atw 2018-03v6

inforum

nucmag.com

2018

3

149

Nuclear Energy

Technologies

for the Arctic

153 ı Spotlight on Nuclear Law

U.S. Regulators Reject Proposal to Subsidize

Nuclear and Coal Power Prices

154 ı Environment and Safety

Integrated Risk Informed Decision Making in Nuclear Reactors

ISSN · 1431-5254

24.– €

163 ı Decommissioning and Waste Management

Investigations on the Influence of the Geometry

of Carbide Lamellae in Concrete Milling

182 ı Report

2017 Nuclear Power Plant Compact Statistic


The International Expert Conference on Nuclear Technology

Who you will meet

Exhibitors, Sponsors and Media Partners

3 Silver Sponsor

3 Media Partners

3 Czech Pavilion

3 United Kingdom Pavilion

More Organizations tba.

Outstanding

Know-How &

Sustainable

Innovations

Enhanced

Safety &

Operation

Excellence

Decommissioning

Experience &

Waste Management

Solutions

Don’t miss this key event of the global nuclear energy community.

29 – 30 May 2018

Estrel Convention Center Berlin

Germany

www.nucleartech-meeting.com


atw Vol. 63 (2018) | Issue 3 ı March

Twilight of the Experts

Dear reader, With the political phase-out from the peaceful use of nuclear energy in Germany in 2011, a few weeks

after the catastrophic earthquake and tsunami in Japan and the resulting accidents at the Fukushima nuclear power

plants, the country not only loses a reliable, domestic, environmentally friendly and inexpensive energy source, it also

leaves a gap for those whose main objective is the fundamental rejection of nuclear energy.

Although the German anti-nuclear scene is keeping itself

afloat with constant demands for an even earlier complete

phase-out before 2022, the recurrence of such demands

like a prayer wheel does not seem to be very satisfying, also

thanks to the unspectacular and accident-free operation of

the German nuclear power plants.

Creativity is called for here when there are – geographically

speaking – such obvious new thematic objects. After

all, the German phase-out of nuclear power with its

coupled “energy turnaround” should also become another

export hit for German policymakers; whatever other

successful concepts from Germany may have asserted

themselves on the world political stage. Clearly, then,

targeted actionism against nuclear power plants close to

the border is an obvious course of action. Europe continues

to be the world's leading region with 182 nuclear power

plants and 26 % of Europe's electricity comes from nuclear

energy. As a result, the neighbouring countries of Germany,

the Netherlands, Belgium, France, Switzerland, the Czech

Republic, the Slovak Republic and, as a newcomer, Poland

can be brought into the spotlight.

Belgium's seven nuclear power plants at the Doel and

Tihange sites, among others, are continually being taken

up with striking consistency and selective targeted actions.

The plants supply about 50 % of the country's own

electricity supply, experience with the operation of nuclear

power plants has existed since 1962 and the operational

lifetime of the plants has been extended several times.

Belgian realism and pragmatism are also evident here:

individual governments have repeatedly considered the

early shut-down of nuclear power plants, but also under

the premiss that the security of electricity supply is not

compromised. Exit: None!

First of all, the nuclear power plant units Tihange-2 and

Doel-3 were made subject around Christmas 2015: Realted

with new findings on the material of the two reactor

pressure vessels and production-related inconsistencies,

catchy keywords were generated: The terms “clapped-out”

reactor pressure vessels and “crumbling reactors”, introduced

by relevant anti atomic protagonists, made the

round. Nonetheless, the expertise and the very open communication

on the subject by the Belgian supervisory

authority Federaal Agentschap voor Nucleaire Controle

(FANC) were lost in most of the media. Hydrogen flakes,

brittle fracture characteristics and preheated emergency

cooling water are simply not attractive topics. Nevertheless,

comprehensive factual information is also available in

Germany, for example on the websites of the Federal

Ministry for the Environment, Nature Conservation,

Construction and Nuclear Safety (BMUB).

As a next coup against Tihange, the German antinuclear

scene then landed the extensive distribution of

iodine tablets in the Aachen area as a “precautionary

measure” against the imminent nuclear “Super-GAU” from

Belgium in order to promote nuclear anxiety culture. The

action was successful if fears were to be stirred up. In more

than 50 years of nuclear energy use in Germany, such an

action had been judged to make little sense in expert

circles, also with consideration of the risks of uncontrolled

self-medication with iodine.

At the beginning of February 2018 a letter from the

FANC was opportune. The letter was passed to “investigative”

press and showed that there had recently been

an accumulation of “precursor” events in the Tihange-1

nuclear power plant block.

The “investigative” press quickly published the headline

“Tihange-1 more dangerous than previously known”.

Without going into the safety-related details of “precursor

events”, the BMUB is quoted here:“... The current reporting

gives the impression that, based on the number of

so-called precursor events, it is possible to draw conclusions

about the safety of a plant. But this is not the case.

Rather, they are probabilistically calculated events that

help to take a closer look at a particular scenario. These

very complex precursor calculations are an element of a

comprehensive security architecture. Probability calculations

can help to further optimize a learning safety system

of this or other facilities...” (translation, original text only

available in German language).

Further discomfort among the population will nevertheless

remain; goal achieved.

However, there are two other aspects to consider

related with the reporting, which already leave a very

negative connotation. On the one hand, the driving journalists

like to call themselves “investigative” and “experts”.

The outlined reports show that the term “investigative” has

little impact, for example, the same anti-nuclear protagonists

are constantly being presented and the opposite is

more likely to be measured. If the “investigative” journalist

were to act as an expert on his own behalf, a mystery of the

Middle Ages would finally be solved: squaring the circle.

Another negative connotation remains when “experts”

appear in coverage who offer their services elsewhere on

the subject...

Nuclear energy continues to be used and operated

safely in Belgium. If you want to get your own impression

of the situation, you can access the web today and access a

wide range of sources; from the EU stress tests according

to Fukushima, through the documents on the nuclear

safety conferences of the International Atomic Energy

Agency to the supervisory authorities and technical expert

organisations.

If you are looking for more cabaret, please refer to

Twitter and the 280-character opinions there (e.g.

# tihange), which also complete the picture of atomic

expertise shown here.

Christopher Weßelmann

– Editor in Chief –

139

EDITORIAL

Editorial

Twilight of the Experts


atw Vol. 63 (2018) | Issue 3 ı March

EDITORIAL 140

Expertendämmerung

Liebe Leserin, lieber Leser, mit dem politischen Ausstieg aus der friedlichen Nutzung der Kernenergie in

Deutschland im Jahr 2011, wenige Wochen nach dem katastrophalen Erdbeben mit Tsunami in Japan, und der dadurch

ausgelösten Unfälle in den Fukushima-Kernkraftwerken verliert das Land nicht nur eine verlässliche, heimische,

umweltschonende und preisgünstige Energiequelle, er hinterlässt auch eine Lücke für diejenigen, deren inhaltliches

Hauptziel die fundamentale Ablehnung der Kernenergienutzung ist.

Zwar hält sich die deutsche Anti-Atomszene mit

fortwährenden Forderungen nach einem noch früheren

vollständigen Ausstieg vor 2022 über Wasser, aber das

gebetsmühlenartige Wiederholen solcher Forderungen

scheint auch dank des unspektakulären und störfallfreien

Betriebs der deutschen Kernkraftwerke nicht sehr

erfüllend zu sein.

Hier ist dann Kreativität gefragt, wenn es – geografisch

– so naheliegende neue Themenobjekte gibt. Sollte doch

der deutsche Atomausstieg mit seiner gekoppelten „Energie

wende“ auch ein weiterer Exportschlager deutscher

Politik werden; welche anderen Erfolgskonzepte aus

Deutschland sich auf der Weltbühne der Politik auch

immer durchgesetzt haben mögen. Naheliegend ist also

gezielter Aktionismus gegen grenznahe Kernkraftwerke.

Ein Unterfangen mit nicht unerheblichem Potenzial, ist

Europa doch weiterhin mit 182 Kernkraftwerken bei der

Nutzung als Region weltweit führend und 26 % des

europäischen Stroms stammten aus der Kernenergie.

Somit können die Nachbarländer Niederlande, Belgien,

Frankreich, die Schweiz, die Tschechische Republik, die

Slowakische Republik und als Newcomer Polen bequem in

den Fokus gerückt werden.

Mit auffälliger Beständigkeit und punktuell gezielten

Aktionen werden unter anderem die sieben Kernkraftwerke

Belgiens an den Standorten Doel und Tihange

fortwährend aufgegriffen. Die Anlagen liefern rund 50 %

der landeseigenen Versorgung, Erfahrungen mit dem

Betrieb von Kernkraftwerken bestehen seit 1962 und für

die in Betrieb befindlichen Anlagen wurden mehrfach

Laufzeitverlängerungen beschlossen. Hier zeigen sich

auch belgischer Realismus und Pragmatismus: Zwar

wurde von einzelnen Regierungen immer wieder eine

vorzeitige Abschaltung von Kernkraftwerken in Erwägung

gezogen, aber auch unter der Maßgabe, dass die Stromversorgungssicherheit

nicht beeinträchtigt wird. Ausstieg:

Fehlanzeige!

Als erstes wurden die Kernkraftwerksblöcke Tihange 2

sowie Doel 3 um Weihnachten 2015 zum zugkräftigen

Thema gemacht: Im Zusammenhang mit neuen Erkenntnissen

zum Material der beiden Reaktordruckbehälter und

fertigungsbedingten Inkonsistenzen wurden einprägsame

Schlagworte generiert: Die Begriffe „marode“ Reaktordruckbehälter

und „Bröckelreaktoren“ machten, von

einschlägigen Anti-Atom-Protagonisten eingebracht, die

Runde. Gleichwohl blieben Fachexpertise und die sehr

offene Kommunikation zum Thema seitens der belgischen

Aufsichtsbehörde Federaal Agentschap voor Nucleaire

Controle (FANC) in den meisten Medien auf der Strecke.

Wasserstoff-Flocken, Sprödbruch-Kennlinien und vorgeheiztes

Notkühlwasser sind halt keine attraktiven Themen.

Gleichwohl ist umfassende sachliche Information auch in

Deutschland dazu verfügbar, so auf den Webseiten des

Bundesministeriums für Umwelt, Naturschutz, Bau und

Reaktorsicherheit (BMUB).

Als nächsten Coup gegen Tihange landete die deutsche

Anti-Atom-Szene dann zur Förderung der Atom- Angstkultur

die flächige Verteilung von Jod-Tabletten im

Großraum Aachen als „Vorsorgemaßnahme“ gegenüber

dem drohenden nuklearen „Super-Gau“ aus Belgien. Galt

es Ängste zu schüren, war die Aktion erfolgreich. In mehr

als 50 Jahren Kernenergienutzung in Deutschland war

eine solche Aktion als wenig sinnvoll in Expertenkreisen

beurteilt worden, auch mit der Abwägung mit den Risiken

unkontrollierter Selbstmedikamentation.

Um dann noch nachzulegen kam Anfang Februar 2018

ein Schreiben der FANC wie gelegen. Dieses sei „investigativer“

Presse zugespielt worden und zeige, dass es im

Kernkraftwerksblock Tihange 1 jüngst zu Häufungen von

„Precursor“-Ereignissen gekommen sei.

Schnell publizierte die geneigte „investigative“ Presse

die Schlagzeile „Tihange 1 gefährlicher als bislang

bekannt“. Ohne auf die sicherheitstechnische Bedeutung

von „Precursor-Ereignissen“ einzugehen, sei hier das BMUB

zitiert: „... In der aktuellen Berichterstattung entsteht der

Eindruck, dass man auf Grundlage der Anzahl von

sogenannten Precursor-Ereignissen auf die Sicherheit einer

Anlage schließen könne. Das ist aber nicht der Fall. Sie sind

vielmehr probabilistisch durchgerechnete Anlässe, die

dabei helfen, sich ein bestimmtes Szenario genauer

anzusehen. Diese sehr komplexen Precursor-Berech nungen

sind ein Element einer umfassenden Sicherheits architektur.

Die Wahrscheinlichkeitsberechnungen können helfen,

weitere Optimierungen an einem lernenden Sicherheitssystem

dieser oder anderer Anlagen vorzunehmen ...“

Weiteres Unbehagen bei der Bevölkerung wird dennoch

verbleiben; Ziel erreicht.

Zu betrachten sind aber noch zwei weitere Aspekte in

Zusammenhang mit der Berichterstattung, die schon

einen zusätzlichen sehr faden Beigeschmack hinterlassen.

Da sind zum einen die treibenden Journalisten, sich selbst

gerne als „investigativ“ und „Experten“ bezeichnend.

Dabei zeigen die umrissenen Berichterstattungen, dass

vom Begriff „Investigativ“ wenig zu spüren ist, werden

doch z. B. fortwährend dieselben Anti-Atom-Akteure

präsentiert und Gegenstimmen misst man eher. Wenn

dann zudem der „investigative“ Journalist als „Experte“ in

eigener Sache auftritt, dann wäre endlich ein Mysterium

des Mittelalters gelöst: Die Quadratur des Kreises. Ein

weiterer fader Nebengeschmack verbleibt, wenn „Experten“

auftreten, die an anderer Stelle ihre Dienstleistungen

zum Thema anbieten ...

Kernenergie wird in Belgien weiterhin sicher genutzt

und betrieben. Wer sich ein eigenes Bild dazu machen

möchte, kann auf das Web zurückgreifen und viel fältige

Quellen; von den EU-Stresstests nach Fukushima, über die

Dokumente zu den Nuklearen Sicherheits konferenzen der

Internationalen Atomenergie-Organisation bis hin zu

den Aufsichtsbehörden und Technischen Gutachter organisationen.

Wer mehr Kabarett sucht, sei auf Twitter und die

dortigen 280-Zeichen-Meinungen verwiesen (z. B.

# tihange), die das hier angerissene Bild von „Atomexpertise“

gelungen abrunden.

Christopher Weßelmann

– Chefredakteur –

Editorial

Twilight of the Experts


Kommunikation und

Training für Kerntechnik

Suchen Sie die passende Weiter bildungs maßnahme

im Bereich Kerntechnik?

Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort

3 Atomrecht

Das Recht der radioaktiven Abfälle RA Dr. Christian Raetzke 06.03.2018 Berlin

23.10.2018

Ihr Weg durch Genehmigungs- und Aufsichtsverfahren RA Dr. Christian Raetzke 24.04.2018 Berlin

18.09.2018

Navigation im internationalen nuklearen Vertragsrecht Akos Frank LL. M. 25.04.2018 Berlin

Atomrecht – Was Sie wissen müssen RA Dr. Christian Raetzke 12.06.2018 Berlin

3 Energie, Politik und Kommunikation

Schlüsselfaktor Interkulturelle Kompetenz –

International verstehen und verstanden werden

Public Hearing Workshop –

Öffentliche Anhörungen erfolgreich meistern

Kerntechnik und Energiepolitik im gesellschaftlichen Diskurs

– Themen und Formate

Angela Lloyd 26.09.2018 Berlin

Dr. Nikolai A. Behr 16.10. - 17.10.2018 Berlin

N.N. 12.11. - 13.11.2018 Gronau/Lingen

3 Kerntechnik, Rückbau und Strahlenschutz

Export kerntechnischer Produkte und Dienstleistungen –

Chancen und Regularien

In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:

Das neue Strahlenschutzgesetz –

Folgen für Recht und Praxis

Stilllegung, Rückbau und Entsorgung –

Recht und Praxis

RA Kay Höft, M.A.,

RA Olaf L. Kreuzer

RA Dr. Christian Raetzke,

Maria Poetsch

RA Dr. Christian Raetzke,

Dr. Matthias Bauerfeind

20.06. - 21.06.2018 Berlin

05.06. - 06.06.2018 Berlin

24.09. - 25.09.2018 Berlin

3 Nuclear English

Advancing Your Nuclear English (Aufbaukurs) Devika Kataja 11.04. - 12.04.2018 Berlin

10.10. - 11.10.2018

Enhancing Your Nuclear English Devika Kataja 04.07. - 05.07.2018 Berlin

3 Wissenstransfer und Veränderungsmanagement

Erfolgreicher Wissenstransfer in der Kern technik –

Methoden und praktische Anwendung

Veränderungsprozesse gestalten – Heraus forderungen

meistern, Beteiligte gewinnen

Dr. Christien Zedler,

Dr. Tanja-Vera Herking

Dr. Christien Zedler,

Dr. Tanja-Vera Herking

21.03. - 22.03.2018 Berlin

28.11. - 29.11.2018 Berlin

Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30

Kontakt

INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin

Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı seminare@kernenergie.de

Die INFORUM-Seminare können je nach

Inhalt ggf. als Beitrag zur Aktualisierung

der Fachkunde geeignet sein.


atw Vol. 63 (2018) | Issue 3 ı March

142

Issue 3

March

CONTENTS

149

Nuclear Energy

Technologies

for the Arctic

| | Vogtle Unit 3 construction site in Waynesboro, Burke County, Georgia, U.S.A. Two AP1000 reactors are under construction

with an capacity of appr. 1,250 MW (gross) each. Start of operation is scheduled for 2022. (Courtesy: Georgia Power Company)

Editorial

Twilight of the Experts . . . . . . . . . . . . . . . . . 139

Expertendämmerung . . . . . . . . . . . . . . . . . . 140

Abstracts | English . . . . . . . . . . . . . . . . . . . 144

Abstracts | German . . . . . . . . . . . . . . . . . . . 145

Inside Nuclear with NucNet

The Nuclear Option:

Can This Be Africa’s Energy Future? . . . . . . . . . 146

NucNet

154

| | Integrated risk informed decision making.

Calendar . . . . . . . . . . . . . . . . . . . . . . . 148

DAtF Notes. . . . . . . . . . . . . . . . . . . . . .147

Energy Policy, Economy and Law

Russian Nuclear Energy Technologies

for the Development of the Arctic . . . . . . . . . . 149

Andrej Yurjewitsch Gagarinskiy

Spotlight on Nuclear Law

U.S. Regulators Reject Proposal to Subsidize Nuclear

and Coal Power Prices. . . . . . . . . . . . . . . . . . 153

149

Jay R. Kraemer

| | The Russian floating nuclear power plant.

Contents


atw Vol. 63 (2018) | Issue 3 ı March

143

Environment and Safety

The Importance of Integration of Deterministic

and Probabilistic Approaches in the Framework

of Integrated Risk Informed Decision Making

in Nuclear Reactors . . . . . . . . . . . . . . . . . . . 154

CONTENTS

Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia

and Ehsan Zarifi

Applied Reliability Assessment for the Passive

Safety Systems of Nuclear Power Plants (NPPs)

Using System Dynamics (SD) . . . . . . . . . . . . . . 158

168

| | Composition of a TRISO-pebble.

Yun Il Kim and Tae Ho Woo

Zur Rationalität des Deutschen

Kernenergieausstieges . . . . . . . . . . . . . . . . . 178

Wolfgang Stoll

Statistics

Nuclear Power Plants:

2017 atw Compact Statistics . . . . . . . . . . . . . . 182

|158

163

| | Passive systems in NPP’s.

Decommissioning and Waste Management

Studies on the Geometric Influence on Hard

Metal Shavers During Concrete Shaving . . . . . . 163

Untersuchungen zum Geometrieeinfluss

von Hartmetalllamellen beim Betonfräsen . . . . 163

Simone Müller and Sascha Gentes

| Tungsten carbide lamella with variable mass.

Editorial

Country

Location/

Station name

Status Reactor type

Capacity

gross

[MW]

Capacity

net

[MW]

1st

Criticality

[Year]

Argentina

Atucha 1 p D2O-PWR 357 341 1974

Embalse p Candu 648 600 1983

Atucha 2 p D2O-PWR 745 692 2014

CAREM25 P PWR 29 25 (2020)

Armenia

Metsamor 2 p VVER-PWR 408 376 1980

Belarus

Belarusian 1 P VVER-PWR 1 194 1 109 (2019)

Belarusian 2 P VVER-PWR 1 194 1 109 (2021)

Bangladesh

Rooppur 1 [2] P VVER-PWR 1 200 1 080 (2022)

182

KTG Inside . . . . . . . . . . . . . . . . . . . . . . 186

News . . . . . . . . . . . . . . . . . . . . . . . . . 188

Nuclear Today

Could Our Nuclear Vision Benefit

From a Spell of Tesla Magic? . . . . . . . . . . . . . . 202

John Shepherd

Research and Innovation

The Technology of TVHTR-Nuclear- Power

Stations With Pebble Fuel Elements . . . . . . . . . 168

Urban Cleve

Imprint . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

AMNT 2018: Registration Form . . . . . . . . . . . Insert

Contents


atw Vol. 63 (2018) | Issue 3 ı March

144

ABSTRACTS | ENGLISH

The Nuclear Option:

Can this Be Africa’s Energy Future?

NucNet | Page 146

There are worldwide 448 commercial nuclear

reactors in operation today, but only two of them, at

Koeberg, in Africa. Yet if ambitious policymakers

have their way, that could change. For the first time,

many African countries have expressed an interest

in developing nuclear power for peaceful energy

generation. According to the IAEA, more than 30

member states are considering or preparing nuclear

power programmes for the first time, a third of them

in Africa. One thing does seem certain. If Africa

starts to commission new nuclear reactors, China

and Russia, and their affiliated state-run enterprises,

will be at the front of the queue to provide

the technology. Scott Firsing, an international

relations and security expert focusing on foreign

power involvement in Africa, says their interest is

linked to the projection of strategic power and

investment into Africa, but also to secure access to

uranium reserves.

Russian Nuclear Energy Technologies

for the Development of the Arctic

Andrej Yurjewitsch Gagarinskiy | Page 149

Small nuclear facilities have become an integral

part of two important areas of human activities,

namely, they are the basis of nuclear ships and

scientific/educational research reactors that are in

fact the main training facilities for new nuclear

specialists all over the world. However, despite

great and justified expectations of their developers,

small nuclear power plants (SNPPs), with their

obvious advantages (compared to conventional

energy sources) in hardly-accessible areas, have not

yet managed to start playing a notable role in the

power industry. This is also completely true as

concerns the task of using nuclear technologies for

the development of the Arctic, where only the

nuclear ship propulsion can be considered as an

accomplished technology. Russia is the world’s only

country that has civil nuclear ships in operation.

U.S. Regulators Reject Proposal to Subsidize

Nuclear and Coal Power Prices

Jay R. Kraemer | Page 152

On January 8, 2018, the U.S. Federal Energy Regulatory

Commission (“FERC”) unanimously rejected

a rulemaking proposed by Secretary of Energy Rick

Perry designed to enable the owners of coal and

nuclear power plants to charge higher prices for

their output, and thereby to prevent further premature

retirements of such plants. The FERC has

exclusive authority, under the Federal Power Act, to

establish rules for interstate wholesale sales of

electricity. Although the FERC simultaneously initiated

a new proceeding to consider how to enhance

the resilience of electricity supply and delivery in

the U.S., that proceeding seems unlikely to offer

near-term relief to nuclear plants that are approaching

closure due to their inability to compete economically

both with facilities fueled by low-priced

natural gas and with renewable power sources

benefitting from favorable tax provisions. Accordingly,

the American nuclear power industry will

probably have to look elsewhere for relief from its

present dire economic circumstances.

The Importance of Integration of Deterministic

and Probabilistic Approaches in the

Framework of Integrated Risk Informed

Decision Making in Nuclear Reactors

Mohsen Esfandiari, Kamran Sepanloo,

Gholamreza Jahanfarnia and Ehsan Zarifi | Page 154

Analysis of nuclear reactor accidents and transients

are very necessary for prediction of emergency

conditions, being used to control and respond to

extreme conditions. The nuclear accident investigation

and safety analysis have been performed by

either probabilistic or deterministic approaches. In

this paper, the recent investigations on combining

deterministic, probabilistic approaches and integrated

risk informed decision-making (IRIDM) are

reviewed in studying of events and making decisions

in nuclear reactors. Then, the importance of the

combined approaches for more comprehensive integrated

risk informed decisions making are presented.

By combination of both approaches and

using IRIDM, the analysis of nuclear accident can be

more realistic and, contrasting design basis accidents

(DBAs) and beyond design basis accidents

(BDBAs) with high accuracy is possible. Generally,

the IRIDM approach can confidently be used in

assurance of safety of any type of nuclear reactors.

Applied Reliability Assessment for the

Passive Safety Systems of Nuclear Power

Plants (NPPs) Using System Dynamics (SD)

Yun Il Kim and Tae Ho Woo | Page 158

The passive system by the free-fall is investigated in

the accident of nuclear power plants (NPPs). The

complex algorithm of the system dynamics (SD)

modeling is done in the passive cooling system. The

nuclear passive system by free-fall is successfully

modeled for the loss of coolant accident (LOCA).

Conventional passive system of gravity or natural

circulation is working only when the piping systems

is in the good condition. The external coolant

supply system is introduced in the case of the piping

system failure. The water is poured into the reactor

through the guiding piping or tube. If the explosion

happens, the coolants could be showering into the

reactor core and its building. New kind of passive

system is expected successfully in the on-site black

out where the drone could be operated by battery or

engine.

Studies on the Geometric Influence on Hard

Metal Shavers During Concrete Shaving

Simone Müller and Sascha Gentes | Page 163

Minimising contaminated waste is a top priority in

decommissioning projects in the nuclear sector. In

the area of building decontamination, efficient processing

of all affected concrete ceilings, walls and

floors is essential and quickly results in a surface

area of several thousand square metres to be processed.

Decontamination is mainly carried out by

using milling machines, e. g. rotary cultivators.

Within the scope of a research project (BMWI, ZIM,

funding code: KF2286004LL3) the project partners

Karlsruher Institut für Technologie (KIT) and Contec

Maschinenbau & Entwicklungstechnik GmbH

(Alsdorf/Sieg) investigated the influence of the

geometry of the cutting tools on concrete removal.

This article shows results from the test program

conducted at the Institute for Technology and

Management in Construction (TMB) of the KIT,

Department of Deconstruction of Conventional and

Nuclear Structures.

The Technology of TVHTR-Nuclear-Power

Stations With Pebble Fuel Elements

Urban Cleve | Page 168

The German development of TVHTR Power Stations

was primarily initiated through the ideas of Prof. Dr.

R. Schulten. He developed this technology in the

1950's while employed by Brown Boveri. Dr. Schulten

became CTO at the new BBC/Krupp Reaktorbau

GmbH in Mannheim and later as Professor and Director

of KFA-Jülich Nuclear Research Department.

Two HTR nuclear power plants have been build in

Germany, comissioned and success fully operated:

The AVR in Jülich and the THRT-300 in Hamm-

Schmehausen. Well know seawater desalination

plants can be installed, working as distillation process

so as MSF (multi-stage-flash)-plant. The heat

would be supplied by HTR reactors. Additionally the

co-installation of solar plants is possible.

On the Rationality of the

German Nuclear Phase-out

Wolfgang Stoll | Page 178

Our state of mind appears to be in equilibrium when

it is balanced between opportunity and risk. The

relationship between individual expectations of

happiness and risk endured varies greatly depending

on the state of mind of the individual. It is

our understanding of ourselves that manageable

individual risks are more likely to be taken than

risks imposed by external forces. The anti-nuclear

protesters operate skillfully with this superextension

of the term to create general anxiety.

However, the problem is of a general nature. Classical

scientific findings come mainly from the field of

very high probability, which we simply describe as

the causal link between cause and effect. In general,

however, in the advance of our knowledge into ever

more complicated contexts, right down to the

so-called statistical “noise”, the connection between

cause and effect is becoming less and less clear. This

vagueness opens up a great deal of discretion.

Nuclear Power Plants:

2017 atw Compact Statistics

Editorial | Page 182

At the end of the last year 2017, nuclear power

plants were operating in 31 countries worldwide. In

total, 448 nuclear power plants were operating on

the key date. This means that the number declined

slightly by 2 units compared to the previous year’s

number on 31 December 2016. 3 units started

operation, 5 units stopped operation. The installed

nuclear capacity is still high that with 420 GWe

gross. 56 plants in 16 countries were under construction.

In addition, there are about 125 nuclear

power plant units in 25 countries worldwide under

development.

Could Our Nuclear Vision Benefit From

a Spell of Tesla Magic?

John Shepherd | Page 202

As I put the finishing touches to this latest article, US

entrepreneur and boss of the Tesla car giant, Elon

Musk, successfully launched a new rocket, the

Falcon Heavy, from the Kennedy Space Center in

Florida. What this has to do with nuclear today?

Technologically speaking nothing. But think ‘outside

the box’ – as I’m sure many of you have been told in

those corporate management-training classes. The

answer is: ‘vision’. The unabashed vision to be bold,

daring, imaginative. The vision to believe in technology

and to be unafraid to build on the experience

and knowledge gained to date, including the failures,

as we take the next steps forward.

Abstracts | English


atw Vol. 63 (2018) | Issue 3 ı March

Die Option Kernenergie:

Kann das die Energiezukunft Afrikas sein?

NucNet | Seite 146

Heute sind 448 kommerzielle Kernreaktoren weltweit

in Betrieb, aber nur zwei davon, in Koeberg/

Südafrika, in Afrika. Wenn ehrgeizige Politiker ihre

Visionen durchsetzen, könnte sich dies bald ändern.

Zum ersten Mal haben viele afrikanische Länder ihr

Interesse an der friedlichen Entwicklung und

Anwendung der Kernenergie für die Energieerzeugung

deutlich gemacht. Nach Angaben der IAEO erwägen

bzw. bereiten mehr als 30 Mitgliedsstaaten

erstmals Kernenergieprogramme vor, ein Drittel

davon in Afrika. Eines scheint sicher zu sein. Wenn

Afrika beginnt, Kernreaktoren in Betrieb zu

nehmen, werden China und Russland und ihre

angeschlossenen staatlichen Unternehmen an der

Spitze der beteiligten Unternehmen stehen, um die

Technologie bereitzustellen. Scott Firsing, ein

Experte für internationale Beziehungen und Sicherheit,

der sich auf das Engagement ausländischer

Staaten in Afrika konzentriert, sagt, dass ihr Interesse

mit der Projektion strategischer Interessen und

Investitionen in Afrika verbunden ist, aber auch mit

der Sicherung des Zugangs zu Uranreserven.

Russische Kernenergietechnologien

für die Entwicklung der Arktis

Andrej Yurjewitsch Gagarinskiy | Seite 149

Kernkraftwerke im unteren Leistungsbereich sind

zu einem integralen Bestandteil von zwei wichtigen

Bereichen geworden, nämlich als Basis von nuklear

angetriebenen Schiffen und Forschungsreaktoren.

Letztere sind die Hauptausbildungsstätten für neue

Nuklearexperten auf der ganzen Welt sind. Trotz

großer und berechtigter Erwartungen ihrer Entwickler

ist es den kleinen Kernkraftwerken (SMR)

mit ihren offensichtlichen Vorteilen (gegenüber

konventionellen Energieträgern) z. B. in schwer

zugänglichen Gebieten jedoch noch nicht gelungen,

eine nennenswerte Rolle in der Energiewirtschaft

zu spielen. Dies gilt auch für die Aufgabe der

Nutzung von Nukleartechnologien für die Entwicklung

der Arktis, wo nur der nukleare Schiffsantrieb

als geeignete Technologie im Transportsektor

betrachtet werden kann. Russland ist das einzige

Land der Welt, in dem zivile Nuklearschiffe in

Betrieb sind.

US-Regulierungsbehörden lehnen

Vorschlag zur Subventionierung

von Kern- und Kohlekraftwerken ab

Jay R. Kraemer | Seite 152

Am 8. Januar 2018 lehnte die U.S. Federal Energy

Regulatory Commission („FERC“) einstimmig eine

vom Energieminister Rick Perry vorgeschlagene

Regelung ab, die es den Eigentümern von Kohleund

Kernkraftwerken ermöglichen sollte, höhere

Preise für den erzeugten Strom zu verlangen und

damit weitere vorzeitige Stilllegungen solcher

Anlagen zu verhindern. Der FERC hat die ausschließliche

Befugnis, im Rahmen des Bundesgesetzes

über die Energieversorgung Regeln für den

zwischenstaatlichen Großhandelsverkauf von Elektrizität

aufzustellen. Obwohl die FERC gleichzeitig

ein neues Verfahren einleitete, um zu prüfen, wie

die Verlässlichkeit der Stromversorgung und -lieferung

in den USA verbessert werden kann, erscheint

es unwahrscheinlich, dass dieses Verfahren den

Kernkraftwerken, für die eine Stilllegung ansteht,

aufgrund derzeit nicht gegebener wirtschaftlicher

Konkurrenzfähig kurzfristig Entlastungen bietet.

Hintergrund ist der Marktdruck aufgrund preisgünstigem

Erdgas als auch günstigen Steuerregelungen

für Erneuerbare.

Die Bedeutung der Integration von

deterministischen und probabilistischen

Ansätzen im Rahmen der integrierten

risikogerechten Entscheidungsfindung

für Kernreaktoren

Mohsen Esfandiari, Kamran Sepanloo,

Gholamreza Jahanfarnia und Ehsan Zarifi | Seite 154

Die Analyse von Unfällen und Transienten in Kernreaktoren

ist für die Analyse von Notfallbedingungen

sehr wichtig, da sie zur Kontrolle und Reaktion von

extremen Anlagenzuständen eingesetzt wird. Die

Unfalluntersuchung und die Sicherheitsanalyse

werden entweder mit probabilistischen oder deterministischen

Ansätzen durchgeführt. In diesem

Beitrag werden Untersuchungen zur Kombination

deterministischer und probabilistischer Ansätze und

integrierter risikoorientierter Entscheidungsfindung

(IRIDM) bei der Untersuchung von Ereignissen und

der Entscheidungsfindung für Kernreaktoren vorgestellt.

Die Bedeutung der kombinierten Ansätze

für eine umfassendere integrierte risikoorientierte

Entscheidungsfindung wird dargestellt. Durch die

Kombination beider Ansätze und den Einsatz von

IRIDM kann die Analyse von Nuklearunfällen angepasster

durchgeführt werden und es ist möglich,

Störfallszenarien mit hoher Genauigkeit abzuwägen.

Im Allgemeinen kann der IRIDM-Ansatz zum

Nachweis der Sicherheit von Kernreaktoren aller Art

verwendet werden.

Angewandte Zuverlässigkeitsbewertung

für passive Sicherheitssysteme von

Kernkraftwerken (KKW) unter Verwendung

von Systemdynamik (SD)

Yun Il Kim und Tae Ho Woo | Seite 158

Ein passives auf der Schwerkraft basierendes Sicherheitssystem

wird für Unfallszenarien von Kernkraftwerken

untersucht. Der komplexe Algorithmus der

Modellierung der Systemdynamik (SD) erfolgt im

passiven Kühlsystem. Die Eignung des Passivsystems

wird erfolgreich für den Verlust von Kühlmittelunfällen

(LOCA) modelliert. Konventionelle passive

System oder natürliche Zirkulation sind nur dann

zuverlässig, wenn die Rohrleitungssysteme in gutem

Zustand sind. Das externe Kühlmittelversorgungssystem

wird bei Ausfall des Rohrleitungssystems

aktiviert. Das Wasser wird in den Reaktor eingespeist.

Untersuchungen zum Geometrieeinfluss

von Hartmetalllamellen beim Betonfräsen

Simone Müller und Sascha Gentes | Seite 163

Die Minimierung kontaminierter Abfälle ist bei

Rückbauvorhaben im kerntechnischen Bereich von

höchster Priorität. Im Bereich der Gebäudedekontamination

ist hierbei eine effiziente Bearbeitung

aller betroffenen Betondecken, -wände und -böden

unerlässlich und führt schnell zu einer zu bearbeitenden

Fläche von mehreren tausend Quadratmetern.

Die Dekontamination erfolgt überwiegend

durch den Einsatz von Fräsen, z.B. Bodenfräsen. Im

Rahmen eines Forschungsprojektes (BMWI, ZIM,

Förderkennzeichen: KF2286004LL3) untersuchten

die Projektpartner Karlsruher Institut für Technologie

(KIT) und die Contec Maschinenbau &

Entwicklungstechnik GmbH (Alsdorf/Sieg) den

Geometrieeinfluss der Abtragswerkzeuge auf den

Betonabtrag. Dieser Artikel zeigt Ergebnisse aus

dem am Institut für Technologie und Management

im Baubetrieb (TMB) des KIT, Abteilung Rückbau

konventioneller und kerntechnischer Bauwerke

durchgeführten Versuchsprogramms.

Die Technologie der TVHTR-Kernkraftwerke

mit Kieselstein-Brennelementen

Urban Cleve | Seite 168

Die deutsche Entwicklung der HTR-Kraftwerke

wurde in erster Linie durch die Ideen von Prof. Dr.

R. Schulten initiiert. Er entwickelte diese Technologie

in den 1950er Jahrenbei Brown Boveri

beschäftigt war. Zwei HTR-Kernkraftwerke wurden

in Deutschland gebaut, in Betrieb genommen und

erfolgreich betrieben: Der AVR in Jülich und der

THRT-300 in Hamm-Schmehausen. HTR-Anlagen

sind geeignet, Energie für Meerwasserentsalzungsanlagen

bereit zu stellen, die mit dem Destillationsverfahren

oder als MSF (Multi-Stage-Flash)-Anlage

ausgeführt sind. Zusätzlich ist z.B. die Mitnutzung

von Solaranlagen möglich.

Zur Rationalität des

Deutschen Kernenergieausstieges

Wolfgang Stoll | Seite 178

Unsere Befindlichkeit erscheint dann im Gleichgewicht,

wenn sie sich zwischen Chance und Risiko

einpendelt. Dabei ist das Verhältnis zwischen individuellen

Glückserwartungen und ertragenem Risiko

je nach dem Gemütszustand des Einzelnen sehr verschieden.

Es liegt in unserem Selbstverständnis,

dass überschaubare individuelle Risiken eher eingegangen

werden als von außen unsteuerbar aufgezwungene.

Die Kernenergiegegner operieren zur

allgemeinen Angstmache geschickt mit dieser

Begriffsüberdehnung. Das Problem ist aber von

ganz allgemeiner Natur. Klassische wissenschaftliche

Erkenntnisse kommen überwiegend aus dem

Bereich der sehr hohen Wahrscheinlichkeit, die wir

vereinfacht als kausale Verknüpfung von Ursache

und Wirkung kennzeichnen. Ganz allgemein wird

aber im Vordringen unseren Wissens in immer

kompliziertere Zusammenhänge bis in das so

genannte statistische „Rauschen“ der Zusammenhang

von Ursache und Wirkung immer weniger

eindeutig. Diese Unschärfe eröffnet einen großen

Ermessensspielraum.

Kernkraftwerke: 2017 atw Kompaktstatistik

Editorial | Seite 182

Ende 2017 waren Kernkraftwerke in 31 Ländern

weltweit in Betrieb. Zum Stichtag waren 448 Kernkraftwerke

in Betrieb. Die Zahl hat sich im Vergleich

zum Vorjahresstichtag um 2 Blöcke verringert.

3 Kernkraftwerksblöcke haben den Betrieb aufgenommen,

5 Blöcke wurden stillgelegt. Die installierte

Kernkraftkapazität ist weiterhin auf sehr

hohem Niveau mit 420 GWe brutto. 56 Anlagen in

16 Ländern befanden sich in Bau. Darüber hinaus

befinden sich weltweit rund 125 Kernkraftwerksblöcke

in 25 Ländern in der Entwicklung.

Könnte unsere nukleare Vision von einem

Zauber der Tesla-Magie profitieren?

John Shepherd | Seite 202

Als ich diesem neuesten Artikel den letzten Schliff

gab, startete der US-Unternehmer und Chef des Tesla-Autoherstellers

Elon Musk erfolgreich eine neue

Rakete. Was hat das mit der Kernenergie zu tun?

Technologisch gesehen nichts. Aber denken Sie

über den Tellerrand hinaus – viele von Ihnen haben

in Corporate Management-Trainingskursen davon

erfahren haben. Die Antwort lautet:“Vision“. Die

Vision, kühn, gewagt und fantasievoll zu sein. Die

Vision, an die Technologie zu glauben und sich

nicht zu scheuen, auf den bisherigen Erfahrungen

und Kenntnissen aufzubauen, einschließlich der

Misserfolge, wenn die nächsten Schritte nach vorn

gemacht werden.

145

ABSTRACTS | GERMAN

Abstracts | German


atw Vol. 63 (2018) | Issue 3 ı March

146

INSIDE NUCLEAR WITH NUCNET

* Egypt, Ghana,

Kenya, Morocco,

Niger, Nigeria,

South Africa, Sudan,

Tunisia and Uganda

The Nuclear Option:

Can This Be Africa’s Energy Future?

NucNet

Uranium first left Africa’s shores for wealthier nations in the 1940s, when the U.S. shipped 30,000 tonnes

of it from the Shinkolobwe mine in Katanga province in the Democratic Republic of Congo to be used in the

first atomic bombs. In return, the U.S. helped the DRC build Africa’s first nuclear reactor – a research unit at

the University of Kinshasa – in 1958.

Niger began mining uranium in 1971, with all the output

going to French nuclear reactors. Around 19 % of the

world’s uranium reserves are held by three African nations:

Niger, Namibia, and South Africa. In 2015, the International

Atomic Energy Agency (IAEA) began a project to

increase and improve the current capacity of member

states in Africa for “optimising production, implementation

of good practices and overall effective management of

the region’s natural uranium endowment”.

And yet while the rest of the world used Africa’s uranium

resources to embrace nuclear technology, South Africa was

the only country on the continent to develop domestic

nuclear energy generation, with its Koeberg nuclear station

beginning commercial operation in the mid-1980s.

There are 448 commercial nuclear reactors in operation

today, but only two of them, at Koeberg, in Africa. Yet if

ambitious policymakers have their way, that could change.

For the first time, many African countries have expressed

an interest in developing nuclear power for peaceful

energy generation. According to the IAEA, more than 30

member states are considering or preparing nuclear power

programmes for the first time, a third of them in Africa.

In January 2017, the IAEA conducted an eight-day

review of Ghana’s nuclear programme, following similar

reviews in South Africa, Nigeria and Kenya. The rest of the

continent is enthusiastic – some 150 officials from 35

African countries gathered under the IAEA in Kenya in

April 2015 to chart a way forward. Ten African countries*

formed the African Network for Enhancing Nuclear Power

Programme Development. The network intends to build and

strengthen national and regional capacity for planning,

developing and managing the infrastructure for new and

expanding nuclear power programmes.

For Africa, the driving factor behind plans for new

nuclear is evident. The continent’s inability to generate

enough electricity continues to hamper economic growth,

cutting 2 to 4 % off GDP every year, according to the Africa

Progress Panel. The panel estimates that some 600 million

people on the continent do not have access to electricity, a

figure that will require $ 55 bn per year in investment by

2030 to fix.

The IAEA says that in sub-Saharan Africa, only about a

third of the population have access to electricity and the

number of people without access is on the rise. This

presents a significant barrier to economic and social

development and so governments across the continent are

seeking ways to improve their existing energy infrastructure,

and develop new or diverse energy sources that

are reliable, affordable and sustainable.

Against this backdrop, nuclear technology has acquired

a reputation among policymakers as a cost-effective and

environmentally friendly fix. “Nuclear power is considered

a prominent alternative and a more environmentally

beneficial solution since it emits far less greenhouse gases

during electricity generation than coal or other traditional

power plants,” Ogbonnaya Onu, Nigeria’s Minister of

Science and Technology, told local media in December

2017. “It is a manageable source of generating electricity

and has large power-generating capacity that can meet

industrial and city needs.”

Yet not all are so enamoured with Africa’s nuclear plans.

Opponents point to the high upfront costs of nuclear power

stations, the security and safety issues of hosting plants in

volatile countries, and the technological and political

improvement that will be required to bring legislative and

regulatory systems up to date.

Nigeria is typical. Africa’s most populous country has

decided to include nuclear power in its energy mix to meet

an increasing demand for electricity and support economic

development. The country has been developing its nuclear

power infrastructure for several years.

But last year the IAEA said Nigeria’s nuclear regulator

faces challenges related to its independence and in

developing the skills to carry out regulatory activities.

Nigeria’s government needs to ensure that the Nigerian

Nuclear Regulatory Authority is independent and

functionally separate from organisations that could

influence its decision-making. The IAEA highlighted the

fact that Nigeria has no national policy on safety that

is in line with global safety standards.

Charles Adesanmi, retired former director of Nigeria’s

Nuclear Technology Centre, believes there are two issues

that are inhibiting Africa’s use of nuclear energy for

electricity: cost and public opinion.

He said: “First of all, anything that has to do with power

generation requires a lot of money. If we are unable to

adequately fund hydro, solar, coal, gas, how can we be

talking of funding nuclear which is more expensive?”

The issue of cost is the big one. South Africa’s

state-owned utility Eskom has given itself the internal

target that for new nuclear to make sense, the levelised

cost of electricity (LCOE) from the project must be

between $ 60 and $ 80 per MWh for the first two reactor

units.

The IAEA has put the LCOE for the construction of new

nuclear power plants in a range from $ 40 to $ 100 per

MWh. It says there is “significant overlap” in the range of

the average LCOE produced by various energy technologies,

but despite its significant up-front costs nuclear is

competitive. (LCOE is the long-term price at which the

electricity produced by a power plant will have to be sold at

for the investor to cover all their costs).

Opponents to new nuclear in South Africa say the

procurement deal would be the largest in the country’s

history at an estimated $ 77 bn (€ 72 bn). The government,

which has said it wants to generate 9,600 MW of energy

from as many as eight reactors, has put the total cost at

anything from $ 37 bn (€ 34.8 bn) to $ 100 bn (€ 94 bn).

Inside Nuclear with NucNet

The Nuclear Option: Can This Be Africa’s Energy Future? ı NucNet


DAtF DTL-Poster 2018-01 297x420v4.indd 1 23.02.18 11:10

atw Vol. 63 (2018) | Issue 3 ı March

Critics argue that this is too much to spend for a country

where the economy is fragile and political turbulence is

worrying investors. The counterargument is that the LCOE

for other forms of energy is in the same range as nuclear

and that South Africa is already losing money through

power outages and slowed industrial growth. Eskom

published figures last year claiming a net loss to the

economy of around $ 700 m in 2016 as a result of its

renewable power purchases from producers.

“If these [nuclear plants] are not built, instability of

electricity supply and rising prices will slow economic

growth, and this will come with increasing poverty and

political instability,” says Rob Jeffrey, an independent

energy economist.

While Eskom has commissioned dozens of private

renewable projects to provide wind, solar and other forms

of energy, these will never provide enough electricity,

Mr ,Jeffrey says. “Wind only supplies electricity at best on

average 34 % of the time. It is highly variable, unreliable

and unpredictable. Solar is only available to generate

electricity on average 26 % of the time.

For Africa’s only true industrial economy, the outages

have been devastating. In just one quarter during 2015

when power cuts were at their height, the South African

economy contracted 14 %, according to Bloomberg.

From debates around the upfront costs of three new

plants to media claims of foreign influence over the bidding

process, the battle to expand South Africa’s industry is

likely to offer lessons for countries across the continent.

“Nuclear in the long term has low costs as you amortise

the plant,” Phumzile Tshelane, chief executive of the

government-owned South African Nuclear Energy Corporation

(NECSA), told African Business. “If African countries

are going to leapfrog to much more profitable economic

development, they will have to choose sources of energy

that are relatively cheap in the long term. I believe that

when you look at the lifecycle costs, nuclear is cheaper.”

One thing does seem certain. If Africa starts to commission

new nuclear reactors, China and Russia, and their

affiliated state-run enterprises, will be at the front of the

queue to provide the technology. Scott Firsing, an international

relations and security expert focusing on foreign

power involvement in Africa, says their interest is linked to

the projection of strategic power and investment into

Africa, but also to secure access to uranium reserves.

“Together, China and Russia are leading the drive for

global energy security. At the same time they are solidifying

their overall political and trade relationships with African

countries and their leaders.”

Author

NucNet

The Independent Global Nuclear News Agency

Editor responsible for this story: David Dalton

Editor in Chief, NucNet

Avenue des Arts 56

1000 Brussels, Belgium

www.nucnet.org

DATF EDITORIAL NOTES

147

New Poster

Notes

Nuclear Energy in Germany

The DAtF has published the new poster Nuclear Energy in Germany

| Status: February 2018. This poster is not just an update to the

January 2017 edition of Nuclear Power in Germany concerning the

status of NPPs, waste disposal and of selected interim storage

facilities but is a new product consolidating other maps into one.

The poster now features research reactors, a more comprehensive

overview on interim storage and conditioning facilities and state

collection centers for radioactive waste from medicine, research and

industry.

3 It can be downloaded and ordered at kernenergie.de.

Kernenergie in Deutschland

Nuclear Energy in Germany

SCHLESWIG- Kiel

HOLSTEIN

Brunsbüttel

Greifswald/ C C D

C

Rubenow

Brokdorf C

MECKLENBURG-

HAMBURG Schwerin VORPOMMERN

Krümmel

C

Stade

Geesthacht

Unterweser

D

BREMEN

Gorleben

Rheinsberg

Munster C C D E

1)

Emsland

NIEDERSACHSEN

A C

Berlin

Leese

BERLIN

Lingen

Hannover Braunschweig

D

Potsdam

Grohnde

E Morsleben

A D Gronau

Asse E

Magdeburg

C

BRANDENBURG

Konrad

C

E

Ahaus

2)

SACHSEN-ANHALT

Hamm-

Würgassen

Krefeld

Uentrop

D

NORDRHEIN-

Düsseldorf WESTFALEN

Jülich

THÜRINGEN

Dresden

C D

SACHSEN

Dresden

3)

HESSEN

Erfurt

D

Ebsdorfergrund

Mülheim-

Hanau

Kärlich

A Großwelzheim

Wiesbaden

Ellweiler

Kahl

Mainz

D

C

Mainz

C

Biblis

Karlstein Grafenrheinfeld

C

Mitterteich

RHEINLAND-

SAARLAND PFALZ

Elm-Derlen

Obrigheim

BAYERN

Saarbrücken

C Neckarwestheim

Philippsburg

C

B C D

Niederaichbach

Karlsruhe Stuttgart

C

Isar

C D

BADEN-

Gundremmingen

Garching

WÜRTTEMBERG

Neuherberg

München

KKW in Betrieb Leistung Betriebsbeginn

brutto (kommerziell)

NPP in operation

Rated Start of

capacity commercial

gross operation

(MWe)

Brokdorf 1.480 1986

Emsland 1.406 1988

Grohnde 1.430 1985

Gundremmingen C 1.344 1985

Isar 2 1.485 1988

Neckarwestheim II 1.400 1989

Philippsburg 2 1.468 1985

Gesamt ı Total 10.013

Stand: Februar 2018 ı Status: February 2018

In Deutschland sind 7 Kernkraftwerke mit einer

Leistung von insgesamt 10.013 MWe (brutto)

in Betrieb.

In Germany 7 nuclear power plants are in operation

with a total installed capacity of 10,013 MWe (gross).

For further details

please contact:

Nicolas Wendler

DAtF

Robert-Koch-Platz 4

10115 Berlin

Germany

E-mail: presse@

kernenergie.de

www.kernenergie.de

Kernkraftwerk

Nuclear

power plant

Forschungsreaktor

Research

reactor

A

Kernbrennstoffversorgung

Nuclear fuel

supply facility

B

Wiederaufarbeitungsanlage

Reprocessing

plant

C

Zwischenlager

Interim storage

facility

D

Konditionierung

Conditioning

E

Endlager

Final

repository

• Landessammelstelle

Federal state

collection centers

In Betrieb

In operation

Abgeschaltet/

Stilllegung

End of operation/

Decommissioning

Rückbau

Dismantling

«Grüne Wiese»

Greenfield site

Errichtung

Construction

Bergwerk in Erkundung

(seit 2013 eingestellt)

Exploration mine

(discontinued since 2013)

1) Pilot-Konditionierungsanlage ı Pilot conditioning plant

2) Bereitstellung Mitte der 2020er-Jahre ı Operational by the mid 2020s

3) AVR-Behälterlager ı AVR flask store

info@

www. kernenergie.de

DAtF Notes


atw Vol. 63 (2018) | Issue 3 ı March

148

Calendar

2018

CALENDAR

04.03.-09.03.2018

82. Jahrestagung der DPG. Erlangen, Germany,

Deutsche Physikalische Gesellschaft (DPG),

www.dpg-physik.de

11.03.-17.03.2018

International Youth Nuclear Congress (IYNC).

Bariloche, Argentina, IYNC and WiN Global,

www.iync.org/category/iync2018/

26.03.-27.03.2018

Fusion energy using tokamaks: can development

be accelerated? London, United Kingdom,

The Royal Society, royalsociety.org

08.04.-11.04.2018

International Congress on Advances in Nuclear

Power Plants – ICAPP 18. Charlotte, NC, USA,

American Nuclear Society (ANS), www.ans.org

08.04.-13.04.2018

11 th International Conference on Methods and

Applications of Radioanalytical Chemistry –

MARC XI. Kailua-Kona, HI, USA, American Nuclear

Society (ANS), www.ans.org

16.04.-19.04.2018

Einführung in die Kerntechnik. Mannheim,

Germany, TÜV SÜD, nucleartraining@tuev-sued.de

16.04.-17.04.2018

VdTÜV Forum Kerntechnik – Sicherheit im Fokus.

Berlin, Germany, VdTÜV mit Unterstützung des

TÜV NORD, des TÜV SÜD und des TÜV Rheinland,

www.tuev-sued.de/tagungen

17.04.-19.04.2018

World Nuclear Fuel Cycle 2018. Madrid, Spain,

World Nuclear Association (WNA),

www.world-nuclear.org

18.04.-19.04.2018

9. Symposium zur Endlagerung radioaktiver

Abfälle. Vorbereitung auf KONRAD – Wege zum

G2-Gebinde. Hanover, Germany, TÜV NORD

Akademie, www.tuev-nord.de/tk-era

22.04.-26.04.2018

Reactor Physics Paving the Way Towards More

Efficient Systems – PHYSOR 2018. Cancun, Mexico,

www.physor2018.mx

08.05.-10.05.2018

29 th Conference of the Nuclear Societies in Israel.

Herzliya, Israel. Israel Nuclear Society and Israel

Society for Radiation Protection, ins-conference.com

13.05.-19.05.2018

BEPU-2018 – ANS International Conference on

Best-Estimate Plus Uncertainties Methods. Lucca,

Italy, NINE – Nuclear and INdustrial Engineering S.r.l.,

ANS, IAEA, NEA, www.nineeng.com/bepu/

13.05.-18.05.2018

RadChem 2018 – 18 th Radiochemical Conference.

Marianske Lazne, Czech Republic, www.radchem.cz

14.05.-16.05.2018

ATOMEXPO 2018. Sochi, Russia, atomexpo.ru

15.05.-17.05.2018

11 th International Conference on the Transport,

Storage, and Disposal of Radioactive Materials.

London, United Kingdom, Nuclear Institute,

www.nuclearinst.com

20.05.-23.05.2018

5 th Asian and Oceanic IRPA Regional Congress

on Radiation Protection – AOCRP5. Melbourne,

Australia, Australian Radiation Protection Society

(ARPS) and International Radiation Protection

Association (IRPA), www.aocrp-5.org

29.05.-30.05.2018

49 th Annual Meeting on Nuclear Technology

AMNT 2018 | 49. Jahrestagung Kerntechnik.

Berlin, Germany, DAtF and KTG,

www.nucleartech-meeting.com

03.06.-07.06.2018

38 th CNS Annual Conference and 42 nd CNS-CNA

Student Conference. Saskotoon, SK, Canada,

Candian Nuclear Society CNS, www.cns-snc.ca

03.06.-06.06.2018

HND2018 12 th International Conference of the

Croatian Nuclear Society. Zadar, Croatia, Croatian

Nuclear Society, www.nuklearno-drustvo.hr

04.06.-07.06.2018

10 th Symposium on CBRNE Threats. Rovaniemi,

Finland, Finnish Nuclear Society, ats-fns.fi

04.06.-08.06.2018

5 th European IRPA Congress – Encouraging

Sustainability in Radiation Protection. The Hague,

The Netherlands, Dutch Society for Radiation

Protection (NVS), local organiser, irpa2018europe.com

06.06.-08.06.2018

2 nd Workshop on Safety of Extended Dry Storage

of Spent Nuclear Fuel. Garching near Munich,

Germany, GRS, www.grs.de

25.06.-26.06.2018

index2018 – International Nuclear Digital

Experience. Paris, France, Société Française d’Energie

Nucléaire, www.sfen.org, www.sfen-index2018.org

27.06.-29.06.2018

EEM – 2018 15 th International Conference on the

European Energy Market. Lodz, Poland, Lodz

University of Technology, Institute of Electrical Power

Engineering, Association of Polish Electrical

Engineers (SEP), www.eem18.eu

29.07.-02.08.2018

International Nuclear Physics Conference 2019.

Glasgow, United Kingdom, www.iop.org

05.08.-08.08.2018

Utility Working Conference and Vendor

Technology Expo. Amelia Island, FL, USA, American

Nuclear Society (ANS), www.ans.org

22.08.-31.08.2018

Frédéric Joliot/Otto Hahn (FJOH) Summer School

FJOH-2018 – Maximizing the Benefits of

Experiments for the Simulation, Design and

Analysis of Reactors. Aix-en-Provence, France,

Nuclear Energy Division of Commissariat à l’énergie

atomique et aux énergies alternatives (CEA) and Karlsruher

Institut für Technologie (KIT), www.fjohss.eu

28.08.-31.08.2018

TINCE 2018 – Technological Innovations in

Nuclear Civil Engineering. Paris Saclay, France,

Société Française d’Energie Nucléaire, www.sfen.org,

www.sfen-tince2018.org

05.09.-07.09.2018

World Nuclear Association Symposium 2018.

London, United Kingdom, World Nuclear Association

(WNA), www.world-nuclear.org

09.09.-14.09.2018

21 st International Conference on Water Chemistry

in Nuclear Reactor Systems. San Francisco, CA, USA,

EPRI – Electric Power Research Institute, www.epri.com

10.09.-13.09.2018

Nuclear Energy in New Europe – NENE 2018.

Portoroz, Slovenia, Nuclear Society of Slovenia,

www.nss.si/nene2018/

17.09.-21.09.2018

62 nd IAEA General Conference. Vienna, Austria.

International Atomic Energy Agency (IAEA),

www.iaea.org

17.09.-20.09.2018

FONTEVRAUD 9. Avignon, France,

Société Française d’Energie Nucléaire (SFEN),

www.sfen-fontevraud9.org

17.09.-19.09.2018

4 th International Conference on Physics and

Technology of Reactors and Applications –

PHYTRA4. Marrakech, Morocco, Moroccan

Association for Nuclear Engineering and Reactor

Technology (GMTR), National Center for Energy,

Sciences and Nuclear Techniques (CNESTEN) and

Moroccan Agency for Nuclear and Radiological

Safety and Security (AMSSNuR), phytra4.gmtr.ma

30.09.-04.10.2018

TopFuel 2018. Prague, Czech Republic, European

Nuclear Society (ENS), American Nuclear Society

(ANS). Atomic Energy Society of Japan, Chinese

Nuclear Society and Korean Nuclear Society,

www.euronuclear.org

02.10.-04.10.2018

7 th EU Nuclear Power Plant Simulation ENPPS

Forum. Birmingham, United Kingdom,

Nuclear Training & Simulation Group,

www.enpps.tech

14.10.-18.10.2018

12 th International Topical Meeting on Nuclear

Reactor Thermal-Hydraulics, Operation and

Safety – NUTHOS-12. Qingdao, China, Elsevier,

www.nuthos-12.org

14.10.-18.10.2018

NuMat 2018. Seattle, United States,

www.elsevier.com

16.10.-17.10.2018

4 th GIF Symposium at the 8 th edition of Atoms

for the Future. Paris, France,

www.gen-4.org

22.10.-24.10.2018

DEM 2018 Dismantling Challenges: Industrial

Reality, Prospects and Feedback Experience. Paris

Saclay, France, Société Française d’Energie Nucléaire,

www.sfen.org, www.sfen-dem2018.org

22.10.-26.10.2018

NUWCEM 2018 Cement-based Materials for

Nuclear Waste. Avignon, France, French

Commission for Atomic and Alternative Energies

and Société Française d’Energie Nucléaire,

www.sfen-nuwcem2018.org

24.10.-25.10.2018

Chemistry in Power Plant. Magdeburg, Germany,

VGB PowerTech e.V., www.vgb.org

05.11.-08.11.2018

International Conference on Nuclear Decommissioning

– ICOND 2018. Aachen, Eurogress,

Germany, achen Institute for Nuclear Training GmbH,

www.icond.de

Calendar


atw Vol. 63 (2018) | Issue 3 ı March

Russian Nuclear Energy Technologies

for the Development of the Arctic

Andrej Yurjewitsch Gagarinskiy

Small nuclear facilities have become an integral part of two important areas of human activities, namely, they are the

basis of nuclear ships and scientific/educational research reactors that are in fact the main training facilities for new

nuclear specialists all over the world. However, despite great and justified expectations of their developers, small

nuclear power plants (SNPPs), with their obvious advantages (compared to conventional energy sources) in hardlyaccessible

areas, have not yet managed to start playing a notable role in the power industry.

This is also completely true as concerns the task of using

nuclear technologies for the development of the Arctic,

where only the nuclear ship propulsion can be considered

as an accomplished technology [1].

1 Civil nuclear ships

Russia is the world’s only country that has civil nuclear

ships in operation. Nuclear shipbuilding experience of

other countries (Savannah, 1962–1979, USA; Otto Hahn,

1968–1980, FRG; and Mutsu, 1974 –1991, Japan) was

relatively brief. Plans to construct nuclear icebreakers

repeatedly declared by countries such as USA, Canada,

Argentina and China are still just intentions.

Table 1 presents both the past (starting from the

world’s first nuclear icebreaker Lenin) and the present of

Russia’s civil nuclear fleet, which is intended exclusively

for the development of the country’s Arctic regions.

Currently the Russian civil nuclear shipbuilding is

resurging. To timely replace the existing icebreakers to

enable reliable continuous navigation and year-round

delivery of goods via the Northern Sea Route, the

government in the summer of 2011 has decided to build

and launch three universal nuclear icebreakers: the pilot

one in 2017 and two serial ones in 2019 and 2020,

respectively. The pilot icebreaker’s keel was laid at the

Baltic Plant in 2013.

The Iceberg Design Bureau has developed a detailed

design of a nuclear icebreaker with improved icebreaking

capability and variable draught (from 10.5 m in deep

waters to 8.5 m in shallow ones). This variable draught

would allow this icebreaker to operate not only in Arctic

seas, but also in the mouths of northern rivers. The new

nuclear facility – RITM-200 – developed by OKBM

Afrikantov for this icebreaker includes two integral PWRs

of 175 MWth each; its lifetime makes up to 40 years and its

period of continuous operation is 26,000 hours.

Icebreaker parameters are: displacement – 23,000 t;

length – 172.2 m, width – 33 m, height – 15 m, speed – 22

knots. This ship – that would allow for up to 6 months of

independent sailing – is intended for operation in the

Western Arctic (Barents Sea, Pechora Sea, Kara Sea, mouth

of the Yenissei and the Ob Bay region). This pilot icebreaker

Arktika (Figure 1), already afloat, is currently

under construction at the Baltic Plant, as well as two serial

icebreakers of the same design, Sibir (Arktika’s successor

on the berth) and Ural (keel laid). As by late 2017, their

commissioning was expected between 2019 and 2021.

| | Fig. 1.

Launching of the new Arktika, 2016.

Revised version of a

paper presented at

the Annual Meeting

of Nuclear Technology

(AMNT 2017), Berlin.

149

ENERGY POLICY, ECONOMY AND LAW

Ship Year of commissioning Power facility Current status

Lenin 1959 2 OK-900 reactors,

32.4 MW (44,000 hp)

Arktika 1975 2 reactors,

55 MW (75,000 hp)

Decommissioned in 1989

Museum since 2010

Decommissioned in 2008

Sibir 1977 same Decommissioned in 1992

Sent for disposal in 2016

Rossiya 1985 same Decommissioned in 2013

Sovetsky Soyuz 1989 same Decommissioned in 2010

Restoration being considered

Yamal 1989 2 OK-900A reactors In operation

Taymyr 1989 KLT-40 reactor,

36.8 MW (50,000 hp.)

In operation

Vaygach 1990 same In operation

50 Let Pobedy 2007 2 reactors,

55 MW (75,000 hp)

In operation

Sevmorput (LASH) 1988 29.4 MW (39,000 hp) In operation

(restored in 2013–2015

| | Tab. 1.

Russian civil nuclear fleet.

Energy Policy, Economy and Law

Russian Nuclear Energy Technologies for the Development of the Arctic ı Andrej Yurjewitsch Gagarinskiy


atw Vol. 63 (2018) | Issue 3 ı March

ENERGY POLICY, ECONOMY AND LAW 150

Renovation of the country’s icebreaker fleet will

continue. Currently another icebreaker, Leader, is being

developed. This ship would enable year-round navigation

of ships with up to 100,000 t deadweight and up to

50-m-wide hull over the whole Northern Sea Route. This

would be a huge ship over 200 m long and about 40 m

wide. Its capacity – 120 MW – would be unprecedented for

icebreakers (though such military ships and passenger

liners do exist). Russia already has an engineering design

ready for the Leader. Negotiations are currently underway

to identify its manufacturer plant and construction

schedule. Powerful icebreaker fleet became increasingly

demanded following the start of the Yamal-LNG Project

that “opened new horizons for our national economy”,

according to President Putin.

2 Nuclear power plants for the Arctic

As concerns nuclear energy for hardly-accessible areas,

decades of RD&D have not yet yielded any significant

advancement of nuclear sources in this seemingly obvious

consumption sector.

Initially, all works related to the development of both

stationary and transportable SNPPs were concentrated in

the USA and the USSR.

At the very beginning of 1950ies, the United States have

for the first time started to pay serious attention to SNPPs,

exclusively because of their army’s interest. Such SNPPs

(with capacities ranging from 0.3 to 3 MW) intended as

energy sources for remote military bases have been

deployed in Alaska, Greenland and even the Antarctic, but

in the sixties all of them have been shut down. In 1968, the

United States have installed a floating NPP – MH-1A

Sturgis (10 MW) – in a lake near the Panama Canal. It has

operated for 8 years (Figure 2)

operation since 1974, but the concept of building small

stationary NPPs similarly to large ones was abandoned.

Rosenergoatom Concern (the Russian nuclear generating

company) considers this NPP, with its low efficiency and

too many workers required per power capita, rather as an

encumbrance than as a prototype for the future.

The global situation with SNPPs is quite similar. The

IAEA small- & medium-sized reactor (SMR) database [2]

(IAEA: International Atomic Energy Agency) contains

information on dozens of designs – but virtually all of them

are still paper designs at various stages of development.

There are still no market signals to confirm enthusiastic

forecasts of some experts and companies (such as, e.g., the

U.S. NuScale Power) who predict good commercial future

for SMRs. Only the 25-MWe CAREM (that demonstrates

obvious features of a prototype ship reactor) and pilot

high-temperature reactors are currently under construction

in Argentina (since 2014) and China (since 2012 –

two-module Shidao-Bay-1), respectively.

| | Fig. 3.

Finally the FNPP construction is nearing completion.

| | Fig. 2.

Mobile and transportable NPPs.

As for the Soviet Union, it has launched its strategic

R&D on small reactors in the middle of 1950ies. In October

1956, a governmental decision on SNPP deployment has

been adopted.

Figure 2 presents some interesting designs (TES-3,

PAMIR, ARBUS) that have achieved the implementation

stage. However, all these facilities were demonstrationonly.

The only exclusion is the Bilibino NPP with its four

12 MWe water-graphite reactor units. The plant is in

In 1990ies, Russia has adopted a long-ranging decision

of principle: to build a floating NPP (FNPP) to demonstrate

the advantages the nuclear energy offers for remote

isolated regions. This NPP was to be barge-based, factorybuilt

and returned to the special site for every refueling

and repairs [3]. KLT-40, a nuclear icebreaker reactor

with proven high reliability and safety, was chosen for

installation at this FNPP. After its start in 2007, the FNPP

construction went on with great difficulties – it has

survived not only the change of the manufacturer plant

and multiple changes of the first operating site

( Severodvinsk, Vilyuchinsk, Pevek), but also what was

maybe the worst – on-the-go redesign to allow for use of

low-enriched fuel. In 2016, the FNPP – Akademik

Lomonosov – achieved the stage of dock trials (Figure 3).

Unfortunately, this redesign reduced the capacity and

hence the refueling interval (to 2–3 years) of the FNPP, so

that it had to be equipped with refueling equipment and

spent fuel storage. This contradicts with the key conceptual

requirement, which inhibits any onboard operations

with fuel for future floating NPPs. So today the developers

are facing the task to extend the refueling interval of future

floating NPPs to 10–12 years.

This task is becoming increasingly important with the

latest incentives intended to solve the energy supply issue

in the Russian Arctic – and pertinent to the strategic issue

of supplies to hardly accessible areas and, prima facie, to

the “Arctic vector” of the Russian energy industry [4].

Below follows the opinion of Mikhail Kovalvchuk,

President of the Kurchatov Institute: “In recent years, the

development of Arctic areas became a strategic priority for

Energy Policy, Economy and Law

Russian Nuclear Energy Technologies for the Development of the Arctic ı Andrej Yurjewitsch Gagarinskiy


atw Vol. 63 (2018) | Issue 3 ı March

Design Refueling interval, years Lifetime, years Development stage

ABV-6 10–12 50 – Pilot reactor and NPP unit Volnolom – detailed design (1993)

– FNPP for the Far North – feasibility study

– Nuclear co-generation plant for Kazakstan – feasibility study

– Pilot bench – in operation

KLT-40S 2.5–3 40* – Equipment for two reactors – supplied to the

FNPP Akademik Lomonosov

RITM-200 4.5–5 40* – Two reactors for the pilot universal icebreaker – preparation

for complete shipment (2016)

– Reactors for the next two icebreakers – scheduled supply

in 2018 and 2019, respectively

VBER-300 1.5–2 60 – NPP with two VBER-300 units – quotation (2002)

– VBER-300 reactor facility – conceptual design (2004)

– VBER-300 units for Kazakhstan – detailed design (2007–2009)

VBER-600 1.5–2 60 – 100 – 600 MW capacity range – concept (2007–2008)

– NPP with VBER-460/600 – R&D (2008–2012)

* – allows for extension to 60 years

| | Tab. 2.

SMR designs under development.

our country. President of the Russian Federation has approved

the “Fundamentals of the Russian State Policy in

the Arctic to 2020 and beyond” (2008) and the “Strategy of

the Russian Arctic Zone Development and National

Security Assurance to 2020” (2013). The following aspects

of the tasks to be solved should be emphasized: first, a

state-of-the-art computerized energy infrastructure should

be an integral part of the comprehensive socioeconomic

development of the Arctic. Second, many large-scale oil/

gas and other projects are now underway in the Arctic.

Third, long distances between – and unreliable energy

supplies to – local communities are a specific feature of the

Russian Arctic. Local conditions require a distributed

energy supply system, which should account for both

extreme operating conditions. On the whole, the Arctic

energy supply system consists of onshore and offshore

components. The latter are based on the practical

experience of efficient application of Russian shipbuilding

technologies…”

Indeed, Russian nuclear designers are experienced in

developing and operating ship reactors, both for the Navy

and for the civil fleet. Table 2 [5] lists the designs produced

by OKBM Afrikantov, the country’s leading developer of

small and medium reactors (6 – 600 MW).

Another well-known RD&D institute, NIKIET, has

developed a family of SNPPs with capacities ranging from

1 to 20 MWe, including facilities such as Shelf and Uniterm

of about 6 MWe each [6].

Developers of conventional stationary reactors also do

not lose hope to join the competition for entering the

future SNPP market. For example, VVER developers are

already offering an integral facility (VVER-I) of 100, 200

and 300 MW. This design is based on the natural circulation

of coolant, so it couples higher safety with compact

equipment, thus allowing for modular arrangement of the

NPP.

Another SNPP development line is presented by smaller

units of 0.5–1 MWe (5–10 MWt) that can be deployed on

the basis of unmanned autonomous thermoelectric power

plants.

Practical feasibility of this class of energy sources is

confirmed by the Kurchatov Institute’s experience in

constructing power facilities based on the direct

heat-to-electricity conversion. Romashka built in 1962 as a

pilot facility intended for space applications was the first

such facility in the world. In 1982, the Kurchatov Institute

has built and launched Gamma – a prototype thermoelectric

facility intended for ship applications [1] – which

| | Fig. 4.

Gamma – a prototype unmanned underwater power source

(launched in 1982).

has operated for many years and made it possible

to perform an exhaustive scope of studies and tests

(Figure 4).

In the mid-80ies, proceeding from the Gamma’s

successful operating experience, the design of Elena NPP

was developed in the framework of conversion programs.

This type of power facilities is based on the following three

cornerstones:

• water-water reactor with power self-regulation as a

heat source;

• heat removal by natural circulation of coolant in the

primary and secondary circuit;

• thermoelectric conversion of heat into electricity.

As a result, such facilities – whose technical feasibility is

now doubtless – offer considerable advantages compared

to those based on turbine energy conversion.

3 Nuclear technologies for the

development of the Arctic shelf

As concerns the Arctic shelf development, the Energy

Strategy of Russia to 2035 estimates the country’s

continental shelf to contain 90 billion tons of oil equivalent

(toe), including 16 billion tons of oil with condensate and

74 trillion m 3 of gas. About 70% of these resources find

themselves on the Barents, Pechora and Kara Sea shelves,

which together make about a half of the Russian Arctic

shelf. Experts forecast that by 2035 Russia will annually

produce up to 30 million tons of oil and 130 billion m 3 of

gas on its Arctic shelf.

The averaged total electricity demand by the hydrocarbon

production industry is estimated above 3 GW, so

ENERGY POLICY, ECONOMY AND LAW 151

Energy Policy, Economy and Law

Russian Nuclear Energy Technologies for the Development of the Arctic ı Andrej Yurjewitsch Gagarinskiy


atw Vol. 63 (2018) | Issue 3 ı March

ENERGY POLICY, ECONOMY AND LAW 152

the summary demand of future oil & gas rigs on the Russian

Arctic shelf may be quite high. About 40 % of this demand

can be covered by underwater feeder cables, but this

option is limited by distances below 200 km from the

shore. Another 60% from rigs situated beyond this distance

can be covered by autonomous underwater/sub-ice power

plants. As concerns this application, small autonomous

reactors seem to have no alternative [7].

By the end of 1980-ies, the USSR already had a concept

of underwater NPP with small reactor units [8]. Table 3

lists some nuclear facilities proposed by the leading

Russian design companies for application on oil & gas

Facility

Basic parameters

Submarine tanker Carrying capacity – 20,000 t,

propeller power – 30 MW

Underwater

nuclear compressor

station

Underwater station

for LNG production

Nuclear drill

submarine

| | Tab. 3.

SMR designs under development.

Displacement – 7,500 m 3 ,

compressor output – 40 MW,

continuous unmanned operation time

– 10,000 hours

The station includes: tankers,

gas storages, liquefaction units,

nuclear power facilities, terminals etc.

Displacement – 20,000 m 3 ,

reactor capacity – 6 MWe

fields in heavy ice conditions.

In late 2017, the media have published some information

on the Iceberg project developed by the Rubin and

OKBM Afrikantov design bureaus: a 24-MW underwater

NPP capable of autonomous unmanned operation for a

year (total lifetime 30 years). This NPP is intended as a

power source for oil/gas drill and extraction rigs in areas

with thick ice – in fact, this is a return to one of unique

unimplemented designs of the eighties.

In the developers’ opinion, nuclear energy supplies to

underwater/sub-ice oil/gas production on the Arctic shelf

should be based on system approach (“made in factory and

shipped to sites”), with a maximum use of long operating

experience of nuclear ships. This would enable:

• no atmospheric releases plus localization and

minimization of heat impact on the Arctic Ocean water

to negligible values (compared to natural temperature

fluctuations);

• lower risk of oil spills – that cannot be efficiently

liquidated by available technologies – in ice con ditions;

• higher reliability and safety of power facilities;

• minimized workforce requirements (up to total

autonomy);

• efficient and safe offshore operation under water/ice at

distances of 1,000 km from the coast and beyond.

The policy currently implemented by the government with

regard to the Arctic region, as well as the scientific and

technical experience accumulated by Russia, both allow

for confident conclusion that considerable advances in the

development of nuclear power facilities for the Arctic are

to be expected in the short term.

References

1. Kurchatov Specialists and Atomic Fleet. Editor: M.V. Kovalchuk,

NRC KI, Moscow, 2016 (in Russian).

2. Status of Small and Medium-Sized Reactor Designs. A

Supplement to the IAEA Advanced Reactor Information System

(ARIS). IAEA, 2012

3. Russia’s Nuclear Energy Strategy to 2050. NRC KI, Moscow, 2013

(in Russian).

4. M.V. Kovalchuk. Arctic Vector of Russian Energy. Priroda, 2016

(in Russian).

5. V.V. Petrunin et al.: Prospects for Small and Medium Nuclear

Power Plants: a New Development Area. In: Small Nuclear Power

Plants a New Development Area, IBRAE, Moscow, 2015

(in Russian).

6. A.I. Alekseev et al.: Uniterm SMR: a Frontline Area of Nuclear

Power Development. In: Small Nuclear Power Plants a New

Development Area, IBRAE, Moscow, 2015 (in Russian).

7. E.P. Velikhov et al. Nuclear Energy for the Arctic Shelf. V Mire

Nauki, v.10, 2015 (in Russian).

8. V.S. Nikitin, V.S. Ustinov et al.: Nuclear Energy in the Arctic Region.

The Arctic: Ecology and Economy, v.4(20), 2015 (in Russian).

Authors

Andrej Yurjewitsch Gagarinskiy

National Research Centre “Kurchatov Institute”

Moscow, Russian Federatio

Energy Spotlight Policy, on Nuclear Economy Lawand Law

Russian U.S. Regulators Nuclear Reject Energy Proposal Technologies to Subsidize for the Nuclear Development and Coal of the Power Arctic Prices ı Andrej ı Andrej Yurjewitsch Gagarinskiy


atw Vol. 63 (2018) | Issue 3 ı March

U.S. Regulators Reject Proposal to Subsidize Nuclear and

Coal Power Prices

Jay R. Kraemer

On January 8, 2018, the U.S. Federal Energy Regulatory Commission (“FERC”) unanimously rejected a rulemaking

proposed by Secretary of Energy Rick Perry designed to enable the owners of coal and nuclear power plants to charge higher

prices for their output, and thereby to prevent further premature retirements of such plants. The FERC has exclusive

authority, under the Federal Power Act, to establish rules for interstate wholesale sales of electricity. Although the FERC

simultaneously initiated a new proceeding to consider how to enhance the resilience of electricity supply and delivery in

the U.S., that proceeding seems unlikely to offer near-term relief to nuclear plants that are approaching closure due to

their inability to compete economically both with facilities fueled by low-priced natural gas and with renewable power

sources benefitting from favorable tax provisions. Accordingly, the American nuclear power industry wil+l probably have

to look elsewhere for relief from its present dire economic circumstances.

Last fall, Secretary Perry concluded that U.S. wholesale

electricity markets, as operating in power auctions

conducted in accordance with FERC regulations, were

not adequately compensating the “resiliency” benefits of

nuclear and coal-fired “fuel-secure generation” facilities.

Accordingly, he issued a directive instructing the FERC to

develop and publish new market rules to correct that shortcoming.

See, “Grid Resiliency Pricing Rule,” 82 Federal Register

46940-48 ( October 10, 2017) (the “ Proposed Rule”).

Specifically, he called upon the FERC to amend its regulations

to require that each of the six regional entities

( Independent System Operators (“ISOs”) and Regional

Transmission Organizations (“RTOs”)) conducting FERCregulated

power auctions promptly establish new rates for

the purchase of power from certain generating facilities.

Such rates would provide for recovery of the facilities’ costs

of operation, fuel, capital, and financing, as well as a fair

return on equity. Eligible generating facilities were defined

in the Proposed Rule so as to include power plants that were

not currently subject to cost-of- service rate regulation, had a

90-day fuel supply on site, and were able to supply certain

reliability energy services, such as voltage support, frequency

services, and operating reserves. As a practical

matter, therefore, the Proposed Rule called for the FERC to

adopt regulations requiring electricity rate tariffs allowing

full cost and reasonable profit recovery for coal-fired and

nuclear “ merchant” power plants which, on the document’s

face, appeared to be the only generating facilities that could

meet the applicable definitions.

The FERC received extensive comments on the Proposed

Rule from ISOs, RTOs, electric utilities, non- utility elec tricity

generators, trade associations repre senting a wide variety of

energy interests, and many others. Meanwhile, the composition

of the FERC itself changed markedly in the two

months following publication of the Proposed Rule, including

the confirmation of a new Chairman who assumed office

in early December 2017 (and one of whose first official

actions was to request an additional 30 days within which to

respond to the Proposed Rule).

In its unanimous Order terminating the rulemaking proceeding

initiated in response to the Proposed Rule, the FERC

briefly reviewed the development of the U.S. electric power

industry and its own efforts to help ensure the resilience of

the bulk power system. It then held that neither the Proposed

Rule nor the record in that rule making proceeding

had shown that the current RTO/ISO rates were unjust or

unreasonable, or that they were unduly preferential or discriminatory

– the statutory criteria in the Federal Power Act

for changing rates. In addition, the FERC found no basis in

the record to conclude that there was a threat to grid

resilience, either in the current rates charged for power or

otherwise. It then specifically rejected the Proposed Rule’s

concept that all qualifying generating facilities should

receive a cost-of-service recovery rate regardless of the need

for power or the resulting prices to power consumers.

Two FERC Commissioners – both Democrats – wrote concurring

opinions that were quite critical of the Proposed

Rule. One stated that, by “simply designat[ing facilities] for

support rather than determining what services needed to be

provided,” the Proposed Rule “sought to freeze yesterday’s

resources in place indefinitely, rather than adapting to the

resources that the market is selecting today or toward which

it is trending in the future.” (Concurring Statement of Commissioner

LaFleur, at 4.) The other described the Proposed

Rule’s remedy as a “multi-billion dollar bailout targeted at

coal and nuclear generating facilities,” and pointed to the

transmission and distri bution systems in the U.S., rather

than to generating facilities, as a greater threat to grid resilience.

(Concurring Statement of Commissioner Glick, at 2.) A

third Commissioner, after applauding “Secretary Perry’s

bold leadership in jump- starting a national conversation on

this urgent challenge,” stated that he would have preferred

to move expeditiously to direct the RTOs/ISOs either to submit

interim rate revisions for existing power plants that were

providing resilience attributes and were at risk of retiring

before the new FERC proceeding was concluded or to explain

why such rate revisions were not necessary. ( Concurring

Statement of Commissioner Chatterjee, at 1, 3.)

After terminating the proceeding involving the Proposed

Rule, the FERC began a new proceeding to address potential

grid resiliency challenges in the RTOs/ISOs, including a

better understanding of what resiliency means and requires.

The FERC ordered each RTO and ISO to submit, within 60

days, comments on those issues, on how the RTOs/ISOs

assess threats to resiliency, and on how they mitigate threats

to resilience. Following those sub missions, other interested

parties will have 30 days to submit reply comments.

The new FERC proceeding is much more “open-ended”

than was the Proposed Rule, in terms of its potential

outcome, whether it will in fact lead to any new rule making,

and especially whether it will result in higher rates for

nuclear plants threatened with premature retirement. Some

states, most particularly Illinois and New York, have already

put in place arrangements that permit compensation to the

owners of nuclear plants for their non-carbon-emitting

power production. Other states, such a Connecticut, New

Jersey, and Pennsylvania have similar schemes under consideration.

However, because the Trump Administration

appears wedded to continued efforts to support the coal

industry (and, relatedly, seems unwilling to recognize the

climate benefits of carbon-free generation of electricity), it

appears that any economic relief to at-risk nuclear power

plants is more likely to come from state-sponsored plans, or

possibly proposals initiated by ISOs and/or RSOs themselves,

than from initiatives from the Federal Government.

Author

Jay R. Kraemer

Of Counsel

Fried, Frank, Harris, Shriver & Jacobson LLP

801 17 th Street, NW Washington, DC 20006, USA

153

SPOTLIGHT ON NUCLEAR LAW

Spotlight on Nuclear Law

U.S. Regulators Reject Proposal to Subsidize Nuclear and Coal Power Prices ı Jay R. Kraemer


atw Vol. 63 (2018) | Issue 3 ı March

154

ENVIRONMENT AND SAFETY

The Importance of Integration of

Deterministic and Probabilistic

Approaches in the Framework of

Integrated Risk Informed Decision

Making in Nuclear Reactors

Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia and Ehsan Zarifi

Introduction For many years, decision making on safety issues has been based on either deterministic safety

assessment (DSA) or probabilistic safety assessment (PSA). In recent years, integrated risk informed decision-making

(IRIDM) approach has been suggested to integrate in a systematic manner quantitative and qualitative (deterministic

and probabilistic) safety considerations to attain a balanced decision [1, 2, 3, 4, 5, 6, 7]. The IRIDM and investigation of

the combination of deterministic and probabilistic approaches are important issues, which have attracted much

attention in recent years. United States Nuclear Regulatory Commission (USNRC) has developed reports on integrated

risk-informed decisions and applications of deterministic and probabilistic approaches since 1998 [8, 9, 10, 11, 12, 13].

They considered the high-level criteria for defence-in-depth and all of safety margin by using the IRIDM concept. Collins

[14] investigated risk informed safety and regulatory decision making based on USNRC perspective. He investigated the

methods to enhance the safety criteria, regulatory effectiveness and efficiency, and public confidence. Impediments for

the application of risk-informed decisions making (RIDM) in nuclear safety were considered by Hahn et al [15]. They

suggested that the PSA method could not be replaced or substituted by DSA method. IAEA has overviewed risk- informed

regulation of nuclear facilities [4]. In the overview, the application of RIDM to provide safety level in all types of nuclear

facility is considered. Risk-informed decision making in the context of the National Aeronautics and Space Administration

(NASA) risk management is studied by Dezfuli et al [16, 17, 18]. In this investigation, evolution of risk-related policy and

guidance documents and NASA’s risk management approach are discussed. The International Nuclear Safety Group

(INSAG) has also published a framework for an integrated RIDM process (INSAG 25, 77, etc) [19, 20, 21, 22]. In this

report, the framework, principles and key elements for RIDM are identified and their interrelationship are described. In

another study, Fontes et al [23, 24] considered ITO model of pit corrosion in pipelines by applying RIDM. Talarico [25,

26] indicated RIDM of safety investments by using the disproportion factor, Process safety and environmental protection.

For this purpose a systematic approach, Cost-benefit analysis, determination model and simulations on realistic data

were presented. Veeramany et al [27, 28] investigated a framework for modeling of high-impact and low-frequency

power grid events to support RIDM. In this report, an integrated high-impact and low-frequency risk framework was

applied for improvement of the risk models. Borgonovo and Apostolakis [29, 30] introduced an importance measure,

the differential importance measure (DIM), for RIDM. Using this method, the problems exiting in Fussell-Vesely (FV)

and risk achievement worth (RAW) methods were solved.

A risk-informed defence-in-depth

frame work for existing and advanced

reactors are considered by Fleming

and Silady [31, 32, 33, 34]. A new

definition of defence-in-depth including

the inherent characteristics,

design features of a nuclear reactor,

and the quantification of the design

features importance is suggested.

Mohammad Modarres [35] proposed

and discussed implications of a largely

probabilistic regulatory framework

using best estimate, goal-driven,

risk-informed, and performancebased

methods.

The traditional defense-in-depth

design and operation regulatory

philosophy are used to propose a

framework when uncertainty in

conforming to specific goals and

objectives is high. The steps need to

develop a corresponding technologyneutral

regulatory approach from the

proposed framework explained.

Kang and Sung [36, 37] studied

analysis of safety-critical digital

systems for RIDM. The fault tree

analysis framework of the safety of

digital systems are presented and the

relationship between the important

characteristics of digital systems and

the PSA results using mathematical

expressions are described quantitatively.

Kim et al [38, 39, 40] discussed

the risk-informed approach that have

proposed to make a safety case for

advanced nuclear reactors. They also

considered a risk-informed safety

analysis approach suggested by

Westinghouse. In this paper, the

risk-informed approach and its

potential to improve the conventional

and deterministic approaches because

of various desirable characteristics are

discussed. Future nuclear reactor

designs meet an uncertain regulatory

environment. Delaney et al [41, 42,

43] considered the risk-informed

design guidance for this reactor

systems. Some level of probabilistic

insights in the regulations and

supporting regulatory documents for

generation-IV nuclear reactors are

anticipated. This paper presented an

iterative four-step risk-informed

methodology to guide the design of

future-reactor systems.

Deterministic approach

Deterministic safety approach (DSA)

applies a set of conservative rules

and requirements for the design and

operation of a nuclear facility. Thereby

providing a way of taking into account

uncertainties in the performance of

equipment and humans. DSA provides

the defence-in-depth that assures the

successive performance of barrier to

prevent accidents. A safe for operator

of nuclear power plant, and environment

during the normal and abnormal

operation can be achievable by

Environment and Safety

The Importance of Integration of Deterministic and Probabilistic Approaches in the Framework of Integrated Risk Informed Decision Making in Nuclear Reactors

Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia and Ehsan Zarifi


atw Vol. 63 (2018) | Issue 3 ı March

applying an appropriate defence- indepth.

It is needed to determine the

design basis accidents to analyze

safety of nuclear facilities in deterministic

approach, that its analysis as

well as presence of DID can increase

the safety margin, which has an

important role in prevention and

mitigation of the accidents. If these

parameter are met, the level of risk to

operators and public from operation

of the nuclear facility will be acceptably

low [4, 5, 7, 19].There are

also uncertainties in deterministic

approach; For example, there are

uncertainties in the analytical models,

computer codes, and the capability of

structures, systems and components,

etc. The involved uncertainties are

determined by applying conservative

assumptions, as well as models and

data. Deterministic approach has

advantages and disadvantages. The

main advantage of deterministic

approach is that it is well developed

for applying to all types of nuclear

facilities [4, 5, 7, 19]. In addition to its

advantages, there are defects like

indicating the rare fault instead of

lesser faults that are more frequent to

the risk, disability to balance a design

and reduction in level of risk.

Probabilistic approach

Probabilistic approach is used for the

analysis of safety of nuclear power

plants. This method has three safety

levels. By application of this approach,

it is possible to analyze all transients

and accidents including fires and

floods, Core Damage Frequency

(CDF) and Large Early Release

Frequency (LERF). In addition, all

sources of radioactive material,

human errors, and levels of risk can be

considered in this method. Probabilistic

approach can be used in all the

modes of operation of the plant. The

scope of the PSA applying may be less

than this and, the limitations of PSA

method must be recognized when it is

used as part of the IRIDM process.

At first, initial events are determined

in probabilistic safety analysis,

then it must calculated whether the

core damage frequency and associated

risk can satisfy the required requirements

or not.

The PSA method uses comprehensive

list of initiating events and determines

all the fault sequences that

could lead to core damage or a large

early release. The levels of risk,

parameters uncertainty, and sensitivity

studies can be also considered

by using PSA approach.

The deficiency in the probabilistic

approach is that the PSA model cannot

determine all the initiating events

and fault sequences that could affect

to the risk. The uncertainties in some

areas of the PSA model are very large.

Nevertheless, The PSA model can explicitly

explain many of uncertainties

by using modern PSA computer codes.

The PSA approach is a part of decision-making

and cannot replace it, individually.

It can only be a contributor

to the decision making.

Integration of PSA and DSA

methods into the integrated

risk informed decisionmaking

The deterministic and probabilistic

approaches must be used to control

the level of nuclear facilities risk to

satisfy the safety of operators. There

are many differences between deterministic

and probabilistic approaches

in evaluation methods and boundary

conditions. The deterministic approach

is conservative but Probabilistic

approach is more realistic and uses

best estimate approach. The deterministic

approach usually uses some

of initiating events and fault

sequences, while the Probabilistic

approach uses a comprehensive set of

initiating events and hazards for

analysis. In deterministic approach,

accident conditions are addressed

separately, so that the PSA approximately

integrates all initiating events

and safety systems in the same model.

DSA approach uses approximate

method for calculating initiating

events frequencies and systems and

components failure probabilities,

while PSA uses explicit methods for

these purposes. Uncertainties are

addressed by conservative assumptions

and can be quantified by using

explicit methods in deterministic and

probabilistic models.

Generally, in view of intiating

events, DSA only considers design

basis accidents, howerver PSA considers

all design basis and beyond

design accidents. By considering the

safety systems, DSA only indicates

singular failure criterion, however PSA

indicates both of singular and combined

failiure criterion . In deterministic

approach, with the respect of the

operator instruction, nothing should

be done in 30 minutes, but afterwards

instructions should be implemented

completely. Whereas in the PSA the

operator's proceeding is more realistic.

In other words, the basis of DSA is

more conservative while the PSA is

realistic as much as possible.

The PSA can complement the

deterministic methods because:

• PSA considers thousands of accident

sequences instead of the

relatively few.

• It analyses more complex failure

modes.

• It quantifies the remaining risk.

• It identifies non-conservative and

overly conservative in the design.

• It quantifies the part of the uncertainties,

contributing to the understanding

of the issues.

Integrated approach can determine

that design is balanced against

initiating events. Also, determines the

importance of structures, systems and

components (SSCs). In all cases, a

combination of deterministic and

probabilistic approaches is made to

achieve acceptable safety level. Each

approach has separate viewpoint, it is

possible to use the result of each

approach for another one instead of

the applying assumptions into them.

In this way, the deterministic success

criteria, which is obtained in the

deterministic approach, can be used

in probabilistic approach. In addition,

the new design basis events and

re-classified structures, systems

and components from probabilistic

approach can be used in the deterministic

approach. Then, deterministic

and probabilistic results are compared

with regulation and the assessed risk

metrics, respectively. Finally, the

acceptable safety level can be achieved

by using the integrated risk-informed

decision. If the safety level is not

satisfied, the measures should be

re-implemented to enhance the safety

level [1, 2, 3, 4, 7, 19, 20, 33, 44],

Figure 1.

Early safety management focused

primarily on the safety of the plant

and equipment (the technology),

while subsequent practices also

| | Fig. 1.

Process of safety analysis by integration of DSA and PSA.

ENVIRONMENT AND SAFETY 155

Environment and Safety

The Importance of Integration of Deterministic and Probabilistic Approaches in the Framework of Integrated Risk Informed Decision Making in Nuclear Reactors

Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia and Ehsan Zarifi


atw Vol. 63 (2018) | Issue 3 ı March

ENVIRONMENT AND SAFETY 156

| | Fig. 3.

Requirements for IRIDM.

considered several factors such as

human operators, organization, etc.

The IRIDM approach to managing

safety adopted by many operators

worldwide addresses all aspects and

the complex interaction between

them, Figure 2.

| | Fig. 2.

Important parameter for IRIDM.

Experience has shown that an

integrated decision making process,

including deterministic and probabilistic

analyses with good engineering

practices, consideration of

operating experience and sound

managerial arrangements, is effective

in refining and improving safe design

and safe operation of nuclear installations.

A risk-based on integrated

decision-making process provides a

defensible basis for making decisions.

In addition, it is possible to recognize

the greatest risks and prioritize

attempts to minimize or omit them.

Decision making case

DSA

method

This approach has many benefits

including a greatly improved understanding

of the safety and identifying

safety vulnerabilities that have

not identified using standards-based

evaluation techniques. IRIDM is a

consultative process that applies a set

of performance measures, with other

considerations, to “inform” decisionmaking.

IRIDM is invoked for key

decisions, which typically requires

setting of requirements. It is applied in

many different fields, risk assessment,

engineering design decisions and

configuration management processes,

etc. Using the IRIDM, assures project

success and best decision making for

risk assessment, etc [4, 17, 19]. The

comparison between several methods

for safety analysis and decision

making is shown in Table 1.

Integrated Risk Informed Decision

Making is a best practice approach to

safety management and decision

making. IRIDM is a modular model

that considers all relevant and important

factors in an appropriate way to

reach a balanced decision for taking

account of all the risks and hazards

posed by the facility. The main goal of

the model is to develop an integrated

data bank for informed decision

making in necessary cases. The integrated

data bank includes: operational

feedback, organizational factor analysis,

human factor, inspection, Deterministic

Safety Analysis, Living

Probabilistic Safety Analysis, security

and safeguard and etc. The scheme of

this model is shown in Figure 3.

A series of requirements and

criteria including different steps are

needed for IRIDM process. The first

step is defining the any types of issues

that can be considered in safety analysis.

The second step is identifying the

requirements and criteria related to

the specific issue. In this step, the

mandatory requirements, deterministic

and probabilistic insights and other

requirements should be determine for

PSA

method

| | Tab. 1.

Comparison between several methods for safety analysis.

RIDM

method

IRDM

method

Comprehensiveness

of events considered

Ç – – Ç

Quality assurance – Ç – Ç

Review of SAR report – Ç Ç Ç

Emergency preparedness

and resparde

– – Ç Ç

Licensing Ç Ç – Ç

implementation of IRIDM process. In

third step, weighting of inputs is

determined. A specific weight of each

parameter attributes based on its importance

for different issues. Then,

the evaluating methods of safety

issues can be recognized by these

weights. The forth step is decision

making. The aim of this step is to make

a decision whether the change should

be made in design or operation of

the plant, the regulation under consideration,

etc. A good decision

making process requires conducting

the preceding steps. Because improper

decision making will result in

necessity of redoing all steps. After

making a good decision, it should be

implemented. The operators should

receive proper training and, required

changes in the associated instruments

should be applied. The final step is

monitoring of the process. In order to

have proper implementation of the

aforementioned issue, a complete

regulation should be performed. in

the case, the adequate efficiency has

not been achieved in the implemented

steps, the procedure should be revised

or re-planed [4, 5, 7, 19, 44].

Advantages of IRIDM approach is

include:

• Transparency, as the weighting

of the elements and the way

resolution is achieved is clear;

• Balanced, if all elements are

weighted properly;

• Logical, if carried out in a structured

way;

• Consistency, if weighting developed

appropriately;

• Accountable, if documented properly

so the process can be reconstructed;

It is necessary to be considered that

complexity of integration of quantitative

and qualitative information is

very high.

According to give explanation in

this paper, the importance of using

the combination of both deterministic

and probabilistic approaches in the

framework of integrated risk informed

decision making is quite evident.

For more realistic analysis of nuclear

accidents should be done using

both deterministic and probabilistic

approaches. The required parameters

(for example, deterministic success

criteria, new design basis event,

re-classified SSCs…) for an approach

should be used in the other one or vice

versa. In addition, the final decision

will be made on basis of IRIDM by

using deterministic and probabilistic

insights. This will lead to greater

safety of operators and environment,

Environment and Safety

The Importance of Integration of Deterministic and Probabilistic Approaches in the Framework of Integrated Risk Informed Decision Making in Nuclear Reactors

Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia and Ehsan Zarifi


atw Vol. 63 (2018) | Issue 3 ı March

Determination of greater defense

barriers, lower costs, Selection of

limiting cases for detailed quantitative

analysis, less energy dissipation, Performance

of detailed quantitative

analysis for each limiting case, Evaluation

of compliance to the acceptance

criteria and safety margins, etc.

Conclusion

In general, when the analysis of

nuclear accidents are separately done

by deterministic and probabilistic

approaches are faced with shortcomings

and drawbacks. It is not

possible to provide a comprehensive

prediction for nuclear accidents. In

deterministic approach, many effective

factors in the event are not considered

but in probabilistic approach,

most effective factors in the event are

used for determining the frequency of

occurrence and total error. Therefore,

for better understanding and comprehensive

analysis of events, deterministic

and probabilistic assessment

is necessary at the same time.

This review indicates that the integrated

risk-informed approach has

great potential to improve safety level

by using probabilistic and deterministic

approaches. By using IRIDM

approach, determining of initiating

events, multiple failures and event

sequences are possible. The final decision

should be based on integrated

risk-informed rather than the risk,

itself. Risk assessment should only

be part of the decision process. For

the final decision, integrated risk

informed should be based on combination

of deterministic and probabilistic

approach.

Adopting an IRIDM model is way

of helping prevent these incidents and

accidents as well as other benefits

such as:

• Safer and more secure operations

have reduced risks through more

comprehensive understanding of

operational risks;

• Greater resilience, including the

ability to cope with unforeseen

threats and adverse events;

• Better integration of operations

and technical systems, with financial

and human resource management;

• Greater efficiency, including more

productive operations, higher staff

morale, lower staff turnover, more

efficient and effective control

measures;

• Greater ability to identify weaknesses

so that they can be actively

corrected to prevent opportunities

for accidents to happen.

Reference

1. IAEA, Applications of Probabilistic

Safety Assessment (PSA) for Nuclear

Power Plants, IAEA-TECDOC-1200,

Vienna 2001.

2. IAEA, Living Probabilistic Safety

Assessment (LPSA), IAEA-TECDOC-1106,

Vienna 1999.

3. IAEA, Review of Probabilistic Safety

Assessments by Regulatory Bodies,

Safety Reports Series No. 25, IAEA,

Vienna 2002.

4. IAEA, Risk-informed regulation of

nuclear facilities: overview of the

current status (IAEATECDOC-1436),

Technical report, IAEA, Vienna, 2005.

5. IAEA, The Interface between Safety and

Security at Nuclear Power Plants,

INSAG-24, IAEA, Vienna, 2010.

6. US NUCLEAR REGULATORY

COMMISSION, Framework for Risk-

Informed Changes to the Technical

Requirements of 10 CFR 50,

Attachment 1 to SECY-00-198, USNRC,

Rockville, MD 2000.

7. E. Zio, N. Pedroni, Risk-informed

decision-making processes, An

overview, 2012.

8. USNRC, An approach for plant-specific,

risk-informed decision-making: Graded

quality assurance, Regulatory guide

1.176, Technical report, US Nuclear

Regulatory Commission, Washington,

D.C., 1998a.

9. USNRC, An approach for plant-specific,

risk-informed decision-making: Inservice

inspection of piping, Regulatory guide

1.178, Technical report, US Nuclear

Regulatory Commission, Washington,

D.C., 1998b.

10. USNRC, An approach for plant-specific,

risk-informed decision-making: Inservice

testing, Regulatory guide 1.175,

Technical report, US Nuclear Regulatory

Commission, Washington, D.C., 1998c.

11. USNRC, An approach for plant-specific,

risk-informed decision-making:

Technical specifications, Regulatory

guide 1.177, Technical report, US

Nuclear Regulatory Commission,

Washington, D.C., 1998d.

12. USNRC, An approach for using

probabilistic risk assessment in riskinformed

decisions on plant-specific

changes to the licensing basis

(NUREG-1.174), Technical report, US

Nuclear Regulatory Commission,

Washington, D.C., 2002.

13. USNRC, Guidance on the treatment of

uncertainties associated with PRAs in

risk-informed decision making

(NUREG-1855), Technical report, US

Nuclear Regulatory Commission,

Washington, D.C., 2009.

14. S. J. Collins, Risk informed safety and

regulatory decision making: an NRC

perspective, In Proceedings of the 2001

IAEA international conference on

Topical issues in nuclear safety, Vienna,

IAEA, 2001.

15. L. Hahn, Impediments for the application

of risk-informed decision making in

nuclear safety (IAEA-CN-82/49), In

International Conference on Topical

Issues in Nuclear Safety, Vienna, 2002.

16. H. Dezfuli, M. Stamatelatos, G. Maggio,

C. Everett, Risk-informed decision

making in the context of NASA risk management,

In Proceedings of the PSAM

10 Conference, Seattle, WA., 2010.

17. NASA, Risk-informed decision making

handbook (NASA/SP-2010-576).

Technical report, NASA, 2010.

18. NPR 8000.4, Agency Risk Management

Procedural Requirements 2009, NPR

8000.4, Agency Risk Management

Procedural Requirements, 2009.

19. IAEA, A framework for an integrated

risk informed decision making process /

a report by the International Nuclear

Safety Group, Vienna, INSAG series,

ISSN 1025–2169, no. 25, 2011.

20. IAEA, Safety Assessment for Facilities

and Activities, IAEA Safety Standards

Series No. GSR Part 4, IAEA, Vienna,

2009.

21. OECD Nuclear Energy Agency, Nuclear

Regulatory Decision Making, OECD,

Paris, 2005.

22. OECD Nuclear Energy Agency,

Improving nuclear regulation, Nuclear

Regulation, OECD, Paris, 2009.

23. G.S. Fontes, An ITO model of pit

corrosion in pipelines for evaluating

risk-informed decision making. Instituto

Militar de Engenharia, Nov 24, 2015.

24. M. Chang, R. Chang, C. Shu, K. Lin,

Application of risk based inspection in

refinery and processing piping, J. Loss

Prev. ProcessInd.18, 397–402, 2005.

25. L. Talarico, R. Genserik, Risk-informed

decision making of safety investments

by using the disproportion factor,

Process safety and environmental

protection / Institution of Chemical

Engineers [London],ISSN 0957-5820 -

100p 117-130, 2016.

26. J. Janssens, L. Talarico, G. Reniers, K.

Sörensen, A decision model to allocate

protective safety barriers and mitigate

domino effects. Reliab. Eng. Syst. Saf.

143, 44–52, 2015.

27. A. Veeramany, S.D. Unwin, G.A. Coles,

J.E. Dagle, W.D. Millard, J. Yao, C.S.

Glantz, S.N.G. Gourisetti, Framework for

Modeling High-Impact and Low- Frequency

Power Grid Events to Support

Risk-Informed Decisions, PNNL-24673,

Pacific Northwest National Laboratory,

Richland, WA, 2015.

28. G. Apostolakis, M. Cunningham, C. Lui,

G. Pangburn, W. Reckle, A Proposed

Risk Management Regulatory Framework.

NUREG-2150, U.S. Nuclear

Regulatory Commission, Washington

D.C, 2012.

29. E. Borgonovo, G.E. Apostolakis, A new

importance measure for risk informed

decision making, reliability engineering

and study safety, Cambridge, USA,

2001.

30. M.C. Cheok, G.W. Parry, R.R. Sherry, Use

of importance measures in riskinformed

regulatory applications.

Reliability Engineering and System

Safety; 60:213-26, 1998.

31. K. N. Fleming, F. A. Silady, A risk

informed defense-in-depth framework

for existing and advanced reactors, Reliability

Engineering and System Safety,

San Diego, CA 92121-2767, USA, 2002.

ENVIRONMENT AND SAFETY 157

Environment and Safety

The Importance of Integration of Deterministic and Probabilistic Approaches in the Framework of Integrated Risk Informed Decision Making in Nuclear Reactors

Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia and Ehsan Zarifi


atw Vol. 63 (2018) | Issue 3 ı March

ENVIRONMENT AND SAFETY 158

32. A. Carnino, M. Gaparini, Defense in

depth and development of safety

requirements for advanced reactors.

Workshop on Advanced Nuclear

Reactor Safety Issues and Research

Needs, Paris; February 18–20, 2002.

33. IAEA, Defence in Depth in Nuclear

Safety, IAEA; INSAG-10, IAEA, Vienna,

1996.

34. J.N. Sorensen, G.E. Apostolakis, T.S.

Kress, D.A. Powers, on the role of

defense-in-depth in risk informed

regulation. Presented at PSA’99,

Washington DC, USA, August 22–25,

La Grange Park, IL, USA: American

Nuclear Society; 1999.

35. M. Modarres, Advanced nuclear power

plant regulation using risk-informed

and performance-based methods,

Reliability Engineering and System

Safety, College Park, MD 20874, USA,

2009.

36. H.G. Kang, T. Sung, An analysis of safety-critical

digital systems for risk-informed

design, Reliability Engineering

and System Safety, Taejon 305-600,

South Korea, 2002.

37. I.S. Kim, T.K. Kim, M.C. Kim, B.S. Kim,

S.W. Hwang, K.C. Ryu, Suitability review

of FMEA and reliability analysis for

digital plant protection system and

digital engineered safety features

actuation system. KINS/HR-327; 2000.

38. I. S. Kim, S.K. Ahn, K.M. Oh, Deterministic

and risk-informed approaches

for safety analysis of advanced reactors:

Part II, Risk- informed approaches,

Reliability Engineering and System

Safety, Daejeon 305-338, Republic of

Korea, 2010.

39. M.C. Jacob, J.P. Rezendes, Development

of risk informed safety analysis

approach and pilot application.

Westinghouse, WCAP-16084-NP, rev 0,

September, 2003.

40. DOE, USNRC, Next generation nuclear

plant licensing strategy – a report to

congress, August, 2008.

41. M.J. Delaney, G.E. Apostolakis, M. J.

Driscoll, Risk-informed design guidance

for future reactor systems, Nuclear

Engineering and Design, Cambridge,

MA 02139-4307, USA, 2005.

42. G.E. Apostolakis, How useful is

quantitative risk assessment?, Risk Anal.

24, 515–520, 2004.

43. G.E. Apostolakis, M.W. Golay, A.L.

Camp, A.L. Duran, D.J. Finnicum, S.E.

Ritterbusch, June 4–5, A new riskinformed

design and regulatory

process. In: Proceedings of the Advisory

Committee on Reactor Safeguards

Workshop on Future Reactors, Report

NUREG/CP-0175, pp. p237–p248, US

Nuclear Regulatory Commission,

Washington, DC, 2001.

44. A. Lyubarskiy, I. Kuzmina, M. E.

Shanawany, Advances in Risk Informed

Decision Making – IAEA’s Approach,

Vienna, Austria, 2011.

Authors

Mohsen Esfandiari

Gholamreza Jahanfarnia

Department of Nuclear

Engineering

Science and Research Branch

Islamic Azad University, Tehran,

Iran

Kamran Sepanloo

Ehsan Zarifi

Reactor and Nuclear Safety

Research School

Nuclear Science and Technology

Research Institute (NSTRI), Tehran,

Iran.

Applied Reliability Assessment for the

Passive Safety Systems of Nuclear Power

Plants (NPPs) Using System Dynamics (SD)

Yun Il Kim and Tae Ho Woo

1 Introduction A new kind of passive system is investigated in case of an accident in nuclear power plants

(NPPs). Conventional passive systems have the limitations in the conditional integrity like the piping system of the

coolants. In this paper, the free-falling of emergency coolants are proposed where the flying machine, drone, is imported

to carry out the coolants on the upper position of the containment building. In the cases of the Fukushima and Chernobyl,

the piping systems were blown away. So, the emergency coolants couldn’t flow into the reactor core position where the

reactor fuels were making continuous very high energy without stabilizing of the power level. Although the integrity of

the piping injection systems have been investigated as the good conditions, the previous history couldn’t give the

satisfactions to the public.

During the Fukushima disaster, the

operator had been seeking for the

prime minister to take a permission to

open the gas leak valve in the containment

building when the reactor pump

was out of order and the hydrogen

gases were produced continuously.

Eventually, the hydrogen explosion

happened and the four plants were

collapsed within several days after

East-Japan earthquake impact on the

Fukushima coast and its related areas.

Furthermore, even if there was an

opportunity to make use of the sea

water in order to cool down the

reactor core, the operator didn’t use it

for keeping the expensive reactor

structure from the saluted sea water

in which the material corrosions could

been happened and the material could

be in the significantly damaged situation.

Then, all kinds of the cooling

systems were gone permanently.

The dangerous radioactive contaminations

to the environment have been

done continuously. Considering the

case of the Fukushima nuclear accident,

the piping system has the crucial

fault that the safety system can’t

make any role in the post-accident or

on-accident. Piping in the NPPs should

be incorporated with the alternative

coolant supply method. So, the

detached system from plant building

could be imagined in this study.

The merit of the passive system is

operated without in-site electricity.

So, the natural circulation or gravity

could be acted for the designed system

by injection of the coolants. However,

even the action of switch of the system

operation should be done to start. So,

the manual based stating action is

needed for the operation of passive

system. As the same condition of the

Environment and Safety

Applied Reliability Assessment for the Passive Safety Systems of Nuclear Power Plants (NPPs) Using System Dynamics (SD) ı Yun Il Kim and Tae Ho Woo


atw Vol. 63 (2018) | Issue 3 ı March

initial action, the detached lifted

coolant carrying by drone is similar in

the starting state. However, the non

in-site power is supplied by the battery

in the drone’s flying system. ‘Passive’

means that the power is not used from

the in-site system of the plant. The

battery is supplied from the external

energy source. So, the drone could be

considered as one for constructing the

passive system in NPPs. There are the

comparisons of the passive systems in

Table 1.

Type

Natural

circulation

Gravity

Free-fall

Power

| | Tab. 1.

List of passive systems.

Non in-site electricity

Non in-site electricity

Non in-site electricity,

Battery or engine

installed in drones

| | Fig. 1.

Simplified configuration of NPPs in the accident.

| | Fig. 2.

Passive systems of NPPs.

ENVIRONMENT AND SAFETY 159

There are some passive safety

system related papers. Cho et al.

worked for the passive auxiliary feedwater

system (PAFS) [Cho et al. 2016].

In addition, Gou et al. studied that the

thermal hydraulic investigations were

done for a new type of passive residual

heat removal system (PRHRS) [Gou et

al. 2009]. Park et al. showed that the

advanced modular integral type rector

is investigated by the natural circulation

performance [Park et al. 2007].

2 Method

2.1 Overview

Figure 1 shows the simplified configuration

of the NPPs in the accident

where the water tank is carried by the

drones. The water falls as the free-fall

for the water tank in which the water

are entering to the reactor building.

The passive action by the free-fall is

done completely, which could be used

in the case of the piping based

injection system failure. There are

some passive systems in Figure 2

where the natural circulation and

gravity are shown. In this paper, the

free-fall is described. There are the

conceptual comparisons of passive

systems of NPPs in Figure 3 that the

water falls down from flying drone

containing water tank and the water is

injected from the conventional water

tank attached to the reactor building.

This is revolutionary different from

the conventional passive system in

which the piping integrity should be

kept. Otherwise, in the free-fall

system, the reservoir could be an

active role on or after accident. So,

| | Fig. 3.

Conceptual comparisons of passive systems in NPPs.

this means that the post-accident

safety system is installed in this new

system. In the current commercial

NPPs, there is not any kind of the

post-accident safety system. It has

been experienced in Chernobyl as well

as Fukushima cases that it was impossible

to make the coolant enter into

the reactor core where the nuclear

fuels were continuing the nuclear

reactions and producing the heats.

Table 2 shows the specifications of

the condensate water storage tank as

the emergency water tank [The Virtual

Nuclear Tourist, 2016]. Newly developed

drone could supply 500 kg [Air-

Mule, 2016]. Therefore, it takes about

1,137 times supplies to carry the tank

water. If one uses 10 units of drone, it

reduced to about 113 times. However,

| | Fig. 4.

Major factors for the free fall of coolants.

Tank

(Condensate storage tank)

Mass flow rate

Content

| | Tab. 2.

Specification of emergency water tank.

the coolant carrying quantity is

changeable by the situation and

carrier design.

2.2 Cooling by the free-fall

The modeling of this paper is to show

the capability of the free-fall coolant

in which this should make the

enhanced integrity to the piping based

injection systems. So, the major factor

of the fee-fall coolants is the coolant

quantity with mass flow rate which is

150,000 gallons

(567,812 liters, 568,500 kg water)

200 ~ 400 gallons/min.

Environment and Safety

Applied Reliability Assessment for the Passive Safety Systems of Nuclear Power Plants (NPPs) Using System Dynamics (SD) ı Yun Il Kim and Tae Ho Woo


atw Vol. 63 (2018) | Issue 3 ı March

ENVIRONMENT AND SAFETY 160

in Figure 4. Following the Newtonian

mechanics, the uniform gravitational

field without air resistance can

show the terminal velocity shows [The

Physics Classroom, 2016],

v(t)= -gt+ v o (1)

So, one can find the pressure using

Bernoulli’s principle [Clancy, 2006],

(2)

The coolant quantity is obtained by

mass flow rate [Potter, 2007],

ṁ = v(t)∙ρ (3)

Therefore, using continuity equation

[Potter, 2007],

Q = ṁ ∙A = v(t) ∙ ρ ∙ A(4)

where,

v o is the initial velocity (m/s)

v(t) is the vertical velocity

to time t (m/s)

g is the gravitational acceleration

(9.8 m/s 2 )

z is the elevation of the point

ρ is the density of the water

(1,000 kg/m 3 )

ṁ is the mass flow rate (kg/m 2 s)

Q is the mass rate (kg/s)

A is the area (m 2 )

2.3 Configuration of the drone

The water tank is carried out by the

drone where the mechanics of the

flying robotics is exploited. There is

the mechanical analysis of the drone

for nuclear engineering applications

in the below equations [Cho and Woo,

2016]. The mathematical forms of the

movement of the flying is described as

the flight dynamics in which three

kinds of the parameters are done as

roll, pitch, and yaw. These are angles

of rotation in three dimensions

about the vehicle’s center of mass

[NASA, 2014]. The configurations are

shown in Figure 5 [The Smithsonian’s

National Air and Space Museum,

2014]. In the control of the four thrust

forces from four rotors, there are three

angles Ø, θ, ψ and the altitude z to

make the six motions and then the

control inputs are [Jeong and Jung,

2014],

(5)

where, k pø , k iø , k dø are the proportional-integral-derivative

(PID) controller

gains for the roll angle control,

k pθ , k iθ , k dθ are PID controller gains for

the pitch angle control, and k pψ , k iψ ,

k dψ are PID controller gains for the

yaw angle control, respectively.

Furthermore, the altitude control of

PID controller is as follows [Jeong and

Jung, 2014],

(6)

where, m is the mass, g is the gravitational

acceleration, and then V z is,

(7)

where, k pz , k iz , k dz are PID controller

gains for the altitude control and

altitude data zs are obtained using a

sonar sensor.

2.4 System dynamics (SD)

Algorithm

The SD was created by Dr. Jay Forrest

in MIT around 1960s in which the

scientific and technological matters

as well as social and humanities

are quantified as the mathematical

SD

modeling [SDS, 2014]. The interested

event is described by the Boolean

values and the designed modeling

could show the event scenarios. There

are several kinds of characteristics as

the complexed non-linear manipulations

in the problems. The event flows

backward in the modeling, which is a

particular merit in the SD modeling.

The event quantification could be the

stocking of the values of the event

which is called as ‘Level’. In addition,

the cause loop is seen by the event

flows, which is like the flow chart

in the computer programming. Each

calculation is done as the time step in

which the time interval is decided by

the author. The software in this study

is Vensim code system as the window

version 6.3 [Ventana, 2016]. There

are the comparisons between the SD

and conventional safety assessments,

probabilistic safety assessment (PSA),

in Table 3. The event values are made

by the Boolean value based quantifications

with calculation interval of

designed time step. Hence, the realtime

calculations are reasonably

possible in SD which is basically the

dynamical simulations. There are

several companies for the SD software

in the world.

2.5 Modeling of the event

The modeling of the event is constructed

by passive system sequences.

Designed scenarios are initiated by

the loss of coolant accident (LOCA)

and it is needed to find the integrity of

reactor [Ha, 2006]. So, the conventional

event tree is made which is in

Figure 6. Based on the event tree, the

SD modeling in done in Figure 7

which is modified from conventional

work during early 1,000 minutes. The

characteristics of the SD are reflected

in the modeling where the non-linear

algorithm is expressed. The line is

used as the curved line as well as

the straight line so that the event

flow could be drawn without any

PSA

Theory Random number based Boolean value Probability

Event Non-linear lines Event tree, Fault tree

Result Relative value Probability value

Graphics Colorful Black & white

Topic Variable Variable

Dynamics Time step based Operator manipulated

Real-time Possible Impossible

Speed Quick Time needed

Commercialization Very active Moderate

| | Fig. 5.

Three parameters’ motions.

| | Tab. 3.

Comparisons between the SD and PSA.

Environment and Safety

Applied Reliability Assessment for the Passive Safety Systems of Nuclear Power Plants (NPPs) Using System Dynamics (SD) ı Yun Il Kim and Tae Ho Woo


atw Vol. 63 (2018) | Issue 3 ı March

| | Fig. 6.

Event tree of event.

| | Fig. 7.

SD modeling.

Event

| | Tab. 4.

List of event value.

| | Fig. 8.

Causes tree of SD modeling.

Content

LOCA (if then else(random 0 1 () < 0.8, 0, 1))

/ Reactor

Piping Integrity if then else(random 0 1 () < 0.3, 0, 1)

Alarm Alert if then else(random 0 1 () < 0.5, 0, 1)

* LOCA * Piping Integrity

Manual Actions if then else(random 0 1 () < 0.4, 0, 1)

* Alarm Alert * Piping Integrity

Reactor SCRAM if then else(random 0 1 () < 0.6, 0, 1)

* Manual Actions *Piping Integrity

Coolant Tank Integrity if then else(random 0 1 () < 0.5, 0, 1)

Flying Integrity if then else(random 0 1 () < 0.3, 0, 1)

Drone Action

Coolant Tank Integrity * Flying Integrity

Emergency Cooling by Operator if then else(random 0 1 () < 0.5, 0, 1)

* Drone Action *Reactor SCRAM

Reactor if then else(random 0 1 () < 0.5, 0, 1)

+ Emergency Cooling by Operator + 0.001

restriction. One of most important

merits in SD is used as the feedback

algorithm in which Reactor is connected

to LOCA. This means the final

event, Reactor, affects to the initial

event, LOCA. There are some cartoon

shapes which could give the operator

the sign of meaning. In the arrow line,

the plus sign means the additive

values of the event. In Table 4, the

values of the event are shown, which

are decided by expert’s judgments. In

the case of Piping Integrity, if the

randomly generated number between

0 and 1 is lower than 0.3, the value is

0.0. Otherwise it is 1.0. So, the

Boolean value is obtained. The others

are similar to this case. In the case of

LOCA and Reactor, the values are

accumulated using the ‘Level’ function

in which the values are summed up by

the designed time step.

3 Results

The simulation is performed for the

SD modeling. Using passive system of

the free-fall of coolant, the designed

scenarios are quantified. Figure 8 is

the causes tree of SD modeling which

is from the Figure 7. There are results

of the modeling. In Figure 9, there are

the cause tree’s results of SD modeling

as (a) Reactor and (b) LOCA. In

­Figure 9 (a), the possibility for LOCA

is shown. The Y-axis has the relative

value where the value is stabilized after

it increases abruptly. In the final

stage as Reactor in Figure 9 (b), the

integrity of the reactor is increased.

4 Conclusions

The complex algorithm of the SD

modeling is done in the passive

cooling system. The free-fall could be

another kind of the nuclear passive

system which is different from the

conventional passive systems as

gravity and natural circulation. There

are some finding in this study as

follows,

• The nuclear passive system is modeled

using the free-fall concept.

• System dynamics (SD) based

algorithm is performed for nuclear

accident.

• More realistic safety assessment is

described.

• New kind of nuclear safety analysis

is done successfully

The nuclear passive system by the

free-fall is successfully modeled for

the LOCA accident. Conventional

passive systems of gravity or natural

circulation could be performed when

the piping systems are not damaged.

However, in the Fukushima and

Chernobyl cases, the piping was blown

ENVIRONMENT AND SAFETY 161

Environment and Safety

Applied Reliability Assessment for the Passive Safety Systems of Nuclear Power Plants (NPPs) Using System Dynamics (SD) ı Yun Il Kim and Tae Ho Woo


atw Vol. 63 (2018) | Issue 3 ı March

ENVIRONMENT AND SAFETY 162

| | Fig. 9.

Results of SD modeling, (a) LOCA and (b) Reactor.

away. So, the external coolant supply

system is introduced in the paper

where the water is poured into the

reactor. The guiding piping or tube

could be equipped for entering the

water into the reactor core. If the

explosion happens, the coolants could

be showering into the reactor core and

its building. New kind of passive

system is expected successfully in the

on-site black out, because the drone

could be operated by battery or

engine.

References

| | AirMule. 2016. Technology, Urban

Aeronautics LTD. Urban Aeronautics

AirMule, http://www.urbanaero.com/

category/airmule/.

| | Cho, Y.J., Bae, S.W., Bae, B.U., Kim, S.,

Kang, K.H. and Yun, B.J. 2016.

Analytical studies of the heat removal

capability of a passive auxiliary feedwater

system (PAFS). Nuclear Engineering

and Design 2016, 248, 306-316.

| | Cho, H.S. and Woo, T.H. 2016.

Mechanical analysis of flying robot for

nuclear safety and security control by

radiological monitoring. Annals of

Nuclear Energy, 94, 138-143.

| | Clancy, L.J. 2006. Aerodynamics.

India: Sterling Book House.

| | Gou, J., Qiu, S., Su, G. and Jia, D. 2009.

Thermal Hydraulic Analysis of a Passive

Residual Heat Removal System for an

Integral Pressurized Water Reactor.

Science and Technology of Nuclear

Installation, 473795.

| | Ha, T. and Garland, W. 2006. Loss of

Coolant Accident (LOCA) Analysis for

McMaster Nuclear Reactor through

Probabilistic Risk Assessment (PRA), presented

at 27 th Annual Conference of

the Canadian Nuclear Society, Toronto,

Ontario, Canada, June 11-14, 2006.

| | Jeong, S.H. and Jung, S.A. 2014. A

quad-rotor system for driving and flying

missions by tilting mechanism of rotors:

From design to control. Mechatronics,

24, 1178-1188.

| | NASA. 2014. Dynamics of Flight,

National Aeronautics and Space

Administration (NASA). Available on:

http://www.grc.nasa.gov/

WWW/k- 12/UEET /StudentSite/

dynamicsofflight.html/.

| | Park, H.S., Choi, K.Y., Cho, S., Park, C.K.,

Yi, S.K., Song, C.H. and Chung, M.K.

2007. Experiments on the Heat Transfer

and Natural Circulation Characteristics

of the Passive Residual Heat Removal

System for an Advanced Integral Type

Reactor. Journal of Nuclear Science and

Technology, 44, 703-713.

| | Potter, M. and Wibbert, D. 2007.

Schaum’s Outline of Fluid Mechanics

(Schaum's Outlines), 1 st Edition. New

York (NY): McGraw-Hill Education.

| | SDS. 2014. Introduction to System

Dynamics, System Dynamics Society

(SDS). Available on:

http://www.systemdynamics.org/

joining/#aboutsd/.

| | The Physics Classroom, Kinematic

Equations and Free Fall, 2016. Available

online: http://www.physicsclassroom.com/class/1DKin/Lesson-6/Kinematic-Equations-and-Free-Fall/.

| | The Virtual Nuclear Tourist. 2006.

Emergency Feedwater Systems.

Available online: http://www.nucleartourist.com/systems/af.htm.

| | The Smithsonian’s National Air and

Space Museum. 2014. Roll, Pitch, and

Yaw. Available on: http://howthingsfly.

si.edu/flight-dynamics/roll-pitch-andyaw.

| | Ventana. Vensim code system. 2016.

Vensim PLE (Evaluation or Educational)

6.4, Ventana Systems, Inc. Available on:

https://vensim.com.

Authors

Yun Il Kim

Korea Institute of Nuclear Safety

62 Gwahak-ro, Yuseong-gu

Daejeon 34142

Republic of Korea;

Tae Ho Woo

Department of Mechanical and

Control Engineering

The Cyber University of Korea

106 Bukchon-ro, Jongno-gu

Seoul 03051

Republic of Korea

Environment and Safety

Applied Reliability Assessment for the Passive Safety Systems of Nuclear Power Plants (NPPs) Using System Dynamics (SD) ı Yun Il Kim and Tae Ho Woo


atw Vol. 63 (2018) | Issue 3 ı March

Untersuchungen zum Geometrieeinfluss

von Hartmetalllamellen beim Betonfräsen

Simone Müller und Sascha Gentes

Einleitung und Motivation Die Minimierung kontaminierter Abfälle ist bei Rückbauvorhaben im kerntechnischen

Bereich von höchster Priorität. Im Bereich der Gebäudedekontamination ist hierbei eine effiziente Bearbeitung

aller betroffenen Betondecken, -wände und -böden unerlässlich und führt schnell zu einer zu bearbeitenden Fläche von

mehreren tausend Quadratmetern. Die Dekontamination erfolgt überwiegend durch den Einsatz von Fräsen, z.B.

Bodenfräsen, die ursprünglich für die Bearbeitung von Estrichen und niederfesten Betonen ausgelegt sind. Bei der

Bearbeitung normalfester Betone, wie sie in Kernkraftwerken üblicherweise verbaut sind, verringert sich die Standzeit

gegenüber Estrichen aufgrund der höheren Betonfestigkeiten jedoch drastisch. Daraus ergibt sich, neben vermehrten

Rüstzeiten zum Werkzeugwechsel und einem daraus resultierenden Kontaktrisiko der Mitarbeiter zu kontaminiertem

Werkzeug, auch ein erhöhtes Aufkommen an Sekundärabfall durch den vermehrten Anfall von verschlissenen

Fräslamellen.

Das vom Bundesministerium für Wirtschaft

und Energie (BMWi) geförderte

Forschungsprojekt „Entwicklung und

Optimierung eines Schlagwerkzeugs

zum Abtrag von (kontaminierten)

Beton oberflächen“ (EOS, Förderkennzeichen:

KF2286004LL3) nimmt sich

dieser Aufgabenstellung mit dem Ziel

eines effizienteren Betonabtrags durch

eine Weiterentwicklung der Fräslamellen

an. Ein schnellerer Betonabtrag

führt unweigerlich auch zu

geringerem Personaleinsatz. Die effizientere

Dekontamination gewinnt

daher, vor dem Hintergrund der

zunehmenden Anzahl von Rückbauprojekten

im kerntechnischen Bereich,

an ökonomischer und sicherheitstechnischer

Relevanz. Im Rahmen des

Forschungsprojektes arbeiten als

Kooperationspartner das Karlsruher

Institut für Technologie (KIT) und

die Contec Maschinenbau & Entwicklungstechnik

GmbH (Alsdorf/Sieg)

zusammen.

Methodik und

Vorgehensweise

Am Institut für Technologie und

Management im Baubetrieb (TMB) des

KIT, Abteilung Rückbau konventioneller

und kerntechnischer Bauwerke,

wurde zur Erprobung verschiedener

Fräslamellengeometrien

ein Versuchstand konzipiert. Mit

diesem können, bei definiertem

Fräsen vorschub, -drehzahl und Zustellung,

gezielt verschiedene Belastungswege

der Fräslamelle nachgebildet

werden. Im Anschluss kann

der an der Lamelle aufgetretene Verschleiß

gemessen werden.

| | Abb. 1.

Bodenfräse CT320 des Herstellers Contec GmbH

zur Führung der Verfahreinheit der

Fräse angebracht sind (Abb. 2). Der

Grundkörper, eine handelsübliche

Betonfräse, wie in Abbildung 1

dargestellt, ist über eine Zustelleinheit

mit einem Verfahrschlitten verbunden.

Dieser Schlitten läuft auf den

horizontalen Schienen, siehe Abbildung

2. Im Gehäuse der Betonfräse

befindet sich die Werkzeugtrommel

mit den Achsen, auf denen die Fräslamellen

gelagert sind. Auf dem

Boden des Versuchsstandes lassen

sich darüber hinaus auch unterschiedliche

Betonproben befestigen (Abbildung

3).

| | Abb. 2.

Versuchsstand

Aufbau der Fräslamellen

und das Fräsverfahren

Die Fräslamellen sind fliegend auf

den Achsen der Werkzeugtrommel

gelagert. Der Aufbau der Werkzeugtrommel

und der Fräslamellen ist in

Abbildung 4 dargestellt. Die Außengeometrie

ist bei handelsüblichen

Lamellen sternförmig.

Je nach Maschinengröße und

Hersteller besitzt eine Lamelle fünf

bis zwölf Spitzen. An den Sternspitzen

ist ein Hartmetallstift eingelassen, der

die Materialabnutzung verringert

(siehe Abbildung 4 rechts). Die

Innen geometrie der Achsenlagerung

163

DECOMMISSIONING AND WASTE MANAGEMENT

Versuchsstand

Der eingesetzte Versuchsstand besteht

aus einem symmetrischen Außengerüst,

an dem horizontale Schienen

| | Abb. 3.

links: Fräslamelle in Fräse; rechts: Frässpuren

Decommissioning and Waste Management

Studies on the Geometric Influence on Hard Metal Shavers During Concrete Shaving ı Simone Müller and Sascha Gentes


atw Vol. 63 (2018) | Issue 3 ı March

DECOMMISSIONING AND WASTE MANAGEMENT 164

| | Abb. 5.

Laserscan des Betonabtrags

| | Abb. 4.

Aufbau der Frästrommel

der Lamellen ist rund. Durch diese

Form ist eine Positionierung der Hartmetallspitzen

zur Betonoberfläche

nicht gegeben und im Normalgebrauch

nicht vorgesehen.

Im Betrieb drücken die durch die

Trommelrotation induzierten Fliehkräfte

die Fräslamellen radial von

der Trommelmittelachse weg. Durch

die Zustellung der Fräse zum Boden

schlagen die Fräslamellen bei

Trommel rotation auf die zu bearbeitende

Betonoberfläche. Durch das

spröde Werkstoffverhalten des Betons

fragmentiert die Betonoberfläche infolge

des Stoßes. Die Hartmetalllamelle

wird von der Betonoberfläche

in Richtung der Trommelachse gedrückt

und rollt auf der Oberfläche

ab. Nach dem Überwinden der Oberfläche

legt sich die Lamelle wieder an

der Achseninnenseite an. Dieser Vorgang

wiederholt sich für alle Trommelachsen

zyklisch bei jeder Umdrehung

der Werkzeugtrommel. Eine ausführliche

und weiterführende Erläuterung

des Fräsvorgangs ist in [2] dargestellt

Beton und Versagensmechanik

Nach DIN 1045 ist Beton ein künstlicher

Stein. Hergestellt wird dieser

aus einem Gemisch von Zement,

Betonzuschlag (Gesteinskörnung),

Wasser und je nach Anwendungsfall

speziellen Zusatzstoffen. Es ergibt

sich ein zweiphasiges System aus

Zementmatrix und Zuschlagsstoff [5].

Aufgrund der unterschiedlichen

mechanischen Eigenschaften der

Zuschlagskörnung und des Zements

sind die Versagensmechanismen von

Beton körpern sehr komplex. Die

unter schiedlichen mechanischen Eigen

schaften der einzelnen Bestandteile

des Betons führen zu deutlichen

lokal-ungleichmäßigen Werkstoffkennwerten.

Das Auftreffen einer Lamelle auf

der Zementmatrix bzw. auf einem

Zuschlagskorn oder im Randgebiet

zwischen Zuschlagskorn und Zementmatrix

führt aufgrund verschiedener

Festigkeiten der Komponenten zu

unterschiedlichem Abtrag. Um eine

möglichst gleichbleibende Reproduzierbarkeit

der Abtragsmechanik der

Lamellen erreichen zu können, wurde

darauf geachtet, dass der Beton im

Rahmen des Versuchsprogramms

möglichst gleichmäßige Eigenschaften

besitzt. Durchgeführte Voruntersuchungen

zeigten, dass die Wahl

eines geringen Durchmessers des

Zuschlaggrößtkorns ein homogeneres

Abtragsergebnis erzielt. Für die durchgeführten

Versuchsreihen wurde aufgrund

dieser Ergebnisse ein Durchmesser

von 8 mm gewählt, der dem

geringsten Größtkorndurchmesser

nach DIN 1045-2 [6] entspricht.

Nach Manns [7] sind in Kernkraftwerken

vorwiegend Normalbetone

verbaut. Alle Versuche im Rahmen der

Untersuchung erfolgten auf Basis

eines Normalbetons in der Mitte der

Bandbreite mit einer Festigkeitskasse

von C30/37.

Messtechnik

Zur Auswertung der Versuche kommen

zwei Verfahren zum Einsatz.

Einerseits wird durch Wiegen der

Fräslamellen vor und nach Versuchseinsatz

der Massenabtrag an der

Fräslamelle bestimmt. Aus dem

Massenverlust ergibt sich ein Maß

des Lamellenverschleißes.

Andererseits wird mit Hilfe eines

Laserscanners der durch die Fräslamelle

verursachte Materialabtrag

bestimmt. Der Laserscanner vermisst

genau die Oberfläche der Betonprobe.

Mit diesen Daten können geometrische

Größen der Fräsrille wie

Abtragstiefe und -fläche berechnet

werden. Abbildung 5 zeigt einen

solchen Scan.

Der verwendete Laserscanner

arbeitet nach dem Lichtschnittverfahren,

das das Prinzip der optischen

aktiven Triangulation nutzt [1]. Bei

diesem Messprinzip strahlt ein Laser

im eindimensionalen Fall auf das zu

untersuchende Testobjekt und wird

von dessen Oberfläche in diffuser

Streuung abgelenkt. Optisch ist dies

als Lichtfleck auf dem zu messenden

Punkt zu erkennen. Ein Teil des

diffus gestreuten Lichts wird über ein

Objektiv auf einen photoelektrischen

Detektor geworfen. Durch die Anordnung

mehrerer einzelner Detektoren

in einer Reihe (Zeilensensor) kann die

Koordinate des auftreffenden Lichts

entlang der Detektorachse bestimmt

werden. Mit dem bekannten Abstand

des Detektors zur Lichtquelle ergibt

sich ein Dreieck, mit dem der Abstand

des untersuchten Objekts zur

Lichtquelle errechnet werden kann

[2, 1, 3].

Beim Lichtschnittverfahren wird

der Laserstrahl mit einer vorgesetzten

Linse zusätzlich ausgeweitet, sodass

eine Linie auf das Testobjekt projiziert

wird. Der benötigte Sensor wird dafür

um eine Dimension erweitert (Matrixsensor).

So können alle Punkte auf

der projizierten Linie simultan und

ohne relative Verschiebung des Messgerätes

zum Testobjekt gemessen

werden. Um ein dreidimensionales

Abbild zu bekommen, muss lediglich

eine Relativbewegung orthogonal

zur Laser linie durchgeführt werden

[2, 3, 4].

Variationen der Fräslamelle

Neben der Änderung der Betriebsparameter

der Betonfräse, die im

Rahmen von [2] betrachtet wurden,

bietet die Variation der Fräs lamellengeo

metrie eine Möglichkeit zur Einflussnahme

auf den Betonabtrag.

Abbildung 6 und Abbildung 7

zeigen eine handelsübliche Fräslamelle

im unbenutzten Zustand und

mit einem Beanspruchungsweg von

ca. 540 m.

Mögliche Stellgrößen der Variation

der Lamelle sind das Fräslamellengewicht

und die Außengeometrie der

Fräslamelle so wie die Größe der

verwendeten Hartmetallstifte.

Decommissioning and Waste Management

Studies on the Geometric Influence on Hard Metal Shavers During Concrete Shaving ı Simone Müller and Sascha Gentes


atw Vol. 63 (2018) | Issue 3 ı March

| | Abb. 6.

Fräslamelle Beanspruchungsweg: 0 m

| | Abb. 7.

Fäslamelle Beanspruchungsweg: 540 m

Fräslamellengewicht

Die Betrachtung der allgemeinen

Stoßgleichung:

(wobei m die Masse der Stoßkörper

bezeichnet und v bzw. v' die Geschwindigkeiten

vor- bzw. nach

dem Stoß) zeigt, dass die in den Stoß

eingebrachte Energie neben den

Geschwindigkeiten der Stoßpartner

auch von deren Gewicht abhängt. Der

Betonabtrag beim Fräsen mittels Hartmetalllamellen

sollte also auch vom

Fräslamellengewicht abhängen. Zur

Klärung dieser Hypothese erfolgten

Versuche mit einer Fräslamelle mit

veränderlicher Masse.

Mit den in Abbildung 8 und Abbildung

9 gezeigten Stahlscheiben lässt

sich das Gewicht der Lamelle schrittweise

erhöhen.

Außengeometrie und Größe der

verwendeten Hartmetallstifte

Durch die Erhaltung der gegebenen

Außendimensionen wurde gewährleistet,

dass die modifizierten Lamellengeometrien

auch weiterhin in

konventionell erhältlichen Maschinen

zum Einsatz kommen können.

Im Rahmen der durchgeführten

Versuche zur Variation der Geometrie

sind Lamellen mit einem Spitzenwinkel

von 30 und 60 Grad untersucht

worden. Zusätzlich erfolgte die Untersuchung

einer Oktaedergrundfläche

(siehe Abbildung 10) sowie der

| | Abb. 8.

CAD Zeichnung: Hartmetalllamelle mit veränderlicher Masse

Einfluss verschiedener Hart metallspitzen

durchmesser bei gleicher Lamellengeometrie

(siehe Abbildung

11). Um dabei eine gleichbleibende

Gesamtmasse der veränderten Lamellen

gewährleisten zu können, wurde

der Grundkörper durch gewichtsreduzierende

Bohrungen versehen. Je

nach Geometrie ergeben sich unterschiedliche

Bohungsdurchmesser. Die

hierdurch geschaffene gleichbleibende

Masse gewährleistet die Vergleich barkeit

der verschiedenen Lamellengeometrien.

Veränderungen des Gewichts

würden ein verändertes kinetisches

Verhalten verursachen und so die

jeweilige Abtragsleistung, wie die

Ergebnisse zur Änderung des Fräslamellengewichts

zeigen, beeinflussen.

| | Abb. 10.

Untersuchte Fräslamellen: Variation der Außengeometrie

| | Abb. 11.

Variation des Hartmetallspitzendurchmessers

| | Abb. 12.

Abtrag in Abhängigkeit des Lamellenzusatzgewichtes

| | Abb. 9.

Hartmetalllamelle mit veränderlicher Masse

Ergebnisse

Die Versuche wurden mit den

oben beschriebenen Variationen der

Lamellen durchgeführt, im Einzelnen

sind dies Variationen des Gewichts,

der Außengeometrie und der Größe

der verwendeten Hartmetallstifte.

Dabei sind Beton (alle Probekörper

stammen aus einer Betoncharge), Fräsenvorschub

sowie Drehzahl und

DECOMMISSIONING AND WASTE MANAGEMENT 165

Decommissioning and Waste Management

Studies on the Geometric Influence on Hard Metal Shavers During Concrete Shaving ı Simone Müller and Sascha Gentes


atw Vol. 63 (2018) | Issue 3 ı March

DECOMMISSIONING AND WASTE MANAGEMENT 166

| | Abb. 13.

Abtrag in Abhängigkeit der Außengeometrie

Variation

Fräsenzustellung konstant gehalten

worden. Die Auswertung der durchgeführten

Versuche soll im Hinblick auf

Frässpurtiefe und -fläche sowie den

Massenabtrag an der Fräslamelle

(Vgl.: [8], [9]) exemplarisch betrachtet

werden:

Das Diagramm in Abbildung 12

zeigt die Tiefe der durch die Fräslamelle

entstandenen Frässpur im

Betonkörper über das zusätzlich an

der Fräslamelle angebrachte Gewicht.

Es ist zu erkennen, dass ein linearer

Zusammenhang zwischen dem Gewicht

der Fräslamelle und dem

Betonabtrag besteht. Durch eine

Massen zunahme von 120 g ergibt sich

beispielsweise eine Erhöhung der

Abtragstiefe um 0,3 mm, dies entspricht

einer Zunahme um etwa 10%

des ursprünglichen Ausgangsab trages.

Die Versuche bei Variation der

Außengeometrie, die in Abbildung

13 abgebildet sind, zeigen, dass die

Anordnung von möglichst viel Masse

an dem Lamellenaußendurchmesser

höhere Abtragswerte um bis zu rund

10 Prozent liefert.

Die Verwendung unterschiedlich

großer Hartmetallspitzen (Abbildung

11) resultiert, wie das Diagramm in

Abbildung 14 zeigt, in einem fast

sechzigfach geringeren Massenverlust

und Verschleiß bei größerem Spitzendurchmesser,

bei rund anderthalbfacher

Abtragsfläche. Gleichzeitig verringert

sich die erreichte Abtragstiefe

bei größeren Spitzendurchmessern

um rund 10 Prozent.

Einfluss auf Abtrag

Gewicht Abtragstiefe ± 10%

Außengeometrie Abtragstiefe ± 10%

Hartmetallspitzendurchmesser

| | Tab. 1.

Ergebnisse des Forschungsprojektes EOS.

Änderung des Massenverlusts der Fräslamellen

zueinander um das 60fache

Zusammenfassung und

Ausblick

Die im Rahmen des Forschungsprojektes

EOS durchgeführten Versuche

zeigen einen Zusammenhang

zwischen der Geometrie der Fräslammelle

und dem Betonabtrag beziehungsweise

dem Verschleiß der

Lamelle in Form des Massenverlustes

der Lamelle. Es konnte im Versuchsaufbau

gezeigt werden, dass die Variation

der Außengeometrie durch Anordnung

von möglichst viel Masse an

dem Lamellenaußendurchmesser höhere

Abtragswerte von bis zu 10 Prozent

liefert. Weiterhin führt die

Vergrößerung des Hartmetallspitzendurchmessers

zu einem größeren,

flächigen Betonabtrag bei sechzigfach

geringerem Massenverlust (Verschleiß)

an der Fräslamelle. Die

Ergebnisse sind in Tabelle 1 zusammengefasst.

Somit wird im Verhältnis

zum Lamellenverschleiß ein größeres

Abtragsvolumen erreicht. Dies führt

zu einer Verlängerung der Standzeit,

Reduktion der Rüstanzahl und somit

Verringerung des Sekundärabfalls.

Eine Übertragung der erzielten

Versuchsergebnisse in die Praxis ist

vorgesehen.

Literatur

| | Abb. 14.

Variation des Hartmetallspitzendurchmessers

[1] MICRO-EPSILON MESSTECHNIK GmbH

u. Co. KG (Hrsg.): Betriebsanleitung

scanCONTROL 2700 / 2710 / 2750.

MICRO-EPSILON MESSTECHNIK GmbH

u. Co. KG.

[2] Deutsches Institut für Normung (Hrsg.):

Optoelectronic measurement of form,

profile and distance: Deutsche Norm :

DIN 32877. Berlin: Deutsches Institut

für Normung, (DIN 32877).

[3] VDI Verein Deutscher Ingenieure e.V.:

Genauigkeit von Koordinatenmeßgeräten;

Kenngrößen und deren

Prüfung = Coordinate measuring

machines with optical probes optical

sensors for one-dimensional distance

measurement. Februar 1999, Ausg.

deutsch- englisch. Berlin, 1999 (VDI-

VDE-Richt linien ; 2617,6,2). – Frühere

Ausg.: 11.96 Entwurf, deutsch.

[4] Sackewitz, Michael (Hrsg.): Leitfaden

zur optischen 3D-Messtechnik.

Stuttgart : Fraunhofer-Verl., 2014

( Vision-Leitfaden ; 14). – ISBN 978–3–

8396–0761–9. – Literaturangaben.

[5] Bergmeister K.; Wörner J.: Beton

Kalender 2005 – Fertigteile Tunnelbauwerke,

2005, Kapitel VIII: Hans-Wolf

Reinhardt – Beton, Ernst & Sohn, Verlag

für Architektur und technische Wissenschaften

GmbH & Co. KG, Berlin.

[6] Verein Deutscher Zementwerke e.V.;

Biscoping M.: Gesteinskörnungen für

Normalbeton; Zement-Merkblatt

Beton technik B 2 1.2012; http://www.

beton.org/fileadmin/beton-org/

media/Dokumente/PDF/Service/

Zementmerkbl%C3%A4tter/B2.pdf

(Abgerufen: 25.04.2017).

[7] Manns W.: Beton für den Bau von

Kernkraftwerken 1971, Betontechnische

Berichte, Verein Deutscher

Zementwerke.

[8] Tagungsband KOTEC 2017: 13. Internationales

Symposium “Konditionierung

radioaktiver Betriebs- und Stilllegungsabfälle,”

22.-24. März 2017; Untersuchungen

zum Geometrieeinfluss der

Hartmetalllamellen beim Betonfräsen;

M.Sc. Simone Müller, Prof. Dr. Sascha

Gentes.

[9] Tagungsband 48th Annual Meeting on

Nuclear Technology 2017, 16 - 17 Mai

2017: Untersuchungen zum Geometrieeinfluss

auf die Abtragsleistung von

Hartmetalllamellen beim Betonfräsen;

M.Sc. Simone Müller, Prof. Dr. Sascha

Gentes.

Authors

M. Sc. Simone Müller,

Prof. Dr.-Ing Sascha Gentes,

Institut für Technologie und

Management im Baubetrieb

des Karlsruher Instituts für

Technologie (KIT)

Geb. 50.31

Am Fasanengarten

76131 Karlsruhe, Deutschland

Decommissioning and Waste Management

Studies on the Geometric Influence on Hard Metal Shavers During Concrete Shaving ı Simone Müller and Sascha Gentes


Kommunikation und

Training für Kerntechnik

Strahlenschutz – Aktuell

In Kooperation mit

TÜV SÜD Energietechnik GmbH

Baden-Württemberg

Seminar:

Das neue Strahlenschutzgesetz –

Folgen für Recht und Praxis

Seminarinhalte

1. Teil | Das neue Strahlenschutzgesetz (StrlSchG)

ı Das neue StrlSchG: Historie

ı Inkrafttreten des StrlSchG

ı Überblick über grundlegende Änderungen

ı Die Entwürfe der neuen Strahlenschutzverordnung(en) (soweit zum Seminarzeitpunkt vorliegend)

2. Teil | Auswirkungen auf die betriebliche Praxis

ı Genehmigungen, Zuständigkeiten

ı Begriff der Expositionssituation (geplant, bestehend, Notfall), NORM

ı Aufsichtsprogramm, § 180 StrlSchG, Rechtfertigung

ı Notfallpläne

ı Änderungen für SSV/SSB

ı Dosisgrenzwerte

ı Strahlenschutzregister

3. Teil | Strahlenschutz im Back End

ı Freigabe und Entsorgung

ı Altlasten

ı Baustoffe

Zielgruppe

Die 2-tägige Schulung wendet sich an Fach- und Führungskräfte, an Projekt- und Abteilungsleiter und

Experten aus den Bereichen Betrieb, Abfälle, Genehmigung, Strategie und Unternehmens kommunikation

sowie an Juristen.

Maximale Teilnehmerzahl: 12 Personen

Referenten

RA Dr. Christian Raetzke

Maria Poetsch

Wir freuen uns auf Ihre Teilnahme!

ı CONLAR Consulting on Nuclear Law, Licensing and Regulation

ı Strahlenschutzexpertin bei der TÜV SÜD Energietechnik GmbH

Baden-Württemberg

Bei Fragen zur Anmeldung rufen Sie uns bitte an oder senden uns eine E-Mail.

Termin

2 Tage

5. bis 6. Juni 2018

Tag 1: 10:30 bis 17:30 Uhr

Tag 2: 09:00 bis 16:30 Uhr

Veranstaltungsort

Geschäftsstelle der INFORUM

Robert-Koch-Platz 4

10115 Berlin

Teilnahmegebühr

1.598,– € ı zzgl. 19 % USt.

Im Preis inbegriffen sind:

ı Seminarunterlagen

ı Teilnahmebescheinigung

ı Pausenverpflegung

inkl. Mittagessen

Kontakt

INFORUM

Verlags- und Verwaltungsgesellschaft

mbH

Robert-Koch-Platz 4

10115 Berlin

Petra Dinter-Tumtzak

Fon +49 30 498555-30

Fax +49 30 498555-18

seminare@kernenergie.de


atw Vol. 63 (2018) | Issue 3 ı March

168

RESEARCH AND INNOVATION

The Technology of TVHTR-Nuclear- Power

Stations With Pebble Fuel Elements

Power and Heat for the Production of Drinking Water Out of Seawastewater

and/or Hydrogen in Combination with Solar Plants

Urban Cleve

Basic design features and

operational experiences

Design principals

of TVHT reactors

The German development of TVHTR

Power Stations [4, 5, 6] was primarily

initiated through the ideas of Prof. Dr.

R. Schulten. He developed this technology

in the 1950`s while employed

by Brown Boveri. Dr. Schulten became

CTO at the new BBC/Krupp Reaktorbau

GmbH in Mannheim and later as

Professor and Director of KFA-Jülich

Nuclear Research Department [6]. Dr

Schulten stated:

“In the field of Nuclear Energy,

the AVR Reactor occupies a specific

unique position. Helium gas cooled,

graphite moderated, inherently safe

and the hottest reactor worldwide. It

is the story of the only pure German

development of nuclear power plant

technology.”

Main design features of the AVR

Reactor are:

• Spherical graphite fuel elements

which contain the fission material.

• Graphite as main core construction

material and as reflector and moderator.

• A safe integrated reactor concept

with helium used for the cooling

gas.

• Enclosed primary helium gas circuit

in one reactor vessel.

These are the most important basics

for safe operation. The goal until

now has been the construction of an

inherently safe nuclear power station

with out-standing nuclear and design

safety [6, 19].

AVR power station

The technology of the AVR was set up

from “zero”, Figure 1, as there was no

prior experience with engineering

and design of components operating

in a helium environment [1, 2].

The complete new development of

all components was a huge challenge

and consequently routine delays and

cost increases were experienced.

Additionally, the TÜV, a regulatory

oversight business, underwent phases

| | Fig. 1.

The AVR 46 MWth/15 MWel Experimental HTR

Power plant.

of learning and had to develop better

testing methods for the nuclear power

stations. During cold tests under normal

environmental temperature and

pressure all components were extensively

and successfully tested.

• The steam generator, Figure 2,

was constructed several times and

during production new test procedures

had to be developed. After

completion it underwent a helium

pressure test, the first of its kind

worldwide.

| | Fig. 2.

The AVR steam generator during manufacturing.

• The absorbing rods functioned

hundreds of times without showing

any problems. After installing

into the reactor and tested in a

helium atmosphere they failed

completely. It needed extensive

design improvements, after which

functioned perfectly.

• All components of the pebble

charging system were tested over

years of operation. They showed

only some problems during operation

and improvements could be

performed under radioactive conditions

using specially designed

equipment.

• Nearly 600 helium valves manufactured

by suppliers failed completely

and had to be newly

designed and tested under helium

conditions. The new design (by

BBK) was a great success. No

further problems were identified

after testing in a helium atmosphere.

All problems had been solved and an

average yearly availability of 66.4 %

with a maximum of 92 % per year was

achieved during 23 years of operation

including the periods for which numerous

experiments were performed.

This probably established a world

record for a completely new reactor

design.

The section through the AVR with

inner core, the graphite reflector,

thermal shield, inner reactor pressure

vessel, biological shield 1 and the

outer pressure vessel is shown in

Figure 3.

| | Fig. 3.

Section through the AVR reactor.

| | Fig. 4.

View into the core of the AVR.

Research and Innovation

The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve


atw Vol. 63 (2018) | Issue 3 ı March

• We had only one major problem,

an incident of INES 1. Only one of

the some thousand weldings of the

steam generator leaked. After several

months of repair the steam

generator functioned very good

again with full capacity. [6, 7].

• The inner core structure, Figure 4,

has a diameter of 3 m and 4.5 m

high.

• The fuel charging unit, [7, 8]

Figure 5, designed and developed

by BBK, with all its numerous components

functioned sensationally

well. In 23 Years of operation only

220 pebbles were discharged. This

was a figure of 0.0092 % of the

2,400,000 moved pebbles. A basic

diagram of the fuel cycle shows

Figure 6 [7, 8, 9].

| | Fig. 5.

View into the core of the AVR.

• Because of the excellent functioning

of all de- and remounting

equipment for the components,

repairs could be done during operating

of the reactor. No personal

had been injured by radiation.

• The AVR had to be shut down only

by political reasons in 1988. It

was an excellent test reactor for a

variety of different fuel elements

with different kinds of compositions

of Uranium, Thorium and

Plutonium. All these international

experiments must be stopped, a

very poor decision for future development

of HTR-Power-Stations

worldwide.

As a result, it can be confirmed, that

the operation of the AVR Reactor was

a unique success story.

The AVR modul reactor

An AVR design, modified with an integrated

He prim /He sec heat exchanger

and only one steel pressure vessel,

is the far best developed and operational

completely tested.

| | Fig. 7.

THTR-300 MWel/750MWth Demonstration

Power Station.

Modul concept of a

Small Model HTR (SMHTR) up

to 100 MWth/40 MWel

The design of the THTR-300el­

Demonstration Nuclear Power

Station

The basic design of the THTR-300

Power Station started in 1965,

Figure 7. No prior experience from

the AVR could be brought into the new

design (Figure 8).

The main design differences of the

THTR-300 to the AVR are:

• Pre-stressed concrete pressure

vessel (PCPV) instead of two steelvessels

(Figure 9). The dimension

was 25 meters in diameter and

28 meters high. The PCPV was

chosen primarily for safety reasons.

A model with a scale of 1:20 was

tested with water pressure. Very

small cracks occurred at a pressure

between 90-120 bar. The main

crack was Occurred at 190 bar.

After a pressure drop to 40 bar the

vessel was nearly gastight again.

This test was the baseline for the

calculation of the THTR-300 PCPV

[28].

• A closed inner circuit of helium

cooling gas to avoid the release of

fission products and graphite dust.

This was the most important

design factor to avoid release

of contaminated primary helium

gas or contaminated particles of

graphite dust.

• Helium gas flow from top to

bottom.

• TRISO-Pebbles as fuel elements.

• All other components such as

blowers, fuel element feeding and

handling components, graphite

structures, etc. were designed and

improved very similar to the components

of the AVR and showed

no problems.

New nuclear calculations of the reactor

physics showed, that the diameter

RESEARCH AND INNOVATION 169

| | Fig. 6.

Fuel cycle of pebble bed transportation

system.

• After decommissioning in 1989 it

was ascertained, that the complete

graphite interior had not moved by

one millimeter. It looked as newly

installed. Only some very small

accumulations of graphite dust in

some corners could be detected.

• According to the INES scale only

one incident occurred with “1“, all

other events had an INES level of

“zero“ during 23 years of operation

[6, 7].

| | Fig. 8.

Survey of the THTR-300.

Research and Innovation

The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve


atw Vol. 63 (2018) | Issue 3 ı March

Plant parameter Units Calculated values Measured values

RESEARCH AND INNOVATION 170

| | Fig. 9.

Pre-stressed concrete pressure vessel and

THRT-300 core.

| | Fig. 10.

Concept of pebble bed ring core.

of the core with 5.6 m was too large,

so the shutdown rods in the surrounding

graphite reflector could not cool

the pebbles to the low temperatures

necessary in case of shutdown of

the reactor. Until this time no prior

experience was available with the

behavior of the graphite core structure

during extended operation.

Therefore, the decision was made to

insert the shutdown rods directly into

the pebble bed with the potential

danger of crushing the fuel elements.

An alternative design with a pebble

bed ring core PBRC (Figure 10) [4]

could not be chosen, as no prior

experience existed with the behavior

of the graphite structure in the AVR.

Testing of the insertion of rods into

the pebble bed could not be performed

under operational conditions.

This decision was discovered later

when operating the THTR-300 during

commissioning of the power station

which was a terrible mistake. There

was no nuclear risk, but 0.6 % of

the pebbles ruptured which was

Reactor thermal power MW 761.65 763.5

Circulated speed rpm 5,369 5,361

Helium flow kg/s 297 293.9

SG inlet He temperature °C 750 750.4

SG outlet He temperature °C 247 245.9

Feedwater flow kg/s 254 253.9

Main steam temperature °C 545 544.3

Main steam pressure bar 186 184.9

Reheat flow kg/s 247.3 237.9

Reheat temperature °C 535 532.3

Reheat pressure bar 46.3 47.5

Generator output MWe 305.9 306

Net electric output MWe 295.5 295.6

Net heat rate kcal/kWh 2,145 2,134

| | Tab. 1.

THTR-300, Comparison of key plant parameters.

substantially higher when compared

to the results of the AVR at 0.0092 %.

All operational difficulties with the

THTR-300-Reactor based on this

unique problem.

Table 1 [14] shows the differences

between calculated design parameters

and the parameters in operation.

Smaller differences cannot be calculated

and it was determined that

without the problems of a high

percentage of crushed pebbles, the

THTR-300 would have been operated

with the same high operational times

as obtained with the AVR.

Today, it can be determined that

the PBRC would have avoided all of

these difficulties. The stability of the

graphite structure of the AVR ascertained

after the shutdown of the AVR,

proved this design could be the basis

for a new PBRC which was patented in

1965 [4].

The positive results of the operation

of the THTR-300 include [11, 12,

13]:

• HTR power stations can be operated

and connected to the power

grid in the same manner as conventional

power plants.

• Rupture of fuel elements does not

increase the radioactivity of primary

helium cooling gas.

• Thermodynamic efficiency is as

high as in conventional power

plants.

• The nuclear and radiological safety

of personal and environment is

excellent.

• No radiation injuries, neither in

the AVR nor in the THTR-300

occurred.

• The contaminated primary helium

gas and graphite dust are safely

surrounded and contained in the

PCPV.

• The pre-stressed concrete pressure

vessel PCPV showed it was an

excellent safety barrier against

radiation, plane crashes, terrorist

attacks, and earthquakes up to the

highest magnitudes, etc.

The pebble fuel elements

Design and operational

experiences with pebble fuel

elements

The most important components of a

nuclear power station are the fuel

elements. They contain the fissile

material for generating the energy

and the more robust the fuel elements

the safer the nuclear plant. The main

material of a pebble fuel element is

graphite and they have a diameter of

| | Fig. 11.

Original concept of a pebble and later

installed TRISO pebble.

| | Fig. 12.

Arrangement of a TRISO-pebble.

Research and Innovation

The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve


atw Vol. 63 (2018) | Issue 3 ı March

60 mm while the diameter of the inner

fuel containing matrix is 50 mm [14].

Figure 11 shows the difference

between the first idea of a pebble with

non-coated fuel and the current type.

The inner diameter of the coated fuel

particles is 0.5 mm. Embedded in the

inner graphite matrix are approximately

15,000 coated particles (cp) in

one pebble and contain the fuel

material (Figure 12). The fuel kernel

is encapsulated by three layers of very

hard and pressure resistant PyC-/-SiC-

/-PyC and is gas tight (Figure 13).

These are the “TRISO” Fuel Elements

and each coated particle has a

diameter of 0.9 mm.

| | Fig. 14.

Treatment of pebbes by hand, first pebble

loading into the core of the AVR-HTR.

| | Fig. 15.

Storage of burnt-down pebbles in casks.

describes results of an experiment: “A

High Voltage Head-End Process for

Waste Minimization and Reprocessing

of Coated Particle Fuel for High

Temperature Reactors.” [10] This

process is proposed for the separation

of coated kernels from the fuel matrix

and makes it possible to reprocess the

burnt down fuel by separation of the

coatings and the fuel kernel. The fuel

kernels remain intact and has been

successfully demonstrated in experiments

as shown in Figure 16, 17, and

18. The characteristics of the coated

fuel kernels and the complete pebbles,

manufactured by NUKEM, is shown in

Table 2.

This process, proposed and studied

with experiments by EU-JRC-Petten,

envisages the complete removal of the

coating-layers to make the fuel accessible

for further reprocessing and

manufacturing of new fuel kernels.

RESEARCH AND INNOVATION 171

| | Fig. 13.

Composition of a TRISO-pebble.

Without coating the radioactivity

of the primary helium gas in the AVR

was calculated initially to be 10 7

Curie. Therefore, the AVR was

designed with two pressure vessels.

All piping and helium operated components

were surrounded with clean

helium gas, to prevent primary contaminated

Helium gas from entering

the reactor vessel. These fuel elements

were not initially used.

The newly developed TRISO

elements avoid fission and decay

products, which are the sources of

dangerous radioactivity. Three layers

form a containment for every CP

and keep all fission products safely

enclosed. The layers remain gas tight

from 1,620 °C to 1,800 °C and do not

deteriorate or corrode even under

high pressure.

As previously mentioned, AVR

was initially designed with a helium

primary gas activity of 10 7 Curie. After

the development of the pebbles with

coated particles the primary helium

gas activity was measured at only

360 Curie [3], a factor of 0.000036

lower. They were proven in long term

operation in the AVR as reliable fuel

elements and have very excellent

advantages in comparison with all

fuel elements in other nuclear power

stations.

Fresh pebbles can be stored and

handled without any risk of radiation

(Figure 14). Radiated, burnt down

pebbles or graphite balls will be stored

(Figure 15). primarily in specially

designed containers or stockrooms

inside the basement of the reactor

building. No cooling is necessary and

they can be stored over a longtime

without risk of contamination or

radiation of the surrounding area or

personnel [15, 16, 17].

Breeding of fissile Uranium-233

by using Thorium-232

Sufficient Thorium can be found in

the surface of the earth to generate

electricity and heat by nuclear power

stations for a very long time. [20, 21,

22] However, fissile fuel needs to be

produced from the Thorium. This is

possible by breeding 232 Th up to 233 Th

using slow neutrons initially resulting

in Protactinium ( 233 Pa) which decays

to fissionable 233 Uranium. This process

is a very good possibility in a

THTR power station.

The coated fuel kernels can contain

Uranium 235/238, Plutonium 238-

242, or Thorium 232 [15, 17, 18].

These fuel materials can be combined

in a pebble matrix and burned

together. After extracting the core,

every single pebble can be measured

to its degree of burn-up. In HTR-

Pebble Bed reactors the disposal of Pu

can be extensively controlled and

each pebble is treated individually. A

very detailed and full control of Pu

disposal is guaranteed and possible

through inspection to meet the NPT.

Decommissioning and Reprocessing

of Fuel Elements and

Coated particles

The paper by the Netherlands

European Joint Research Centre JRC

Pebble Bed Ring-Core Design

for very large TVHT-Reactors

Important discoveries were generated

from the long-term operation of

the AVR and relatively short period

of three years operation of the

THTR-300, The information obtained

from these two power plants is

Coated particle

Particle batch HT 354-383

Kernel composition UO 2

Kernel diameter in

micro-meter

Enrichment

[U-235 wt. %]

Thickness of coatings

in micro-meter

501

Buffer 92

Inner PyC 38

SiC 33

Outer PyC 41

16.75

Particle diameter 909

Pebble

Heavy metal loading

[g/pebble]

U-235 contents

[g/pebble]

Number of coated

particles per pebble

Volume packaging

fracture [%]

Defective SiC layers

[U/U tot ]

6.0

1.00 +/-1%

9,560

6.2

7.8 x 10 -6

Matrix graphite grade A3-3

Matrix density [kg/m 3 ] 1,750

Temp. at final heat

treatment [°C]

1,900

| | Tab. 2.

Typical chracteristics of coated particles and

pebbles produced by NUKEM.

Research and Innovation

The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve


atw Vol. 63 (2018) | Issue 3 ı March

RESEARCH AND INNOVATION 172

| | Fig. 16.

Reprocessing of pebbles before separaing

coating.

| | Fig. 17.

Reprocessing of pebbles, separated coating

shells.

| | Fig. 18.

Reprocessing of pebbes, fuel kernels

separated from coating.

necessary for the design and construction

of future large commercial V/

HTR power plants. The experience

gained with the graphite structures

are excellent and new PBRC design

based on the experiences may not

produce any problems. The PCPV [4]

of the THTR-300 was designed without

any prior experience and was a

first-time solution.

Together with the improved manufacturing

of the graphite by suppliers

and extensive knowledge from previous

designs it is possible to construct

graphite cores and reflectors with

high long term stability (Figure 4).

The internal inspection of the AVR

core showed no shift of graphite

blocks after more than 23 years

in operation and development of

graphite as a suitable material in

HTR-Reactors made good advancements

with improved development.

Unlike the THTR-300 the absorber

rods are installed in the surrounding

graphite moderator to prevent damage

to the graphite pebbles. This was a

major problem with the THTR-300

(Figure 19).

The core parameters shall be small

and not too high. This is important

for lower decay heat temperatures

in case of a loss of coolant accident

(Figure 20).

The dimensions of a ring-core can

be optimized by:

• difference between inner and outer

diameter,

• height of fuel zone,

• core volume,

• power density of fuel zone,

• maximum helium gas temperature,

• optimal flow of pebbles through

the core.

These six factors can be optimised

with regard to maximum decay heat

temperature, which must not exceed

1,600 °C in case of cooling loss (loca)

and/or pressure drop (lopa), which

would indicate an MC Accident.

The possible main design features

for this new concept may include:

• TRISO pebbles as fuel elements.

• Use of U-235 together with Th-232

to breed U-233, PU [20, 21].

| | Fig. 19.

Pebble bed of the THTR-300 with shot down

rods in the pebble bed.

| | Fig. 20.

Results of loss of coolant LOCA/MCA accident

of AVR.

• A pre-stressed concrete pressure

vessel to surround the primary

helium completely with extreme

safeguarding against all types of

potential critical events, terrorrist

attacts, and disturbances inside

and outside of the powerplant, and

absolutely safe against cyberattacks

[26].

• The new design of a pebble bed

core in a ring form, (Figure 10) [4]

with several extraction devices for

the pebbles below the core. An

advantage of this design is an

improved and more regular or

symmetrical flow of pebbles

through the core with higher

possible burn up of the fuel and

improved symmetrical cooling of

the complete pebble bed [7].

• Shut down and regulation rods

only in the graphite reflector,

• He primary /He Secondary heat exchangers

in the primary helium circuit of

the PCPV to avoid water ingression

[4].

• Only one heat transport system to

supply the different secondary

plants with high temperature heat

will reduce costs and simplify

design of the pressure vessel.

• The secondary pure helium is

inside the pipes and will have a

slightly higher pressure against

the primary integrated helium

circuit. In case of a leak, the

ingressing pure helium will be

contaminated and can be cleaned

up by the helium cleaning plant

and refilled into the clean helium

circuit.

• This design makes it possible, to

install the He/He-heat exchanger

tightly into the pressure vessel.

Several different exchanger

systems were constructed without

the ability to extract them from

the vessel as practiced in the

THTR-300.

• This design makes it impossible to

contaminate anything outside of

the reactor vessel and all possible

industrial processes can be designed

without danger of radioactive

contamination in a quite

normal conventional construction.

• This nuclear power facility makes

it possible to construct every

secondary industrial production

plants close to the HTR Power

Station.

• Helium gas flow upstream from

bottom to ceiling. The experience

from the AVR shows this solution

has some advantages compared

with downstream design in the

THTR-300.

Research and Innovation

The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve


atw Vol. 63 (2018) | Issue 3 ı March

One of the most important feature of

this design is the small core, very

similar to the core of the AVR. The

results of the MCA tests with heat

rise by decay heat (Figure 20) can

be put into consideration. So, we

are able to increase the primary

maximum helium heat temperature to

the highest possible temperatures,

possibly to 1,100 °C, limited only

by the maximum allowable metallic

tube temperature of the He/He heat

exchanger inside the PCPV.

Design of important components

for a new 600 MW el /

1.500 MW th Pebble Bed

Reactor and potential risks

The Pre-stressed concrete

pressure vessel. (PCPV)

The reactor vessel is, for safety reasons,

the most important component

of every nuclear power station. The

calculation for larger cores for pebble

bed reactors showed that the diameter

of the core is too great for construction

using steel pressure vessels and

therefore cannot be manufactured

using metallic materials. It was

decided to look for other construction

materials for a large HTR pebble bed

design with high volume and high

pressure.

Two solutions had been taken into

consideration, a pre-stressed cast iron

vessel and a pre-stressed concrete

pressure vessel. The PCPV had been

chosen due to its excellent safety

advantages versus the cast iron vessel.

Several safety conditions could not be

reached with a pre-stressed cast iron

vessel and the construction would

have some fundamental problems.

This HTR design was a completely

new construction without any prior

experience and the operational

helium gas pressure was calculated

at 40 bar. It was decided to perform

experiments with a 1:20 scale model.

The model was pressurized with

warm water. Very small cracks began

to form at a pressure between 90-120

bar. The main crack was reached at

190 bar.

After the pressure dropped to 40

bar, the vessel was nearly gastight

again. After the pressure drop the

cables pulled the concrete together

[4]. These results were deemed very

important since this test proved that

oxygen could not enter into the vessel

in event of a crash. Throughout the

testing, all necessary factors were

measured and used as a baseline for

new calculation programs to calculate

the PCPV for the THTR-300.

| | Fig. 21.

Arrangement of stressing cables of the

THRT-PCPV.

| | Fig. 22.

Top of the steam generator of THTR-300.

| | Fig. 23.

Installation of the thermal shield.

Development, design and

erection of the THTR-300

pre-stressed concrete pressure

vessel

Figure 21 shows the cross section of

the reactor [26]. Located Inside are

the core, graphite and carbon brick

structures, thermal shield, six steam

generators, blowers, shut down rods,

measuring devices, and isolation with

liner and liner cooling system further

the penetrations for the steam generators,

the holes in the concrete are

reinforced by steel layers with steel

tops (Figure 22). There are 135 penetrations

in total, the largest of which

are for extracting the steam generators

at 2.25 m. All of the penetrations

are surrounded by cables and have

| | Fig. 24.

PCPV during manufacturing.

| | Fig. 25.

Model of bottom of THTR-300 core.

| | Fig. 26.

Results of pressure test of the THTR-PCPV.

encountered no design problems. The

construction phase is demonstrated in

Figures 23, 24 and 25.

The results of the pressure test

Figure 26 shows the accuracy between

the measured and calculated

factors. The pressure tests were performed

using nitrogen and helium to

ensure accurate measuring. The design

pressure was 39.2 bar and the

highest possible pressure in case of an

accident was calculated at 46.1 bar.

The test reached the calculated and

highest possible pressure (as required

RESEARCH AND INNOVATION 173

Research and Innovation

The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve


atw Vol. 63 (2018) | Issue 3 ı March

RESEARCH AND INNOVATION 174

by the TÜV) without any problems

arising [14]. As a result, it can be assured

that existing design knowledge

and calculation program are sufficient

to calculate larger PCPV up to the

highest possible capacities, potentially

reaching 4.000 MWth.

Safety criterions

The main safety criterion [19] of a

PCPV are:

• Safety against plane crashes,

terrorist attacks, political disturbances.

• Safety against air ingress.

• Safety against loss of contaminated

graphite dust.

• Safety against all kind of crashes or

cracks.

• Safety against earthquakes up to

highest degrees.

Within the inner He/He heat exchanger:

• Safety against water ingress.

• Safety against tritium ingress.

Graphite reflector and

ceramic structure

The large numbers of design experiences

with both reactors will lead

to the best technical solutions. SGL

Group is a very important supplier for

both graphite and carbon bricks production

and is capable of designing

very reliable structures, Figure 4.

and symmetrical pebble flow through

the pebble bed. The best test results

obtained from the wall designed for

the AVR was thoroughly tested in

advance at the test laboratory of BBC/

Krupp. [1] Figure 27. This design

leads to a very symmetrical gas flow

across the pebble bed from bottom up

and consequently leads to very good

symmetrical cooling of all pebbles

across the bed. The calculation factors

for this design had been developed

in the BBC/Krupp laboratory and

showed excellent results [6, 7].

The pebble flow in the AVR was

much better than in the THTR-300

due to the larger diameter of the

THTR bed. Diameters that are too

large lead to very different pebble

flow velocities, up to a factor of 10

times, between the wall and center of

the bed [7, 14]. Very high burnt-up

results of the fuel can be achieved

with good symmetrical pebble flow.

Helium-pr/Hes-ec heat

exchangers

• The calculations can be based on

the results of the tests performed

by FZ-Jülich with the test devices

(Figure 28) [36].

• The results of the very high temperature

steam boiler tests, with

steam temperatures of 600 °C,

done in the GKM Mannheim,

Germany Power Station, can be put

into consideration.

• The secondary helium shall have a

higher pressure than the primary

helium circuit. No radioactivity can

pollute the secondary part of the

power station.

• Manufacturing is done same with

the design, proved in the THTR-300

with the steam generators (Figure

29).

The Helium blowers

The blowers in the AVR and in the

THTR-300 showed no problems at all.

An increase to higher capacities may

be possible without problems. They

should be still oil lubricated (Figure

30).

The shut down and

regulation rods

• An identical design of the

THTR-300 regulation rods can be

used, only more pieces will be

necessary (Figure 31).

The fuel element circuit

• The experience with the AVRinstallation

during 23 years of

operation is excellent [5, 6, 8].

Core and Helium gas flow

The experience of the AVR proves that

the flow from bottom up has some advantages.

The helium gas temperature

range is 230 °Cto 280 °C and entrance

temperature from 750 °C to 950 °C

possible reach 1,100 °C at the highest.

This is dependent on the metallic

material stresses and strength of the

tube material.

The design of the wall of the graphite

reflector is very important for good

| | Fig. 28.

Test facility of He-He heat exchangers

in FZ-Jülich laboratory.

| | Fig. 30.

Helium blower of THTR-300.

| | Fig. 27.

Pebble bed flow experiments in the laboratory

of BBC/Krupp with 1:1 scale.

| | Fig. 29.

Manufacturing of the THTR steam generator.

| | Fig. 31.

Shut down and regulation rod of THTR-300.

Research and Innovation

The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve


atw Vol. 63 (2018) | Issue 3 ı March

No changing or enlarging of

com ponents is necessary. Several

charging units shall operate

parallel. These components, previously

designed by BBC/Krupp,

can be used without changing the

construction, Figure 5.

The Helium Cleaning Plant

• The task of the Helium cleaning

plant is to clean in a bypass the

helium gas of the primary circuit

from impurities such as solid

graphite dust and the radioactive

chemical elements Krypton,

Xenon, Argon and Tritium. A

detailed description is published

in ATW 5/1966 [23].

Safety systems and MCA tests

The AVR was the worldwide only

nuclear power station with two times

MCA test-simulations [4, 5, 19].

The first was done in spring 1967

during the commissioning period. As

mentioned, we had a lot of undecided

problems with the unknown behavior

of important components, so mainly

with the absorber rods. We had an

agreement with the TÜV that a

MCA-test-simulation should prove

the inherent nuclear safety and

the good behavior of all these components.

At highest helium gas temperature

of 850 °C and full power of 46 MW th

the blowers were stopped by quick

stop. The complete power plant was

without electricity, also the reservediesel-engines

were out of operation

and the absorber rods were blocked.

Only the core temperature measuring

was in function. After stop, by the

temperature moved by decay heat

slowly up to about 1.000 °C. [3] Then

the temperature falls down during the

next days to normal degrees. Some

days later we re-started the complete

power station without any problem

[4].

After this test, full licensing was

granted by the TÜV for the completed

power station.

A second the test was done in 1976.

[6] This time all instruments could

be considered and all data were taken

to measure the temperature course

by the simulation of a loss of coolant

accident to develop a calculation program

for such a future case (Figure

20).

These two worldwide first experiments

had been the simulation of a

worst-case scenario, an MCA, the only

tests in nuclear power stations up to

now.

We knew exactly, that there was no

nuclear risk at all, as the radioactivity

of the primary helium gas was very

low. The coated particles made a very

good job.

A similar experiment was done in

1986 in Chernobyl. There the fuel

was not coated and the reactor not

inherent safe. The result is wellknown.

Also, loss of coolant was the reason

for the MCA in Fukushima, again the

fuel was not coated.

This shows the difference and

advantages of the reliability of pebble

fuel elements with coating of the fuel

particles in case of accidents versus

other Nuclear Power Station designs.

Compared with the originally

calculated radioactive contamination

for the AVR power plant of 10 7 Curie

the measured radioactivity of the AVR

in operation with coated particles was

360 Curie. The resultant calculation

factor is 0.000036.

With the Chinese Experimental

HTR-10 MW th reactor a further

successful loss of coolant test was

done with TRISO pebble fuel elements.

Further we will install the following

additional installations to safe the

reactor in every case of heavy danger

[19]:

• Diesel motor driven generators for

electrical reserve power.

• Quick extraction of all pebbles

from the core to a special safe store.

• Shut down rods in the graphite

reflector.

• Gastight design of the Reactor

building as containment.

• Water tight basement.

Summary and Safety Conclusions:

• Inherently safe design.

• No melting of the core is possible.

• Gastight integrated helium circuit.

• Safe against water ingress.

• Safe against air ingress.

• Safe against heavy earth quakes.

• The PCPV is safe against terrorism

and other severe attacks and has

proved as an excellent containment.

• The PCPV has proved after decommissioning

as an excellent bunker

for longtime storage of all contaminated

components, up to now for

more than 25 years.

• No graphite burning possible.

• Continuous cooling of the pebbles

is not necessary for the new elements,

pebbles in the core, or in

the castors and store.

“The safest Nuclear Power Station is

the most economical Power Station.“

The Secondary electric and/

or heat producing parts

of a HTR-Power Station

Nuclear safety regulations

No nuclear safety regulations are necessary

for every secondary industrial

plant in connection with nearby HTR-

Power station [24, 25, 26, 27].

In 23 Years of operation there was

not the smallest radioactive contamination

measured in the turbine part of

the AVR. After the shutdown of the

THTR-300 the complete secondary

part had been sold and is still in operation

in another conventional power

station connected to a normal steam

boiler plant.

The Helium secondary /water-steam

generator

The secondary helium, coming from

the He/He-heat exchanger in the

primary helium circuit, is lead to a

new design of Helium/water-steam

generator. This generator produces

the steam for the steam turbinegenerator

set to produce the electricity.

The steam data are conventional

with a steam pressure of may be

220 bar and 525 °C and intermediate,

if required two times, reheating to

525 °C.

The temperature of the secondary

helium will be calculated in accordance

with the he/he- heat exchanger

in the primary helium circuit. These

temperatures depend on the cubematerial,

the higher the temperature,

the smaller the heat-exchanger. This is

only an economical question.

The steam turbine generator set

and auxiliary components

No design changes or modifications

are necessary [29]. The same construction

as in conventional power

stations can be designed and installed.

That means a conventional turbine

with temperature entrance of 525 °C,

220 bar steam pressure, intermediate

heating one or two times up to 525 °C,

| | Fig. 32.

Precleaning installation for sea/wastewater.

RESEARCH AND INNOVATION 175

Research and Innovation

The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve


atw Vol. 63 (2018) | Issue 3 ı March

RESEARCH AND INNOVATION 176

the water-cooled condenser and the

generator. The water leaving the condenser

is pumped through several

heat exchangers, which are fed by

extracted steam from the turbine.

Everything as conventional as in all

conventional Power Stations. All

components and installations of the

secondary part can be designed as in

normal conventional power stations.

There is not a difference in design.

The sea/wastewater

desalination plant

Overview

The sea/wastewater desalination

plant can be installed with experienced

components [30, 31, 32]. These

will consist of the seawater precleaning

installation, Figure 32, and

the following different heat exchangers

for heating up the water

until evaporation. The distillated

water is free of solid particles, and can

be used as drinking water or for many

other purposes. The residual salt,

brine and further solids can be sold or

deposited.

A solar plant can be used to reduce

the necessary heat from the steam turbine

during sunshine. The produced

heat in the nuclear part can be nearly

completely used with highest thermodynamic

efficiency. The Seawater is

extracted from the sea and precleaned.

Turbine condenser

The condenser of the turbine, Figure

33, is the first stage to heat up the

seawater. Seawater resistant tubes are

necessary in the condenser. The quantity

of cooling seawater, the temperature

rise and condenser pressure must

be economically optimized. The efficiency

of the thermodynamic process

must be calculated. Normally the

temperature rise in the condenser is

calculated with 5 ° -10 °C. Also the

quantity of cooling water can vary, for

a 600 MWel unit between 20.000 –

40.000 m 3 / hour. If the required

cooling water quantity is too high for

| | Fig. 33.

chematic of a turbine condenser.

the desalination plant, the water can

be released back into the Sea (Figure

33).

Solar plant

A conventional solar plant, Figure 34,

can be installed. The solar energy

depends on sunshine intensity, which

depends mainly the daily time and

seasonal periods of the year and

environmental conditions (Figure

35). The heat from the solar plant

must be transported to the heat exchanger

as second heating stage. This

circuit makes it possible, to reduce the

extracted steam from the turbine. The

safe steam can be used for additional

production of electric energy in the

low pressure part of the turbine by

expension the steam down to condenser

pressure. The solar plant is

able to produce elec tricity indirectly.

| | Fig. 34.

Solar plant.

| | Fig. 35.

Average solar energy in Tunis CIty, 1997.

Desalination plant

Well know seawater desalination

plants can be installed, working as

distillation process so as MSF (multistage-flash)-plant

(Figure 36). The

preheated sea-water will be brought

with the steam extracted from the

turbine to a temperature of 90 °C to

| | Fig. 36.

Multi-stage-flash desalination plant.

| | Fig. 37.

Multi effect distillation plant.

135 °C, (1.0-1.5 bar). Then the seawater

streams to the evaporating

chambers with economically optimized

number of stages. The distillate

then can be used as drinking water.

With nearly the same technic works

the MED (multi-effect-distillation)

process (Figure 37). Chemicals must

be added as far as necessary, this is

depending from the quality of the

seawater.

An economically plant optimization

is to be carried out to choose the

best process.

The brine, consisting of the chemicals,

salt and other solid components

of the seawater will be evaporated. To

evaporate the solid particles several

possibilities are applicable, evaporating

by the sun directly, by solar heat

or by low pressure steam from the

turbine. The solid parts will be dried

and stabilized. Then they may be sold

or stored.

An analysis should be carried out,

which demonstrates the influence of

different plant designs, operating parameters

and environmental conditions

on the efficiency and the costs of

the plant and their thermodynamic

efficiency.

Advantages of co-generation of

electric power and water

• The use of pre-cleaned seawater as

cooling water for the turbine condenser

makes it possible to operate

this process without cooling towers

or smaller ones if necessary. All

residual heat from the thermodynamic

process to generate

electric power, which otherwise is

dissipated in the cooling towers, is

used for pre-heating the sea-water

during the first stage.

• The extracted low pressure steam

from the turbine feeds the

high-pressure line of the turbine

to produce electricity and the residual

heat of the steam is then

used in the evaporating process for

the desalinization plant.

• The thermodynamic efficiency of

the combined processes can reach

nearly 100 %.

• The combined feeding of the evaporators

by steam from the turbine

and with heat from the solar plant

makes it possible to operate the

evaporators of the desalination

plant up to 8,760 hours per year.

This provides nearly 100 % operational

time for this high investment

costs.

• The solar plant replaces the extracted

steam from the turbine.

More electricity can be indirectly

produced.

Research and Innovation

The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve


atw Vol. 63 (2018) | Issue 3 ı March

• The final evaporation and drying

of the brine can be completed using

solar heat, a very economical

process.

• The water produced can be collected

and stored. Both processes can

be produced separately and alternatively,

according to operational

demands as a main or by-product.

Summary and conclusions

Main Design Principals of large

VHTR-Power Plants:

Future designs of VHT- Reactors

must have the following design elements

[38], mostly by safety reasons:

• Pebbles with TRISO coated particles.

• inherent safe design, no melting of

the core is possible.

• Gastight closed primary helium

circuit in one pressure vessel.

• Pre-stressed concrete pressure

vessel.

• Helium primary /Helium secondary heat

exchangers in the primary circuit.

• Pebble bed ring core (PBRC).

• Small core dimensions.

• Several extractions for pebbles.

• Safe against all possible dangerous

events, extern and intern.

• Safe against all types of terroristic

attacks, cyber-attacks, plane

crashes and similar attacks.

• High magnitude earthquakes.

• Highest possible safety standard.

Economical advantages:

• Very high primary helium gas

temperatures.

• No shut down for fuel elements

changing and transportation.

• Thermodynamic efficiency as high

as in fossil power stations.

• One/two times intermediate

reheating possible.

• Very high burn up of nuclear

material.

• Use of 232 thorium in combination

with 235 Uranium to breed 233 Uranium.

• Burn up of Plutonium, weapons

plutonium included.

• Reaching the non-proliferation-treaty

agreement (NPT).

• Safe storage of all nuclear material.

• Safe and easy storing of radioactive

material.

(V)HTR to Co-Generate Electricity

and high- plus low-temperature heat

for several Industrial Processes (23,

24, 33):

Production of electricity by gas

turbines [37]:

• Hydrogen production [34, 35].

• Chemicals.

• Industrial Gases.

• Steel making.

• Nuclear Preheating.

• Town Heating.

and so on.

Literature and References

1. U. Cleve: Die Gesamtanlage des AVR

Versuchsatomkraftwerkes in Jülich,

Inbetriebnahme und Funktionsprüfungen.

atw: 5/1966.

2. AVR Versuchsatomkraftwerk mit Kugelhaufenreaktor

in Jülich. Sonderdruck

atw 5/1966

3. Urban Cleve: Der AVR-Kugelhaufenreaktor

und seine Weiterentwicklung.

Elektrik+Elektronik Heft 3 /1969.

4. U. Cleve, K. Kugeler, K. Knizia: The

Technology of High Temperature-

Reactors, Design, Commissioning and

Operational Results of 15 MW el Experimental

Reactor Jülich, Germany and

THTR-300 MW el Demonstration Reactor

Hamm and Their Impact on Future

Designs. IACPP-Congress Nice 2011,

5. U. Cleve: Die Technik der Hochtemperatur

Reaktoren, Kolloquium RWTH

Aachen, IEHK Juli 2011.

6. AVR – Experimental High-Temperature-

Reactor: 21 Years of Successful Operation

for an Future Technology. VDI-

Verlag ISBN 3-18-401015-5 1990.

7. U. Cleve: Fragen und Antworten zum

Experten-Bericht über Störfälle mit dem

AVR. FZ-Jülich, 2014.

8. U. Cleve: Fuel handling facility of high

temperature pebble bed reactor.

THTR-Meeting Brüssel 1967.

9. U. Cleve: Onload fuelling of pebble bed

high temperature reactor. HTR-

Symposium London 1968.

10. Fütterer at al.: A High Voltage Head-

End Process for Waste Minimization

and Reprocessing of coated Particle Fuel

for High Temperature Reactors.

Proceedings of ICAPP San Diego USA

June 2010.

11. U. Cleve: Die Technik der Hochtemperaturreaktoren.

atw 12/ /2009.

12. U. Cleve: Technik und Einsatzmöglichkeiten

nuklearer Hochtemperaturreaktoren.

Fusion Heft 1/2011.4

13. HKG: THTR-Projektinformationen

1962 – 1985.

14. HRB: The commissioning of the

THTR-300, a performance report.

15. H. Bonnenberg: High Temperature Gas

Cooled Reactor with spherical fuel

elements. DGAP 2007.

16. N. Nabielek, K.Verfondern, M.J. Kania:

HTR Fuel Testing in AVR and MTRs. HTR

Conference, Prague 2010.

17. N. Nabielek, C.Tang, A.Müller: Recent

Advances in HTR Fuel Manufacture.

HTR-Conference Prague 2010.

18. E. Mulder, D.Serfontaine, W. van der

Merve: Thorium and Uranium fuel Cycle

symbiosis in a pebble bed high

temperature reactor. HTR-Conference

Prague 2010.

19. K. Kugeler: Gibt es den katastrophenfreien

Reaktor? Physikalische Blätter 37

/ 2001.

20. U. Cleve: Zukunftsdialog der Bundeskanzlerin:

Thorium als Energiequelle.

Argumente und Stellungnahmen.

Beiträge im Internet 2012.

21. U. Cleve: Breeding of fissile 233 Uranium

using 232 thorium with Pebble Fuel

Elements. EIR-Conference: Report 49,

May 2013.

22. U. Cleve, Thorium: Brennstoff aus der

Erde für tausende von Jahren.

23. J. Schöning et.al Die Heliumgasreinigungsanlage.

atw 5/1966.

24. G. Wrochna: Results from Nuclear

Cogeneration Industrial Initiative. NC2I

National Center for Nuclear Research

(NCBJ) Poland. 2016,

25. Fütterer et.al.: The ARCHER Projekt,

Advanced HTR for Cogeneration of heat

and Electricity. Proceedings of the HTR,

China 2014.

26. U. Cleve: Nukleare Hochtemperaturreaktoren

zur Erzeugung flüssiger

Brennstoffe, von Wasserstoff und

elektrischer Energie. atw 6/2011.

27. U. Cleve: The Technology of High

Temperature Reactors and Production

of Nuclear Process Heat. NUTECH -2011,

University of Cracow 2011.

28. Auslegung, Konstruktion und Errichtung

des Spannbetondruckbehälters

des THTR-300. Ablauf und Ergebnisse.

29. U. Cleve: Auslegung und Konstruktion

großer Dampfturbinen. Technische

Mitteilungen des HdT Heft 1, 1964.

30. U. Cleve: Dampf-Wärme-Umwelttechnische

Verfahrenskombinationen.

Symposium Katovic 1976.

31. T. Brendel: Solare Meerwasserentsalzungsanlagen

mit mehrstufiger

Verdunstung. Dissertation: Ruhr

Universität Bochum 2003.

32. J.Gebel, S.Yüce: An Engineering Guide

to Desalination. VGB PowerTech. (2008).

33. U.Cleve: Cost Valuation of Electricity

and Heat for several industrial processes

by co-generation in Power Stations.

Dissertation: University of Heidelberg

1960.

34. K.R.Schultz, L.C.Brown, G.E.Besenbruch,

C.J.Hamilton: Large Scale Production of

Hydrogenby Nuclear Energy for Hydrogen

Economy. GA-Report A 74265,

35. S. Schulien: Ein Weg aus der Abhängigkeit

von Erdöl – Nutzbarmachung der

Wasserstofftechnik. FH Wiesbaden.

36. Sun Guohui et al. Discussion of High-

Temperature Performance of Alloy 625

for HTR Steam Generators. Proceedings

of HTR, Weihei, China 2014.

37. W. von Lensa: Internationale

Entwicklungsprogramme zum

Hochtemperaturreaktor. Bericht

FZ-Jülich.

38. U. Cleve: Konstruktionsprinzipien zur

nuklearen und betrieblichen Sicherheit

on HTR-KKW.

Authors

Dr.-Ing. Urban Cleve

Ex. CTO/HA-Leiter Technik

of BBC/Krupp Reaktorbau GmbH,

Mannheim

Hohenfriedbergerstr. 4

44141 Dortmund, Germany

RESEARCH AND INNOVATION 177

Research and Innovation

The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve


atw Vol. 63 (2018) | Issue 3 ı March

RESEARCH AND INNOVATION 178

Zur Rationalität des Deutschen

Kernenergieausstieges

Wolfgang Stoll

Einleitung Platon stellte 400 vor Christus fest: „Was immer Du tust, Du tust einem anderen Böses.“ Streng genommen

müsste das ebenso für Unterlassungen gelten – aber unser Leben ist mehr auf Handlungen und Handlungsfolgen

eingestellt.

Zum Rahmen unserer Handlungsoptionen

gehört auch das Gewerberecht.

Nach seinen etablierten Regeln

erlaubt es gewerbliche Tätigkeiten,

die den Nachbarn jenseits der Grenzen

des Grundstücks, auf dem das

Gewerbe ausgeübt wird, nicht unzumutbar

gefährden. Das Ausmaß der

Gefährdung, das der Nachbar zu

tolerieren hat, darf das allgemein als

akzeptiert betrachtete „Restrisiko“ als

Äquivalent von einem (statistischen)

Todesfall unter 1 Million Menschen

und Jahr nicht überschreiten. (Für die

Grenzen der Zumutbarkeit des fremd

verschuldeten Risikos, das zu akzeptieren

ist, gibt es in der deutschen

Rechtsprechung das Kalkar-Urteil).

Das ist ungefähr 1 % des aus der

mittleren Lebenserwartung ableitbaren

individuellen statistischen

Ablebensrisikos aus allen Lebensrisiken

einschließlich des Todes durch

Krankheit. Wo auch der Nutzen des

Einzelnen dagegen bilanziert werden

kann, wie bei vielen individuell eingegangenen

Risiken, wie z.B. im

Straßen verkehr, liegt das akzeptierte

Todesrisiko (Autounfälle) bei derzeit

50 Menschen pro Million und Jahr.

Es kann bisher nicht sicher ausgeschlossen

werden, dass bei einem

Störfall in einem Kernkraftwerk der

üblichen Bau- und Betriebsweise diese

in Deutschland festgelegte Zumutbarkeitsgrenze

überschritten wird. Die

Höhe des Restrisikos ergibt sich aus

im Wesentlichen zwei Risikosträngen,

wie sie sowohl aus mangelnder Organisationsqualität,

wie sie auch aus

Mängeln der technischen Qualität des

Systems entstehen können. Für die

Beurteilung der Zumutbarkeitsgrenze

nach obigem Todesfallrisiko wird hier

die Wirkung ionisierender Strahlung

auf Menschen in der Umgebung

des Kraftwerkes herangezogen, die

alle sonst noch möglichen Schadwirkungen

überwölbt. Die herrschende

Interpretation dieser Schädigung

fußt auf einer Schadensvermutung

auch bei sehr geringer Überschreitung

der natürlichen Strahlenexposition,

die eine Person durch die Summe an

Inhalation, Ingestion und äußerer

Bestrahlung vom Kernkraftwerk her

erfährt. Eine kausale Schadenszuordnung

an der Einzelperson mit

gleicher Maximalfolge (Krebs) ist

wegen der Multikausalität (parallel

wirkende mögliche andere Schadstoffe)

ausgeschlossen. Es gibt allenfalls

in großen Bevölkerungskollektiven

statistisch erkennbare Schäden

in eintretenden Krankheiten, einer

Lebensverkürzung und dem Tod in

einem sowohl zeitlich, wie örtlich

unscharf begrenzten Umfeld.

Verstellte Wirklichkeit.

Mit zunehmendem Lebensalter – und

das erreichen bei uns immer mehr

Menschen – rückt das Bewusstsein

der Endlichkeit immer näher. Man

kann das „Leben“ mit ein paar Zahlen

umfassen. Nehmen wir einen

94- Jährigen. Er besteht aus etwa einer

Million Milliarden Zellen, von denen

jede Sekunde eine Million zugrunde

gehen. Die Ausscheidungen in den

Eiweißbestandteilen in Stuhl und Urin

beweisen das täglich. Leben umschließt

also ein fortlaufendes Sterben

von Zellen, was für dieses Menschenleben

eine Bildung neuer Zellen im

etwa Zehnfachen seines Körpergewichtes

(rund 3 x 10E+15 Zellen)

erfordert.

Es sind aber nicht alle Organe

gleichmäßig betroffen. Herausragend

sind Haut, Haare, die Darmzotten und

die Lunge. Unsere Lunge muss im

Durchschnitt jährlich mit der Atemluft

70 Gramm zellzerstörendes Ozon

verkraften, was nur durch eine Neubildung

von Zellen in den Alveolen

gelingt. Enzyme, die das Abräumen

der so beschädigten Zellen besorgen,

nennen wir beschönigend „Reparaturenzyme“.

Diese werden besonders

dort und dann gebildet, wenn

gehäufte Zellfehlbildungen und

damit Zelltod signalisiert wird. Diese

Korrekturen sind besonders beim

wachsenden Organismus nötig,

weshalb Kleinkinder bis zum Zehnfachen

der Reparaturenzymkonzentration

des Erwachsenen erreichen.

Setzt man beim Erwachsenen einen

Zellschaden, wie z.B. bei der ionisierenden

Bestrahlung der ohnehin

auf den fortlaufenden Zelltod programmierten

Alveolen der Lunge, z.B.

durch die Alphastrahlung von Radon,

so antwortet der Körper mit einem

Anstieg der Reparaturenzymkonzentration.

Der Vorgang ist aber relativ

langsam, also erst nach Stunden,

und bleibt auch länger wirksam,

sodass die Reparaturenzyme im

ganzen Organismus auch andere

vorgeschädigte Zellen ausscheiden.

Erst eine Schädigung in Intervallen

(mehrere Tage Pause) bringt die

Reparaturenzyme auf den Wert des

Babys, wo sie allerdings nur mehrere

Wochen verharrt. Das begründet

die Wirkung von Radonbädern

auf Rheuma und andere Gewebsschädigungen.

Es kommt aber auf die

Dosis und die intermittierende

Schädigung an – Dauerschädigung

bewirkt durch Überlastung des Reparatursystems

das Gegenteil. Diese

wichtige Unter scheidung spiegelt sich

nicht in unserem Gefahren-Bewusstsein.

Unser streng nach kausaler Verknüpfung

von Ursache und Wirkung

aufgebautes Rechtssystem wird,

sobald irgendwelche Schäden eingetreten

oder auch nur zu befürchten

sind, damit gegen alle Logik zur

Bewertung nur statistisch erfassbarer

Wirkungen als pseudokausal herangezogen.

In angstzentrierten Gesellschaften,

wie der unseren, kann diese

Pseudokausalität schon im Vorfeld

der Handlungen zu Totalverboten

führen. Das erklärt auch das Abschaltgebot

nach Fukushima, obwohl es

an Deutschen Kernkraftwerken keine

mit dem dortigen Unfallablauf

und dessen Folgen vergleichbare

Szenarien gibt.

Zum deutschen

Risikoverständnis

Unsere Befindlichkeit erscheint dann

im Gleichgewicht, wenn sie sich

zwischen Chance und Risiko einpendelt.

Research and Innovation

On the Rationality of the German Nuclear Phase-out ı Wolfgang Stoll


atw Vol. 63 (2018) | Issue 3 ı March

Dabei ist das Verhältnis zwischen

individuellen Glückserwartungen

und ertragenem Risiko je nach dem

Gemütszustand des Einzelnen sehr

verschieden. Es liegt in unserem

Selbstverständnis, dass überschaubare

individuelle Risiken eher eingegangen

werden, als von außen

unsteuerbar aufgezwungene.

Man kann unser individuelles

Risiko feld als Schalenmodell darstellen,

bei dem die innerste Schale

die schiere Existenzerhaltung bildet,

die von der Schale des nicht Hungerns

(Essen), des nicht Frierens (Bekleidung),

darum herum des Geborgenseins

(Wohnen, Abstand) und schließlich

der Schale der sozialen Akzeptanz

(Familie, Gesellschaftliche Einbettung)

umfangen wird. Im Gegensatz

zu anderen Teilen der Welt weiß sich

der Deutsche Bürger in den oben genannten

Schalen sicher umfangenen

und baut auch auf deren Kontinuität.

Die Angst des Einzelnen, die sich stets

auf Objektsuche befindet, weist bei

unserem durchschnittlichen Bürger

daher nach außen auf die eher kollektiven

und weniger gegenständlichen

Angstobjekte, besonders wenn sie

vom Einzelnen nicht direkt beeinflussbar

und in einer zeitlich wie örtlich

unscharfen kollektiven Schadensvermutung

allgegenwärtig sind. Die

Angst vor ionisierender Strahlung gehört

in diesen Problemkreis, wobei

eine individuell mit einer Heilungsvermutung

erduldete ionisierende

Strahlung in der Medizin schon wegen

ihrer örtlichen und zeitlichen Begrenzbarkeit

davon weitgehend ausgenommen

ist.

Der Zugang zu Wechselfällen des

Lebens, wie er aus solchen Gefährdungen

entsteht, kann ja nach Einstellung

überwiegend aktiv und verändernd

(wie im Christentum) oder

überwiegend ertragend und kontemplativ

(wie z.B. im „Kismet“-Denken

des Islam) ausgerichtet sein. Schon

aus biblischen Ursprüngen ist unsere

abendländische Denkschablone in

Schuld und Sühne aktiv und kausal.

Wir vereinfachen die oft nur scheinbar

kausalen Zusammenhänge, die oft

nur das nahe an 100 % herankommende

Ende von Wahrscheinlichkeiten

darstellen, wobei wir dem

„Wunder“ den unscheinbaren Rest bis

zur vollen Kausalität überlassen. Das

gilt für alle Ereignisse, die wir wahrnehmen

können, vierdimensional, das

heißt in Raum und Zeit. Die daraus

abgeleitete scheinbare Unentrinnbarkeit

bei Schadereignissen entsteht

durch Überdehnung großer Dimensionen

ins Unendliche: Zeitlich im

„Ewig“ und „immer“, örtlich im „Überall“.

Die Kernenergiegegner operieren

zur allgemeinen Angstmache geschickt

mit dieser Begriffsüberdehnung.

Das Problem ist aber von

ganz allgemeiner Natur. Klassische

wissenschaftliche Erkenntnisse kommen

überwiegend aus dem Bereich

der sehr hohen Wahrscheinlichkeit,

die wir vereinfacht als kausale Verknüpfung

von Ursache und Wirkung

kennzeichnen. Ganz allgemein wird

aber im Vordringen unseren Wissens

in immer kompliziertere Zusammenhänge

bis in das so genannte statistische

„Rauschen“ der Zusammenhang

von Ursache und Wirkung

immer weniger eindeutig. Diese

Unschärfe eröffnet einen großen

Ermessensspielraum (ein Beispiel ist

die globale Erwärmung). Zusätzlich

werden dann aus Gründen der Vereinfachung

auch noch die Randbedingungen

weggelassen, mit denen

eine statistische Aussage von der

Wissenschaft zusätzlich oft eingeschränkt

wird. Schon Immanuel Kant

fand, dass der Bedarf an Entscheidungen

immer größer wäre als der

Vorrat an Erkenntnissen. Der Einzelne

vereinfacht aber im Alltag seine

Schlussfolgerungen durch die im

Recht und in der Religion anerzogene

strenge Kausalität. Überlässt man

scheinbar gefahrengeneigte Tätigkeiten

den abergläubischen und

nur ausschnittsinformierten Angstbürgern

als neue Warnungen vor

Ungemach und als mögliche Katastrophenszenarien,

so versteifen Mehrheiten

diese daher vereinfachend als

„Gewissheiten“ und leiten daraus

kollektive Handlungsanweisungen ab.

So hat in unserer Gesellschaft die

Angst eine Vorliebe für alle jetzt und

hier vermeidbaren Angstobjekte,

ohne die Spätfolgen (auch die des

Unterlassens) ausreichend im Blick

zu haben. In Gesellschaftssystemen,

die sich weniger perfektioniert geben,

sind auch die Ordnungssysteme

weniger strikt durchgehalten und der

Bürger sorgt in der für ihn stets erwiesenen

Unzuverlässigkeit vorsichtig

für sich selbst, wobei er in einem allgegenwärtigen

gefährlicheren Risikofeld

weniger Anstoß an verbleibenden

Restrisiken nimmt. In Aufstellen und

Durchhalten von Ordnungssystemen

ist jedoch gerade Deutschland ein

Extrembeispiel, was schon im sprachlichen

Doppelbegriff der Sicherheit,

die sowohl Gewissheit, wie auch die

Gefahrenabwesenheit meint (lateinisch:

certitudo securitatis), zum Ausdruck

kommt. Der den Doppelbegriff

einfordernde Bürger macht sich nicht

klar, dass genau dies alle gefahrengeneigte

Technik fast schon definitionsgemäß

ausschließt, was im

Besonderen die Kerntechnik trifft.

Die unkonditionierte

Ablehnung

Einziger Ausweg aus diesem typisch

deutschen Dilemma, bei dem man

sich stets in einem überschaubaren

und geregelten Umfeld wähnt, kann

nur ein kategorischer Ausschluss einer

radioaktive Stoffe hantierenden Technik

sein.(Obwohl dies objektiv wahrscheinlich

gar nicht im strengen Sinne

nötig wäre).

Daraus folgt, dass jede unkontrollierte

Freisetzung von Radionukliden,

wie immer diese zustande kommt,

ausgeschlossen werden muss. Begrifflich

verlangt das für Radionuklide

geschlossene Quellen, die allenfalls

Strahlung, aber keine Dispersion bewirken.

Eine radioaktive Freisetzung

aus Betrieb oder Unfall in einem Kernkraftwerk

muss somit auf das Betriebsgelände

oder besser auf den

Kernenergieanteil der Anlage beschränkt

bleiben. Dies gilt nicht nur

für den Normalbetriebsfall, in dem

eine wie immer geschulte Betreibermannschaft

sichernd eingreifen kann,

sondern auch für eine unbeherrschte

Betriebsstörung ohne menschlichen

Steuerungseingriff.

Streng genommen gälte das für

alle von einer Dispersion von Radionukliden

gefährdeten Flächen, die ja

auch an Landesgrenzen nicht Halt

macht, wie man an dem Unfall in

Tschernobyl erfahren musste. Die

zu einem solchen weit reichenden

Ausschluss nötigen internationalen

Instrumente fehlen bisher jedoch.

Es gibt für den Radionuklideinschluss

bei schweren Störfällen bereits

technische Teil-Lösungen, (z.B.

das Kraftwerk Olkiluoto III in Finnland

und Flamanville III in Frankreich), bei

denen ein eventuell schmelzender

Rektorkern sicher aufgefangen wird.

Der überwiegende Teil der Menschheit

hält derartige etwas teurere

Konzepte wegen der geringen Eintrittswahrscheinlichkeit

der Schäden

auch nach Fukushima bisher noch

nicht für nötig.

Schon die „umhüllte radioaktive

Quelle“ verlangt, dass die Umhüllungen

des Systems unzerstört bleiben

muss und dass sie einen sich aufbauenden

Innendruck allenfalls nur

über Filter abbauen darf, die alle

gefährlichen Radionuklide zurückhalten

können. Für einen geometrisch

noch intakten Reaktor gibt es im Prinzip

zwei primäre Störkräfte, die auf

RESEARCH AND INNOVATION 179

Research and Innovation

On the Rationality of the German Nuclear Phase-out ı Wolfgang Stoll


atw Vol. 63 (2018) | Issue 3 ı March

RESEARCH AND INNOVATION 180

ihn einwirken können: Die Kettenreaktion

selbst und die abzuführende

Nachwärme. Der Abbruch der Kettenreaktion

erfolgt nach Verlust des

Kühlmittels automatisch, solange das

Kühlmittel auch der einzige Moderator

ist. Das gilt für alle wassermoderierten

Systeme. Die Nachwärme

entspricht im Abschaltzeitpunkt

etwa 4 % der Reaktorleistung

und fällt nach einer Woche auf etwa

0,5 % ab. Solange das Rohrleitungssystem

noch intakt ist und eines der

mehreren redundant und diversitär

ausgelegten Nachkühlsysteme noch

funktioniert, kann die Restwärme

abgeführt werden. Selbst wenn der

Systemumlauf nicht mehr funktioniert,

so kann der mit Wasser be deckte

Reaktorkern noch durch Ver dampfung

gekühlt werden. Die frei werdende

Wärme der ersten 10 Tage nach Abschaltung

eines 1.000 MWe Reaktors

entspricht der Verdampfungswärme

von 40.000 Kubikmetern Wasser (also

etwa 3 großen Schwimmbecken).

Nach diesen 10 Tagen ist der Hauptteil

des kurzlebigen radioaktiven Jods

zerfallen und es muss von den flüchtigen

Bestandteilen im Wesentlichen

noch das ausdampfbare Cäsiumjodid

zurückgehalten werden.

Soweit keine Kühlung erfolgt, wird

bis dahin der Kern mit allen seinen

auch nicht aktiven Bestandteilen

zu einem geschmolzenen Klumpen

(das sogenannte Corium) umgeformt

worden sein, der langsam durch sein

Gewicht in den Beton des Bodens

des Reaktorgebäudes einsinkt. Im

medialen Sprachgebrauch hat sich

dieser Vorgang plakativ als das

„Chinasyndrom“ verselbstständigt

und überschattet so alle parallel

laufenden, möglicherweise sogar

schwerer wiegenden Freisetzungsvorgänge.

Es ist höchst spekulativ, ob

das eindringende Corium irgendwann

das meist mehrere Meter dicke Betonfundament

durchschmelzen kann

(schon eine einige Meter dicke Lage

von Quarzsand kann das verhindern)

und ob dann das Schmelzgut noch

flüchtige Spaltprodukte nach außen

durch den Boden freisetzen würde.

Jedenfalls kann man dieses Risiko

relativ einfach durch eine hochtemperaturfeste

Wanne unter dem Reaktordruckgefäß

(=core catcher) oder

durch einen entsprechend dicken

Stahlboden (Wie in neuen Russischen

Reaktordruckgefäßen vorgesehen)

soweit verlangsamen, dass der Vorgang

mit abnehmender Restwärme

ohne Durchbruch nach außen zum

Stillstand kommt.

Man geht derzeit dazu über, die

Kühlmöglichkeiten des abgeschalteten

Reaktors so weit zu perfektionieren,

dass das System sich selbsttätig

und ohne Umlegen von Hebeln oder

Einschalten von Notstromaggregaten

auch ohne menschlichen Eingriff ausreichend

mit Wasser kühlt. Das bleibt

aber immer „engineered safety“ und

ist, soweit man nicht auf Wasser aus

einem statischen Gefälle, z.B. von

einem großen Hochbehälter zurückgreifen

kann, von Pumpen, also einer

funktionierenden Energiezufuhr und

einem intakten Rohrleitungssystem

abhängig.

Wenn nichts davon funktioniert,

(wenn z.B. der Druckbehälter auch

nicht mehr mit Zu- und Ableitungen

verbunden sein sollte), ist der Kernschmelzunfall

nach etwa 25 Minuten

Tatsache.

Es ist verständlich, dass unabhängig

davon, durch welche Ursache

| | Editorial Advisory Board

Frank Apel

Erik Baumann

Dr. Maarten Becker

Dr. Erwin Fischer

Eckehard Göring

Dr. Ralf Güldner

Carsten Haferkamp

Dr. Petra-Britt Hoffmann

Dr. Guido Knott

Prof. Dr. Marco K. Koch

Dr. Willibald Kohlpaintner

Ulf Kutscher

Andreas Loeb

Dr. Thomas Mull

Dr. Ingo Neuhaus

Dr. Joachim Ohnemus

Prof. Dr. Winfried Petry

Dr. Tatiana Salnikova

Dr. Andreas Schaffrath

Dr. Jens Schröder

Dr. Wolfgang Steinwarz

Prof. Dr. Bruno Thomauske

Dr. Walter Tromm

Dr. Hans-Georg Willschütz

Dr. Hannes Wimmer

Ernst Michael Züfle

Imprint

| | Editorial

Christopher Weßelmann (Editor in Chief)

Im Tal 121, 45529 Hattingen, Germany

Phone: +49 2324 4397723

Fax: +49 2324 4397724

E-mail: editorial@nucmag.com

| | Official Journal of

Kerntechnische Gesellschaft e. V. (KTG)

| | Publisher

INFORUM Verlags- und

Verwaltungsgesellschaft mbH

Robert-Koch-Platz 4, 10115 Berlin, Germany

Phone: +49 30 498555-30, Fax: +49 30 498555-18

www.nucmag.com

| | General Manager

Christian Wößner, Berlin, Germany

| | Advertising and Subscription

Sibille Wingens

Robert-Koch-Platz 4, 10115 Berlin, Germany

Phone: +49 30 498555-10, Fax: +49 30 498555-19

E-mail: sibille.wingens@nucmag.com

| | Prize List for Advertisement

Valid as of 1 January 2018

Published monthly, 9 issues per year

Germany:

Per issue/copy (incl. VAT, excl. postage) 24.- €

Annual subscription (incl. VAT and postage) 176.- €

All EU member states without VAT number:

Per issue/copy (incl. VAT, excl. postage) 24.- €

Annual subscription (incl. VAT, excl. postage) 176.- €

EU member states with VAT number

and all other countries:

Per issues/copy (no VAT, excl. postage) 22.43 €

Annual subscription (no VAT, excl. postage) 164.49 €

| | Copyright

The journal and all papers and photos contained in it

are protected by copyright. Any use made thereof outside

the Copyright Act without the consent of the publisher,

INFORUM Verlags- und Verwaltungsgesellschaft mbH,

is prohibited. This applies to reproductions, translations,

microfilming and the input and incorporation into

electronic systems. The individual author is held

responsible for the contents of the respective paper.

Please address letters and manuscripts only to the

Editorial Staff and not to individual persons of the

association´s staff. We do not assume any responsibility

for unrequested contributions.

Signed articles do not necessarily represent the views

of the editorial.

| | Layout

zi.zero Kommunikation

Berlin, Germany

Antje Zimmermann

| | Printing

inpuncto:asmuth

druck + medien gmbh

Baunscheidtstraße 11

53113 Bonn

ISSN 1431-5254

Research and Innovation

On the Rationality of the German Nuclear Phase-out ı Wolfgang Stoll


atw Vol. 63 (2018) | Issue 3 ı March

(einschließlich absichtlicher Kernzerstörung)

eine unkontrollierte

Freisetzung von Radionukliden mit

der weiträumigen Verseuchung bewohnter

Landstriche stattfinden kann,

kein dicht besiedeltes Umfeld einem

solchen Risiko ausgesetzt werden darf.

Von diesem Risiko ist der Weiterbetrieb

der in Europa, besonders aber

Deutschland laufenden Kernkraftwerke

eben nicht grundsätzlich frei –

wie klein auch immer man eine Wahrscheinlichkeit

dafür ansetzt.

Soweit man die Reaktionen der

Reaktorbetreiber auf Fukushima

bisher beurteilen kann, werden die

EVA-Ereignisse (= Einwirkung von

Außen, einschließlich Flutung) und

die Notkühlsysteme überprüft und

auskömmlich (je 4 Systeme) sowohl

auf Redundanz, wie auf Diversität

verbessert. In den USA prüft man

zusätzlich die Evakuierungsmöglichkeiten

der Kraftwerksumgebung. Die

21 von Russland geplanten neuen

Kernkraftwerke haben alle einen verstärkten

Druckgefäßboden und ein

zweites Containment. Sofortabschaltungen

gibt es nur in Deutschland,

Auslaufen der Kernenergie ist in

der Schweiz geplant, Neubaupläne

wurden in Italien gestoppt. Die

anderen Nuklearnationen bewegen

sich zwischen Prüfungen, Verbesserungen,

Laufzeitverkürzungen und

verzögertem Neubau, ohne dass es

bisher allgemein gültige Verhaltensregeln

gibt.

Die mehr grundsätzlichen

Alternativen

Die Summe aller dieser Vorkehrungen

mindert die Wahrscheinlichkeit, dass

es nach entsprechenden Störungen

zum Kernschmelzen und in der Folge

zum unkontrollierten Austritt von

Spaltprodukten kommt. Ausgeschlossen

sind derartige Folgen aber

nicht grundsätzlich. Damit bleibt

die diffuse Angst vor ionisierender

Strahlung und deren Folge für die

nähere und auch weitere Kraftwerksumgebung

erhalten.

Will man sich darauf einstellen, so

darf das äußere System der Umschließung

– das Containment oder

der umhüllende zweite Druckbehälter

– keiner zusätzlichen zerstörenden

Kraft mehr ausgesetzt werden. Untersucht

man die Risiken dazu, so fallen

zunächst die Zirkon-Wasser-Reaktion

mit Wasserstoffbildung und eine

nachfolgende Knallgasexplosion am

schwersten ins Gewicht. Man kann

den Reaktorraum mit Stickstoff

fluten, um Luftzutritt zu verhindern,

aber auch diese Vorkehrung kann

im Störfall durch Eindringen von

Luft über Undichtigkeiten versagen.

Rekombinatoren (Platinmetalle) helfen

auch nur so lange, als der Gasumlauf

diese ausreichend schnell

erreicht, noch genügend Sauerstoff

vorhanden ist und die Rekombinations-Rate

mit der Zirkon-Wasserrektion

Schritt halten kann – was

nicht in allen Fällen gewährleistet ist.

Überhitzt kann er sogar direkt zur

Zündquelle werden.

Zirkon als reaktives Metall ausschließen

heißt auf andere Hüllmaterialien

ausweichen. Dafür bietet sich

rostfreier Stahl an, was allerdings

die Anreicherungskosten für das Uran

fast verdoppelt und Ansprüche an

die Tritium-Rückhaltung im Betrieb

erhöht.

Bei Schiffsreaktoren wird das

überwiegend so praktiziert. (Eine

etwas ferner liegende Lösung wäre die

Verwendung der Spaltedelmetalle als

Hüllrohr, wozu man diese allerdings

aus den Spaltprodukten der Wiederaufarbeitung

abtrennen, für thermische

Reaktoren das Rhodium seiner

starken Neutronenabsorption wegen

von Palladium und Ruthenium

trennen und die Menge von 10 abgebrannten

Kernen für den Metallbedarf

eines Folgekerne zusammenkommen

lassen müsste, wonach es allerdings

für nachfolgende Kerne jeweils wieder

verwendet werden könnte).

Das Zusammenschmelzen und

damit die Corium-Bildung würden

dadurch zwar stark verzögert, aber

nicht grundsätzlich verhindert. Das

gilt im Übrigen auch für den gepriesenen

Hochtempera tur reaktor, da der

als Moderator verwendete Grafit bei

Luftzutritt abbrennen und Radionuklide

freisetzen würde. Für die Absorption

der Hauptmenge der gasförmigen

Spaltpro dukte Jod und Cäsium wäre

ein Wasser filter ( Berieselung oder

Wäscher) am einfachsten. Der Rest

der dis pergierbaren Radionuklide

wäre technisch am besten an

großober flächige Produkte zu binden.

Da humoser Boden Cäsium am

längsten festhält, könnte wahrscheinlich

stattdessen gewöhnlicher Torf

als Rück halte medium dienen. Auch

Aktiv kohle wirkt ähnlich. Dabei

kommt es nicht auf eine dauerhafte

Rück haltung, sondern nur auf eine

zeit liche Ver zögerung bis zum radioaktiven

Zerfall der Hauptmenge Jod

im Cäsiumjodid an. Wenn man das

Brandrisiko von Aktivkohle auch noch

ausschließen will, muss man auf

Zeolithe als Filtermedium ausweichen,

was das Filtervolumen etwa

verdreifacht.

Als nächste Stufe der Vermeidung

derartiger Störfälle bliebe nur der

Weg, das System so zu verändern,

dass auch bei Kernzerstörung entweder

ein umschließendes Medium

die freigesetzten Radionuklide auffängt

oder keine Dispersionskräfte zur

Ausbreitung mindestens von atmosphärischen

Freisetzungen mehr existieren.

Das bedeutet zunächst die

Trennung von Drucksystemen wie der

Dampferzeugung vom nuklearen Kern

durch Zwischenwärmeübertragung

mit einem nicht-dispergierenden

Kühlmittel wie z.B. durch ein hoch

siedendes flüssiges Metall. Es bedeutete

auch, dass Druckgebende chemische

Reaktionen ausgeschlossen

werden müssen, was u.a. Zircaloy und

Wasser als Paarung ausschließt. Wenn

dann schon die Kernschmelze als

Möglichkeit unterstellt wird, sollte die

Wärmekapazität des sich erhitzenden

Systems so gering wie möglich sein,

um die äußere Kühlleistung zu minimieren.

Das führt ganz automatisch

zum Schnellen Reaktor, bei dem auch

kein Moderator mit erhitzt wird und

der wegen seiner hohen Energiedichte

im Kern nur wenige Prozent des

Volumens eines Druckwasserreaktors

gleicher Leistung benötigt, die es

dann zu kühlen gilt.

Es gibt bereits Reaktoren, die

diesem Konzept schon recht nahe

kommen, wie z.B. die Blei-Wismutgekühlten

Reaktoren der Russischen

U-Boote der A-Klasse. Obwohl schon

einige davon gesunken sind, hat man

noch nirgends Radionuklide in schädigendem

Ausmaß an der Meeresoberfläche

gefunden. Man kann

davon ausgehen, dass selbst ein bis

zur Dispersion von Radionukliden

zerstörter Reaktor zwar das darüber

stehende Wasser verunreinigt, aber

dennoch keine akute Gefahr darstellt,

solange die über einem Reaktor

stehende Wassermenge für die Nachkühlung

ausreichend groß ist und sich

in einem einigermaßen geschlossenen

Becken befindet. Diese Randbedingungen

würden von jedem mittelgroßen

Stausee erfüllt, während man

die stromführenden Teile und die

Bedienung auf der trockenen Seite der

Staumauer anordnen könnte.

Schlussbemerkung

Das mag alles sehr futuristisch

klingen, aber man kann bei Betrachtung

der auch heute noch in Planung

und Bau befindlichen Kernkraftwerke

davon ausgehen, dass die Menschheit

nicht grundsätzlich auf die Nutzung

der Kernenergie verzichten wird.

Andererseits wird das Ausmaß an

RESEARCH AND INNOVATION 181

Research and Innovation

On the Rationality of the German Nuclear Phase-out ı Wolfgang Stoll


atw Vol. 63 (2018) | Issue 3 ı March

182

STATISTICS

(Manuskript Erstfassung:

2012,

im November 2017

überarbeitet)

Organisationsversagen immer wieder

in Einzelfällen ausreichen, auch die

ausgeklügeltsten ingenieurmäßigen

Sicherheitsvorkehrungen unwirksam

zu machen. Da bisher wegen der hohen

Anfangskosten Kernkraftwerke

bevorzugt in reichen und technisch

fortschrittlichen Ländern gehäuft

betrieben wurden, hat man dort auch

alle bezahlbaren Sicherheitsvorkehrungen

getroffen. Jetzt bauen

aber vorwiegend ärmere Länder neue

Kernkraftwerke, womit dann gerade

dort das Eintreten schwerer Störfälle

denkbar ist. Wegen der aber auch

dort wachsenden ausgeprägten

Risiko aversion wären zur Aufrechterhaltung

der nuklearen Option

voll abgesicherte, wenn auch teure

Abhilfen gerechtfertigt. Es dürfte sich

daher lohnen, System mindestens zu

planen und zu erproben, die unter

wirklich allen Umständen eine

Dispersion ausschließen.

Authors

Prof. Dr. Wolfgang Stoll

Hanau, Deutschland

Nuclear Power Plants:

2017 atw Compact Statistics

Editorial

At the end of the last year 2017 (key date: 31 December 2017), nuclear power plants were operating in 31 countries

worldwide (cf. Table 1). In total, 448 nuclear power plants were operating on the key date. This means that the

number decreased by 2 units compared to the previous year’s number on 31 December 2016 (450, which means the

highest number of units since the first start of an commercial nuclear power plant in 1956) due to first criticalities on the

one hand and shut-downs on the other. The gross power output of these nuclear power plant units amounted to

around 420 GWe*, the net power output was approximately 396 GWe. This means that the available gross capacity

was about 1 GW, i.e. -0,25 % and the net capacity about 1 GW below the previous year’s values of about 421 GWe gross

and 397 GWe net.

Three (3) nuclear power plants started (nuclear)

operation 1 in two countries in 2017. These units reached

initial criticality, were synchronized with the grid and

started commercial operation for the first time in 2017

(cf. Tab. 1): China: Fuqing 4 (1089 MW, PWR, CGO),

Tianwan 3 (1126 MW, PWR, CGO), Pakistan: Chasnupp-4

(340 MW, PWR, CGO). One unit was synchronized with

the grid and started commercial operation for the first

time in 2017: China: Yangjiang 4 (1086 MW, GO).

For the third time since the accidents in Fukushima

( Japan) two nuclear power units, Takahama 3 (870 MW,

PWR) and Takahama 4 (870 MW, PWR) resumed operation

in 2017 in Japan after a longer shut-down.

Five nuclear power plant units were definitively

per manently shut-down worldwide in 2017. In Germany

the unit Gundremmingen B (1344 MW) was shut-down

after 33 years of successful operation. In Japan the prototype

fast breeder reactor Monju (280 MW) was shut down

22 years after first criticality. In the Republic of Korea the

PWR Kori 1 (608 MW) was permanently shut down. The

BWR Oskarshamn 1 (492 MW) was shut down in Sweden.

The Spanish nuclear power plant Santa Maria de Garona

(466 MW) was permanently shut down after five years of

lay-up operation due to an applied for but not approved

prolonged operation license.

Three new projects started with the first concrete and

further build activities. In Bangladesh one new build project

started with Rooppur 1(1200 MW), India started the

new build of the third unit at Kudankulam (1000 MW) and

in the Republic of Korea one additional project started

with Shin-Kori 5 ( 1455 MW).

In total 56 reactors are under construction worldwide

in 15 countries. The total gross capacity of this projects is

about 61 GW*, the net capacity 58 GW, in other words the

number was lower (2) compared to the previous year number

due to the three operation starts, three new build projects

and the suspension of one project with two reactors.

Compared with the millennium change 1999/2000 this

means that the number of projects under construction has

risen, when 30 nuclear power plants were under construction

worldwide.

Two projects in the USA were stopped. South Carolina

Public Service Authority (minority partner of the project,

40 %) decided to stop the new build project Virgil C. Summer

2 and 3. Construction of two advanced pressurized

water reactors (APR 1000, 1080 MW) by Westinghouse

started in 2013. In March 2017, Westinghouse Electric

Company filed for Chapter 11 bankruptcy because of $9

billion of losses from its two U.S. nuclear construction projects.

SCANA (share in project: 60 %) considered its options

for the project, and ultimately decided to abandon

the project in July 2017 after the decision of its minority

partner.

Active construction projects (numbers in brackets)

listed are: Argentina (1), Bangladesh (1), Belarus (2), Brazil

(1), China (18), Finland (1), France (1), India (7), Japan

(2), Republic of Korea (4), Pakistan (2), Russia (7),

Slovak Republic (2), Taiwan (2), the USA (2) and the United

Arab Emirates (4).

In addition, there are about 125 nuclear power plant

units in 25 countries worldwide that are in an advanced

planning stage, others are in the pre-planning phase

( status: 31 December 2017).

Statistics

Nuclear Power Plants: 2017 atw Compact Statistics


atw Vol. 63 (2018) | Issue 3 ı March

Country

Location/

Station name

Status Reactor type

Capacity

gross

[MW]

Capacity

net

[MW]

1st

Criticality

[Year]

Argentina

Atucha 1 p D2O-PWR 357 341 1974

Embalse p Candu 648 600 1983

Atucha 2 p D2O-PWR 745 692 2014

CAREM25 P PWR 29 25 (2020)

Armenia

Metsamor 2 p VVER-PWR 408 376 1980

Belarus

Belarusian 1 P VVER-PWR 1 194 1 109 (2019)

Belarusian 2 P VVER-PWR 1 194 1 109 (2021)

Bangladesh

Rooppur 1 [2] P VVER-PWR 1 200 1 080 (2022)

Belgium

Doel 1 p PWR 454 433 1975

Doel 2 p PWR 454 433 1975

Doel 3 p PWR 1 056 1 006 1982

Doel 4 p PWR 1 090 1 039 1985

Tihange 1 p PWR 1 009 962 1975

Tihange 2 p PWR 1 055 1 008 1983

Tihange 3 p PWR 1 094 1 046 1985

Brazil

Angra 1 p PWR 640 609 1984

Angra 2 p PWR 1 350 1 275 1999

Angra 3 P PWR 1 300 1 245 (2020)

Bulgarien

Kozloduj 5 p VVER-PWR 1 000 953 1987

Kozloduj 6 p VVER-PWR 1 000 953 1989

Canada

Bruce 1 p Candu 824 772 1977

Bruce 2 p Candu 786 734 1977

Bruce 3 p Candu 805 730 1977

Bruce 4 p Candu 805 750 1979

Bruce 5 p Candu 872 817 1985

Bruce 6 p Candu 891 822 1984

Bruce 7 p Candu 872 817 1986

Bruce 8 p Candu 845 817 1987

Darlington 1 p Candu 934 878 1993

Darlington 2 p Candu 934 878 1990

Darlington 3 p Candu 934 878 1993

Darlington 4 p Candu 934 878 1993

Pickering 1 p Candu 542 515 1971

Pickering 4 p Candu 542 515 1973

Pickering 5 p Candu 540 516 1983

Pickering 6 p Candu 540 516 1984

Pickering 7 p Candu 540 516 1985

Pickering 8 p Candu 540 516 1986

Point Lepreau p Candu 705 660 1983

China

CEFR p SNR 25 20 2011

Changjiang 1 p PWR 650 610 2015

Changjiang 2 p PWR 650 601 2016

Fangchenggang 1 p PWR 1 080 1 000 2015

Fangchenggang 2 p PWR 1 088 1 000 2016

Fangjiashan 1 p PWR 1 080 1 000 2014

Fangjiashan 2 p PWR 1 080 1 000 2014

Fuqing 1 p PWR 1 087 1 000 2014

Fuqing 2 p PWR 1 087 1 000 2015

Fuqing 3 p PWR 1 089 1 000 2016

Fuqing 4 [1] p PWR 1 089 1 089 2017

Guandong 1 p PWR 984 944 1993

Guandong 2 p PWR 984 944 1994

Hongyanhe 1 p PWR 1 080 1 000 2013

Hongyanhe 2 p PWR 1 080 1 000 2013

Hongyanhe 3 p PWR 1 080 1 000 2014

Hongyanhe 4 p PWR 1 119 1 000 2016

Lingao 1 p PWR 990 938 2002

Lingao 2 p PWR 990 938 2002

Lingao II-1 p PWR 1 087 1 000 2010

Lingao II-2 p PWR 1 087 1 000 2011

Ningde 1 p PWR 1 087 1 000 2012

Ningde 2 p PWR 1 080 1 000 2014

Ningde 3 p PWR 1 080 1 000 2015

Ningde 4 p PWR 1 089 1 018 2016

Qinshan 1 p PWR 310 288 1992

Qinshan II-1 p PWR 650 610 2002

Qinshan II-2 p PWR 650 610 2004

Qinshan II-3 p PWR 642 610 2010

Qinshan II-4 p PWR 642 610 2011

Qinshan III-1 p Candu 728 665 2002

Qinshan III-2 p Candu 728 665 2003

Tianwan 1 p VVER-PWR 1 060 1 000 2005

Country

Location/

Station name

Status Reactor type

Capacity

gross

[MW]

Capacity

net

[MW]

1st

Criticality

[Year]

Tianwan 2 p VVER-PWR 1 060 1 000 2007

Tianwan 3 [1] p VVER-PWR 1 060 1 000 2017

Yangjiang 1 p PWR 1 080 1 000 2013

Yangjiang 2 p PWR 1 080 1 000 2015

Yangjiang 3 p PWR 1 080 1 000 2015

Yangjiang 4 [1] p PWR 1 086 1 000 2016

Fangchenggang 3 P PWR 1 080 1 000 (2020)

Fangchenggang 4 P PWR 1 080 1 000 (2022)

Fuqing 5 P PWR 1 087 1 000 (2020)

Fuqing 6 P PWR 1 087 1 000 (2020)

Haiyang 1 P PWR 1 180 1 100 (2016)

Haiyang 2 P PWR 1 180 1 100 (2016)

Hongyanhe 5 P PWR 1 080 1 000 (2020)

Hongyanhe 6 P PWR 1 080 1 000 (2021)

Sanmen 1 P PWR 1 180 1 100 (2016)

Sanmen 2 P PWR 1 180 1 100 (2016)

Shidaowan 1 P HTGR 211 200 (2016)

Taishan 1 P PWR 1 750 1 660 (2017)

Taishan 2 P PWR 1 750 1 660 (2018)

Tianwan 4 P VVER-PWR 1 060 990 (2018)

Tianwan 5 P VVER-PWR 1 118 1 000 (2020)

Tianwan 6 P VVER-PWR 1 118 1 000 (2022)

Yangjiang 5 P PWR 1 080 1 000 (2018)

Yangjiang 6 P PWR 1 080 1 000 (2018)

Czech Republic

Dukovany 1 p VVER-PWR 500 473 1985

Dukovany 2 p VVER-PWR 500 473 1986

Dukovany 3 p VVER-PWR 500 473 1987

Dukovany 4 p VVER-PWR 500 473 1987

Temelín 1 p VVER-PWR 1 077 1 027 1999

Temelín 2 p VVER-PWR 1 056 1 006 2002

Finland

Loviisa 1 p VVER-PWR 520 496 1977

Loviisa 2 p VVER-PWR 520 496 1981

Olkiluoto 1 p BWR 890 860 1979

Olkiluoto 2 p BWR 890 860 1982

Olkiluoto 3 P PWR 1 600 1 510 (2019)

France

Belleville 1 p PWR 1 363 1 310 1987

Belleville 2 p PWR 1 363 1 310 1988

Blayais 1 p PWR 951 910 1981

Blayais 2 p PWR 951 910 1982

Blayais 3 p PWR 951 910 1983

Blayais 4 p PWR 951 910 1983

Bugey 2 p PWR 945 910 1978

Bugey 3 p PWR 945 910 1978

Bugey 4 p PWR 917 880 1979

Bugey 5 p PWR 917 880 1979

Cattenom 1 p PWR 1 362 1 300 1986

Cattenom 2 p PWR 1 362 1 300 1987

Cattenom 3 p PWR 1 362 1 300 1990

Cattenom 4 p PWR 1 362 1 300 1991

Chinon B-1 p PWR 954 905 1982

Chinon B-2 p PWR 954 905 1983

Chinon B-3 p PWR 954 905 1986

Chinon B-4 p PWR 954 905 1987

Chooz B-1 p PWR 1 560 1 500 1996

Chooz B-2 p PWR 1 560 1 500 1997

Civaux 1 p PWR 1 561 1 495 1997

Civaux 2 p PWR 1 561 1 495 1999

Cruas Meysse 1 p PWR 956 915 1983

Cruas Meysse 2 p PWR 956 915 1984

Cruas Meysse 3 p PWR 956 915 1984

Cruas Meysse 4 p PWR 956 915 1984

Dampierre 1 p PWR 937 890 1980

Dampierre 2 p PWR 937 890 1980

Dampierre 3 p PWR 937 890 1981

Dampierre 4 p PWR 937 890 1981

Fessenheim 1 p PWR 920 880 1977

Fessenheim 2 p PWR 920 880 1977

Flamanville 1 p PWR 1 382 1 330 1985

Flamanville 2 p PWR 1 382 1 330 1986

Golfech 1 p PWR 1 363 1 310 1990

Golfech 2 p PWR 1 363 1 310 1993

Gravelines B-1 p PWR 951 910 1980

Gravelines B-2 p PWR 951 910 1980

Gravelines B-3 p PWR 951 910 1980

Gravelines B-4 p PWR 951 910 1981

Gravelines C-5 p PWR 951 910 1984

Gravelines C-6 p PWR 951 910 1985

Nogent 1 p PWR 1 363 1 310 1987

183

STATISTICS

Statistics

Nuclear Power Plants: 2017 atw Compact Statistics


atw Vol. 63 (2018) | Issue 3 ı March

184

STATISTICS

Country

Location/

Station name

Status Reactor type

Capacity

gross

[MW]

Capacity

net

[MW]

1st

Criticality

[Year]

Nogent 2 p PWR 1 363 1 310 1988

Paluel 1 p PWR 1 382 1 330 1984

Paluel 2 p PWR 1 382 1 330 1984

Paluel 3 p PWR 1 382 1 330 1985

Paluel 4 p PWR 1 382 1 330 1986

Penly 1 p PWR 1 382 1 330 1990

Penly 2 p PWR 1 382 1 330 1992

St. Alban 1 p PWR 1 381 1 335 1986

St. Alban 2 p PWR 1 381 1 335 1987

St. Laurent B-1 p PWR 956 915 1981

St. Laurent B-2 p PWR 956 915 1981

Tricastin 1 p PWR 955 915 1980

Tricastin 2 p PWR 955 915 1980

Tricastin 3 p PWR 955 915 1980

Tricastin 4 p PWR 955 915 1981

Flamanville 3 P PWR 1 600 1 510 (2018)

Germany

Brokdorf p PWR 1 480 1 410 1986

Emsland p PWR 1 406 1 335 1988

Grohnde p PWR 1 430 1 360 1985

Gundremmingen B [6] V BWR 1 344 1 284 1984

Gundremmingen C p BWR 1 344 1 288 1985

Isar 2 p PWR 1 485 1 410 1988

Neckarwestheim II p PWR 1 400 1 310 1989

Philippsburg 2 p PWR 1 468 1 402 1985

Hungary

Paks 1 p VVER-PWR 500 470 1983

Paks 2 p VVER-PWR 500 473 1984

Paks 3 p VVER-PWR 500 473 1986

Paks 4 p VVER-PWR 500 473 1987

India

Kaiga 1 p Candu (IND) 220 202 2001

Kaiga 2 p Candu (IND) 220 202 1999

Kaiga 3 p Candu (IND) 220 202 2007

Kaiga 4 p Candu (IND) 220 202 2010

Kakrapar 1 p Candu (IND) 220 202 1993

Kakrapar 2 p Candu (IND) 220 202 1995

Kudankulam 1 p VVER-PWR 1 000 917 2013

Kudankulam 2 p VVER-PWR 1 000 917 2016

Madras Kalpakkam 1 p Candu (IND) 220 205 1984

Madras Kalpakkam 2 p Candu (IND) 220 205 1986

Narora 1 p Candu (IND) 220 202 1992

Narora 2 p Candu (IND) 220 202 1991

Rajasthan 1 p Candu 100 90 1973

Rajasthan 2 p Candu 200 187 1981

Rajasthan 3 p Candu (IND) 220 202 1999

Rajasthan 4 p Candu (IND) 220 202 2000

Rajasthan 5 p Candu (IND) 220 202 2009

Rajasthan 6 p Candu (IND) 220 202 2010

Tarapur 1 p BWR 160 150 1969

Tarapur 2 p BWR 160 150 1969

Tarapur 3 p Candu (IND) 540 490 2006

Tarapur 4 p Candu (IND) 540 490 2005

Kakrapar 3 P Candu (IND) 700 640 (2018)

Kakrapar 4 P Candu (IND) 700 640 (2019)

PFBR (Kalpakkam) P SNR 500 470 (2020)

Kudankulam 3 P VVER-PWR 1 000 917 (2018)

Rajasthan 7 P Candu (IND) 700 630 (2019)

Rajasthan 8 P Candu (IND) 700 630 (2019)

Iran

Bushehr 1 p VVER-PWR 1 000 953 2011

Japan

Fukushima Daini 1 p BWR 1 100 1 067 1982

Fukushima Daini 2 p BWR 1 100 1 067 1984

Fukushima Daini 3 p BWR 1 100 1 067 1985

Fukushima Daini 4 p BWR 1 100 1 067 1987

Genkai 2 p PWR 559 529 1981

Genkai 3 p PWR 1 180 1 127 1994

Genkai 4 p PWR 1 180 1 127 1997

Hamaoka 3 p BWR 1 100 1 056 1987

Hamaoka 4 p BWR 1 137 1 092 1993

Hamaoka 5 p BWR 1 267 1 216 2004

Higashidori 1 p BWR 1 100 1 067 2005

Ikata 2 p PWR 566 538 1982

Ikata 3 p PWR 890 846 1994

Kashiwazaki Kariwa 1 p BWR 1 100 1 067 1985

Kashiwazaki Kariwa 2 p BWR 1 100 1 067 1990

Kashiwazaki Kariwa 3 p BWR 1 100 1 067 1993

Kashiwazaki Kariwa 4 p BWR 1 100 1 067 1994

Kashiwazaki Kariwa 5 p BWR 1 100 1 067 1990

Kashiwazaki Kariwa 6 p BWR 1 356 1 315 1996

Country

Location/

Station name

Status Reactor type

Capacity

gross

[MW]

Capacity

net

[MW]

1st

Criticality

[Year]

Kashiwazaki Kariwa 7 p BWR 1 356 1 315 1997

Mihama 3 p PWR 826 781 1976

Monju [6] V FBR 280 246 1994

Ohi 1 p PWR 1 175 1 120 1979

Ohi 2 p PWR 1 175 1 120 1979

Ohi 3 p PWR 1 180 1 127 1991

Ohi 4 p PWR 1 180 1 127 1993

Onagawa 1 p BWR 524 496 1984

Onagawa 2 p BWR 825 796 1995

Onagawa 3 p BWR 825 798 2002

Sendai 1 p PWR 890 846 1984

Sendai 2 p PWR 890 846 1985

Shika 1 p BWR 540 505 1993

Shika 2 p BWR 1 358 1 304 2005

Shimane 2 p BWR 820 791 1989

Takahama 1 p PWR 826 780 1974

Takahama 2 p PWR 826 780 1975

Takahama 3 [4] p PWR 870 830 1985

Takahama 4 [4] p PWR 870 830 1985

Tokai 2 p BWR 1 100 1 067 1978

Tomari 1 p PWR 579 550 1989

Tomari 2 p PWR 579 550 1991

Tomari 3 p PWR 912 866 2009

Tsuruga 2 p PWR 1 160 1 115 1986

Shimane 3 P BWR 1 375 1 325 (2022)

Ohma P BWR 1 385 1 325 (2023)

Korea (Republic)

Kori 1 [6] V PWR 603 576 1978

Kori 2 p PWR 676 639 1983

Kori 3 p PWR 1 042 1 003 1985

Kori 4 p PWR 1 041 1 001 1986

Shin Kori 1 p PWR 1 048 996 2010

Shin Kori 2 p PWR 1 045 993 2011

Shin Kori 3 p PWR 1 400 1 340 2016

Hanul 1 p PWR 1 003 960 1988

Hanul 2 p PWR 1 008 962 1989

Hanul 3 p PWR 1 050 994 1998

Hanul 4 p PWR 1 053 998 1998

Hanul 5 p PWR 1 051 996 2003

Hanul 6 p PWR 1 051 996 2004

Wolsong 1 p Candu 687 645 1983

Wolsong 2 p Candu 678 653 1997

Wolsong 3 p Candu 698 675 1999

Wolsong 4 p Candu 703 679 1999

Shin Wolsong 1 p PWR 1 043 991 2012

Shin Wolsong 2 p PWR 1 000 960 2015

Hanbit 1 p PWR 996 953 1986

Hanbit 2 p PWR 993 945 1987

Hanbit 3 p PWR 1 050 997 1995

Hanbit 4 p PWR 1 049 997 1996

Hanbit 5 p PWR 1 053 997 2001

Hanbit 6 p PWR 1 052 995 2002

Shin Kori 4 P PWR 1 400 1 340 (2018)

Shin Kori 5 P PWR 1 400 1 340 (2022)

Shin Hanul 1 P PWR 1 400 1 340 (2020)

Shin Hanul 2 P PWR 1 400 1 340 (2022)

Mexico

Laguna Verde 1 p BWR 820 765 1990

Laguna Verde 2 p BWR 820 765 1995

Netherlands

Borssele p PWR 515 482 1973

Pakistan

Kanupp 1 p Candu 137 909 1972

Chasnupp 1 p PWR 325 300 2000

Chasnupp 2 p PWR 325 300 2011

Chasnupp 3 p PWR 340 315 2016

Chasnupp 4 [1] P PWR 340 315 2017

Kanupp 2 P PWR 1 100 1 014 (2021)

Kanupp 3 P PWR 1 100 1 014 (2022)

Romania

Cernavoda 1 p Candu 706 650 1996

Cernavoda 2 p Candu 706 655 2007

Russia

Balakovo 1 p VVER-PWR 1 000 953 1986

Balakovo 2 p VVER-PWR 1 000 953 1988

Balakovo 3 p VVER-PWR 1 000 953 1990

Balakovo 4 p VVER-PWR 1 000 953 1993

Beloyarsky 3 p FBR 600 560 1981

Beloyarsky 4 p FBR 800 750 2014

Bilibino 1 p LWGR 12 11 1974

Bilibino 2 p LWGR 12 11 1975

Statistics

Nuclear Power Plants: 2017 atw Compact Statistics


atw Vol. 63 (2018) | Issue 3 ı March

Country

Location/

Station name

Status Reactor type

Capacity

gross

[MW]

Capacity

net

[MW]

1st

Criticality

[Year]

Bilibino 3 p LWGR 12 11 1976

Bilibino 4 p LWGR 12 11 1977

Kalinin 1 p VVER-PWR 1 000 953 1985

Kalinin 2 p VVER-PWR 1 000 953 1987

Kalinin 3 p VVER-PWR 1 000 953 2004

Kalinin 4 p VVER-PWR 1 000 953 2011

Kola 1 p VVER-PWR 440 411 1973

Kola 2 p VVER-PWR 440 411 1975

Kola 3 p VVER-PWR 440 411 1982

Kola 4 p VVER-PWR 440 411 1984

Kursk 1 p LWGR 1 000 925 1977

Kursk 2 p LWGR 1 000 925 1979

Kursk 3 p LWGR 1 000 925 1984

Kursk 4 p LWGR 1 000 925 1986

Leningrad 1 p LWGR 1 000 925 1974

Leningrad 2 p LWGR 1 000 925 1976

Leningrad 3 p LWGR 1 000 925 1980

Leningrad 4 p LWGR 1 000 925 1981

Novovoronezh 4 p VVER-PWR 417 385 1973

Novovoronezh 5 p VVER-PWR 1 000 953 1981

Novovoronezh II-1 p VVER-PWR 1 000 955 2016

Rostov 1 p VVER-PWR 1 000 953 2001

Rostov 2 p VVER-PWR 1 000 953 2010

Rostov 3 p VVER-PWR 1 085 1 011 2014

Smolensk 1 p LWGR 1 000 925 1983

Smolensk 2 p LWGR 1 000 925 1985

Smolensk 3 p LWGR 1 000 925 1990

Akademik Lomonosov I P PWR 40 35 (2019)

Akademik Lomonosov I P PWR 40 35 (2019)

Baltic 1 (Kaliningrad) P VVER-PWR 1 170 1 080 (2020)

Leningrad II-1 P VVER-PWR 1 170 1 085 (2020)

Leningrad II-2 P VVER-PWR 1 170 1 085 (2021)

Novovoronezh II-2 P VVER-PWR 1 000 955 (2018)

Rostov 4 P VVER-PWR 1 085 1 011 (2019)

Slovakia

Bohunice 3 p VVER-PWR 505 472 1985

Bohunice 4 p VVER-PWR 505 472 1985

Mochovce 1 p VVER-PWR 470 436 1998

Mochovce 2 p VVER-PWR 470 436 1999

Mochovce 3 P VVER-PWR 440 408 (2019)

Mochovce 4 P VVER-PWR 440 408 (2019)

Slovenia

Krsko p PWR 727 696 1983

South Africa

Koeberg 1 p PWR 970 930 1984

Koeberg 2 p PWR 970 930 1985

Spain

Almaraz 1 p PWR 1 049 1 011 1981

Almaraz 2 p PWR 1 044 1 006 1983

Ascó 1 p PWR 1 033 995 1984

Ascó 2 p PWR 1 027 997 1985

Cofrentes p BWR 1 092 1 064 1985

Trillo 1 p PWR 1 066 1 002 1988

Vandellos 2 p PWR 1 087 1 045 1987

Santa Maria de Garoña [6] V BWR 466 446 1971

Sweden

Forsmark 1 p BWR 1 022 984 1980

Forsmark 2 p BWR 1 158 1 120 1981

Forsmark 3 p BWR 1 212 1 170 1985

Oskarshamn 1 [6] V BWR 492 473 1972

Oskarshamn 2 p BWR 661 638 1975

Oskarshamn 3 p BWR 1 450 1 400 1985

Ringhals 1 p BWR 910 878 1976

Ringhals 2 p PWR 847 807 1975

Ringhals 3 p PWR 1 117 1 064 1981

Ringhals 4 p PWR 990 940 1983

Switzerland

Beznau 1 p PWR 380 365 1969

Beznau 2 p PWR 380 365 1972

Gösgen p PWR 1 060 1 010 1979

Leibstadt p BWR 1 275 1 220 1984

Mühleberg p BWR 390 373 1973

Taiwan, China

Chin Shan 1 p BWR 636 604 1978

Chin Shan 2 p BWR 636 604 1979

Kuosheng 1 p BWR 985 948 1981

Kuosheng 2 p BWR 985 948 1983

Maanshan 1 p PWR 951 890 1984

Maanshan 2 p PWR 951 890 1985

Lungmen 1 P BWR 1 356 1 315 (2020)

Lungmen 2 P BWR 1 356 1 315 (2021)

Country

Location/

Station name

Status Reactor type

Capacity

gross

[MW]

Capacity

net

[MW]

1st

Criticality

[Year]

United Arab Emirates

Barakah 1 P PWR 1 400 1 340 (2018)

Barakah 2 P PWR 1 400 1 340 (2019)

Barakah 3 P PWR 1 400 1 340 (2020)

Barakah 4 P PWR 1 400 1 340 (2021)

United Kingdom

Dungeness B-1 p AGR 615 520 1985

Dungeness B-2 p AGR 615 520 1986

Hartlepool-1 p AGR 655 595 1984

Hartlepool-2 p AGR 655 585 1985

Heysham I-1 p AGR 625 585 1984

Heysham I-2 p AGR 625 575 1985

Heysham II-1 p AGR 682 595 1988

Heysham II-2 p AGR 682 595 1989

Hinkley Point B-1 p AGR 655 610 1976

Hinkley Point B-2 p AGR 655 610 1977

Hunterston B-1 p AGR 644 460 1976

Hunterston B-2 p AGR 644 430 1977

Sizewell B p PWR 1 250 1 191 1995

Torness Point 1 p AGR 682 595 1988

Torness Point 2 p AGR 682 595 1989

Ukraine

Khmelnitski 1 p VVER-PWR 1 000 950 1985

Khmelnitski 2 p VVER-PWR 1 000 950 2004

Rovno 1 p VVER-PWR 402 363 1981

Rovno 2 p VVER-PWR 416 377 1982

Rovno 3 p VVER-PWR 1 000 950 1987

Rovno 4 p VVER-PWR 1 000 950 2004

Zaporozhe 1 p VVER-PWR 1 000 950 1985

Zaporozhe 2 p VVER-PWR 1 000 950 1985

Zaporozhe 3 p VVER-PWR 1 000 950 1987

Zaporozhe 4 p VVER-PWR 1 000 950 1988

Zaporozhe 5 p VVER-PWR 1 000 950 1988

Zaporozhe 6 p VVER-PWR 1 000 950 1989

South Ukraine 1 p VVER-PWR 1 000 950 1983

South Ukraine 2 p VVER-PWR 1 000 950 1985

South Ukraine 3 p VVER-PWR 1 000 950 1989

USA

Arkansas Nuclear One 1 p PWR 969 903 1974

Arkansas Nuclear One 2 p PWR 1 006 943 1980

Beaver Valley 1 p PWR 955 923 1976

Beaver Valley 2 p PWR 957 923 1987

Braidwood 1 p PWR 1 289 1 225 1988

Braidwood 2 p PWR 1 289 1 225 1988

Browns Ferry 1 p BWR 1 200 1 152 1974

Browns Ferry 2 p BWR 1 193 1 152 1975

Browns Ferry 3 p BWR 1 232 1 190 1977

Brunswick 1 p BWR 1 074 1 002 1977

Brunswick 2 p BWR 1 075 1 002 1975

Byron 1 p PWR 1 307 1 225 1985

Byron 2 p PWR 1 304 1 225 1987

Callaway p PWR 1 316 1 236 1985

Calvert Cliffs 1 p PWR 935 918 1975

Calvert Cliffs 2 p PWR 939 911 1977

Catawba 1 p PWR 1 286 1 205 1985

Catawba 2 p PWR 1 286 1 205 1986

Clinton 1 p BWR 1 175 1 138 1987

Comanche Peak 1 p PWR 1 283 1 215 1990

Comanche Peak 2 p PWR 1 283 1 215 1993

Donald Cook 1 p PWR 1 266 1 152 1975

Donald Cook 2 p PWR 1 210 1 133 1978

Columbia (WNP 2) p BWR 1 244 1 200 1984

Cooper p BWR 844 801 1974

Davis Besse 1 p PWR 971 925 1978

Diablo Canyon 1 p PWR 1 236 1 159 1985

Diablo Canyon 2 p PWR 1 246 1 164 1985

Dresden 2 p BWR 1 057 1 009 1970

Dresden 3 p BWR 1 057 1 009 1971

Duane Arnold p BWR 737 680 1975

Farley 1 p PWR 933 888 1977

Farley 2 p PWR 934 888 1981

Fermi 2 p BWR 1 317 1 217 1988

FitzPatrick p BWR 918 882 1975

Ginna p PWR 713 614 1970

Grand Gulf 1 p BWR 1 516 1 440 1985

Hatch 1 p BWR 891 857 1974

Hatch 2 p BWR 905 865 1979

Hope Creek 1 p BWR 1 360 1 291 1986

Indian Point 2 p PWR 1 348 1 299 1974

Indian Point 3 p PWR 1 051 1 012 1976

La Salle 1 p BWR 1 242 1 170 1984

185

STATISTICS

Statistics

Nuclear Power Plants: 2017 atw Compact Statistics


atw Vol. 63 (2018) | Issue 3 ı March

186

KTG INSIDE

Country

Location/

Station name

Status Reactor type

Capacity

gross

[MW]

Capacity

net

[MW]

1st

Criticality

[Year]

La Salle 2 p BWR 1 238 1 170 1984

Limerick 1 p BWR 1 203 1 139 1986

Limerick 2 p BWR 1 199 1 139 1990

McGuire 1 p PWR 1 358 1 220 1981

McGuire 2 p PWR 1 358 1 220 1984

Millstone 2 p PWR 946 91 0 1975

Millstone 3 p PWR 1 308 1 253 1986

Monticello p BWR 734 685 1971

Nine Mile Point 1 p BWR 671 642 1969

Nine Mile Point 2 p BWR 1 302 1 259 1988

North Anna 1 p PWR 1 035 980 1978

North Anna 2 p PWR 1 033 980 1980

Oconee 1 p PWR 955 887 1973

Oconee 2 p PWR 955 887 1974

Oconee 3 p PWR 961 893 1974

Oyster Creek p BWR 595 550 1969

Palisades p PWR 870 81 2 1971

Palo Verde 1 p PWR 1 528 1 403 1986

Palo Verde 2 p PWR 1 524 1 403 1988

Palo Verde 3 p PWR 1 524 1 403 1986

Peach Bottom 2 p BWR 1 233 1 1 60 1974

Peach Bottom 3 p BWR 1 233 1 1 60 1974

Perry 1 p BWR 1 397 1 31 2 1987

Pilgrim p BWR 71 2 670 1972

Point Beach 1 p PWR 696 643 1970

Point Beach 2 p PWR 696 643 1972

Prairie Island 1 p PWR 642 593 1973

Prairie Island 2 p PWR 641 593 1974

Quad Cities 1 p BWR 1 061 1 009 1973

Quad Cities 2 p BWR 1 061 1 009 1973

RiverBend 1 p BWR 1 073 1 036 1986

Robinson 2 p PWR 855 769 1971

Salem 1 p PWR 1 276 1 1 70 1977

Salem 2 p PWR 1 303 1 1 70 1981

Seabrook 1 p PWR 1 330 1 242 1990

Sequoyah 1 p PWR 1 259 1 221 1981

Sequoyah 2 p PWR 1 279 1 221 1982

Shearon Harris 1 p PWR 983 951 1987

South Texas 1 p PWR 1 41 0 1 354 1988

Country

Location/

Station name

Status Reactor type

Capacity

gross

[MW]

Capacity

net

[MW]

1st

Criticality

[Year]

South Texas 2 p PWR 1 41 0 1 354 1989

St. Lucie 1 p PWR 1 1 22 1 080 1976

St. Lucie 2 p PWR 1 1 35 1 080 1983

Virgil C. Summer p PWR 1 071 1 030 1984

Surry 1 p PWR 900 848 1972

Surry 2 p PWR 900 848 1973

Susquehanna 1 p BWR 1 374 1 298 1983

Susquehanna 2 p BWR 1 374 1 298 1985

Three Mile Island 1 p PWR 1 021 976 1974

Turkey Point 3 p PWR 906 877 1972

Turkey Point 4 p PWR 800 760 1973

Vogtle 1 p PWR 1 223 1 1 60 1987

Vogtle 2 p PWR 1 226 1 1 60 1989

Waterford 3 p PWR 1 250 1 200 1985

Watts Bar 1 p PWR 1 370 1 270 1996

Watts Bar 2 p PWR 1 240 1 180 2016

Wolf Creek p PWR 1 351 1 268 1984

Vogtle 3 P PWR 1 080 1 000 (2019)

Vogtle 4 P PWR 1 080 1 000 (2020)

Virgil C. Summer 2 [3] P PWR 1 080 1 000 (-)

Virgil C. Summer 3 [3] P PWR 1 080 1 000 (-)

1) Start of nuclear operation (first criticality: C, first grid connection: G, commercial operation: O):

3 units in 2017 (CGO), China: Fuqing 4 (1089 MW, PWR, CGO), Tianwan 3 (1126 MW, PWR, CGO),

Pakistan: Chasnupp-4 (340 MW, PWR, CGO); 1 unit in 2017 (GO), China Yangjiang 4 (1086 MW, GO).

2) Start of construction (first concrete), 3 units in 2017: Bangladesh: Rooppur 1 (1200 MW),

India: Kudankulam 3 (1000 MW), South Korea: Shin-Kori 5 (1455 MW).

3) Project under construction (finally) cancelled: USA: Virgil C. Summer 2 and Virgil C. Summer 3

(1080 MW).

4) Resumed operation: Japan: Takahama 3 (PWR, 870 MW) and Takahama 4 (PWR, 870 MW).

5) Nuclear power plant in long-term shutdown: none.

6) Nuclear power plants permanently shutdown in 2017 (5 units): Germany: Gundremmingen B

(BWR, 1344 MW); Japan: Monju (FBR, 280 MW); South Korea: Kori 1 (PWR, 608 MW);

Spain: St. Maria de Garona (BWR, 466 MW); Sweden: Oskarshamn 1 (BWR, 492 MW).

(All capacity data in MWe gross)

AGR: Advanced Gas-cooled Reactor, BWR: Boiling water reactor, Candu: CANada Deuterium

Uranium reactor (IND: Indian type), D 2 O-PWR: heavy water moderated, pressurised water reactor,

PWR: pressurised water reactor, GGR: gas-graphite reactor, LWGR/GLWR: light water cooled

graphite moderated reactor (Russian type RBMK), FBWR: advanced boiling water reactor, FBR: fast

breeder reactor

| | Tab. 1.

Nuclear power plant units worldwide on 31.12.2016 in operation (p), under construction (P), in lay-up operation/long-term shutdown (1) or permanently shut-down in 2016 (V)

[Sources: Operators, IAEO]. All information and data refer to the year 2016. Data have been updated with reference to the sources

Herzlichen

Glückwunsch

März 2018

91 Jahre wird

27. Prof. Dr. Bernhard Liebmann,

Kronberg

88 Jahre werden

6. Prof. Dr. Hubertus Nickel, Jülich

25. Dr. Hans-Ulrich Borgstedt,

Karlsruhe

25. Dr. Peter Borsch, Dresden

87 Jahre wird

17. Dipl.-Ing. Hans Waldmann

86 Jahre wird

14. Dr. Peter Engelmann,

Eggenstein-Leopoldshafen

85 Jahre werden

26. Dipl.-Ing. Gerhard Frei, Uttenreuth

30. Dipl.-Phys. Dieter Pleuger, Kiedrich

84 Jahre werden

1. Prof. Dr. Günther Kessler, Stutensee

18. Dipl.-Ing. Willi Riebold, München

30. Prof. Dr. Helmut Völcker, Essen

83 Jahre werden

2. Dipl.-Ing. Joachim Hospe, München

14. Dr. Hermann Kraemer, Seevetal

82 Jahre werden

2. Dr. Ralf-Dieter Penzhorn, Bruchsal

8. Prof. Dr. Erich Tenckhoff, Erlangen

19. Dr. Hermann Hinsch, Hannover

81 Jahre wird

29. Dipl.-Ing. Friedrich Garzarolli, Fürth

80 Jahre werden

4. Dr. Rainer Göhring, Nauen

6. Dipl.-Math. Udo Harten, Stutensee

10. Dr. Hein-Jürzen Kriks, Braunschweig

11. Peter Vagt, Rösrath

14. Dr. Peter Paetz, Bergisch Gladbach

16. Prof. Dr. Helmut Röthmeyer,

Braunschweig

22. Dr. Bruno-J. Baumgartl, Weiterstadt

79 Jahre werden

1. Prof. Dr. Günter Höhlein, Wiesbaden

1. Dipl.-Ing. Wolfgang Dietz, Lindlar

7. Dr. Kurt Vinzens, Berg-Aufkirchen

17. Dipl.-Phys. Renate von Le Suire,

Seeshaupt

2. Dipl.-Ing. Helmut Pekarek,

Wonga Park/AUS

25. Dipl.-Ing. Joachim Koch, Mömbris

78 Jahre werden

1. Dipl.-Ing. Wolfgang Stumpf, Moers

3. Dr. Lutz Niemann, Holzkirchen

3. Dipl.-Ing. Eberhard Schomer, Erlangen

7. Dr. Volker Klix, Gehrden

12. Prof. Dr. Arndt Falk, Sterup

18. Dipl.-Ing. Friedhelm Hülsmann,

Garbsen

21. Uwe Göldner, Krefeld

29. Ing. Dieter-W. Sauer, Berlin

29. Dipl.-Phys. Harald Reinhardt,

Leverkusen

KTG Inside


atw Vol. 63 (2018) | Issue 3 ı March

Inside

187

Sicherheit, Kompetenz und

unsere Jahrestagung (AMNT)

Liebe KTGler, liebe atw-Leser, für den zuverlässigen Betrieb eines Kernkraftwerks sind die technische

Kompetenz und das Sicherheitsbewusstsein der Betriebsmannschaft sowie die Sicherheit der Anlage wesentliche

Voraussetzungen. In Deutschland ist nun das Ende des Betriebs von Leistungsreaktoren beschlossen, nicht so bei vielen

unserer europäischen Nachbarn. Sollen und können wir die kerntechnische Kompetenz in Deutschland weiterhin

erhalten?

Im Rahmen der Energievorsorgeforschung liegt es zur

Sicherheit der Bevölkerung und der Umwelt nahe, das

Know-how, die Kompetenz in der Kerntechnik zu erhalten

und noch weiter auszubauen. Kurzfristig zur Gewährleistung

des sicheren Restbetriebs in Deutschland sowie

langfristig zur Bewertung der Sicherheit benachbarter

Anlagen und vor allem, um einen Beitrag zur Erhöhung

der Sicherheit geplanter Neubauten im internationalen

Umfeld leisten zu können.

Zu der nachgewiesenen, hohen Zuverlässigkeit der

deutschen Anlagen tragen sehr viele bei, vor allem

die Betreiber selbst, aber auch, um hier nur einige zu

nennen, technische Sicherheitsorganisationen, Gutachter,

Genehmigungsbehörden, die Reaktor-Sicherheitskommission,

der Kerntechnische Ausschuss sowie Forschungszentren

und Hochschulen mit den die (Sicherheits-)

Forschung fördernden Ministerien und Projektträgern.

Diese Situation erfordert die Aufstellung eines sorgfältigen

Konzeptes zum perspektivischen Erhalt der Kompetenz,

was angesichts der vielfältigen und verschiedenartigen

Know-how-Träger eine anspruchsvolle Aufgabe ist.

Der Kompetenzerhalt/-ausbau braucht dabei zwingend

die Einbeziehung und Motivation junger Menschen.

Hierzu bietet sich als ein Instrument die Reaktorsicherheitsforschung,

als eine Säule des Kompetenzerhalts in der

Kerntechnik, an.

Erste Anlaufstellen wären hier die Universitäten mit

ihren Studierenden und geförderten nationalen kerntechnischen

Forschungsprojekten und internationalen

Forschungskooperationen, die ihren Doktoranden eine

vertiefte Auseinandersetzung mit der Thematik ermöglichen.

Wichtig ist aber auch die Zusammenführung von

Nachwuchswissenschaftlern (m/w) mit Spezialisten aus

relevanten beteiligten Institutionen. Dies umso mehr, da

die Kerntechnik ein hochgradig multidisziplinäres Arbeitsgebiet

ist.

Für den Kompetenzerhalt kommt der KTG und ihrer

Jahrestagung (AMNT) eine besondere Rolle zu, da sie die

verschiedenen Disziplinen sowie die nationalen und

internationalen Experten in einem Netzwerk verknüpfen

kann. Von Bedeutung ist dabei auch der Einfluss, den die

Mitglieder direkt oder durch Ansprache der Vertreter in

den Gremien auf die Gestaltung und Schwerpunktsetzung

der Jahrestagung nehmen können und sollten.

Bringen Sie sich ein, um unser Know-how zu erhalten!

| | Prof. Dr.-Ing.

Marco K. Koch

(54), Bochum

Stellvertretender

Vorsitzender

der KTG

KTG Inside

Verantwortlich

für den Inhalt:

Die Autoren.

Lektorat:

Sibille Wingens,

Kerntechnische

Gesellschaft e. V.

(KTG)

Robert-Koch-Platz 4

10115 Berlin

T: +49 30 498555-50

F: +49 30 498555-51

E-Mail: s.wingens@

ktg.org

KTG INSIDE

Ihr Marco K. Koch

www.ktg.org

77 Jahre werden

4. Ing. Ulrich Ristow, Neu-Isenburg

8. Dr. Frank Steinbrunn, Fröndenberg

14. Dipl.-Ing. Bernd Jürgens, Hirschberg

22. Dipl.-Phys. Gerhard Jourdan, Landau

76 Jahre wird

10. Dipl.-Phys. Alfons Scholz, Brühl

75 Jahre werden

7. Dr. Peter Royl, Stutensee

16. Dipl.-Ing. Jochen Heinecke, Kürten

20. Dipl.-Ing. Jörg Brauns, Hanau

26. Dr. Jürgen P. Lempert, Hannover

26. Graeme William Catto,

Buch a. Erlbach

70 Jahre werden

5. Dipl.-Wirtsch.-Ing. Bernd Pontani,

Alzenau

13. Dipl.-Kfm. Jochen Bläsing,

Mörlenbach

22. Dr. Volker Mirschinka, Essen

65 Jahre wird

21. Dr. Ulrich Rohde, Dresden

60 Jahre wird

26. Dr. Sheikh Shahee, Leinburg

50 Jahre werden

20. Thomas Wiese, Ebermannstadt

30. Dipl.-Ing. Heiko Ringel, Offingen

April 2018

97 Jahre wird

2. Prof. Dr. Albert Ziegler, Karlsbad

87 Jahre werden

9. Dr. Klaus Penndorf, Geesthacht

11. Hubert Bairiot, Mol/B

19. Dr. Klaus Einfeld, Murnau

28. Dipl.-Ing. Rudolf Eberhart,

Burgdorf

85 Jahre wird

6. Ing. Reinhard Faulhaber, Köln

84 Jahre wird

22. Dipl.-Ing. Gert Slopianka,

Gorxheimeral

83 Jahre werden

3. Dipl.-Psych. Georg Sieber, München

5. Prof. Dr. Hans-Henning Hennies,

Karlsruhe

19. Dr. Ernst Müller, Rösrath

19. Dr. Gottfried Class,

Eggenstein-Leopoldshafen

21. Dipl.-Ing. Walter Jansing,

Bergisch Gladbach

30. Dr. Friedrich-Wilhelm Heuser,

Overath

82 Jahre werden

4. Helmut Kuhne, Neunkirchen

6. Dipl.-Ing. Hans Pirk, Rottach-Egern

10. Dipl.-Ing. Franz Stockschläder,

Bad Bentheim

11. Dipl.-Ing. Bernhard-F. Roth,

Eggenstein-Leopoldshafen

24. Dipl.-Ing. Horst Schott, Overath

81 Jahre werden

7. Dipl.-Ing. Helmut Adam,

Neuenhagen

13. Dr. Martin Peehs, Bubenreuth

KTG Inside


atw Vol. 63 (2018) | Issue 3 ı March

188

NEWS

Wenn Sie keine

Erwähnung Ihres

Geburtstages in

der atw wünschen,

teilen Sie dies bitte

rechtzeitig der KTG-

Geschäftsstelle mit.

80 Jahre werden

4. Prof. Dr. Klaus Kühn,

Clausthal-Zellerfeld

5. Dr. Hans Fuchs, Gelterkinden/CH

9. Dr. Carl Alexander Duckwitz, Alzenaz

28. Prof. Dr. Georg-Friedrich Schultheiss,

Lüneburg

79 Jahre wird

8. Dr. Siegbert Storch, Aachen

78 Jahre wird

18. Dipl.-Ing. Norbert Granner,

Bergisch Gladbach

77 Jahre werden

17. Dipl.-Phys. Ernst Robinson, Gehrden

28. Dr. Ludwig Richter, Hasselroth

76 Jahre werden

9. Prof. Dr. Hans-Christoph Mehner,

Dresden

27. Dr. Dieter Sommer, Mosbach

27. Dr. Jürgen Wunschmann, Eggenstein

29. Dr. Klaus-Detlef Closs, Karlsruhe

75 Jahre werden

15. Dr. Werner Dander, Heppenheim

18. Dipl.-Betriebsw. Uwe Janßen,

Weinheim

18. Dipl.-Ing. Victor Luster, Bamberg

26. Ing. Helmut Schulz, Kürten

70 Jahre werden

6. Dr. Wolfgang Tietsch, Mannheim

9. Ing. Herbert Moryson, Essen

22. Dr. Heinz-Dietmar Maertens, Arnum

26. Dr. Rainer Heibel, Ness Neston/GB

27. Ulrich Wimmer, Erlangen

65 Jahre werden

10. Dipl.-Phys. Harold Rebohm, Berlin

24. Dipl.-Phys. Michael Beczkowiak,

Karben

60 Jahre werden

4. Dipl.-Ing. Holger Bröskamp,

Höhnhorst

4. Dipl.-Ing. (FH) Franz Xaver Pirzer,

Schwandorf

50 Jahre werden

16. Rainer Bezold, Dormitz

16. Dr. Matthias Messer, Tetbury/GB

30. Dr. Christian Raetzke, Leipzig

Die KTG gratuliert ihren Mitgliedern

sehr herzlich zum Geburtstag und

wünscht ihnen weiterhin alles Gute!

Top

Foratom: Europe needs

nuclear for climate change

and energy security

(foratom) Nuclear energy contributes

to the European Union’s three key

energy objectives laid out in the bloc’s

energy union initiative of security of

supply, competitiveness and environmental

sustainability, Yves Desbazeille,

director-general of industry group

Foratom, told journalists in Brussels

on 29 January 2018.

According to Mr Desbazeille, the EU

must continue to focus on achieving its

ultimate goal of cutting CO 2 emissions,

transitioning to a low- carbon economy,

ensuring security of energy supply and

creating jobs. He said the EU should

continue to use “all the best tools available”,

including nuclear energy.

Mr Desbazeille said nuclear was

not mentioned in the EU’s latest ‘Clean

Energy for All Europeans’ legislative

package, although it is currently

providing almost half of the EU’s lowcarbon

electricity.

He said adjustments are also

needed to the way the European

energy markets work in order to stimulate

investment in long-term energy

capacities. A higher price to carbon

emissions is needed to encourage such

investments and a revision of the EU

emissions trading scheme (ETS) will

be a “key instrument” for decarbonising

the EU’s economy, Mr Desbazeille

said.

On the UK leaving the Euratom

treaty as part of Brexit, Mr Desbazeille

said the EU and UK should not delay

negotiating their future relationship

in the civil nuclear field and in

particular defining the parameters of

a transitional period.

Euratom is the treaty which underpins

the nuclear industry and the

trade in nuclear materials in the EU.

| | (18501457), www.foratom.org

WNA outlines vision

for future of electricity

(wna) Harmony is the nuclear industry

vision supported by the World

Nuclear Association (WNA) for the

future of electricity and how nuclear

energy can help the world achieve its

2° climate target.

According to WNA, nuclear power

capacity will need to grow signifi cantly

around the world in order to meet

the International Energy Agency’s 2°

scenario. “By 2050, nuclear energy

must account for 25 % of energy

genera tion if we are to meet our

climate targets. With nuclear making

up 11 % of generation in 2014, an extra

1000 GW in nuclear capacity will need

to be built by 2050” states Agneta

Rising, WNA Director General. “However,

meeting this goal will not be

easy”, she adds.

One of the actions being undertaken

by the Harmony programme is

an evaluation of current barriers and

recommended solutions. These can be

summarised as follows:

Electricity market failures: Ensure

a level playing field for all low carbon

energy sources including nuclear.

Regulatory barriers: Harmonise

international regulatory processes to

ensure consistency, efficiency and

predictability.

Misconception of risks and benefits:

Address public concerns and put the

health, environmental and safety risks

of nuclear in perspective compared to

other power generation technologies.

“FORATOM very much welcomes

the work being undertaken by the

WNA. Indeed, Europe faces many of

the same challenges, and opportunities,

as other regions”, underlines

Yves Desbazeille, FORATOM Director

General. “Globally, the EU is the

region which emits the lowest amount

of CO 2 emissions from electricity generation

thanks to nuclear energy. We

look forward to continuing our fruitful

cooperation with the WNA and

making sure our positive messages

about the real value of nuclear energy

resonate across Europe”.

For more information about the

Harmony programme check out the

website: world-nuclear.org/harmony.

| | (18501447), www.world-nuclear.org,

www.foratom.org

World

Head of ROSATOM Alexei

Likhachev announced 2018

the Year of Nuclear Science

(rosatom) On the 6th of February

2018, speaking at the function at the

Presidium of Scientific and Technical

Board of ROSATOM dedicated to the

Russian Science Day, Director General

of ROSATOM Alexei Likhachev

announced 2018 the Year of Nuclear

Science.

Likhachev reminded that the

nuclear sector had appeared in the

world owing to fundamental scientific

discoveries and today’s achievements

of Russian nuclear scientists in many

respects were based on scientific

News


atw Vol. 63 (2018) | Issue 3 ı March

Operating Results October 2017

Plant name Country Nominal

capacity

Type

gross

[MW]

net

[MW]

Operating

time

generator

[h]

Energy generated. gross

[MWh]

Month Year Since

commissioning

Time availability

[%]

Energy availability Energy utilisation

[%] *) [%] *)

Month Year Month Year Month Year

OL1 Olkiluoto BWR FI 910 880 523 453 505 6 084 788 253 316 643 70.17 93.53 67.01 91.99 66.89 91.65

OL2 Olkiluoto BWR FI 910 880 745 687 245 5 131 241 242 948 381 100.00 77.68 100.00 76.66 101.37 77.29

KCB Borssele PWR NL 512 484 703 352 921 2 653 908 157 458 349 93.60 71.62 93.63 72.12 92.49 69.50

KKB 1 Beznau 1,2,7) PWR CH 380 365 0 0 0 124 746 087 0 0 0 0 0 0

KKB 2 Beznau 1,2,7) PWR CH 380 365 745 283 718 2 370 828 130 602 984 100.00 85.94 100.00 85.41 100.25 84.71

KKG Gösgen 7) PWR CH 1060 1010 745 788 371 7 019 814 303 630 449 100.00 91.62 99.98 91.20 99.83 90.77

KKM Mühleberg BWR CH 390 373 745 286 910 2 560 350 123 772 595 100.00 91.47 99.97 90.80 98.75 89.98

CNT-I Trillo PWR ES 1066 1003 745 791 502 6 975 968 237 469 685 100.00 90.51 100.00 90.20 99.03 89.19

Dukovany B1 PWR CZ 500 473 745 371 657 2 094 026 107 904 400 100.00 59.16 100.00 58.76 99.77 57.40

Dukovany B2 PWR CZ 500 473 745 368 190 2 590 373 103 913 002 100.00 72.79 100.00 72.20 98.84 71.01

Dukovany B3 PWR CZ 500 473 0 0 2 309 273 101 934 129 0 74.25 0 63.88 0 63.30

Dukovany B4 PWR CZ 500 473 745 370 436 2 197 298 102 725 449 100.00 71.01 99.55 60.37 99.45 60.23

Temelin B1 PWR CZ 1080 1030 745 802 035 7 883 127 105 511 286 100.00 100.00 99.96 99.96 99.68 100.04

Temelin B2 PWR CZ 1080 1030 745 808 164 6 031 344 99 895 666 100.00 76.21 100.00 75.84 100.44 76.54

Doel 1 PWR BE 454 433 745 337 695 2 951 580 133 564 553 100.00 89.85 99.88 89.32 99.46 88.90

Doel 2 PWR BE 454 433 745 339 506 2 939 341 131 592 990 100.00 90.56 99.98 90.17 99.85 88.21

Doel 3 PWR BE 1056 1006 0 0 6 732 621 251 169 221 0 86.76 0 86.57 0 86.93

Doel 4 PWR BE 1084 1033 745 812 158 6 281 391 252 953 842 100.00 81.41 100.00 80.78 99.48 78.75

Tihange 1 PWR BE 1009 962 0 0 2 690 977 289 954 051 0 38.01 0 37.60 0 36.54

Tihange 2 PWR BE 1055 1008 745 786 476 5 870 641 247 389 709 100.00 80.71 100.00 76.52 100.69 76.58

Tihange 3 PWR BE 1089 1038 745 804 709 7 855 132 267 335 829 100.00 100.00 99.98 99.98 99.07 98.76

189

NEWS

Operating Results December 2017

Plant name

Type

Nominal

capacity

gross

[MW]

net

[MW]

Operating

time

generator

[h]

Energy generated, gross

[MWh]

Time availability

[%]

Energy availability Energy utilisation

[%] *) [%] *)

Month Year Since Month Year Month Year Month Year

commissioning

KBR Brokdorf DWR 1480 1410 744 932 450 5 778 146 340 192 059 100.00 51.68 93.41 48.23 84.26 44.37

KKE Emsland 4) DWR 1406 1335 744 1 001 858 11 323 704 335 323 283 100.00 93.28 100.00 93.13 95.68 91.94

KWG Grohnde DWR 1430 1360 744 971 810 9 684 880 366 627 579 100.00 86.06 94.84 82.24 90.74 76.66

KRB B Gundremmingen 4) SWR 1344 1284 732 636 949 9 689 710 331 342 654 98.39 93.06 97.96 92.22 62.39 81.55

KRB C Gundremmingen SWR 1344 1288 744 982 473 9 929 820 320 579 893 100.00 87.85 100.00 85.93 97.80 83.86

KKI-2 Isar DWR 1485 1410 744 1 083 616 11 523 513 341 598 323 100.00 91.53 99.96 91.15 97.80 88.26

KKP-2 Philippsburg DWR 1468 1402 744 1 065 419 7 853 827 355 167 516 100.00 63.18 100.00 63.12 95.90 60.10

GKN-II Neckarwestheim DWR 1400 1310 744 995 400 10 540 800 320 123 134 100.00 88.93 100.00 88.60 95.72 86.10

findings of the father-founders of the

sector. “The sectoral science all the

way has proved the theorem of the

sector existence,” he said, noting that

the contemporary challenges required

solving many new topical tasks on

which the future development of

nuclear industry is dependent and

ROSATOM’s competitiveness on the

world market is maintained.

According to Likhachev, ROSATOM’s

management pays the high priority

attention to the development of the

sectoral science that is confirmed by the

staff and organizational decisions

made last year and setting the highpriority

tasks which include building

up the sectoral plan in scientific areas,

creation of the scientific eco-environs,

provisions for sustainable financing of

scientific activities, raising prestige of

scientific work, and many others.

“One more important task we are

facing is the broadening scientific

contacts, including our ‘blood brother’

NRC Kurchatov Institute as well as

with the Russian Academy of Sciences.

In April 2018, we plan to hold a large

scientific conference of the sector

where we will summarize certain

results and possibly make decisions on

development in promising areas,”

Alexei Likhachev said.

“Using this opportunity, I would like

to announce 2018 the Year of Nuclear

Science,” the head of sector said.

In turn, President of the Russian

Academy of Sciences Aleksandr Sergeev

noted in his address that today

“RAS and ROSATOM work on friendly

terms and in concert”. “In our interaction,

ROSATOM is the support of RAS

and, perhaps, today RAS needs ROSA-

TOM more than ROSATOM needs

RAS,” he said.

The meeting was attended by

leading Russian scientists, heads of

ROSATOM, Russian Academy of

Sciences, directors of nuclear research

centers, and NRC Kurchatov Institute.

At the function, welcoming speeches

and presentations were made by Head

of Proryv Project Evgeniy Adamov;

Director of NRC Kurchatov Institute

Denis Minkin; Director of SRC RF

TRINITY (part of ROSATOM’s Science

Division) Vladimir Cherkovets; Director

of Institute for Laser Physical Research,

Academician of RAS Sergey

Garanin; Deputy General Director of

*)

Net-based values

(Czech and Swiss

nuclear power

plants gross-based)

1)

Refueling

2)

Inspection

3)

Repair

4)

Stretch-out-operation

5)

Stretch-in-operation

6)

Hereof traction supply

7)

Incl. steam supply

8)

New nominal

capacity since

January 2016

9)

Data for the Leibstadt

(CH) NPP will

be published in a

further issue of atw

BWR: Boiling

Water Reactor

PWR: Pressurised

Water Reactor

Source: VGB

News


atw Vol. 63 (2018) | Issue 3 ı March

190

NEWS

NMRC for Radiology Sergey Ivanov

and others.

| | (18501542), www.rosatom.ru

IAEA mission: France

committed to safe,

responsible management

of radioactive waste

(iaea) An International Atomic Energy

Agency (IAEA) team of experts said

France demonstrated a comprehensive

commitment to safety with a

responsible approach to the management

of radioactive waste and spent

nuclear fuel. The team also made

suggestions aimed at further enhancements

and noted several good practices.

The Integrated Review Service for

Radioactive Waste and Spent Fuel

Management, Decommissioning and

Remediation (ARTEMIS) team concluded

an 11-day mission to France on

24 January. The mission, requested by

the Government of France, was hosted

by the Directorate General of Energy

and Climate (DGEC), with the participation

of officials from several relevant

organizations including the

French National Radioactive Waste

Agency (ANDRA) and the Nuclear

Safety Authority (ASN), which is responsible

for nuclear and radiation

safety regulation in the country.

ARTEMIS missions provide independent

expert advice from an international

team of specialists convened

by the IAEA. Reviews are based on the

IAEA safety standards as well as international

good practices. The mission

to France aimed to help the country

meet European Union obligations that

require an independent peer review of

national programmes for the safe and

responsible management of spent fuel

and radioactive waste.

Nuclear power currently generates

more than 70 percent of France’s electricity.

The country has 58 operating

nuclear power reactors, which will

require the continuing safe management

of radioactive waste and spent

fuel. France operates facilities for

the disposal of very low-level and

| | Members of the ARTEMIS team which carried out a mission to France that

concluded on 24 January 2018. (Photo: IAEA)

low- level wastes, and is developing a

deep geological repository for the disposal

of high-level waste.

“On the basis of the review, the

team concluded that France’s waste

management programme is comprehensive

and coherent in fostering

safety,” said ARTEMIS team leader

Peter De Preter, Senior Advisor at

ONDRA/NIRAS, the Belgian agency

for the management of radioactive

waste. “Our review highlights France’s

commitment to safety.”

The ARTEMIS team said France is

well positioned to continue meeting

high standards of safety. It noted a

number of good practices to be shared

with the global waste management

community, while making suggestions

for further enhancing the programme.

Good practices identified by the

team included:

• A clear government commitment

to the national strategy and programme

for waste management,

including safe disposal.

• The development of a transparent

national waste inventory.

• Deliberate efforts towards maintaining

a high level of professional,

competent staff.

Suggestions made by the team

included:

• Facilitate implementation of the

requirement for decommissioning

to take place in the shortest time

possible.

• Optimize management of very low

level wastes.

• Consider mechanisms to address

disposal liabilities for small waste

producers.

The team comprised 13 experts from

Belgium, Canada, Cuba, Finland,

Germany, the Netherlands, Spain and

the United Kingdom as well as three

IAEA staff members. The team held

meetings with officials from the

Government and several relevant

organizations.

“This peer review represents an

important element in our efforts to

ensure the safety of the French waste

management programme, establish

greater public confidence and respond

to the EU waste directive,” said Aurelien

Louis, Head of the Nuclear Industry

Department at DGEC. “The outcome

of the mission was very positive

while also providing us with suggestions

that will be a good basis for future

enhancements.”

IAEA Deputy Director General

Juan Carlos Lentijo, Head of the Department

of Nuclear Safety and Security,

noted that the French mission

was the second ARTEMIS carried out

to meet EU obligations, following a recent

review in Poland.

“The French national programme

is characterized by a pervasive proactive

attitude combined with a high level

of professionalism, which together

demonstrates an enduring commitment

to safety,” Lentijo said. “The

French programme review provides

all of us a valuable reference with an

established, diverse and coherent programme.”

The final mission report will be

provided to the Government in about

two months.

About ARTEMIS

ARTEMIS is an integrated expert

review service for radioactive waste

and spent fuel management, decommissioning

and remediation programmes.

This service is intended for

facility operators and organizations

responsible for radioactive waste

management, as well as for regulators,

national policy makers and other

decision makers.

| | (18501336), www.iaea.org

IAEA and EU review progress

on cooperation

(iaea) The International Atomic

Energy Agency (IAEA) and the European

Union (EU) reviewed progress

achieved in working together on a

range of nuclear activities and agreed

to further enhance cooperation during

their sixth annual Senior Officials

Meeting in Vienna.

The talks on 8 February at the

IAEA’s headquarters provided a forum

for exchanging views on strengthening

collaboration on nuclear safety,

security, safeguards, sustainable development,

nuclear energy research

and increasing innovation. The two

organizations welcomed the fruitful

cooperation and progress achieved

over the past years. They agreed to

deepen cooperation in several areas,

particularly in the promotion of

nuclear applications for sustainable

development.

“The EU is a significant partner for

the IAEA and these annual gatherings

of senior officials serve an important

role in helping to coordinate our

activities,” said Cornel Feruta, Chief

Coordinator for the IAEA. “We have

been pleased by progress made in

working together on several nuclearrelated

issues, and look forward to

deepening our cooperation, in particular

in the area of nuclear applications

for sustainable development.”

“Nuclear safety and security remain

our key priorities, both in

News


atw Vol. 63 (2018) | Issue 3 ı March

| | Cornel Feruta (centre), Chief Coordinator for

the IAEA, making opening remarks at the sixth

annual IAEA/EU Senior Officials Meeting held

in Vienna on 8 February 2018.

Europe and globally,” said Gerassimos

Thomas, Deputy Director General in

the Directorate-General for Energy of

the European Commission. “In 2018,

the EU will conduct its first ever

topical peer review on ageing management

of nuclear power plants under

the amended Nuclear Safety Directive.

It will also advance its strategic

agenda on non-power applications in

medicine, industry and research. We

are working in close cooperation with

the IAEA on these matters.”

The EU and the IAEA reaffirmed

support for the Joint Comprehensive

Plan of Action (JCPOA) based on their

respective mandates. The EU High

Representative, as Coordinator of the

Joint Commission established under

the JCPOA, will remain in close

contact with the IAEA regarding

continued implementation of the

agreement.

EU support for a variety of IAEA

activities has delivered consistent and

concrete results over the past year.

Officials commended the long-standing

and successful cooperation under

the Instrument for Nuclear Safety

Cooperation. The EU also welcomed

joint efforts to address environmental

remediation in Central Asia and the

upcoming donors’ conference in fall

2018.

During the talks, the EU and the

IAEA agreed to further strengthen cooperation

in training as well as research

and development. They welcomed

progress in advancing activities

on nuclear applications since the

signing of Practical Arrangements in

this field last year. The EU also reaffirmed

its support for the implementation

of the IAEA’s 2018-2021 Nuclear

Security Plan.

The sides welcomed the launch of

the IAEA’s new ARTEMIS peer review

service of national decommissioning

and waste management programmes,

to which the European Commission

contributes. First reviews have taken

place in some EU Member States

under the EU waste directive. The safe

long-term operation of nuclear power

plants and developments related to

Small Modular Reactors (SMRs) were

also discussed.

Officials reviewed progress on the

implementation of nuclear safeguards

in EU Member States and on the

European Commission Support Programme

to the IAEA. Exchanges took

place on the 2018 Preparatory

Committee for the 2020 Review

Conference on the Treaty on the

Non-Proliferation of Nuclear Weapons

(NPT), scheduled to be held 23 April

to 4 May 2018 at the United Nations

Office in Geneva.

The next Senior Officials Meeting

is expected to take place in Luxembourg

in early 2019.

| | (18501339), www.iaea.org

IAEA mission sees significant

improvements to Belgian

regulatory framework and

identifies areas for further

enhancement

(iaea) An International Atomic Energy

Agency (IAEA) team of experts said

Belgium has made significant improvements

to its regulatory framework

for nuclear and radiation safety

since 2013 by clarifying the regulatory

body’s roles and responsibilities and

strengthening its independence. The

team also observed other improvements

and identified areas for further

enhancement.

The Integrated Regulatory Review

Service (IRRS) peer-review team concluded

a nine-day follow-up mission

today to review Belgium’s implementation

of recommendations and

suggestions made by a 2013 mission.

The review was conducted at the

request of the Government and hosted

by the country’s nuclear regulatory

body, comprising the Belgian Federal

Agency for Nuclear Control (FANC)

and its technical support arm, Bel V.

Using IAEA safety standards and

international good practices, IRRS

missions are designed to strengthen

the effectiveness of the national

nuclear regulatory infrastructure,

while recognizing the responsibility of

each country to ensure nuclear safety.

The IRRS team said the regulatory

body had adequately addressed most

of the recommendations and suggestions

made by the 2013 mission. The

team also said the regulatory body

should remain focused on tackling

outstanding issues.

“Belgium has made key improvements

to the national regulatory

framework, making it more effective

and efficient,” said team leader Robert

Campbell of the United Kingdom’s

Office for Nuclear Regulation. “The

independence of the regulatory body

has now been strengthened in legislation,

and the roles and responsibilities

between the regulator and the

National Agency for Radioactive Waste

Management have been clarified.”

Belgium has seven operating

nuclear power reactors at two sites,

Doel and Tihange, providing just over

half of the country’s electricity and

other nuclear installations including

research reactors, a radioactive waste

treatment facility and an isotope production

facility. In addition, medical

and industrial applications of radioactive

sources are widely used. By law,

nuclear power will start to be phased

out in 2022.

The scope of the 2013 and the 2017

missions covered areas including: the

responsibilities and functions of the

Government and the regulatory body;

the management system of the regulatory

body; activities of the regulatory

body related to regulation of the full

range of nuclear facilities and activities;

emergency preparedness and

response; control of medical exposure

and radiation safety; and the interface

between nuclear safety and nuclear

security.

The team found that the regulatory

body has taken positive steps to:

• Establish a central information

system for sealed source tracking

and inventory as well as inspection

recording.

• Develop a tool to assist in reviewing

and assessing safety-related

modifications through a clearly

defined graded approach.

• Improve patient radiation protection

by raising awareness

about the need to justify medical

examinations.

• Enhance openness and transparency,

including more communications

on regulatory activities

aimed at improving public trust.

“We are very pleased with the results,

which show that the work we’ve

carried out in the last four years is

recognized by international experts.

I particularly appreciate the comments

on transparency and the independence

of the regulator,” said Jans

Bens, director-general of FANC. “I’d

like to thank the staff of the regulatory

body for their contribution to this

achievement, and we look forward to

making continued efforts at improving

the regulatory framework.”

The IRRS team also identified a few

areas for further enhancing the effectiveness

of the regulatory body, including

by completing the programme

of work on its management system.

191

NEWS

News


atw Vol. 63 (2018) | Issue 3 ı March

192

NEWS

“The team has recognised the progress

made by the regulatory body

since the 2013 review,” said David

Senior, head of the IAEA’s Regulatory

Activities Section. “The mission found

that the regulatory body has addressed

the findings from the initial

review, demonstrating a commitment

to continuous improvement of the

regulatory framework against IAEA

safety standards.”

The 12-member IRRS team comprised

experts from Canada, Finland,

France, Greece, Hungary, the Netherlands,

the United Kingdom and the

United States of America as well as

four IAEA staff members.

The final mission report will be

provided to the Government in about

three months. Belgium plans to make

it public.

| | (18501410), www.iaea.org

First‐of‐its‐kind nuclear safety

culture forum puts the

spotlight on national context

(nea) The influence of national context

on nuclear safety culture was the

focus of the country‐specific forum

held on 23‐24 January 2018 by the

Nuclear Energy Agency (NEA) in

Stockholm, Sweden, in co‐operation

with the World Association of Nuclear

Operators (WANO) and the Swedish

Radiation Safety Authority (SSM).

The purpose of this forum was to

create awareness on potential safety

culture challenges related to national

context, with the objective of helping

organisations maintain a healthy

safety culture for safe operations of

nuclear installations and for effective

regulatory activities. The event

brought together over 60 experts from

the Swedish nuclear community and

international observers from France,

Finland, Japan, Korea, South Africa

and the United States, representing

the industry and regulatory organisations.

Opening remarks were delivered

by NEA Director‐General William D.

Magwood, IV, SSM Director General

Mats Persson and WANO Chief

Executive Officer (CEO) Peter Prozesky.

Participants, then, spent one and

a half days self‐reflecting upon their

national cultural attributes in relation

to safety culture. They held focus

group discussions, analysed data and

identified traits relevant to their

national context that may strengthen

or jeopardise safety. Through interactive

roleplay, they explored how

their national context may affect

nuclear safety‐relevant behaviours.

In plenary sessions, the participants

shared ways and approaches to work

with the national context in order to

improve or maintain healthy safety

culture.

“The fundamental objective of all

nuclear regulatory bodies is to ensure

that nuclear licensees conduct their

activities related to the peaceful use

of nuclear energy in a safe manner

within their respective countries,”

said NEA Director‐General Magwood.

“National influences on nuclear power

plant operations and safety culture

should also be considered in fostering

and enhancing nuclear safety. Every

country has to find how best to leverage

its national context in order to

build and maintain a healthy safety

culture.”

“We have to consider the national

context, as it has good impacts on

nuclear safety culture while also

presenting some challenges,” added

SSM Deputy Director General Fredrik

Hassel.

WANO CEO Prozesky said, “We are

pleased to work together with the

NEA to explore different ways to

enhance global nuclear safety, particularly

in the area of nuclear safety

culture.”

“The NEA has worked in recent

years to advance the human aspects of

nuclear safety,” said Mr Magwood.

“We have been working with our

membership, other international

organisations and partners like WANO

to make sure that we’re taking the

right actions to enhance nuclear safety

worldwide.”

A summary report of the forum

and its outcomes is in preparation and

will be provided online to serve as

reference point and training tool on

safety culture. It will analyse national

influences on safety culture, identify

country‐specific traits and practical

methods to address challenges, and

propose a roadmap to solutions.

CTBTO: Ground-breaking

ceremony for the permanent

Equipment, Storage &

Maintenance Facility (ESMF)

(ctbto) On 25 January CTBTO held a

ground-breaking ceremony for its new

permanent Equipment, Storage and

Maintenance Facility (ESMF) in

Seibersdorf, Lower Austria. The

Facility will be primarily used as a

storage and maintenance facility for

the equipment of the On-Site

Inspections Division, but will also

benefit the Organization as a whole

with state-of-the-art training facilities,

a media centre and more.

The decision to build a permanent

facility at Seibersdorf is a significant

event for the CTBTO as it will contribute

to the further development of the

monitoring and verification system of

the Treaty, making the work of the

Organization even more visible and

attesting to the fact that it is already

capable of operating to its mandate.

Among the participants of the

ceremony were Michael Linhart,

Vice-Minister & Secretary-General of

the Federal Ministry for Europe,

Integration and Foreign Affairs of the

Republic of Austria, Ambassador

Maria Assunta Accili Sabbatini,

Permanent Representative of the

Republic of Italy and the Chairperson

of the CTBTO PrepCom, Dr. Hannes

Androsch, Chairman of the Supervisory

Board of the Austrian Institute

for Technology (AIT), Gerhard Karner,

Second President of the State

Parliament of Lower Austria, Franz

Ehrenhofer, Mayor of Seibersdorf, as

well as permanent representatives to

the International Organizations in

Vienna.

The symbolic ground-breaking was

only the first small step in the construction

process, as shortly the

construction team will have to dig 150

meters deeper into the ground before

| | Groundbreaking Ceremony of CTBTO’s permanent ESMF Facility in Seibersdorf, Austria 25 January 2018.

Photo: The Official CTBTO Photostream

News


atw Vol. 63 (2018) | Issue 3 ı March

starting work on the facility itself. The

construction of the ESMF is expected

to be completed by the end of 2018.

At the ceremony, Secretary-

General Linhart pointed out that policies

of nuclear disarmament and

non-proliferation remain among the

main priorities of Austria’s foreign

policy. He reaffirmed Austria’s strong

support for the CTBTO and concluded

that “by building the permanent

Equipment, Storage and Maintenance

Facility in Seibersdorf, the CTBTO’s

links with the host country will be

even stronger”.

Other speakers also highlighted

the importance of the ESMF both for

the strengthening of the CTBTO

verification regime and for Austria

itself, at the level of scientific and

regional development.

| | (18501413), www.ctbto.org

UK Parliament: Brexit: energy

security report published

(uk-par) The EU Energy and Environment

Sub-Committee publishes its

report on Brexit: energy security,

looking at implications for energy

supply, consumer costs and decarbonisation.

Key findings

The report states that Brexit will put

the UK’s current frictionless trade in

energy with the EU at risk. The Committee

calls on Government to set out

how it will work with the EU to anticipate

and manage supply shortages,

and to assess what impact leaving the

Internal Energy Market would have on

the price paid by consumers for their

energy.

The Committee also heard that the

UK’s ability to build future nuclear

generation sites, including Hinkley

Point C, is in doubt if access to

specialist EU workers is curtailed, and

that failure to replace the provisions

of the Euratom Treaty by the time the

UK leaves the EU could result in the

UK being unable to import nuclear

materials.

The Committee found that EU

investment has made a significant

contribution to constructing and

maintaining a secure energy system

in the UK, and that replacing this

funding will be critical to ensuring

sufficient infrastructure is in place to

enable future energy trading.

The report concludes that,

post-Brexit, the UK may be more

vulnerable to energy shortages in

the event of extreme weather or

unplanned generation outages, and

asks the Government to set out how it

will work with the EU to anticipate

and manage such conditions.

Chair’s comments

Chair of the Committee Lord Teverson

said:

“Individuals and businesses across

the UK depend on a reliable and

affordable supply of energy. In recent

years, the UK has achieved such a

supply in partnership with the EU,

working with other Member States to

make cross-border trade in energy

easier and cheaper.

“Over the course of the inquiry the

Committee heard benefits of the UK’s

current energy relationship with the

EU, and the Minister acknowledged

these benefits when he stated his hope

that Brexit would result in as little

change as possible. It remains unclear,

however, how this can be achieved,

without remaining in the single

market, IEM and the other bodies that

develop and implement the EU’s

energy policy.”

| | (18501424), www.parliament.uk

NIA welcomes Greg Clark’s

Written Ministerial Statement

on Euratom

(nia) The UK-based Nuclear Industry

Association NIA has welcomed the

government’s statement on Euratom

and its commitment to update Parliament

every three months as well as

clarity on its intention to negotiate an

implementation period to ensure a

smooth transition from the current to

new arrangements.

Commenting Tom Greatrex, Chief

Executive of the Nuclear Industry

Association, said:

“The Secretary of State’s statement

on Euratom is a useful and welcome

step in setting out the government’s

approach in seeking to secure equivalent

arrangements to those we benefit

from as a member of Euratom.

“The UK industry and research

facilities have been consistently clear

with government about the importance

of these issues since the referendum,

and given the complex nature of

multilateral agreements that will need

to be negotiated, the recognition of

the necessity of transitional arrangements

and the desire for a close future

association with Euratom is welcome.

“Even with a suitable transition,

there remains much work for the

government to do to prevent the

significant disruption that industry is

concerned about.

“There is much still to do in

equipping the UK’s regulator to take

on Euratom’s safeguarding activities;

agreeing a voluntary offer with the

IAEA; negotiating and ratifying

new bilateral Nuclear Co-operation

Agreements with the USA, Canada,

Australia, Japan and others; agreeing

new trading arrangements with the

Euratom community and concluding a

new funding agreement for the UK to

continue its world-leading work in

Euratom’s fusion R&D activities. It is

vital government continues to prioritise

these issues in the period ahead if

there is to be a successful outcome.”

| | (18501421), www.niauk.org

NEI: Nuclear industry urges

prompt next steps for

electricity market reforms

(nei) This afternoon (8 January 2018)

the Federal Energy Regulatory

Commission (FERC) issued its order

responding to a Notice of Proposed

Rulemaking related to resilience

from the U.S. Department of Energy.

Following is comment from Maria

Korsnick, president and chief executive

officer of the Nuclear Energy

Institute.

“We are disappointed that FERC

did not take affirmative action that

would preserve our nation’s nuclear

plants. America’s nuclear fleet must remain

a strategic asset contributing to

energy security, resilience, reliability,

economic growth and environmental

protection. The status quo, in which

markets recognize only short-term

price signals and ignore the essential

role of nuclear generation, will lead to

more premature shutdowns of wellrun

nuclear facilities. Once closed,

these facilities are shuttered forever.

“We applaud the Secretary’s effort

to place this issue on the national

agenda. To that end, FERC’s order

concluded that resiliency of generation

‘remains an important issue that

warrants the Commission’s continued

attention,’ and that its endorsement of

electricity markets ‘does not conflict

with its oversight of reliability.’ The

Commission has opened a new proceeding

‘to specifically evaluate the

resilience of the bulk power system in

the regions operated by regional

transmission organizations (RTO)

and independent system operators

(ISO).’

“We are committed to working

with FERC, the Department of Energy

and other federal and state policymakers

to ensure that America’s

nuclear fleet continues to deliver

electricity reliably and affordably. We

believe the direction to the RTOs/

ISOs to ‘take a proactive stance on

addressing and ensuring resilience’

193

NEWS

News


atw Vol. 63 (2018) | Issue 3 ı March

194

NEWS

must lead to prompt and meaningful

action, including on issues such as

price formation.”

| | (18501442), www.nei.org

Reactors

European Union: Thematic

peer review – ageing management

of power and research

reactors

(asn) In 2014, the Council of the

European Union adopted directive

2014/87/EURATOM on nuclear security.

The main purpose of this directive,

supplementing a directive of

2009, was to ensure that the licensees

of nuclear facilities learned the lessons

from the Fukushima Daiichi Nuclear

Power Plant (NPP) accident which

occurred in 2011.

The peer review process, considered

as an important instrument

for promoting the implementation

of continuous safety improvement

measures, was introduced by the

directive in 2014: a peer review of the

nuclear facilities of each Member

State must thus be carried out every

6 years. This in-depth review

process, inspired by that performed

during the stress tests on nuclear

facilities carried out in the wake of

the Fukushima Daiichi NPP accident,

started in 2017.

In July 2015, from among the

proposals made by WENRA, the 30 th

meeting of ENSREG selected ageing

management of power and research

reactors as the topic for this first peer

review. In addition to the national

policies developed on this subject,

particularly close attention was

paid to how they are applied to the

following four technical topics: reactor

vessels, containments, concealed

pipes and electrical cables. In accordance

with the provisions [1] regulating

this peer review, the 19 Member

States concerned and participating in

this review are required to submit

their national reports before the end

of 2017. For the nuclear facilities

concerned, ASN publishes its report

in both English and French on its

website. This report is also published

on the ENSREG website.

Following the publication of the

reports from each Member State, a

peer review of the 19 reports for

mutual examination of the steps taken

by the licensees and their assessment

by the regulators will begin in 2018. A

first workshop is scheduled from 14 to

18 May 2018. It will be an opportunity

to discuss ageing and identify best

practices. The conclusions of this peer

review will be presented to ENSREG.

| | (18501609),

www.french.nuclear-safety.fr

Russia’s nuclear electricity

share increased up to 18.9 %

in 2017

(rosatom) Following 2017, a share of

electricity production by Russian

nuclear power plants (parts of Power

Division of ROSATOM, Rosenergoatom)

has increased up to 18.9 %

(18.3 % in 2016).

In 2017, the capacity factor has also

grown to reach 83.29 % (83.1 % in

2016).

In 2017, electricity generation

at Russian NPPs reached another

record of 202.868 billion kWh

(196.366 billion kWh in 2016). Thus,

cumulative production has increased

more than 6.6 billion kWh while the

FAS balance of 2017 was exceeded by

3 billion kWh or 1.5 % (at the target

indicator of 199.84 billion kWh).

Russian NPPs set the absolute record

over the entire history of the Russian

nuclear power getting closer to the

absolute pro duction record reached

only during the Soviet Union times in

1989 (212.58 billion kWh, considering

plants in Ukraine, Lithuania and

Armenia).

According to the online data of the

System Operator of the United Energy

System of Russia, the generation of

electricity in Russia in 2017 was

1,073.6 billion kWh that is 0.2 % more

than in 2016. UES of Russia’s power

plants produced 1,053.7 billion kWh

that is 0.5 % more than in 2016.

| | (18501543), www.rosatom.ru

Rosatomflot increased the

number of ice-breaking

escorts through the Northern

Sea Route in 2017

(rosatom) FSUE Atomflot (an enterprise

of ROSATOM) has summed up

the results of 2017. According to the

results, 492 ships of the total gross

tonnage of 7.17 million tons passed

the Northern Sea Route assisted by

nuclear ice-breakers in 2017 (for comparison,

in 2016 there were 410 ships

of the gross tonnage of 5.28 million

tons).

“Off-shipment of hydrocarbon products

is the key factor of the nuclear

icebreaker fleet demand. In future,

the escort numbers will rise. Crews of

the port nuclear icebreakers and tow

boats are maximum responsible for

their contractual commitments. This

is the best ads of their work for their

potential clients,” Mustafa Kashka,

Chief Engineer of Atomflot, says.

Atomflot ensures stable annual

growth of earnings. This is due to the

work the company does to keep the

existing icebreaker service consumers

and to find new clients. In 2017, earnings

of the company grew up to RUB

6,622 million (in 2013 – RUB 1,828

million). In total, over five years (2013

to 2017) this indicator grew up by 3.6

times.

Labor efficiency grew from RUB

1,511,000 in 2013 up to RUB 3,667,000

in 2017. The indicator was up by

243 %.

Mustafa Kashka says: “Based on

the 2016 results, for the first time the

united atomic technological complex

has been formed, the company has got

the net profit of RUB 1,201 million due

to company’s effective performance.

The positive financial result was kept

in 2017: Rosatomflot’s net profit is

estimated at RUB 696 million based

on the year results.”

In 2017, Rosatomflot completed

planned works to extend service lives

of reactors at the Vaygach and Taimyr

icebreakers up to 200,000 hours. The

operation time of the icebreakers was

increased to 5 years.

The planned implementation of

the icebreaker reactor life extension

program allows Atomflot completely

excluding an “ice pause” and smoothly

starting operation of universal

nuclear icebreakers of Project 22220

while strictly following the contractual

commitments.

The Baltijskiy Zavod – Sudostroyenie

continues building universal

nuclear icebreakers (UNI) of Project

22220. In September 2017, the first

UNI Sibir was launched. The leading

UNI Arktika will be set off in mid-2019;

the first series-build nuclear icebreaker

Sibir – November 2020 and

the second series-build nuclear icebreaker

Ural – in November 2021.

In 2017, Atomflot continued its

Portoflot project. It was established by

Rosatomflot as part of the global

Yamal LNG project which is implemented

in the Russia’s Arctic Zone.

The building of a port icebreaker, two

icebreaker towing boats and two tow

boats of ice class are to ensure roundthe-year

safe berthing of large-capacity

ships at berths of Sabetta Port.

In November 2017, the icebreaker

towing boat Yuribei of Project T40105

was put in operation. It is of ice class

Arc 6 that allows the ship to render specialized

services to large-size vehicles

carrying liquefied natural gas and stable

gas condensate. In December 2017,

News


atw Vol. 63 (2018) | Issue 3 ı March

| | Rosatomflot increased the number of ice-breaking escorts through the Northern Sea Route in 2017

the Yuribei took part in loading the

first batch of Yamal LNG.

The contract for the port fleet

services is in effect till December 2040

with potential prolongation to two

periods of 5 years each.

The “Atomflot’s Plan of Measures to

Hold the Environmental Year in 2017”

was implemented. The company

operates with no spent nuclear fuel

and radioactive waste accumulating.

In 2017, the disposal of the nuclear

icebreaker Sibir and floating maintenance

base Lepse continued.

In June 2017, the off-shipment of

the first batch of spent nuclear fuel

from Andreeva Bay’s storage facility

for further reprocessing at the

Rosatomflot’s lighter ship Rossita was

the important event for rehabilitation

of the North-West Region.

The positive developments of

Atomflot and the work to conclude

long-term contracts on ice-breaking

services in large-scale projects in the

Arctic Zone of Russia are expected to

allow Rosatomflot to keep with pace

in all main businesses of the company

in 2018.

| | (18501545), www.rosatom.ru

Fennovoima: Support has

increased for Finland’s

Hanhikivi Nuclear Project

(nucnet) Local support for the Hanhikivi-1

nuclear power plant project in

Finland has increased by 7.6 % since

last year, according to a telephone

survey of 850 people.

Project developer Fennovoima said

75 % of residents in the Pyhäjoki area

support the plant, which is scheduled

to begin commercial operation in

2024.

When surrounding municipalities

were also taken into account, 71.9 %

of residents were in favour of the

project, an increase of 9.9 % over a

similar survey last year.

Fennovoima said the increased support

is an indication that the impact of

the Hanhikivi-1 project, which is using

Russian reactor technology, is becoming

more visible. Fennovoima said

local companies have been “strongly

involved” in the project.

| | (18501707), www.fennovoima.fi

Saudi Arabia to award nuclear

contracts by end of year

(nucnet) Saudi Arabia, the world’s

biggest oil exporter, plans to award

contracts in December 2018 for the

construction of its first nuclear power

plants, Bloomberg reported, quoting a

government official involved with the

project.

The kingdom has received requests

from five bidders from China, France,

the US, South Korea and Russia to

perform the engineering, procurement

and construction work on two

nuclear reactors, Abdulmalik al

Sabery, a consultant in the business

development department at King

Abdullah City for Atomic and Renewable

Energy, said in an interview in

Abu Dhabi.

“By April we will sign a project

development agreement with two to

three selected vendors,” Mr al Sabery

said. “We are going to have only one

winner that will be building the two

reactors.” The government expects

construction to start next year and is

aiming to commission the plants in

2027, he said.

Saudi Arabia wants to diversify its

economy and lessen its dependence

on oil sales for most of its official

revenue. As part of these reforms, the

country wants to meet a larger share

of its energy needs from renewables

such as solar power and from nuclear

plants.

Its neighbour the United Arab

Emirates is close to completing the

first of four reactors supplied by South

Korea at the Barakah nuclear station.

In September 2017 a Saudi official

told the International Atomic Energy

Agency that the kingdom was carrying

out feasibility studies before deciding

how and where to build its first reactors.

The official said Saudi Arabia

would have an independent body to

supervise its nuclear industry by the

third quarter of 2018.

| | (18501719), www.emergy.gov.sa

Finland: Loviisa had record

production year in 2017

(nucnet) Fortum’s two-unit Loviisa

nuclear power station had a record

production year in 2017, generating

8.16 TWh (net) of power, which is

more than 10 % of Finland’s total

electricity production.

Fortum said the 92.7 % load factor

of the Loviisa facility was among the

best in the world for pressurised water

reactor power plants.

Loviisa-1’s load factor was 92.7 %

and Loviisa-2’s was 92.6 %. Production

output at Loviisa-1 was the

highest in the station’s history and at

Loviisa-2 was the second highest.

Both units underwent a short

refuelling annual outage in 2017. Unit

1 was out of production for 21 days

and Unit 2 for 17 days.

In addition to normal scheduled

maintenance and fuel replacement,

high-pressure safety injection pump

motors were renewed. A turbine’s

high-pressure housing was modernised

and two turbine reheaters

replaced to increase the power plants’

production and improve efficiency.

Fortum sad its investments in

Loviisa in 2017 were approximately

€90m ($108m), compared to €100m

in 2016. Investments in the coming

years will continue to be significant,

the company said.

Both Fortum units are 502-MW

PWRs supplied by Russia. Unit 1

began commercial operation in May

1977 and Unit 2 in January 1981.

| | (18501713), www.fortum.com

China: Tianwan-3

aynchronised to grid

(nucnet) The Tianwan-3 nuclear plant

under construction in Jiangsu province,

northeastern China, has been

synchronised to the grid and has

delivered its first kilowatt-hours of

electrical energy at a power level of

25 %, Russia’s state nuclear corporation

Rosatom said on 2 January

2017.

Rosatom said the 990-MW VVER

V-428M unit, which reached first

criticality in September 2017, would

now undergo a series of tests at power

levels of 50 %, 75 % and 100 %. At

100 % power the unit will be operated

for 100 hours before regulators

195

NEWS

News


atw Vol. 63 (2018) | Issue 3 ı March

196

NEWS

* Ouranos, the Greek

god who became

Uranus in Roman

mythology and from

whom the planet

Uranus takes its

name, was later to

serve as a point of

reference when the

term “uranium” was

created.

approve commercial operation. Constriction

of the unit began in December

2012.

The Tianwan nuclear station is the

largest economic cooperation project

between Russia and China, an earlier

statement said. Tianwan-1 and -2,

also VVER V-428M units, began

commercial operation in 2007. The

Tianwan-4 VVER V-428M unit is also

under construction by Russia.

Tianwan-5 and -6 will be indigenous

Generation II+ CNP-1000 units.

| | (18501708), www.rosatom.ru,

www.cnnc.com.cn

France: EDF ompletes cold

functional testing at Flamanville-3

EPR

(nucnet) France’s nuclear operator

EDF has completed the cold func tional

test phase for the Flamanville-3

EPR under construction in northern

France, the state-controlled company

said in a statement on 8 January 2018.

The cold functional testing phase

is part of the system performance

testing, which started in the first

quarter of 2017, to check and test

operation of all the EPR’s systems.

The cold functional test phase,

which started on 18 December 2017

and was completed on 6 January

2018, saw the successful completion

of the leak performance test on the

primary system at a pressure greater

than 240 bar – higher than the

pressure of this system in operation.

More than 500 welds were inspected

during this hydrostatic testing, supervised

by the regulator ASN.

EDF is now preparing hot functional

testing of the 1,600-MW unit to

be started in July 2018. The objective

is to demonstrate the good working

order of the plant by testing components

with temperature and pressure

levels similar to operating conditions.

EDF said fuel loading and start-up

of the reactor is scheduled for the last

quarter of 2018.

The group has also confirmed the

cost of the project set at €10.5bn

($12.5bn). A previous estimate of the

total cost in July 2011 was €8bn.

| | (18501715), www.edf.com

Russia: Rostov-4 reaches

first criticality

(nucnet) The Rostov-4 nuclear unit

near Volgodonsk in southern Russia

has reached first criticality and minimum

controlled power, state nuclear

corporation Rosatom said.

Construction of the VVER-1000/

V-320 unit began in June 2010. There

are three other units of the same

design in commercial operation at

Rostov.

When Rostov-4 reaches full power

and commercial operation, nuclear

power will provide 54 % of power in

southern Russia, Rosatom said.

According to the International

Atomic Energy Agency, Russia has 35

nuclear units in commercial operation

and seven, including Rostov-4, under

construction. In 2016 nuclear energy’s

share of electricity production was

17.14 %.

| | (18501710), www.rosatom.ru

Spain: Nuclear reactors

lead electricity generation

with more than 21 %

(nucnet) Spain’s seven commercial

nuclear reactors produced 55.6 TWh

of electricity in 2017, making nuclear

the energy source that contributed

most to the country’s electric system,

the Madrid-based industry group Foro

Nuclear said on 8 January 2017.

Quoting figures from grid operator

Red Eléctrica de España (REE), Foro

Nuclear said Spain’s nuclear fleet

accounted for 7.06 % of installed

power generation capacity, but produced

21.17 % of the total electric

energy consumed. This compares to

21.38 % in 2016 and 20.34 % in 2015.

Foro Nuclear said nuclear power

plants were operational for 7,500

hours during 2017, or 86 % of the

time, the highest number of hours of

any generation source.

Foro Nuclear president Ignacio

Araluce said the nuclear sector’s

performance “represents the availability,

reliability, stability and predictability

offered by nuclear energy”

as it operates continuously and facilitates

the proper management of the

electric system.

He said nuclear power plants do

not emit contaminating gasses or

particles to the atmosphere. In 2017

nuclear production accounted for

almost 40 % of emissions-free electricity

generated in Spain.

| | (18501714), www.foronuclear.org

UAE’s Barakah-3 and -4

connected to grid

(nucnet) The Barakah-3 and -4 nuclear

units under construction in the United

Arab Emirates have been connected to

the grid, Emirates Nuclear Energy

Corporation (ENEC) said today.

ENEC said connecting Units 3 and

4 to the grid will allow the next stage

of testing and the completion of

auxiliary buildings on the site.

The UAE is building four South

Korean APR-1400 reactors at the

Barakah nuclear site, about 240km

west of Abu Dhabi city.

According to ENEC, Unit 4 is more

than 60 % complete, Unit 3 is more

than 79 %, Unit 2 is more than 90 %,

and Unit 1 is undergoing commissioning

and testing before a regulatory

review and receipt of the operating

Licence from the Federal Authority for

Nuclear Regulation.

| | (18501711), www.enev.gov.ua

Company News

New Areva:

We are now Orano!

(orano) New Areva has become

Orano. Refocused on nuclear materials

development and waste management,

Orano’s activities encompass

mining, conversion-enrichment, used

fuel recycling, nuclear logistics, dismantling

and engineering. The group

has 16,000 employees, with a revenue

of 4 billion euros and an order backlog

that represents the equivalent of

nearly eight years of revenue. Its

mining and conversion-enrichment

activities place it in the top three

worldwide. Orano is a leader in

nuclear recycling and logistics, and

is developing its business in the

medical field.

The name Orano has its etymological

roots in the word “uranium”*,

from which nuclear fuel is produced.

“Orano symbolizes a new start. A

new start that has been under preparation

for several years now. We have

set up a new organizational structure,

a new business plan, a new strategic

action plan and a new social contract.

Our new identity is the natural result

of all this.

Our new name symbolizes our

conviction: nuclear power has a

future, as it is a competitive, lowcarbon

energy that creates jobs. Orano

has all it needs to play a key role in

this. We have high ambitions for

Orano, namely for it to become the

leader in the production and recycling

of nuclear materials, waste management,

and dismantling within the

next ten years. I have full confidence

in our capacity to give nuclear energy

its full value.

I am very proud of leading this

group and the men and women who

are part of it,” comments Philippe

Knoche, CEO of Orano.

| | (18501521), www.orano.group

News


atw Vol. 63 (2018) | Issue 3 ı March

New AREVA (Orano) and

CNNC acknowledge the

substantial progress made

in the negociation of the

contract for the Chinese commercial

used fuel treatmentrecycling

plant project

(n-a) New AREVA and its Chinese

partner China National Nuclear Corporation

(CNNC) signed on 9 January

2018 in Beijing, in the presence of the

President of the People’s Republic of

China, Mr. Xi Jinping, and the

President of the French Republic, Mr.

Emmanuel Macron, a memorandum

of commercial agreement for the

Chinese commercial used fuel treatment-recycling

plant project.

Through this memorandum, New

AREVA and CNNC reaffirm their

mutual commitment to complete the

negotiations of the contract for the

Chinese commercial used fuel treatment-recycling

plant project at the

soonest, to launch the project in 2018,

and acknowledge the substantial progress

made in the negotiation during

the past few months.

The Chinese treatment-recycling

plant (800 tons capacity) will be built

on the model of the La Hague and

Melox plants recognized for their

proven technologies, highest standards

of safety and security, and

industrial performance.

Philippe Knoche, Chief Executive

Officer of New AREVA, commented:

“CNNC and New AREVA have stepped

up their efforts to reach agreement on

the contract and we are seeing today

very positive results. I am looking

forward to finalizing the negotiations

soon, and starting the implementation

of this landmark project with

our partner CNNC in 2018.”

| | (18501522), www.orono.group

CASTOR® casks support

dismantling in Switzerland

GNS supplies eight spent fuel casks for

the final fuel elements of the Mühleberg

nuclear power plant.

GNS Gesellschaft für Nuklear-

Service mbH and BKW Energie AG

have concluded a contract for the

supply of eight CASTOR® V/52 transport

and storage casks. The casks to be

delivered in 2021 are designated for

the remaining fuel elements of the

Mühleberg nuclear power plant in

Switzerland, which is to be shut-down

at the end of 2019. After the final fuel

elements have been transferred to the

central Swiss interim storage facility

ZWILAG, the boiling water reactor

plant, which was commissioned in

1972, will be fuel-free. This is a decisive

prerequisite for efficient dis mantling.

With its casks, GNS ensures this

important step in the decommissioning

process of the Mühleberg nuclear

power plant and supports the first decommissioning

project in Switzerland

in its optimised dis mantling.

The supply contract was preceded

by a contract for the licensing of

CASTOR® V/52 for Switzerland,

which was concluded last year.

| | (18520857), www.gns.de

MHI completes investment

into France’s Framatome

• MHI acquires 19.5 percent stake in

Framatome, based on prior agreement

from July 2017

• EDF and MHI to collaborate on

ATMEA nuclear reactor jointventure

(framatome) Mitsubishi Heavy Industries,

Ltd. (MHI) has completed

investment into Framatome, a French

company that designs and manufactures

nuclear power plant (NPP)

equipment and systems and renamed

from New NP. MHI now holds a 19.5 %

equity stake in Framatome, an affiliate

of Electricité de France (EDF) recently

established as part of the reorganization

of AREVA Group. The investment

is aimed at establishing a global

structure for delivering the latest

technologies for safe and reliable

nuclear power generation through

strategic collaboration between MHI,

Framatome and EDF. It will also

support the promotion of sales of the

ATMEA1 reactor through collaboration

with EDF.

| | The representatives from BKW Energie AG and GNS Gesellschaft für Nuklear-Service mbH

on the occasion of signing the contract for CASTOR® casks. (Courtesy: GNS)

Framatome evolved from AREVA

NP, an AREVA Group company

with extensive experience in design

and manufacture of NPP equipment,

plant construction and fuel supply.

Framatome will specialize in aftersale

servicing of existing plants as

well as fuel supply, and the design,

manufacture and sale of reactor

equipment for new plants; an area

expected to generate stable earnings.

The completion of the investment

will also result in a reorganization of

ATMEA. ATMEA was formed as a joint

venture between MHI and AREVA

NP to develop the next-generation

ATMEA1 reactor. Under the new

structure, there will be fifty-fifty

ownership of ATMEA between MHI

and EDF, along with a special share

owned by Framatome.

Following completion of the investment,

MHI President and CEO

Shunichi Miyanaga commented,

“MHI has been a key player in cooperation

between Japan and France in

the development of nuclear power

generation technologies for many

years. With the completion of our

investment into Framatome, a new

structure has been created that will

further strengthen the ties between

our nuclear energy industries, and I

am confident this new relationship

will enable further improvement in

technologies to ensure the long-term

sustainability and reliability of nuclear

energy.”

Under the new arrangement, MHI,

EDF and Framatome will collaborate

in promoting worldwide sales of the

ATMEA1 reactor. Further, cooperative

ties between France and Japan’s

nuclear power industries will be

strengthened in areas including equipment

supply to NPPs, after-sale servicing,

and decommissioning work.

Cooperation between MHI and

the AREVA Group began in the 1990s

with collaboration in the fuel cycle

business. In 2006 the two parties

concluded a wider cooperation agreement

in the nuclear energy field.

Following this, integration of the two

partners’ technologies resulted in

development of the ATMEA1; a

pressurized water reactor (PWR), in

the 1,200 megawatt (MW) class, providing

the world’s highest levels of

safety and reliability. Since that time,

prospects for the sale of the ATMEA1

have been expanding worldwide,

especially in emerging economies,

where new NPP construction plans

are moving ahead.

Going forward, through the increasingly

close ties forged with EDF,

197

NEWS

News


atw Vol. 63 (2018) | Issue 3 ı March

198

NEWS

Framatome and the AREVA Group,

MHI will promote the development of

global markets for a broad range of

nuclear power generation-related

technologies. In this way, MHI will

contribute to the formation of a

worldwide structure enabling stable

acquisition and supply of energy with

low emission.

MHI is also scheduled to acquire a

5 percent equity stake in New AREVA

Holding (formerly referred to as

“NewCo”), a company primarily

focused on the fuel cycle field business.

The investment is due to be completed

by the end of January 2018.

| | (18501525), www.framatome.com

USA: Framatome to acquire

Instrumentation and Control

nuclear business of Schneider

Electric

(framatome) Framatome announced

an agreement with Schneider Electric

to acquire its nuclear automation

business. The two companies recently

signed an asset purchase agreement

that outlines the terms of the sale,

which is expected to close before the

end of the first quarter of 2018.

The acquisition expands Framatome’s

instrumentation and control

(I&C) offerings. These systems are the

central nervous system of a nuclear

power plant allowing operators to

control reactor operations. Modernizations,

upgrades and ongoing

support, are vital to manage economic

long-term operation of nuclear power.

More than 80 safety I&C systems have

been installed by Framatome on 44

reactors in 17 countries across the

world, and approximately 250 automation

systems have been installed

or are being installed by Schneider

Electric.

The agreement between Framatome

and Schneider Electric also

creates a long-term manufacturing

partnership, which gives customers

I&C options based on a comprehensive

global technical expertise and

market knowledge.

“This is an exciting time of growth

for our company, and the acquisition

and partnership with Schneider

Electric build on our long history of

providing nuclear operators with both

digital and analog I&C solutions,” said

Gary Mignogna, president and CEO of

Framatome Inc. “With this acqui sition,

we will provide long-term support for

our customers’ systems and serve as

the original equipment manufacturer

for their I&C upgrades and modernizations.”

| | (18501526), www.framatome.com

Lightbridge and Framatome

launch Enfission to

commercialize innovative

nuclear fuel

(framatome) Lightbridge Corporation

(NASDAQ: LTBR) and Framatome

finalized and launched Enfission, a

50-50 joint venture company to

develop, license and sell nuclear fuel

assemblies based on Lightbridgedesigned

metallic fuel technology and

other advanced nuclear fuel intellectual

property. Lightbridge is a U.S.

nuclear fuel development company

and Framatome is a leader in designing,

building, servicing, and fueling

today’s reactor fleet and advancing

nuclear energy.

The two companies already began

joint fuel development and regulatory

licensing work under previously

signed agreements initiated in March

2016. The joint venture is a Delawarebased

limited liability company.

Bernard Fontana, Chairman of the

Managing Board and CEO of Framatome,

said: “This is an exciting time

of growth for Framatome and we are

proud to work with Lightbridge on

Enfission. Together, we are developing

an innovative fuel technology

that will provide significant benefits

for our customers, helping them to

generate more electricity from their

nuclear power plants and better compete

in the marketplace. Framatome

provides its next generation of fuel

assembly designs to more than 100 of

the approximately 260 light water

reactors worldwide. Through this

work, we help our customers to

meet their operational goals with

a high level of safety. We are confident

that our strategic partnership

with Lightbridge on Enfission will

strengthen our position as a key

international reference in the global

fuel market.”

Seth Grae, Lightbridge president

and CEO, said: “With the world calling

for more reliable, economic and

carbon- free baseload power, Lightbridge’s

innovative metallic fuel

technology will help both existing and

new nuclear plants fill that need.

Framatome is the ideal partner with

established

manufacturing

| | Joint Venture Negotiation Team Lightbridge

and Framatome

capabilities, an impeccable reputation

as a nuclear fuel supplier and a large

global footprint. We appreciate the

strong support we have already

received from the leading nuclear

operators, both in the U.S. and around

the world. The world’s energy and

climate needs can only be met if

nuclear power grows as a part of

the energy-generating mix. We are

honored to work with Framatome on

this important project and believe

the economic and safety benefits of

our fuel will encourage greater use of

nuclear power.”

| | (18501527), www.framatome.com

Lightbridge awarded key

patents in Europe and China

for innovative metallic

fuel design

(lightbridge) Lightbridge Corporation

(NASDAQ:LTBR), a nuclear fuel technology

company, today announced it

has been awarded key patents in

both Europe and China related to

Lightbridge’s innovative metallic fuel

design that each extend through

2034. These patents follow Notices of

Allowances that were issued by the

European Patent Office and the State

Intellectual Property Office of the

People’s Republic of China, as

reported in October 2017.

The newly issued patents cover an

alternative embodiment of a multilobe

fuel rod design; an all-metal

pressurized water reactor (PWR) fuel

assembly design incorporating multilobe

fuel rods based on the alternative

embodiment; and an all-metal PWR

fuel assembly design incorporating

multi-lobe fuel rods arranged into a

mixed grid pattern, thereby covering

the all-metal fuel assembly design

after the most recent optimization.

Seth Grae, President and CEO of

Lightbridge, said: “These latest

patents are a critical step in solidifying

our intellectual protection around

the world as we gear up for commercialization

through Enfission, our

newly formed joint venture with

Framatome. Our fuel is ideally suited

for the European and Chinese

markets, as it is designed to significantly

enhance both the economics

and safety of existing and planned

nuclear reactors. With 181 operating

nuclear power plants across Europe,

and China poised to become the

largest market for nuclear, these

patents provide us a crucial and

defensible foothold in each of these

markets for years to come.”

Lightbridge has patents pending in

various countries around the world,

News


atw Vol. 63 (2018) | Issue 3 ı March

including the United States, South

Korea, Canada, Japan, Eurasia, and

Australia, as well as additional patents

pending in Europe and China.

| | (18501531), www.ltbridge.com

Rosatom: RITM-200 installed

at Sibir Icebreaker

(rosatom) In Saint Petersburg, the

Baltic Shipyard completed the installation

of the second RITM-200 reactor

on the new generation Sibir nuclear

icebreaker.

Installation of the first reactor was

completed earlier, on 14 December.

RITM-200 is an innovative pressurized

water reactor developed and

manufactured for the icebreaker

fleet by AtomEnergoMash, Rosatom’s

engineering division. The new reactor

unit is unparalleled for its compact

size and cost efficiency. Its integrated

design provides for the placement of

core equipment inside the steam

generator shell and makes the unit

twice as light, half more compact and

25 MW more powerful than the

existing icebreaker reactors of the KLT

series. The reactor design enables the

icebreaker to be used both in deep

Arctic waters and river estuaries and

improves its icebreaking speed and

other performance indicators. The

reactors have a service life of 40 years

and are protected by a containment

made of steel, water and concrete.

| | (18501539), www.rosatom.ru

Westinghouse to continue

nuclear fuel delivery to

Ukraine through 2025

(westinghouse) Westinghouse Electric

Company announced that it has

signed a nuclear fuel contract extension

with Ukraine’s State Enterprise

National Nuclear Energy Generation

Company (SE NNEGC) Energoatom.

The contract includes nuclear fuel

deliveries to seven of Ukraine’s 15

nuclear power reactors between 2021

and 2025, expanding and extending

the existing contract for six reactors

that was set to expire in 2020.

“This contract extension solidifies

Westinghouse’s role as a strategic

partner for Energoatom and demonstrates

our ability to support

Ukraine with their energy diversification.

Under the terms of the new

contract, our relation ship with

Ukraine will be strengthened through

our plan to source some of the

fuel components from a Ukrainian

manufacturer,” said José Emeterio

Gutiérrez, Westinghouse president

and chief executive officer.

While commenting on the agreement,

Yurii Nedashkovskyi, President

of SE NNEGC Energoatom, emphasized

that Energoatom is the only operating

utility of VVER-1000 reactors in the

world that has fully diver sified sources

of nuclear fuel supply. Mr. Nedashkovskyi

com mented, “ Cooperation with

Westinghouse was integral to achievement

of this goal.”

Nuclear fuel from Westinghouse

has played an important role in

Ukraine’s work for independence for

more than a decade. Westinghouse

began supplying fuel to Ukraine in

2005, when the first lead test assemblies

were delivered to South-Ukraine

NPP Unit 3.

“We are pleased that Energoatom

is continuing to trust Westinghouse

as an alternative supplier of nuclear

fuel to VVER reactors,” said Aziz

Dag, Westinghouse vice president

and managing director, Northern

Europe.

The manufacturing and assembly

of the nuclear fuel will be performed

by the Westinghouse fuel fabrication

facility in Västerås, Sweden, where

parts of the production lines are solely

dedicated to VVER-1000 fuel. Deliveries

against the contract will begin

in 2021, immediately following the

conclusion of existing contract.

| | (18501538),

www.westinghousenuclear.com

Wood wins Hinkley Point C

contract worth $16m

(wood) Wood has won a contract as

sole supplier of inspection qualification

services to the Hinkley Point C

nuclear power station. EDF Energy,

the station developer, has commissioned

Wood’s Inspection Validation

Centre (IVC) to qualify ultrasonic

inspections on high inte grity welds in

primary circuit com ponents for the

two 1.6GW reactors.

The contract is effective immediately

and the initial task order is

worth $16m.

Wood’s teams will assess the

inspection procedures and their supporting

technical justifications and

will carry out practical trials to demonstrate

that the procedures can be

applied and meet their objectives.

Using flaw implantation techniques,

faults will be introduced into welded

test pieces to test and ultimately assure

that inspectors can identify them.

The work will create a total of 35

new jobs at the IVC in Warrington, UK,

which works with specialist suppliers

across the world.

| | (18501551), www.woodplc.com

Forum

Consumption in the EU above

the energy efficiency target

(eu) The European Union (EU) has

committed itself to reducing energy

consumption by 20 % by 2020 compared

to projections. This objective is

also known as the 20 % energy

efficiency target. In other words, the

EU has pledged to attaining a primary

energy consumption of no more than

1 483 million tonnes of oil equivalent

(Mtoe) and a final energy consumption

of no more than 1 086 Mtoe in 2020.

In 2016, primary energy consumption

in the EU was 4 % off the

effi ciency target. Since 1990, the first

199

NEWS

| | Primary energy consumption in the EU, 2016 | | Final energy consumption in the EU, 2016

News


atw Vol. 63 (2018) | Issue 3 ı March

200

NEWS

year for which data are available, the

consumption has reduced by 1.7 %.

However, over the years, the distance

from primary energy consumption

target has fluctuated greatly. The

biggest divergence from the target

was in 2006 (16.2 %, a consumption

level of 1 723 Mtoe), while a record

low was reached in 2014 (1.7 %,

1 509 Mtoe). Over the last two years

the gap rose again, to 4 % above the

2020 target, equating to a consumption

of 1 543 Mtoe in 2016.

In 2016, gross inland energy

consumption in the European Union,

which reflects the energy quantities

necessary to satisfy all inland consumption,

amounted to 1 641 Mtoe.

This was a 10.8 % decrease compared

with the peak of nearly 1 840 Mtoe in

2006, but a 6.1 % increase compared

to the decade between 1996 and 2006.

Energy consumption falling

mainly in Greece, Malta and

Romania over last decade

While 19 Member States increased

their energy consumption between

1996 and 2006, growth in energy

consumption was recorded in only

two Member States between 2006 and

2016: Estonia (13.4 % increase to

6.2 Mtoe in 2016) and Poland (3.2 %

increase to 99.9 Mtoe in 2016).

Among the 26 Member States where

energy consumption decreased,

Greece (-23.6 %), Malta (- 22.5 %)

and Romania (-20.2 %) recorded

decreases of more than 20 %.

These figures are issued by Eurostat,

the statistical office of the European

Union, and are complemented by

an article on energy saving in the EU.

| | (18501600), ec.europa.eu

People

FORATOM welcomes new

President, Dr Teodor Chirica

(foratom) FORATOM is pleased to

announce that Dr Teodor Chirica has

been appointed by the association’s

General Assembly as FORATOM

President for a two-year period

starting on 1 January 2018. Furthermore,

Mr Esa Hyvärinen, Senior Vice

President of Corporate Relations at

Fortum, has been elected as Vice

President for the same period.

“I look forward to the next two

years working with the General

Assembly, Executive Board, FORATOM

Members and the Secretariat”, states

Dr Chirica. “We have many challenges

ahead of us, but I am certain that by

working together and with our partners

at EU level we will be successful.

Indeed, nuclear energy is essential if

Europe wants to meet its goals in terms

of decarbonising the power sector,

ensuring security of supply and stimulating

growth and jobs in Europe.”

Dr Teodor Chirica has over 40

years’ experience in the Romanian

nuclear energy industry. Actively

involved in the development of the

CANDU project in Romana since the

early 70’s, Dr Chirica has worked for

the CANDU Owners Group, ISPE,

CITON and RENEL. Following this, he

has served in different managerial

positions at Nuclearelectrica (1998-

2009) becoming CEO between March

2005 and January 2009. He also

acted as Managing Director of AMEC

Nuclear Romania (2009-2013) and

as CEO of EnergoNuclear – SPV for

Cernavoda Units 3 & 4 from November

2013. Since October 2017, Dr Chirica

is Senior Adviser to the CEO of

Nuclear electrica. He holds a PhD in

nuclear science from the Polytechnics

University in Bucharest. Dr Chirica

has been instrumental in the setting

up of the Romanian Atomic Forum

(ROMATOM, 2000) and in its affiliation

to FORATOM. He is a FORATOM

Executive Officer since 2006 and

FORATOM Vice President since 2017.

In addition, since 2015, he acts as

Special Advisor ROEC.

Teodor Chirica replaces Bertrand

de L’Epinois, Senior Vice President

for Safety Standards at AREVA, who

has reached the end of his mandate

as FORATOM President. FORATOM

wholeheartedly thanks Bertrand de

L’Epinois for his efforts over the last

two years.

| | (18501444),

www.foratom.org

Market data

(All information is supplied without

guarantee.)

Nuclear Fuel Supply

Market Data

Information in current (nominal)

U.S.-$. No inflation adjustment of

prices on a base year. Separative work

data for the formerly “secondary

market”. Uranium prices [US-$/lb

U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =

0.385 kg U]. Conversion prices

[US-$/kg U], Separative work

[US-$/SWU (Separative work unit)].

January to December 2013

• Uranium: 34.00–43.50

• Conversion: 9.25–11.50

• Separative work: 98.00–127.00

January to December 2014

• Uranium: 28.10–42.00

• Conversion: 7.25–11.00

• Separative work: 86.00–98.00

January to December 2015

• Uranium: 35.00–39.75

• Conversion: 6.25–9.50

• Separative work: 58.00–92.00

2016

January to June 2016

• Uranium: 26.50–35.25

• Conversion: 6.25–6.75

• Separative work: 58.00–62.00

July to December 2016

• Uranium: 18.75–27.80

• Conversion: 5.50–6.50

• Separative work: 47.00–62.00

2017

January 2017

• Uranium: 20.25–25.50

• Conversion: 5.50–6.75

• Separative work: 47.00–50.00

February 2017

• Uranium: 23.50–26.50

• Conversion: 5.50–6.75

• Separative work: 48.00–50.00

March 2017

• Uranium: 24.00–26.00

• Conversion: 5.50–6.75

• Separative work: 47.00–50.00

April 2017

• Uranium: 22.50–23.50

• Conversion: 5.00–5.50

• Separative work: 45.50–48.50

May 2017

• Uranium: 19.25–22.75

• Conversion: 5.00–5.50

• Separative work: 42.00–45.00

June 2017

• Uranium: 19.25–20.50

• Conversion: 5.55–5.50

• Separative work: 42.00–43.00

July 2017

• Uranium: 19.75–20.50

• Conversion: 4.75–5.25

• Separative work: 42.00–43.00

August 2017

• Uranium: 19.50–21.00

• Conversion: 4.75–5.25

• Separative work: 41.00–43.00

September 2017

• Uranium: 19.75–20.75

• Conversion: 4.60–5.10

• Separative work: 40.50–42.00

October 2017

• Uranium: 19.90–20.50

• Conversion: 4.50–5.25

• Separative work: 40.00–43.00

News


atw Vol. 63 (2018) | Issue 3 ı March

November 2017

• Uranium: 20.00–26.00

• Conversion: 4.75–5.25

• Separative work: 40.00–43.00

December 2017

• Uranium: 23.50–25.50

• Conversion: 5.00–6.00

• Separative work: 39.00–42.00

2018

January 2018

• Uranium: 21.75–24.00

• Conversion: 6.00–7.00

• Separative work: 38.00–42.00

| | Source: Energy Intelligence

www.energyintel.com

| | Uranium spot market prices from 1980 to 2018 and from 2007 to 2018. The price range is shown.

In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.

201

NEWS

Cross-border Price

for Hard Coal

Cross-border price for hard coal in

[€/t TCE] and orders in [t TCE] for

use in power plants (TCE: tonnes of

coal equivalent, German border):

2012: 93.02; 27,453,635

2013: 79.12, 31,637,166

2014: 72.94, 30,591,663

2015: 67.90; 28,919,230

2016: 67.07; 29,787,178

I. quarter: 56.87; 8,627,347

II. quarter: 56.12; 5,970,240

III. quarter: 65.03, 7.257.041

IV. quarter: 88.28; 7,932,550

2017:

I. quarter: 95.75; 8,385,071

II. quarter: 86.40; 5,094,233

III. quarter: 88.07; 5,504,908

| | Source: BAFA,

some data provisional

www.bafa.de

EEX Trading Results

January 2018

(eex) In January 2018, the European

Energy Exchange (EEX) achieved a

total volume of 240.9 TWh on its

power derivatives markets (January

2017: 291.1 TWh). The January

volume comprised 140.3 TWh traded

at EEX via Trade Registration with

subsequent clearing. Clearing and

settlement of all exchange transactions

was executed by European

Commodity Clearing (ECC).

On the markets for France

(23.8 TWh, +42 %), Spain (5.3 TWh,

+30 %) and Italy (46.6 TWh, +89 %),

EEX was able to significantly increase

volumes year-on-year. On the German

markets, nearly 80 % of the total

volume was traded in the Phelix-DE

Future which EEX launched in April

2017 in light of the of the German-

Austrian price zone split and which

| | Separative work and conversion market price ranges from 2007 to 2018. The price range is shown.

)1

In December 2009 Energy Intelligence changed the method of calculation for spot market prices. The change results in virtual price leaps.

has established itself as the benchmark

for European power.

The Settlement Price for base

load contract (Phelix Futures) with

delivery in 2019 amounted to 34.21 €/

MWh. The Settlement Price for peak

load contract (Phelix Futures) with

delivery in 2019 amounted to 42.90 €/

MWh.

On the EEX markets for emission

allowances, trading volumes increased

by 37 % to 109.8 million tonnes of CO 2

in January (January 2017: 80.1 million

tonnes of CO 2 ). Primary market

auctions contributed 66.5 million

tonnes of CO 2 to the total volume.

In particular, the EUA derivatives

market recorded a significant growth

of 154 % to 40.3 million tonnes of CO 2

(January 2017: 15.9 million tonnes of

CO 2 ).

The EUA price with delivery in

December 2017 amounted to

7.66/9.46 €/ EUA (min./max.).

| | www.eex.com

MWV Crude Oil/Product Prices

December 2017

(mwv) According to information and

calculations by the Association of the

German Petroleum Industry MWV e.V.

in December 2017 the prices for

super fuel, fuel oil and heating oil

noted inconsistent compared with the

pre vious month November 2017. The

average gas station prices for Euro

super consisted of 136.84 €Cent

( November 2017: 138.54 €Cent,

approx. -1.23 % in brackets: each

information for pre vious month or

rather previous month comparison),

for diesel fuel of 119.01 €Cent (118.52;

+0.41 %) and for heating oil (HEL)

of 60.65 €Cent (60.06 €Cent,

+0.98 %).

The tax share for super with

a consumer price of 138.54 €Cent

(138.54 €Cent) consisted of

65.45 €Cent (47.24 %, 65.45 €Cent)

for the current constant mineral oil

tax share and 21.85 €Cent (current

rate: 19.0 % = const., 22.12 €Cent)

for the value added tax. The product

price (notation Rotterdam) consisted

of 37.18 €Cent (27.17 %, 39.06 €Cent)

and the gross margin consisted of

12.36 €Cent (9.03 %; 11.91 €Cent).

Thus the overall tax share for super

results of 66.83 % (66.24 %).

Worldwide crude oil prices

(monthly average price OPEC/Brent/

WTI, Source: U.S. EIA) were again

higher, approx. +2.43 % (+9.43 %)

in December compared to November

2017.

The market showed a stable

development with higher prices; each

in US-$/bbl: OPEC basket: 62.06

(60.74); UK-Brent: 64.37 (62.70);

West Texas Inter mediate (WTI): 57.88

(56.64).

| | www.mwv.de

News


atw Vol. 63 (2018) | Issue 3 ı March

202

NUCLEAR TODAY

Links to reference

sources:

UK National Audit

Office report:

http://bit.ly/2t1kFLg

US Senate hearing on

nuclear’s contribution:

http://bit.ly/2BIYihS

Exelon Generation

statement on

FitzPatrick

nuclear plant:

http://bit.ly/2FVpFTX

Could Our Nuclear Vision Benefit

From a Spell of Tesla Magic?

John Shepherd

As I put the finishing touches to this latest article, US entrepreneur and boss of the Tesla car giant, Elon Musk,

successfully launched a new rocket, the Falcon Heavy, from the Kennedy Space Center in Florida.

The vast vehicle is the most powerful shuttle system to date

and the whole exercise was ‘only’ a test – or should that be

taste – of what is to come. The rocket’s payload did not

include an array of satellites or other such paraphernalia.

Instead, it carried an unmistakably entrepreneurial touch

– Musk’s old cherry-red Tesla sports car. On top of that,

there was a mannequin in a spacesuit strapped into the

driver’s seat of the car and the radio was set to play a David

Bowie soundtrack.

Maybe this is a bit too theatrical for some, but we’ve

come to expect that of Mr Musk. It was he, after all, who

made a bet with the government of South Australia to

deliver the state the world’s biggest battery within 100 days

of being ordered or deliver it free of charge.

Musk of course delivered the Tesla 100nMW/129nMWh

Powerpack system on time and it is now paired with French

utility Neoen’s Hornsdale wind farm and helping to prevent

power outages in South Australia. Such was the success of

the project – never mind the countless free publicity the

project generated around the world – other Australian

states are investing in similar projects and Tesla is at the

front of the queue.

At this point, you’re probably asking yourself what all

this has to do with nuclear today. Technologically speaking

nothing, of course. But think ‘outside the box’ – as I’m

sure many of you have been told in those corporate

management- training classes. The answer is: ‘vision’. The

unabashed vision to be bold, daring, imaginative. The

vision to believe in technology and to be unafraid to build

on the experience and knowledge gained to date, including

the failures, as we take the next steps forward.

I do wonder if nuclear has lost its way a little in the past

couple of years in terms and our industry has allowed itself

to become bogged down and lose sight of the prize. Perhaps

we’ve allowed ourselves to be overtaken by events?

For example, there are some exciting nuclear developments

in the UK that appear to have been constrained by a

lack of imagination and commitment – not by the company

and workforce but by those who are supposed to show

political leadership.

Horizon Nuclear Power, a subsidiary of Japan’s Hitachi,

aims to build two Advanced Boiling Water Reactor plants

in North Wales and South Gloucestershire. But the governments

in London and Tokyo are still reportedly mulling

over how to support the projects’ financing.