradicts with the key conceptual<br />

requirement, which inhibits any onboard operations<br />

with fuel for future floating NPPs. So today the developers<br />

are facing the task to extend the refueling interval of future<br />

floating NPPs to 10–12 years.<br />

This task is becoming increasingly important with the<br />

latest incentives intended to solve the energy supply issue<br />

in the Russian Arctic – and pertinent to the strategic issue<br />

of supplies to hardly accessible areas and, prima facie, to<br />

the “Arctic vector” of the Russian energy industry [4].<br />

Below follows the opinion of Mikhail Kovalvchuk,<br />

President of the Kurchatov Institute: “In recent years, the<br />

development of Arctic areas became a strategic priority for<br />

Energy Policy, Economy and Law<br />

Russian Nuclear Energy Technologies for the Development of the Arctic ı Andrej Yurjewitsch Gagarinskiy


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

Design Refueling interval, years Lifetime, years Development stage<br />

ABV-6 10–12 50 – Pilot reactor and NPP unit Volnolom – detailed design (1993)<br />

– FNPP for the Far North – feasibility study<br />

– Nuclear co-generation plant for Kazakstan – feasibility study<br />

– Pilot bench – in operation<br />

KLT-40S 2.5–3 40* – Equipment for two reactors – supplied to the<br />

FNPP Akademik Lomonosov<br />

RITM-200 4.5–5 40* – Two reactors for the pilot universal icebreaker – preparation<br />

for complete shipment (2016)<br />

– Reactors for the next two icebreakers – scheduled supply<br />

in <strong>2018</strong> and 2019, respectively<br />

VBER-300 1.5–2 60 – NPP with two VBER-300 units – quotation (2002)<br />

– VBER-300 reactor facility – conceptual design (2004)<br />

– VBER-300 units for Kazakhstan – detailed design (2007–2009)<br />

VBER-600 1.5–2 60 – 100 – 600 MW capacity range – concept (2007–2008)<br />

– NPP with VBER-460/600 – R&D (2008–2012)<br />

* – allows for extension to 60 years<br />

| | Tab. 2.<br />

SMR designs under development.<br />

our country. President of the Russian Federation has approved<br />

the “Fundamentals of the Russian State Policy in<br />

the Arctic to 2020 and beyond” (2008) and the “Strategy of<br />

the Russian Arctic Zone Development and National<br />

Security Assurance to 2020” (2013). The following aspects<br />

of the tasks to be solved should be emphasized: first, a<br />

state-of-the-art computerized energy infrastructure should<br />

be an integral part of the comprehensive socioeconomic<br />

development of the Arctic. Second, many large-scale oil/<br />

gas and other projects are now underway in the Arctic.<br />

Third, long distances between – and unreliable energy<br />

supplies to – local communities are a specific feature of the<br />

Russian Arctic. Local conditions require a distributed<br />

energy supply system, which should account for both<br />

extreme operating conditions. On the whole, the Arctic<br />

energy supply system consists of onshore and offshore<br />

components. The latter are based on the practical<br />

experience of efficient application of Russian shipbuilding<br />

technologies…”<br />

Indeed, Russian nuclear designers are experienced in<br />

developing and operating ship reactors, both for the Navy<br />

and for the civil fleet. Table 2 [5] lists the designs produced<br />

by OKBM Afrikantov, the country’s leading developer of<br />

small and medium reactors (6 – 600 MW).<br />

Another well-known RD&D institute, NIKIET, has<br />

developed a family of SNPPs with capacities ranging from<br />

1 to 20 MWe, including facilities such as Shelf and Uniterm<br />

of about 6 MWe each [6].<br />

Developers of conventional stationary reactors also do<br />

not lose hope to join the competition for entering the<br />

future SNPP market. For example, VVER developers are<br />

already offering an integral facility (VVER-I) of 100, 200<br />

and 300 MW. This design is based on the natural circulation<br />

of coolant, so it couples higher safety with compact<br />

equipment, thus allowing for modular arrangement of the<br />

NPP.<br />

Another SNPP development line is presented by smaller<br />

units of 0.5–1 MWe (5–10 MWt) that can be deployed on<br />

the basis of unmanned autonomous thermoelectric power<br />

plants.<br />

Practical feasibility of this class of energy sources is<br />

confirmed by the Kurchatov Institute’s experience in<br />

constructing power facilities based on the direct<br />

heat-to-electricity conversion. Romashka built in 1962 as a<br />

pilot facility intended for space applications was the first<br />

such facility in the world. In 1982, the Kurchatov Institute<br />

has built and launched Gamma – a prototype thermoelectric<br />

facility intended for ship applications [1] – which<br />

| | Fig. 4.<br />

Gamma – a prototype unmanned underwater power source<br />

(launched in 1982).<br />

has operated for many years and made it possible<br />

to perform an exhaustive scope of studies and tests<br />

(Figure 4).<br />

In the mid-80ies, proceeding from the Gamma’s<br />

successful operating experience, the design of Elena NPP<br />

was developed in the framework of conversion programs.<br />

This type of power facilities is based on the following three<br />

cornerstones:<br />

• water-water reactor with power self-regulation as a<br />

heat source;<br />

• heat removal by natural circulation of coolant in the<br />

primary and secondary circuit;<br />

• thermoelectric conversion of heat into electricity.<br />

As a result, such facilities – whose technical feasibility is<br />

now doubtless – offer considerable advantages compared<br />

to those based on turbine energy conversion.<br />

3 Nuclear technologies for the<br />

development of the Arctic shelf<br />

As concerns the Arctic shelf development, the Energy<br />

Strategy of Russia to 2035 estimates the country’s<br />

continental shelf to contain 90 billion tons of oil equivalent<br />

(toe), including 16 billion tons of oil with condensate and<br />

74 trillion m 3 of gas. About 70% of these resources find<br />

themselves on the Barents, Pechora and Kara Sea shelves,<br />

which together make about a half of the Russian Arctic<br />

shelf. Experts forecast that by 2035 Russia will annually<br />

produce up to 30 million tons of oil and 130 billion m 3 of<br />

gas on its Arctic shelf.<br />

The averaged total electricity demand by the hydrocarbon<br />

production industry is estimated above 3 GW, so<br />

ENERGY POLICY, ECONOMY AND LAW 151<br />

Energy Policy, Economy and Law<br />

Russian Nuclear Energy Technologies for the Development of the Arctic ı Andrej Yurjewitsch Gagarinskiy


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

ENERGY POLICY, ECONOMY AND LAW 152<br />

the summary demand of future oil & gas rigs on the Russian<br />

Arctic shelf may be quite high. About 40 % of this demand<br />

can be covered by underwater feeder cables, but this<br />

option is limited by distances below 200 km from the<br />

shore. Another 60% from rigs situated beyond this distance<br />

can be covered by autonomous underwater/sub-ice power<br />

plants. As concerns this application, small autonomous<br />

reactors seem to have no alternative [7].<br />

By the end of 1980-ies, the USSR already had a concept<br />

of underwater NPP with small reactor units [8]. Table 3<br />

lists some nuclear facilities proposed by the leading<br />

Russian design companies for application on oil & gas<br />

Facility<br />

Basic parameters<br />

Submarine tanker Carrying capacity – 20,000 t,<br />

propeller power – 30 MW<br />

Underwater<br />

nuclear compressor<br />

station<br />

Underwater station<br />

for LNG production<br />

Nuclear drill<br />

submarine<br />

| | Tab. 3.<br />

SMR designs under development.<br />

Displacement – 7,500 m 3 ,<br />

compressor output – 40 MW,<br />

continuous unmanned operation time<br />

– 10,000 hours<br />

The station includes: tankers,<br />

gas storages, liquefaction units,<br />

nuclear power facilities, terminals etc.<br />

Displacement – 20,000 m 3 ,<br />

reactor capacity – 6 MWe<br />

fields in heavy ice conditions.<br />

In late 2017, the media have published some information<br />

on the Iceberg project developed by the Rubin and<br />

OKBM Afrikantov design bureaus: a 24-MW underwater<br />

NPP capable of autonomous unmanned operation for a<br />

year (total lifetime 30 years). This NPP is intended as a<br />

power source for oil/gas drill and extraction rigs in areas<br />

with thick ice – in fact, this is a return to one of unique<br />

unimplemented designs of the eighties.<br />

In the developers’ opinion, nuclear energy supplies to<br />

underwater/sub-ice oil/gas production on the Arctic shelf<br />

should be based on system approach (“made in factory and<br />

shipped to sites”), with a maximum use of long operating<br />

experience of nuclear ships. This would enable:<br />

• no atmospheric releases plus localization and<br />

minimization of heat impact on the Arctic Ocean water<br />

to negligible values (compared to natural temperature<br />

fluctuations);<br />

• lower risk of oil spills – that cannot be efficiently<br />

liquidated by available technologies – in ice con ditions;<br />

• higher reliability and safety of power facilities;<br />

• minimized workforce requirements (up to total<br />

autonomy);<br />

• efficient and safe offshore operation under water/ice at<br />

distances of 1,000 km from the coast and beyond.<br />

The policy currently implemented by the government with<br />

regard to the Arctic region, as well as the scientific and<br />

technical experience accumulated by Russia, both allow<br />

for confident conclusion that considerable advances in the<br />

development of nuclear power facilities for the Arctic are<br />

to be expected in the short term.<br />

References<br />

1. Kurchatov Specialists and Atomic Fleet. Editor: M.V. Kovalchuk,<br />

NRC KI, Moscow, 2016 (in Russian).<br />

2. Status of Small and Medium-Sized Reactor Designs. A<br />

Supplement to the IAEA Advanced Reactor Information System<br />

(ARIS). IAEA, 2012<br />

3. Russia’s Nuclear Energy Strategy to 2050. NRC KI, Moscow, 2013<br />

(in Russian).<br />

4. M.V. Kovalchuk. Arctic Vector of Russian Energy. Priroda, 2016<br />

(in Russian).<br />

5. V.V. Petrunin et al.: Prospects for Small and Medium Nuclear<br />

Power Plants: a New Development Area. In: Small Nuclear Power<br />

Plants a New Development Area, IBRAE, Moscow, 2015<br />

(in Russian).<br />

6. A.I. Alekseev et al.: Uniterm SMR: a Frontline Area of Nuclear<br />

Power Development. In: Small Nuclear Power Plants a New<br />

Development Area, IBRAE, Moscow, 2015 (in Russian).<br />

7. E.P. Velikhov et al. Nuclear Energy for the Arctic Shelf. V Mire<br />

Nauki, v.10, 2015 (in Russian).<br />

8. V.S. Nikitin, V.S. Ustinov et al.: Nuclear Energy in the Arctic Region.<br />

The Arctic: Ecology and Economy, v.4(20), 2015 (in Russian).<br />

Authors<br />

Andrej Yurjewitsch Gagarinskiy<br />

National Research Centre “Kurchatov Institute”<br />

Moscow, Russian Federatio<br />

Energy Spotlight Policy, on Nuclear Economy Lawand Law<br />

Russian U.S. Regulators Nuclear Reject Energy Proposal Technologies to Subsidize for the Nuclear Development and Coal of the Power Arctic Prices ı Andrej ı Andrej Yurjewitsch Gagarinskiy


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

U.S. Regulators Reject Proposal to Subsidize Nuclear and<br />

Coal Power Prices<br />

Jay R. Kraemer<br />

On January 8, <strong>2018</strong>, the U.S. Federal Energy Regulatory Commission (“FERC”) unanimously rejected a rulemaking<br />

proposed by Secretary of Energy Rick Perry designed to enable the owners of coal and nuclear power plants to charge higher<br />

prices for their output, and thereby to prevent further premature retirements of such plants. The FERC has exclusive<br />

authority, under the Federal Power Act, to establish rules for interstate wholesale sales of electricity. Although the FERC<br />

simultaneously initiated a new proceeding to consider how to enhance the resilience of electricity supply and delivery in<br />

the U.S., that proceeding seems unlikely to offer near-term relief to nuclear plants that are approaching closure due to<br />

their inability to compete economically both with facilities fueled by low-priced natural gas and with renewable power<br />

sources benefitting from favorable tax provisions. Accordingly, the American nuclear power industry wil+l probably have<br />

to look elsewhere for relief from its present dire economic circumstances.<br />

Last fall, Secretary Perry concluded that U.S. wholesale<br />

electricity markets, as operating in power auctions<br />

conducted in accordance with FERC regulations, were<br />

not adequately compensating the “resiliency” benefits of<br />

nuclear and coal-fired “fuel-secure generation” facilities.<br />

Accordingly, he issued a directive instructing the FERC to<br />

develop and publish new market rules to correct that shortcoming.<br />

See, “Grid Resiliency Pricing Rule,” 82 Federal Register<br />

46940-48 ( October 10, 2017) (the “ Proposed Rule”).<br />

Specifically, he called upon the FERC to amend its regulations<br />

to require that each of the six regional entities<br />

( Independent System Operators (“ISOs”) and Regional<br />

Transmission Organizations (“RTOs”)) conducting FERCregulated<br />

power auctions promptly establish new rates for<br />

the purchase of power from certain generating facilities.<br />

Such rates would provide for recovery of the facilities’ costs<br />

of operation, fuel, capital, and financing, as well as a fair<br />

return on equity. Eligible generating facilities were defined<br />

in the Proposed Rule so as to include power plants that were<br />

not currently subject to cost-of- service rate regulation, had a<br />

90-day fuel supply on site, and were able to supply certain<br />

reliability energy services, such as voltage support, frequency<br />

services, and operating reserves. As a practical<br />

matter, therefore, the Proposed Rule called for the FERC to<br />

adopt regulations requiring electricity rate tariffs allowing<br />

full cost and reasonable profit recovery for coal-fired and<br />

nuclear “ merchant” power plants which, on the document’s<br />

face, appeared to be the only generating facilities that could<br />

meet the applicable definitions.<br />

The FERC received extensive comments on the Proposed<br />

Rule from ISOs, RTOs, electric utilities, non- utility elec tricity<br />

generators, trade associations repre senting a wide variety of<br />

energy interests, and many others. Meanwhile, the composition<br />

of the FERC itself changed markedly in the two<br />

months following publication of the Proposed Rule, including<br />

the confirmation of a new Chairman who assumed office<br />

in early December 2017 (and one of whose first official<br />

actions was to request an additional 30 days within which to<br />

respond to the Proposed Rule).<br />

In its unanimous Order terminating the rulemaking proceeding<br />

initiated in response to the Proposed Rule, the FERC<br />

briefly reviewed the development of the U.S. electric power<br />

industry and its own efforts to help ensure the resilience of<br />

the bulk power system. It then held that neither the Proposed<br />

Rule nor the record in that rule making proceeding<br />

had shown that the current RTO/ISO rates were unjust or<br />

unreasonable, or that they were unduly preferential or discriminatory<br />

– the statutory criteria in the Federal Power Act<br />

for changing rates. In addition, the FERC found no basis in<br />

the record to conclude that there was a threat to grid<br />

resilience, either in the current rates charged for power or<br />

otherwise. It then specifically rejected the Proposed Rule’s<br />

concept that all qualifying generating facilities should<br />

receive a cost-of-service recovery rate regardless of the need<br />

for power or the resulting prices to power consumers.<br />

Two FERC Commissioners – both Democrats – wrote concurring<br />

opinions that were quite critical of the Proposed<br />

Rule. One stated that, by “simply designat[ing facilities] for<br />

support rather than determining what services needed to be<br />

provided,” the Proposed Rule “sought to freeze yesterday’s<br />

resources in place indefinitely, rather than adapting to the<br />

resources that the market is selecting today or toward which<br />

it is trending in the future.” (Concurring Statement of Commissioner<br />

LaFleur, at 4.) The other described the Proposed<br />

Rule’s remedy as a “multi-billion dollar bailout targeted at<br />

coal and nuclear generating facilities,” and pointed to the<br />

transmission and distri bution systems in the U.S., rather<br />

than to generating facilities, as a greater threat to grid resilience.<br />

(Concurring Statement of Commissioner Glick, at 2.) A<br />

third Commissioner, after applauding “Secretary Perry’s<br />

bold leadership in jump- starting a national conversation on<br />

this urgent challenge,” stated that he would have preferred<br />

to move expeditiously to direct the RTOs/ISOs either to submit<br />

interim rate revisions for existing power plants that were<br />

providing resilience attributes and were at risk of retiring<br />

before the new FERC proceeding was concluded or to explain<br />

why such rate revisions were not necessary. ( Concurring<br />

Statement of Commissioner Chatterjee, at 1, 3.)<br />

After terminating the proceeding involving the Proposed<br />

Rule, the FERC began a new proceeding to address potential<br />

grid resiliency challenges in the RTOs/ISOs, including a<br />

better understanding of what resiliency means and requires.<br />

The FERC ordered each RTO and ISO to submit, within 60<br />

days, comments on those issues, on how the RTOs/ISOs<br />

assess threats to resiliency, and on how they mitigate threats<br />

to resilience. Following those sub missions, other interested<br />

parties will have 30 days to submit reply comments.<br />

The new FERC proceeding is much more “open-ended”<br />

than was the Proposed Rule, in terms of its potential<br />

outcome, whether it will in fact lead to any new rule making,<br />

and especially whether it will result in higher rates for<br />

nuclear plants threatened with premature retirement. Some<br />

states, most particularly Illinois and New York, have already<br />

put in place arrangements that permit compensation to the<br />

owners of nuclear plants for their non-carbon-emitting<br />

power production. Other states, such a Connecticut, New<br />

Jersey, and Pennsylvania have similar schemes under consideration.<br />

However, because the Trump Administration<br />

appears wedded to continued efforts to support the coal<br />

industry (and, relatedly, seems unwilling to recognize the<br />

climate benefits of carbon-free generation of electricity), it<br />

appears that any economic relief to at-risk nuclear power<br />

plants is more likely to come from state-sponsored plans, or<br />

possibly proposals initiated by ISOs and/or RSOs themselves,<br />

than from initiatives from the Federal Government.<br />

Author<br />

Jay R. Kraemer<br />

Of Counsel<br />

Fried, Frank, Harris, Shriver & Jacobson LLP<br />

801 17 th Street, NW Washington, DC 20006, USA<br />

153<br />

SPOTLIGHT ON NUCLEAR LAW<br />

Spotlight on Nuclear Law<br />

U.S. Regulators Reject Proposal to Subsidize Nuclear and Coal Power Prices ı Jay R. Kraemer


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

154<br />

ENVIRONMENT AND SAFETY<br />

The Importance of Integration of<br />

Deterministic and Probabilistic<br />

Approaches in the Framework of<br />

Integrated Risk Informed Decision<br />

Making in Nuclear Reactors<br />

Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia and Ehsan Zarifi<br />

Introduction For many years, decision making on safety issues has been based on either deterministic safety<br />

assessment (DSA) or probabilistic safety assessment (PSA). In recent years, integrated risk informed decision-making<br />

(IRIDM) approach has been suggested to integrate in a systematic manner quantitative and qualitative (deterministic<br />

and probabilistic) safety considerations to attain a balanced decision [1, 2, 3, 4, 5, 6, 7]. The IRIDM and investigation of<br />

the combination of deterministic and probabilistic approaches are important issues, which have attracted much<br />

attention in recent years. United States Nuclear Regulatory Commission (USNRC) has developed reports on integrated<br />

risk-informed decisions and applications of deterministic and probabilistic approaches since 1998 [8, 9, 10, 11, 12, 13].<br />

They considered the high-level criteria for defence-in-depth and all of safety margin by using the IRIDM concept. Collins<br />

[14] investigated risk informed safety and regulatory decision making based on USNRC perspective. He investigated the<br />

methods to enhance the safety criteria, regulatory effectiveness and efficiency, and public confidence. Impediments for<br />

the application of risk-informed decisions making (RIDM) in nuclear safety were considered by Hahn et al [15]. They<br />

suggested that the PSA method could not be replaced or substituted by DSA method. IAEA has overviewed risk- informed<br />

regulation of nuclear facilities [4]. In the overview, the application of RIDM to provide safety level in all types of nuclear<br />

facility is considered. Risk-informed decision making in the context of the National Aeronautics and Space Administration<br />

(NASA) risk management is studied by Dezfuli et al [16, 17, 18]. In this investigation, evolution of risk-related policy and<br />

guidance documents and NASA’s risk management approach are discussed. The International Nuclear Safety Group<br />

(INSAG) has also published a framework for an integrated RIDM process (INSAG 25, 77, etc) [19, 20, 21, 22]. In this<br />

report, the framework, principles and key elements for RIDM are identified and their interrelationship are described. In<br />

another study, Fontes et al [23, 24] considered ITO model of pit corrosion in pipelines by applying RIDM. Talarico [25,<br />

26] indicated RIDM of safety investments by using the disproportion factor, Process safety and environmental protection.<br />

For this purpose a systematic approach, Cost-benefit analysis, determination model and simulations on realistic data<br />

were presented. Veeramany et al [27, 28] investigated a framework for modeling of high-impact and low-frequency<br />

power grid events to support RIDM. In this report, an integrated high-impact and low-frequency risk framework was<br />

applied for improvement of the risk models. Borgonovo and Apostolakis [29, 30] introduced an importance measure,<br />

the differential importance measure (DIM), for RIDM. Using this method, the problems exiting in Fussell-Vesely (FV)<br />

and risk achievement worth (RAW) methods were solved.<br />

A risk-informed defence-in-depth<br />

frame work for existing and advanced<br />

reactors are considered by Fleming<br />

and Silady [31, 32, 33, 34]. A new<br />

definition of defence-in-depth including<br />

the inherent characteristics,<br />

design features of a nuclear reactor,<br />

and the quantification of the design<br />

features importance is suggested.<br />

Mohammad Modarres [35] proposed<br />

and discussed implications of a largely<br />

probabilistic regulatory framework<br />

using best estimate, goal-driven,<br />

risk-informed, and performancebased<br />

methods.<br />

The traditional defense-in-depth<br />

design and operation regulatory<br />

philosophy are used to propose a<br />

framework when uncertainty in<br />

conforming to specific goals and<br />

objectives is high. The steps need to<br />

develop a corresponding technologyneutral<br />

regulatory approach from the<br />

proposed framework explained.<br />

Kang and Sung [36, 37] studied<br />

analysis of safety-critical digital<br />

systems for RIDM. The fault tree<br />

analysis framework of the safety of<br />

digital systems are presented and the<br />

relationship between the important<br />

characteristics of digital systems and<br />

the PSA results using mathematical<br />

expressions are described quantitatively.<br />

Kim et al [38, 39, 40] discussed<br />

the risk-informed approach that have<br />

proposed to make a safety case for<br />

advanced nuclear reactors. They also<br />

considered a risk-informed safety<br />

analysis approach suggested by<br />

Westinghouse. In this paper, the<br />

risk-informed approach and its<br />

potential to improve the conventional<br />

and deterministic approaches because<br />

of various desirable characteristics are<br />

discussed. Future nuclear reactor<br />

designs meet an uncertain regulatory<br />

environment. Delaney et al [41, 42,<br />

43] considered the risk-informed<br />

design guidance for this reactor<br />

systems. Some level of probabilistic<br />

insights in the regulations and<br />

supporting regulatory documents for<br />

generation-IV nuclear reactors are<br />

anticipated. This paper presented an<br />

iterative four-step risk-informed<br />

methodology to guide the design of<br />

future-reactor systems.<br />

Deterministic approach<br />

Deterministic safety approach (DSA)<br />

applies a set of conservative rules<br />

and requirements for the design and<br />

operation of a nuclear facility. Thereby<br />

providing a way of taking into account<br />

uncertainties in the performance of<br />

equipment and humans. DSA provides<br />

the defence-in-depth that assures the<br />

successive performance of barrier to<br />

prevent accidents. A safe for operator<br />

of nuclear power plant, and environment<br />

during the normal and abnormal<br />

operation can be achievable by<br />

Environment and Safety<br />

The Importance of Integration of Deterministic and Probabilistic Approaches in the Framework of Integrated Risk Informed Decision Making in Nuclear Reactors<br />

Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia and Ehsan Zarifi


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

applying an appropriate defence- indepth.<br />

It is needed to determine the<br />

design basis accidents to analyze<br />

safety of nuclear facilities in deterministic<br />

approach, that its analysis as<br />

well as presence of DID can increase<br />

the safety margin, which has an<br />

important role in prevention and<br />

mitigation of the accidents. If these<br />

parameter are met, the level of risk to<br />

operators and public from operation<br />

of the nuclear facility will be acceptably<br />

low [4, 5, 7, 19].There are<br />

also uncertainties in deterministic<br />

approach; For example, there are<br />

uncertainties in the analytical models,<br />

computer codes, and the capability of<br />

structures, systems and components,<br />

etc. The involved uncertainties are<br />

determined by applying conservative<br />

assumptions, as well as models and<br />

data. Deterministic approach has<br />

advantages and disadvantages. The<br />

main advantage of deterministic<br />

approach is that it is well developed<br />

for applying to all types of nuclear<br />

facilities [4, 5, 7, 19]. In addition to its<br />

advantages, there are defects like<br />

indicating the rare fault instead of<br />

lesser faults that are more frequent to<br />

the risk, disability to balance a design<br />

and reduction in level of risk.<br />

Probabilistic approach<br />

Probabilistic approach is used for the<br />

analysis of safety of nuclear power<br />

plants. This method has three safety<br />

levels. By application of this approach,<br />

it is possible to analyze all transients<br />

and accidents including fires and<br />

floods, Core Damage Frequency<br />

(CDF) and Large Early Release<br />

Frequency (LERF). In addition, all<br />

sources of radioactive material,<br />

human errors, and levels of risk can be<br />

considered in this method. Probabilistic<br />

approach can be used in all the<br />

modes of operation of the plant. The<br />

scope of the PSA applying may be less<br />

than this and, the limitations of PSA<br />

method must be recognized when it is<br />

used as part of the IRIDM process.<br />

At first, initial events are determined<br />

in probabilistic safety analysis,<br />

then it must calculated whether the<br />

core damage frequency and associated<br />

risk can satisfy the required requirements<br />

or not.<br />

The PSA method uses comprehensive<br />

list of initiating events and determines<br />

all the fault sequences that<br />

could lead to core damage or a large<br />

early release. The levels of risk,<br />

parameters uncertainty, and sensitivity<br />

studies can be also considered<br />

by using PSA approach.<br />

The deficiency in the probabilistic<br />

approach is that the PSA model cannot<br />

determine all the initiating events<br />

and fault sequences that could affect<br />

to the risk. The uncertainties in some<br />

areas of the PSA model are very large.<br />

Nevertheless, The PSA model can explicitly<br />

explain many of uncertainties<br />

by using modern PSA computer codes.<br />

The PSA approach is a part of decision-making<br />

and cannot replace it, individually.<br />

It can only be a contributor<br />

to the decision making.<br />

Integration of PSA and DSA<br />

methods into the integrated<br />

risk informed decisionmaking<br />

The deterministic and probabilistic<br />

approaches must be used to control<br />

the level of nuclear facilities risk to<br />

satisfy the safety of operators. There<br />

are many differences between deterministic<br />

and probabilistic approaches<br />

in evaluation methods and boundary<br />

conditions. The deterministic approach<br />

is conservative but Probabilistic<br />

approach is more realistic and uses<br />

best estimate approach. The deterministic<br />

approach usually uses some<br />

of initiating events and fault<br />

sequences, while the Probabilistic<br />

approach uses a comprehensive set of<br />

initiating events and hazards for<br />

analysis. In deterministic approach,<br />

accident conditions are addressed<br />

separately, so that the PSA approximately<br />

integrates all initiating events<br />

and safety systems in the same model.<br />

DSA approach uses approximate<br />

method for calculating initiating<br />

events frequencies and systems and<br />

components failure probabilities,<br />

while PSA uses explicit methods for<br />

these purposes. Uncertainties are<br />

addressed by conservative assumptions<br />

and can be quantified by using<br />

explicit methods in deterministic and<br />

probabilistic models.<br />

Generally, in view of intiating<br />

events, DSA only considers design<br />

basis accidents, howerver PSA considers<br />

all design basis and beyond<br />

design accidents. By considering the<br />

safety systems, DSA only indicates<br />

singular failure criterion, however PSA<br />

indicates both of singular and combined<br />

failiure criterion . In deterministic<br />

approach, with the respect of the<br />

operator instruction, nothing should<br />

be done in 30 minutes, but afterwards<br />

instructions should be implemented<br />

completely. Whereas in the PSA the<br />

operator's proceeding is more realistic.<br />

In other words, the basis of DSA is<br />

more conservative while the PSA is<br />

realistic as much as possible.<br />

The PSA can complement the<br />

deterministic methods because:<br />

• PSA considers thousands of accident<br />

sequences instead of the<br />

relatively few.<br />

• It analyses more complex failure<br />

modes.<br />

• It quantifies the remaining risk.<br />

• It identifies non-conservative and<br />

overly conservative in the design.<br />

• It quantifies the part of the uncertainties,<br />

contributing to the understanding<br />

of the issues.<br />

Integrated approach can determine<br />

that design is balanced against<br />

initiating events. Also, determines the<br />

importance of structures, systems and<br />

components (SSCs). In all cases, a<br />

combination of deterministic and<br />

probabilistic approaches is made to<br />

achieve acceptable safety level. Each<br />

approach has separate viewpoint, it is<br />

possible to use the result of each<br />

approach for another one instead of<br />

the applying assumptions into them.<br />

In this way, the deterministic success<br />

criteria, which is obtained in the<br />

deterministic approach, can be used<br />

in probabilistic approach. In addition,<br />

the new design basis events and<br />

re-classified structures, systems<br />

and components from probabilistic<br />

approach can be used in the deterministic<br />

approach. Then, deterministic<br />

and probabilistic results are compared<br />

with regulation and the assessed risk<br />

metrics, respectively. Finally, the<br />

acceptable safety level can be achieved<br />

by using the integrated risk-informed<br />

decision. If the safety level is not<br />

satisfied, the measures should be<br />

re-implemented to enhance the safety<br />

level [1, 2, 3, 4, 7, 19, 20, 33, 44],<br />

Figure 1.<br />

Early safety management focused<br />

primarily on the safety of the plant<br />

and equipment (the technology),<br />

while subsequent practices also<br />

| | Fig. 1.<br />

Process of safety analysis by integration of DSA and PSA.<br />

ENVIRONMENT AND SAFETY 155<br />

Environment and Safety<br />

The Importance of Integration of Deterministic and Probabilistic Approaches in the Framework of Integrated Risk Informed Decision Making in Nuclear Reactors<br />

Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia and Ehsan Zarifi


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

ENVIRONMENT AND SAFETY 156<br />

| | Fig. 3.<br />

Requirements for IRIDM.<br />

considered several factors such as<br />

human operators, organization, etc.<br />

The IRIDM approach to managing<br />

safety adopted by many operators<br />

worldwide addresses all aspects and<br />

the complex interaction between<br />

them, Figure 2.<br />

| | Fig. 2.<br />

Important parameter for IRIDM.<br />

Experience has shown that an<br />

integrated decision making process,<br />

including deterministic and probabilistic<br />

analyses with good engineering<br />

practices, consideration of<br />

operating experience and sound<br />

managerial arrangements, is effective<br />

in refining and improving safe design<br />

and safe operation of nuclear installations.<br />

A risk-based on integrated<br />

decision-making process provides a<br />

defensible basis for making decisions.<br />

In addition, it is possible to recognize<br />

the greatest risks and prioritize<br />

attempts to minimize or omit them.<br />

Decision making case<br />

DSA<br />

method<br />

This approach has many benefits<br />

including a greatly improved understanding<br />

of the safety and identifying<br />

safety vulnerabilities that have<br />

not identified using standards-based<br />

evaluation techniques. IRIDM is a<br />

consultative process that applies a set<br />

of performance measures, with other<br />

considerations, to “inform” decisionmaking.<br />

IRIDM is invoked for key<br />

decisions, which typically requires<br />

setting of requirements. It is applied in<br />

many different fields, risk assessment,<br />

engineering design decisions and<br />

configuration management processes,<br />

etc. Using the IRIDM, assures project<br />

success and best decision making for<br />

risk assessment, etc [4, 17, 19]. The<br />

comparison between several methods<br />

for safety analysis and decision<br />

making is shown in Table 1.<br />

Integrated Risk Informed Decision<br />

Making is a best practice approach to<br />

safety management and decision<br />

making. IRIDM is a modular model<br />

that considers all relevant and important<br />

factors in an appropriate way to<br />

reach a balanced decision for taking<br />

account of all the risks and hazards<br />

posed by the facility. The main goal of<br />

the model is to develop an integrated<br />

data bank for informed decision<br />

making in necessary cases. The integrated<br />

data bank includes: operational<br />

feedback, organizational factor analysis,<br />

human factor, inspection, Deterministic<br />

Safety Analysis, Living<br />

Probabilistic Safety Analysis, security<br />

and safeguard and etc. The scheme of<br />

this model is shown in Figure 3.<br />

A series of requirements and<br />

criteria including different steps are<br />

needed for IRIDM process. The first<br />

step is defining the any types of issues<br />

that can be considered in safety analysis.<br />

The second step is identifying the<br />

requirements and criteria related to<br />

the specific issue. In this step, the<br />

mandatory requirements, deterministic<br />

and probabilistic insights and other<br />

requirements should be determine for<br />

PSA<br />

method<br />

| | Tab. 1.<br />

Comparison between several methods for safety analysis.<br />

RIDM<br />

method<br />

IRDM<br />

method<br />

Comprehensiveness<br />

of events considered<br />

Ç – – Ç<br />

Quality assurance – Ç – Ç<br />

Review of SAR report – Ç Ç Ç<br />

Emergency preparedness<br />

and resparde<br />

– – Ç Ç<br />

Licensing Ç Ç – Ç<br />

implementation of IRIDM process. In<br />

third step, weighting of inputs is<br />

determined. A specific weight of each<br />

parameter attributes based on its importance<br />

for different issues. Then,<br />

the evaluating methods of safety<br />

issues can be recognized by these<br />

weights. The forth step is decision<br />

making. The aim of this step is to make<br />

a decision whether the change should<br />

be made in design or operation of<br />

the plant, the regulation under consideration,<br />

etc. A good decision<br />

making process requires conducting<br />

the preceding steps. Because improper<br />

decision making will result in<br />

necessity of redoing all steps. After<br />

making a good decision, it should be<br />

implemented. The operators should<br />

receive proper training and, required<br />

changes in the associated instruments<br />

should be applied. The final step is<br />

monitoring of the process. In order to<br />

have proper implementation of the<br />

aforementioned issue, a complete<br />

regulation should be performed. in<br />

the case, the adequate efficiency has<br />

not been achieved in the implemented<br />

steps, the procedure should be revised<br />

or re-planed [4, 5, 7, 19, 44].<br />

Advantages of IRIDM approach is<br />

include:<br />

• Transparency, as the weighting<br />

of the elements and the way<br />

resolution is achieved is clear;<br />

• Balanced, if all elements are<br />

weighted properly;<br />

• Logical, if carried out in a structured<br />

way;<br />

• Consistency, if weighting developed<br />

appropriately;<br />

• Accountable, if documented properly<br />

so the process can be reconstructed;<br />

It is necessary to be considered that<br />

complexity of integration of quantitative<br />

and qualitative information is<br />

very high.<br />

According to give explanation in<br />

this paper, the importance of using<br />

the combination of both deterministic<br />

and probabilistic approaches in the<br />

framework of integrated risk informed<br />

decision making is quite evident.<br />

For more realistic analysis of nuclear<br />

accidents should be done using<br />

both deterministic and probabilistic<br />

approaches. The required parameters<br />

(for example, deterministic success<br />

criteria, new design basis event,<br />

re-classified SSCs…) for an approach<br />

should be used in the other one or vice<br />

versa. In addition, the final decision<br />

will be made on basis of IRIDM by<br />

using deterministic and probabilistic<br />

insights. This will lead to greater<br />

safety of operators and environment,<br />

Environment and Safety<br />

The Importance of Integration of Deterministic and Probabilistic Approaches in the Framework of Integrated Risk Informed Decision Making in Nuclear Reactors<br />

Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia and Ehsan Zarifi


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

Determination of greater defense<br />

barriers, lower costs, Selection of<br />

limiting cases for detailed quantitative<br />

analysis, less energy dissipation, Performance<br />

of detailed quantitative<br />

analysis for each limiting case, Evaluation<br />

of compliance to the acceptance<br />

criteria and safety margins, etc.<br />

Conclusion<br />

In general, when the analysis of<br />

nuclear accidents are separately done<br />

by deterministic and probabilistic<br />

approaches are faced with shortcomings<br />

and drawbacks. It is not<br />

possible to provide a comprehensive<br />

prediction for nuclear accidents. In<br />

deterministic approach, many effective<br />

factors in the event are not considered<br />

but in probabilistic approach,<br />

most effective factors in the event are<br />

used for determining the frequency of<br />

occurrence and total error. Therefore,<br />

for better understanding and comprehensive<br />

analysis of events, deterministic<br />

and probabilistic assessment<br />

is necessary at the same time.<br />

This review indicates that the integrated<br />

risk-informed approach has<br />

great potential to improve safety level<br />

by using probabilistic and deterministic<br />

approaches. By using IRIDM<br />

approach, determining of initiating<br />

events, multiple failures and event<br />

sequences are possible. The final decision<br />

should be based on integrated<br />

risk-informed rather than the risk,<br />

itself. Risk assessment should only<br />

be part of the decision process. For<br />

the final decision, integrated risk<br />

informed should be based on combination<br />

of deterministic and probabilistic<br />

approach.<br />

Adopting an IRIDM model is way<br />

of helping prevent these incidents and<br />

accidents as well as other benefits<br />

such as:<br />

• Safer and more secure operations<br />

have reduced risks through more<br />

comprehensive understanding of<br />

operational risks;<br />

• Greater resilience, including the<br />

ability to cope with unforeseen<br />

threats and adverse events;<br />

• Better integration of operations<br />

and technical systems, with financial<br />

and human resource management;<br />

• Greater efficiency, including more<br />

productive operations, higher staff<br />

morale, lower staff turnover, more<br />

efficient and effective control<br />

measures;<br />

• Greater ability to identify weaknesses<br />

so that they can be actively<br />

corrected to prevent opportunities<br />

for accidents to happen.<br />

Reference<br />

1. IAEA, Applications of Probabilistic<br />

Safety Assessment (PSA) for Nuclear<br />

Power Plants, IAEA-TECDOC-1200,<br />

Vienna 2001.<br />

2. IAEA, Living Probabilistic Safety<br />

Assessment (LPSA), IAEA-TECDOC-1106,<br />

Vienna 1999.<br />

3. IAEA, Review of Probabilistic Safety<br />

Assessments by Regulatory Bodies,<br />

Safety Reports Series No. 25, IAEA,<br />

Vienna 2002.<br />

4. IAEA, Risk-informed regulation of<br />

nuclear facilities: overview of the<br />

current status (IAEATECDOC-1436),<br />

Technical report, IAEA, Vienna, 2005.<br />

5. IAEA, The Interface between Safety and<br />

Security at Nuclear Power Plants,<br />

INSAG-24, IAEA, Vienna, 2010.<br />

6. US NUCLEAR REGULATORY<br />

COMMISSION, Framework for Risk-<br />

Informed Changes to the Technical<br />

Requirements of 10 CFR 50,<br />

Attachment 1 to SECY-00-198, USNRC,<br />

Rockville, MD 2000.<br />

7. E. Zio, N. Pedroni, Risk-informed<br />

decision-making processes, An<br />

overview, 2012.<br />

8. USNRC, An approach for plant-specific,<br />

risk-informed decision-making: Graded<br />

quality assurance, Regulatory guide<br />

1.176, Technical report, US Nuclear<br />

Regulatory Commission, Washington,<br />

D.C., 1998a.<br />

9. USNRC, An approach for plant-specific,<br />

risk-informed decision-making: Inservice<br />

inspection of piping, Regulatory guide<br />

1.178, Technical report, US Nuclear<br />

Regulatory Commission, Washington,<br />

D.C., 1998b.<br />

10. USNRC, An approach for plant-specific,<br />

risk-informed decision-making: Inservice<br />

testing, Regulatory guide 1.175,<br />

Technical report, US Nuclear Regulatory<br />

Commission, Washington, D.C., 1998c.<br />

11. USNRC, An approach for plant-specific,<br />

risk-informed decision-making:<br />

Technical specifications, Regulatory<br />

guide 1.177, Technical report, US<br />

Nuclear Regulatory Commission,<br />

Washington, D.C., 1998d.<br />

12. USNRC, An approach for using<br />

probabilistic risk assessment in riskinformed<br />

decisions on plant-specific<br />

changes to the licensing basis<br />

(NUREG-1.174), Technical report, US<br />

Nuclear Regulatory Commission,<br />

Washington, D.C., 2002.<br />

13. USNRC, Guidance on the treatment of<br />

uncertainties associated with PRAs in<br />

risk-informed decision making<br />

(NUREG-1855), Technical report, US<br />

Nuclear Regulatory Commission,<br />

Washington, D.C., 2009.<br />

14. S. J. Collins, Risk informed safety and<br />

regulatory decision making: an NRC<br />

perspective, In Proceedings of the 2001<br />

IAEA international conference on<br />

Topical issues in nuclear safety, Vienna,<br />

IAEA, 2001.<br />

15. L. Hahn, Impediments for the application<br />

of risk-informed decision making in<br />

nuclear safety (IAEA-CN-82/49), In<br />

International Conference on Topical<br />

Issues in Nuclear Safety, Vienna, 2002.<br />

16. H. Dezfuli, M. Stamatelatos, G. Maggio,<br />

C. Everett, Risk-informed decision<br />

making in the context of NASA risk management,<br />

In Proceedings of the PSAM<br />

10 Conference, Seattle, WA., 2010.<br />

17. NASA, Risk-informed decision making<br />

handbook (NASA/SP-2010-576).<br />

Technical report, NASA, 2010.<br />

18. NPR 8000.4, Agency Risk Management<br />

Procedural Requirements 2009, NPR<br />

8000.4, Agency Risk Management<br />

Procedural Requirements, 2009.<br />

19. IAEA, A framework for an integrated<br />

risk informed decision making process /<br />

a report by the International Nuclear<br />

Safety Group, Vienna, INSAG series,<br />

ISSN 1025–2169, no. 25, 2011.<br />

20. IAEA, Safety Assessment for Facilities<br />

and Activities, IAEA Safety Standards<br />

Series No. GSR Part 4, IAEA, Vienna,<br />

2009.<br />

21. OECD Nuclear Energy Agency, Nuclear<br />

Regulatory Decision Making, OECD,<br />

Paris, 2005.<br />

22. OECD Nuclear Energy Agency,<br />

Improving nuclear regulation, Nuclear<br />

Regulation, OECD, Paris, 2009.<br />

23. G.S. Fontes, An ITO model of pit<br />

corrosion in pipelines for evaluating<br />

risk-informed decision making. Instituto<br />

Militar de Engenharia, Nov 24, 2015.<br />

24. M. Chang, R. Chang, C. Shu, K. Lin,<br />

Application of risk based inspection in<br />

refinery and processing piping, J. Loss<br />

Prev. ProcessInd.18, 397–402, 2005.<br />

25. L. Talarico, R. Genserik, Risk-informed<br />

decision making of safety investments<br />

by using the disproportion factor,<br />

Process safety and environmental<br />

protection / Institution of Chemical<br />

Engineers [London],ISSN 0957-5820 -<br />

100p 117-130, 2016.<br />

26. J. Janssens, L. Talarico, G. Reniers, K.<br />

Sörensen, A decision model to allocate<br />

protective safety barriers and mitigate<br />

domino effects. Reliab. Eng. Syst. Saf.<br />

143, 44–52, 2015.<br />

27. A. Veeramany, S.D. Unwin, G.A. Coles,<br />

J.E. Dagle, W.D. Millard, J. Yao, C.S.<br />

Glantz, S.N.G. Gourisetti, Framework for<br />

Modeling High-Impact and Low- Frequency<br />

Power Grid Events to Support<br />

Risk-Informed Decisions, PNNL-24673,<br />

Pacific Northwest National Laboratory,<br />

Richland, WA, 2015.<br />

28. G. Apostolakis, M. Cunningham, C. Lui,<br />

G. Pangburn, W. Reckle, A Proposed<br />

Risk Management Regulatory Framework.<br />

NUREG-2150, U.S. Nuclear<br />

Regulatory Commission, Washington<br />

D.C, 2012.<br />

29. E. Borgonovo, G.E. Apostolakis, A new<br />

importance measure for risk informed<br />

decision making, reliability engineering<br />

and study safety, Cambridge, USA,<br />

2001.<br />

30. M.C. Cheok, G.W. Parry, R.R. Sherry, Use<br />

of importance measures in riskinformed<br />

regulatory applications.<br />

Reliability Engineering and System<br />

Safety; 60:213-26, 1998.<br />

31. K. N. Fleming, F. A. Silady, A risk<br />

informed defense-in-depth framework<br />

for existing and advanced reactors, Reliability<br />

Engineering and System Safety,<br />

San Diego, CA 92121-2767, USA, 2002.<br />

ENVIRONMENT AND SAFETY 157<br />

Environment and Safety<br />

The Importance of Integration of Deterministic and Probabilistic Approaches in the Framework of Integrated Risk Informed Decision Making in Nuclear Reactors<br />

Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia and Ehsan Zarifi


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

ENVIRONMENT AND SAFETY 158<br />

32. A. Carnino, M. Gaparini, Defense in<br />

depth and development of safety<br />

requirements for advanced reactors.<br />

Workshop on Advanced Nuclear<br />

Reactor Safety Issues and Research<br />

Needs, Paris; February 18–20, 2002.<br />

33. IAEA, Defence in Depth in Nuclear<br />

Safety, IAEA; INSAG-10, IAEA, Vienna,<br />

1996.<br />

34. J.N. Sorensen, G.E. Apostolakis, T.S.<br />

Kress, D.A. Powers, on the role of<br />

defense-in-depth in risk informed<br />

regulation. Presented at PSA’99,<br />

Washington DC, USA, August 22–25,<br />

La Grange Park, IL, USA: American<br />

Nuclear Society; 1999.<br />

35. M. Modarres, Advanced nuclear power<br />

plant regulation using risk-informed<br />

and performance-based methods,<br />

Reliability Engineering and System<br />

Safety, College Park, MD 20874, USA,<br />

2009.<br />

36. H.G. Kang, T. Sung, An analysis of safety-critical<br />

digital systems for risk-informed<br />

design, Reliability Engineering<br />

and System Safety, Taejon 305-600,<br />

South Korea, 2002.<br />

37. I.S. Kim, T.K. Kim, M.C. Kim, B.S. Kim,<br />

S.W. Hwang, K.C. Ryu, Suitability review<br />

of FMEA and reliability analysis for<br />

digital plant protection system and<br />

digital engineered safety features<br />

actuation system. KINS/HR-327; 2000.<br />

38. I. S. Kim, S.K. Ahn, K.M. Oh, Deterministic<br />

and risk-informed approaches<br />

for safety analysis of advanced reactors:<br />

Part II, Risk- informed approaches,<br />

Reliability Engineering and System<br />

Safety, Daejeon 305-338, Republic of<br />

Korea, 2010.<br />

39. M.C. Jacob, J.P. Rezendes, Development<br />

of risk informed safety analysis<br />

approach and pilot application.<br />

Westinghouse, WCAP-16084-NP, rev 0,<br />

September, 2003.<br />

40. DOE, USNRC, Next generation nuclear<br />

plant licensing strategy – a report to<br />

congress, August, 2008.<br />

41. M.J. Delaney, G.E. Apostolakis, M. J.<br />

Driscoll, Risk-informed design guidance<br />

for future reactor systems, Nuclear<br />

Engineering and Design, Cambridge,<br />

MA 02139-4307, USA, 2005.<br />

42. G.E. Apostolakis, How useful is<br />

quantitative risk assessment?, Risk Anal.<br />

24, 515–520, 2004.<br />

43. G.E. Apostolakis, M.W. Golay, A.L.<br />

Camp, A.L. Duran, D.J. Finnicum, S.E.<br />

Ritterbusch, June 4–5, A new riskinformed<br />

design and regulatory<br />

process. In: Proceedings of the Advisory<br />

Committee on Reactor Safeguards<br />

Workshop on Future Reactors, Report<br />

NUREG/CP-0175, pp. p237–p248, US<br />

Nuclear Regulatory Commission,<br />

Washington, DC, 2001.<br />

44. A. Lyubarskiy, I. Kuzmina, M. E.<br />

Shanawany, Advances in Risk Informed<br />

Decision Making – IAEA’s Approach,<br />

Vienna, Austria, 2011.<br />

Authors<br />

Mohsen Esfandiari<br />

Gholamreza Jahanfarnia<br />

Department of Nuclear<br />

Engineering<br />

Science and Research Branch<br />

Islamic Azad University, Tehran,<br />

Iran<br />

Kamran Sepanloo<br />

Ehsan Zarifi<br />

Reactor and Nuclear Safety<br />

Research School<br />

Nuclear Science and Technology<br />

Research Institute (NSTRI), Tehran,<br />

Iran.<br />

Applied Reliability Assessment for the<br />

Passive Safety Systems of Nuclear Power<br />

Plants (NPPs) Using System Dynamics (SD)<br />

Yun Il Kim and Tae Ho Woo<br />

1 Introduction A new kind of passive system is investigated in case of an accident in nuclear power plants<br />

(NPPs). Conventional passive systems have the limitations in the conditional integrity like the piping system of the<br />

coolants. In this paper, the free-falling of emergency coolants are proposed where the flying machine, drone, is imported<br />

to carry out the coolants on the upper position of the containment building. In the cases of the Fukushima and Chernobyl,<br />

the piping systems were blown away. So, the emergency coolants couldn’t flow into the reactor core position where the<br />

reactor fuels were making continuous very high energy without stabilizing of the power level. Although the integrity of<br />

the piping injection systems have been investigated as the good conditions, the previous history couldn’t give the<br />

satisfactions to the public.<br />

During the Fukushima disaster, the<br />

operator had been seeking for the<br />

prime minister to take a permission to<br />

open the gas leak valve in the containment<br />

building when the reactor pump<br />

was out of order and the hydrogen<br />

gases were produced continuously.<br />

Eventually, the hydrogen explosion<br />

happened and the four plants were<br />

collapsed within several days after<br />

East-Japan earthquake impact on the<br />

Fukushima coast and its related areas.<br />

Furthermore, even if there was an<br />

opportunity to make use of the sea<br />

water in order to cool down the<br />

reactor core, the operator didn’t use it<br />

for keeping the expensive reactor<br />

structure from the saluted sea water<br />

in which the material corrosions could<br />

been happened and the material could<br />

be in the significantly damaged situation.<br />

Then, all kinds of the cooling<br />

systems were gone permanently.<br />

The dangerous radioactive contaminations<br />

to the environment have been<br />

done continuously. Considering the<br />

case of the Fukushima nuclear accident,<br />

the piping system has the crucial<br />

fault that the safety system can’t<br />

make any role in the post-accident or<br />

on-accident. Piping in the NPPs should<br />

be incorporated with the alternative<br />

coolant supply method. So, the<br />

detached system from plant building<br />

could be imagined in this study.<br />

The merit of the passive system is<br />

operated without in-site electricity.<br />

So, the natural circulation or gravity<br />

could be acted for the designed system<br />

by injection of the coolants. However,<br />

even the action of switch of the system<br />

operation should be done to start. So,<br />

the manual based stating action is<br />

needed for the operation of passive<br />

system. As the same condition of the<br />

Environment and Safety<br />

Applied Reliability Assessment for the Passive Safety Systems of Nuclear Power Plants (NPPs) Using System Dynamics (SD) ı Yun Il Kim and Tae Ho Woo


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

initial action, the detached lifted<br />

coolant carrying by drone is similar in<br />

the starting state. However, the non<br />

in-site power is supplied by the battery<br />

in the drone’s flying system. ‘Passive’<br />

means that the power is not used from<br />

the in-site system of the plant. The<br />

battery is supplied from the external<br />

energy source. So, the drone could be<br />

considered as one for constructing the<br />

passive system in NPPs. There are the<br />

comparisons of the passive systems in<br />

Table 1.<br />

Type<br />

Natural<br />

circulation<br />

Gravity<br />

Free-fall<br />

Power<br />

| | Tab. 1.<br />

List of passive systems.<br />

Non in-site electricity<br />

Non in-site electricity<br />

Non in-site electricity,<br />

Battery or engine<br />

installed in drones<br />

| | Fig. 1.<br />

Simplified configuration of NPPs in the accident.<br />

| | Fig. 2.<br />

Passive systems of NPPs.<br />

ENVIRONMENT AND SAFETY 159<br />

There are some passive safety<br />

system related papers. Cho et al.<br />

worked for the passive auxiliary feedwater<br />

system (PAFS) [Cho et al. 2016].<br />

In addition, Gou et al. studied that the<br />

thermal hydraulic investigations were<br />

done for a new type of passive residual<br />

heat removal system (PRHRS) [Gou et<br />

al. 2009]. Park et al. showed that the<br />

advanced modular integral type rector<br />

is investigated by the natural circulation<br />

performance [Park et al. 2007].<br />

2 Method<br />

2.1 Overview<br />

Figure 1 shows the simplified configuration<br />

of the NPPs in the accident<br />

where the water tank is carried by the<br />

drones. The water falls as the free-fall<br />

for the water tank in which the water<br />

are entering to the reactor building.<br />

The passive action by the free-fall is<br />

done completely, which could be used<br />

in the case of the piping based<br />

injection system failure. There are<br />

some passive systems in Figure 2<br />

where the natural circulation and<br />

gravity are shown. In this paper, the<br />

free-fall is described. There are the<br />

conceptual comparisons of passive<br />

systems of NPPs in Figure 3 that the<br />

water falls down from flying drone<br />

containing water tank and the water is<br />

injected from the conventional water<br />

tank attached to the reactor building.<br />

This is revolutionary different from<br />

the conventional passive system in<br />

which the piping integrity should be<br />

kept. Otherwise, in the free-fall<br />

system, the reservoir could be an<br />

active role on or after accident. So,<br />

| | Fig. 3.<br />

Conceptual comparisons of passive systems in NPPs.<br />

this means that the post-accident<br />

safety system is installed in this new<br />

system. In the current commercial<br />

NPPs, there is not any kind of the<br />

post-accident safety system. It has<br />

been experienced in Chernobyl as well<br />

as Fukushima cases that it was impossible<br />

to make the coolant enter into<br />

the reactor core where the nuclear<br />

fuels were continuing the nuclear<br />

reactions and producing the heats.<br />

Table 2 shows the specifications of<br />

the condensate water storage tank as<br />

the emergency water tank [The Virtual<br />

Nuclear Tourist, 2016]. Newly developed<br />

drone could supply 500 kg [Air-<br />

Mule, 2016]. Therefore, it takes about<br />

1,137 times supplies to carry the tank<br />

water. If one uses 10 units of drone, it<br />

reduced to about 113 times. However,<br />

| | Fig. 4.<br />

Major factors for the free fall of coolants.<br />

Tank<br />

(Condensate storage tank)<br />

Mass flow rate<br />

Content<br />

| | Tab. 2.<br />

Specification of emergency water tank.<br />

the coolant carrying quantity is<br />

changeable by the situation and<br />

carrier design.<br />

2.2 Cooling by the free-fall<br />

The modeling of this paper is to show<br />

the capability of the free-fall coolant<br />

in which this should make the<br />

enhanced integrity to the piping based<br />

injection systems. So, the major factor<br />

of the fee-fall coolants is the coolant<br />

quantity with mass flow rate which is<br />

150,000 gallons<br />

(567,812 liters, 568,500 kg water)<br />

200 ~ 400 gallons/min.<br />

Environment and Safety<br />

Applied Reliability Assessment for the Passive Safety Systems of Nuclear Power Plants (NPPs) Using System Dynamics (SD) ı Yun Il Kim and Tae Ho Woo


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

ENVIRONMENT AND SAFETY 160<br />

in Figure 4. Following the Newtonian<br />

mechanics, the uniform gravitational<br />

field without air resistance can<br />

show the terminal velocity shows [The<br />

Physics Classroom, 2016],<br />

v(t)= -gt+ v o (1)<br />

So, one can find the pressure using<br />

Bernoulli’s principle [Clancy, 2006],<br />

(2)<br />

The coolant quantity is obtained by<br />

mass flow rate [Potter, 2007],<br />

ṁ = v(t)∙ρ (3)<br />

Therefore, using continuity equation<br />

[Potter, 2007],<br />

Q = ṁ ∙A = v(t) ∙ ρ ∙ A(4)<br />

where,<br />

v o is the initial velocity (m/s)<br />

v(t) is the vertical velocity<br />

to time t (m/s)<br />

g is the gravitational acceleration<br />

(9.8 m/s 2 )<br />

z is the elevation of the point<br />

ρ is the density of the water<br />

(1,000 kg/m 3 )<br />

ṁ is the mass flow rate (kg/m 2 s)<br />

Q is the mass rate (kg/s)<br />

A is the area (m 2 )<br />

2.3 Configuration of the drone<br />

The water tank is carried out by the<br />

drone where the mechanics of the<br />

flying robotics is exploited. There is<br />

the mechanical analysis of the drone<br />

for nuclear engineering applications<br />

in the below equations [Cho and Woo,<br />

2016]. The mathematical forms of the<br />

movement of the flying is described as<br />

the flight dynamics in which three<br />

kinds of the parameters are done as<br />

roll, pitch, and yaw. These are angles<br />

of rotation in three dimensions<br />

about the vehicle’s center of mass<br />

[NASA, 2014]. The configurations are<br />

shown in Figure 5 [The Smithsonian’s<br />

National Air and Space Museum,<br />

2014]. In the control of the four thrust<br />

forces from four rotors, there are three<br />

angles Ø, θ, ψ and the altitude z to<br />

make the six motions and then the<br />

control inputs are [Jeong and Jung,<br />

2014],<br />

(5)<br />

where, k pø , k iø , k dø are the proportional-integral-derivative<br />

(PID) controller<br />

gains for the roll angle control,<br />

k pθ , k iθ , k dθ are PID controller gains for<br />

the pitch angle control, and k pψ , k iψ ,<br />

k dψ are PID controller gains for the<br />

yaw angle control, respectively.<br />

Furthermore, the altitude control of<br />

PID controller is as follows [Jeong and<br />

Jung, 2014],<br />

(6)<br />

where, m is the mass, g is the gravitational<br />

acceleration, and then V z is,<br />

(7)<br />

where, k pz , k iz , k dz are PID controller<br />

gains for the altitude control and<br />

altitude data zs are obtained using a<br />

sonar sensor.<br />

2.4 System dynamics (SD)<br />

Algorithm<br />

The SD was created by Dr. Jay Forrest<br />

in MIT around 1960s in which the<br />

scientific and technological matters<br />

as well as social and humanities<br />

are quantified as the mathematical<br />

SD<br />

modeling [SDS, 2014]. The interested<br />

event is described by the Boolean<br />

values and the designed modeling<br />

could show the event scenarios. There<br />

are several kinds of characteristics as<br />

the complexed non-linear manipulations<br />

in the problems. The event flows<br />

backward in the modeling, which is a<br />

particular merit in the SD modeling.<br />

The event quantification could be the<br />

stocking of the values of the event<br />

which is called as ‘Level’. In addition,<br />

the cause loop is seen by the event<br />

flows, which is like the flow chart<br />

in the computer programming. Each<br />

calculation is done as the time step in<br />

which the time interval is decided by<br />

the author. The software in this study<br />

is Vensim code system as the window<br />

version 6.3 [Ventana, 2016]. There<br />

are the comparisons between the SD<br />

and conventional safety assessments,<br />

probabilistic safety assessment (PSA),<br />

in Table 3. The event values are made<br />

by the Boolean value based quantifications<br />

with calculation interval of<br />

designed time step. Hence, the realtime<br />

calculations are reasonably<br />

possible in SD which is basically the<br />

dynamical simulations. There are<br />

several companies for the SD software<br />

in the world.<br />

2.5 Modeling of the event<br />

The modeling of the event is constructed<br />

by passive system sequences.<br />

Designed scenarios are initiated by<br />

the loss of coolant accident (LOCA)<br />

and it is needed to find the integrity of<br />

reactor [Ha, 2006]. So, the conventional<br />

event tree is made which is in<br />

Figure 6. Based on the event tree, the<br />

SD modeling in done in Figure 7<br />

which is modified from conventional<br />

work during early 1,000 minutes. The<br />

characteristics of the SD are reflected<br />

in the modeling where the non-linear<br />

algorithm is expressed. The line is<br />

used as the curved line as well as<br />

the straight line so that the event<br />

flow could be drawn without any<br />

PSA<br />

Theory Random number based Boolean value Probability<br />

Event Non-linear lines Event tree, Fault tree<br />

Result Relative value Probability value<br />

Graphics Colorful Black & white<br />

Topic Variable Variable<br />

Dynamics Time step based Operator manipulated<br />

Real-time Possible Impossible<br />

Speed Quick Time needed<br />

Commercialization Very active Moderate<br />

| | Fig. 5.<br />

Three parameters’ motions.<br />

| | Tab. 3.<br />

Comparisons between the SD and PSA.<br />

Environment and Safety<br />

Applied Reliability Assessment for the Passive Safety Systems of Nuclear Power Plants (NPPs) Using System Dynamics (SD) ı Yun Il Kim and Tae Ho Woo


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

| | Fig. 6.<br />

Event tree of event.<br />

| | Fig. 7.<br />

SD modeling.<br />

Event<br />

| | Tab. 4.<br />

List of event value.<br />

| | Fig. 8.<br />

Causes tree of SD modeling.<br />

Content<br />

LOCA (if then else(random 0 1 () < 0.8, 0, 1))<br />

/ Reactor<br />

Piping Integrity if then else(random 0 1 () < 0.3, 0, 1)<br />

Alarm Alert if then else(random 0 1 () < 0.5, 0, 1)<br />

* LOCA * Piping Integrity<br />

Manual Actions if then else(random 0 1 () < 0.4, 0, 1)<br />

* Alarm Alert * Piping Integrity<br />

Reactor SCRAM if then else(random 0 1 () < 0.6, 0, 1)<br />

* Manual Actions *Piping Integrity<br />

Coolant Tank Integrity if then else(random 0 1 () < 0.5, 0, 1)<br />

Flying Integrity if then else(random 0 1 () < 0.3, 0, 1)<br />

Drone Action<br />

Coolant Tank Integrity * Flying Integrity<br />

Emergency Cooling by Operator if then else(random 0 1 () < 0.5, 0, 1)<br />

* Drone Action *Reactor SCRAM<br />

Reactor if then else(random 0 1 () < 0.5, 0, 1)<br />

+ Emergency Cooling by Operator + 0.001<br />

restriction. One of most important<br />

merits in SD is used as the feedback<br />

algorithm in which Reactor is connected<br />

to LOCA. This means the final<br />

event, Reactor, affects to the initial<br />

event, LOCA. There are some cartoon<br />

shapes which could give the operator<br />

the sign of meaning. In the arrow line,<br />

the plus sign means the additive<br />

values of the event. In Table 4, the<br />

values of the event are shown, which<br />

are decided by expert’s judgments. In<br />

the case of Piping Integrity, if the<br />

randomly generated number between<br />

0 and 1 is lower than 0.3, the value is<br />

0.0. Otherwise it is 1.0. So, the<br />

Boolean value is obtained. The others<br />

are similar to this case. In the case of<br />

LOCA and Reactor, the values are<br />

accumulated using the ‘Level’ function<br />

in which the values are summed up by<br />

the designed time step.<br />

3 Results<br />

The simulation is performed for the<br />

SD modeling. Using passive system of<br />

the free-fall of coolant, the designed<br />

scenarios are quantified. Figure 8 is<br />

the causes tree of SD modeling which<br />

is from the Figure 7. There are results<br />

of the modeling. In Figure 9, there are<br />

the cause tree’s results of SD modeling<br />

as (a) Reactor and (b) LOCA. In<br />

­Figure 9 (a), the possibility for LOCA<br />

is shown. The Y-axis has the relative<br />

value where the value is stabilized after<br />

it increases abruptly. In the final<br />

stage as Reactor in Figure 9 (b), the<br />

integrity of the reactor is increased.<br />

4 Conclusions<br />

The complex algorithm of the SD<br />

modeling is done in the passive<br />

cooling system. The free-fall could be<br />

another kind of the nuclear passive<br />

system which is different from the<br />

conventional passive systems as<br />

gravity and natural circulation. There<br />

are some finding in this study as<br />

follows,<br />

• The nuclear passive system is modeled<br />

using the free-fall concept.<br />

• System dynamics (SD) based<br />

algorithm is performed for nuclear<br />

accident.<br />

• More realistic safety assessment is<br />

described.<br />

• New kind of nuclear safety analysis<br />

is done successfully<br />

The nuclear passive system by the<br />

free-fall is successfully modeled for<br />

the LOCA accident. Conventional<br />

passive systems of gravity or natural<br />

circulation could be performed when<br />

the piping systems are not damaged.<br />

However, in the Fukushima and<br />

Chernobyl cases, the piping was blown<br />

ENVIRONMENT AND SAFETY 161<br />

Environment and Safety<br />

Applied Reliability Assessment for the Passive Safety Systems of Nuclear Power Plants (NPPs) Using System Dynamics (SD) ı Yun Il Kim and Tae Ho Woo


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

ENVIRONMENT AND SAFETY 162<br />

| | Fig. 9.<br />

Results of SD modeling, (a) LOCA and (b) Reactor.<br />

away. So, the external coolant supply<br />

system is introduced in the paper<br />

where the water is poured into the<br />

reactor. The guiding piping or tube<br />

could be equipped for entering the<br />

water into the reactor core. If the<br />

explosion happens, the coolants could<br />

be showering into the reactor core and<br />

its building. New kind of passive<br />

system is expected successfully in the<br />

on-site black out, because the drone<br />

could be operated by battery or<br />

engine.<br />

References<br />

| | AirMule. 2016. Technology, Urban<br />

Aeronautics LTD. Urban Aeronautics<br />

AirMule, http://www.urbanaero.com/<br />

category/airmule/.<br />

| | Cho, Y.J., Bae, S.W., Bae, B.U., Kim, S.,<br />

Kang, K.H. and Yun, B.J. 2016.<br />

Analytical studies of the heat removal<br />

capability of a passive auxiliary feedwater<br />

system (PAFS). Nuclear Engineering<br />

and Design 2016, 248, 306-316.<br />

| | Cho, H.S. and Woo, T.H. 2016.<br />

Mechanical analysis of flying robot for<br />

nuclear safety and security control by<br />

radiological monitoring. Annals of<br />

Nuclear Energy, 94, 138-143.<br />

| | Clancy, L.J. 2006. Aerodynamics.<br />

India: Sterling Book House.<br />

| | Gou, J., Qiu, S., Su, G. and Jia, D. 2009.<br />

Thermal Hydraulic Analysis of a Passive<br />

Residual Heat Removal System for an<br />

Integral Pressurized Water Reactor.<br />

Science and Technology of Nuclear<br />

Installation, 473795.<br />

| | Ha, T. and Garland, W. 2006. Loss of<br />

Coolant Accident (LOCA) Analysis for<br />

McMaster Nuclear Reactor through<br />

Probabilistic Risk Assessment (PRA), presented<br />

at 27 th Annual Conference of<br />

the Canadian Nuclear Society, Toronto,<br />

Ontario, Canada, June 11-14, 2006.<br />

| | Jeong, S.H. and Jung, S.A. 2014. A<br />

quad-rotor system for driving and flying<br />

missions by tilting mechanism of rotors:<br />

From design to control. Mechatronics,<br />

24, 1178-1188.<br />

| | NASA. 2014. Dynamics of Flight,<br />

National Aeronautics and Space<br />

Administration (NASA). Available on:<br />

http://www.grc.nasa.gov/<br />

WWW/k- 12/UEET /StudentSite/<br />

dynamicsofflight.html/.<br />

| | Park, H.S., Choi, K.Y., Cho, S., Park, C.K.,<br />

Yi, S.K., Song, C.H. and Chung, M.K.<br />

2007. Experiments on the Heat Transfer<br />

and Natural Circulation Characteristics<br />

of the Passive Residual Heat Removal<br />

System for an Advanced Integral Type<br />

Reactor. Journal of Nuclear Science and<br />

Technology, 44, 703-713.<br />

| | Potter, M. and Wibbert, D. 2007.<br />

Schaum’s Outline of Fluid Mechanics<br />

(Schaum's Outlines), 1 st Edition. New<br />

York (NY): McGraw-Hill Education.<br />

| | SDS. 2014. Introduction to System<br />

Dynamics, System Dynamics Society<br />

(SDS). Available on:<br />

http://www.systemdynamics.org/<br />

joining/#aboutsd/.<br />

| | The Physics Classroom, Kinematic<br />

Equations and Free Fall, 2016. Available<br />

online: http://www.physicsclassroom.com/class/1DKin/Lesson-6/Kinematic-Equations-and-Free-Fall/.<br />

| | The Virtual Nuclear Tourist. 2006.<br />

Emergency Feedwater Systems.<br />

Available online: http://www.nucleartourist.com/systems/af.htm.<br />

| | The Smithsonian’s National Air and<br />

Space Museum. 2014. Roll, Pitch, and<br />

Yaw. Available on: http://howthingsfly.<br />

si.edu/flight-dynamics/roll-pitch-andyaw.<br />

| | Ventana. Vensim code system. 2016.<br />

Vensim PLE (Evaluation or Educational)<br />

6.4, Ventana Systems, Inc. Available on:<br />

https://vensim.com.<br />

Authors<br />

Yun Il Kim<br />

Korea Institute of Nuclear Safety<br />

62 Gwahak-ro, Yuseong-gu<br />

Daejeon 34142<br />

Republic of Korea;<br />

Tae Ho Woo<br />

Department of Mechanical and<br />

Control Engineering<br />

The Cyber University of Korea<br />

106 Bukchon-ro, Jongno-gu<br />

Seoul 03051<br />

Republic of Korea<br />

Environment and Safety<br />

Applied Reliability Assessment for the Passive Safety Systems of Nuclear Power Plants (NPPs) Using System Dynamics (SD) ı Yun Il Kim and Tae Ho Woo


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

Untersuchungen zum Geometrieeinfluss<br />

von Hartmetalllamellen beim Betonfräsen<br />

Simone Müller und Sascha Gentes<br />

Einleitung und Motivation Die Minimierung kontaminierter Abfälle ist bei Rückbauvorhaben im kerntechnischen<br />

Bereich von höchster Priorität. Im Bereich der Gebäudedekontamination ist hierbei eine effiziente Bearbeitung<br />

aller betroffenen Betondecken, -wände und -böden unerlässlich und führt schnell zu einer zu bearbeitenden Fläche von<br />

mehreren tausend Quadratmetern. Die Dekontamination erfolgt überwiegend durch den Einsatz von Fräsen, z.B.<br />

Bodenfräsen, die ursprünglich für die Bearbeitung von Estrichen und niederfesten Betonen ausgelegt sind. Bei der<br />

Bearbeitung normalfester Betone, wie sie in Kernkraftwerken üblicherweise verbaut sind, verringert sich die Standzeit<br />

gegenüber Estrichen aufgrund der höheren Betonfestigkeiten jedoch drastisch. Daraus ergibt sich, neben vermehrten<br />

Rüstzeiten zum Werkzeugwechsel und einem daraus resultierenden Kontaktrisiko der Mitarbeiter zu kontaminiertem<br />

Werkzeug, auch ein erhöhtes Aufkommen an Sekundärabfall durch den vermehrten Anfall von verschlissenen<br />

Fräslamellen.<br />

Das vom Bundesministerium für Wirtschaft<br />

und Energie (BMWi) geförderte<br />

Forschungsprojekt „Entwicklung und<br />

Optimierung eines Schlagwerkzeugs<br />

zum Abtrag von (kontaminierten)<br />

Beton oberflächen“ (EOS, Förderkennzeichen:<br />

KF2286004LL3) nimmt sich<br />

dieser Aufgabenstellung mit dem Ziel<br />

eines effizienteren Betonabtrags durch<br />

eine Weiterentwicklung der Fräslamellen<br />

an. Ein schnellerer Betonabtrag<br />

führt unweigerlich auch zu<br />

geringerem Personaleinsatz. Die effizientere<br />

Dekontamination gewinnt<br />

daher, vor dem Hintergrund der<br />

zunehmenden Anzahl von Rückbauprojekten<br />

im kerntechnischen Bereich,<br />

an ökonomischer und sicherheitstechnischer<br />

Relevanz. Im Rahmen des<br />

Forschungsprojektes arbeiten als<br />

Kooperationspartner das Karlsruher<br />

Institut für Technologie (KIT) und<br />

die Contec Maschinenbau & Entwicklungstechnik<br />

GmbH (Alsdorf/Sieg)<br />

zusammen.<br />

Methodik und<br />

Vorgehensweise<br />

Am Institut für Technologie und<br />

Management im Baubetrieb (TMB) des<br />

KIT, Abteilung Rückbau konventioneller<br />

und kerntechnischer Bauwerke,<br />

wurde zur Erprobung verschiedener<br />

Fräslamellengeometrien<br />

ein Versuchstand konzipiert. Mit<br />

diesem können, bei definiertem<br />

Fräsen vorschub, -drehzahl und Zustellung,<br />

gezielt verschiedene Belastungswege<br />

der Fräslamelle nachgebildet<br />

werden. Im Anschluss kann<br />

der an der Lamelle aufgetretene Verschleiß<br />

gemessen werden.<br />

| | Abb. 1.<br />

Bodenfräse CT320 des Herstellers Contec GmbH<br />

zur Führung der Verfahreinheit der<br />

Fräse angebracht sind (Abb. 2). Der<br />

Grundkörper, eine handelsübliche<br />

Betonfräse, wie in Abbildung 1<br />

dargestellt, ist über eine Zustelleinheit<br />

mit einem Verfahrschlitten verbunden.<br />

Dieser Schlitten läuft auf den<br />

horizontalen Schienen, siehe Abbildung<br />

2. Im Gehäuse der Betonfräse<br />

befindet sich die Werkzeugtrommel<br />

mit den Achsen, auf denen die Fräslamellen<br />

gelagert sind. Auf dem<br />

Boden des Versuchsstandes lassen<br />

sich darüber hinaus auch unterschiedliche<br />

Betonproben befestigen (Abbildung<br />

3).<br />

| | Abb. 2.<br />

Versuchsstand<br />

Aufbau der Fräslamellen<br />

und das Fräsverfahren<br />

Die Fräslamellen sind fliegend auf<br />

den Achsen der Werkzeugtrommel<br />

gelagert. Der Aufbau der Werkzeugtrommel<br />

und der Fräslamellen ist in<br />

Abbildung 4 dargestellt. Die Außengeometrie<br />

ist bei handelsüblichen<br />

Lamellen sternförmig.<br />

Je nach Maschinengröße und<br />

Hersteller besitzt eine Lamelle fünf<br />

bis zwölf Spitzen. An den Sternspitzen<br />

ist ein Hartmetallstift eingelassen, der<br />

die Materialabnutzung verringert<br />

(siehe Abbildung 4 rechts). Die<br />

Innen geometrie der Achsenlagerung<br />

163<br />

DECOMMISSIONING AND WASTE MANAGEMENT<br />

Versuchsstand<br />

Der eingesetzte Versuchsstand besteht<br />

aus einem symmetrischen Außengerüst,<br />

an dem horizontale Schienen<br />

| | Abb. 3.<br />

links: Fräslamelle in Fräse; rechts: Frässpuren<br />

Decommissioning and Waste Management<br />

Studies on the Geometric Influence on Hard Metal Shavers During Concrete Shaving ı Simone Müller and Sascha Gentes


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

DECOMMISSIONING AND WASTE MANAGEMENT 164<br />

| | Abb. 5.<br />

Laserscan des Betonabtrags<br />

| | Abb. 4.<br />

Aufbau der Frästrommel<br />

der Lamellen ist rund. Durch diese<br />

Form ist eine Positionierung der Hartmetallspitzen<br />

zur Betonoberfläche<br />

nicht gegeben und im Normalgebrauch<br />

nicht vorgesehen.<br />

Im Betrieb drücken die durch die<br />

Trommelrotation induzierten Fliehkräfte<br />

die Fräslamellen radial von<br />

der Trommelmittelachse weg. Durch<br />

die Zustellung der Fräse zum Boden<br />

schlagen die Fräslamellen bei<br />

Trommel rotation auf die zu bearbeitende<br />

Betonoberfläche. Durch das<br />

spröde Werkstoffverhalten des Betons<br />

fragmentiert die Betonoberfläche infolge<br />

des Stoßes. Die Hartmetalllamelle<br />

wird von der Betonoberfläche<br />

in Richtung der Trommelachse gedrückt<br />

und rollt auf der Oberfläche<br />

ab. Nach dem Überwinden der Oberfläche<br />

legt sich die Lamelle wieder an<br />

der Achseninnenseite an. Dieser Vorgang<br />

wiederholt sich für alle Trommelachsen<br />

zyklisch bei jeder Umdrehung<br />

der Werkzeugtrommel. Eine ausführliche<br />

und weiterführende Erläuterung<br />

des Fräsvorgangs ist in [2] dargestellt<br />

Beton und Versagensmechanik<br />

Nach DIN 1045 ist Beton ein künstlicher<br />

Stein. Hergestellt wird dieser<br />

aus einem Gemisch von Zement,<br />

Betonzuschlag (Gesteinskörnung),<br />

Wasser und je nach Anwendungsfall<br />

speziellen Zusatzstoffen. Es ergibt<br />

sich ein zweiphasiges System aus<br />

Zementmatrix und Zuschlagsstoff [5].<br />

Aufgrund der unterschiedlichen<br />

mechanischen Eigenschaften der<br />

Zuschlagskörnung und des Zements<br />

sind die Versagensmechanismen von<br />

Beton körpern sehr komplex. Die<br />

unter schiedlichen mechanischen Eigen<br />

schaften der einzelnen Bestandteile<br />

des Betons führen zu deutlichen<br />

lokal-ungleichmäßigen Werkstoffkennwerten.<br />

Das Auftreffen einer Lamelle auf<br />

der Zementmatrix bzw. auf einem<br />

Zuschlagskorn oder im Randgebiet<br />

zwischen Zuschlagskorn und Zementmatrix<br />

führt aufgrund verschiedener<br />

Festigkeiten der Komponenten zu<br />

unterschiedlichem Abtrag. Um eine<br />

möglichst gleichbleibende Reproduzierbarkeit<br />

der Abtragsmechanik der<br />

Lamellen erreichen zu können, wurde<br />

darauf geachtet, dass der Beton im<br />

Rahmen des Versuchsprogramms<br />

möglichst gleichmäßige Eigenschaften<br />

besitzt. Durchgeführte Voruntersuchungen<br />

zeigten, dass die Wahl<br />

eines geringen Durchmessers des<br />

Zuschlaggrößtkorns ein homogeneres<br />

Abtragsergebnis erzielt. Für die durchgeführten<br />

Versuchsreihen wurde aufgrund<br />

dieser Ergebnisse ein Durchmesser<br />

von 8 mm gewählt, der dem<br />

geringsten Größtkorndurchmesser<br />

nach DIN 1045-2 [6] entspricht.<br />

Nach Manns [7] sind in Kernkraftwerken<br />

vorwiegend Normalbetone<br />

verbaut. Alle Versuche im Rahmen der<br />

Untersuchung erfolgten auf Basis<br />

eines Normalbetons in der Mitte der<br />

Bandbreite mit einer Festigkeitskasse<br />

von C30/37.<br />

Messtechnik<br />

Zur Auswertung der Versuche kommen<br />

zwei Verfahren zum Einsatz.<br />

Einerseits wird durch Wiegen der<br />

Fräslamellen vor und nach Versuchseinsatz<br />

der Massenabtrag an der<br />

Fräslamelle bestimmt. Aus dem<br />

Massenverlust ergibt sich ein Maß<br />

des Lamellenverschleißes.<br />

Andererseits wird mit Hilfe eines<br />

Laserscanners der durch die Fräslamelle<br />

verursachte Materialabtrag<br />

bestimmt. Der Laserscanner vermisst<br />

genau die Oberfläche der Betonprobe.<br />

Mit diesen Daten können geometrische<br />

Größen der Fräsrille wie<br />

Abtragstiefe und -fläche berechnet<br />

werden. Abbildung 5 zeigt einen<br />

solchen Scan.<br />

Der verwendete Laserscanner<br />

arbeitet nach dem Lichtschnittverfahren,<br />

das das Prinzip der optischen<br />

aktiven Triangulation nutzt [1]. Bei<br />

diesem Messprinzip strahlt ein Laser<br />

im eindimensionalen Fall auf das zu<br />

untersuchende Testobjekt und wird<br />

von dessen Oberfläche in diffuser<br />

Streuung abgelenkt. Optisch ist dies<br />

als Lichtfleck auf dem zu messenden<br />

Punkt zu erkennen. Ein Teil des<br />

diffus gestreuten Lichts wird über ein<br />

Objektiv auf einen photoelektrischen<br />

Detektor geworfen. Durch die Anordnung<br />

mehrerer einzelner Detektoren<br />

in einer Reihe (Zeilensensor) kann die<br />

Koordinate des auftreffenden Lichts<br />

entlang der Detektorachse bestimmt<br />

werden. Mit dem bekannten Abstand<br />

des Detektors zur Lichtquelle ergibt<br />

sich ein Dreieck, mit dem der Abstand<br />

des untersuchten Objekts zur<br />

Lichtquelle errechnet werden kann<br />

[2, 1, 3].<br />

Beim Lichtschnittverfahren wird<br />

der Laserstrahl mit einer vorgesetzten<br />

Linse zusätzlich ausgeweitet, sodass<br />

eine Linie auf das Testobjekt projiziert<br />

wird. Der benötigte Sensor wird dafür<br />

um eine Dimension erweitert (Matrixsensor).<br />

So können alle Punkte auf<br />

der projizierten Linie simultan und<br />

ohne relative Verschiebung des Messgerätes<br />

zum Testobjekt gemessen<br />

werden. Um ein dreidimensionales<br />

Abbild zu bekommen, muss lediglich<br />

eine Relativbewegung orthogonal<br />

zur Laser linie durchgeführt werden<br />

[2, 3, 4].<br />

Variationen der Fräslamelle<br />

Neben der Änderung der Betriebsparameter<br />

der Betonfräse, die im<br />

Rahmen von [2] betrachtet wurden,<br />

bietet die Variation der Fräs lamellengeo<br />

metrie eine Möglichkeit zur Einflussnahme<br />

auf den Betonabtrag.<br />

Abbildung 6 und Abbildung 7<br />

zeigen eine handelsübliche Fräslamelle<br />

im unbenutzten Zustand und<br />

mit einem Beanspruchungsweg von<br />

ca. 540 m.<br />

Mögliche Stellgrößen der Variation<br />

der Lamelle sind das Fräslamellengewicht<br />

und die Außengeometrie der<br />

Fräslamelle so wie die Größe der<br />

verwendeten Hartmetallstifte.<br />

Decommissioning and Waste Management<br />

Studies on the Geometric Influence on Hard Metal Shavers During Concrete Shaving ı Simone Müller and Sascha Gentes


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

| | Abb. 6.<br />

Fräslamelle Beanspruchungsweg: 0 m<br />

| | Abb. 7.<br />

Fäslamelle Beanspruchungsweg: 540 m<br />

Fräslamellengewicht<br />

Die Betrachtung der allgemeinen<br />

Stoßgleichung:<br />

(wobei m die Masse der Stoßkörper<br />

bezeichnet und v bzw. v' die Geschwindigkeiten<br />

vor- bzw. nach<br />

dem Stoß) zeigt, dass die in den Stoß<br />

eingebrachte Energie neben den<br />

Geschwindigkeiten der Stoßpartner<br />

auch von deren Gewicht abhängt. Der<br />

Betonabtrag beim Fräsen mittels Hartmetalllamellen<br />

sollte also auch vom<br />

Fräslamellengewicht abhängen. Zur<br />

Klärung dieser Hypothese erfolgten<br />

Versuche mit einer Fräslamelle mit<br />

veränderlicher Masse.<br />

Mit den in Abbildung 8 und Abbildung<br />

9 gezeigten Stahlscheiben lässt<br />

sich das Gewicht der Lamelle schrittweise<br />

erhöhen.<br />

Außengeometrie und Größe der<br />

verwendeten Hartmetallstifte<br />

Durch die Erhaltung der gegebenen<br />

Außendimensionen wurde gewährleistet,<br />

dass die modifizierten Lamellengeometrien<br />

auch weiterhin in<br />

konventionell erhältlichen Maschinen<br />

zum Einsatz kommen können.<br />

Im Rahmen der durchgeführten<br />

Versuche zur Variation der Geometrie<br />

sind Lamellen mit einem Spitzenwinkel<br />

von 30 und 60 Grad untersucht<br />

worden. Zusätzlich erfolgte die Untersuchung<br />

einer Oktaedergrundfläche<br />

(siehe Abbildung 10) sowie der<br />

| | Abb. 8.<br />

CAD Zeichnung: Hartmetalllamelle mit veränderlicher Masse<br />

Einfluss verschiedener Hart metallspitzen<br />

durchmesser bei gleicher Lamellengeometrie<br />

(siehe Abbildung<br />

11). Um dabei eine gleichbleibende<br />

Gesamtmasse der veränderten Lamellen<br />

gewährleisten zu können, wurde<br />

der Grundkörper durch gewichtsreduzierende<br />

Bohrungen versehen. Je<br />

nach Geometrie ergeben sich unterschiedliche<br />

Bohungsdurchmesser. Die<br />

hierdurch geschaffene gleichbleibende<br />

Masse gewährleistet die Vergleich barkeit<br />

der verschiedenen Lamellengeometrien.<br />

Veränderungen des Gewichts<br />

würden ein verändertes kinetisches<br />

Verhalten verursachen und so die<br />

jeweilige Abtragsleistung, wie die<br />

Ergebnisse zur Änderung des Fräslamellengewichts<br />

zeigen, beeinflussen.<br />

| | Abb. 10.<br />

Untersuchte Fräslamellen: Variation der Außengeometrie<br />

| | Abb. 11.<br />

Variation des Hartmetallspitzendurchmessers<br />

| | Abb. 12.<br />

Abtrag in Abhängigkeit des Lamellenzusatzgewichtes<br />

| | Abb. 9.<br />

Hartmetalllamelle mit veränderlicher Masse<br />

Ergebnisse<br />

Die Versuche wurden mit den<br />

oben beschriebenen Variationen der<br />

Lamellen durchgeführt, im Einzelnen<br />

sind dies Variationen des Gewichts,<br />

der Außengeometrie und der Größe<br />

der verwendeten Hartmetallstifte.<br />

Dabei sind Beton (alle Probekörper<br />

stammen aus einer Betoncharge), Fräsenvorschub<br />

sowie Drehzahl und<br />

DECOMMISSIONING AND WASTE MANAGEMENT 165<br />

Decommissioning and Waste Management<br />

Studies on the Geometric Influence on Hard Metal Shavers During Concrete Shaving ı Simone Müller and Sascha Gentes


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

DECOMMISSIONING AND WASTE MANAGEMENT 166<br />

| | Abb. 13.<br />

Abtrag in Abhängigkeit der Außengeometrie<br />

Variation<br />

Fräsenzustellung konstant gehalten<br />

worden. Die Auswertung der durchgeführten<br />

Versuche soll im Hinblick auf<br />

Frässpurtiefe und -fläche sowie den<br />

Massenabtrag an der Fräslamelle<br />

(Vgl.: [8], [9]) exemplarisch betrachtet<br />

werden:<br />

Das Diagramm in Abbildung 12<br />

zeigt die Tiefe der durch die Fräslamelle<br />

entstandenen Frässpur im<br />

Betonkörper über das zusätzlich an<br />

der Fräslamelle angebrachte Gewicht.<br />

Es ist zu erkennen, dass ein linearer<br />

Zusammenhang zwischen dem Gewicht<br />

der Fräslamelle und dem<br />

Betonabtrag besteht. Durch eine<br />

Massen zunahme von 120 g ergibt sich<br />

beispielsweise eine Erhöhung der<br />

Abtragstiefe um 0,3 mm, dies entspricht<br />

einer Zunahme um etwa 10%<br />

des ursprünglichen Ausgangsab trages.<br />

Die Versuche bei Variation der<br />

Außengeometrie, die in Abbildung<br />

13 abgebildet sind, zeigen, dass die<br />

Anordnung von möglichst viel Masse<br />

an dem Lamellenaußendurchmesser<br />

höhere Abtragswerte um bis zu rund<br />

10 Prozent liefert.<br />

Die Verwendung unterschiedlich<br />

großer Hartmetallspitzen (Abbildung<br />

11) resultiert, wie das Diagramm in<br />

Abbildung 14 zeigt, in einem fast<br />

sechzigfach geringeren Massenverlust<br />

und Verschleiß bei größerem Spitzendurchmesser,<br />

bei rund anderthalbfacher<br />

Abtragsfläche. Gleichzeitig verringert<br />

sich die erreichte Abtragstiefe<br />

bei größeren Spitzendurchmessern<br />

um rund 10 Prozent.<br />

Einfluss auf Abtrag<br />

Gewicht Abtragstiefe ± 10%<br />

Außengeometrie Abtragstiefe ± 10%<br />

Hartmetallspitzendurchmesser<br />

| | Tab. 1.<br />

Ergebnisse des Forschungsprojektes EOS.<br />

Änderung des Massenverlusts der Fräslamellen<br />

zueinander um das 60fache<br />

Zusammenfassung und<br />

Ausblick<br />

Die im Rahmen des Forschungsprojektes<br />

EOS durchgeführten Versuche<br />

zeigen einen Zusammenhang<br />

zwischen der Geometrie der Fräslammelle<br />

und dem Betonabtrag beziehungsweise<br />

dem Verschleiß der<br />

Lamelle in Form des Massenverlustes<br />

der Lamelle. Es konnte im Versuchsaufbau<br />

gezeigt werden, dass die Variation<br />

der Außengeometrie durch Anordnung<br />

von möglichst viel Masse an<br />

dem Lamellenaußendurchmesser höhere<br />

Abtragswerte von bis zu 10 Prozent<br />

liefert. Weiterhin führt die<br />

Vergrößerung des Hartmetallspitzendurchmessers<br />

zu einem größeren,<br />

flächigen Betonabtrag bei sechzigfach<br />

geringerem Massenverlust (Verschleiß)<br />

an der Fräslamelle. Die<br />

Ergebnisse sind in Tabelle 1 zusammengefasst.<br />

Somit wird im Verhältnis<br />

zum Lamellenverschleiß ein größeres<br />

Abtragsvolumen erreicht. Dies führt<br />

zu einer Verlängerung der Standzeit,<br />

Reduktion der Rüstanzahl und somit<br />

Verringerung des Sekundärabfalls.<br />

Eine Übertragung der erzielten<br />

Versuchsergebnisse in die Praxis ist<br />

vorgesehen.<br />

Literatur<br />

| | Abb. 14.<br />

Variation des Hartmetallspitzendurchmessers<br />

[1] MICRO-EPSILON MESSTECHNIK GmbH<br />

u. Co. KG (Hrsg.): Betriebsanleitung<br />

scanCONTROL 2700 / 2710 / 2750.<br />

MICRO-EPSILON MESSTECHNIK GmbH<br />

u. Co. KG.<br />

[2] Deutsches Institut für Normung (Hrsg.):<br />

Optoelectronic measurement of form,<br />

profile and distance: Deutsche Norm :<br />

DIN 32877. Berlin: Deutsches Institut<br />

für Normung, (DIN 32877).<br />

[3] VDI Verein Deutscher Ingenieure e.V.:<br />

Genauigkeit von Koordinatenmeßgeräten;<br />

Kenngrößen und deren<br />

Prüfung = Coordinate measuring<br />

machines with optical probes optical<br />

sensors for one-dimensional distance<br />

measurement. Februar 1999, Ausg.<br />

deutsch- englisch. Berlin, 1999 (VDI-<br />

VDE-Richt linien ; 2617,6,2). – Frühere<br />

Ausg.: 11.96 Entwurf, deutsch.<br />

[4] Sackewitz, Michael (Hrsg.): Leitfaden<br />

zur optischen 3D-Messtechnik.<br />

Stuttgart : Fraunhofer-Verl., 2014<br />

( Vision-Leitfaden ; 14). – ISBN 978–3–<br />

8396–0761–9. – Literaturangaben.<br />

[5] Bergmeister K.; Wörner J.: Beton<br />

Kalender 2005 – Fertigteile Tunnelbauwerke,<br />

2005, Kapitel VIII: Hans-Wolf<br />

Reinhardt – Beton, Ernst & Sohn, Verlag<br />

für Architektur und technische Wissenschaften<br />

GmbH & Co. KG, Berlin.<br />

[6] Verein Deutscher Zementwerke e.V.;<br />

Biscoping M.: Gesteinskörnungen für<br />

Normalbeton; Zement-Merkblatt<br />

Beton technik B 2 1.2012; http://www.<br />

beton.org/fileadmin/beton-org/<br />

media/Dokumente/PDF/Service/<br />

Zementmerkbl%C3%A4tter/B2.pdf<br />

(Abgerufen: 25.04.2017).<br />

[7] Manns W.: Beton für den Bau von<br />

Kernkraftwerken 1971, Betontechnische<br />

Berichte, Verein Deutscher<br />

Zementwerke.<br />

[8] Tagungsband KOTEC 2017: 13. Internationales<br />

Symposium “Konditionierung<br />

radioaktiver Betriebs- und Stilllegungsabfälle,”<br />

22.-24. März 2017; Untersuchungen<br />

zum Geometrieeinfluss der<br />

Hartmetalllamellen beim Betonfräsen;<br />

M.Sc. Simone Müller, Prof. Dr. Sascha<br />

Gentes.<br />

[9] Tagungsband 48th Annual Meeting on<br />

Nuclear Technology 2017, 16 - 17 Mai<br />

2017: Untersuchungen zum Geometrieeinfluss<br />

auf die Abtragsleistung von<br />

Hartmetalllamellen beim Betonfräsen;<br />

M.Sc. Simone Müller, Prof. Dr. Sascha<br />

Gentes.<br />

Authors<br />

M. Sc. Simone Müller,<br />

Prof. Dr.-Ing Sascha Gentes,<br />

Institut für Technologie und<br />

Management im Baubetrieb<br />

des Karlsruher Instituts für<br />

Technologie (KIT)<br />

Geb. 50.31<br />

Am Fasanengarten<br />

76131 Karlsruhe, Deutschland<br />

Decommissioning and Waste Management<br />

Studies on the Geometric Influence on Hard Metal Shavers During Concrete Shaving ı Simone Müller and Sascha Gentes


Kommunikation und<br />

Training für Kerntechnik<br />

Strahlenschutz – Aktuell<br />

In Kooperation mit<br />

TÜV SÜD Energietechnik GmbH<br />

Baden-Württemberg<br />

Seminar:<br />

Das neue Strahlenschutzgesetz –<br />

Folgen für Recht und Praxis<br />

Seminarinhalte<br />

1. Teil | Das neue Strahlenschutzgesetz (StrlSchG)<br />

ı Das neue StrlSchG: Historie<br />

ı Inkrafttreten des StrlSchG<br />

ı Überblick über grundlegende Änderungen<br />

ı Die Entwürfe der neuen Strahlenschutzverordnung(en) (soweit zum Seminarzeitpunkt vorliegend)<br />

2. Teil | Auswirkungen auf die betriebliche Praxis<br />

ı Genehmigungen, Zuständigkeiten<br />

ı Begriff der Expositionssituation (geplant, bestehend, Notfall), NORM<br />

ı Aufsichtsprogramm, § 180 StrlSchG, Rechtfertigung<br />

ı Notfallpläne<br />

ı Änderungen für SSV/SSB<br />

ı Dosisgrenzwerte<br />

ı Strahlenschutzregister<br />

3. Teil | Strahlenschutz im Back End<br />

ı Freigabe und Entsorgung<br />

ı Altlasten<br />

ı Baustoffe<br />

Zielgruppe<br />

Die 2-tägige Schulung wendet sich an Fach- und Führungskräfte, an Projekt- und Abteilungsleiter und<br />

Experten aus den Bereichen Betrieb, Abfälle, Genehmigung, Strategie und Unternehmens kommunikation<br />

sowie an Juristen.<br />

Maximale Teilnehmerzahl: 12 Personen<br />

Referenten<br />

RA Dr. Christian Raetzke<br />

Maria Poetsch<br />

Wir freuen uns auf Ihre Teilnahme!<br />

ı CONLAR Consulting on Nuclear Law, Licensing and Regulation<br />

ı Strahlenschutzexpertin bei der TÜV SÜD Energietechnik GmbH<br />

Baden-Württemberg<br />

Bei Fragen zur Anmeldung rufen Sie uns bitte an oder senden uns eine E-Mail.<br />

Termin<br />

2 Tage<br />

5. bis 6. Juni <strong>2018</strong><br />

Tag 1: 10:30 bis 17:30 Uhr<br />

Tag 2: 09:00 bis 16:30 Uhr<br />

Veranstaltungsort<br />

Geschäftsstelle der INFORUM<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Teilnahmegebühr<br />

1.598,– € ı zzgl. 19 % USt.<br />

Im Preis inbegriffen sind:<br />

ı Seminarunterlagen<br />

ı Teilnahmebescheinigung<br />

ı Pausenverpflegung<br />

inkl. Mittagessen<br />

Kontakt<br />

INFORUM<br />

Verlags- und Verwaltungsgesellschaft<br />

mbH<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Petra Dinter-Tumtzak<br />

Fon +49 30 498555-30<br />

Fax +49 30 498555-18<br />

seminare@kernenergie.de


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

168<br />

RESEARCH AND INNOVATION<br />

The Technology of TVHTR-Nuclear- Power<br />

Stations With Pebble Fuel Elements<br />

Power and Heat for the Production of Drinking Water Out of Seawastewater<br />

and/or Hydrogen in Combination with Solar Plants<br />

Urban Cleve<br />

Basic design features and<br />

operational experiences<br />

Design principals<br />

of TVHT reactors<br />

The German development of TVHTR<br />

Power Stations [4, 5, 6] was primarily<br />

initiated through the ideas of Prof. Dr.<br />

R. Schulten. He developed this technology<br />

in the 1950`s while employed<br />

by Brown Boveri. Dr. Schulten became<br />

CTO at the new BBC/Krupp Reaktorbau<br />

GmbH in Mannheim and later as<br />

Professor and Director of KFA-Jülich<br />

Nuclear Research Department [6]. Dr<br />

Schulten stated:<br />

“In the field of Nuclear Energy,<br />

the AVR Reactor occupies a specific<br />

unique position. Helium gas cooled,<br />

graphite moderated, inherently safe<br />

and the hottest reactor worldwide. It<br />

is the story of the only pure German<br />

development of nuclear power plant<br />

technology.”<br />

Main design features of the AVR<br />

Reactor are:<br />

• Spherical graphite fuel elements<br />

which contain the fission material.<br />

• Graphite as main core construction<br />

material and as reflector and moderator.<br />

• A safe integrated reactor concept<br />

with helium used for the cooling<br />

gas.<br />

• Enclosed primary helium gas circuit<br />

in one reactor vessel.<br />

These are the most important basics<br />

for safe operation. The goal until<br />

now has been the construction of an<br />

inherently safe nuclear power station<br />

with out-standing nuclear and design<br />

safety [6, 19].<br />

AVR power station<br />

The technology of the AVR was set up<br />

from “zero”, Figure 1, as there was no<br />

prior experience with engineering<br />

and design of components operating<br />

in a helium environment [1, 2].<br />

The complete new development of<br />

all components was a huge challenge<br />

and consequently routine delays and<br />

cost increases were experienced.<br />

Additionally, the TÜV, a regulatory<br />

oversight business, underwent phases<br />

| | Fig. 1.<br />

The AVR 46 MWth/15 MWel Experimental HTR<br />

Power plant.<br />

of learning and had to develop better<br />

testing methods for the nuclear power<br />

stations. During cold tests under normal<br />

environmental temperature and<br />

pressure all components were extensively<br />

and successfully tested.<br />

• The steam generator, Figure 2,<br />

was constructed several times and<br />

during production new test procedures<br />

had to be developed. After<br />

completion it underwent a helium<br />

pressure test, the first of its kind<br />

worldwide.<br />

| | Fig. 2.<br />

The AVR steam generator during manufacturing.<br />

• The absorbing rods functioned<br />

hundreds of times without showing<br />

any problems. After installing<br />

into the reactor and tested in a<br />

helium atmosphere they failed<br />

completely. It needed extensive<br />

design improvements, after which<br />

functioned perfectly.<br />

• All components of the pebble<br />

charging system were tested over<br />

years of operation. They showed<br />

only some problems during operation<br />

and improvements could be<br />

performed under radioactive conditions<br />

using specially designed<br />

equipment.<br />

• Nearly 600 helium valves manufactured<br />

by suppliers failed completely<br />

and had to be newly<br />

designed and tested under helium<br />

conditions. The new design (by<br />

BBK) was a great success. No<br />

further problems were identified<br />

after testing in a helium atmosphere.<br />

All problems had been solved and an<br />

average yearly availability of 66.4 %<br />

with a maximum of 92 % per year was<br />

achieved during 23 years of operation<br />

including the periods for which numerous<br />

experiments were performed.<br />

This probably established a world<br />

record for a completely new reactor<br />

design.<br />

The section through the AVR with<br />

inner core, the graphite reflector,<br />

thermal shield, inner reactor pressure<br />

vessel, biological shield 1 and the<br />

outer pressure vessel is shown in<br />

Figure 3.<br />

| | Fig. 3.<br />

Section through the AVR reactor.<br />

| | Fig. 4.<br />

View into the core of the AVR.<br />

Research and Innovation<br />

The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

• We had only one major problem,<br />

an incident of INES 1. Only one of<br />

the some thousand weldings of the<br />

steam generator leaked. After several<br />

months of repair the steam<br />

generator functioned very good<br />

again with full capacity. [6, 7].<br />

• The inner core structure, Figure 4,<br />

has a diameter of 3 m and 4.5 m<br />

high.<br />

• The fuel charging unit, [7, 8]<br />

Figure 5, designed and developed<br />

by BBK, with all its numerous components<br />

functioned sensationally<br />

well. In 23 Years of operation only<br />

220 pebbles were discharged. This<br />

was a figure of 0.0092 % of the<br />

2,400,000 moved pebbles. A basic<br />

diagram of the fuel cycle shows<br />

Figure 6 [7, 8, 9].<br />

| | Fig. 5.<br />

View into the core of the AVR.<br />

• Because of the excellent functioning<br />

of all de- and remounting<br />

equipment for the components,<br />

repairs could be done during operating<br />

of the reactor. No personal<br />

had been injured by radiation.<br />

• The AVR had to be shut down only<br />

by political reasons in 1988. It<br />

was an excellent test reactor for a<br />

variety of different fuel elements<br />

with different kinds of compositions<br />

of Uranium, Thorium and<br />

Plutonium. All these international<br />

experiments must be stopped, a<br />

very poor decision for future development<br />

of HTR-Power-Stations<br />

worldwide.<br />

As a result, it can be confirmed, that<br />

the operation of the AVR Reactor was<br />

a unique success story.<br />

The AVR modul reactor<br />

An AVR design, modified with an integrated<br />

He prim /He sec heat exchanger<br />

and only one steel pressure vessel,<br />

is the far best developed and operational<br />

completely tested.<br />

| | Fig. 7.<br />

THTR-300 MWel/750MWth Demonstration<br />

Power Station.<br />

Modul concept of a<br />

Small Model HTR (SMHTR) up<br />

to 100 MWth/40 MWel<br />

The design of the THTR-300el­<br />

Demonstration Nuclear Power<br />

Station<br />

The basic design of the THTR-300<br />

Power Station started in 1965,<br />

Figure 7. No prior experience from<br />

the AVR could be brought into the new<br />

design (Figure 8).<br />

The main design differences of the<br />

THTR-300 to the AVR are:<br />

• Pre-stressed concrete pressure<br />

vessel (PCPV) instead of two steelvessels<br />

(Figure 9). The dimension<br />

was 25 meters in diameter and<br />

28 meters high. The PCPV was<br />

chosen primarily for safety reasons.<br />

A model with a scale of 1:20 was<br />

tested with water pressure. Very<br />

small cracks occurred at a pressure<br />

between 90-120 bar. The main<br />

crack was Occurred at 190 bar.<br />

After a pressure drop to 40 bar the<br />

vessel was nearly gastight again.<br />

This test was the baseline for the<br />

calculation of the THTR-300 PCPV<br />

[28].<br />

• A closed inner circuit of helium<br />

cooling gas to avoid the release of<br />

fission products and graphite dust.<br />

This was the most important<br />

design factor to avoid release<br />

of contaminated primary helium<br />

gas or contaminated particles of<br />

graphite dust.<br />

• Helium gas flow from top to<br />

bottom.<br />

• TRISO-Pebbles as fuel elements.<br />

• All other components such as<br />

blowers, fuel element feeding and<br />

handling components, graphite<br />

structures, etc. were designed and<br />

improved very similar to the components<br />

of the AVR and showed<br />

no problems.<br />

New nuclear calculations of the reactor<br />

physics showed, that the diameter<br />

RESEARCH AND INNOVATION 169<br />

| | Fig. 6.<br />

Fuel cycle of pebble bed transportation<br />

system.<br />

• After decommissioning in 1989 it<br />

was ascertained, that the complete<br />

graphite interior had not moved by<br />

one millimeter. It looked as newly<br />

installed. Only some very small<br />

accumulations of graphite dust in<br />

some corners could be detected.<br />

• According to the INES scale only<br />

one incident occurred with “1“, all<br />

other events had an INES level of<br />

“zero“ during 23 years of operation<br />

[6, 7].<br />

| | Fig. 8.<br />

Survey of the THTR-300.<br />

Research and Innovation<br />

The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

Plant parameter Units Calculated values Measured values<br />

RESEARCH AND INNOVATION 170<br />

| | Fig. 9.<br />

Pre-stressed concrete pressure vessel and<br />

THRT-300 core.<br />

| | Fig. 10.<br />

Concept of pebble bed ring core.<br />

of the core with 5.6 m was too large,<br />

so the shutdown rods in the surrounding<br />

graphite reflector could not cool<br />

the pebbles to the low temperatures<br />

necessary in case of shutdown of<br />

the reactor. Until this time no prior<br />

experience was available with the<br />

behavior of the graphite core structure<br />

during extended operation.<br />

Therefore, the decision was made to<br />

insert the shutdown rods directly into<br />

the pebble bed with the potential<br />

danger of crushing the fuel elements.<br />

An alternative design with a pebble<br />

bed ring core PBRC (Figure 10) [4]<br />

could not be chosen, as no prior<br />

experience existed with the behavior<br />

of the graphite structure in the AVR.<br />

Testing of the insertion of rods into<br />

the pebble bed could not be performed<br />

under operational conditions.<br />

This decision was discovered later<br />

when operating the THTR-300 during<br />

commissioning of the power station<br />

which was a terrible mistake. There<br />

was no nuclear risk, but 0.6 % of<br />

the pebbles ruptured which was<br />

Reactor thermal power MW 761.65 763.5<br />

Circulated speed rpm 5,369 5,361<br />

Helium flow kg/s 297 293.9<br />

SG inlet He temperature °C 750 750.4<br />

SG outlet He temperature °C 247 245.9<br />

Feedwater flow kg/s 254 253.9<br />

Main steam temperature °C 545 544.3<br />

Main steam pressure bar 186 184.9<br />

Reheat flow kg/s 247.3 237.9<br />

Reheat temperature °C 535 532.3<br />

Reheat pressure bar 46.3 47.5<br />

Generator output MWe 305.9 306<br />

Net electric output MWe 295.5 295.6<br />

Net heat rate kcal/kWh 2,145 2,134<br />

| | Tab. 1.<br />

THTR-300, Comparison of key plant parameters.<br />

substantially higher when compared<br />

to the results of the AVR at 0.0092 %.<br />

All operational difficulties with the<br />

THTR-300-Reactor based on this<br />

unique problem.<br />

Table 1 [14] shows the differences<br />

between calculated design parameters<br />

and the parameters in operation.<br />

Smaller differences cannot be calculated<br />

and it was determined that<br />

without the problems of a high<br />

percentage of crushed pebbles, the<br />

THTR-300 would have been operated<br />

with the same high operational times<br />

as obtained with the AVR.<br />

Today, it can be determined that<br />

the PBRC would have avoided all of<br />

these difficulties. The stability of the<br />

graphite structure of the AVR ascertained<br />

after the shutdown of the AVR,<br />

proved this design could be the basis<br />

for a new PBRC which was patented in<br />

1965 [4].<br />

The positive results of the operation<br />

of the THTR-300 include [11, 12,<br />

13]:<br />

• HTR power stations can be operated<br />

and connected to the power<br />

grid in the same manner as conventional<br />

power plants.<br />

• Rupture of fuel elements does not<br />

increase the radioactivity of primary<br />

helium cooling gas.<br />

• Thermodynamic efficiency is as<br />

high as in conventional power<br />

plants.<br />

• The nuclear and radiological safety<br />

of personal and environment is<br />

excellent.<br />

• No radiation injuries, neither in<br />

the AVR nor in the THTR-300<br />

occurred.<br />

• The contaminated primary helium<br />

gas and graphite dust are safely<br />

surrounded and contained in the<br />

PCPV.<br />

• The pre-stressed concrete pressure<br />

vessel PCPV showed it was an<br />

excellent safety barrier against<br />

radiation, plane crashes, terrorist<br />

attacks, and earthquakes up to the<br />

highest magnitudes, etc.<br />

The pebble fuel elements<br />

Design and operational<br />

experiences with pebble fuel<br />

elements<br />

The most important components of a<br />

nuclear power station are the fuel<br />

elements. They contain the fissile<br />

material for generating the energy<br />

and the more robust the fuel elements<br />

the safer the nuclear plant. The main<br />

material of a pebble fuel element is<br />

graphite and they have a diameter of<br />

| | Fig. 11.<br />

Original concept of a pebble and later<br />

installed TRISO pebble.<br />

| | Fig. 12.<br />

Arrangement of a TRISO-pebble.<br />

Research and Innovation<br />

The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

60 mm while the diameter of the inner<br />

fuel containing matrix is 50 mm [14].<br />

Figure 11 shows the difference<br />

between the first idea of a pebble with<br />

non-coated fuel and the current type.<br />

The inner diameter of the coated fuel<br />

particles is 0.5 mm. Embedded in the<br />

inner graphite matrix are approximately<br />

15,000 coated particles (cp) in<br />

one pebble and contain the fuel<br />

material (Figure 12). The fuel kernel<br />

is encapsulated by three layers of very<br />

hard and pressure resistant PyC-/-SiC-<br />

/-PyC and is gas tight (Figure 13).<br />

These are the “TRISO” Fuel Elements<br />

and each coated particle has a<br />

diameter of 0.9 mm.<br />

| | Fig. 14.<br />

Treatment of pebbes by hand, first pebble<br />

loading into the core of the AVR-HTR.<br />

| | Fig. 15.<br />

Storage of burnt-down pebbles in casks.<br />

describes results of an experiment: “A<br />

High Voltage Head-End Process for<br />

Waste Minimization and Reprocessing<br />

of Coated Particle Fuel for High<br />

Temperature Reactors.” [10] This<br />

process is proposed for the separation<br />

of coated kernels from the fuel matrix<br />

and makes it possible to reprocess the<br />

burnt down fuel by separation of the<br />

coatings and the fuel kernel. The fuel<br />

kernels remain intact and has been<br />

successfully demonstrated in experiments<br />

as shown in Figure 16, 17, and<br />

18. The characteristics of the coated<br />

fuel kernels and the complete pebbles,<br />

manufactured by NUKEM, is shown in<br />

Table 2.<br />

This process, proposed and studied<br />

with experiments by EU-JRC-Petten,<br />

envisages the complete removal of the<br />

coating-layers to make the fuel accessible<br />

for further reprocessing and<br />

manufacturing of new fuel kernels.<br />

RESEARCH AND INNOVATION 171<br />

| | Fig. 13.<br />

Composition of a TRISO-pebble.<br />

Without coating the radioactivity<br />

of the primary helium gas in the AVR<br />

was calculated initially to be 10 7<br />

Curie. Therefore, the AVR was<br />

designed with two pressure vessels.<br />

All piping and helium operated components<br />

were surrounded with clean<br />

helium gas, to prevent primary contaminated<br />

Helium gas from entering<br />

the reactor vessel. These fuel elements<br />

were not initially used.<br />

The newly developed TRISO<br />

elements avoid fission and decay<br />

products, which are the sources of<br />

dangerous radioactivity. Three layers<br />

form a containment for every CP<br />

and keep all fission products safely<br />

enclosed. The layers remain gas tight<br />

from 1,620 °C to 1,800 °C and do not<br />

deteriorate or corrode even under<br />

high pressure.<br />

As previously mentioned, AVR<br />

was initially designed with a helium<br />

primary gas activity of 10 7 Curie. After<br />

the development of the pebbles with<br />

coated particles the primary helium<br />

gas activity was measured at only<br />

360 Curie [3], a factor of 0.000036<br />

lower. They were proven in long term<br />

operation in the AVR as reliable fuel<br />

elements and have very excellent<br />

advantages in comparison with all<br />

fuel elements in other nuclear power<br />

stations.<br />

Fresh pebbles can be stored and<br />

handled without any risk of radiation<br />

(Figure 14). Radiated, burnt down<br />

pebbles or graphite balls will be stored<br />

(Figure 15). primarily in specially<br />

designed containers or stockrooms<br />

inside the basement of the reactor<br />

building. No cooling is necessary and<br />

they can be stored over a longtime<br />

without risk of contamination or<br />

radiation of the surrounding area or<br />

personnel [15, 16, 17].<br />

Breeding of fissile Uranium-233<br />

by using Thorium-232<br />

Sufficient Thorium can be found in<br />

the surface of the earth to generate<br />

electricity and heat by nuclear power<br />

stations for a very long time. [20, 21,<br />

22] However, fissile fuel needs to be<br />

produced from the Thorium. This is<br />

possible by breeding 232 Th up to 233 Th<br />

using slow neutrons initially resulting<br />

in Protactinium ( 233 Pa) which decays<br />

to fissionable 233 Uranium. This process<br />

is a very good possibility in a<br />

THTR power station.<br />

The coated fuel kernels can contain<br />

Uranium 235/238, Plutonium 238-<br />

242, or Thorium 232 [15, 17, 18].<br />

These fuel materials can be combined<br />

in a pebble matrix and burned<br />

together. After extracting the core,<br />

every single pebble can be measured<br />

to its degree of burn-up. In HTR-<br />

Pebble Bed reactors the disposal of Pu<br />

can be extensively controlled and<br />

each pebble is treated individually. A<br />

very detailed and full control of Pu<br />

disposal is guaranteed and possible<br />

through inspection to meet the NPT.<br />

Decommissioning and Reprocessing<br />

of Fuel Elements and<br />

Coated particles<br />

The paper by the Netherlands<br />

European Joint Research Centre JRC<br />

Pebble Bed Ring-Core Design<br />

for very large TVHT-Reactors<br />

Important discoveries were generated<br />

from the long-term operation of<br />

the AVR and relatively short period<br />

of three years operation of the<br />

THTR-300, The information obtained<br />

from these two power plants is<br />

Coated particle<br />

Particle batch HT 354-383<br />

Kernel composition UO 2<br />

Kernel diameter in<br />

micro-meter<br />

Enrichment<br />

[U-235 wt. %]<br />

Thickness of coatings<br />

in micro-meter<br />

501<br />

Buffer 92<br />

Inner PyC 38<br />

SiC 33<br />

Outer PyC 41<br />

16.75<br />

Particle diameter 909<br />

Pebble<br />

Heavy metal loading<br />

[g/pebble]<br />

U-235 contents<br />

[g/pebble]<br />

Number of coated<br />

particles per pebble<br />

Volume packaging<br />

fracture [%]<br />

Defective SiC layers<br />

[U/U tot ]<br />

6.0<br />

1.00 +/-1%<br />

9,560<br />

6.2<br />

7.8 x 10 -6<br />

Matrix graphite grade A3-3<br />

Matrix density [kg/m 3 ] 1,750<br />

Temp. at final heat<br />

treatment [°C]<br />

1,900<br />

| | Tab. 2.<br />

Typical chracteristics of coated particles and<br />

pebbles produced by NUKEM.<br />

Research and Innovation<br />

The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

RESEARCH AND INNOVATION 172<br />

| | Fig. 16.<br />

Reprocessing of pebbles before separaing<br />

coating.<br />

| | Fig. 17.<br />

Reprocessing of pebbles, separated coating<br />

shells.<br />

| | Fig. 18.<br />

Reprocessing of pebbes, fuel kernels<br />

separated from coating.<br />

necessary for the design and construction<br />

of future large commercial V/<br />

HTR power plants. The experience<br />

gained with the graphite structures<br />

are excellent and new PBRC design<br />

based on the experiences may not<br />

produce any problems. The PCPV [4]<br />

of the THTR-300 was designed without<br />

any prior experience and was a<br />

first-time solution.<br />

Together with the improved manufacturing<br />

of the graphite by suppliers<br />

and extensive knowledge from previous<br />

designs it is possible to construct<br />

graphite cores and reflectors with<br />

high long term stability (Figure 4).<br />

The internal inspection of the AVR<br />

core showed no shift of graphite<br />

blocks after more than 23 years<br />

in operation and development of<br />

graphite as a suitable material in<br />

HTR-Reactors made good advancements<br />

with improved development.<br />

Unlike the THTR-300 the absorber<br />

rods are installed in the surrounding<br />

graphite moderator to prevent damage<br />

to the graphite pebbles. This was a<br />

major problem with the THTR-300<br />

(Figure 19).<br />

The core parameters shall be small<br />

and not too high. This is important<br />

for lower decay heat temperatures<br />

in case of a loss of coolant accident<br />

(Figure 20).<br />

The dimensions of a ring-core can<br />

be optimized by:<br />

• difference between inner and outer<br />

diameter,<br />

• height of fuel zone,<br />

• core volume,<br />

• power density of fuel zone,<br />

• maximum helium gas temperature,<br />

• optimal flow of pebbles through<br />

the core.<br />

These six factors can be optimised<br />

with regard to maximum decay heat<br />

temperature, which must not exceed<br />

1,600 °C in case of cooling loss (loca)<br />

and/or pressure drop (lopa), which<br />

would indicate an MC Accident.<br />

The possible main design features<br />

for this new concept may include:<br />

• TRISO pebbles as fuel elements.<br />

• Use of U-235 together with Th-232<br />

to breed U-233, PU [20, 21].<br />

| | Fig. 19.<br />

Pebble bed of the THTR-300 with shot down<br />

rods in the pebble bed.<br />

| | Fig. 20.<br />

Results of loss of coolant LOCA/MCA accident<br />

of AVR.<br />

• A pre-stressed concrete pressure<br />

vessel to surround the primary<br />

helium completely with extreme<br />

safeguarding against all types of<br />

potential critical events, terrorrist<br />

attacts, and disturbances inside<br />

and outside of the powerplant, and<br />

absolutely safe against cyberattacks<br />

[26].<br />

• The new design of a pebble bed<br />

core in a ring form, (Figure 10) [4]<br />

with several extraction devices for<br />

the pebbles below the core. An<br />

advantage of this design is an<br />

improved and more regular or<br />

symmetrical flow of pebbles<br />

through the core with higher<br />

possible burn up of the fuel and<br />

improved symmetrical cooling of<br />

the complete pebble bed [7].<br />

• Shut down and regulation rods<br />

only in the graphite reflector,<br />

• He primary /He Secondary heat exchangers<br />

in the primary helium circuit of<br />

the PCPV to avoid water ingression<br />

[4].<br />

• Only one heat transport system to<br />

supply the different secondary<br />

plants with high temperature heat<br />

will reduce costs and simplify<br />

design of the pressure vessel.<br />

• The secondary pure helium is<br />

inside the pipes and will have a<br />

slightly higher pressure against<br />

the primary integrated helium<br />

circuit. In case of a leak, the<br />

ingressing pure helium will be<br />

contaminated and can be cleaned<br />

up by the helium cleaning plant<br />

and refilled into the clean helium<br />

circuit.<br />

• This design makes it possible, to<br />

install the He/He-heat exchanger<br />

tightly into the pressure vessel.<br />

Several different exchanger<br />

systems were constructed without<br />

the ability to extract them from<br />

the vessel as practiced in the<br />

THTR-300.<br />

• This design makes it impossible to<br />

contaminate anything outside of<br />

the reactor vessel and all possible<br />

industrial processes can be designed<br />

without danger of radioactive<br />

contamination in a quite<br />

normal conventional construction.<br />

• This nuclear power facility makes<br />

it possible to construct every<br />

secondary industrial production<br />

plants close to the HTR Power<br />

Station.<br />

• Helium gas flow upstream from<br />

bottom to ceiling. The experience<br />

from the AVR shows this solution<br />

has some advantages compared<br />

with downstream design in the<br />

THTR-300.<br />

Research and Innovation<br />

The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

One of the most important feature of<br />

this design is the small core, very<br />

similar to the core of the AVR. The<br />

results of the MCA tests with heat<br />

rise by decay heat (Figure 20) can<br />

be put into consideration. So, we<br />

are able to increase the primary<br />

maximum helium heat temperature to<br />

the highest possible temperatures,<br />

possibly to 1,100 °C, limited only<br />

by the maximum allowable metallic<br />

tube temperature of the He/He heat<br />

exchanger inside the PCPV.<br />

Design of important components<br />

for a new 600 MW el /<br />

1.500 MW th Pebble Bed<br />

Reactor and potential risks<br />

The Pre-stressed concrete<br />

pressure vessel. (PCPV)<br />

The reactor vessel is, for safety reasons,<br />

the most important component<br />

of every nuclear power station. The<br />

calculation for larger cores for pebble<br />

bed reactors showed that the diameter<br />

of the core is too great for construction<br />

using steel pressure vessels and<br />

therefore cannot be manufactured<br />

using metallic materials. It was<br />

decided to look for other construction<br />

materials for a large HTR pebble bed<br />

design with high volume and high<br />

pressure.<br />

Two solutions had been taken into<br />

consideration, a pre-stressed cast iron<br />

vessel and a pre-stressed concrete<br />

pressure vessel. The PCPV had been<br />

chosen due to its excellent safety<br />

advantages versus the cast iron vessel.<br />

Several safety conditions could not be<br />

reached with a pre-stressed cast iron<br />

vessel and the construction would<br />

have some fundamental problems.<br />

This HTR design was a completely<br />

new construction without any prior<br />

experience and the operational<br />

helium gas pressure was calculated<br />

at 40 bar. It was decided to perform<br />

experiments with a 1:20 scale model.<br />

The model was pressurized with<br />

warm water. Very small cracks began<br />

to form at a pressure between 90-120<br />

bar. The main crack was reached at<br />

190 bar.<br />

After the pressure dropped to 40<br />

bar, the vessel was nearly gastight<br />

again. After the pressure drop the<br />

cables pulled the concrete together<br />

[4]. These results were deemed very<br />

important since this test proved that<br />

oxygen could not enter into the vessel<br />

in event of a crash. Throughout the<br />

testing, all necessary factors were<br />

measured and used as a baseline for<br />

new calculation programs to calculate<br />

the PCPV for the THTR-300.<br />

| | Fig. 21.<br />

Arrangement of stressing cables of the<br />

THRT-PCPV.<br />

| | Fig. 22.<br />

Top of the steam generator of THTR-300.<br />

| | Fig. 23.<br />

Installation of the thermal shield.<br />

Development, design and<br />

erection of the THTR-300<br />

pre-stressed concrete pressure<br />

vessel<br />

Figure 21 shows the cross section of<br />

the reactor [26]. Located Inside are<br />

the core, graphite and carbon brick<br />

structures, thermal shield, six steam<br />

generators, blowers, shut down rods,<br />

measuring devices, and isolation with<br />

liner and liner cooling system further<br />

the penetrations for the steam generators,<br />

the holes in the concrete are<br />

reinforced by steel layers with steel<br />

tops (Figure 22). There are 135 penetrations<br />

in total, the largest of which<br />

are for extracting the steam generators<br />

at 2.25 m. All of the penetrations<br />

are surrounded by cables and have<br />

| | Fig. 24.<br />

PCPV during manufacturing.<br />

| | Fig. 25.<br />

Model of bottom of THTR-300 core.<br />

| | Fig. 26.<br />

Results of pressure test of the THTR-PCPV.<br />

encountered no design problems. The<br />

construction phase is demonstrated in<br />

Figures 23, 24 and 25.<br />

The results of the pressure test<br />

Figure 26 shows the accuracy between<br />

the measured and calculated<br />

factors. The pressure tests were performed<br />

using nitrogen and helium to<br />

ensure accurate measuring. The design<br />

pressure was 39.2 bar and the<br />

highest possible pressure in case of an<br />

accident was calculated at 46.1 bar.<br />

The test reached the calculated and<br />

highest possible pressure (as required<br />

RESEARCH AND INNOVATION 173<br />

Research and Innovation<br />

The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

RESEARCH AND INNOVATION 174<br />

by the TÜV) without any problems<br />

arising [14]. As a result, it can be assured<br />

that existing design knowledge<br />

and calculation program are sufficient<br />

to calculate larger PCPV up to the<br />

highest possible capacities, potentially<br />

reaching 4.000 MWth.<br />

Safety criterions<br />

The main safety criterion [19] of a<br />

PCPV are:<br />

• Safety against plane crashes,<br />

terrorist attacks, political disturbances.<br />

• Safety against air ingress.<br />

• Safety against loss of contaminated<br />

graphite dust.<br />

• Safety against all kind of crashes or<br />

cracks.<br />

• Safety against earthquakes up to<br />

highest degrees.<br />

Within the inner He/He heat exchanger:<br />

• Safety against water ingress.<br />

• Safety against tritium ingress.<br />

Graphite reflector and<br />

ceramic structure<br />

The large numbers of design experiences<br />

with both reactors will lead<br />

to the best technical solutions. SGL<br />

Group is a very important supplier for<br />

both graphite and carbon bricks production<br />

and is capable of designing<br />

very reliable structures, Figure 4.<br />

and symmetrical pebble flow through<br />

the pebble bed. The best test results<br />

obtained from the wall designed for<br />

the AVR was thoroughly tested in<br />

advance at the test laboratory of BBC/<br />

Krupp. [1] Figure 27. This design<br />

leads to a very symmetrical gas flow<br />

across the pebble bed from bottom up<br />

and consequently leads to very good<br />

symmetrical cooling of all pebbles<br />

across the bed. The calculation factors<br />

for this design had been developed<br />

in the BBC/Krupp laboratory and<br />

showed excellent results [6, 7].<br />

The pebble flow in the AVR was<br />

much better than in the THTR-300<br />

due to the larger diameter of the<br />

THTR bed. Diameters that are too<br />

large lead to very different pebble<br />

flow velocities, up to a factor of 10<br />

times, between the wall and center of<br />

the bed [7, 14]. Very high burnt-up<br />

results of the fuel can be achieved<br />

with good symmetrical pebble flow.<br />

Helium-pr/Hes-ec heat<br />

exchangers<br />

• The calculations can be based on<br />

the results of the tests performed<br />

by FZ-Jülich with the test devices<br />

(Figure 28) [36].<br />

• The results of the very high temperature<br />

steam boiler tests, with<br />

steam temperatures of 600 °C,<br />

done in the GKM Mannheim,<br />

Germany Power Station, can be put<br />

into consideration.<br />

• The secondary helium shall have a<br />

higher pressure than the primary<br />

helium circuit. No radioactivity can<br />

pollute the secondary part of the<br />

power station.<br />

• Manufacturing is done same with<br />

the design, proved in the THTR-300<br />

with the steam generators (Figure<br />

29).<br />

The Helium blowers<br />

The blowers in the AVR and in the<br />

THTR-300 showed no problems at all.<br />

An increase to higher capacities may<br />

be possible without problems. They<br />

should be still oil lubricated (Figure<br />

30).<br />

The shut down and<br />

regulation rods<br />

• An identical design of the<br />

THTR-300 regulation rods can be<br />

used, only more pieces will be<br />

necessary (Figure 31).<br />

The fuel element circuit<br />

• The experience with the AVRinstallation<br />

during 23 years of<br />

operation is excellent [5, 6, 8].<br />

Core and Helium gas flow<br />

The experience of the AVR proves that<br />

the flow from bottom up has some advantages.<br />

The helium gas temperature<br />

range is 230 °Cto 280 °C and entrance<br />

temperature from 750 °C to 950 °C<br />

possible reach 1,100 °C at the highest.<br />

This is dependent on the metallic<br />

material stresses and strength of the<br />

tube material.<br />

The design of the wall of the graphite<br />

reflector is very important for good<br />

| | Fig. 28.<br />

Test facility of He-He heat exchangers<br />

in FZ-Jülich laboratory.<br />

| | Fig. 30.<br />

Helium blower of THTR-300.<br />

| | Fig. 27.<br />

Pebble bed flow experiments in the laboratory<br />

of BBC/Krupp with 1:1 scale.<br />

| | Fig. 29.<br />

Manufacturing of the THTR steam generator.<br />

| | Fig. 31.<br />

Shut down and regulation rod of THTR-300.<br />

Research and Innovation<br />

The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

No changing or enlarging of<br />

com ponents is necessary. Several<br />

charging units shall operate<br />

parallel. These components, previously<br />

designed by BBC/Krupp,<br />

can be used without changing the<br />

construction, Figure 5.<br />

The Helium Cleaning Plant<br />

• The task of the Helium cleaning<br />

plant is to clean in a bypass the<br />

helium gas of the primary circuit<br />

from impurities such as solid<br />

graphite dust and the radioactive<br />

chemical elements Krypton,<br />

Xenon, Argon and Tritium. A<br />

detailed description is published<br />

in ATW 5/1966 [23].<br />

Safety systems and MCA tests<br />

The AVR was the worldwide only<br />

nuclear power station with two times<br />

MCA test-simulations [4, 5, 19].<br />

The first was done in spring 1967<br />

during the commissioning period. As<br />

mentioned, we had a lot of undecided<br />

problems with the unknown behavior<br />

of important components, so mainly<br />

with the absorber rods. We had an<br />

agreement with the TÜV that a<br />

MCA-test-simulation should prove<br />

the inherent nuclear safety and<br />

the good behavior of all these components.<br />

At highest helium gas temperature<br />

of 850 °C and full power of 46 MW th<br />

the blowers were stopped by quick<br />

stop. The complete power plant was<br />

without electricity, also the reservediesel-engines<br />

were out of operation<br />

and the absorber rods were blocked.<br />

Only the core temperature measuring<br />

was in function. After stop, by the<br />

temperature moved by decay heat<br />

slowly up to about 1.000 °C. [3] Then<br />

the temperature falls down during the<br />

next days to normal degrees. Some<br />

days later we re-started the complete<br />

power station without any problem<br />

[4].<br />

After this test, full licensing was<br />

granted by the TÜV for the completed<br />

power station.<br />

A second the test was done in 1976.<br />

[6] This time all instruments could<br />

be considered and all data were taken<br />

to measure the temperature course<br />

by the simulation of a loss of coolant<br />

accident to develop a calculation program<br />

for such a future case (Figure<br />

20).<br />

These two worldwide first experiments<br />

had been the simulation of a<br />

worst-case scenario, an MCA, the only<br />

tests in nuclear power stations up to<br />

now.<br />

We knew exactly, that there was no<br />

nuclear risk at all, as the radioactivity<br />

of the primary helium gas was very<br />

low. The coated particles made a very<br />

good job.<br />

A similar experiment was done in<br />

1986 in Chernobyl. There the fuel<br />

was not coated and the reactor not<br />

inherent safe. The result is wellknown.<br />

Also, loss of coolant was the reason<br />

for the MCA in Fukushima, again the<br />

fuel was not coated.<br />

This shows the difference and<br />

advantages of the reliability of pebble<br />

fuel elements with coating of the fuel<br />

particles in case of accidents versus<br />

other Nuclear Power Station designs.<br />

Compared with the originally<br />

calculated radioactive contamination<br />

for the AVR power plant of 10 7 Curie<br />

the measured radioactivity of the AVR<br />

in operation with coated particles was<br />

360 Curie. The resultant calculation<br />

factor is 0.000036.<br />

With the Chinese Experimental<br />

HTR-10 MW th reactor a further<br />

successful loss of coolant test was<br />

done with TRISO pebble fuel elements.<br />

Further we will install the following<br />

additional installations to safe the<br />

reactor in every case of heavy danger<br />

[19]:<br />

• Diesel motor driven generators for<br />

electrical reserve power.<br />

• Quick extraction of all pebbles<br />

from the core to a special safe store.<br />

• Shut down rods in the graphite<br />

reflector.<br />

• Gastight design of the Reactor<br />

building as containment.<br />

• Water tight basement.<br />

Summary and Safety Conclusions:<br />

• Inherently safe design.<br />

• No melting of the core is possible.<br />

• Gastight integrated helium circuit.<br />

• Safe against water ingress.<br />

• Safe against air ingress.<br />

• Safe against heavy earth quakes.<br />

• The PCPV is safe against terrorism<br />

and other severe attacks and has<br />

proved as an excellent containment.<br />

• The PCPV has proved after decommissioning<br />

as an excellent bunker<br />

for longtime storage of all contaminated<br />

components, up to now for<br />

more than 25 years.<br />

• No graphite burning possible.<br />

• Continuous cooling of the pebbles<br />

is not necessary for the new elements,<br />

pebbles in the core, or in<br />

the castors and store.<br />

“The safest Nuclear Power Station is<br />

the most economical Power Station.“<br />

The Secondary electric and/<br />

or heat producing parts<br />

of a HTR-Power Station<br />

Nuclear safety regulations<br />

No nuclear safety regulations are necessary<br />

for every secondary industrial<br />

plant in connection with nearby HTR-<br />

Power station [24, 25, 26, 27].<br />

In 23 Years of operation there was<br />

not the smallest radioactive contamination<br />

measured in the turbine part of<br />

the AVR. After the shutdown of the<br />

THTR-300 the complete secondary<br />

part had been sold and is still in operation<br />

in another conventional power<br />

station connected to a normal steam<br />

boiler plant.<br />

The Helium secondary /water-steam<br />

generator<br />

The secondary helium, coming from<br />

the He/He-heat exchanger in the<br />

primary helium circuit, is lead to a<br />

new design of Helium/water-steam<br />

generator. This generator produces<br />

the steam for the steam turbinegenerator<br />

set to produce the electricity.<br />

The steam data are conventional<br />

with a steam pressure of may be<br />

220 bar and 525 °C and intermediate,<br />

if required two times, reheating to<br />

525 °C.<br />

The temperature of the secondary<br />

helium will be calculated in accordance<br />

with the he/he- heat exchanger<br />

in the primary helium circuit. These<br />

temperatures depend on the cubematerial,<br />

the higher the temperature,<br />

the smaller the heat-exchanger. This is<br />

only an economical question.<br />

The steam turbine generator set<br />

and auxiliary components<br />

No design changes or modifications<br />

are necessary [29]. The same construction<br />

as in conventional power<br />

stations can be designed and installed.<br />

That means a conventional turbine<br />

with temperature entrance of 525 °C,<br />

220 bar steam pressure, intermediate<br />

heating one or two times up to 525 °C,<br />

| | Fig. 32.<br />

Precleaning installation for sea/wastewater.<br />

RESEARCH AND INNOVATION 175<br />

Research and Innovation<br />

The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

RESEARCH AND INNOVATION 176<br />

the water-cooled condenser and the<br />

generator. The water leaving the condenser<br />

is pumped through several<br />

heat exchangers, which are fed by<br />

extracted steam from the turbine.<br />

Everything as conventional as in all<br />

conventional Power Stations. All<br />

components and installations of the<br />

secondary part can be designed as in<br />

normal conventional power stations.<br />

There is not a difference in design.<br />

The sea/wastewater<br />

desalination plant<br />

Overview<br />

The sea/wastewater desalination<br />

plant can be installed with experienced<br />

components [30, 31, 32]. These<br />

will consist of the seawater precleaning<br />

installation, Figure 32, and<br />

the following different heat exchangers<br />

for heating up the water<br />

until evaporation. The distillated<br />

water is free of solid particles, and can<br />

be used as drinking water or for many<br />

other purposes. The residual salt,<br />

brine and further solids can be sold or<br />

deposited.<br />

A solar plant can be used to reduce<br />

the necessary heat from the steam turbine<br />

during sunshine. The produced<br />

heat in the nuclear part can be nearly<br />

completely used with highest thermodynamic<br />

efficiency. The Seawater is<br />

extracted from the sea and precleaned.<br />

Turbine condenser<br />

The condenser of the turbine, Figure<br />

33, is the first stage to heat up the<br />

seawater. Seawater resistant tubes are<br />

necessary in the condenser. The quantity<br />

of cooling seawater, the temperature<br />

rise and condenser pressure must<br />

be economically optimized. The efficiency<br />

of the thermodynamic process<br />

must be calculated. Normally the<br />

temperature rise in the condenser is<br />

calculated with 5 ° -10 °C. Also the<br />

quantity of cooling water can vary, for<br />

a 600 MWel unit between 20.000 –<br />

40.000 m 3 / hour. If the required<br />

cooling water quantity is too high for<br />

| | Fig. 33.<br />

chematic of a turbine condenser.<br />

the desalination plant, the water can<br />

be released back into the Sea (Figure<br />

33).<br />

Solar plant<br />

A conventional solar plant, Figure 34,<br />

can be installed. The solar energy<br />

depends on sunshine intensity, which<br />

depends mainly the daily time and<br />

seasonal periods of the year and<br />

environmental conditions (Figure<br />

35). The heat from the solar plant<br />

must be transported to the heat exchanger<br />

as second heating stage. This<br />

circuit makes it possible, to reduce the<br />

extracted steam from the turbine. The<br />

safe steam can be used for additional<br />

production of electric energy in the<br />

low pressure part of the turbine by<br />

expension the steam down to condenser<br />

pressure. The solar plant is<br />

able to produce elec tricity indirectly.<br />

| | Fig. 34.<br />

Solar plant.<br />

| | Fig. 35.<br />

Average solar energy in Tunis CIty, 1997.<br />

Desalination plant<br />

Well know seawater desalination<br />

plants can be installed, working as<br />

distillation process so as MSF (multistage-flash)-plant<br />

(Figure 36). The<br />

preheated sea-water will be brought<br />

with the steam extracted from the<br />

turbine to a temperature of 90 °C to<br />

| | Fig. 36.<br />

Multi-stage-flash desalination plant.<br />

| | Fig. 37.<br />

Multi effect distillation plant.<br />

135 °C, (1.0-1.5 bar). Then the seawater<br />

streams to the evaporating<br />

chambers with economically optimized<br />

number of stages. The distillate<br />

then can be used as drinking water.<br />

With nearly the same technic works<br />

the MED (multi-effect-distillation)<br />

process (Figure 37). Chemicals must<br />

be added as far as necessary, this is<br />

depending from the quality of the<br />

seawater.<br />

An economically plant optimization<br />

is to be carried out to choose the<br />

best process.<br />

The brine, consisting of the chemicals,<br />

salt and other solid components<br />

of the seawater will be evaporated. To<br />

evaporate the solid particles several<br />

possibilities are applicable, evaporating<br />

by the sun directly, by solar heat<br />

or by low pressure steam from the<br />

turbine. The solid parts will be dried<br />

and stabilized. Then they may be sold<br />

or stored.<br />

An analysis should be carried out,<br />

which demonstrates the influence of<br />

different plant designs, operating parameters<br />

and environmental conditions<br />

on the efficiency and the costs of<br />

the plant and their thermodynamic<br />

efficiency.<br />

Advantages of co-generation of<br />

electric power and water<br />

• The use of pre-cleaned seawater as<br />

cooling water for the turbine condenser<br />

makes it possible to operate<br />

this process without cooling towers<br />

or smaller ones if necessary. All<br />

residual heat from the thermodynamic<br />

process to generate<br />

electric power, which otherwise is<br />

dissipated in the cooling towers, is<br />

used for pre-heating the sea-water<br />

during the first stage.<br />

• The extracted low pressure steam<br />

from the turbine feeds the<br />

high-pressure line of the turbine<br />

to produce electricity and the residual<br />

heat of the steam is then<br />

used in the evaporating process for<br />

the desalinization plant.<br />

• The thermodynamic efficiency of<br />

the combined processes can reach<br />

nearly 100 %.<br />

• The combined feeding of the evaporators<br />

by steam from the turbine<br />

and with heat from the solar plant<br />

makes it possible to operate the<br />

evaporators of the desalination<br />

plant up to 8,760 hours per year.<br />

This provides nearly 100 % operational<br />

time for this high investment<br />

costs.<br />

• The solar plant replaces the extracted<br />

steam from the turbine.<br />

More electricity can be indirectly<br />

produced.<br />

Research and Innovation<br />

The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

• The final evaporation and drying<br />

of the brine can be completed using<br />

solar heat, a very economical<br />

process.<br />

• The water produced can be collected<br />

and stored. Both processes can<br />

be produced separately and alternatively,<br />

according to operational<br />

demands as a main or by-product.<br />

Summary and conclusions<br />

Main Design Principals of large<br />

VHTR-Power Plants:<br />

Future designs of VHT- Reactors<br />

must have the following design elements<br />

[38], mostly by safety reasons:<br />

• Pebbles with TRISO coated particles.<br />

• inherent safe design, no melting of<br />

the core is possible.<br />

• Gastight closed primary helium<br />

circuit in one pressure vessel.<br />

• Pre-stressed concrete pressure<br />

vessel.<br />

• Helium primary /Helium secondary heat<br />

exchangers in the primary circuit.<br />

• Pebble bed ring core (PBRC).<br />

• Small core dimensions.<br />

• Several extractions for pebbles.<br />

• Safe against all possible dangerous<br />

events, extern and intern.<br />

• Safe against all types of terroristic<br />

attacks, cyber-attacks, plane<br />

crashes and similar attacks.<br />

• High magnitude earthquakes.<br />

• Highest possible safety standard.<br />

Economical advantages:<br />

• Very high primary helium gas<br />

temperatures.<br />

• No shut down for fuel elements<br />

changing and transportation.<br />

• Thermodynamic efficiency as high<br />

as in fossil power stations.<br />

• One/two times intermediate<br />

reheating possible.<br />

• Very high burn up of nuclear<br />

material.<br />

• Use of 232 thorium in combination<br />

with 235 Uranium to breed 233 Uranium.<br />

• Burn up of Plutonium, weapons<br />

plutonium included.<br />

• Reaching the non-proliferation-treaty<br />

agreement (NPT).<br />

• Safe storage of all nuclear material.<br />

• Safe and easy storing of radioactive<br />

material.<br />

(V)HTR to Co-Generate Electricity<br />

and high- plus low-temperature heat<br />

for several Industrial Processes (23,<br />

24, 33):<br />

Production of electricity by gas<br />

turbines [37]:<br />

• Hydrogen production [34, 35].<br />

• Chemicals.<br />

• Industrial Gases.<br />

• Steel making.<br />

• Nuclear Preheating.<br />

• Town Heating.<br />

and so on.<br />

Literature and References<br />

1. U. Cleve: Die Gesamtanlage des AVR<br />

Versuchsatomkraftwerkes in Jülich,<br />

Inbetriebnahme und Funktionsprüfungen.<br />

<strong>atw</strong>: 5/1966.<br />

2. AVR Versuchsatomkraftwerk mit Kugelhaufenreaktor<br />

in Jülich. Sonderdruck<br />

<strong>atw</strong> 5/1966<br />

3. Urban Cleve: Der AVR-Kugelhaufenreaktor<br />

und seine Weiterentwicklung.<br />

Elektrik+Elektronik Heft 3 /1969.<br />

4. U. Cleve, K. Kugeler, K. Knizia: The<br />

Technology of High Temperature-<br />

Reactors, Design, Commissioning and<br />

Operational Results of 15 MW el Experimental<br />

Reactor Jülich, Germany and<br />

THTR-300 MW el Demonstration Reactor<br />

Hamm and Their Impact on Future<br />

Designs. IACPP-Congress Nice 2011,<br />

5. U. Cleve: Die Technik der Hochtemperatur<br />

Reaktoren, Kolloquium RWTH<br />

Aachen, IEHK Juli 2011.<br />

6. AVR – Experimental High-Temperature-<br />

Reactor: 21 Years of Successful Operation<br />

for an Future Technology. VDI-<br />

Verlag ISBN 3-18-401015-5 1990.<br />

7. U. Cleve: Fragen und Antworten zum<br />

Experten-Bericht über Störfälle mit dem<br />

AVR. FZ-Jülich, 2014.<br />

8. U. Cleve: Fuel handling facility of high<br />

temperature pebble bed reactor.<br />

THTR-Meeting Brüssel 1967.<br />

9. U. Cleve: Onload fuelling of pebble bed<br />

high temperature reactor. HTR-<br />

Symposium London 1968.<br />

10. Fütterer at al.: A High Voltage Head-<br />

End Process for Waste Minimization<br />

and Reprocessing of coated Particle Fuel<br />

for High Temperature Reactors.<br />

Proceedings of ICAPP San Diego USA<br />

June 2010.<br />

11. U. Cleve: Die Technik der Hochtemperaturreaktoren.<br />

<strong>atw</strong> 12/ /2009.<br />

12. U. Cleve: Technik und Einsatzmöglichkeiten<br />

nuklearer Hochtemperaturreaktoren.<br />

Fusion Heft 1/2011.4<br />

13. HKG: THTR-Projektinformationen<br />

1962 – 1985.<br />

14. HRB: The commissioning of the<br />

THTR-300, a performance report.<br />

15. H. Bonnenberg: High Temperature Gas<br />

Cooled Reactor with spherical fuel<br />

elements. DGAP 2007.<br />

16. N. Nabielek, K.Verfondern, M.J. Kania:<br />

HTR Fuel Testing in AVR and MTRs. HTR<br />

Conference, Prague 2010.<br />

17. N. Nabielek, C.Tang, A.Müller: Recent<br />

Advances in HTR Fuel Manufacture.<br />

HTR-Conference Prague 2010.<br />

18. E. Mulder, D.Serfontaine, W. van der<br />

Merve: Thorium and Uranium fuel Cycle<br />

symbiosis in a pebble bed high<br />

temperature reactor. HTR-Conference<br />

Prague 2010.<br />

19. K. Kugeler: Gibt es den katastrophenfreien<br />

Reaktor? Physikalische Blätter 37<br />

/ 2001.<br />

20. U. Cleve: Zukunftsdialog der Bundeskanzlerin:<br />

Thorium als Energiequelle.<br />

Argumente und Stellungnahmen.<br />

Beiträge im Internet 2012.<br />

21. U. Cleve: Breeding of fissile 233 Uranium<br />

using 232 thorium with Pebble Fuel<br />

Elements. EIR-Conference: Report 49,<br />

May 2013.<br />

22. U. Cleve, Thorium: Brennstoff aus der<br />

Erde für tausende von Jahren.<br />

23. J. Schöning et.al Die Heliumgasreinigungsanlage.<br />

<strong>atw</strong> 5/1966.<br />

24. G. Wrochna: Results from Nuclear<br />

Cogeneration Industrial Initiative. NC2I<br />

National Center for Nuclear Research<br />

(NCBJ) Poland. 2016,<br />

25. Fütterer et.al.: The ARCHER Projekt,<br />

Advanced HTR for Cogeneration of heat<br />

and Electricity. Proceedings of the HTR,<br />

China 2014.<br />

26. U. Cleve: Nukleare Hochtemperaturreaktoren<br />

zur Erzeugung flüssiger<br />

Brennstoffe, von Wasserstoff und<br />

elektrischer Energie. <strong>atw</strong> 6/2011.<br />

27. U. Cleve: The Technology of High<br />

Temperature Reactors and Production<br />

of Nuclear Process Heat. NUTECH -2011,<br />

University of Cracow 2011.<br />

28. Auslegung, Konstruktion und Errichtung<br />

des Spannbetondruckbehälters<br />

des THTR-300. Ablauf und Ergebnisse.<br />

29. U. Cleve: Auslegung und Konstruktion<br />

großer Dampfturbinen. Technische<br />

Mitteilungen des HdT Heft 1, 1964.<br />

30. U. Cleve: Dampf-Wärme-Umwelttechnische<br />

Verfahrenskombinationen.<br />

Symposium Katovic 1976.<br />

31. T. Brendel: Solare Meerwasserentsalzungsanlagen<br />

mit mehrstufiger<br />

Verdunstung. Dissertation: Ruhr<br />

Universität Bochum 2003.<br />

32. J.Gebel, S.Yüce: An Engineering Guide<br />

to Desalination. VGB PowerTech. (2008).<br />

33. U.Cleve: Cost Valuation of Electricity<br />

and Heat for several industrial processes<br />

by co-generation in Power Stations.<br />

Dissertation: University of Heidelberg<br />

1960.<br />

34. K.R.Schultz, L.C.Brown, G.E.Besenbruch,<br />

C.J.Hamilton: Large Scale Production of<br />

Hydrogenby Nuclear Energy for Hydrogen<br />

Economy. GA-Report A 74265,<br />

35. S. Schulien: Ein Weg aus der Abhängigkeit<br />

von Erdöl – Nutzbarmachung der<br />

Wasserstofftechnik. FH Wiesbaden.<br />

36. Sun Guohui et al. Discussion of High-<br />

Temperature Performance of Alloy 625<br />

for HTR Steam Generators. Proceedings<br />

of HTR, Weihei, China 2014.<br />

37. W. von Lensa: Internationale<br />

Entwicklungsprogramme zum<br />

Hochtemperaturreaktor. Bericht<br />

FZ-Jülich.<br />

38. U. Cleve: Konstruktionsprinzipien zur<br />

nuklearen und betrieblichen Sicherheit<br />

on HTR-KKW.<br />

Authors<br />

Dr.-Ing. Urban Cleve<br />

Ex. CTO/HA-Leiter Technik<br />

of BBC/Krupp Reaktorbau GmbH,<br />

Mannheim<br />

Hohenfriedbergerstr. 4<br />

44141 Dortmund, Germany<br />

RESEARCH AND INNOVATION 177<br />

Research and Innovation<br />

The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

RESEARCH AND INNOVATION 178<br />

Zur Rationalität des Deutschen<br />

Kernenergieausstieges<br />

Wolfgang Stoll<br />

Einleitung Platon stellte 400 vor Christus fest: „Was immer Du tust, Du tust einem anderen Böses.“ Streng genommen<br />

müsste das ebenso für Unterlassungen gelten – aber unser Leben ist mehr auf Handlungen und Handlungsfolgen<br />

eingestellt.<br />

Zum Rahmen unserer Handlungsoptionen<br />

gehört auch das Gewerberecht.<br />

Nach seinen etablierten Regeln<br />

erlaubt es gewerbliche Tätigkeiten,<br />

die den Nachbarn jenseits der Grenzen<br />

des Grundstücks, auf dem das<br />

Gewerbe ausgeübt wird, nicht unzumutbar<br />

gefährden. Das Ausmaß der<br />

Gefährdung, das der Nachbar zu<br />

tolerieren hat, darf das allgemein als<br />

akzeptiert betrachtete „Restrisiko“ als<br />

Äquivalent von einem (statistischen)<br />

Todesfall unter 1 Million Menschen<br />

und Jahr nicht überschreiten. (Für die<br />

Grenzen der Zumutbarkeit des fremd<br />

verschuldeten Risikos, das zu akzeptieren<br />

ist, gibt es in der deutschen<br />

Rechtsprechung das Kalkar-Urteil).<br />

Das ist ungefähr 1 % des aus der<br />

mittleren Lebenserwartung ableitbaren<br />

individuellen statistischen<br />

Ablebensrisikos aus allen Lebensrisiken<br />

einschließlich des Todes durch<br />

Krankheit. Wo auch der Nutzen des<br />

Einzelnen dagegen bilanziert werden<br />

kann, wie bei vielen individuell eingegangenen<br />

Risiken, wie z.B. im<br />

Straßen verkehr, liegt das akzeptierte<br />

Todesrisiko (Autounfälle) bei derzeit<br />

50 Menschen pro Million und Jahr.<br />

Es kann bisher nicht sicher ausgeschlossen<br />

werden, dass bei einem<br />

Störfall in einem Kernkraftwerk der<br />

üblichen Bau- und Betriebsweise diese<br />

in Deutschland festgelegte Zumutbarkeitsgrenze<br />

überschritten wird. Die<br />

Höhe des Restrisikos ergibt sich aus<br />

im Wesentlichen zwei Risikosträngen,<br />

wie sie sowohl aus mangelnder Organisationsqualität,<br />

wie sie auch aus<br />

Mängeln der technischen Qualität des<br />

Systems entstehen können. Für die<br />

Beurteilung der Zumutbarkeitsgrenze<br />

nach obigem Todesfallrisiko wird hier<br />

die Wirkung ionisierender Strahlung<br />

auf Menschen in der Umgebung<br />

des Kraftwerkes herangezogen, die<br />

alle sonst noch möglichen Schadwirkungen<br />

überwölbt. Die herrschende<br />

Interpretation dieser Schädigung<br />

fußt auf einer Schadensvermutung<br />

auch bei sehr geringer Überschreitung<br />

der natürlichen Strahlenexposition,<br />

die eine Person durch die Summe an<br />

Inhalation, Ingestion und äußerer<br />

Bestrahlung vom Kernkraftwerk her<br />

erfährt. Eine kausale Schadenszuordnung<br />

an der Einzelperson mit<br />

gleicher Maximalfolge (Krebs) ist<br />

wegen der Multikausalität (parallel<br />

wirkende mögliche andere Schadstoffe)<br />

ausgeschlossen. Es gibt allenfalls<br />

in großen Bevölkerungskollektiven<br />

statistisch erkennbare Schäden<br />

in eintretenden Krankheiten, einer<br />

Lebensverkürzung und dem Tod in<br />

einem sowohl zeitlich, wie örtlich<br />

unscharf begrenzten Umfeld.<br />

Verstellte Wirklichkeit.<br />

Mit zunehmendem Lebensalter – und<br />

das erreichen bei uns immer mehr<br />

Menschen – rückt das Bewusstsein<br />

der Endlichkeit immer näher. Man<br />

kann das „Leben“ mit ein paar Zahlen<br />

umfassen. Nehmen wir einen<br />

94- Jährigen. Er besteht aus etwa einer<br />

Million Milliarden Zellen, von denen<br />

jede Sekunde eine Million zugrunde<br />

gehen. Die Ausscheidungen in den<br />

Eiweißbestandteilen in Stuhl und Urin<br />

beweisen das täglich. Leben umschließt<br />

also ein fortlaufendes Sterben<br />

von Zellen, was für dieses Menschenleben<br />

eine Bildung neuer Zellen im<br />

etwa Zehnfachen seines Körpergewichtes<br />

(rund 3 x 10E+15 Zellen)<br />

erfordert.<br />

Es sind aber nicht alle Organe<br />

gleichmäßig betroffen. Herausragend<br />

sind Haut, Haare, die Darmzotten und<br />

die Lunge. Unsere Lunge muss im<br />

Durchschnitt jährlich mit der Atemluft<br />

70 Gramm zellzerstörendes Ozon<br />

verkraften, was nur durch eine Neubildung<br />

von Zellen in den Alveolen<br />

gelingt. Enzyme, die das Abräumen<br />

der so beschädigten Zellen besorgen,<br />

nennen wir beschönigend „Reparaturenzyme“.<br />

Diese werden besonders<br />

dort und dann gebildet, wenn<br />

gehäufte Zellfehlbildungen und<br />

damit Zelltod signalisiert wird. Diese<br />

Korrekturen sind besonders beim<br />

wachsenden Organismus nötig,<br />

weshalb Kleinkinder bis zum Zehnfachen<br />

der Reparaturenzymkonzentration<br />

des Erwachsenen erreichen.<br />

Setzt man beim Erwachsenen einen<br />

Zellschaden, wie z.B. bei der ionisierenden<br />

Bestrahlung der ohnehin<br />

auf den fortlaufenden Zelltod programmierten<br />

Alveolen der Lunge, z.B.<br />

durch die Alphastrahlung von Radon,<br />

so antwortet der Körper mit einem<br />

Anstieg der Reparaturenzymkonzentration.<br />

Der Vorgang ist aber relativ<br />

langsam, also erst nach Stunden,<br />

und bleibt auch länger wirksam,<br />

sodass die Reparaturenzyme im<br />

ganzen Organismus auch andere<br />

vorgeschädigte Zellen ausscheiden.<br />

Erst eine Schädigung in Intervallen<br />

(mehrere Tage Pause) bringt die<br />

Reparaturenzyme auf den Wert des<br />

Babys, wo sie allerdings nur mehrere<br />

Wochen verharrt. Das begründet<br />

die Wirkung von Radonbädern<br />

auf Rheuma und andere Gewebsschädigungen.<br />

Es kommt aber auf die<br />

Dosis und die intermittierende<br />

Schädigung an – Dauerschädigung<br />

bewirkt durch Überlastung des Reparatursystems<br />

das Gegenteil. Diese<br />

wichtige Unter scheidung spiegelt sich<br />

nicht in unserem Gefahren-Bewusstsein.<br />

Unser streng nach kausaler Verknüpfung<br />

von Ursache und Wirkung<br />

aufgebautes Rechtssystem wird,<br />

sobald irgendwelche Schäden eingetreten<br />

oder auch nur zu befürchten<br />

sind, damit gegen alle Logik zur<br />

Bewertung nur statistisch erfassbarer<br />

Wirkungen als pseudokausal herangezogen.<br />

In angstzentrierten Gesellschaften,<br />

wie der unseren, kann diese<br />

Pseudokausalität schon im Vorfeld<br />

der Handlungen zu Totalverboten<br />

führen. Das erklärt auch das Abschaltgebot<br />

nach Fukushima, obwohl es<br />

an Deutschen Kernkraftwerken keine<br />

mit dem dortigen Unfallablauf<br />

und dessen Folgen vergleichbare<br />

Szenarien gibt.<br />

Zum deutschen<br />

Risikoverständnis<br />

Unsere Befindlichkeit erscheint dann<br />

im Gleichgewicht, wenn sie sich<br />

zwischen Chance und Risiko einpendelt.<br />

Research and Innovation<br />

On the Rationality of the German Nuclear Phase-out ı Wolfgang Stoll


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

Dabei ist das Verhältnis zwischen<br />

individuellen Glückserwartungen<br />

und ertragenem Risiko je nach dem<br />

Gemütszustand des Einzelnen sehr<br />

verschieden. Es liegt in unserem<br />

Selbstverständnis, dass überschaubare<br />

individuelle Risiken eher eingegangen<br />

werden, als von außen<br />

unsteuerbar aufgezwungene.<br />

Man kann unser individuelles<br />

Risiko feld als Schalenmodell darstellen,<br />

bei dem die innerste Schale<br />

die schiere Existenzerhaltung bildet,<br />

die von der Schale des nicht Hungerns<br />

(Essen), des nicht Frierens (Bekleidung),<br />

darum herum des Geborgenseins<br />

(Wohnen, Abstand) und schließlich<br />

der Schale der sozialen Akzeptanz<br />

(Familie, Gesellschaftliche Einbettung)<br />

umfangen wird. Im Gegensatz<br />

zu anderen Teilen der Welt weiß sich<br />

der Deutsche Bürger in den oben genannten<br />

Schalen sicher umfangenen<br />

und baut auch auf deren Kontinuität.<br />

Die Angst des Einzelnen, die sich stets<br />

auf Objektsuche befindet, weist bei<br />

unserem durchschnittlichen Bürger<br />

daher nach außen auf die eher kollektiven<br />

und weniger gegenständlichen<br />

Angstobjekte, besonders wenn sie<br />

vom Einzelnen nicht direkt beeinflussbar<br />

und in einer zeitlich wie örtlich<br />

unscharfen kollektiven Schadensvermutung<br />

allgegenwärtig sind. Die<br />

Angst vor ionisierender Strahlung gehört<br />

in diesen Problemkreis, wobei<br />

eine individuell mit einer Heilungsvermutung<br />

erduldete ionisierende<br />

Strahlung in der Medizin schon wegen<br />

ihrer örtlichen und zeitlichen Begrenzbarkeit<br />

davon weitgehend ausgenommen<br />

ist.<br />

Der Zugang zu Wechselfällen des<br />

Lebens, wie er aus solchen Gefährdungen<br />

entsteht, kann ja nach Einstellung<br />

überwiegend aktiv und verändernd<br />

(wie im Christentum) oder<br />

überwiegend ertragend und kontemplativ<br />

(wie z.B. im „Kismet“-Denken<br />

des Islam) ausgerichtet sein. Schon<br />

aus biblischen Ursprüngen ist unsere<br />

abendländische Denkschablone in<br />

Schuld und Sühne aktiv und kausal.<br />

Wir vereinfachen die oft nur scheinbar<br />

kausalen Zusammenhänge, die oft<br />

nur das nahe an 100 % herankommende<br />

Ende von Wahrscheinlichkeiten<br />

darstellen, wobei wir dem<br />

„Wunder“ den unscheinbaren Rest bis<br />

zur vollen Kausalität überlassen. Das<br />

gilt für alle Ereignisse, die wir wahrnehmen<br />

können, vierdimensional, das<br />

heißt in Raum und Zeit. Die daraus<br />

abgeleitete scheinbare Unentrinnbarkeit<br />

bei Schadereignissen entsteht<br />

durch Überdehnung großer Dimensionen<br />

ins Unendliche: Zeitlich im<br />

„Ewig“ und „immer“, örtlich im „Überall“.<br />

Die Kernenergiegegner operieren<br />

zur allgemeinen Angstmache geschickt<br />

mit dieser Begriffsüberdehnung.<br />

Das Problem ist aber von<br />

ganz allgemeiner Natur. Klassische<br />

wissenschaftliche Erkenntnisse kommen<br />

überwiegend aus dem Bereich<br />

der sehr hohen Wahrscheinlichkeit,<br />

die wir vereinfacht als kausale Verknüpfung<br />

von Ursache und Wirkung<br />

kennzeichnen. Ganz allgemein wird<br />

aber im Vordringen unseren Wissens<br />

in immer kompliziertere Zusammenhänge<br />

bis in das so genannte statistische<br />

„Rauschen“ der Zusammenhang<br />

von Ursache und Wirkung<br />

immer weniger eindeutig. Diese<br />

Unschärfe eröffnet einen großen<br />

Ermessensspielraum (ein Beispiel ist<br />

die globale Erwärmung). Zusätzlich<br />

werden dann aus Gründen der Vereinfachung<br />

auch noch die Randbedingungen<br />

weggelassen, mit denen<br />

eine statistische Aussage von der<br />

Wissenschaft zusätzlich oft eingeschränkt<br />

wird. Schon Immanuel Kant<br />

fand, dass der Bedarf an Entscheidungen<br />

immer größer wäre als der<br />

Vorrat an Erkenntnissen. Der Einzelne<br />

vereinfacht aber im Alltag seine<br />

Schlussfolgerungen durch die im<br />

Recht und in der Religion anerzogene<br />

strenge Kausalität. Überlässt man<br />

scheinbar gefahrengeneigte Tätigkeiten<br />

den abergläubischen und<br />

nur ausschnittsinformierten Angstbürgern<br />

als neue Warnungen vor<br />

Ungemach und als mögliche Katastrophenszenarien,<br />

so versteifen Mehrheiten<br />

diese daher vereinfachend als<br />

„Gewissheiten“ und leiten daraus<br />

kollektive Handlungsanweisungen ab.<br />

So hat in unserer Gesellschaft die<br />

Angst eine Vorliebe für alle jetzt und<br />

hier vermeidbaren Angstobjekte,<br />

ohne die Spätfolgen (auch die des<br />

Unterlassens) ausreichend im Blick<br />

zu haben. In Gesellschaftssystemen,<br />

die sich weniger perfektioniert geben,<br />

sind auch die Ordnungssysteme<br />

weniger strikt durchgehalten und der<br />

Bürger sorgt in der für ihn stets erwiesenen<br />

Unzuverlässigkeit vorsichtig<br />

für sich selbst, wobei er in einem allgegenwärtigen<br />

gefährlicheren Risikofeld<br />

weniger Anstoß an verbleibenden<br />

Restrisiken nimmt. In Aufstellen und<br />

Durchhalten von Ordnungssystemen<br />

ist jedoch gerade Deutschland ein<br />

Extrembeispiel, was schon im sprachlichen<br />

Doppelbegriff der Sicherheit,<br />

die sowohl Gewissheit, wie auch die<br />

Gefahrenabwesenheit meint (lateinisch:<br />

certitudo securitatis), zum Ausdruck<br />

kommt. Der den Doppelbegriff<br />

einfordernde Bürger macht sich nicht<br />

klar, dass genau dies alle gefahrengeneigte<br />

Technik fast schon definitionsgemäß<br />

ausschließt, was im<br />

Besonderen die Kerntechnik trifft.<br />

Die unkonditionierte<br />

Ablehnung<br />

Einziger Ausweg aus diesem typisch<br />

deutschen Dilemma, bei dem man<br />

sich stets in einem überschaubaren<br />

und geregelten Umfeld wähnt, kann<br />

nur ein kategorischer Ausschluss einer<br />

radioaktive Stoffe hantierenden Technik<br />

sein.(Obwohl dies objektiv wahrscheinlich<br />

gar nicht im strengen Sinne<br />

nötig wäre).<br />

Daraus folgt, dass jede unkontrollierte<br />

Freisetzung von Radionukliden,<br />

wie immer diese zustande kommt,<br />

ausgeschlossen werden muss. Begrifflich<br />

verlangt das für Radionuklide<br />

geschlossene Quellen, die allenfalls<br />

Strahlung, aber keine Dispersion bewirken.<br />

Eine radioaktive Freisetzung<br />

aus Betrieb oder Unfall in einem Kernkraftwerk<br />

muss somit auf das Betriebsgelände<br />

oder besser auf den<br />

Kernenergieanteil der Anlage beschränkt<br />

bleiben. Dies gilt nicht nur<br />

für den Normalbetriebsfall, in dem<br />

eine wie immer geschulte Betreibermannschaft<br />

sichernd eingreifen kann,<br />

sondern auch für eine unbeherrschte<br />

Betriebsstörung ohne menschlichen<br />

Steuerungseingriff.<br />

Streng genommen gälte das für<br />

alle von einer Dispersion von Radionukliden<br />

gefährdeten Flächen, die ja<br />

auch an Landesgrenzen nicht Halt<br />

macht, wie man an dem Unfall in<br />

Tschernobyl erfahren musste. Die<br />

zu einem solchen weit reichenden<br />

Ausschluss nötigen internationalen<br />

Instrumente fehlen bisher jedoch.<br />

Es gibt für den Radionuklideinschluss<br />

bei schweren Störfällen bereits<br />

technische Teil-Lösungen, (z.B.<br />

das Kraftwerk Olkiluoto III in Finnland<br />

und Flamanville III in Frankreich), bei<br />

denen ein eventuell schmelzender<br />

Rektorkern sicher aufgefangen wird.<br />

Der überwiegende Teil der Menschheit<br />

hält derartige etwas teurere<br />

Konzepte wegen der geringen Eintrittswahrscheinlichkeit<br />

der Schäden<br />

auch nach Fukushima bisher noch<br />

nicht für nötig.<br />

Schon die „umhüllte radioaktive<br />

Quelle“ verlangt, dass die Umhüllungen<br />

des Systems unzerstört bleiben<br />

muss und dass sie einen sich aufbauenden<br />

Innendruck allenfalls nur<br />

über Filter abbauen darf, die alle<br />

gefährlichen Radionuklide zurückhalten<br />

können. Für einen geometrisch<br />

noch intakten Reaktor gibt es im Prinzip<br />

zwei primäre Störkräfte, die auf<br />

RESEARCH AND INNOVATION 179<br />

Research and Innovation<br />

On the Rationality of the German Nuclear Phase-out ı Wolfgang Stoll


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

RESEARCH AND INNOVATION 180<br />

ihn einwirken können: Die Kettenreaktion<br />

selbst und die abzuführende<br />

Nachwärme. Der Abbruch der Kettenreaktion<br />

erfolgt nach Verlust des<br />

Kühlmittels automatisch, solange das<br />

Kühlmittel auch der einzige Moderator<br />

ist. Das gilt für alle wassermoderierten<br />

Systeme. Die Nachwärme<br />

entspricht im Abschaltzeitpunkt<br />

etwa 4 % der Reaktorleistung<br />

und fällt nach einer Woche auf etwa<br />

0,5 % ab. Solange das Rohrleitungssystem<br />

noch intakt ist und eines der<br />

mehreren redundant und diversitär<br />

ausgelegten Nachkühlsysteme noch<br />

funktioniert, kann die Restwärme<br />

abgeführt werden. Selbst wenn der<br />

Systemumlauf nicht mehr funktioniert,<br />

so kann der mit Wasser be deckte<br />

Reaktorkern noch durch Ver dampfung<br />

gekühlt werden. Die frei werdende<br />

Wärme der ersten 10 Tage nach Abschaltung<br />

eines 1.000 MWe Reaktors<br />

entspricht der Verdampfungswärme<br />

von 40.000 Kubikmetern Wasser (also<br />

etwa 3 großen Schwimmbecken).<br />

Nach diesen 10 Tagen ist der Hauptteil<br />

des kurzlebigen radioaktiven Jods<br />

zerfallen und es muss von den flüchtigen<br />

Bestandteilen im Wesentlichen<br />

noch das ausdampfbare Cäsiumjodid<br />

zurückgehalten werden.<br />

Soweit keine Kühlung erfolgt, wird<br />

bis dahin der Kern mit allen seinen<br />

auch nicht aktiven Bestandteilen<br />

zu einem geschmolzenen Klumpen<br />

(das sogenannte Corium) umgeformt<br />

worden sein, der langsam durch sein<br />

Gewicht in den Beton des Bodens<br />

des Reaktorgebäudes einsinkt. Im<br />

medialen Sprachgebrauch hat sich<br />

dieser Vorgang plakativ als das<br />

„Chinasyndrom“ verselbstständigt<br />

und überschattet so alle parallel<br />

laufenden, möglicherweise sogar<br />

schwerer wiegenden Freisetzungsvorgänge.<br />

Es ist höchst spekulativ, ob<br />

das eindringende Corium irgendwann<br />

das meist mehrere Meter dicke Betonfundament<br />

durchschmelzen kann<br />

(schon eine einige Meter dicke Lage<br />

von Quarzsand kann das verhindern)<br />

und ob dann das Schmelzgut noch<br />

flüchtige Spaltprodukte nach außen<br />

durch den Boden freisetzen würde.<br />

Jedenfalls kann man dieses Risiko<br />

relativ einfach durch eine hochtemperaturfeste<br />

Wanne unter dem Reaktordruckgefäß<br />

(=core catcher) oder<br />

durch einen entsprechend dicken<br />

Stahlboden (Wie in neuen Russischen<br />

Reaktordruckgefäßen vorgesehen)<br />

soweit verlangsamen, dass der Vorgang<br />

mit abnehmender Restwärme<br />

ohne Durchbruch nach außen zum<br />

Stillstand kommt.<br />

Man geht derzeit dazu über, die<br />

Kühlmöglichkeiten des abgeschalteten<br />

Reaktors so weit zu perfektionieren,<br />

dass das System sich selbsttätig<br />

und ohne Umlegen von Hebeln oder<br />

Einschalten von Notstromaggregaten<br />

auch ohne menschlichen Eingriff ausreichend<br />

mit Wasser kühlt. Das bleibt<br />

aber immer „engineered safety“ und<br />

ist, soweit man nicht auf Wasser aus<br />

einem statischen Gefälle, z.B. von<br />

einem großen Hochbehälter zurückgreifen<br />

kann, von Pumpen, also einer<br />

funktionierenden Energiezufuhr und<br />

einem intakten Rohrleitungssystem<br />

abhängig.<br />

Wenn nichts davon funktioniert,<br />

(wenn z.B. der Druckbehälter auch<br />

nicht mehr mit Zu- und Ableitungen<br />

verbunden sein sollte), ist der Kernschmelzunfall<br />

nach etwa 25 Minuten<br />

Tatsache.<br />

Es ist verständlich, dass unabhängig<br />

davon, durch welche Ursache<br />

| | Editorial Advisory Board<br />

Frank Apel<br />

Erik Baumann<br />

Dr. Maarten Becker<br />

Dr. Erwin Fischer<br />

Eckehard Göring<br />

Dr. Ralf Güldner<br />

Carsten Haferkamp<br />

Dr. Petra-Britt Hoffmann<br />

Dr. Guido Knott<br />

Prof. Dr. Marco K. Koch<br />

Dr. Willibald Kohlpaintner<br />

Ulf Kutscher<br />

Andreas Loeb<br />

Dr. Thomas Mull<br />

Dr. Ingo Neuhaus<br />

Dr. Joachim Ohnemus<br />

Prof. Dr. Winfried Petry<br />

Dr. Tatiana Salnikova<br />

Dr. Andreas Schaffrath<br />

Dr. Jens Schröder<br />

Dr. Wolfgang Steinwarz<br />

Prof. Dr. Bruno Thomauske<br />

Dr. Walter Tromm<br />

Dr. Hans-Georg Willschütz<br />

Dr. Hannes Wimmer<br />

Ernst Michael Züfle<br />

Imprint<br />

| | Editorial<br />

Christopher Weßelmann (Editor in Chief)<br />

Im Tal 121, 45529 Hattingen, Germany<br />

Phone: +49 2324 4397723<br />

Fax: +49 2324 4397724<br />

E-mail: editorial@nucmag.com<br />

| | Official Journal of<br />

Kerntechnische Gesellschaft e. V. (KTG)<br />

| | Publisher<br />

INFORUM Verlags- und<br />

Verwaltungsgesellschaft mbH<br />

Robert-Koch-Platz 4, 10115 Berlin, Germany<br />

Phone: +49 30 498555-30, Fax: +49 30 498555-18<br />

www.nucmag.com<br />

| | General Manager<br />

Christian Wößner, Berlin, Germany<br />

| | Advertising and Subscription<br />

Sibille Wingens<br />

Robert-Koch-Platz 4, 10115 Berlin, Germany<br />

Phone: +49 30 498555-10, Fax: +49 30 498555-19<br />

E-mail: sibille.wingens@nucmag.com<br />

| | Prize List for Advertisement<br />

Valid as of 1 January <strong>2018</strong><br />

Published monthly, 9 issues per year<br />

Germany:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT and postage) 176.- €<br />

All EU member states without VAT number:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT, excl. postage) 176.- €<br />

EU member states with VAT number<br />

and all other countries:<br />

Per issues/copy (no VAT, excl. postage) 22.43 €<br />

Annual subscription (no VAT, excl. postage) 164.49 €<br />

| | Copyright<br />

The journal and all papers and photos contained in it<br />

are protected by copyright. Any use made thereof outside<br />

the Copyright Act without the consent of the publisher,<br />

INFORUM Verlags- und Verwaltungsgesellschaft mbH,<br />

is prohibited. This applies to reproductions, translations,<br />

microfilming and the input and incorporation into<br />

electronic systems. The individual author is held<br />

responsible for the contents of the respective paper.<br />

Please address letters and manuscripts only to the<br />

Editorial Staff and not to individual persons of the<br />

association´s staff. We do not assume any responsibility<br />

for unrequested contributions.<br />

Signed articles do not necessarily represent the views<br />

of the editorial.<br />

| | Layout<br />

zi.zero Kommunikation<br />

Berlin, Germany<br />

Antje Zimmermann<br />

| | Printing<br />

inpuncto:asmuth<br />

druck + medien gmbh<br />

Baunscheidtstraße 11<br />

53113 Bonn<br />

ISSN 1431-5254<br />

Research and Innovation<br />

On the Rationality of the German Nuclear Phase-out ı Wolfgang Stoll


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

(einschließlich absichtlicher Kernzerstörung)<br />

eine unkontrollierte<br />

Freisetzung von Radionukliden mit<br />

der weiträumigen Verseuchung bewohnter<br />

Landstriche stattfinden kann,<br />

kein dicht besiedeltes Umfeld einem<br />

solchen Risiko ausgesetzt werden darf.<br />

Von diesem Risiko ist der Weiterbetrieb<br />

der in Europa, besonders aber<br />

Deutschland laufenden Kernkraftwerke<br />

eben nicht grundsätzlich frei –<br />

wie klein auch immer man eine Wahrscheinlichkeit<br />

dafür ansetzt.<br />

Soweit man die Reaktionen der<br />

Reaktorbetreiber auf Fukushima<br />

bisher beurteilen kann, werden die<br />

EVA-Ereignisse (= Einwirkung von<br />

Außen, einschließlich Flutung) und<br />

die Notkühlsysteme überprüft und<br />

auskömmlich (je 4 Systeme) sowohl<br />

auf Redundanz, wie auf Diversität<br />

verbessert. In den USA prüft man<br />

zusätzlich die Evakuierungsmöglichkeiten<br />

der Kraftwerksumgebung. Die<br />

21 von Russland geplanten neuen<br />

Kernkraftwerke haben alle einen verstärkten<br />

Druckgefäßboden und ein<br />

zweites Containment. Sofortabschaltungen<br />

gibt es nur in Deutschland,<br />

Auslaufen der Kernenergie ist in<br />

der Schweiz geplant, Neubaupläne<br />

wurden in Italien gestoppt. Die<br />

anderen Nuklearnationen bewegen<br />

sich zwischen Prüfungen, Verbesserungen,<br />

Laufzeitverkürzungen und<br />

verzögertem Neubau, ohne dass es<br />

bisher allgemein gültige Verhaltensregeln<br />

gibt.<br />

Die mehr grundsätzlichen<br />

Alternativen<br />

Die Summe aller dieser Vorkehrungen<br />

mindert die Wahrscheinlichkeit, dass<br />

es nach entsprechenden Störungen<br />

zum Kernschmelzen und in der Folge<br />

zum unkontrollierten Austritt von<br />

Spaltprodukten kommt. Ausgeschlossen<br />

sind derartige Folgen aber<br />

nicht grundsätzlich. Damit bleibt<br />

die diffuse Angst vor ionisierender<br />

Strahlung und deren Folge für die<br />

nähere und auch weitere Kraftwerksumgebung<br />

erhalten.<br />

Will man sich darauf einstellen, so<br />

darf das äußere System der Umschließung<br />

– das Containment oder<br />

der umhüllende zweite Druckbehälter<br />

– keiner zusätzlichen zerstörenden<br />

Kraft mehr ausgesetzt werden. Untersucht<br />

man die Risiken dazu, so fallen<br />

zunächst die Zirkon-Wasser-Reaktion<br />

mit Wasserstoffbildung und eine<br />

nachfolgende Knallgasexplosion am<br />

schwersten ins Gewicht. Man kann<br />

den Reaktorraum mit Stickstoff<br />

fluten, um Luftzutritt zu verhindern,<br />

aber auch diese Vorkehrung kann<br />

im Störfall durch Eindringen von<br />

Luft über Undichtigkeiten versagen.<br />

Rekombinatoren (Platinmetalle) helfen<br />

auch nur so lange, als der Gasumlauf<br />

diese ausreichend schnell<br />

erreicht, noch genügend Sauerstoff<br />

vorhanden ist und die Rekombinations-Rate<br />

mit der Zirkon-Wasserrektion<br />

Schritt halten kann – was<br />

nicht in allen Fällen gewährleistet ist.<br />

Überhitzt kann er sogar direkt zur<br />

Zündquelle werden.<br />

Zirkon als reaktives Metall ausschließen<br />

heißt auf andere Hüllmaterialien<br />

ausweichen. Dafür bietet sich<br />

rostfreier Stahl an, was allerdings<br />

die Anreicherungskosten für das Uran<br />

fast verdoppelt und Ansprüche an<br />

die Tritium-Rückhaltung im Betrieb<br />

erhöht.<br />

Bei Schiffsreaktoren wird das<br />

überwiegend so praktiziert. (Eine<br />

etwas ferner liegende Lösung wäre die<br />

Verwendung der Spaltedelmetalle als<br />

Hüllrohr, wozu man diese allerdings<br />

aus den Spaltprodukten der Wiederaufarbeitung<br />

abtrennen, für thermische<br />

Reaktoren das Rhodium seiner<br />

starken Neutronenabsorption wegen<br />

von Palladium und Ruthenium<br />

trennen und die Menge von 10 abgebrannten<br />

Kernen für den Metallbedarf<br />

eines Folgekerne zusammenkommen<br />

lassen müsste, wonach es allerdings<br />

für nachfolgende Kerne jeweils wieder<br />

verwendet werden könnte).<br />

Das Zusammenschmelzen und<br />

damit die Corium-Bildung würden<br />

dadurch zwar stark verzögert, aber<br />

nicht grundsätzlich verhindert. Das<br />

gilt im Übrigen auch für den gepriesenen<br />

Hochtempera tur reaktor, da der<br />

als Moderator verwendete Grafit bei<br />

Luftzutritt abbrennen und Radionuklide<br />

freisetzen würde. Für die Absorption<br />

der Hauptmenge der gasförmigen<br />

Spaltpro dukte Jod und Cäsium wäre<br />

ein Wasser filter ( Berieselung oder<br />

Wäscher) am einfachsten. Der Rest<br />

der dis pergierbaren Radionuklide<br />

wäre technisch am besten an<br />

großober flächige Produkte zu binden.<br />

Da humoser Boden Cäsium am<br />

längsten festhält, könnte wahrscheinlich<br />

stattdessen gewöhnlicher Torf<br />

als Rück halte medium dienen. Auch<br />

Aktiv kohle wirkt ähnlich. Dabei<br />

kommt es nicht auf eine dauerhafte<br />

Rück haltung, sondern nur auf eine<br />

zeit liche Ver zögerung bis zum radioaktiven<br />

Zerfall der Hauptmenge Jod<br />

im Cäsiumjodid an. Wenn man das<br />

Brandrisiko von Aktivkohle auch noch<br />

ausschließen will, muss man auf<br />

Zeolithe als Filtermedium ausweichen,<br />

was das Filtervolumen etwa<br />

verdreifacht.<br />

Als nächste Stufe der Vermeidung<br />

derartiger Störfälle bliebe nur der<br />

Weg, das System so zu verändern,<br />

dass auch bei Kernzerstörung entweder<br />

ein umschließendes Medium<br />

die freigesetzten Radionuklide auffängt<br />

oder keine Dispersionskräfte zur<br />

Ausbreitung mindestens von atmosphärischen<br />

Freisetzungen mehr existieren.<br />

Das bedeutet zunächst die<br />

Trennung von Drucksystemen wie der<br />

Dampferzeugung vom nuklearen Kern<br />

durch Zwischenwärmeübertragung<br />

mit einem nicht-dispergierenden<br />

Kühlmittel wie z.B. durch ein hoch<br />

siedendes flüssiges Metall. Es bedeutete<br />

auch, dass Druckgebende chemische<br />

Reaktionen ausgeschlossen<br />

werden müssen, was u.a. Zircaloy und<br />

Wasser als Paarung ausschließt. Wenn<br />

dann schon die Kernschmelze als<br />

Möglichkeit unterstellt wird, sollte die<br />

Wärmekapazität des sich erhitzenden<br />

Systems so gering wie möglich sein,<br />

um die äußere Kühlleistung zu minimieren.<br />

Das führt ganz automatisch<br />

zum Schnellen Reaktor, bei dem auch<br />

kein Moderator mit erhitzt wird und<br />

der wegen seiner hohen Energiedichte<br />

im Kern nur wenige Prozent des<br />

Volumens eines Druckwasserreaktors<br />

gleicher Leistung benötigt, die es<br />

dann zu kühlen gilt.<br />

Es gibt bereits Reaktoren, die<br />

diesem Konzept schon recht nahe<br />

kommen, wie z.B. die Blei-Wismutgekühlten<br />

Reaktoren der Russischen<br />

U-Boote der A-Klasse. Obwohl schon<br />

einige davon gesunken sind, hat man<br />

noch nirgends Radionuklide in schädigendem<br />

Ausmaß an der Meeresoberfläche<br />

gefunden. Man kann<br />

davon ausgehen, dass selbst ein bis<br />

zur Dispersion von Radionukliden<br />

zerstörter Reaktor zwar das darüber<br />

stehende Wasser verunreinigt, aber<br />

dennoch keine akute Gefahr darstellt,<br />

solange die über einem Reaktor<br />

stehende Wassermenge für die Nachkühlung<br />

ausreichend groß ist und sich<br />

in einem einigermaßen geschlossenen<br />

Becken befindet. Diese Randbedingungen<br />

würden von jedem mittelgroßen<br />

Stausee erfüllt, während man<br />

die stromführenden Teile und die<br />

Bedienung auf der trockenen Seite der<br />

Staumauer anordnen könnte.<br />

Schlussbemerkung<br />

Das mag alles sehr futuristisch<br />

klingen, aber man kann bei Betrachtung<br />

der auch heute noch in Planung<br />

und Bau befindlichen Kernkraftwerke<br />

davon ausgehen, dass die Menschheit<br />

nicht grundsätzlich auf die Nutzung<br />

der Kernenergie verzichten wird.<br />

Andererseits wird das Ausmaß an<br />

RESEARCH AND INNOVATION 181<br />

Research and Innovation<br />

On the Rationality of the German Nuclear Phase-out ı Wolfgang Stoll


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

182<br />

STATISTICS<br />

(Manuskript Erstfassung:<br />

2012,<br />

im November 2017<br />

überarbeitet)<br />

Organisationsversagen immer wieder<br />

in Einzelfällen ausreichen, auch die<br />

ausgeklügeltsten ingenieurmäßigen<br />

Sicherheitsvorkehrungen unwirksam<br />

zu machen. Da bisher wegen der hohen<br />

Anfangskosten Kernkraftwerke<br />

bevorzugt in reichen und technisch<br />

fortschrittlichen Ländern gehäuft<br />

betrieben wurden, hat man dort auch<br />

alle bezahlbaren Sicherheitsvorkehrungen<br />

getroffen. Jetzt bauen<br />

aber vorwiegend ärmere Länder neue<br />

Kernkraftwerke, womit dann gerade<br />

dort das Eintreten schwerer Störfälle<br />

denkbar ist. Wegen der aber auch<br />

dort wachsenden ausgeprägten<br />

Risiko aversion wären zur Aufrechterhaltung<br />

der nuklearen Option<br />

voll abgesicherte, wenn auch teure<br />

Abhilfen gerechtfertigt. Es dürfte sich<br />

daher lohnen, System mindestens zu<br />

planen und zu erproben, die unter<br />

wirklich allen Umständen eine<br />

Dispersion ausschließen.<br />

Authors<br />

Prof. Dr. Wolfgang Stoll<br />

Hanau, Deutschland<br />

Nuclear Power Plants:<br />

2017 <strong>atw</strong> Compact Statistics<br />

Editorial<br />

At the end of the last year 2017 (key date: 31 December 2017), nuclear power plants were operating in 31 countries<br />

worldwide (cf. Table 1). In total, 448 nuclear power plants were operating on the key date. This means that the<br />

number decreased by 2 units compared to the previous year’s number on 31 December 2016 (450, which means the<br />

highest number of units since the first start of an commercial nuclear power plant in 1956) due to first criticalities on the<br />

one hand and shut-downs on the other. The gross power output of these nuclear power plant units amounted to<br />

around 420 GWe*, the net power output was approximately 396 GWe. This means that the available gross capacity<br />

was about 1 GW, i.e. -0,25 % and the net capacity about 1 GW below the previous year’s values of about 421 GWe gross<br />

and 397 GWe net.<br />

Three (3) nuclear power plants started (nuclear)<br />

operation 1 in two countries in 2017. These units reached<br />

initial criticality, were synchronized with the grid and<br />

started commercial operation for the first time in 2017<br />

(cf. Tab. 1): China: Fuqing 4 (1089 MW, PWR, CGO),<br />

Tianwan 3 (1126 MW, PWR, CGO), Pakistan: Chasnupp-4<br />

(340 MW, PWR, CGO). One unit was synchronized with<br />

the grid and started commercial operation for the first<br />

time in 2017: China: Yangjiang 4 (1086 MW, GO).<br />

For the third time since the accidents in Fukushima<br />

( Japan) two nuclear power units, Takahama 3 (870 MW,<br />

PWR) and Takahama 4 (870 MW, PWR) resumed operation<br />

in 2017 in Japan after a longer shut-down.<br />

Five nuclear power plant units were definitively<br />

per manently shut-down worldwide in 2017. In Germany<br />

the unit Gundremmingen B (1344 MW) was shut-down<br />

after 33 years of successful operation. In Japan the prototype<br />

fast breeder reactor Monju (280 MW) was shut down<br />

22 years after first criticality. In the Republic of Korea the<br />

PWR Kori 1 (608 MW) was permanently shut down. The<br />

BWR Oskarshamn 1 (492 MW) was shut down in Sweden.<br />

The Spanish nuclear power plant Santa Maria de Garona<br />

(466 MW) was permanently shut down after five years of<br />

lay-up operation due to an applied for but not approved<br />

prolonged operation license.<br />

Three new projects started with the first concrete and<br />

further build activities. In Bangladesh one new build project<br />

started with Rooppur 1(1200 MW), India started the<br />

new build of the third unit at Kudankulam (1000 MW) and<br />

in the Republic of Korea one additional project started<br />

with Shin-Kori 5 ( 1455 MW).<br />

In total 56 reactors are under construction worldwide<br />

in 15 countries. The total gross capacity of this projects is<br />

about 61 GW*, the net capacity 58 GW, in other words the<br />

number was lower (2) compared to the previous year number<br />

due to the three operation starts, three new build projects<br />

and the suspension of one project with two reactors.<br />

Compared with the millennium change 1999/2000 this<br />

means that the number of projects under construction has<br />

risen, when 30 nuclear power plants were under construction<br />

worldwide.<br />

Two projects in the USA were stopped. South Carolina<br />

Public Service Authority (minority partner of the project,<br />

40 %) decided to stop the new build project Virgil C. Summer<br />

2 and 3. Construction of two advanced pressurized<br />

water reactors (APR 1000, 1080 MW) by Westinghouse<br />

started in 2013. In March 2017, Westinghouse Electric<br />

Company filed for Chapter 11 bankruptcy because of $9<br />

billion of losses from its two U.S. nuclear construction projects.<br />

SCANA (share in project: 60 %) considered its options<br />

for the project, and ultimately decided to abandon<br />

the project in July 2017 after the decision of its minority<br />

partner.<br />

Active construction projects (numbers in brackets)<br />

listed are: Argentina (1), Bangladesh (1), Belarus (2), Brazil<br />

(1), China (18), Finland (1), France (1), India (7), Japan<br />

(2), Republic of Korea (4), Pakistan (2), Russia (7),<br />

Slovak Republic (2), Taiwan (2), the USA (2) and the United<br />

Arab Emirates (4).<br />

In addition, there are about 125 nuclear power plant<br />

units in 25 countries worldwide that are in an advanced<br />

planning stage, others are in the pre-planning phase<br />

( status: 31 December 2017).<br />

Statistics<br />

Nuclear Power Plants: 2017 <strong>atw</strong> Compact Statistics


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

Country<br />

Location/<br />

Station name<br />

Status Reactor type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1st<br />

Criticality<br />

[Year]<br />

Argentina<br />

Atucha 1 p D2O-PWR 357 341 1974<br />

Embalse p Candu 648 600 1983<br />

Atucha 2 p D2O-PWR 745 692 2014<br />

CAREM25 P PWR 29 25 (2020)<br />

Armenia<br />

Metsamor 2 p VVER-PWR 408 376 1980<br />

Belarus<br />

Belarusian 1 P VVER-PWR 1 194 1 109 (2019)<br />

Belarusian 2 P VVER-PWR 1 194 1 109 (2021)<br />

Bangladesh<br />

Rooppur 1 [2] P VVER-PWR 1 200 1 080 (2022)<br />

Belgium<br />

Doel 1 p PWR 454 433 1975<br />

Doel 2 p PWR 454 433 1975<br />

Doel 3 p PWR 1 056 1 006 1982<br />

Doel 4 p PWR 1 090 1 039 1985<br />

Tihange 1 p PWR 1 009 962 1975<br />

Tihange 2 p PWR 1 055 1 008 1983<br />

Tihange 3 p PWR 1 094 1 046 1985<br />

Brazil<br />

Angra 1 p PWR 640 609 1984<br />

Angra 2 p PWR 1 350 1 275 1999<br />

Angra 3 P PWR 1 300 1 245 (2020)<br />

Bulgarien<br />

Kozloduj 5 p VVER-PWR 1 000 953 1987<br />

Kozloduj 6 p VVER-PWR 1 000 953 1989<br />

Canada<br />

Bruce 1 p Candu 824 772 1977<br />

Bruce 2 p Candu 786 734 1977<br />

Bruce 3 p Candu 805 730 1977<br />

Bruce 4 p Candu 805 750 1979<br />

Bruce 5 p Candu 872 817 1985<br />

Bruce 6 p Candu 891 822 1984<br />

Bruce 7 p Candu 872 817 1986<br />

Bruce 8 p Candu 845 817 1987<br />

Darlington 1 p Candu 934 878 1993<br />

Darlington 2 p Candu 934 878 1990<br />

Darlington 3 p Candu 934 878 1993<br />

Darlington 4 p Candu 934 878 1993<br />

Pickering 1 p Candu 542 515 1971<br />

Pickering 4 p Candu 542 515 1973<br />

Pickering 5 p Candu 540 516 1983<br />

Pickering 6 p Candu 540 516 1984<br />

Pickering 7 p Candu 540 516 1985<br />

Pickering 8 p Candu 540 516 1986<br />

Point Lepreau p Candu 705 660 1983<br />

China<br />

CEFR p SNR 25 20 2011<br />

Changjiang 1 p PWR 650 610 2015<br />

Changjiang 2 p PWR 650 601 2016<br />

Fangchenggang 1 p PWR 1 080 1 000 2015<br />

Fangchenggang 2 p PWR 1 088 1 000 2016<br />

Fangjiashan 1 p PWR 1 080 1 000 2014<br />

Fangjiashan 2 p PWR 1 080 1 000 2014<br />

Fuqing 1 p PWR 1 087 1 000 2014<br />

Fuqing 2 p PWR 1 087 1 000 2015<br />

Fuqing 3 p PWR 1 089 1 000 2016<br />

Fuqing 4 [1] p PWR 1 089 1 089 2017<br />

Guandong 1 p PWR 984 944 1993<br />

Guandong 2 p PWR 984 944 1994<br />

Hongyanhe 1 p PWR 1 080 1 000 2013<br />

Hongyanhe 2 p PWR 1 080 1 000 2013<br />

Hongyanhe 3 p PWR 1 080 1 000 2014<br />

Hongyanhe 4 p PWR 1 119 1 000 2016<br />

Lingao 1 p PWR 990 938 2002<br />

Lingao 2 p PWR 990 938 2002<br />

Lingao II-1 p PWR 1 087 1 000 2010<br />

Lingao II-2 p PWR 1 087 1 000 2011<br />

Ningde 1 p PWR 1 087 1 000 2012<br />

Ningde 2 p PWR 1 080 1 000 2014<br />

Ningde 3 p PWR 1 080 1 000 2015<br />

Ningde 4 p PWR 1 089 1 018 2016<br />

Qinshan 1 p PWR 310 288 1992<br />

Qinshan II-1 p PWR 650 610 2002<br />

Qinshan II-2 p PWR 650 610 2004<br />

Qinshan II-3 p PWR 642 610 2010<br />

Qinshan II-4 p PWR 642 610 2011<br />

Qinshan III-1 p Candu 728 665 2002<br />

Qinshan III-2 p Candu 728 665 2003<br />

Tianwan 1 p VVER-PWR 1 060 1 000 2005<br />

Country<br />

Location/<br />

Station name<br />

Status Reactor type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1st<br />

Criticality<br />

[Year]<br />

Tianwan 2 p VVER-PWR 1 060 1 000 2007<br />

Tianwan 3 [1] p VVER-PWR 1 060 1 000 2017<br />

Yangjiang 1 p PWR 1 080 1 000 2013<br />

Yangjiang 2 p PWR 1 080 1 000 2015<br />

Yangjiang 3 p PWR 1 080 1 000 2015<br />

Yangjiang 4 [1] p PWR 1 086 1 000 2016<br />

Fangchenggang 3 P PWR 1 080 1 000 (2020)<br />

Fangchenggang 4 P PWR 1 080 1 000 (2022)<br />

Fuqing 5 P PWR 1 087 1 000 (2020)<br />

Fuqing 6 P PWR 1 087 1 000 (2020)<br />

Haiyang 1 P PWR 1 180 1 100 (2016)<br />

Haiyang 2 P PWR 1 180 1 100 (2016)<br />

Hongyanhe 5 P PWR 1 080 1 000 (2020)<br />

Hongyanhe 6 P PWR 1 080 1 000 (2021)<br />

Sanmen 1 P PWR 1 180 1 100 (2016)<br />

Sanmen 2 P PWR 1 180 1 100 (2016)<br />

Shidaowan 1 P HTGR 211 200 (2016)<br />

Taishan 1 P PWR 1 750 1 660 (2017)<br />

Taishan 2 P PWR 1 750 1 660 (<strong>2018</strong>)<br />

Tianwan 4 P VVER-PWR 1 060 990 (<strong>2018</strong>)<br />

Tianwan 5 P VVER-PWR 1 118 1 000 (2020)<br />

Tianwan 6 P VVER-PWR 1 118 1 000 (2022)<br />

Yangjiang 5 P PWR 1 080 1 000 (<strong>2018</strong>)<br />

Yangjiang 6 P PWR 1 080 1 000 (<strong>2018</strong>)<br />

Czech Republic<br />

Dukovany 1 p VVER-PWR 500 473 1985<br />

Dukovany 2 p VVER-PWR 500 473 1986<br />

Dukovany 3 p VVER-PWR 500 473 1987<br />

Dukovany 4 p VVER-PWR 500 473 1987<br />

Temelín 1 p VVER-PWR 1 077 1 027 1999<br />

Temelín 2 p VVER-PWR 1 056 1 006 2002<br />

Finland<br />

Loviisa 1 p VVER-PWR 520 496 1977<br />

Loviisa 2 p VVER-PWR 520 496 1981<br />

Olkiluoto 1 p BWR 890 860 1979<br />

Olkiluoto 2 p BWR 890 860 1982<br />

Olkiluoto 3 P PWR 1 600 1 510 (2019)<br />

France<br />

Belleville 1 p PWR 1 363 1 310 1987<br />

Belleville 2 p PWR 1 363 1 310 1988<br />

Blayais 1 p PWR 951 910 1981<br />

Blayais 2 p PWR 951 910 1982<br />

Blayais 3 p PWR 951 910 1983<br />

Blayais 4 p PWR 951 910 1983<br />

Bugey 2 p PWR 945 910 1978<br />

Bugey 3 p PWR 945 910 1978<br />

Bugey 4 p PWR 917 880 1979<br />

Bugey 5 p PWR 917 880 1979<br />

Cattenom 1 p PWR 1 362 1 300 1986<br />

Cattenom 2 p PWR 1 362 1 300 1987<br />

Cattenom 3 p PWR 1 362 1 300 1990<br />

Cattenom 4 p PWR 1 362 1 300 1991<br />

Chinon B-1 p PWR 954 905 1982<br />

Chinon B-2 p PWR 954 905 1983<br />

Chinon B-3 p PWR 954 905 1986<br />

Chinon B-4 p PWR 954 905 1987<br />

Chooz B-1 p PWR 1 560 1 500 1996<br />

Chooz B-2 p PWR 1 560 1 500 1997<br />

Civaux 1 p PWR 1 561 1 495 1997<br />

Civaux 2 p PWR 1 561 1 495 1999<br />

Cruas Meysse 1 p PWR 956 915 1983<br />

Cruas Meysse 2 p PWR 956 915 1984<br />

Cruas Meysse 3 p PWR 956 915 1984<br />

Cruas Meysse 4 p PWR 956 915 1984<br />

Dampierre 1 p PWR 937 890 1980<br />

Dampierre 2 p PWR 937 890 1980<br />

Dampierre 3 p PWR 937 890 1981<br />

Dampierre 4 p PWR 937 890 1981<br />

Fessenheim 1 p PWR 920 880 1977<br />

Fessenheim 2 p PWR 920 880 1977<br />

Flamanville 1 p PWR 1 382 1 330 1985<br />

Flamanville 2 p PWR 1 382 1 330 1986<br />

Golfech 1 p PWR 1 363 1 310 1990<br />

Golfech 2 p PWR 1 363 1 310 1993<br />

Gravelines B-1 p PWR 951 910 1980<br />

Gravelines B-2 p PWR 951 910 1980<br />

Gravelines B-3 p PWR 951 910 1980<br />

Gravelines B-4 p PWR 951 910 1981<br />

Gravelines C-5 p PWR 951 910 1984<br />

Gravelines C-6 p PWR 951 910 1985<br />

Nogent 1 p PWR 1 363 1 310 1987<br />

183<br />

STATISTICS<br />

Statistics<br />

Nuclear Power Plants: 2017 <strong>atw</strong> Compact Statistics


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

184<br />

STATISTICS<br />

Country<br />

Location/<br />

Station name<br />

Status Reactor type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1st<br />

Criticality<br />

[Year]<br />

Nogent 2 p PWR 1 363 1 310 1988<br />

Paluel 1 p PWR 1 382 1 330 1984<br />

Paluel 2 p PWR 1 382 1 330 1984<br />

Paluel 3 p PWR 1 382 1 330 1985<br />

Paluel 4 p PWR 1 382 1 330 1986<br />

Penly 1 p PWR 1 382 1 330 1990<br />

Penly 2 p PWR 1 382 1 330 1992<br />

St. Alban 1 p PWR 1 381 1 335 1986<br />

St. Alban 2 p PWR 1 381 1 335 1987<br />

St. Laurent B-1 p PWR 956 915 1981<br />

St. Laurent B-2 p PWR 956 915 1981<br />

Tricastin 1 p PWR 955 915 1980<br />

Tricastin 2 p PWR 955 915 1980<br />

Tricastin 3 p PWR 955 915 1980<br />

Tricastin 4 p PWR 955 915 1981<br />

Flamanville 3 P PWR 1 600 1 510 (<strong>2018</strong>)<br />

Germany<br />

Brokdorf p PWR 1 480 1 410 1986<br />

Emsland p PWR 1 406 1 335 1988<br />

Grohnde p PWR 1 430 1 360 1985<br />

Gundremmingen B [6] V BWR 1 344 1 284 1984<br />

Gundremmingen C p BWR 1 344 1 288 1985<br />

Isar 2 p PWR 1 485 1 410 1988<br />

Neckarwestheim II p PWR 1 400 1 310 1989<br />

Philippsburg 2 p PWR 1 468 1 402 1985<br />

Hungary<br />

Paks 1 p VVER-PWR 500 470 1983<br />

Paks 2 p VVER-PWR 500 473 1984<br />

Paks 3 p VVER-PWR 500 473 1986<br />

Paks 4 p VVER-PWR 500 473 1987<br />

India<br />

Kaiga 1 p Candu (IND) 220 202 2001<br />

Kaiga 2 p Candu (IND) 220 202 1999<br />

Kaiga 3 p Candu (IND) 220 202 2007<br />

Kaiga 4 p Candu (IND) 220 202 2010<br />

Kakrapar 1 p Candu (IND) 220 202 1993<br />

Kakrapar 2 p Candu (IND) 220 202 1995<br />

Kudankulam 1 p VVER-PWR 1 000 917 2013<br />

Kudankulam 2 p VVER-PWR 1 000 917 2016<br />

Madras Kalpakkam 1 p Candu (IND) 220 205 1984<br />

Madras Kalpakkam 2 p Candu (IND) 220 205 1986<br />

Narora 1 p Candu (IND) 220 202 1992<br />

Narora 2 p Candu (IND) 220 202 1991<br />

Rajasthan 1 p Candu 100 90 1973<br />

Rajasthan 2 p Candu 200 187 1981<br />

Rajasthan 3 p Candu (IND) 220 202 1999<br />

Rajasthan 4 p Candu (IND) 220 202 2000<br />

Rajasthan 5 p Candu (IND) 220 202 2009<br />

Rajasthan 6 p Candu (IND) 220 202 2010<br />

Tarapur 1 p BWR 160 150 1969<br />

Tarapur 2 p BWR 160 150 1969<br />

Tarapur 3 p Candu (IND) 540 490 2006<br />

Tarapur 4 p Candu (IND) 540 490 2005<br />

Kakrapar 3 P Candu (IND) 700 640 (<strong>2018</strong>)<br />

Kakrapar 4 P Candu (IND) 700 640 (2019)<br />

PFBR (Kalpakkam) P SNR 500 470 (2020)<br />

Kudankulam 3 P VVER-PWR 1 000 917 (<strong>2018</strong>)<br />

Rajasthan 7 P Candu (IND) 700 630 (2019)<br />

Rajasthan 8 P Candu (IND) 700 630 (2019)<br />

Iran<br />

Bushehr 1 p VVER-PWR 1 000 953 2011<br />

Japan<br />

Fukushima Daini 1 p BWR 1 100 1 067 1982<br />

Fukushima Daini 2 p BWR 1 100 1 067 1984<br />

Fukushima Daini 3 p BWR 1 100 1 067 1985<br />

Fukushima Daini 4 p BWR 1 100 1 067 1987<br />

Genkai 2 p PWR 559 529 1981<br />

Genkai 3 p PWR 1 180 1 127 1994<br />

Genkai 4 p PWR 1 180 1 127 1997<br />

Hamaoka 3 p BWR 1 100 1 056 1987<br />

Hamaoka 4 p BWR 1 137 1 092 1993<br />

Hamaoka 5 p BWR 1 267 1 216 2004<br />

Higashidori 1 p BWR 1 100 1 067 2005<br />

Ikata 2 p PWR 566 538 1982<br />

Ikata 3 p PWR 890 846 1994<br />

Kashiwazaki Kariwa 1 p BWR 1 100 1 067 1985<br />

Kashiwazaki Kariwa 2 p BWR 1 100 1 067 1990<br />

Kashiwazaki Kariwa 3 p BWR 1 100 1 067 1993<br />

Kashiwazaki Kariwa 4 p BWR 1 100 1 067 1994<br />

Kashiwazaki Kariwa 5 p BWR 1 100 1 067 1990<br />

Kashiwazaki Kariwa 6 p BWR 1 356 1 315 1996<br />

Country<br />

Location/<br />

Station name<br />

Status Reactor type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1st<br />

Criticality<br />

[Year]<br />

Kashiwazaki Kariwa 7 p BWR 1 356 1 315 1997<br />

Mihama 3 p PWR 826 781 1976<br />

Monju [6] V FBR 280 246 1994<br />

Ohi 1 p PWR 1 175 1 120 1979<br />

Ohi 2 p PWR 1 175 1 120 1979<br />

Ohi 3 p PWR 1 180 1 127 1991<br />

Ohi 4 p PWR 1 180 1 127 1993<br />

Onagawa 1 p BWR 524 496 1984<br />

Onagawa 2 p BWR 825 796 1995<br />

Onagawa 3 p BWR 825 798 2002<br />

Sendai 1 p PWR 890 846 1984<br />

Sendai 2 p PWR 890 846 1985<br />

Shika 1 p BWR 540 505 1993<br />

Shika 2 p BWR 1 358 1 304 2005<br />

Shimane 2 p BWR 820 791 1989<br />

Takahama 1 p PWR 826 780 1974<br />

Takahama 2 p PWR 826 780 1975<br />

Takahama 3 [4] p PWR 870 830 1985<br />

Takahama 4 [4] p PWR 870 830 1985<br />

Tokai 2 p BWR 1 100 1 067 1978<br />

Tomari 1 p PWR 579 550 1989<br />

Tomari 2 p PWR 579 550 1991<br />

Tomari 3 p PWR 912 866 2009<br />

Tsuruga 2 p PWR 1 160 1 115 1986<br />

Shimane 3 P BWR 1 375 1 325 (2022)<br />

Ohma P BWR 1 385 1 325 (2023)<br />

Korea (Republic)<br />

Kori 1 [6] V PWR 603 576 1978<br />

Kori 2 p PWR 676 639 1983<br />

Kori 3 p PWR 1 042 1 003 1985<br />

Kori 4 p PWR 1 041 1 001 1986<br />

Shin Kori 1 p PWR 1 048 996 2010<br />

Shin Kori 2 p PWR 1 045 993 2011<br />

Shin Kori 3 p PWR 1 400 1 340 2016<br />

Hanul 1 p PWR 1 003 960 1988<br />

Hanul 2 p PWR 1 008 962 1989<br />

Hanul 3 p PWR 1 050 994 1998<br />

Hanul 4 p PWR 1 053 998 1998<br />

Hanul 5 p PWR 1 051 996 2003<br />

Hanul 6 p PWR 1 051 996 2004<br />

Wolsong 1 p Candu 687 645 1983<br />

Wolsong 2 p Candu 678 653 1997<br />

Wolsong 3 p Candu 698 675 1999<br />

Wolsong 4 p Candu 703 679 1999<br />

Shin Wolsong 1 p PWR 1 043 991 2012<br />

Shin Wolsong 2 p PWR 1 000 960 2015<br />

Hanbit 1 p PWR 996 953 1986<br />

Hanbit 2 p PWR 993 945 1987<br />

Hanbit 3 p PWR 1 050 997 1995<br />

Hanbit 4 p PWR 1 049 997 1996<br />

Hanbit 5 p PWR 1 053 997 2001<br />

Hanbit 6 p PWR 1 052 995 2002<br />

Shin Kori 4 P PWR 1 400 1 340 (<strong>2018</strong>)<br />

Shin Kori 5 P PWR 1 400 1 340 (2022)<br />

Shin Hanul 1 P PWR 1 400 1 340 (2020)<br />

Shin Hanul 2 P PWR 1 400 1 340 (2022)<br />

Mexico<br />

Laguna Verde 1 p BWR 820 765 1990<br />

Laguna Verde 2 p BWR 820 765 1995<br />

Netherlands<br />

Borssele p PWR 515 482 1973<br />

Pakistan<br />

Kanupp 1 p Candu 137 909 1972<br />

Chasnupp 1 p PWR 325 300 2000<br />

Chasnupp 2 p PWR 325 300 2011<br />

Chasnupp 3 p PWR 340 315 2016<br />

Chasnupp 4 [1] P PWR 340 315 2017<br />

Kanupp 2 P PWR 1 100 1 014 (2021)<br />

Kanupp 3 P PWR 1 100 1 014 (2022)<br />

Romania<br />

Cernavoda 1 p Candu 706 650 1996<br />

Cernavoda 2 p Candu 706 655 2007<br />

Russia<br />

Balakovo 1 p VVER-PWR 1 000 953 1986<br />

Balakovo 2 p VVER-PWR 1 000 953 1988<br />

Balakovo 3 p VVER-PWR 1 000 953 1990<br />

Balakovo 4 p VVER-PWR 1 000 953 1993<br />

Beloyarsky 3 p FBR 600 560 1981<br />

Beloyarsky 4 p FBR 800 750 2014<br />

Bilibino 1 p LWGR 12 11 1974<br />

Bilibino 2 p LWGR 12 11 1975<br />

Statistics<br />

Nuclear Power Plants: 2017 <strong>atw</strong> Compact Statistics


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

Country<br />

Location/<br />

Station name<br />

Status Reactor type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1st<br />

Criticality<br />

[Year]<br />

Bilibino 3 p LWGR 12 11 1976<br />

Bilibino 4 p LWGR 12 11 1977<br />

Kalinin 1 p VVER-PWR 1 000 953 1985<br />

Kalinin 2 p VVER-PWR 1 000 953 1987<br />

Kalinin 3 p VVER-PWR 1 000 953 2004<br />

Kalinin 4 p VVER-PWR 1 000 953 2011<br />

Kola 1 p VVER-PWR 440 411 1973<br />

Kola 2 p VVER-PWR 440 411 1975<br />

Kola 3 p VVER-PWR 440 411 1982<br />

Kola 4 p VVER-PWR 440 411 1984<br />

Kursk 1 p LWGR 1 000 925 1977<br />

Kursk 2 p LWGR 1 000 925 1979<br />

Kursk 3 p LWGR 1 000 925 1984<br />

Kursk 4 p LWGR 1 000 925 1986<br />

Leningrad 1 p LWGR 1 000 925 1974<br />

Leningrad 2 p LWGR 1 000 925 1976<br />

Leningrad 3 p LWGR 1 000 925 1980<br />

Leningrad 4 p LWGR 1 000 925 1981<br />

Novovoronezh 4 p VVER-PWR 417 385 1973<br />

Novovoronezh 5 p VVER-PWR 1 000 953 1981<br />

Novovoronezh II-1 p VVER-PWR 1 000 955 2016<br />

Rostov 1 p VVER-PWR 1 000 953 2001<br />

Rostov 2 p VVER-PWR 1 000 953 2010<br />

Rostov 3 p VVER-PWR 1 085 1 011 2014<br />

Smolensk 1 p LWGR 1 000 925 1983<br />

Smolensk 2 p LWGR 1 000 925 1985<br />

Smolensk 3 p LWGR 1 000 925 1990<br />

Akademik Lomonosov I P PWR 40 35 (2019)<br />

Akademik Lomonosov I P PWR 40 35 (2019)<br />

Baltic 1 (Kaliningrad) P VVER-PWR 1 170 1 080 (2020)<br />

Leningrad II-1 P VVER-PWR 1 170 1 085 (2020)<br />

Leningrad II-2 P VVER-PWR 1 170 1 085 (2021)<br />

Novovoronezh II-2 P VVER-PWR 1 000 955 (<strong>2018</strong>)<br />

Rostov 4 P VVER-PWR 1 085 1 011 (2019)<br />

Slovakia<br />

Bohunice 3 p VVER-PWR 505 472 1985<br />

Bohunice 4 p VVER-PWR 505 472 1985<br />

Mochovce 1 p VVER-PWR 470 436 1998<br />

Mochovce 2 p VVER-PWR 470 436 1999<br />

Mochovce 3 P VVER-PWR 440 408 (2019)<br />

Mochovce 4 P VVER-PWR 440 408 (2019)<br />

Slovenia<br />

Krsko p PWR 727 696 1983<br />

South Africa<br />

Koeberg 1 p PWR 970 930 1984<br />

Koeberg 2 p PWR 970 930 1985<br />

Spain<br />

Almaraz 1 p PWR 1 049 1 011 1981<br />

Almaraz 2 p PWR 1 044 1 006 1983<br />

Ascó 1 p PWR 1 033 995 1984<br />

Ascó 2 p PWR 1 027 997 1985<br />

Cofrentes p BWR 1 092 1 064 1985<br />

Trillo 1 p PWR 1 066 1 002 1988<br />

Vandellos 2 p PWR 1 087 1 045 1987<br />

Santa Maria de Garoña [6] V BWR 466 446 1971<br />

Sweden<br />

Forsmark 1 p BWR 1 022 984 1980<br />

Forsmark 2 p BWR 1 158 1 120 1981<br />

Forsmark 3 p BWR 1 212 1 170 1985<br />

Oskarshamn 1 [6] V BWR 492 473 1972<br />

Oskarshamn 2 p BWR 661 638 1975<br />

Oskarshamn 3 p BWR 1 450 1 400 1985<br />

Ringhals 1 p BWR 910 878 1976<br />

Ringhals 2 p PWR 847 807 1975<br />

Ringhals 3 p PWR 1 117 1 064 1981<br />

Ringhals 4 p PWR 990 940 1983<br />

Switzerland<br />

Beznau 1 p PWR 380 365 1969<br />

Beznau 2 p PWR 380 365 1972<br />

Gösgen p PWR 1 060 1 010 1979<br />

Leibstadt p BWR 1 275 1 220 1984<br />

Mühleberg p BWR 390 373 1973<br />

Taiwan, China<br />

Chin Shan 1 p BWR 636 604 1978<br />

Chin Shan 2 p BWR 636 604 1979<br />

Kuosheng 1 p BWR 985 948 1981<br />

Kuosheng 2 p BWR 985 948 1983<br />

Maanshan 1 p PWR 951 890 1984<br />

Maanshan 2 p PWR 951 890 1985<br />

Lungmen 1 P BWR 1 356 1 315 (2020)<br />

Lungmen 2 P BWR 1 356 1 315 (2021)<br />

Country<br />

Location/<br />

Station name<br />

Status Reactor type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1st<br />

Criticality<br />

[Year]<br />

United Arab Emirates<br />

Barakah 1 P PWR 1 400 1 340 (<strong>2018</strong>)<br />

Barakah 2 P PWR 1 400 1 340 (2019)<br />

Barakah 3 P PWR 1 400 1 340 (2020)<br />

Barakah 4 P PWR 1 400 1 340 (2021)<br />

United Kingdom<br />

Dungeness B-1 p AGR 615 520 1985<br />

Dungeness B-2 p AGR 615 520 1986<br />

Hartlepool-1 p AGR 655 595 1984<br />

Hartlepool-2 p AGR 655 585 1985<br />

Heysham I-1 p AGR 625 585 1984<br />

Heysham I-2 p AGR 625 575 1985<br />

Heysham II-1 p AGR 682 595 1988<br />

Heysham II-2 p AGR 682 595 1989<br />

Hinkley Point B-1 p AGR 655 610 1976<br />

Hinkley Point B-2 p AGR 655 610 1977<br />

Hunterston B-1 p AGR 644 460 1976<br />

Hunterston B-2 p AGR 644 430 1977<br />

Sizewell B p PWR 1 250 1 191 1995<br />

Torness Point 1 p AGR 682 595 1988<br />

Torness Point 2 p AGR 682 595 1989<br />

Ukraine<br />

Khmelnitski 1 p VVER-PWR 1 000 950 1985<br />

Khmelnitski 2 p VVER-PWR 1 000 950 2004<br />

Rovno 1 p VVER-PWR 402 363 1981<br />

Rovno 2 p VVER-PWR 416 377 1982<br />

Rovno 3 p VVER-PWR 1 000 950 1987<br />

Rovno 4 p VVER-PWR 1 000 950 2004<br />

Zaporozhe 1 p VVER-PWR 1 000 950 1985<br />

Zaporozhe 2 p VVER-PWR 1 000 950 1985<br />

Zaporozhe 3 p VVER-PWR 1 000 950 1987<br />

Zaporozhe 4 p VVER-PWR 1 000 950 1988<br />

Zaporozhe 5 p VVER-PWR 1 000 950 1988<br />

Zaporozhe 6 p VVER-PWR 1 000 950 1989<br />

South Ukraine 1 p VVER-PWR 1 000 950 1983<br />

South Ukraine 2 p VVER-PWR 1 000 950 1985<br />

South Ukraine 3 p VVER-PWR 1 000 950 1989<br />

USA<br />

Arkansas Nuclear One 1 p PWR 969 903 1974<br />

Arkansas Nuclear One 2 p PWR 1 006 943 1980<br />

Beaver Valley 1 p PWR 955 923 1976<br />

Beaver Valley 2 p PWR 957 923 1987<br />

Braidwood 1 p PWR 1 289 1 225 1988<br />

Braidwood 2 p PWR 1 289 1 225 1988<br />

Browns Ferry 1 p BWR 1 200 1 152 1974<br />

Browns Ferry 2 p BWR 1 193 1 152 1975<br />

Browns Ferry 3 p BWR 1 232 1 190 1977<br />

Brunswick 1 p BWR 1 074 1 002 1977<br />

Brunswick 2 p BWR 1 075 1 002 1975<br />

Byron 1 p PWR 1 307 1 225 1985<br />

Byron 2 p PWR 1 304 1 225 1987<br />

Callaway p PWR 1 316 1 236 1985<br />

Calvert Cliffs 1 p PWR 935 918 1975<br />

Calvert Cliffs 2 p PWR 939 911 1977<br />

Catawba 1 p PWR 1 286 1 205 1985<br />

Catawba 2 p PWR 1 286 1 205 1986<br />

Clinton 1 p BWR 1 175 1 138 1987<br />

Comanche Peak 1 p PWR 1 283 1 215 1990<br />

Comanche Peak 2 p PWR 1 283 1 215 1993<br />

Donald Cook 1 p PWR 1 266 1 152 1975<br />

Donald Cook 2 p PWR 1 210 1 133 1978<br />

Columbia (WNP 2) p BWR 1 244 1 200 1984<br />

Cooper p BWR 844 801 1974<br />

Davis Besse 1 p PWR 971 925 1978<br />

Diablo Canyon 1 p PWR 1 236 1 159 1985<br />

Diablo Canyon 2 p PWR 1 246 1 164 1985<br />

Dresden 2 p BWR 1 057 1 009 1970<br />

Dresden 3 p BWR 1 057 1 009 1971<br />

Duane Arnold p BWR 737 680 1975<br />

Farley 1 p PWR 933 888 1977<br />

Farley 2 p PWR 934 888 1981<br />

Fermi 2 p BWR 1 317 1 217 1988<br />

FitzPatrick p BWR 918 882 1975<br />

Ginna p PWR 713 614 1970<br />

Grand Gulf 1 p BWR 1 516 1 440 1985<br />

Hatch 1 p BWR 891 857 1974<br />

Hatch 2 p BWR 905 865 1979<br />

Hope Creek 1 p BWR 1 360 1 291 1986<br />

Indian Point 2 p PWR 1 348 1 299 1974<br />

Indian Point 3 p PWR 1 051 1 012 1976<br />

La Salle 1 p BWR 1 242 1 170 1984<br />

185<br />

STATISTICS<br />

Statistics<br />

Nuclear Power Plants: 2017 <strong>atw</strong> Compact Statistics


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

186<br />

KTG INSIDE<br />

Country<br />

Location/<br />

Station name<br />

Status Reactor type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1st<br />

Criticality<br />

[Year]<br />

La Salle 2 p BWR 1 238 1 170 1984<br />

Limerick 1 p BWR 1 203 1 139 1986<br />

Limerick 2 p BWR 1 199 1 139 1990<br />

McGuire 1 p PWR 1 358 1 220 1981<br />

McGuire 2 p PWR 1 358 1 220 1984<br />

Millstone 2 p PWR 946 91 0 1975<br />

Millstone 3 p PWR 1 308 1 253 1986<br />

Monticello p BWR 734 685 1971<br />

Nine Mile Point 1 p BWR 671 642 1969<br />

Nine Mile Point 2 p BWR 1 302 1 259 1988<br />

North Anna 1 p PWR 1 035 980 1978<br />

North Anna 2 p PWR 1 033 980 1980<br />

Oconee 1 p PWR 955 887 1973<br />

Oconee 2 p PWR 955 887 1974<br />

Oconee 3 p PWR 961 893 1974<br />

Oyster Creek p BWR 595 550 1969<br />

Palisades p PWR 870 81 2 1971<br />

Palo Verde 1 p PWR 1 528 1 403 1986<br />

Palo Verde 2 p PWR 1 524 1 403 1988<br />

Palo Verde 3 p PWR 1 524 1 403 1986<br />

Peach Bottom 2 p BWR 1 233 1 1 60 1974<br />

Peach Bottom 3 p BWR 1 233 1 1 60 1974<br />

Perry 1 p BWR 1 397 1 31 2 1987<br />

Pilgrim p BWR 71 2 670 1972<br />

Point Beach 1 p PWR 696 643 1970<br />

Point Beach 2 p PWR 696 643 1972<br />

Prairie Island 1 p PWR 642 593 1973<br />

Prairie Island 2 p PWR 641 593 1974<br />

Quad Cities 1 p BWR 1 061 1 009 1973<br />

Quad Cities 2 p BWR 1 061 1 009 1973<br />

RiverBend 1 p BWR 1 073 1 036 1986<br />

Robinson 2 p PWR 855 769 1971<br />

Salem 1 p PWR 1 276 1 1 70 1977<br />

Salem 2 p PWR 1 303 1 1 70 1981<br />

Seabrook 1 p PWR 1 330 1 242 1990<br />

Sequoyah 1 p PWR 1 259 1 221 1981<br />

Sequoyah 2 p PWR 1 279 1 221 1982<br />

Shearon Harris 1 p PWR 983 951 1987<br />

South Texas 1 p PWR 1 41 0 1 354 1988<br />

Country<br />

Location/<br />

Station name<br />

Status Reactor type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1st<br />

Criticality<br />

[Year]<br />

South Texas 2 p PWR 1 41 0 1 354 1989<br />

St. Lucie 1 p PWR 1 1 22 1 080 1976<br />

St. Lucie 2 p PWR 1 1 35 1 080 1983<br />

Virgil C. Summer p PWR 1 071 1 030 1984<br />

Surry 1 p PWR 900 848 1972<br />

Surry 2 p PWR 900 848 1973<br />

Susquehanna 1 p BWR 1 374 1 298 1983<br />

Susquehanna 2 p BWR 1 374 1 298 1985<br />

Three Mile Island 1 p PWR 1 021 976 1974<br />

Turkey Point 3 p PWR 906 877 1972<br />

Turkey Point 4 p PWR 800 760 1973<br />

Vogtle 1 p PWR 1 223 1 1 60 1987<br />

Vogtle 2 p PWR 1 226 1 1 60 1989<br />

Waterford 3 p PWR 1 250 1 200 1985<br />

Watts Bar 1 p PWR 1 370 1 270 1996<br />

Watts Bar 2 p PWR 1 240 1 180 2016<br />

Wolf Creek p PWR 1 351 1 268 1984<br />

Vogtle 3 P PWR 1 080 1 000 (2019)<br />

Vogtle 4 P PWR 1 080 1 000 (2020)<br />

Virgil C. Summer 2 [3] P PWR 1 080 1 000 (-)<br />

Virgil C. Summer 3 [3] P PWR 1 080 1 000 (-)<br />

1) Start of nuclear operation (first criticality: C, first grid connection: G, commercial operation: O):<br />

3 units in 2017 (CGO), China: Fuqing 4 (1089 MW, PWR, CGO), Tianwan 3 (1126 MW, PWR, CGO),<br />

Pakistan: Chasnupp-4 (340 MW, PWR, CGO); 1 unit in 2017 (GO), China Yangjiang 4 (1086 MW, GO).<br />

2) Start of construction (first concrete), 3 units in 2017: Bangladesh: Rooppur 1 (1200 MW),<br />

India: Kudankulam 3 (1000 MW), South Korea: Shin-Kori 5 (1455 MW).<br />

3) Project under construction (finally) cancelled: USA: Virgil C. Summer 2 and Virgil C. Summer 3<br />

(1080 MW).<br />

4) Resumed operation: Japan: Takahama 3 (PWR, 870 MW) and Takahama 4 (PWR, 870 MW).<br />

5) Nuclear power plant in long-term shutdown: none.<br />

6) Nuclear power plants permanently shutdown in 2017 (5 units): Germany: Gundremmingen B<br />

(BWR, 1344 MW); Japan: Monju (FBR, 280 MW); South Korea: Kori 1 (PWR, 608 MW);<br />

Spain: St. Maria de Garona (BWR, 466 MW); Sweden: Oskarshamn 1 (BWR, 492 MW).<br />

(All capacity data in MWe gross)<br />

AGR: Advanced Gas-cooled Reactor, BWR: Boiling water reactor, Candu: CANada Deuterium<br />

Uranium reactor (IND: Indian type), D 2 O-PWR: heavy water moderated, pressurised water reactor,<br />

PWR: pressurised water reactor, GGR: gas-graphite reactor, LWGR/GLWR: light water cooled<br />

graphite moderated reactor (Russian type RBMK), FBWR: advanced boiling water reactor, FBR: fast<br />

breeder reactor<br />

| | Tab. 1.<br />

Nuclear power plant units worldwide on 31.12.2016 in operation (p), under construction (P), in lay-up operation/long-term shutdown (1) or permanently shut-down in 2016 (V)<br />

[Sources: Operators, IAEO]. All information and data refer to the year 2016. Data have been updated with reference to the sources<br />

Herzlichen<br />

Glückwunsch<br />

März <strong>2018</strong><br />

91 Jahre wird<br />

27. Prof. Dr. Bernhard Liebmann,<br />

Kronberg<br />

88 Jahre werden<br />

6. Prof. Dr. Hubertus Nickel, Jülich<br />

25. Dr. Hans-Ulrich Borgstedt,<br />

Karlsruhe<br />

25. Dr. Peter Borsch, Dresden<br />

87 Jahre wird<br />

17. Dipl.-Ing. Hans Waldmann<br />

86 Jahre wird<br />

14. Dr. Peter Engelmann,<br />

Eggenstein-Leopoldshafen<br />

85 Jahre werden<br />

26. Dipl.-Ing. Gerhard Frei, Uttenreuth<br />

30. Dipl.-Phys. Dieter Pleuger, Kiedrich<br />

84 Jahre werden<br />

1. Prof. Dr. Günther Kessler, Stutensee<br />

18. Dipl.-Ing. Willi Riebold, München<br />

30. Prof. Dr. Helmut Völcker, Essen<br />

83 Jahre werden<br />

2. Dipl.-Ing. Joachim Hospe, München<br />

14. Dr. Hermann Kraemer, Seevetal<br />

82 Jahre werden<br />

2. Dr. Ralf-Dieter Penzhorn, Bruchsal<br />

8. Prof. Dr. Erich Tenckhoff, Erlangen<br />

19. Dr. Hermann Hinsch, Hannover<br />

81 Jahre wird<br />

29. Dipl.-Ing. Friedrich Garzarolli, Fürth<br />

80 Jahre werden<br />

4. Dr. Rainer Göhring, Nauen<br />

6. Dipl.-Math. Udo Harten, Stutensee<br />

10. Dr. Hein-Jürzen Kriks, Braunschweig<br />

11. Peter Vagt, Rösrath<br />

14. Dr. Peter Paetz, Bergisch Gladbach<br />

16. Prof. Dr. Helmut Röthmeyer,<br />

Braunschweig<br />

22. Dr. Bruno-J. Baumgartl, Weiterstadt<br />

79 Jahre werden<br />

1. Prof. Dr. Günter Höhlein, Wiesbaden<br />

1. Dipl.-Ing. Wolfgang Dietz, Lindlar<br />

7. Dr. Kurt Vinzens, Berg-Aufkirchen<br />

17. Dipl.-Phys. Renate von Le Suire,<br />

Seeshaupt<br />

2. Dipl.-Ing. Helmut Pekarek,<br />

Wonga Park/AUS<br />

25. Dipl.-Ing. Joachim Koch, Mömbris<br />

78 Jahre werden<br />

1. Dipl.-Ing. Wolfgang Stumpf, Moers<br />

3. Dr. Lutz Niemann, Holzkirchen<br />

3. Dipl.-Ing. Eberhard Schomer, Erlangen<br />

7. Dr. Volker Klix, Gehrden<br />

12. Prof. Dr. Arndt Falk, Sterup<br />

18. Dipl.-Ing. Friedhelm Hülsmann,<br />

Garbsen<br />

21. Uwe Göldner, Krefeld<br />

29. Ing. Dieter-W. Sauer, Berlin<br />

29. Dipl.-Phys. Harald Reinhardt,<br />

Leverkusen<br />

KTG Inside


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

Inside<br />

187<br />

Sicherheit, Kompetenz und<br />

unsere Jahrestagung (AMNT)<br />

Liebe KTGler, liebe <strong>atw</strong>-Leser, für den zuverlässigen Betrieb eines Kernkraftwerks sind die technische<br />

Kompetenz und das Sicherheitsbewusstsein der Betriebsmannschaft sowie die Sicherheit der Anlage wesentliche<br />

Voraussetzungen. In Deutschland ist nun das Ende des Betriebs von Leistungsreaktoren beschlossen, nicht so bei vielen<br />

unserer europäischen Nachbarn. Sollen und können wir die kerntechnische Kompetenz in Deutschland weiterhin<br />

erhalten?<br />

Im Rahmen der Energievorsorgeforschung liegt es zur<br />

Sicherheit der Bevölkerung und der Umwelt nahe, das<br />

Know-how, die Kompetenz in der Kerntechnik zu erhalten<br />

und noch weiter auszubauen. Kurzfristig zur Gewährleistung<br />

des sicheren Restbetriebs in Deutschland sowie<br />

langfristig zur Bewertung der Sicherheit benachbarter<br />

Anlagen und vor allem, um einen Beitrag zur Erhöhung<br />

der Sicherheit geplanter Neubauten im internationalen<br />

Umfeld leisten zu können.<br />

Zu der nachgewiesenen, hohen Zuverlässigkeit der<br />

deutschen Anlagen tragen sehr viele bei, vor allem<br />

die Betreiber selbst, aber auch, um hier nur einige zu<br />

nennen, technische Sicherheitsorganisationen, Gutachter,<br />

Genehmigungsbehörden, die Reaktor-Sicherheitskommission,<br />

der Kerntechnische Ausschuss sowie Forschungszentren<br />

und Hochschulen mit den die (Sicherheits-)<br />

Forschung fördernden Ministerien und Projektträgern.<br />

Diese Situation erfordert die Aufstellung eines sorgfältigen<br />

Konzeptes zum perspektivischen Erhalt der Kompetenz,<br />

was angesichts der vielfältigen und verschiedenartigen<br />

Know-how-Träger eine anspruchsvolle Aufgabe ist.<br />

Der Kompetenzerhalt/-ausbau braucht dabei zwingend<br />

die Einbeziehung und Motivation junger Menschen.<br />

Hierzu bietet sich als ein Instrument die Reaktorsicherheitsforschung,<br />

als eine Säule des Kompetenzerhalts in der<br />

Kerntechnik, an.<br />

Erste Anlaufstellen wären hier die Universitäten mit<br />

ihren Studierenden und geförderten nationalen kerntechnischen<br />

Forschungsprojekten und internationalen<br />

Forschungskooperationen, die ihren Doktoranden eine<br />

vertiefte Auseinandersetzung mit der Thematik ermöglichen.<br />

Wichtig ist aber auch die Zusammenführung von<br />

Nachwuchswissenschaftlern (m/w) mit Spezialisten aus<br />

relevanten beteiligten Institutionen. Dies umso mehr, da<br />

die Kerntechnik ein hochgradig multidisziplinäres Arbeitsgebiet<br />

ist.<br />

Für den Kompetenzerhalt kommt der KTG und ihrer<br />

Jahrestagung (AMNT) eine besondere Rolle zu, da sie die<br />

verschiedenen Disziplinen sowie die nationalen und<br />

internationalen Experten in einem Netzwerk verknüpfen<br />

kann. Von Bedeutung ist dabei auch der Einfluss, den die<br />

Mitglieder direkt oder durch Ansprache der Vertreter in<br />

den Gremien auf die Gestaltung und Schwerpunktsetzung<br />

der Jahrestagung nehmen können und sollten.<br />

Bringen Sie sich ein, um unser Know-how zu erhalten!<br />

| | Prof. Dr.-Ing.<br />

Marco K. Koch<br />

(54), Bochum<br />

Stellvertretender<br />

Vorsitzender<br />

der KTG<br />

KTG Inside<br />

Verantwortlich<br />

für den Inhalt:<br />

Die Autoren.<br />

Lektorat:<br />

Sibille Wingens,<br />

Kerntechnische<br />

Gesellschaft e. V.<br />

(KTG)<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

T: +49 30 498555-50<br />

F: +49 30 498555-51<br />

E-Mail: s.wingens@<br />

ktg.org<br />

KTG INSIDE<br />

Ihr Marco K. Koch<br />

www.ktg.org<br />

77 Jahre werden<br />

4. Ing. Ulrich Ristow, Neu-Isenburg<br />

8. Dr. Frank Steinbrunn, Fröndenberg<br />

14. Dipl.-Ing. Bernd Jürgens, Hirschberg<br />

22. Dipl.-Phys. Gerhard Jourdan, Landau<br />

76 Jahre wird<br />

10. Dipl.-Phys. Alfons Scholz, Brühl<br />

75 Jahre werden<br />

7. Dr. Peter Royl, Stutensee<br />

16. Dipl.-Ing. Jochen Heinecke, Kürten<br />

20. Dipl.-Ing. Jörg Brauns, Hanau<br />

26. Dr. Jürgen P. Lempert, Hannover<br />

26. Graeme William Catto,<br />

Buch a. Erlbach<br />

70 Jahre werden<br />

5. Dipl.-Wirtsch.-Ing. Bernd Pontani,<br />

Alzenau<br />

13. Dipl.-Kfm. Jochen Bläsing,<br />

Mörlenbach<br />

22. Dr. Volker Mirschinka, Essen<br />

65 Jahre wird<br />

21. Dr. Ulrich Rohde, Dresden<br />

60 Jahre wird<br />

26. Dr. Sheikh Shahee, Leinburg<br />

50 Jahre werden<br />

20. Thomas Wiese, Ebermannstadt<br />

30. Dipl.-Ing. Heiko Ringel, Offingen<br />

April <strong>2018</strong><br />

97 Jahre wird<br />

2. Prof. Dr. Albert Ziegler, Karlsbad<br />

87 Jahre werden<br />

9. Dr. Klaus Penndorf, Geesthacht<br />

11. Hubert Bairiot, Mol/B<br />

19. Dr. Klaus Einfeld, Murnau<br />

28. Dipl.-Ing. Rudolf Eberhart,<br />

Burgdorf<br />

85 Jahre wird<br />

6. Ing. Reinhard Faulhaber, Köln<br />

84 Jahre wird<br />

22. Dipl.-Ing. Gert Slopianka,<br />

Gorxheimeral<br />

83 Jahre werden<br />

3. Dipl.-Psych. Georg Sieber, München<br />

5. Prof. Dr. Hans-Henning Hennies,<br />

Karlsruhe<br />

19. Dr. Ernst Müller, Rösrath<br />

19. Dr. Gottfried Class,<br />

Eggenstein-Leopoldshafen<br />

21. Dipl.-Ing. Walter Jansing,<br />

Bergisch Gladbach<br />

30. Dr. Friedrich-Wilhelm Heuser,<br />

Overath<br />

82 Jahre werden<br />

4. Helmut Kuhne, Neunkirchen<br />

6. Dipl.-Ing. Hans Pirk, Rottach-Egern<br />

10. Dipl.-Ing. Franz Stockschläder,<br />

Bad Bentheim<br />

11. Dipl.-Ing. Bernhard-F. Roth,<br />

Eggenstein-Leopoldshafen<br />

24. Dipl.-Ing. Horst Schott, Overath<br />

81 Jahre werden<br />

7. Dipl.-Ing. Helmut Adam,<br />

Neuenhagen<br />

13. Dr. Martin Peehs, Bubenreuth<br />

KTG Inside


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

188<br />

NEWS<br />

Wenn Sie keine<br />

Erwähnung Ihres<br />

Geburtstages in<br />

der <strong>atw</strong> wünschen,<br />

teilen Sie dies bitte<br />

rechtzeitig der KTG-<br />

Geschäftsstelle mit.<br />

80 Jahre werden<br />

4. Prof. Dr. Klaus Kühn,<br />

Clausthal-Zellerfeld<br />

5. Dr. Hans Fuchs, Gelterkinden/CH<br />

9. Dr. Carl Alexander Duckwitz, Alzenaz<br />

28. Prof. Dr. Georg-Friedrich Schultheiss,<br />

Lüneburg<br />

79 Jahre wird<br />

8. Dr. Siegbert Storch, Aachen<br />

78 Jahre wird<br />

18. Dipl.-Ing. Norbert Granner,<br />

Bergisch Gladbach<br />

77 Jahre werden<br />

17. Dipl.-Phys. Ernst Robinson, Gehrden<br />

28. Dr. Ludwig Richter, Hasselroth<br />

76 Jahre werden<br />

9. Prof. Dr. Hans-Christoph Mehner,<br />

Dresden<br />

27. Dr. Dieter Sommer, Mosbach<br />

27. Dr. Jürgen Wunschmann, Eggenstein<br />

29. Dr. Klaus-Detlef Closs, Karlsruhe<br />

75 Jahre werden<br />

15. Dr. Werner Dander, Heppenheim<br />

18. Dipl.-Betriebsw. Uwe Janßen,<br />

Weinheim<br />

18. Dipl.-Ing. Victor Luster, Bamberg<br />

26. Ing. Helmut Schulz, Kürten<br />

70 Jahre werden<br />

6. Dr. Wolfgang Tietsch, Mannheim<br />

9. Ing. Herbert Moryson, Essen<br />

22. Dr. Heinz-Dietmar Maertens, Arnum<br />

26. Dr. Rainer Heibel, Ness Neston/GB<br />

27. Ulrich Wimmer, Erlangen<br />

65 Jahre werden<br />

10. Dipl.-Phys. Harold Rebohm, Berlin<br />

24. Dipl.-Phys. Michael Beczkowiak,<br />

Karben<br />

60 Jahre werden<br />

4. Dipl.-Ing. Holger Bröskamp,<br />

Höhnhorst<br />

4. Dipl.-Ing. (FH) Franz Xaver Pirzer,<br />

Schwandorf<br />

50 Jahre werden<br />

16. Rainer Bezold, Dormitz<br />

16. Dr. Matthias Messer, Tetbury/GB<br />

30. Dr. Christian Raetzke, Leipzig<br />

Die KTG gratuliert ihren Mitgliedern<br />

sehr herzlich zum Geburtstag und<br />

wünscht ihnen weiterhin alles Gute!<br />

Top<br />

Foratom: Europe needs<br />

nuclear for climate change<br />

and energy security<br />

(foratom) Nuclear energy contributes<br />

to the European Union’s three key<br />

energy objectives laid out in the bloc’s<br />

energy union initiative of security of<br />

supply, competitiveness and environmental<br />

sustainability, Yves Desbazeille,<br />

director-general of industry group<br />

Foratom, told journalists in Brussels<br />

on 29 January <strong>2018</strong>.<br />

According to Mr Desbazeille, the EU<br />

must continue to focus on achieving its<br />

ultimate goal of cutting CO 2 emissions,<br />

transitioning to a low- carbon economy,<br />

ensuring security of energy supply and<br />

creating jobs. He said the EU should<br />

continue to use “all the best tools available”,<br />

including nuclear energy.<br />

Mr Desbazeille said nuclear was<br />

not mentioned in the EU’s latest ‘Clean<br />

Energy for All Europeans’ legislative<br />

package, although it is currently<br />

providing almost half of the EU’s lowcarbon<br />

electricity.<br />

He said adjustments are also<br />

needed to the way the European<br />

energy markets work in order to stimulate<br />

investment in long-term energy<br />

capacities. A higher price to carbon<br />

emissions is needed to encourage such<br />

investments and a revision of the EU<br />

emissions trading scheme (ETS) will<br />

be a “key instrument” for decarbonising<br />

the EU’s economy, Mr Desbazeille<br />

said.<br />

On the UK leaving the Euratom<br />

treaty as part of Brexit, Mr Desbazeille<br />

said the EU and UK should not delay<br />

negotiating their future relationship<br />

in the civil nuclear field and in<br />

particular defining the parameters of<br />

a transitional period.<br />

Euratom is the treaty which underpins<br />

the nuclear industry and the<br />

trade in nuclear materials in the EU.<br />

| | (18501457), www.foratom.org<br />

WNA outlines vision<br />

for future of electricity<br />

(wna) Harmony is the nuclear industry<br />

vision supported by the World<br />

Nuclear Association (WNA) for the<br />

future of electricity and how nuclear<br />

energy can help the world achieve its<br />

2° climate target.<br />

According to WNA, nuclear power<br />

capacity will need to grow signifi cantly<br />

around the world in order to meet<br />

the International Energy Agency’s 2°<br />

scenario. “By 2050, nuclear energy<br />

must account for 25 % of energy<br />

genera tion if we are to meet our<br />

climate targets. With nuclear making<br />

up 11 % of generation in 2014, an extra<br />

1000 GW in nuclear capacity will need<br />

to be built by 2050” states Agneta<br />

Rising, WNA Director General. “However,<br />

meeting this goal will not be<br />

easy”, she adds.<br />

One of the actions being undertaken<br />

by the Harmony programme is<br />

an evaluation of current barriers and<br />

recommended solutions. These can be<br />

summarised as follows:<br />

Electricity market failures: Ensure<br />

a level playing field for all low carbon<br />

energy sources including nuclear.<br />

Regulatory barriers: Harmonise<br />

international regulatory processes to<br />

ensure consistency, efficiency and<br />

predictability.<br />

Misconception of risks and benefits:<br />

Address public concerns and put the<br />

health, environmental and safety risks<br />

of nuclear in perspective compared to<br />

other power generation technologies.<br />

“FORATOM very much welcomes<br />

the work being undertaken by the<br />

WNA. Indeed, Europe faces many of<br />

the same challenges, and opportunities,<br />

as other regions”, underlines<br />

Yves Desbazeille, FORATOM Director<br />

General. “Globally, the EU is the<br />

region which emits the lowest amount<br />

of CO 2 emissions from electricity generation<br />

thanks to nuclear energy. We<br />

look forward to continuing our fruitful<br />

cooperation with the WNA and<br />

making sure our positive messages<br />

about the real value of nuclear energy<br />

resonate across Europe”.<br />

For more information about the<br />

Harmony programme check out the<br />

website: world-nuclear.org/harmony.<br />

| | (18501447), www.world-nuclear.org,<br />

www.foratom.org<br />

World<br />

Head of ROSATOM Alexei<br />

Likhachev announced <strong>2018</strong><br />

the Year of Nuclear Science<br />

(rosatom) On the 6th of February<br />

<strong>2018</strong>, speaking at the function at the<br />

Presidium of Scientific and Technical<br />

Board of ROSATOM dedicated to the<br />

Russian Science Day, Director General<br />

of ROSATOM Alexei Likhachev<br />

announced <strong>2018</strong> the Year of Nuclear<br />

Science.<br />

Likhachev reminded that the<br />

nuclear sector had appeared in the<br />

world owing to fundamental scientific<br />

discoveries and today’s achievements<br />

of Russian nuclear scientists in many<br />

respects were based on scientific<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

Operating Results October 2017<br />

Plant name Country Nominal<br />

capacity<br />

Type<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated. gross<br />

[MWh]<br />

Month Year Since<br />

commissioning<br />

Time availability<br />

[%]<br />

Energy availability Energy utilisation<br />

[%] *) [%] *)<br />

Month Year Month Year Month Year<br />

OL1 Olkiluoto BWR FI 910 880 523 453 505 6 084 788 253 316 643 70.17 93.53 67.01 91.99 66.89 91.65<br />

OL2 Olkiluoto BWR FI 910 880 745 687 245 5 131 241 242 948 381 100.00 77.68 100.00 76.66 101.37 77.29<br />

KCB Borssele PWR NL 512 484 703 352 921 2 653 908 157 458 349 93.60 71.62 93.63 72.12 92.49 69.50<br />

KKB 1 Beznau 1,2,7) PWR CH 380 365 0 0 0 124 746 087 0 0 0 0 0 0<br />

KKB 2 Beznau 1,2,7) PWR CH 380 365 745 283 718 2 370 828 130 602 984 100.00 85.94 100.00 85.41 100.25 84.71<br />

KKG Gösgen 7) PWR CH 1060 1010 745 788 371 7 019 814 303 630 449 100.00 91.62 99.98 91.20 99.83 90.77<br />

KKM Mühleberg BWR CH 390 373 745 286 910 2 560 350 123 772 595 100.00 91.47 99.97 90.80 98.75 89.98<br />

CNT-I Trillo PWR ES 1066 1003 745 791 502 6 975 968 237 469 685 100.00 90.51 100.00 90.20 99.03 89.19<br />

Dukovany B1 PWR CZ 500 473 745 371 657 2 094 026 107 904 400 100.00 59.16 100.00 58.76 99.77 57.40<br />

Dukovany B2 PWR CZ 500 473 745 368 190 2 590 373 103 913 002 100.00 72.79 100.00 72.20 98.84 71.01<br />

Dukovany B3 PWR CZ 500 473 0 0 2 309 273 101 934 129 0 74.25 0 63.88 0 63.30<br />

Dukovany B4 PWR CZ 500 473 745 370 436 2 197 298 102 725 449 100.00 71.01 99.55 60.37 99.45 60.23<br />

Temelin B1 PWR CZ 1080 1030 745 802 035 7 883 127 105 511 286 100.00 100.00 99.96 99.96 99.68 100.04<br />

Temelin B2 PWR CZ 1080 1030 745 808 164 6 031 344 99 895 666 100.00 76.21 100.00 75.84 100.44 76.54<br />

Doel 1 PWR BE 454 433 745 337 695 2 951 580 133 564 553 100.00 89.85 99.88 89.32 99.46 88.90<br />

Doel 2 PWR BE 454 433 745 339 506 2 939 341 131 592 990 100.00 90.56 99.98 90.17 99.85 88.21<br />

Doel 3 PWR BE 1056 1006 0 0 6 732 621 251 169 221 0 86.76 0 86.57 0 86.93<br />

Doel 4 PWR BE 1084 1033 745 812 158 6 281 391 252 953 842 100.00 81.41 100.00 80.78 99.48 78.75<br />

Tihange 1 PWR BE 1009 962 0 0 2 690 977 289 954 051 0 38.01 0 37.60 0 36.54<br />

Tihange 2 PWR BE 1055 1008 745 786 476 5 870 641 247 389 709 100.00 80.71 100.00 76.52 100.69 76.58<br />

Tihange 3 PWR BE 1089 1038 745 804 709 7 855 132 267 335 829 100.00 100.00 99.98 99.98 99.07 98.76<br />

189<br />

NEWS<br />

Operating Results December 2017<br />

Plant name<br />

Type<br />

Nominal<br />

capacity<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Time availability<br />

[%]<br />

Energy availability Energy utilisation<br />

[%] *) [%] *)<br />

Month Year Since Month Year Month Year Month Year<br />

commissioning<br />

KBR Brokdorf DWR 1480 1410 744 932 450 5 778 146 340 192 059 100.00 51.68 93.41 48.23 84.26 44.37<br />

KKE Emsland 4) DWR 1406 1335 744 1 001 858 11 323 704 335 323 283 100.00 93.28 100.00 93.13 95.68 91.94<br />

KWG Grohnde DWR 1430 1360 744 971 810 9 684 880 366 627 579 100.00 86.06 94.84 82.24 90.74 76.66<br />

KRB B Gundremmingen 4) SWR 1344 1284 732 636 949 9 689 710 331 342 654 98.39 93.06 97.96 92.22 62.39 81.55<br />

KRB C Gundremmingen SWR 1344 1288 744 982 473 9 929 820 320 579 893 100.00 87.85 100.00 85.93 97.80 83.86<br />

KKI-2 Isar DWR 1485 1410 744 1 083 616 11 523 513 341 598 323 100.00 91.53 99.96 91.15 97.80 88.26<br />

KKP-2 Philippsburg DWR 1468 1402 744 1 065 419 7 853 827 355 167 516 100.00 63.18 100.00 63.12 95.90 60.10<br />

GKN-II Neckarwestheim DWR 1400 1310 744 995 400 10 540 800 320 123 134 100.00 88.93 100.00 88.60 95.72 86.10<br />

findings of the father-founders of the<br />

sector. “The sectoral science all the<br />

way has proved the theorem of the<br />

sector existence,” he said, noting that<br />

the contemporary challenges required<br />

solving many new topical tasks on<br />

which the future development of<br />

nuclear industry is dependent and<br />

ROSATOM’s competitiveness on the<br />

world market is maintained.<br />

According to Likhachev, ROSATOM’s<br />

management pays the high priority<br />

attention to the development of the<br />

sectoral science that is confirmed by the<br />

staff and organizational decisions<br />

made last year and setting the highpriority<br />

tasks which include building<br />

up the sectoral plan in scientific areas,<br />

creation of the scientific eco-environs,<br />

provisions for sustainable financing of<br />

scientific activities, raising prestige of<br />

scientific work, and many others.<br />

“One more important task we are<br />

facing is the broadening scientific<br />

contacts, including our ‘blood brother’<br />

NRC Kurchatov Institute as well as<br />

with the Russian Academy of Sciences.<br />

In April <strong>2018</strong>, we plan to hold a large<br />

scientific conference of the sector<br />

where we will summarize certain<br />

results and possibly make decisions on<br />

development in promising areas,”<br />

Alexei Likhachev said.<br />

“Using this opportunity, I would like<br />

to announce <strong>2018</strong> the Year of Nuclear<br />

Science,” the head of sector said.<br />

In turn, President of the Russian<br />

Academy of Sciences Aleksandr Sergeev<br />

noted in his address that today<br />

“RAS and ROSATOM work on friendly<br />

terms and in concert”. “In our interaction,<br />

ROSATOM is the support of RAS<br />

and, perhaps, today RAS needs ROSA-<br />

TOM more than ROSATOM needs<br />

RAS,” he said.<br />

The meeting was attended by<br />

leading Russian scientists, heads of<br />

ROSATOM, Russian Academy of<br />

Sciences, directors of nuclear research<br />

centers, and NRC Kurchatov Institute.<br />

At the function, welcoming speeches<br />

and presentations were made by Head<br />

of Proryv Project Evgeniy Adamov;<br />

Director of NRC Kurchatov Institute<br />

Denis Minkin; Director of SRC RF<br />

TRINITY (part of ROSATOM’s Science<br />

Division) Vladimir Cherkovets; Director<br />

of Institute for Laser Physical Research,<br />

Academician of RAS Sergey<br />

Garanin; Deputy General Director of<br />

*)<br />

Net-based values<br />

(Czech and Swiss<br />

nuclear power<br />

plants gross-based)<br />

1)<br />

Refueling<br />

2)<br />

Inspection<br />

3)<br />

Repair<br />

4)<br />

Stretch-out-operation<br />

5)<br />

Stretch-in-operation<br />

6)<br />

Hereof traction supply<br />

7)<br />

Incl. steam supply<br />

8)<br />

New nominal<br />

capacity since<br />

January 2016<br />

9)<br />

Data for the Leibstadt<br />

(CH) NPP will<br />

be published in a<br />

further issue of <strong>atw</strong><br />

BWR: Boiling<br />

Water Reactor<br />

PWR: Pressurised<br />

Water Reactor<br />

Source: VGB<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

190<br />

NEWS<br />

NMRC for Radiology Sergey Ivanov<br />

and others.<br />

| | (18501542), www.rosatom.ru<br />

IAEA mission: France<br />

committed to safe,<br />

responsible management<br />

of radioactive waste<br />

(iaea) An International Atomic Energy<br />

Agency (IAEA) team of experts said<br />

France demonstrated a comprehensive<br />

commitment to safety with a<br />

responsible approach to the management<br />

of radioactive waste and spent<br />

nuclear fuel. The team also made<br />

suggestions aimed at further enhancements<br />

and noted several good practices.<br />

The Integrated Review Service for<br />

Radioactive Waste and Spent Fuel<br />

Management, Decommissioning and<br />

Remediation (ARTEMIS) team concluded<br />

an 11-day mission to France on<br />

24 January. The mission, requested by<br />

the Government of France, was hosted<br />

by the Directorate General of Energy<br />

and Climate (DGEC), with the participation<br />

of officials from several relevant<br />

organizations including the<br />

French National Radioactive Waste<br />

Agency (ANDRA) and the Nuclear<br />

Safety Authority (ASN), which is responsible<br />

for nuclear and radiation<br />

safety regulation in the country.<br />

ARTEMIS missions provide independent<br />

expert advice from an international<br />

team of specialists convened<br />

by the IAEA. Reviews are based on the<br />

IAEA safety standards as well as international<br />

good practices. The mission<br />

to France aimed to help the country<br />

meet European Union obligations that<br />

require an independent peer review of<br />

national programmes for the safe and<br />

responsible management of spent fuel<br />

and radioactive waste.<br />

Nuclear power currently generates<br />

more than 70 percent of France’s electricity.<br />

The country has 58 operating<br />

nuclear power reactors, which will<br />

require the continuing safe management<br />

of radioactive waste and spent<br />

fuel. France operates facilities for<br />

the disposal of very low-level and<br />

| | Members of the ARTEMIS team which carried out a mission to France that<br />

concluded on 24 January <strong>2018</strong>. (Photo: IAEA)<br />

low- level wastes, and is developing a<br />

deep geological repository for the disposal<br />

of high-level waste.<br />

“On the basis of the review, the<br />

team concluded that France’s waste<br />

management programme is comprehensive<br />

and coherent in fostering<br />

safety,” said ARTEMIS team leader<br />

Peter De Preter, Senior Advisor at<br />

ONDRA/NIRAS, the Belgian agency<br />

for the management of radioactive<br />

waste. “Our review highlights France’s<br />

commitment to safety.”<br />

The ARTEMIS team said France is<br />

well positioned to continue meeting<br />

high standards of safety. It noted a<br />

number of good practices to be shared<br />

with the global waste management<br />

community, while making suggestions<br />

for further enhancing the programme.<br />

Good practices identified by the<br />

team included:<br />

• A clear government commitment<br />

to the national strategy and programme<br />

for waste management,<br />

including safe disposal.<br />

• The development of a transparent<br />

national waste inventory.<br />

• Deliberate efforts towards maintaining<br />

a high level of professional,<br />

competent staff.<br />

Suggestions made by the team<br />

included:<br />

• Facilitate implementation of the<br />

requirement for decommissioning<br />

to take place in the shortest time<br />

possible.<br />

• Optimize management of very low<br />

level wastes.<br />

• Consider mechanisms to address<br />

disposal liabilities for small waste<br />

producers.<br />

The team comprised 13 experts from<br />

Belgium, Canada, Cuba, Finland,<br />

Germany, the Netherlands, Spain and<br />

the United Kingdom as well as three<br />

IAEA staff members. The team held<br />

meetings with officials from the<br />

Government and several relevant<br />

organizations.<br />

“This peer review represents an<br />

important element in our efforts to<br />

ensure the safety of the French waste<br />

management programme, establish<br />

greater public confidence and respond<br />

to the EU waste directive,” said Aurelien<br />

Louis, Head of the Nuclear Industry<br />

Department at DGEC. “The outcome<br />

of the mission was very positive<br />

while also providing us with suggestions<br />

that will be a good basis for future<br />

enhancements.”<br />

IAEA Deputy Director General<br />

Juan Carlos Lentijo, Head of the Department<br />

of Nuclear Safety and Security,<br />

noted that the French mission<br />

was the second ARTEMIS carried out<br />

to meet EU obligations, following a recent<br />

review in Poland.<br />

“The French national programme<br />

is characterized by a pervasive proactive<br />

attitude combined with a high level<br />

of professionalism, which together<br />

demonstrates an enduring commitment<br />

to safety,” Lentijo said. “The<br />

French programme review provides<br />

all of us a valuable reference with an<br />

established, diverse and coherent programme.”<br />

The final mission report will be<br />

provided to the Government in about<br />

two months.<br />

About ARTEMIS<br />

ARTEMIS is an integrated expert<br />

review service for radioactive waste<br />

and spent fuel management, decommissioning<br />

and remediation programmes.<br />

This service is intended for<br />

facility operators and organizations<br />

responsible for radioactive waste<br />

management, as well as for regulators,<br />

national policy makers and other<br />

decision makers.<br />

| | (18501336), www.iaea.org<br />

IAEA and EU review progress<br />

on cooperation<br />

(iaea) The International Atomic<br />

Energy Agency (IAEA) and the European<br />

Union (EU) reviewed progress<br />

achieved in working together on a<br />

range of nuclear activities and agreed<br />

to further enhance cooperation during<br />

their sixth annual Senior Officials<br />

Meeting in Vienna.<br />

The talks on 8 February at the<br />

IAEA’s headquarters provided a forum<br />

for exchanging views on strengthening<br />

collaboration on nuclear safety,<br />

security, safeguards, sustainable development,<br />

nuclear energy research<br />

and increasing innovation. The two<br />

organizations welcomed the fruitful<br />

cooperation and progress achieved<br />

over the past years. They agreed to<br />

deepen cooperation in several areas,<br />

particularly in the promotion of<br />

nuclear applications for sustainable<br />

development.<br />

“The EU is a significant partner for<br />

the IAEA and these annual gatherings<br />

of senior officials serve an important<br />

role in helping to coordinate our<br />

activities,” said Cornel Feruta, Chief<br />

Coordinator for the IAEA. “We have<br />

been pleased by progress made in<br />

working together on several nuclearrelated<br />

issues, and look forward to<br />

deepening our cooperation, in particular<br />

in the area of nuclear applications<br />

for sustainable development.”<br />

“Nuclear safety and security remain<br />

our key priorities, both in<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

| | Cornel Feruta (centre), Chief Coordinator for<br />

the IAEA, making opening remarks at the sixth<br />

annual IAEA/EU Senior Officials Meeting held<br />

in Vienna on 8 February <strong>2018</strong>.<br />

Europe and globally,” said Gerassimos<br />

Thomas, Deputy Director General in<br />

the Directorate-General for Energy of<br />

the European Commission. “In <strong>2018</strong>,<br />

the EU will conduct its first ever<br />

topical peer review on ageing management<br />

of nuclear power plants under<br />

the amended Nuclear Safety Directive.<br />

It will also advance its strategic<br />

agenda on non-power applications in<br />

medicine, industry and research. We<br />

are working in close cooperation with<br />

the IAEA on these matters.”<br />

The EU and the IAEA reaffirmed<br />

support for the Joint Comprehensive<br />

Plan of Action (JCPOA) based on their<br />

respective mandates. The EU High<br />

Representative, as Coordinator of the<br />

Joint Commission established under<br />

the JCPOA, will remain in close<br />

contact with the IAEA regarding<br />

continued implementation of the<br />

agreement.<br />

EU support for a variety of IAEA<br />

activities has delivered consistent and<br />

concrete results over the past year.<br />

Officials commended the long-standing<br />

and successful cooperation under<br />

the Instrument for Nuclear Safety<br />

Cooperation. The EU also welcomed<br />

joint efforts to address environmental<br />

remediation in Central Asia and the<br />

upcoming donors’ conference in fall<br />

<strong>2018</strong>.<br />

During the talks, the EU and the<br />

IAEA agreed to further strengthen cooperation<br />

in training as well as research<br />

and development. They welcomed<br />

progress in advancing activities<br />

on nuclear applications since the<br />

signing of Practical Arrangements in<br />

this field last year. The EU also reaffirmed<br />

its support for the implementation<br />

of the IAEA’s <strong>2018</strong>-2021 Nuclear<br />

Security Plan.<br />

The sides welcomed the launch of<br />

the IAEA’s new ARTEMIS peer review<br />

service of national decommissioning<br />

and waste management programmes,<br />

to which the European Commission<br />

contributes. First reviews have taken<br />

place in some EU Member States<br />

under the EU waste directive. The safe<br />

long-term operation of nuclear power<br />

plants and developments related to<br />

Small Modular Reactors (SMRs) were<br />

also discussed.<br />

Officials reviewed progress on the<br />

implementation of nuclear safeguards<br />

in EU Member States and on the<br />

European Commission Support Programme<br />

to the IAEA. Exchanges took<br />

place on the <strong>2018</strong> Preparatory<br />

Committee for the 2020 Review<br />

Conference on the Treaty on the<br />

Non-Proliferation of Nuclear Weapons<br />

(NPT), scheduled to be held 23 April<br />

to 4 May <strong>2018</strong> at the United Nations<br />

Office in Geneva.<br />

The next Senior Officials Meeting<br />

is expected to take place in Luxembourg<br />

in early 2019.<br />

| | (18501339), www.iaea.org<br />

IAEA mission sees significant<br />

improvements to Belgian<br />

regulatory framework and<br />

identifies areas for further<br />

enhancement<br />

(iaea) An International Atomic Energy<br />

Agency (IAEA) team of experts said<br />

Belgium has made significant improvements<br />

to its regulatory framework<br />

for nuclear and radiation safety<br />

since 2013 by clarifying the regulatory<br />

body’s roles and responsibilities and<br />

strengthening its independence. The<br />

team also observed other improvements<br />

and identified areas for further<br />

enhancement.<br />

The Integrated Regulatory Review<br />

Service (IRRS) peer-review team concluded<br />

a nine-day follow-up mission<br />

today to review Belgium’s implementation<br />

of recommendations and<br />

suggestions made by a 2013 mission.<br />

The review was conducted at the<br />

request of the Government and hosted<br />

by the country’s nuclear regulatory<br />

body, comprising the Belgian Federal<br />

Agency for Nuclear Control (FANC)<br />

and its technical support arm, Bel V.<br />

Using IAEA safety standards and<br />

international good practices, IRRS<br />

missions are designed to strengthen<br />

the effectiveness of the national<br />

nuclear regulatory infrastructure,<br />

while recognizing the responsibility of<br />

each country to ensure nuclear safety.<br />

The IRRS team said the regulatory<br />

body had adequately addressed most<br />

of the recommendations and suggestions<br />

made by the 2013 mission. The<br />

team also said the regulatory body<br />

should remain focused on tackling<br />

outstanding issues.<br />

“Belgium has made key improvements<br />

to the national regulatory<br />

framework, making it more effective<br />

and efficient,” said team leader Robert<br />

Campbell of the United Kingdom’s<br />

Office for Nuclear Regulation. “The<br />

independence of the regulatory body<br />

has now been strengthened in legislation,<br />

and the roles and responsibilities<br />

between the regulator and the<br />

National Agency for Radioactive Waste<br />

Management have been clarified.”<br />

Belgium has seven operating<br />

nuclear power reactors at two sites,<br />

Doel and Tihange, providing just over<br />

half of the country’s electricity and<br />

other nuclear installations including<br />

research reactors, a radioactive waste<br />

treatment facility and an isotope production<br />

facility. In addition, medical<br />

and industrial applications of radioactive<br />

sources are widely used. By law,<br />

nuclear power will start to be phased<br />

out in 2022.<br />

The scope of the 2013 and the 2017<br />

missions covered areas including: the<br />

responsibilities and functions of the<br />

Government and the regulatory body;<br />

the management system of the regulatory<br />

body; activities of the regulatory<br />

body related to regulation of the full<br />

range of nuclear facilities and activities;<br />

emergency preparedness and<br />

response; control of medical exposure<br />

and radiation safety; and the interface<br />

between nuclear safety and nuclear<br />

security.<br />

The team found that the regulatory<br />

body has taken positive steps to:<br />

• Establish a central information<br />

system for sealed source tracking<br />

and inventory as well as inspection<br />

recording.<br />

• Develop a tool to assist in reviewing<br />

and assessing safety-related<br />

modifications through a clearly<br />

defined graded approach.<br />

• Improve patient radiation protection<br />

by raising awareness<br />

about the need to justify medical<br />

examinations.<br />

• Enhance openness and transparency,<br />

including more communications<br />

on regulatory activities<br />

aimed at improving public trust.<br />

“We are very pleased with the results,<br />

which show that the work we’ve<br />

carried out in the last four years is<br />

recognized by international experts.<br />

I particularly appreciate the comments<br />

on transparency and the independence<br />

of the regulator,” said Jans<br />

Bens, director-general of FANC. “I’d<br />

like to thank the staff of the regulatory<br />

body for their contribution to this<br />

achievement, and we look forward to<br />

making continued efforts at improving<br />

the regulatory framework.”<br />

The IRRS team also identified a few<br />

areas for further enhancing the effectiveness<br />

of the regulatory body, including<br />

by completing the programme<br />

of work on its management system.<br />

191<br />

NEWS<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

192<br />

NEWS<br />

“The team has recognised the progress<br />

made by the regulatory body<br />

since the 2013 review,” said David<br />

Senior, head of the IAEA’s Regulatory<br />

Activities Section. “The mission found<br />

that the regulatory body has addressed<br />

the findings from the initial<br />

review, demonstrating a commitment<br />

to continuous improvement of the<br />

regulatory framework against IAEA<br />

safety standards.”<br />

The 12-member IRRS team comprised<br />

experts from Canada, Finland,<br />

France, Greece, Hungary, the Netherlands,<br />

the United Kingdom and the<br />

United States of America as well as<br />

four IAEA staff members.<br />

The final mission report will be<br />

provided to the Government in about<br />

three months. Belgium plans to make<br />

it public.<br />

| | (18501410), www.iaea.org<br />

First‐of‐its‐kind nuclear safety<br />

culture forum puts the<br />

spotlight on national context<br />

(nea) The influence of national context<br />

on nuclear safety culture was the<br />

focus of the country‐specific forum<br />

held on 23‐24 January <strong>2018</strong> by the<br />

Nuclear Energy Agency (NEA) in<br />

Stockholm, Sweden, in co‐operation<br />

with the World Association of Nuclear<br />

Operators (WANO) and the Swedish<br />

Radiation Safety Authority (SSM).<br />

The purpose of this forum was to<br />

create awareness on potential safety<br />

culture challenges related to national<br />

context, with the objective of helping<br />

organisations maintain a healthy<br />

safety culture for safe operations of<br />

nuclear installations and for effective<br />

regulatory activities. The event<br />

brought together over 60 experts from<br />

the Swedish nuclear community and<br />

international observers from France,<br />

Finland, Japan, Korea, South Africa<br />

and the United States, representing<br />

the industry and regulatory organisations.<br />

Opening remarks were delivered<br />

by NEA Director‐General William D.<br />

Magwood, IV, SSM Director General<br />

Mats Persson and WANO Chief<br />

Executive Officer (CEO) Peter Prozesky.<br />

Participants, then, spent one and<br />

a half days self‐reflecting upon their<br />

national cultural attributes in relation<br />

to safety culture. They held focus<br />

group discussions, analysed data and<br />

identified traits relevant to their<br />

national context that may strengthen<br />

or jeopardise safety. Through interactive<br />

roleplay, they explored how<br />

their national context may affect<br />

nuclear safety‐relevant behaviours.<br />

In plenary sessions, the participants<br />

shared ways and approaches to work<br />

with the national context in order to<br />

improve or maintain healthy safety<br />

culture.<br />

“The fundamental objective of all<br />

nuclear regulatory bodies is to ensure<br />

that nuclear licensees conduct their<br />

activities related to the peaceful use<br />

of nuclear energy in a safe manner<br />

within their respective countries,”<br />

said NEA Director‐General Magwood.<br />

“National influences on nuclear power<br />

plant operations and safety culture<br />

should also be considered in fostering<br />

and enhancing nuclear safety. Every<br />

country has to find how best to leverage<br />

its national context in order to<br />

build and maintain a healthy safety<br />

culture.”<br />

“We have to consider the national<br />

context, as it has good impacts on<br />

nuclear safety culture while also<br />

presenting some challenges,” added<br />

SSM Deputy Director General Fredrik<br />

Hassel.<br />

WANO CEO Prozesky said, “We are<br />

pleased to work together with the<br />

NEA to explore different ways to<br />

enhance global nuclear safety, particularly<br />

in the area of nuclear safety<br />

culture.”<br />

“The NEA has worked in recent<br />

years to advance the human aspects of<br />

nuclear safety,” said Mr Magwood.<br />

“We have been working with our<br />

membership, other international<br />

organisations and partners like WANO<br />

to make sure that we’re taking the<br />

right actions to enhance nuclear safety<br />

worldwide.”<br />

A summary report of the forum<br />

and its outcomes is in preparation and<br />

will be provided online to serve as<br />

reference point and training tool on<br />

safety culture. It will analyse national<br />

influences on safety culture, identify<br />

country‐specific traits and practical<br />

methods to address challenges, and<br />

propose a roadmap to solutions.<br />

CTBTO: Ground-breaking<br />

ceremony for the permanent<br />

Equipment, Storage &<br />

Maintenance Facility (ESMF)<br />

(ctbto) On 25 January CTBTO held a<br />

ground-breaking ceremony for its new<br />

permanent Equipment, Storage and<br />

Maintenance Facility (ESMF) in<br />

Seibersdorf, Lower Austria. The<br />

Facility will be primarily used as a<br />

storage and maintenance facility for<br />

the equipment of the On-Site<br />

Inspections Division, but will also<br />

benefit the Organization as a whole<br />

with state-of-the-art training facilities,<br />

a media centre and more.<br />

The decision to build a permanent<br />

facility at Seibersdorf is a significant<br />

event for the CTBTO as it will contribute<br />

to the further development of the<br />

monitoring and verification system of<br />

the Treaty, making the work of the<br />

Organization even more visible and<br />

attesting to the fact that it is already<br />

capable of operating to its mandate.<br />

Among the participants of the<br />

ceremony were Michael Linhart,<br />

Vice-Minister & Secretary-General of<br />

the Federal Ministry for Europe,<br />

Integration and Foreign Affairs of the<br />

Republic of Austria, Ambassador<br />

Maria Assunta Accili Sabbatini,<br />

Permanent Representative of the<br />

Republic of Italy and the Chairperson<br />

of the CTBTO PrepCom, Dr. Hannes<br />

Androsch, Chairman of the Supervisory<br />

Board of the Austrian Institute<br />

for Technology (AIT), Gerhard Karner,<br />

Second President of the State<br />

Parliament of Lower Austria, Franz<br />

Ehrenhofer, Mayor of Seibersdorf, as<br />

well as permanent representatives to<br />

the International Organizations in<br />

Vienna.<br />

The symbolic ground-breaking was<br />

only the first small step in the construction<br />

process, as shortly the<br />

construction team will have to dig 150<br />

meters deeper into the ground before<br />

| | Groundbreaking Ceremony of CTBTO’s permanent ESMF Facility in Seibersdorf, Austria 25 January <strong>2018</strong>.<br />

Photo: The Official CTBTO Photostream<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

starting work on the facility itself. The<br />

construction of the ESMF is expected<br />

to be completed by the end of <strong>2018</strong>.<br />

At the ceremony, Secretary-<br />

General Linhart pointed out that policies<br />

of nuclear disarmament and<br />

non-proliferation remain among the<br />

main priorities of Austria’s foreign<br />

policy. He reaffirmed Austria’s strong<br />

support for the CTBTO and concluded<br />

that “by building the permanent<br />

Equipment, Storage and Maintenance<br />

Facility in Seibersdorf, the CTBTO’s<br />

links with the host country will be<br />

even stronger”.<br />

Other speakers also highlighted<br />

the importance of the ESMF both for<br />

the strengthening of the CTBTO<br />

verification regime and for Austria<br />

itself, at the level of scientific and<br />

regional development.<br />

| | (18501413), www.ctbto.org<br />

UK Parliament: Brexit: energy<br />

security report published<br />

(uk-par) The EU Energy and Environment<br />

Sub-Committee publishes its<br />

report on Brexit: energy security,<br />

looking at implications for energy<br />

supply, consumer costs and decarbonisation.<br />

Key findings<br />

The report states that Brexit will put<br />

the UK’s current frictionless trade in<br />

energy with the EU at risk. The Committee<br />

calls on Government to set out<br />

how it will work with the EU to anticipate<br />

and manage supply shortages,<br />

and to assess what impact leaving the<br />

Internal Energy Market would have on<br />

the price paid by consumers for their<br />

energy.<br />

The Committee also heard that the<br />

UK’s ability to build future nuclear<br />

generation sites, including Hinkley<br />

Point C, is in doubt if access to<br />

specialist EU workers is curtailed, and<br />

that failure to replace the provisions<br />

of the Euratom Treaty by the time the<br />

UK leaves the EU could result in the<br />

UK being unable to import nuclear<br />

materials.<br />

The Committee found that EU<br />

investment has made a significant<br />

contribution to constructing and<br />

maintaining a secure energy system<br />

in the UK, and that replacing this<br />

funding will be critical to ensuring<br />

sufficient infrastructure is in place to<br />

enable future energy trading.<br />

The report concludes that,<br />

post-Brexit, the UK may be more<br />

vulnerable to energy shortages in<br />

the event of extreme weather or<br />

unplanned generation outages, and<br />

asks the Government to set out how it<br />

will work with the EU to anticipate<br />

and manage such conditions.<br />

Chair’s comments<br />

Chair of the Committee Lord Teverson<br />

said:<br />

“Individuals and businesses across<br />

the UK depend on a reliable and<br />

affordable supply of energy. In recent<br />

years, the UK has achieved such a<br />

supply in partnership with the EU,<br />

working with other Member States to<br />

make cross-border trade in energy<br />

easier and cheaper.<br />

“Over the course of the inquiry the<br />

Committee heard benefits of the UK’s<br />

current energy relationship with the<br />

EU, and the Minister acknowledged<br />

these benefits when he stated his hope<br />

that Brexit would result in as little<br />

change as possible. It remains unclear,<br />

however, how this can be achieved,<br />

without remaining in the single<br />

market, IEM and the other bodies that<br />

develop and implement the EU’s<br />

energy policy.”<br />

| | (18501424), www.parliament.uk<br />

NIA welcomes Greg Clark’s<br />

Written Ministerial Statement<br />

on Euratom<br />

(nia) The UK-based Nuclear Industry<br />

Association NIA has welcomed the<br />

government’s statement on Euratom<br />

and its commitment to update Parliament<br />

every three months as well as<br />

clarity on its intention to negotiate an<br />

implementation period to ensure a<br />

smooth transition from the current to<br />

new arrangements.<br />

Commenting Tom Greatrex, Chief<br />

Executive of the Nuclear Industry<br />

Association, said:<br />

“The Secretary of State’s statement<br />

on Euratom is a useful and welcome<br />

step in setting out the government’s<br />

approach in seeking to secure equivalent<br />

arrangements to those we benefit<br />

from as a member of Euratom.<br />

“The UK industry and research<br />

facilities have been consistently clear<br />

with government about the importance<br />

of these issues since the referendum,<br />

and given the complex nature of<br />

multilateral agreements that will need<br />

to be negotiated, the recognition of<br />

the necessity of transitional arrangements<br />

and the desire for a close future<br />

association with Euratom is welcome.<br />

“Even with a suitable transition,<br />

there remains much work for the<br />

government to do to prevent the<br />

significant disruption that industry is<br />

concerned about.<br />

“There is much still to do in<br />

equipping the UK’s regulator to take<br />

on Euratom’s safeguarding activities;<br />

agreeing a voluntary offer with the<br />

IAEA; negotiating and ratifying<br />

new bilateral Nuclear Co-operation<br />

Agreements with the USA, Canada,<br />

Australia, Japan and others; agreeing<br />

new trading arrangements with the<br />

Euratom community and concluding a<br />

new funding agreement for the UK to<br />

continue its world-leading work in<br />

Euratom’s fusion R&D activities. It is<br />

vital government continues to prioritise<br />

these issues in the period ahead if<br />

there is to be a successful outcome.”<br />

| | (18501421), www.niauk.org<br />

NEI: Nuclear industry urges<br />

prompt next steps for<br />

electricity market reforms<br />

(nei) This afternoon (8 January <strong>2018</strong>)<br />

the Federal Energy Regulatory<br />

Commission (FERC) issued its order<br />

responding to a Notice of Proposed<br />

Rulemaking related to resilience<br />

from the U.S. Department of Energy.<br />

Following is comment from Maria<br />

Korsnick, president and chief executive<br />

officer of the Nuclear Energy<br />

Institute.<br />

“We are disappointed that FERC<br />

did not take affirmative action that<br />

would preserve our nation’s nuclear<br />

plants. America’s nuclear fleet must remain<br />

a strategic asset contributing to<br />

energy security, resilience, reliability,<br />

economic growth and environmental<br />

protection. The status quo, in which<br />

markets recognize only short-term<br />

price signals and ignore the essential<br />

role of nuclear generation, will lead to<br />

more premature shutdowns of wellrun<br />

nuclear facilities. Once closed,<br />

these facilities are shuttered forever.<br />

“We applaud the Secretary’s effort<br />

to place this issue on the national<br />

agenda. To that end, FERC’s order<br />

concluded that resiliency of generation<br />

‘remains an important issue that<br />

warrants the Commission’s continued<br />

attention,’ and that its endorsement of<br />

electricity markets ‘does not conflict<br />

with its oversight of reliability.’ The<br />

Commission has opened a new proceeding<br />

‘to specifically evaluate the<br />

resilience of the bulk power system in<br />

the regions operated by regional<br />

transmission organizations (RTO)<br />

and independent system operators<br />

(ISO).’<br />

“We are committed to working<br />

with FERC, the Department of Energy<br />

and other federal and state policymakers<br />

to ensure that America’s<br />

nuclear fleet continues to deliver<br />

electricity reliably and affordably. We<br />

believe the direction to the RTOs/<br />

ISOs to ‘take a proactive stance on<br />

addressing and ensuring resilience’<br />

193<br />

NEWS<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

194<br />

NEWS<br />

must lead to prompt and meaningful<br />

action, including on issues such as<br />

price formation.”<br />

| | (18501442), www.nei.org<br />

Reactors<br />

European Union: Thematic<br />

peer review – ageing management<br />

of power and research<br />

reactors<br />

(asn) In 2014, the Council of the<br />

European Union adopted directive<br />

2014/87/EURATOM on nuclear security.<br />

The main purpose of this directive,<br />

supplementing a directive of<br />

2009, was to ensure that the licensees<br />

of nuclear facilities learned the lessons<br />

from the Fukushima Daiichi Nuclear<br />

Power Plant (NPP) accident which<br />

occurred in 2011.<br />

The peer review process, considered<br />

as an important instrument<br />

for promoting the implementation<br />

of continuous safety improvement<br />

measures, was introduced by the<br />

directive in 2014: a peer review of the<br />

nuclear facilities of each Member<br />

State must thus be carried out every<br />

6 years. This in-depth review<br />

process, inspired by that performed<br />

during the stress tests on nuclear<br />

facilities carried out in the wake of<br />

the Fukushima Daiichi NPP accident,<br />

started in 2017.<br />

In July 2015, from among the<br />

proposals made by WENRA, the 30 th<br />

meeting of ENSREG selected ageing<br />

management of power and research<br />

reactors as the topic for this first peer<br />

review. In addition to the national<br />

policies developed on this subject,<br />

particularly close attention was<br />

paid to how they are applied to the<br />

following four technical topics: reactor<br />

vessels, containments, concealed<br />

pipes and electrical cables. In accordance<br />

with the provisions [1] regulating<br />

this peer review, the 19 Member<br />

States concerned and participating in<br />

this review are required to submit<br />

their national reports before the end<br />

of 2017. For the nuclear facilities<br />

concerned, ASN publishes its report<br />

in both English and French on its<br />

website. This report is also published<br />

on the ENSREG website.<br />

Following the publication of the<br />

reports from each Member State, a<br />

peer review of the 19 reports for<br />

mutual examination of the steps taken<br />

by the licensees and their assessment<br />

by the regulators will begin in <strong>2018</strong>. A<br />

first workshop is scheduled from 14 to<br />

18 May <strong>2018</strong>. It will be an opportunity<br />

to discuss ageing and identify best<br />

practices. The conclusions of this peer<br />

review will be presented to ENSREG.<br />

| | (18501609),<br />

www.french.nuclear-safety.fr<br />

Russia’s nuclear electricity<br />

share increased up to 18.9 %<br />

in 2017<br />

(rosatom) Following 2017, a share of<br />

electricity production by Russian<br />

nuclear power plants (parts of Power<br />

Division of ROSATOM, Rosenergoatom)<br />

has increased up to 18.9 %<br />

(18.3 % in 2016).<br />

In 2017, the capacity factor has also<br />

grown to reach 83.29 % (83.1 % in<br />

2016).<br />

In 2017, electricity generation<br />

at Russian NPPs reached another<br />

record of 202.868 billion kWh<br />

(196.366 billion kWh in 2016). Thus,<br />

cumulative production has increased<br />

more than 6.6 billion kWh while the<br />

FAS balance of 2017 was exceeded by<br />

3 billion kWh or 1.5 % (at the target<br />

indicator of 199.84 billion kWh).<br />

Russian NPPs set the absolute record<br />

over the entire history of the Russian<br />

nuclear power getting closer to the<br />

absolute pro duction record reached<br />

only during the Soviet Union times in<br />

1989 (212.58 billion kWh, considering<br />

plants in Ukraine, Lithuania and<br />

Armenia).<br />

According to the online data of the<br />

System Operator of the United Energy<br />

System of Russia, the generation of<br />

electricity in Russia in 2017 was<br />

1,073.6 billion kWh that is 0.2 % more<br />

than in 2016. UES of Russia’s power<br />

plants produced 1,053.7 billion kWh<br />

that is 0.5 % more than in 2016.<br />

| | (18501543), www.rosatom.ru<br />

Rosatomflot increased the<br />

number of ice-breaking<br />

escorts through the Northern<br />

Sea Route in 2017<br />

(rosatom) FSUE Atomflot (an enterprise<br />

of ROSATOM) has summed up<br />

the results of 2017. According to the<br />

results, 492 ships of the total gross<br />

tonnage of 7.17 million tons passed<br />

the Northern Sea Route assisted by<br />

nuclear ice-breakers in 2017 (for comparison,<br />

in 2016 there were 410 ships<br />

of the gross tonnage of 5.28 million<br />

tons).<br />

“Off-shipment of hydrocarbon products<br />

is the key factor of the nuclear<br />

icebreaker fleet demand. In future,<br />

the escort numbers will rise. Crews of<br />

the port nuclear icebreakers and tow<br />

boats are maximum responsible for<br />

their contractual commitments. This<br />

is the best ads of their work for their<br />

potential clients,” Mustafa Kashka,<br />

Chief Engineer of Atomflot, says.<br />

Atomflot ensures stable annual<br />

growth of earnings. This is due to the<br />

work the company does to keep the<br />

existing icebreaker service consumers<br />

and to find new clients. In 2017, earnings<br />

of the company grew up to RUB<br />

6,622 million (in 2013 – RUB 1,828<br />

million). In total, over five years (2013<br />

to 2017) this indicator grew up by 3.6<br />

times.<br />

Labor efficiency grew from RUB<br />

1,511,000 in 2013 up to RUB 3,667,000<br />

in 2017. The indicator was up by<br />

243 %.<br />

Mustafa Kashka says: “Based on<br />

the 2016 results, for the first time the<br />

united atomic technological complex<br />

has been formed, the company has got<br />

the net profit of RUB 1,201 million due<br />

to company’s effective performance.<br />

The positive financial result was kept<br />

in 2017: Rosatomflot’s net profit is<br />

estimated at RUB 696 million based<br />

on the year results.”<br />

In 2017, Rosatomflot completed<br />

planned works to extend service lives<br />

of reactors at the Vaygach and Taimyr<br />

icebreakers up to 200,000 hours. The<br />

operation time of the icebreakers was<br />

increased to 5 years.<br />

The planned implementation of<br />

the icebreaker reactor life extension<br />

program allows Atomflot completely<br />

excluding an “ice pause” and smoothly<br />

starting operation of universal<br />

nuclear icebreakers of Project 22220<br />

while strictly following the contractual<br />

commitments.<br />

The Baltijskiy Zavod – Sudostroyenie<br />

continues building universal<br />

nuclear icebreakers (UNI) of Project<br />

22220. In September 2017, the first<br />

UNI Sibir was launched. The leading<br />

UNI Arktika will be set off in mid-2019;<br />

the first series-build nuclear icebreaker<br />

Sibir – November 2020 and<br />

the second series-build nuclear icebreaker<br />

Ural – in November 2021.<br />

In 2017, Atomflot continued its<br />

Portoflot project. It was established by<br />

Rosatomflot as part of the global<br />

Yamal LNG project which is implemented<br />

in the Russia’s Arctic Zone.<br />

The building of a port icebreaker, two<br />

icebreaker towing boats and two tow<br />

boats of ice class are to ensure roundthe-year<br />

safe berthing of large-capacity<br />

ships at berths of Sabetta Port.<br />

In November 2017, the icebreaker<br />

towing boat Yuribei of Project T40105<br />

was put in operation. It is of ice class<br />

Arc 6 that allows the ship to render specialized<br />

services to large-size vehicles<br />

carrying liquefied natural gas and stable<br />

gas condensate. In December 2017,<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

| | Rosatomflot increased the number of ice-breaking escorts through the Northern Sea Route in 2017<br />

the Yuribei took part in loading the<br />

first batch of Yamal LNG.<br />

The contract for the port fleet<br />

services is in effect till December 2040<br />

with potential prolongation to two<br />

periods of 5 years each.<br />

The “Atomflot’s Plan of Measures to<br />

Hold the Environmental Year in 2017”<br />

was implemented. The company<br />

operates with no spent nuclear fuel<br />

and radioactive waste accumulating.<br />

In 2017, the disposal of the nuclear<br />

icebreaker Sibir and floating maintenance<br />

base Lepse continued.<br />

In June 2017, the off-shipment of<br />

the first batch of spent nuclear fuel<br />

from Andreeva Bay’s storage facility<br />

for further reprocessing at the<br />

Rosatomflot’s lighter ship Rossita was<br />

the important event for rehabilitation<br />

of the North-West Region.<br />

The positive developments of<br />

Atomflot and the work to conclude<br />

long-term contracts on ice-breaking<br />

services in large-scale projects in the<br />

Arctic Zone of Russia are expected to<br />

allow Rosatomflot to keep with pace<br />

in all main businesses of the company<br />

in <strong>2018</strong>.<br />

| | (18501545), www.rosatom.ru<br />

Fennovoima: Support has<br />

increased for Finland’s<br />

Hanhikivi Nuclear Project<br />

(nucnet) Local support for the Hanhikivi-1<br />

nuclear power plant project in<br />

Finland has increased by 7.6 % since<br />

last year, according to a telephone<br />

survey of 850 people.<br />

Project developer Fennovoima said<br />

75 % of residents in the Pyhäjoki area<br />

support the plant, which is scheduled<br />

to begin commercial operation in<br />

2024.<br />

When surrounding municipalities<br />

were also taken into account, 71.9 %<br />

of residents were in favour of the<br />

project, an increase of 9.9 % over a<br />

similar survey last year.<br />

Fennovoima said the increased support<br />

is an indication that the impact of<br />

the Hanhikivi-1 project, which is using<br />

Russian reactor technology, is becoming<br />

more visible. Fennovoima said<br />

local companies have been “strongly<br />

involved” in the project.<br />

| | (18501707), www.fennovoima.fi<br />

Saudi Arabia to award nuclear<br />

contracts by end of year<br />

(nucnet) Saudi Arabia, the world’s<br />

biggest oil exporter, plans to award<br />

contracts in December <strong>2018</strong> for the<br />

construction of its first nuclear power<br />

plants, Bloomberg reported, quoting a<br />

government official involved with the<br />

project.<br />

The kingdom has received requests<br />

from five bidders from China, France,<br />

the US, South Korea and Russia to<br />

perform the engineering, procurement<br />

and construction work on two<br />

nuclear reactors, Abdulmalik al<br />

Sabery, a consultant in the business<br />

development department at King<br />

Abdullah City for Atomic and Renewable<br />

Energy, said in an interview in<br />

Abu Dhabi.<br />

“By April we will sign a project<br />

development agreement with two to<br />

three selected vendors,” Mr al Sabery<br />

said. “We are going to have only one<br />

winner that will be building the two<br />

reactors.” The government expects<br />

construction to start next year and is<br />

aiming to commission the plants in<br />

2027, he said.<br />

Saudi Arabia wants to diversify its<br />

economy and lessen its dependence<br />

on oil sales for most of its official<br />

revenue. As part of these reforms, the<br />

country wants to meet a larger share<br />

of its energy needs from renewables<br />

such as solar power and from nuclear<br />

plants.<br />

Its neighbour the United Arab<br />

Emirates is close to completing the<br />

first of four reactors supplied by South<br />

Korea at the Barakah nuclear station.<br />

In September 2017 a Saudi official<br />

told the International Atomic Energy<br />

Agency that the kingdom was carrying<br />

out feasibility studies before deciding<br />

how and where to build its first reactors.<br />

The official said Saudi Arabia<br />

would have an independent body to<br />

supervise its nuclear industry by the<br />

third quarter of <strong>2018</strong>.<br />

| | (18501719), www.emergy.gov.sa<br />

Finland: Loviisa had record<br />

production year in 2017<br />

(nucnet) Fortum’s two-unit Loviisa<br />

nuclear power station had a record<br />

production year in 2017, generating<br />

8.16 TWh (net) of power, which is<br />

more than 10 % of Finland’s total<br />

electricity production.<br />

Fortum said the 92.7 % load factor<br />

of the Loviisa facility was among the<br />

best in the world for pressurised water<br />

reactor power plants.<br />

Loviisa-1’s load factor was 92.7 %<br />

and Loviisa-2’s was 92.6 %. Production<br />

output at Loviisa-1 was the<br />

highest in the station’s history and at<br />

Loviisa-2 was the second highest.<br />

Both units underwent a short<br />

refuelling annual outage in 2017. Unit<br />

1 was out of production for 21 days<br />

and Unit 2 for 17 days.<br />

In addition to normal scheduled<br />

maintenance and fuel replacement,<br />

high-pressure safety injection pump<br />

motors were renewed. A turbine’s<br />

high-pressure housing was modernised<br />

and two turbine reheaters<br />

replaced to increase the power plants’<br />

production and improve efficiency.<br />

Fortum sad its investments in<br />

Loviisa in 2017 were approximately<br />

€90m ($108m), compared to €100m<br />

in 2016. Investments in the coming<br />

years will continue to be significant,<br />

the company said.<br />

Both Fortum units are 502-MW<br />

PWRs supplied by Russia. Unit 1<br />

began commercial operation in May<br />

1977 and Unit 2 in January 1981.<br />

| | (18501713), www.fortum.com<br />

China: Tianwan-3<br />

aynchronised to grid<br />

(nucnet) The Tianwan-3 nuclear plant<br />

under construction in Jiangsu province,<br />

northeastern China, has been<br />

synchronised to the grid and has<br />

delivered its first kilowatt-hours of<br />

electrical energy at a power level of<br />

25 %, Russia’s state nuclear corporation<br />

Rosatom said on 2 January<br />

2017.<br />

Rosatom said the 990-MW VVER<br />

V-428M unit, which reached first<br />

criticality in September 2017, would<br />

now undergo a series of tests at power<br />

levels of 50 %, 75 % and 100 %. At<br />

100 % power the unit will be operated<br />

for 100 hours before regulators<br />

195<br />

NEWS<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

196<br />

NEWS<br />

* Ouranos, the Greek<br />

god who became<br />

Uranus in Roman<br />

mythology and from<br />

whom the planet<br />

Uranus takes its<br />

name, was later to<br />

serve as a point of<br />

reference when the<br />

term “uranium” was<br />

created.<br />

approve commercial operation. Constriction<br />

of the unit began in December<br />

2012.<br />

The Tianwan nuclear station is the<br />

largest economic cooperation project<br />

between Russia and China, an earlier<br />

statement said. Tianwan-1 and -2,<br />

also VVER V-428M units, began<br />

commercial operation in 2007. The<br />

Tianwan-4 VVER V-428M unit is also<br />

under construction by Russia.<br />

Tianwan-5 and -6 will be indigenous<br />

Generation II+ CNP-1000 units.<br />

| | (18501708), www.rosatom.ru,<br />

www.cnnc.com.cn<br />

France: EDF ompletes cold<br />

functional testing at Flamanville-3<br />

EPR<br />

(nucnet) France’s nuclear operator<br />

EDF has completed the cold func tional<br />

test phase for the Flamanville-3<br />

EPR under construction in northern<br />

France, the state-controlled company<br />

said in a statement on 8 January <strong>2018</strong>.<br />

The cold functional testing phase<br />

is part of the system performance<br />

testing, which started in the first<br />

quarter of 2017, to check and test<br />

operation of all the EPR’s systems.<br />

The cold functional test phase,<br />

which started on 18 December 2017<br />

and was completed on 6 January<br />

<strong>2018</strong>, saw the successful completion<br />

of the leak performance test on the<br />

primary system at a pressure greater<br />

than 240 bar – higher than the<br />

pressure of this system in operation.<br />

More than 500 welds were inspected<br />

during this hydrostatic testing, supervised<br />

by the regulator ASN.<br />

EDF is now preparing hot functional<br />

testing of the 1,600-MW unit to<br />

be started in July <strong>2018</strong>. The objective<br />

is to demonstrate the good working<br />

order of the plant by testing components<br />

with temperature and pressure<br />

levels similar to operating conditions.<br />

EDF said fuel loading and start-up<br />

of the reactor is scheduled for the last<br />

quarter of <strong>2018</strong>.<br />

The group has also confirmed the<br />

cost of the project set at €10.5bn<br />

($12.5bn). A previous estimate of the<br />

total cost in July 2011 was €8bn.<br />

| | (18501715), www.edf.com<br />

Russia: Rostov-4 reaches<br />

first criticality<br />

(nucnet) The Rostov-4 nuclear unit<br />

near Volgodonsk in southern Russia<br />

has reached first criticality and minimum<br />

controlled power, state nuclear<br />

corporation Rosatom said.<br />

Construction of the VVER-1000/<br />

V-320 unit began in June 2010. There<br />

are three other units of the same<br />

design in commercial operation at<br />

Rostov.<br />

When Rostov-4 reaches full power<br />

and commercial operation, nuclear<br />

power will provide 54 % of power in<br />

southern Russia, Rosatom said.<br />

According to the International<br />

Atomic Energy Agency, Russia has 35<br />

nuclear units in commercial operation<br />

and seven, including Rostov-4, under<br />

construction. In 2016 nuclear energy’s<br />

share of electricity production was<br />

17.14 %.<br />

| | (18501710), www.rosatom.ru<br />

Spain: Nuclear reactors<br />

lead electricity generation<br />

with more than 21 %<br />

(nucnet) Spain’s seven commercial<br />

nuclear reactors produced 55.6 TWh<br />

of electricity in 2017, making nuclear<br />

the energy source that contributed<br />

most to the country’s electric system,<br />

the Madrid-based industry group Foro<br />

Nuclear said on 8 January 2017.<br />

Quoting figures from grid operator<br />

Red Eléctrica de España (REE), Foro<br />

Nuclear said Spain’s nuclear fleet<br />

accounted for 7.06 % of installed<br />

power generation capacity, but produced<br />

21.17 % of the total electric<br />

energy consumed. This compares to<br />

21.38 % in 2016 and 20.34 % in 2015.<br />

Foro Nuclear said nuclear power<br />

plants were operational for 7,500<br />

hours during 2017, or 86 % of the<br />

time, the highest number of hours of<br />

any generation source.<br />

Foro Nuclear president Ignacio<br />

Araluce said the nuclear sector’s<br />

performance “represents the availability,<br />

reliability, stability and predictability<br />

offered by nuclear energy”<br />

as it operates continuously and facilitates<br />

the proper management of the<br />

electric system.<br />

He said nuclear power plants do<br />

not emit contaminating gasses or<br />

particles to the atmosphere. In 2017<br />

nuclear production accounted for<br />

almost 40 % of emissions-free electricity<br />

generated in Spain.<br />

| | (18501714), www.foronuclear.org<br />

UAE’s Barakah-3 and -4<br />

connected to grid<br />

(nucnet) The Barakah-3 and -4 nuclear<br />

units under construction in the United<br />

Arab Emirates have been connected to<br />

the grid, Emirates Nuclear Energy<br />

Corporation (ENEC) said today.<br />

ENEC said connecting Units 3 and<br />

4 to the grid will allow the next stage<br />

of testing and the completion of<br />

auxiliary buildings on the site.<br />

The UAE is building four South<br />

Korean APR-1400 reactors at the<br />

Barakah nuclear site, about 240km<br />

west of Abu Dhabi city.<br />

According to ENEC, Unit 4 is more<br />

than 60 % complete, Unit 3 is more<br />

than 79 %, Unit 2 is more than 90 %,<br />

and Unit 1 is undergoing commissioning<br />

and testing before a regulatory<br />

review and receipt of the operating<br />

Licence from the Federal Authority for<br />

Nuclear Regulation.<br />

| | (18501711), www.enev.gov.ua<br />

Company News<br />

New Areva:<br />

We are now Orano!<br />

(orano) New Areva has become<br />

Orano. Refocused on nuclear materials<br />

development and waste management,<br />

Orano’s activities encompass<br />

mining, conversion-enrichment, used<br />

fuel recycling, nuclear logistics, dismantling<br />

and engineering. The group<br />

has 16,000 employees, with a revenue<br />

of 4 billion euros and an order backlog<br />

that represents the equivalent of<br />

nearly eight years of revenue. Its<br />

mining and conversion-enrichment<br />

activities place it in the top three<br />

worldwide. Orano is a leader in<br />

nuclear recycling and logistics, and<br />

is developing its business in the<br />

medical field.<br />

The name Orano has its etymological<br />

roots in the word “uranium”*,<br />

from which nuclear fuel is produced.<br />

“Orano symbolizes a new start. A<br />

new start that has been under preparation<br />

for several years now. We have<br />

set up a new organizational structure,<br />

a new business plan, a new strategic<br />

action plan and a new social contract.<br />

Our new identity is the natural result<br />

of all this.<br />

Our new name symbolizes our<br />

conviction: nuclear power has a<br />

future, as it is a competitive, lowcarbon<br />

energy that creates jobs. Orano<br />

has all it needs to play a key role in<br />

this. We have high ambitions for<br />

Orano, namely for it to become the<br />

leader in the production and recycling<br />

of nuclear materials, waste management,<br />

and dismantling within the<br />

next ten years. I have full confidence<br />

in our capacity to give nuclear energy<br />

its full value.<br />

I am very proud of leading this<br />

group and the men and women who<br />

are part of it,” comments Philippe<br />

Knoche, CEO of Orano.<br />

| | (18501521), www.orano.group<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

New AREVA (Orano) and<br />

CNNC acknowledge the<br />

substantial progress made<br />

in the negociation of the<br />

contract for the Chinese commercial<br />

used fuel treatmentrecycling<br />

plant project<br />

(n-a) New AREVA and its Chinese<br />

partner China National Nuclear Corporation<br />

(CNNC) signed on 9 January<br />

<strong>2018</strong> in Beijing, in the presence of the<br />

President of the People’s Republic of<br />

China, Mr. Xi Jinping, and the<br />

President of the French Republic, Mr.<br />

Emmanuel Macron, a memorandum<br />

of commercial agreement for the<br />

Chinese commercial used fuel treatment-recycling<br />

plant project.<br />

Through this memorandum, New<br />

AREVA and CNNC reaffirm their<br />

mutual commitment to complete the<br />

negotiations of the contract for the<br />

Chinese commercial used fuel treatment-recycling<br />

plant project at the<br />

soonest, to launch the project in <strong>2018</strong>,<br />

and acknowledge the substantial progress<br />

made in the negotiation during<br />

the past few months.<br />

The Chinese treatment-recycling<br />

plant (800 tons capacity) will be built<br />

on the model of the La Hague and<br />

Melox plants recognized for their<br />

proven technologies, highest standards<br />

of safety and security, and<br />

industrial performance.<br />

Philippe Knoche, Chief Executive<br />

Officer of New AREVA, commented:<br />

“CNNC and New AREVA have stepped<br />

up their efforts to reach agreement on<br />

the contract and we are seeing today<br />

very positive results. I am looking<br />

forward to finalizing the negotiations<br />

soon, and starting the implementation<br />

of this landmark project with<br />

our partner CNNC in <strong>2018</strong>.”<br />

| | (18501522), www.orono.group<br />

CASTOR® casks support<br />

dismantling in Switzerland<br />

GNS supplies eight spent fuel casks for<br />

the final fuel elements of the Mühleberg<br />

nuclear power plant.<br />

GNS Gesellschaft für Nuklear-<br />

Service mbH and BKW Energie AG<br />

have concluded a contract for the<br />

supply of eight CASTOR® V/52 transport<br />

and storage casks. The casks to be<br />

delivered in 2021 are designated for<br />

the remaining fuel elements of the<br />

Mühleberg nuclear power plant in<br />

Switzerland, which is to be shut-down<br />

at the end of 2019. After the final fuel<br />

elements have been transferred to the<br />

central Swiss interim storage facility<br />

ZWILAG, the boiling water reactor<br />

plant, which was commissioned in<br />

1972, will be fuel-free. This is a decisive<br />

prerequisite for efficient dis mantling.<br />

With its casks, GNS ensures this<br />

important step in the decommissioning<br />

process of the Mühleberg nuclear<br />

power plant and supports the first decommissioning<br />

project in Switzerland<br />

in its optimised dis mantling.<br />

The supply contract was preceded<br />

by a contract for the licensing of<br />

CASTOR® V/52 for Switzerland,<br />

which was concluded last year.<br />

| | (18520857), www.gns.de<br />

MHI completes investment<br />

into France’s Framatome<br />

• MHI acquires 19.5 percent stake in<br />

Framatome, based on prior agreement<br />

from July 2017<br />

• EDF and MHI to collaborate on<br />

ATMEA nuclear reactor jointventure<br />

(framatome) Mitsubishi Heavy Industries,<br />

Ltd. (MHI) has completed<br />

investment into Framatome, a French<br />

company that designs and manufactures<br />

nuclear power plant (NPP)<br />

equipment and systems and renamed<br />

from New NP. MHI now holds a 19.5 %<br />

equity stake in Framatome, an affiliate<br />

of Electricité de France (EDF) recently<br />

established as part of the reorganization<br />

of AREVA Group. The investment<br />

is aimed at establishing a global<br />

structure for delivering the latest<br />

technologies for safe and reliable<br />

nuclear power generation through<br />

strategic collaboration between MHI,<br />

Framatome and EDF. It will also<br />

support the promotion of sales of the<br />

ATMEA1 reactor through collaboration<br />

with EDF.<br />

| | The representatives from BKW Energie AG and GNS Gesellschaft für Nuklear-Service mbH<br />

on the occasion of signing the contract for CASTOR® casks. (Courtesy: GNS)<br />

Framatome evolved from AREVA<br />

NP, an AREVA Group company<br />

with extensive experience in design<br />

and manufacture of NPP equipment,<br />

plant construction and fuel supply.<br />

Framatome will specialize in aftersale<br />

servicing of existing plants as<br />

well as fuel supply, and the design,<br />

manufacture and sale of reactor<br />

equipment for new plants; an area<br />

expected to generate stable earnings.<br />

The completion of the investment<br />

will also result in a reorganization of<br />

ATMEA. ATMEA was formed as a joint<br />

venture between MHI and AREVA<br />

NP to develop the next-generation<br />

ATMEA1 reactor. Under the new<br />

structure, there will be fifty-fifty<br />

ownership of ATMEA between MHI<br />

and EDF, along with a special share<br />

owned by Framatome.<br />

Following completion of the investment,<br />

MHI President and CEO<br />

Shunichi Miyanaga commented,<br />

“MHI has been a key player in cooperation<br />

between Japan and France in<br />

the development of nuclear power<br />

generation technologies for many<br />

years. With the completion of our<br />

investment into Framatome, a new<br />

structure has been created that will<br />

further strengthen the ties between<br />

our nuclear energy industries, and I<br />

am confident this new relationship<br />

will enable further improvement in<br />

technologies to ensure the long-term<br />

sustainability and reliability of nuclear<br />

energy.”<br />

Under the new arrangement, MHI,<br />

EDF and Framatome will collaborate<br />

in promoting worldwide sales of the<br />

ATMEA1 reactor. Further, cooperative<br />

ties between France and Japan’s<br />

nuclear power industries will be<br />

strengthened in areas including equipment<br />

supply to NPPs, after-sale servicing,<br />

and decommissioning work.<br />

Cooperation between MHI and<br />

the AREVA Group began in the 1990s<br />

with collaboration in the fuel cycle<br />

business. In 2006 the two parties<br />

concluded a wider cooperation agreement<br />

in the nuclear energy field.<br />

Following this, integration of the two<br />

partners’ technologies resulted in<br />

development of the ATMEA1; a<br />

pressurized water reactor (PWR), in<br />

the 1,200 megawatt (MW) class, providing<br />

the world’s highest levels of<br />

safety and reliability. Since that time,<br />

prospects for the sale of the ATMEA1<br />

have been expanding worldwide,<br />

especially in emerging economies,<br />

where new NPP construction plans<br />

are moving ahead.<br />

Going forward, through the increasingly<br />

close ties forged with EDF,<br />

197<br />

NEWS<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

198<br />

NEWS<br />

Framatome and the AREVA Group,<br />

MHI will promote the development of<br />

global markets for a broad range of<br />

nuclear power generation-related<br />

technologies. In this way, MHI will<br />

contribute to the formation of a<br />

worldwide structure enabling stable<br />

acquisition and supply of energy with<br />

low emission.<br />

MHI is also scheduled to acquire a<br />

5 percent equity stake in New AREVA<br />

Holding (formerly referred to as<br />

“NewCo”), a company primarily<br />

focused on the fuel cycle field business.<br />

The investment is due to be completed<br />

by the end of January <strong>2018</strong>.<br />

| | (18501525), www.framatome.com<br />

USA: Framatome to acquire<br />

Instrumentation and Control<br />

nuclear business of Schneider<br />

Electric<br />

(framatome) Framatome announced<br />

an agreement with Schneider Electric<br />

to acquire its nuclear automation<br />

business. The two companies recently<br />

signed an asset purchase agreement<br />

that outlines the terms of the sale,<br />

which is expected to close before the<br />

end of the first quarter of <strong>2018</strong>.<br />

The acquisition expands Framatome’s<br />

instrumentation and control<br />

(I&C) offerings. These systems are the<br />

central nervous system of a nuclear<br />

power plant allowing operators to<br />

control reactor operations. Modernizations,<br />

upgrades and ongoing<br />

support, are vital to manage economic<br />

long-term operation of nuclear power.<br />

More than 80 safety I&C systems have<br />

been installed by Framatome on 44<br />

reactors in 17 countries across the<br />

world, and approximately 250 automation<br />

systems have been installed<br />

or are being installed by Schneider<br />

Electric.<br />

The agreement between Framatome<br />

and Schneider Electric also<br />

creates a long-term manufacturing<br />

partnership, which gives customers<br />

I&C options based on a comprehensive<br />

global technical expertise and<br />

market knowledge.<br />

“This is an exciting time of growth<br />

for our company, and the acquisition<br />

and partnership with Schneider<br />

Electric build on our long history of<br />

providing nuclear operators with both<br />

digital and analog I&C solutions,” said<br />

Gary Mignogna, president and CEO of<br />

Framatome Inc. “With this acqui sition,<br />

we will provide long-term support for<br />

our customers’ systems and serve as<br />

the original equipment manufacturer<br />

for their I&C upgrades and modernizations.”<br />

| | (18501526), www.framatome.com<br />

Lightbridge and Framatome<br />

launch Enfission to<br />

commercialize innovative<br />

nuclear fuel<br />

(framatome) Lightbridge Corporation<br />

(NASDAQ: LTBR) and Framatome<br />

finalized and launched Enfission, a<br />

50-50 joint venture company to<br />

develop, license and sell nuclear fuel<br />

assemblies based on Lightbridgedesigned<br />

metallic fuel technology and<br />

other advanced nuclear fuel intellectual<br />

property. Lightbridge is a U.S.<br />

nuclear fuel development company<br />

and Framatome is a leader in designing,<br />

building, servicing, and fueling<br />

today’s reactor fleet and advancing<br />

nuclear energy.<br />

The two companies already began<br />

joint fuel development and regulatory<br />

licensing work under previously<br />

signed agreements initiated in March<br />

2016. The joint venture is a Delawarebased<br />

limited liability company.<br />

Bernard Fontana, Chairman of the<br />

Managing Board and CEO of Framatome,<br />

said: “This is an exciting time<br />

of growth for Framatome and we are<br />

proud to work with Lightbridge on<br />

Enfission. Together, we are developing<br />

an innovative fuel technology<br />

that will provide significant benefits<br />

for our customers, helping them to<br />

generate more electricity from their<br />

nuclear power plants and better compete<br />

in the marketplace. Framatome<br />

provides its next generation of fuel<br />

assembly designs to more than 100 of<br />

the approximately 260 light water<br />

reactors worldwide. Through this<br />

work, we help our customers to<br />

meet their operational goals with<br />

a high level of safety. We are confident<br />

that our strategic partnership<br />

with Lightbridge on Enfission will<br />

strengthen our position as a key<br />

international reference in the global<br />

fuel market.”<br />

Seth Grae, Lightbridge president<br />

and CEO, said: “With the world calling<br />

for more reliable, economic and<br />

carbon- free baseload power, Lightbridge’s<br />

innovative metallic fuel<br />

technology will help both existing and<br />

new nuclear plants fill that need.<br />

Framatome is the ideal partner with<br />

established<br />

manufacturing<br />

| | Joint Venture Negotiation Team Lightbridge<br />

and Framatome<br />

capabilities, an impeccable reputation<br />

as a nuclear fuel supplier and a large<br />

global footprint. We appreciate the<br />

strong support we have already<br />

received from the leading nuclear<br />

operators, both in the U.S. and around<br />

the world. The world’s energy and<br />

climate needs can only be met if<br />

nuclear power grows as a part of<br />

the energy-generating mix. We are<br />

honored to work with Framatome on<br />

this important project and believe<br />

the economic and safety benefits of<br />

our fuel will encourage greater use of<br />

nuclear power.”<br />

| | (18501527), www.framatome.com<br />

Lightbridge awarded key<br />

patents in Europe and China<br />

for innovative metallic<br />

fuel design<br />

(lightbridge) Lightbridge Corporation<br />

(NASDAQ:LTBR), a nuclear fuel technology<br />

company, today announced it<br />

has been awarded key patents in<br />

both Europe and China related to<br />

Lightbridge’s innovative metallic fuel<br />

design that each extend through<br />

2034. These patents follow Notices of<br />

Allowances that were issued by the<br />

European Patent Office and the State<br />

Intellectual Property Office of the<br />

People’s Republic of China, as<br />

reported in October 2017.<br />

The newly issued patents cover an<br />

alternative embodiment of a multilobe<br />

fuel rod design; an all-metal<br />

pressurized water reactor (PWR) fuel<br />

assembly design incorporating multilobe<br />

fuel rods based on the alternative<br />

embodiment; and an all-metal PWR<br />

fuel assembly design incorporating<br />

multi-lobe fuel rods arranged into a<br />

mixed grid pattern, thereby covering<br />

the all-metal fuel assembly design<br />

after the most recent optimization.<br />

Seth Grae, President and CEO of<br />

Lightbridge, said: “These latest<br />

patents are a critical step in solidifying<br />

our intellectual protection around<br />

the world as we gear up for commercialization<br />

through Enfission, our<br />

newly formed joint venture with<br />

Framatome. Our fuel is ideally suited<br />

for the European and Chinese<br />

markets, as it is designed to significantly<br />

enhance both the economics<br />

and safety of existing and planned<br />

nuclear reactors. With 181 operating<br />

nuclear power plants across Europe,<br />

and China poised to become the<br />

largest market for nuclear, these<br />

patents provide us a crucial and<br />

defensible foothold in each of these<br />

markets for years to come.”<br />

Lightbridge has patents pending in<br />

various countries around the world,<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

including the United States, South<br />

Korea, Canada, Japan, Eurasia, and<br />

Australia, as well as additional patents<br />

pending in Europe and China.<br />

| | (18501531), www.ltbridge.com<br />

Rosatom: RITM-200 installed<br />

at Sibir Icebreaker<br />

(rosatom) In Saint Petersburg, the<br />

Baltic Shipyard completed the installation<br />

of the second RITM-200 reactor<br />

on the new generation Sibir nuclear<br />

icebreaker.<br />

Installation of the first reactor was<br />

completed earlier, on 14 December.<br />

RITM-200 is an innovative pressurized<br />

water reactor developed and<br />

manufactured for the icebreaker<br />

fleet by AtomEnergoMash, Rosatom’s<br />

engineering division. The new reactor<br />

unit is unparalleled for its compact<br />

size and cost efficiency. Its integrated<br />

design provides for the placement of<br />

core equipment inside the steam<br />

generator shell and makes the unit<br />

twice as light, half more compact and<br />

25 MW more powerful than the<br />

existing icebreaker reactors of the KLT<br />

series. The reactor design enables the<br />

icebreaker to be used both in deep<br />

Arctic waters and river estuaries and<br />

improves its icebreaking speed and<br />

other performance indicators. The<br />

reactors have a service life of 40 years<br />

and are protected by a containment<br />

made of steel, water and concrete.<br />

| | (18501539), www.rosatom.ru<br />

Westinghouse to continue<br />

nuclear fuel delivery to<br />

Ukraine through 2025<br />

(westinghouse) Westinghouse Electric<br />

Company announced that it has<br />

signed a nuclear fuel contract extension<br />

with Ukraine’s State Enterprise<br />

National Nuclear Energy Generation<br />

Company (SE NNEGC) Energoatom.<br />

The contract includes nuclear fuel<br />

deliveries to seven of Ukraine’s 15<br />

nuclear power reactors between 2021<br />

and 2025, expanding and extending<br />

the existing contract for six reactors<br />

that was set to expire in 2020.<br />

“This contract extension solidifies<br />

Westinghouse’s role as a strategic<br />

partner for Energoatom and demonstrates<br />

our ability to support<br />

Ukraine with their energy diversification.<br />

Under the terms of the new<br />

contract, our relation ship with<br />

Ukraine will be strengthened through<br />

our plan to source some of the<br />

fuel components from a Ukrainian<br />

manufacturer,” said José Emeterio<br />

Gutiérrez, Westinghouse president<br />

and chief executive officer.<br />

While commenting on the agreement,<br />

Yurii Nedashkovskyi, President<br />

of SE NNEGC Energoatom, emphasized<br />

that Energoatom is the only operating<br />

utility of VVER-1000 reactors in the<br />

world that has fully diver sified sources<br />

of nuclear fuel supply. Mr. Nedashkovskyi<br />

com mented, “ Cooperation with<br />

Westinghouse was integral to achievement<br />

of this goal.”<br />

Nuclear fuel from Westinghouse<br />

has played an important role in<br />

Ukraine’s work for independence for<br />

more than a decade. Westinghouse<br />

began supplying fuel to Ukraine in<br />

2005, when the first lead test assemblies<br />

were delivered to South-Ukraine<br />

NPP Unit 3.<br />

“We are pleased that Energoatom<br />

is continuing to trust Westinghouse<br />

as an alternative supplier of nuclear<br />

fuel to VVER reactors,” said Aziz<br />

Dag, Westinghouse vice president<br />

and managing director, Northern<br />

Europe.<br />

The manufacturing and assembly<br />

of the nuclear fuel will be performed<br />

by the Westinghouse fuel fabrication<br />

facility in Västerås, Sweden, where<br />

parts of the production lines are solely<br />

dedicated to VVER-1000 fuel. Deliveries<br />

against the contract will begin<br />

in 2021, immediately following the<br />

conclusion of existing contract.<br />

| | (18501538),<br />

www.westinghousenuclear.com<br />

Wood wins Hinkley Point C<br />

contract worth $16m<br />

(wood) Wood has won a contract as<br />

sole supplier of inspection qualification<br />

services to the Hinkley Point C<br />

nuclear power station. EDF Energy,<br />

the station developer, has commissioned<br />

Wood’s Inspection Validation<br />

Centre (IVC) to qualify ultrasonic<br />

inspections on high inte grity welds in<br />

primary circuit com ponents for the<br />

two 1.6GW reactors.<br />

The contract is effective immediately<br />

and the initial task order is<br />

worth $16m.<br />

Wood’s teams will assess the<br />

inspection procedures and their supporting<br />

technical justifications and<br />

will carry out practical trials to demonstrate<br />

that the procedures can be<br />

applied and meet their objectives.<br />

Using flaw implantation techniques,<br />

faults will be introduced into welded<br />

test pieces to test and ultimately assure<br />

that inspectors can identify them.<br />

The work will create a total of 35<br />

new jobs at the IVC in Warrington, UK,<br />

which works with specialist suppliers<br />

across the world.<br />

| | (18501551), www.woodplc.com<br />

Forum<br />

Consumption in the EU above<br />

the energy efficiency target<br />

(eu) The European Union (EU) has<br />

committed itself to reducing energy<br />

consumption by 20 % by 2020 compared<br />

to projections. This objective is<br />

also known as the 20 % energy<br />

efficiency target. In other words, the<br />

EU has pledged to attaining a primary<br />

energy consumption of no more than<br />

1 483 million tonnes of oil equivalent<br />

(Mtoe) and a final energy consumption<br />

of no more than 1 086 Mtoe in 2020.<br />

In 2016, primary energy consumption<br />

in the EU was 4 % off the<br />

effi ciency target. Since 1990, the first<br />

199<br />

NEWS<br />

| | Primary energy consumption in the EU, 2016 | | Final energy consumption in the EU, 2016<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

200<br />

NEWS<br />

year for which data are available, the<br />

consumption has reduced by 1.7 %.<br />

However, over the years, the distance<br />

from primary energy consumption<br />

target has fluctuated greatly. The<br />

biggest divergence from the target<br />

was in 2006 (16.2 %, a consumption<br />

level of 1 723 Mtoe), while a record<br />

low was reached in 2014 (1.7 %,<br />

1 509 Mtoe). Over the last two years<br />

the gap rose again, to 4 % above the<br />

2020 target, equating to a consumption<br />

of 1 543 Mtoe in 2016.<br />

In 2016, gross inland energy<br />

consumption in the European Union,<br />

which reflects the energy quantities<br />

necessary to satisfy all inland consumption,<br />

amounted to 1 641 Mtoe.<br />

This was a 10.8 % decrease compared<br />

with the peak of nearly 1 840 Mtoe in<br />

2006, but a 6.1 % increase compared<br />

to the decade between 1996 and 2006.<br />

Energy consumption falling<br />

mainly in Greece, Malta and<br />

Romania over last decade<br />

While 19 Member States increased<br />

their energy consumption between<br />

1996 and 2006, growth in energy<br />

consumption was recorded in only<br />

two Member States between 2006 and<br />

2016: Estonia (13.4 % increase to<br />

6.2 Mtoe in 2016) and Poland (3.2 %<br />

increase to 99.9 Mtoe in 2016).<br />

Among the 26 Member States where<br />

energy consumption decreased,<br />

Greece (-23.6 %), Malta (- 22.5 %)<br />

and Romania (-20.2 %) recorded<br />

decreases of more than 20 %.<br />

These figures are issued by Eurostat,<br />

the statistical office of the European<br />

Union, and are complemented by<br />

an article on energy saving in the EU.<br />

| | (18501600), ec.europa.eu<br />

People<br />

FORATOM welcomes new<br />

President, Dr Teodor Chirica<br />

(foratom) FORATOM is pleased to<br />

announce that Dr Teodor Chirica has<br />

been appointed by the association’s<br />

General Assembly as FORATOM<br />

President for a two-year period<br />

starting on 1 January <strong>2018</strong>. Furthermore,<br />

Mr Esa Hyvärinen, Senior Vice<br />

President of Corporate Relations at<br />

Fortum, has been elected as Vice<br />

President for the same period.<br />

“I look forward to the next two<br />

years working with the General<br />

Assembly, Executive Board, FORATOM<br />

Members and the Secretariat”, states<br />

Dr Chirica. “We have many challenges<br />

ahead of us, but I am certain that by<br />

working together and with our partners<br />

at EU level we will be successful.<br />

Indeed, nuclear energy is essential if<br />

Europe wants to meet its goals in terms<br />

of decarbonising the power sector,<br />

ensuring security of supply and stimulating<br />

growth and jobs in Europe.”<br />

Dr Teodor Chirica has over 40<br />

years’ experience in the Romanian<br />

nuclear energy industry. Actively<br />

involved in the development of the<br />

CANDU project in Romana since the<br />

early 70’s, Dr Chirica has worked for<br />

the CANDU Owners Group, ISPE,<br />

CITON and RENEL. Following this, he<br />

has served in different managerial<br />

positions at Nuclearelectrica (1998-<br />

2009) becoming CEO between March<br />

2005 and January 2009. He also<br />

acted as Managing Director of AMEC<br />

Nuclear Romania (2009-2013) and<br />

as CEO of EnergoNuclear – SPV for<br />

Cernavoda Units 3 & 4 from November<br />

2013. Since October 2017, Dr Chirica<br />

is Senior Adviser to the CEO of<br />

Nuclear electrica. He holds a PhD in<br />

nuclear science from the Polytechnics<br />

University in Bucharest. Dr Chirica<br />

has been instrumental in the setting<br />

up of the Romanian Atomic Forum<br />

(ROMATOM, 2000) and in its affiliation<br />

to FORATOM. He is a FORATOM<br />

Executive Officer since 2006 and<br />

FORATOM Vice President since 2017.<br />

In addition, since 2015, he acts as<br />

Special Advisor ROEC.<br />

Teodor Chirica replaces Bertrand<br />

de L’Epinois, Senior Vice President<br />

for Safety Standards at AREVA, who<br />

has reached the end of his mandate<br />

as FORATOM President. FORATOM<br />

wholeheartedly thanks Bertrand de<br />

L’Epinois for his efforts over the last<br />

two years.<br />

| | (18501444),<br />

www.foratom.org<br />

Market data<br />

(All information is supplied without<br />

guarantee.)<br />

Nuclear Fuel Supply<br />

Market Data<br />

Information in current (nominal)<br />

U.S.-$. No inflation adjustment of<br />

prices on a base year. Separative work<br />

data for the formerly “secondary<br />

market”. Uranium prices [US-$/lb<br />

U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =<br />

0.385 kg U]. Conversion prices<br />

[US-$/kg U], Separative work<br />

[US-$/SWU (Separative work unit)].<br />

January to December 2013<br />

• Uranium: 34.00–43.50<br />

• Conversion: 9.25–11.50<br />

• Separative work: 98.00–127.00<br />

January to December 2014<br />

• Uranium: 28.10–42.00<br />

• Conversion: 7.25–11.00<br />

• Separative work: 86.00–98.00<br />

January to December 2015<br />

• Uranium: 35.00–39.75<br />

• Conversion: 6.25–9.50<br />

• Separative work: 58.00–92.00<br />

2016<br />

January to June 2016<br />

• Uranium: 26.50–35.25<br />

• Conversion: 6.25–6.75<br />

• Separative work: 58.00–62.00<br />

July to December 2016<br />

• Uranium: 18.75–27.80<br />

• Conversion: 5.50–6.50<br />

• Separative work: 47.00–62.00<br />

2017<br />

January 2017<br />

• Uranium: 20.25–25.50<br />

• Conversion: 5.50–6.75<br />

• Separative work: 47.00–50.00<br />

February 2017<br />

• Uranium: 23.50–26.50<br />

• Conversion: 5.50–6.75<br />

• Separative work: 48.00–50.00<br />

March 2017<br />

• Uranium: 24.00–26.00<br />

• Conversion: 5.50–6.75<br />

• Separative work: 47.00–50.00<br />

April 2017<br />

• Uranium: 22.50–23.50<br />

• Conversion: 5.00–5.50<br />

• Separative work: 45.50–48.50<br />

May 2017<br />

• Uranium: 19.25–22.75<br />

• Conversion: 5.00–5.50<br />

• Separative work: 42.00–45.00<br />

June 2017<br />

• Uranium: 19.25–20.50<br />

• Conversion: 5.55–5.50<br />

• Separative work: 42.00–43.00<br />

July 2017<br />

• Uranium: 19.75–20.50<br />

• Conversion: 4.75–5.25<br />

• Separative work: 42.00–43.00<br />

August 2017<br />

• Uranium: 19.50–21.00<br />

• Conversion: 4.75–5.25<br />

• Separative work: 41.00–43.00<br />

September 2017<br />

• Uranium: 19.75–20.75<br />

• Conversion: 4.60–5.10<br />

• Separative work: 40.50–42.00<br />

October 2017<br />

• Uranium: 19.90–20.50<br />

• Conversion: 4.50–5.25<br />

• Separative work: 40.00–43.00<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

November 2017<br />

• Uranium: 20.00–26.00<br />

• Conversion: 4.75–5.25<br />

• Separative work: 40.00–43.00<br />

December 2017<br />

• Uranium: 23.50–25.50<br />

• Conversion: 5.00–6.00<br />

• Separative work: 39.00–42.00<br />

<strong>2018</strong><br />

January <strong>2018</strong><br />

• Uranium: 21.75–24.00<br />

• Conversion: 6.00–7.00<br />

• Separative work: 38.00–42.00<br />

| | Source: Energy Intelligence<br />

www.energyintel.com<br />

| | Uranium spot market prices from 1980 to <strong>2018</strong> and from 2007 to <strong>2018</strong>. The price range is shown.<br />

In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.<br />

201<br />

NEWS<br />

Cross-border Price<br />

for Hard Coal<br />

Cross-border price for hard coal in<br />

[€/t TCE] and orders in [t TCE] for<br />

use in power plants (TCE: tonnes of<br />

coal equivalent, German border):<br />

2012: 93.02; 27,453,635<br />

2013: 79.12, 31,637,166<br />

2014: 72.94, 30,591,663<br />

2015: 67.90; 28,919,230<br />

2016: 67.07; 29,787,178<br />

I. quarter: 56.87; 8,627,347<br />

II. quarter: 56.12; 5,970,240<br />

III. quarter: 65.03, 7.257.041<br />

IV. quarter: 88.28; 7,932,550<br />

2017:<br />

I. quarter: 95.75; 8,385,071<br />

II. quarter: 86.40; 5,094,233<br />

III. quarter: 88.07; 5,504,908<br />

| | Source: BAFA,<br />

some data provisional<br />

www.bafa.de<br />

EEX Trading Results<br />

January <strong>2018</strong><br />

(eex) In January <strong>2018</strong>, the European<br />

Energy Exchange (EEX) achieved a<br />

total volume of 240.9 TWh on its<br />

power derivatives markets (January<br />

2017: 291.1 TWh). The January<br />

volume comprised 140.3 TWh traded<br />

at EEX via Trade Registration with<br />

subsequent clearing. Clearing and<br />

settlement of all exchange transactions<br />

was executed by European<br />

Commodity Clearing (ECC).<br />

On the markets for France<br />

(23.8 TWh, +42 %), Spain (5.3 TWh,<br />

+30 %) and Italy (46.6 TWh, +89 %),<br />

EEX was able to significantly increase<br />

volumes year-on-year. On the German<br />

markets, nearly 80 % of the total<br />

volume was traded in the Phelix-DE<br />

Future which EEX launched in April<br />

2017 in light of the of the German-<br />

Austrian price zone split and which<br />

| | Separative work and conversion market price ranges from 2007 to <strong>2018</strong>. The price range is shown.<br />

)1<br />

In December 2009 Energy Intelligence changed the method of calculation for spot market prices. The change results in virtual price leaps.<br />

has established itself as the benchmark<br />

for European power.<br />

The Settlement Price for base<br />

load contract (Phelix Futures) with<br />

delivery in 2019 amounted to 34.21 €/<br />

MWh. The Settlement Price for peak<br />

load contract (Phelix Futures) with<br />

delivery in 2019 amounted to 42.90 €/<br />

MWh.<br />

On the EEX markets for emission<br />

allowances, trading volumes increased<br />

by 37 % to 109.8 million tonnes of CO 2<br />

in January (January 2017: 80.1 million<br />

tonnes of CO 2 ). Primary market<br />

auctions contributed 66.5 million<br />

tonnes of CO 2 to the total volume.<br />

In particular, the EUA derivatives<br />

market recorded a significant growth<br />

of 154 % to 40.3 million tonnes of CO 2<br />

(January 2017: 15.9 million tonnes of<br />

CO 2 ).<br />

The EUA price with delivery in<br />

December 2017 amounted to<br />

7.66/9.46 €/ EUA (min./max.).<br />

| | www.eex.com<br />

MWV Crude Oil/Product Prices<br />

December 2017<br />

(mwv) According to information and<br />

calculations by the Association of the<br />

German Petroleum Industry MWV e.V.<br />

in December 2017 the prices for<br />

super fuel, fuel oil and heating oil<br />

noted inconsistent compared with the<br />

pre vious month November 2017. The<br />

average gas station prices for Euro<br />

super consisted of 136.84 €Cent<br />

( November 2017: 138.54 €Cent,<br />

approx. -1.23 % in brackets: each<br />

information for pre vious month or<br />

rather previous month comparison),<br />

for diesel fuel of 119.01 €Cent (118.52;<br />

+0.41 %) and for heating oil (HEL)<br />

of 60.65 €Cent (60.06 €Cent,<br />

+0.98 %).<br />

The tax share for super with<br />

a consumer price of 138.54 €Cent<br />

(138.54 €Cent) consisted of<br />

65.45 €Cent (47.24 %, 65.45 €Cent)<br />

for the current constant mineral oil<br />

tax share and 21.85 €Cent (current<br />

rate: 19.0 % = const., 22.12 €Cent)<br />

for the value added tax. The product<br />

price (notation Rotterdam) consisted<br />

of 37.18 €Cent (27.17 %, 39.06 €Cent)<br />

and the gross margin consisted of<br />

12.36 €Cent (9.03 %; 11.91 €Cent).<br />

Thus the overall tax share for super<br />

results of 66.83 % (66.24 %).<br />

Worldwide crude oil prices<br />

(monthly average price OPEC/Brent/<br />

WTI, Source: U.S. EIA) were again<br />

higher, approx. +2.43 % (+9.43 %)<br />

in December compared to November<br />

2017.<br />

The market showed a stable<br />

development with higher prices; each<br />

in US-$/bbl: OPEC basket: 62.06<br />

(60.74); UK-Brent: 64.37 (62.70);<br />

West Texas Inter mediate (WTI): 57.88<br />

(56.64).<br />

| | www.mwv.de<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 3 ı March<br />

202<br />

NUCLEAR TODAY<br />

Links to reference<br />

sources:<br />

UK National Audit<br />

Office report:<br />

http://bit.ly/2t1kFLg<br />

US Senate hearing on<br />

nuclear’s contribution:<br />

http://bit.ly/2BIYihS<br />

Exelon Generation<br />

statement on<br />

FitzPatrick<br />

nuclear plant:<br />

http://bit.ly/2FVpFTX<br />

Could Our Nuclear Vision Benefit<br />

From a Spell of Tesla Magic?<br />

John Shepherd<br />

As I put the finishing touches to this latest article, US entrepreneur and boss of the Tesla car giant, Elon Musk,<br />

successfully launched a new rocket, the Falcon Heavy, from the Kennedy Space Center in Florida.<br />

The vast vehicle is the most powerful shuttle system to date<br />

and the whole exercise was ‘only’ a test – or should that be<br />

taste – of what is to come. The rocket’s payload did not<br />

include an array of satellites or other such paraphernalia.<br />

Instead, it carried an unmistakably entrepreneurial touch<br />

– Musk’s old cherry-red Tesla sports car. On top of that,<br />

there was a mannequin in a spacesuit strapped into the<br />

driver’s seat of the car and the radio was set to play a David<br />

Bowie soundtrack.<br />

Maybe this is a bit too theatrical for some, but we’ve<br />

come to expect that of Mr Musk. It was he, after all, who<br />

made a bet with the government of South Australia to<br />

deliver the state the world’s biggest battery within 100 days<br />

of being ordered or deliver it free of charge.<br />

Musk of course delivered the Tesla 100nMW/129nMWh<br />

Powerpack system on time and it is now paired with French<br />

utility Neoen’s Hornsdale wind farm and helping to prevent<br />

power outages in South Australia. Such was the success of<br />

the project – never mind the countless free publicity the<br />

project generated around the world – other Australian<br />

states are investing in similar projects and Tesla is at the<br />

front of the queue.<br />

At this point, you’re probably asking yourself what all<br />

this has to do with nuclear today. Technologically speaking<br />

nothing, of course. But think ‘outside the box’ – as I’m<br />

sure many of you have been told in those corporate<br />

management- training classes. The answer is: ‘vision’. The<br />

unabashed vision to be bold, daring, imaginative. The<br />

vision to believe in technology and to be unafraid to build<br />

on the experience and knowledge gained to date, including<br />

the failures, as we take the next steps forward.<br />

I do wonder if nuclear has lost its way a little in the past<br />

couple of years in terms and our industry has allowed itself<br />

to become bogged down and lose sight of the prize. Perhaps<br />

we’ve allowed ourselves to be overtaken by events?<br />

For example, there are some exciting nuclear developments<br />

in the UK that appear to have been constrained by a<br />

lack of imagination and commitment – not by the company<br />

and workforce but by those who are supposed to show<br />

political leadership.<br />

Horizon Nuclear Power, a subsidiary of Japan’s Hitachi,<br />

aims to build two Advanced Boiling Water Reactor plants<br />

in North Wales and South Gloucestershire. But the governments<br />

in London and Tokyo are still reportedly mulling<br />

over how to support the projects’ financing.<br />

However, the UK’s Franco-Chinese-funded Hinkley<br />

Point C project, to build a twin unit UK EPR capable of<br />

generating 3,260nMW of secure, low carbon electricity for<br />

60 years, has finally got into its stride. This was something<br />

that could have begun sooner were it not for political<br />

prevarication by the UK government. Of course, progress<br />

was not helped by the Brexit referendum and a subsequent<br />

change of prime ministers!<br />

But even when funding and investment guarantees<br />

were finalised for Hinkley Point C, there was still criticism<br />

from the UK’s National Audit Office. The agency could not<br />

resist piling on complaints regarding the investment,<br />

saying the government had “committed electricity<br />

consumers and taxpayers to a high cost and risky deal in a<br />

changing energy marketplace”.<br />

Never mind the more than 25,000 new employment<br />

opportunities the project will create, plus the fact that,<br />

when built, the plant will be generating low-carbon<br />

electricity for around six million homes!<br />

Contrast this approach with that of countries such as<br />

Russia and China, who are prepared not only to invest in the<br />

development of civil nuclear power at home they also see<br />

the value of partnering in projects beyond the own borders.<br />

In the US, key witnesses to a Senate committee hearing<br />

have been telling legislators that markets must do a better<br />

job of properly incentivising baseload power plants like<br />

nuclear, so the national electric grid becomes more<br />

resilient and reliable – especially during extreme weather.<br />

And there are some positive signs for nuclear again in<br />

the US after a period of gloom. Exelon confirmed recently<br />

that the James A FitzPatrick nuclear power plant, which<br />

had been scheduled to close a year ago, is now spurring<br />

investment in local businesses in New York State. The<br />

utility said FitzPatrick launched several capital projects in<br />

2017 totalling more than $ 15.2 million to realign the<br />

station for long-term operations.<br />

In Brussels in February, the European Commission is<br />

convening an ‘EU Industry Day’, to “update stakeholders on<br />

the Commission's strategic approach to industrial policy<br />

and actions to further develop industrial competitiveness in<br />

Europe”. The event will include discussions on proposals to<br />

create an ‘EU Battery Alliance’, which EU leaders say could<br />

support the establishment of a full value chain of batteries<br />

in Europe, with large-scale battery cells production.<br />

The topic of “clean energy” is mentioned throughout<br />

the advance programme for the EU event – but nuclear<br />

does not get a mention. Why is that? If this event is truly<br />

about building support for European industries and<br />

nurturing and investing in the technologies of tomorrow,<br />

what is so terrible about including nuclear energy?<br />

This brings me back to the ‘vision thing’ I mentioned at<br />

the beginning of this article. Leadership in terms of lighting<br />

the way to a cleaner, greener plant does not mean taking a<br />

blinkered view that turns a blind eye to the undeniable<br />

environmental benefits of energy sources that are simply<br />

politically unacceptable to some.<br />

Perhaps the nuclear industry collectively needs to invite<br />

a certain Mr Musk to come on board for a bit of consul tancy<br />

work.<br />

Nuclear can definitely benefit from a sprinkling of his<br />

entrepreneurial spirit and sparkle at this moment in time.<br />

Let’s face it, for someone who can steer a sports car into<br />

space in one piece, driving investments into a new nuclear<br />

era down here on terra firma should be a piece of cake.<br />

Author<br />

John Shepherd<br />

nuclear 24<br />

41a Beoley Road West<br />

St George’s<br />

Redditch B98 8LR, United Kingdom<br />

Nuclear Today<br />

Could Our Nuclear Vision Benefit From a Spell of Tesla Magic? ı John Shepherd


Unsere Jahrestagung – die gemeinsame Fachkonferenz von KTG und DAtF<br />

Unsere Jahrestagung<br />

Die KTG lädt ein.<br />

3 Karl-Wirtz-Preisverleihung<br />

Zur Förderung des wissenschaftlich-technischen<br />

Nachwuchses verleiht die KTG den Karl-Wirtz-Preis<br />

an junge Wissenschaftler.<br />

28. Mai <strong>2018</strong> ı 18:00 Uhr im Anschluss an die<br />

Mitglieder versammlung der KTG<br />

3 Ansprache<br />

ENS – Vision 2020<br />

Alastair C. Laird<br />

ı Präsident, European Nuclear Society (ENS)<br />

28. Mai <strong>2018</strong> ı 19:00 Uhr Get-together der KTG<br />

3 Silber-Sponsor<br />

3 Verleihung der Ehrenmitgliedschaft<br />

Die KTG verleiht ihre Ehrenmitgliedschaft<br />

an Herrn Prof. Winfried Petry.<br />

29. Mai <strong>2018</strong> ı 17:45 Uhr Plenarsitzung<br />

3 Medien-Partner<br />

Registrieren Sie sich für die Jahrestagung Kerntechnik unter:<br />

http://www.nucleartech-meeting.com/registration/<br />

online-registration.html<br />

Unsere Jahrestagung Kerntechnik – das Original seit fast 50 Jahren. Hier trifft sich die Branche.


Combined strength.<br />

One team.<br />

Greater opportunities.<br />

SNC-Lavalin und Atkins arbeiten für Sie als ein Team. Gemeinsam liefern wir unseren Kunden<br />

herausragende Projektdurchführung auf höchstem Sicherheitsniveau.<br />

Kernkraft<br />

Erneuerbare<br />

Energien<br />

Öl & Gas<br />

Bergbau<br />

& Metallurgie<br />

Infrastruktur<br />

In der Kerntechnik in Deutschland bieten wir Ihnen<br />

partnerschaftliche Lösungen jeder Größenordnung<br />

für Ihre Rückbauvorhaben und Entsorgungsaufgaben.<br />

Dies umfasst u.a.<br />

› Unterstützung in der täglichen Projektarbeit z.B.<br />

Unterlagenerstellung für das Genehmigungsund<br />

Aufsichtsverfahren<br />

› Dienstleistungen z.B. Konzeptentwicklung für<br />

Freigabe und Entsorgung, Re-Klassifizierung von<br />

Abfallgebinden, Verfahrensentwicklungen für die<br />

Abfallkonditionierung etc.<br />

› Ausführung von Anlagenlieferungen und<br />

Standortlösungen jeder Größenordnung<br />

Für unser Team in der Kerntechnik<br />

- am Standort Hamburg oder in flexibler<br />

Abstimmung - suchen wir<br />

› Projektmanager (m/w) Ref: EN-002466<br />

› Ingenieure (m/w) Ref: EN-002464<br />

› Rückbau-Experten (m/w) Ref: EN-002463<br />

› Erfahrungsträger im Genehmigungs- und<br />

Aufsichtsverfahren (m/w) Ref: EN-002465<br />

Für weitere Informationen<br />

www.atkinsglobal.com/careers<br />

e: hamburg@atkinsglobal.com<br />

› Planung und Durchführung von<br />

Rückbaumaßnahmen aller Art

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!