nucmag.com
2018
3
149
Nuclear Energy
Technologies
for the Arctic
153 ı Spotlight on Nuclear Law
U.S. Regulators Reject Proposal to Subsidize
Nuclear and Coal Power Prices
154 ı Environment and Safety
Integrated Risk Informed Decision Making in Nuclear Reactors
ISSN · 1431-5254
24.– €
163 ı Decommissioning and Waste Management
Investigations on the Influence of the Geometry
of Carbide Lamellae in Concrete Milling
182 ı Report
2017 Nuclear Power Plant Compact Statistic
The International Expert Conference on Nuclear Technology
Who you will meet
Exhibitors, Sponsors and Media Partners
3 Silver Sponsor
3 Media Partners
3 Czech Pavilion
3 United Kingdom Pavilion
More Organizations tba.
Outstanding
Know-How &
Sustainable
Innovations
Enhanced
Safety &
Operation
Excellence
Decommissioning
Experience &
Waste Management
Solutions
Don’t miss this key event of the global nuclear energy community.
29 – 30 May 2018
Estrel Convention Center Berlin
Germany
www.nucleartech-meeting.com
atw Vol. 63 (2018) | Issue 3 ı March
Twilight of the Experts
Dear reader, With the political phase-out from the peaceful use of nuclear energy in Germany in 2011, a few weeks
after the catastrophic earthquake and tsunami in Japan and the resulting accidents at the Fukushima nuclear power
plants, the country not only loses a reliable, domestic, environmentally friendly and inexpensive energy source, it also
leaves a gap for those whose main objective is the fundamental rejection of nuclear energy.
Although the German anti-nuclear scene is keeping itself
afloat with constant demands for an even earlier complete
phase-out before 2022, the recurrence of such demands
like a prayer wheel does not seem to be very satisfying, also
thanks to the unspectacular and accident-free operation of
the German nuclear power plants.
Creativity is called for here when there are – geographically
speaking – such obvious new thematic objects. After
all, the German phase-out of nuclear power with its
coupled “energy turnaround” should also become another
export hit for German policymakers; whatever other
successful concepts from Germany may have asserted
themselves on the world political stage. Clearly, then,
targeted actionism against nuclear power plants close to
the border is an obvious course of action. Europe continues
to be the world's leading region with 182 nuclear power
plants and 26 % of Europe's electricity comes from nuclear
energy. As a result, the neighbouring countries of Germany,
the Netherlands, Belgium, France, Switzerland, the Czech
Republic, the Slovak Republic and, as a newcomer, Poland
can be brought into the spotlight.
Belgium's seven nuclear power plants at the Doel and
Tihange sites, among others, are continually being taken
up with striking consistency and selective targeted actions.
The plants supply about 50 % of the country's own
electricity supply, experience with the operation of nuclear
power plants has existed since 1962 and the operational
lifetime of the plants has been extended several times.
Belgian realism and pragmatism are also evident here:
individual governments have repeatedly considered the
early shut-down of nuclear power plants, but also under
the premiss that the security of electricity supply is not
compromised. Exit: None!
First of all, the nuclear power plant units Tihange-2 and
Doel-3 were made subject around Christmas 2015: Realted
with new findings on the material of the two reactor
pressure vessels and production-related inconsistencies,
catchy keywords were generated: The terms “clapped-out”
reactor pressure vessels and “crumbling reactors”, introduced
by relevant anti atomic protagonists, made the
round. Nonetheless, the expertise and the very open communication
on the subject by the Belgian supervisory
authority Federaal Agentschap voor Nucleaire Controle
(FANC) were lost in most of the media. Hydrogen flakes,
brittle fracture characteristics and preheated emergency
cooling water are simply not attractive topics. Nevertheless,
comprehensive factual information is also available in
Germany, for example on the websites of the Federal
Ministry for the Environment, Nature Conservation,
Construction and Nuclear Safety (BMUB).
As a next coup against Tihange, the German antinuclear
scene then landed the extensive distribution of
iodine tablets in the Aachen area as a “precautionary
measure” against the imminent nuclear “Super-GAU” from
Belgium in order to promote nuclear anxiety culture. The
action was successful if fears were to be stirred up. In more
than 50 years of nuclear energy use in Germany, such an
action had been judged to make little sense in expert
circles, also with consideration of the risks of uncontrolled
self-medication with iodine.
At the beginning of February 2018 a letter from the
FANC was opportune. The letter was passed to “investigative”
press and showed that there had recently been
an accumulation of “precursor” events in the Tihange-1
nuclear power plant block.
The “investigative” press quickly published the headline
“Tihange-1 more dangerous than previously known”.
Without going into the safety-related details of “precursor
events”, the BMUB is quoted here:“... The current reporting
gives the impression that, based on the number of
so-called precursor events, it is possible to draw conclusions
about the safety of a plant. But this is not the case.
Rather, they are probabilistically calculated events that
help to take a closer look at a particular scenario. These
very complex precursor calculations are an element of a
comprehensive security architecture. Probability calculations
can help to further optimize a learning safety system
of this or other facilities...” (translation, original text only
available in German language).
Further discomfort among the population will nevertheless
remain; goal achieved.
However, there are two other aspects to consider
related with the reporting, which already leave a very
negative connotation. On the one hand, the driving journalists
like to call themselves “investigative” and “experts”.
The outlined reports show that the term “investigative” has
little impact, for example, the same anti-nuclear protagonists
are constantly being presented and the opposite is
more likely to be measured. If the “investigative” journalist
were to act as an expert on his own behalf, a mystery of the
Middle Ages would finally be solved: squaring the circle.
Another negative connotation remains when “experts”
appear in coverage who offer their services elsewhere on
the subject...
Nuclear energy continues to be used and operated
safely in Belgium. If you want to get your own impression
of the situation, you can access the web today and access a
wide range of sources; from the EU stress tests according
to Fukushima, through the documents on the nuclear
safety conferences of the International Atomic Energy
Agency to the supervisory authorities and technical expert
organisations.
If you are looking for more cabaret, please refer to
Twitter and the 280-character opinions there (e.g.
# tihange), which also complete the picture of atomic
expertise shown here.
Christopher Weßelmann
– Editor in Chief –
139
EDITORIAL
Editorial
Twilight of the Experts
atw Vol. 63 (2018) | Issue 3 ı March
EDITORIAL 140
Expertendämmerung
Liebe Leserin, lieber Leser, mit dem politischen Ausstieg aus der friedlichen Nutzung der Kernenergie in
Deutschland im Jahr 2011, wenige Wochen nach dem katastrophalen Erdbeben mit Tsunami in Japan, und der dadurch
ausgelösten Unfälle in den Fukushima-Kernkraftwerken verliert das Land nicht nur eine verlässliche, heimische,
umweltschonende und preisgünstige Energiequelle, er hinterlässt auch eine Lücke für diejenigen, deren inhaltliches
Hauptziel die fundamentale Ablehnung der Kernenergienutzung ist.
Zwar hält sich die deutsche Anti-Atomszene mit
fortwährenden Forderungen nach einem noch früheren
vollständigen Ausstieg vor 2022 über Wasser, aber das
gebetsmühlenartige Wiederholen solcher Forderungen
scheint auch dank des unspektakulären und störfallfreien
Betriebs der deutschen Kernkraftwerke nicht sehr
erfüllend zu sein.
Hier ist dann Kreativität gefragt, wenn es – geografisch
– so naheliegende neue Themenobjekte gibt. Sollte doch
der deutsche Atomausstieg mit seiner gekoppelten „Energie
wende“ auch ein weiterer Exportschlager deutscher
Politik werden; welche anderen Erfolgskonzepte aus
Deutschland sich auf der Weltbühne der Politik auch
immer durchgesetzt haben mögen. Naheliegend ist also
gezielter Aktionismus gegen grenznahe Kernkraftwerke.
Ein Unterfangen mit nicht unerheblichem Potenzial, ist
Europa doch weiterhin mit 182 Kernkraftwerken bei der
Nutzung als Region weltweit führend und 26 % des
europäischen Stroms stammten aus der Kernenergie.
Somit können die Nachbarländer Niederlande, Belgien,
Frankreich, die Schweiz, die Tschechische Republik, die
Slowakische Republik und als Newcomer Polen bequem in
den Fokus gerückt werden.
Mit auffälliger Beständigkeit und punktuell gezielten
Aktionen werden unter anderem die sieben Kernkraftwerke
Belgiens an den Standorten Doel und Tihange
fortwährend aufgegriffen. Die Anlagen liefern rund 50 %
der landeseigenen Versorgung, Erfahrungen mit dem
Betrieb von Kernkraftwerken bestehen seit 1962 und für
die in Betrieb befindlichen Anlagen wurden mehrfach
Laufzeitverlängerungen beschlossen. Hier zeigen sich
auch belgischer Realismus und Pragmatismus: Zwar
wurde von einzelnen Regierungen immer wieder eine
vorzeitige Abschaltung von Kernkraftwerken in Erwägung
gezogen, aber auch unter der Maßgabe, dass die Stromversorgungssicherheit
nicht beeinträchtigt wird. Ausstieg:
Fehlanzeige!
Als erstes wurden die Kernkraftwerksblöcke Tihange 2
sowie Doel 3 um Weihnachten 2015 zum zugkräftigen
Thema gemacht: Im Zusammenhang mit neuen Erkenntnissen
zum Material der beiden Reaktordruckbehälter und
fertigungsbedingten Inkonsistenzen wurden einprägsame
Schlagworte generiert: Die Begriffe „marode“ Reaktordruckbehälter
und „Bröckelreaktoren“ machten, von
einschlägigen Anti-Atom-Protagonisten eingebracht, die
Runde. Gleichwohl blieben Fachexpertise und die sehr
offene Kommunikation zum Thema seitens der belgischen
Aufsichtsbehörde Federaal Agentschap voor Nucleaire
Controle (FANC) in den meisten Medien auf der Strecke.
Wasserstoff-Flocken, Sprödbruch-Kennlinien und vorgeheiztes
Notkühlwasser sind halt keine attraktiven Themen.
Gleichwohl ist umfassende sachliche Information auch in
Deutschland dazu verfügbar, so auf den Webseiten des
Bundesministeriums für Umwelt, Naturschutz, Bau und
Reaktorsicherheit (BMUB).
Als nächsten Coup gegen Tihange landete die deutsche
Anti-Atom-Szene dann zur Förderung der Atom- Angstkultur
die flächige Verteilung von Jod-Tabletten im
Großraum Aachen als „Vorsorgemaßnahme“ gegenüber
dem drohenden nuklearen „Super-Gau“ aus Belgien. Galt
es Ängste zu schüren, war die Aktion erfolgreich. In mehr
als 50 Jahren Kernenergienutzung in Deutschland war
eine solche Aktion als wenig sinnvoll in Expertenkreisen
beurteilt worden, auch mit der Abwägung mit den Risiken
unkontrollierter Selbstmedikamentation.
Um dann noch nachzulegen kam Anfang Februar 2018
ein Schreiben der FANC wie gelegen. Dieses sei „investigativer“
Presse zugespielt worden und zeige, dass es im
Kernkraftwerksblock Tihange 1 jüngst zu Häufungen von
„Precursor“-Ereignissen gekommen sei.
Schnell publizierte die geneigte „investigative“ Presse
die Schlagzeile „Tihange 1 gefährlicher als bislang
bekannt“. Ohne auf die sicherheitstechnische Bedeutung
von „Precursor-Ereignissen“ einzugehen, sei hier das BMUB
zitiert: „... In der aktuellen Berichterstattung entsteht der
Eindruck, dass man auf Grundlage der Anzahl von
sogenannten Precursor-Ereignissen auf die Sicherheit einer
Anlage schließen könne. Das ist aber nicht der Fall. Sie sind
vielmehr probabilistisch durchgerechnete Anlässe, die
dabei helfen, sich ein bestimmtes Szenario genauer
anzusehen. Diese sehr komplexen Precursor-Berech nungen
sind ein Element einer umfassenden Sicherheits architektur.
Die Wahrscheinlichkeitsberechnungen können helfen,
weitere Optimierungen an einem lernenden Sicherheitssystem
dieser oder anderer Anlagen vorzunehmen ...“
Weiteres Unbehagen bei der Bevölkerung wird dennoch
verbleiben; Ziel erreicht.
Zu betrachten sind aber noch zwei weitere Aspekte in
Zusammenhang mit der Berichterstattung, die schon
einen zusätzlichen sehr faden Beigeschmack hinterlassen.
Da sind zum einen die treibenden Journalisten, sich selbst
gerne als „investigativ“ und „Experten“ bezeichnend.
Dabei zeigen die umrissenen Berichterstattungen, dass
vom Begriff „Investigativ“ wenig zu spüren ist, werden
doch z. B. fortwährend dieselben Anti-Atom-Akteure
präsentiert und Gegenstimmen misst man eher. Wenn
dann zudem der „investigative“ Journalist als „Experte“ in
eigener Sache auftritt, dann wäre endlich ein Mysterium
des Mittelalters gelöst: Die Quadratur des Kreises. Ein
weiterer fader Nebengeschmack verbleibt, wenn „Experten“
auftreten, die an anderer Stelle ihre Dienstleistungen
zum Thema anbieten ...
Kernenergie wird in Belgien weiterhin sicher genutzt
und betrieben. Wer sich ein eigenes Bild dazu machen
möchte, kann auf das Web zurückgreifen und viel fältige
Quellen; von den EU-Stresstests nach Fukushima, über die
Dokumente zu den Nuklearen Sicherheits konferenzen der
Internationalen Atomenergie-Organisation bis hin zu
den Aufsichtsbehörden und Technischen Gutachter organisationen.
Wer mehr Kabarett sucht, sei auf Twitter und die
dortigen 280-Zeichen-Meinungen verwiesen (z. B.
# tihange), die das hier angerissene Bild von „Atomexpertise“
gelungen abrunden.
Christopher Weßelmann
– Chefredakteur –
Editorial
Twilight of the Experts
Kommunikation und
Training für Kerntechnik
Suchen Sie die passende Weiter bildungs maßnahme
im Bereich Kerntechnik?
Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort
3 Atomrecht
Das Recht der radioaktiven Abfälle RA Dr. Christian Raetzke 06.03.2018 Berlin
23.10.2018
Ihr Weg durch Genehmigungs- und Aufsichtsverfahren RA Dr. Christian Raetzke 24.04.2018 Berlin
18.09.2018
Navigation im internationalen nuklearen Vertragsrecht Akos Frank LL. M. 25.04.2018 Berlin
Atomrecht – Was Sie wissen müssen RA Dr. Christian Raetzke 12.06.2018 Berlin
3 Energie, Politik und Kommunikation
Schlüsselfaktor Interkulturelle Kompetenz –
International verstehen und verstanden werden
Public Hearing Workshop –
Öffentliche Anhörungen erfolgreich meistern
Kerntechnik und Energiepolitik im gesellschaftlichen Diskurs
– Themen und Formate
Angela Lloyd 26.09.2018 Berlin
Dr. Nikolai A. Behr 16.10. - 17.10.2018 Berlin
N.N. 12.11. - 13.11.2018 Gronau/Lingen
3 Kerntechnik, Rückbau und Strahlenschutz
Export kerntechnischer Produkte und Dienstleistungen –
Chancen und Regularien
In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:
Das neue Strahlenschutzgesetz –
Folgen für Recht und Praxis
Stilllegung, Rückbau und Entsorgung –
Recht und Praxis
RA Kay Höft, M.A.,
RA Olaf L. Kreuzer
RA Dr. Christian Raetzke,
Maria Poetsch
RA Dr. Christian Raetzke,
Dr. Matthias Bauerfeind
20.06. - 21.06.2018 Berlin
05.06. - 06.06.2018 Berlin
24.09. - 25.09.2018 Berlin
3 Nuclear English
Advancing Your Nuclear English (Aufbaukurs) Devika Kataja 11.04. - 12.04.2018 Berlin
10.10. - 11.10.2018
Enhancing Your Nuclear English Devika Kataja 04.07. - 05.07.2018 Berlin
3 Wissenstransfer und Veränderungsmanagement
Erfolgreicher Wissenstransfer in der Kern technik –
Methoden und praktische Anwendung
Veränderungsprozesse gestalten – Heraus forderungen
meistern, Beteiligte gewinnen
Dr. Christien Zedler,
Dr. Tanja-Vera Herking
Dr. Christien Zedler,
Dr. Tanja-Vera Herking
21.03. - 22.03.2018 Berlin
28.11. - 29.11.2018 Berlin
Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30
Kontakt
INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin
Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı seminare@kernenergie.de
Die INFORUM-Seminare können je nach
Inhalt ggf. als Beitrag zur Aktualisierung
der Fachkunde geeignet sein.
atw Vol. 63 (2018) | Issue 3 ı March
142
Issue 3
March
CONTENTS
149
Nuclear Energy
Technologies
for the Arctic
| | Vogtle Unit 3 construction site in Waynesboro, Burke County, Georgia, U.S.A. Two AP1000 reactors are under construction
with an capacity of appr. 1,250 MW (gross) each. Start of operation is scheduled for 2022. (Courtesy: Georgia Power Company)
Editorial
Twilight of the Experts . . . . . . . . . . . . . . . . . 139
Expertendämmerung . . . . . . . . . . . . . . . . . . 140
Abstracts | English . . . . . . . . . . . . . . . . . . . 144
Abstracts | German . . . . . . . . . . . . . . . . . . . 145
Inside Nuclear with NucNet
The Nuclear Option:
Can This Be Africa’s Energy Future? . . . . . . . . . 146
NucNet
154
| | Integrated risk informed decision making.
Calendar . . . . . . . . . . . . . . . . . . . . . . . 148
DAtF Notes. . . . . . . . . . . . . . . . . . . . . .147
Energy Policy, Economy and Law
Russian Nuclear Energy Technologies
for the Development of the Arctic . . . . . . . . . . 149
Andrej Yurjewitsch Gagarinskiy
Spotlight on Nuclear Law
U.S. Regulators Reject Proposal to Subsidize Nuclear
and Coal Power Prices. . . . . . . . . . . . . . . . . . 153
149
Jay R. Kraemer
| | The Russian floating nuclear power plant.
Contents
atw Vol. 63 (2018) | Issue 3 ı March
143
Environment and Safety
The Importance of Integration of Deterministic
and Probabilistic Approaches in the Framework
of Integrated Risk Informed Decision Making
in Nuclear Reactors . . . . . . . . . . . . . . . . . . . 154
CONTENTS
Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia
and Ehsan Zarifi
Applied Reliability Assessment for the Passive
Safety Systems of Nuclear Power Plants (NPPs)
Using System Dynamics (SD) . . . . . . . . . . . . . . 158
168
| | Composition of a TRISO-pebble.
Yun Il Kim and Tae Ho Woo
Zur Rationalität des Deutschen
Kernenergieausstieges . . . . . . . . . . . . . . . . . 178
Wolfgang Stoll
Statistics
Nuclear Power Plants:
2017 atw Compact Statistics . . . . . . . . . . . . . . 182
|158
163
| | Passive systems in NPP’s.
Decommissioning and Waste Management
Studies on the Geometric Influence on Hard
Metal Shavers During Concrete Shaving . . . . . . 163
Untersuchungen zum Geometrieeinfluss
von Hartmetalllamellen beim Betonfräsen . . . . 163
Simone Müller and Sascha Gentes
| Tungsten carbide lamella with variable mass.
Editorial
Country
Location/
Station name
Status Reactor type
Capacity
gross
[MW]
Capacity
net
[MW]
1st
Criticality
[Year]
Argentina
Atucha 1 p D2O-PWR 357 341 1974
Embalse p Candu 648 600 1983
Atucha 2 p D2O-PWR 745 692 2014
CAREM25 P PWR 29 25 (2020)
Armenia
Metsamor 2 p VVER-PWR 408 376 1980
Belarus
Belarusian 1 P VVER-PWR 1 194 1 109 (2019)
Belarusian 2 P VVER-PWR 1 194 1 109 (2021)
Bangladesh
Rooppur 1 [2] P VVER-PWR 1 200 1 080 (2022)
182
KTG Inside . . . . . . . . . . . . . . . . . . . . . . 186
News . . . . . . . . . . . . . . . . . . . . . . . . . 188
Nuclear Today
Could Our Nuclear Vision Benefit
From a Spell of Tesla Magic? . . . . . . . . . . . . . . 202
John Shepherd
Research and Innovation
The Technology of TVHTR-Nuclear- Power
Stations With Pebble Fuel Elements . . . . . . . . . 168
Urban Cleve
Imprint . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
AMNT 2018: Registration Form . . . . . . . . . . . Insert
Contents
atw Vol. 63 (2018) | Issue 3 ı March
144
ABSTRACTS | ENGLISH
The Nuclear Option:
Can this Be Africa’s Energy Future?
NucNet | Page 146
There are worldwide 448 commercial nuclear
reactors in operation today, but only two of them, at
Koeberg, in Africa. Yet if ambitious policymakers
have their way, that could change. For the first time,
many African countries have expressed an interest
in developing nuclear power for peaceful energy
generation. According to the IAEA, more than 30
member states are considering or preparing nuclear
power programmes for the first time, a third of them
in Africa. One thing does seem certain. If Africa
starts to commission new nuclear reactors, China
and Russia, and their affiliated state-run enterprises,
will be at the front of the queue to provide
the technology. Scott Firsing, an international
relations and security expert focusing on foreign
power involvement in Africa, says their interest is
linked to the projection of strategic power and
investment into Africa, but also to secure access to
uranium reserves.
Russian Nuclear Energy Technologies
for the Development of the Arctic
Andrej Yurjewitsch Gagarinskiy | Page 149
Small nuclear facilities have become an integral
part of two important areas of human activities,
namely, they are the basis of nuclear ships and
scientific/educational research reactors that are in
fact the main training facilities for new nuclear
specialists all over the world. However, despite
great and justified expectations of their developers,
small nuclear power plants (SNPPs), with their
obvious advantages (compared to conventional
energy sources) in hardly-accessible areas, have not
yet managed to start playing a notable role in the
power industry. This is also completely true as
concerns the task of using nuclear technologies for
the development of the Arctic, where only the
nuclear ship propulsion can be considered as an
accomplished technology. Russia is the world’s only
country that has civil nuclear ships in operation.
U.S. Regulators Reject Proposal to Subsidize
Nuclear and Coal Power Prices
Jay R. Kraemer | Page 152
On January 8, 2018, the U.S. Federal Energy Regulatory
Commission (“FERC”) unanimously rejected
a rulemaking proposed by Secretary of Energy Rick
Perry designed to enable the owners of coal and
nuclear power plants to charge higher prices for
their output, and thereby to prevent further premature
retirements of such plants. The FERC has
exclusive authority, under the Federal Power Act, to
establish rules for interstate wholesale sales of
electricity. Although the FERC simultaneously initiated
a new proceeding to consider how to enhance
the resilience of electricity supply and delivery in
the U.S., that proceeding seems unlikely to offer
near-term relief to nuclear plants that are approaching
closure due to their inability to compete economically
both with facilities fueled by low-priced
natural gas and with renewable power sources
benefitting from favorable tax provisions. Accordingly,
the American nuclear power industry will
probably have to look elsewhere for relief from its
present dire economic circumstances.
The Importance of Integration of Deterministic
and Probabilistic Approaches in the
Framework of Integrated Risk Informed
Decision Making in Nuclear Reactors
Mohsen Esfandiari, Kamran Sepanloo,
Gholamreza Jahanfarnia and Ehsan Zarifi | Page 154
Analysis of nuclear reactor accidents and transients
are very necessary for prediction of emergency
conditions, being used to control and respond to
extreme conditions. The nuclear accident investigation
and safety analysis have been performed by
either probabilistic or deterministic approaches. In
this paper, the recent investigations on combining
deterministic, probabilistic approaches and integrated
risk informed decision-making (IRIDM) are
reviewed in studying of events and making decisions
in nuclear reactors. Then, the importance of the
combined approaches for more comprehensive integrated
risk informed decisions making are presented.
By combination of both approaches and
using IRIDM, the analysis of nuclear accident can be
more realistic and, contrasting design basis accidents
(DBAs) and beyond design basis accidents
(BDBAs) with high accuracy is possible. Generally,
the IRIDM approach can confidently be used in
assurance of safety of any type of nuclear reactors.
Applied Reliability Assessment for the
Passive Safety Systems of Nuclear Power
Plants (NPPs) Using System Dynamics (SD)
Yun Il Kim and Tae Ho Woo | Page 158
The passive system by the free-fall is investigated in
the accident of nuclear power plants (NPPs). The
complex algorithm of the system dynamics (SD)
modeling is done in the passive cooling system. The
nuclear passive system by free-fall is successfully
modeled for the loss of coolant accident (LOCA).
Conventional passive system of gravity or natural
circulation is working only when the piping systems
is in the good condition. The external coolant
supply system is introduced in the case of the piping
system failure. The water is poured into the reactor
through the guiding piping or tube. If the explosion
happens, the coolants could be showering into the
reactor core and its building. New kind of passive
system is expected successfully in the on-site black
out where the drone could be operated by battery or
engine.
Studies on the Geometric Influence on Hard
Metal Shavers During Concrete Shaving
Simone Müller and Sascha Gentes | Page 163
Minimising contaminated waste is a top priority in
decommissioning projects in the nuclear sector. In
the area of building decontamination, efficient processing
of all affected concrete ceilings, walls and
floors is essential and quickly results in a surface
area of several thousand square metres to be processed.
Decontamination is mainly carried out by
using milling machines, e. g. rotary cultivators.
Within the scope of a research project (BMWI, ZIM,
funding code: KF2286004LL3) the project partners
Karlsruher Institut für Technologie (KIT) and Contec
Maschinenbau & Entwicklungstechnik GmbH
(Alsdorf/Sieg) investigated the influence of the
geometry of the cutting tools on concrete removal.
This article shows results from the test program
conducted at the Institute for Technology and
Management in Construction (TMB) of the KIT,
Department of Deconstruction of Conventional and
Nuclear Structures.
The Technology of TVHTR-Nuclear-Power
Stations With Pebble Fuel Elements
Urban Cleve | Page 168
The German development of TVHTR Power Stations
was primarily initiated through the ideas of Prof. Dr.
R. Schulten. He developed this technology in the
1950's while employed by Brown Boveri. Dr. Schulten
became CTO at the new BBC/Krupp Reaktorbau
GmbH in Mannheim and later as Professor and Director
of KFA-Jülich Nuclear Research Department.
Two HTR nuclear power plants have been build in
Germany, comissioned and success fully operated:
The AVR in Jülich and the THRT-300 in Hamm-
Schmehausen. Well know seawater desalination
plants can be installed, working as distillation process
so as MSF (multi-stage-flash)-plant. The heat
would be supplied by HTR reactors. Additionally the
co-installation of solar plants is possible.
On the Rationality of the
German Nuclear Phase-out
Wolfgang Stoll | Page 178
Our state of mind appears to be in equilibrium when
it is balanced between opportunity and risk. The
relationship between individual expectations of
happiness and risk endured varies greatly depending
on the state of mind of the individual. It is
our understanding of ourselves that manageable
individual risks are more likely to be taken than
risks imposed by external forces. The anti-nuclear
protesters operate skillfully with this superextension
of the term to create general anxiety.
However, the problem is of a general nature. Classical
scientific findings come mainly from the field of
very high probability, which we simply describe as
the causal link between cause and effect. In general,
however, in the advance of our knowledge into ever
more complicated contexts, right down to the
so-called statistical “noise”, the connection between
cause and effect is becoming less and less clear. This
vagueness opens up a great deal of discretion.
Nuclear Power Plants:
2017 atw Compact Statistics
Editorial | Page 182
At the end of the last year 2017, nuclear power
plants were operating in 31 countries worldwide. In
total, 448 nuclear power plants were operating on
the key date. This means that the number declined
slightly by 2 units compared to the previous year’s
number on 31 December 2016. 3 units started
operation, 5 units stopped operation. The installed
nuclear capacity is still high that with 420 GWe
gross. 56 plants in 16 countries were under construction.
In addition, there are about 125 nuclear
power plant units in 25 countries worldwide under
development.
Could Our Nuclear Vision Benefit From
a Spell of Tesla Magic?
John Shepherd | Page 202
As I put the finishing touches to this latest article, US
entrepreneur and boss of the Tesla car giant, Elon
Musk, successfully launched a new rocket, the
Falcon Heavy, from the Kennedy Space Center in
Florida. What this has to do with nuclear today?
Technologically speaking nothing. But think ‘outside
the box’ – as I’m sure many of you have been told in
those corporate management-training classes. The
answer is: ‘vision’. The unabashed vision to be bold,
daring, imaginative. The vision to believe in technology
and to be unafraid to build on the experience
and knowledge gained to date, including the failures,
as we take the next steps forward.
Abstracts | English
atw Vol. 63 (2018) | Issue 3 ı March
Die Option Kernenergie:
Kann das die Energiezukunft Afrikas sein?
NucNet | Seite 146
Heute sind 448 kommerzielle Kernreaktoren weltweit
in Betrieb, aber nur zwei davon, in Koeberg/
Südafrika, in Afrika. Wenn ehrgeizige Politiker ihre
Visionen durchsetzen, könnte sich dies bald ändern.
Zum ersten Mal haben viele afrikanische Länder ihr
Interesse an der friedlichen Entwicklung und
Anwendung der Kernenergie für die Energieerzeugung
deutlich gemacht. Nach Angaben der IAEO erwägen
bzw. bereiten mehr als 30 Mitgliedsstaaten
erstmals Kernenergieprogramme vor, ein Drittel
davon in Afrika. Eines scheint sicher zu sein. Wenn
Afrika beginnt, Kernreaktoren in Betrieb zu
nehmen, werden China und Russland und ihre
angeschlossenen staatlichen Unternehmen an der
Spitze der beteiligten Unternehmen stehen, um die
Technologie bereitzustellen. Scott Firsing, ein
Experte für internationale Beziehungen und Sicherheit,
der sich auf das Engagement ausländischer
Staaten in Afrika konzentriert, sagt, dass ihr Interesse
mit der Projektion strategischer Interessen und
Investitionen in Afrika verbunden ist, aber auch mit
der Sicherung des Zugangs zu Uranreserven.
Russische Kernenergietechnologien
für die Entwicklung der Arktis
Andrej Yurjewitsch Gagarinskiy | Seite 149
Kernkraftwerke im unteren Leistungsbereich sind
zu einem integralen Bestandteil von zwei wichtigen
Bereichen geworden, nämlich als Basis von nuklear
angetriebenen Schiffen und Forschungsreaktoren.
Letztere sind die Hauptausbildungsstätten für neue
Nuklearexperten auf der ganzen Welt sind. Trotz
großer und berechtigter Erwartungen ihrer Entwickler
ist es den kleinen Kernkraftwerken (SMR)
mit ihren offensichtlichen Vorteilen (gegenüber
konventionellen Energieträgern) z. B. in schwer
zugänglichen Gebieten jedoch noch nicht gelungen,
eine nennenswerte Rolle in der Energiewirtschaft
zu spielen. Dies gilt auch für die Aufgabe der
Nutzung von Nukleartechnologien für die Entwicklung
der Arktis, wo nur der nukleare Schiffsantrieb
als geeignete Technologie im Transportsektor
betrachtet werden kann. Russland ist das einzige
Land der Welt, in dem zivile Nuklearschiffe in
Betrieb sind.
US-Regulierungsbehörden lehnen
Vorschlag zur Subventionierung
von Kern- und Kohlekraftwerken ab
Jay R. Kraemer | Seite 152
Am 8. Januar 2018 lehnte die U.S. Federal Energy
Regulatory Commission („FERC“) einstimmig eine
vom Energieminister Rick Perry vorgeschlagene
Regelung ab, die es den Eigentümern von Kohleund
Kernkraftwerken ermöglichen sollte, höhere
Preise für den erzeugten Strom zu verlangen und
damit weitere vorzeitige Stilllegungen solcher
Anlagen zu verhindern. Der FERC hat die ausschließliche
Befugnis, im Rahmen des Bundesgesetzes
über die Energieversorgung Regeln für den
zwischenstaatlichen Großhandelsverkauf von Elektrizität
aufzustellen. Obwohl die FERC gleichzeitig
ein neues Verfahren einleitete, um zu prüfen, wie
die Verlässlichkeit der Stromversorgung und -lieferung
in den USA verbessert werden kann, erscheint
es unwahrscheinlich, dass dieses Verfahren den
Kernkraftwerken, für die eine Stilllegung ansteht,
aufgrund derzeit nicht gegebener wirtschaftlicher
Konkurrenzfähig kurzfristig Entlastungen bietet.
Hintergrund ist der Marktdruck aufgrund preisgünstigem
Erdgas als auch günstigen Steuerregelungen
für Erneuerbare.
Die Bedeutung der Integration von
deterministischen und probabilistischen
Ansätzen im Rahmen der integrierten
risikogerechten Entscheidungsfindung
für Kernreaktoren
Mohsen Esfandiari, Kamran Sepanloo,
Gholamreza Jahanfarnia und Ehsan Zarifi | Seite 154
Die Analyse von Unfällen und Transienten in Kernreaktoren
ist für die Analyse von Notfallbedingungen
sehr wichtig, da sie zur Kontrolle und Reaktion von
extremen Anlagenzuständen eingesetzt wird. Die
Unfalluntersuchung und die Sicherheitsanalyse
werden entweder mit probabilistischen oder deterministischen
Ansätzen durchgeführt. In diesem
Beitrag werden Untersuchungen zur Kombination
deterministischer und probabilistischer Ansätze und
integrierter risikoorientierter Entscheidungsfindung
(IRIDM) bei der Untersuchung von Ereignissen und
der Entscheidungsfindung für Kernreaktoren vorgestellt.
Die Bedeutung der kombinierten Ansätze
für eine umfassendere integrierte risikoorientierte
Entscheidungsfindung wird dargestellt. Durch die
Kombination beider Ansätze und den Einsatz von
IRIDM kann die Analyse von Nuklearunfällen angepasster
durchgeführt werden und es ist möglich,
Störfallszenarien mit hoher Genauigkeit abzuwägen.
Im Allgemeinen kann der IRIDM-Ansatz zum
Nachweis der Sicherheit von Kernreaktoren aller Art
verwendet werden.
Angewandte Zuverlässigkeitsbewertung
für passive Sicherheitssysteme von
Kernkraftwerken (KKW) unter Verwendung
von Systemdynamik (SD)
Yun Il Kim und Tae Ho Woo | Seite 158
Ein passives auf der Schwerkraft basierendes Sicherheitssystem
wird für Unfallszenarien von Kernkraftwerken
untersucht. Der komplexe Algorithmus der
Modellierung der Systemdynamik (SD) erfolgt im
passiven Kühlsystem. Die Eignung des Passivsystems
wird erfolgreich für den Verlust von Kühlmittelunfällen
(LOCA) modelliert. Konventionelle passive
System oder natürliche Zirkulation sind nur dann
zuverlässig, wenn die Rohrleitungssysteme in gutem
Zustand sind. Das externe Kühlmittelversorgungssystem
wird bei Ausfall des Rohrleitungssystems
aktiviert. Das Wasser wird in den Reaktor eingespeist.
Untersuchungen zum Geometrieeinfluss
von Hartmetalllamellen beim Betonfräsen
Simone Müller und Sascha Gentes | Seite 163
Die Minimierung kontaminierter Abfälle ist bei
Rückbauvorhaben im kerntechnischen Bereich von
höchster Priorität. Im Bereich der Gebäudedekontamination
ist hierbei eine effiziente Bearbeitung
aller betroffenen Betondecken, -wände und -böden
unerlässlich und führt schnell zu einer zu bearbeitenden
Fläche von mehreren tausend Quadratmetern.
Die Dekontamination erfolgt überwiegend
durch den Einsatz von Fräsen, z.B. Bodenfräsen. Im
Rahmen eines Forschungsprojektes (BMWI, ZIM,
Förderkennzeichen: KF2286004LL3) untersuchten
die Projektpartner Karlsruher Institut für Technologie
(KIT) und die Contec Maschinenbau &
Entwicklungstechnik GmbH (Alsdorf/Sieg) den
Geometrieeinfluss der Abtragswerkzeuge auf den
Betonabtrag. Dieser Artikel zeigt Ergebnisse aus
dem am Institut für Technologie und Management
im Baubetrieb (TMB) des KIT, Abteilung Rückbau
konventioneller und kerntechnischer Bauwerke
durchgeführten Versuchsprogramms.
Die Technologie der TVHTR-Kernkraftwerke
mit Kieselstein-Brennelementen
Urban Cleve | Seite 168
Die deutsche Entwicklung der HTR-Kraftwerke
wurde in erster Linie durch die Ideen von Prof. Dr.
R. Schulten initiiert. Er entwickelte diese Technologie
in den 1950er Jahrenbei Brown Boveri
beschäftigt war. Zwei HTR-Kernkraftwerke wurden
in Deutschland gebaut, in Betrieb genommen und
erfolgreich betrieben: Der AVR in Jülich und der
THRT-300 in Hamm-Schmehausen. HTR-Anlagen
sind geeignet, Energie für Meerwasserentsalzungsanlagen
bereit zu stellen, die mit dem Destillationsverfahren
oder als MSF (Multi-Stage-Flash)-Anlage
ausgeführt sind. Zusätzlich ist z.B. die Mitnutzung
von Solaranlagen möglich.
Zur Rationalität des
Deutschen Kernenergieausstieges
Wolfgang Stoll | Seite 178
Unsere Befindlichkeit erscheint dann im Gleichgewicht,
wenn sie sich zwischen Chance und Risiko
einpendelt. Dabei ist das Verhältnis zwischen individuellen
Glückserwartungen und ertragenem Risiko
je nach dem Gemütszustand des Einzelnen sehr verschieden.
Es liegt in unserem Selbstverständnis,
dass überschaubare individuelle Risiken eher eingegangen
werden als von außen unsteuerbar aufgezwungene.
Die Kernenergiegegner operieren zur
allgemeinen Angstmache geschickt mit dieser
Begriffsüberdehnung. Das Problem ist aber von
ganz allgemeiner Natur. Klassische wissenschaftliche
Erkenntnisse kommen überwiegend aus dem
Bereich der sehr hohen Wahrscheinlichkeit, die wir
vereinfacht als kausale Verknüpfung von Ursache
und Wirkung kennzeichnen. Ganz allgemein wird
aber im Vordringen unseren Wissens in immer
kompliziertere Zusammenhänge bis in das so
genannte statistische „Rauschen“ der Zusammenhang
von Ursache und Wirkung immer weniger
eindeutig. Diese Unschärfe eröffnet einen großen
Ermessensspielraum.
Kernkraftwerke: 2017 atw Kompaktstatistik
Editorial | Seite 182
Ende 2017 waren Kernkraftwerke in 31 Ländern
weltweit in Betrieb. Zum Stichtag waren 448 Kernkraftwerke
in Betrieb. Die Zahl hat sich im Vergleich
zum Vorjahresstichtag um 2 Blöcke verringert.
3 Kernkraftwerksblöcke haben den Betrieb aufgenommen,
5 Blöcke wurden stillgelegt. Die installierte
Kernkraftkapazität ist weiterhin auf sehr
hohem Niveau mit 420 GWe brutto. 56 Anlagen in
16 Ländern befanden sich in Bau. Darüber hinaus
befinden sich weltweit rund 125 Kernkraftwerksblöcke
in 25 Ländern in der Entwicklung.
Könnte unsere nukleare Vision von einem
Zauber der Tesla-Magie profitieren?
John Shepherd | Seite 202
Als ich diesem neuesten Artikel den letzten Schliff
gab, startete der US-Unternehmer und Chef des Tesla-Autoherstellers
Elon Musk erfolgreich eine neue
Rakete. Was hat das mit der Kernenergie zu tun?
Technologisch gesehen nichts. Aber denken Sie
über den Tellerrand hinaus – viele von Ihnen haben
in Corporate Management-Trainingskursen davon
erfahren haben. Die Antwort lautet:“Vision“. Die
Vision, kühn, gewagt und fantasievoll zu sein. Die
Vision, an die Technologie zu glauben und sich
nicht zu scheuen, auf den bisherigen Erfahrungen
und Kenntnissen aufzubauen, einschließlich der
Misserfolge, wenn die nächsten Schritte nach vorn
gemacht werden.
145
ABSTRACTS | GERMAN
Abstracts | German
atw Vol. 63 (2018) | Issue 3 ı March
146
INSIDE NUCLEAR WITH NUCNET
* Egypt, Ghana,
Kenya, Morocco,
Niger, Nigeria,
South Africa, Sudan,
Tunisia and Uganda
The Nuclear Option:
Can This Be Africa’s Energy Future?
NucNet
Uranium first left Africa’s shores for wealthier nations in the 1940s, when the U.S. shipped 30,000 tonnes
of it from the Shinkolobwe mine in Katanga province in the Democratic Republic of Congo to be used in the
first atomic bombs. In return, the U.S. helped the DRC build Africa’s first nuclear reactor – a research unit at
the University of Kinshasa – in 1958.
Niger began mining uranium in 1971, with all the output
going to French nuclear reactors. Around 19 % of the
world’s uranium reserves are held by three African nations:
Niger, Namibia, and South Africa. In 2015, the International
Atomic Energy Agency (IAEA) began a project to
increase and improve the current capacity of member
states in Africa for “optimising production, implementation
of good practices and overall effective management of
the region’s natural uranium endowment”.
And yet while the rest of the world used Africa’s uranium
resources to embrace nuclear technology, South Africa was
the only country on the continent to develop domestic
nuclear energy generation, with its Koeberg nuclear station
beginning commercial operation in the mid-1980s.
There are 448 commercial nuclear reactors in operation
today, but only two of them, at Koeberg, in Africa. Yet if
ambitious policymakers have their way, that could change.
For the first time, many African countries have expressed
an interest in developing nuclear power for peaceful
energy generation. According to the IAEA, more than 30
member states are considering or preparing nuclear power
programmes for the first time, a third of them in Africa.
In January 2017, the IAEA conducted an eight-day
review of Ghana’s nuclear programme, following similar
reviews in South Africa, Nigeria and Kenya. The rest of the
continent is enthusiastic – some 150 officials from 35
African countries gathered under the IAEA in Kenya in
April 2015 to chart a way forward. Ten African countries*
formed the African Network for Enhancing Nuclear Power
Programme Development. The network intends to build and
strengthen national and regional capacity for planning,
developing and managing the infrastructure for new and
expanding nuclear power programmes.
For Africa, the driving factor behind plans for new
nuclear is evident. The continent’s inability to generate
enough electricity continues to hamper economic growth,
cutting 2 to 4 % off GDP every year, according to the Africa
Progress Panel. The panel estimates that some 600 million
people on the continent do not have access to electricity, a
figure that will require $ 55 bn per year in investment by
2030 to fix.
The IAEA says that in sub-Saharan Africa, only about a
third of the population have access to electricity and the
number of people without access is on the rise. This
presents a significant barrier to economic and social
development and so governments across the continent are
seeking ways to improve their existing energy infrastructure,
and develop new or diverse energy sources that
are reliable, affordable and sustainable.
Against this backdrop, nuclear technology has acquired
a reputation among policymakers as a cost-effective and
environmentally friendly fix. “Nuclear power is considered
a prominent alternative and a more environmentally
beneficial solution since it emits far less greenhouse gases
during electricity generation than coal or other traditional
power plants,” Ogbonnaya Onu, Nigeria’s Minister of
Science and Technology, told local media in December
2017. “It is a manageable source of generating electricity
and has large power-generating capacity that can meet
industrial and city needs.”
Yet not all are so enamoured with Africa’s nuclear plans.
Opponents point to the high upfront costs of nuclear power
stations, the security and safety issues of hosting plants in
volatile countries, and the technological and political
improvement that will be required to bring legislative and
regulatory systems up to date.
Nigeria is typical. Africa’s most populous country has
decided to include nuclear power in its energy mix to meet
an increasing demand for electricity and support economic
development. The country has been developing its nuclear
power infrastructure for several years.
But last year the IAEA said Nigeria’s nuclear regulator
faces challenges related to its independence and in
developing the skills to carry out regulatory activities.
Nigeria’s government needs to ensure that the Nigerian
Nuclear Regulatory Authority is independent and
functionally separate from organisations that could
influence its decision-making. The IAEA highlighted the
fact that Nigeria has no national policy on safety that
is in line with global safety standards.
Charles Adesanmi, retired former director of Nigeria’s
Nuclear Technology Centre, believes there are two issues
that are inhibiting Africa’s use of nuclear energy for
electricity: cost and public opinion.
He said: “First of all, anything that has to do with power
generation requires a lot of money. If we are unable to
adequately fund hydro, solar, coal, gas, how can we be
talking of funding nuclear which is more expensive?”
The issue of cost is the big one. South Africa’s
state-owned utility Eskom has given itself the internal
target that for new nuclear to make sense, the levelised
cost of electricity (LCOE) from the project must be
between $ 60 and $ 80 per MWh for the first two reactor
units.
The IAEA has put the LCOE for the construction of new
nuclear power plants in a range from $ 40 to $ 100 per
MWh. It says there is “significant overlap” in the range of
the average LCOE produced by various energy technologies,
but despite its significant up-front costs nuclear is
competitive. (LCOE is the long-term price at which the
electricity produced by a power plant will have to be sold at
for the investor to cover all their costs).
Opponents to new nuclear in South Africa say the
procurement deal would be the largest in the country’s
history at an estimated $ 77 bn (€ 72 bn). The government,
which has said it wants to generate 9,600 MW of energy
from as many as eight reactors, has put the total cost at
anything from $ 37 bn (€ 34.8 bn) to $ 100 bn (€ 94 bn).
Inside Nuclear with NucNet
The Nuclear Option: Can This Be Africa’s Energy Future? ı NucNet
DAtF DTL-Poster 2018-01 297x420v4.indd 1 23.02.18 11:10
atw Vol. 63 (2018) | Issue 3 ı March
Critics argue that this is too much to spend for a country
where the economy is fragile and political turbulence is
worrying investors. The counterargument is that the LCOE
for other forms of energy is in the same range as nuclear
and that South Africa is already losing money through
power outages and slowed industrial growth. Eskom
published figures last year claiming a net loss to the
economy of around $ 700 m in 2016 as a result of its
renewable power purchases from producers.
“If these [nuclear plants] are not built, instability of
electricity supply and rising prices will slow economic
growth, and this will come with increasing poverty and
political instability,” says Rob Jeffrey, an independent
energy economist.
While Eskom has commissioned dozens of private
renewable projects to provide wind, solar and other forms
of energy, these will never provide enough electricity,
Mr ,Jeffrey says. “Wind only supplies electricity at best on
average 34 % of the time. It is highly variable, unreliable
and unpredictable. Solar is only available to generate
electricity on average 26 % of the time.
For Africa’s only true industrial economy, the outages
have been devastating. In just one quarter during 2015
when power cuts were at their height, the South African
economy contracted 14 %, according to Bloomberg.
From debates around the upfront costs of three new
plants to media claims of foreign influence over the bidding
process, the battle to expand South Africa’s industry is
likely to offer lessons for countries across the continent.
“Nuclear in the long term has low costs as you amortise
the plant,” Phumzile Tshelane, chief executive of the
government-owned South African Nuclear Energy Corporation
(NECSA), told African Business. “If African countries
are going to leapfrog to much more profitable economic
development, they will have to choose sources of energy
that are relatively cheap in the long term. I believe that
when you look at the lifecycle costs, nuclear is cheaper.”
One thing does seem certain. If Africa starts to commission
new nuclear reactors, China and Russia, and their
affiliated state-run enterprises, will be at the front of the
queue to provide the technology. Scott Firsing, an international
relations and security expert focusing on foreign
power involvement in Africa, says their interest is linked to
the projection of strategic power and investment into
Africa, but also to secure access to uranium reserves.
“Together, China and Russia are leading the drive for
global energy security. At the same time they are solidifying
their overall political and trade relationships with African
countries and their leaders.”
Author
NucNet
The Independent Global Nuclear News Agency
Editor responsible for this story: David Dalton
Editor in Chief, NucNet
Avenue des Arts 56
1000 Brussels, Belgium
www.nucnet.org
DATF EDITORIAL NOTES
147
New Poster
Notes
Nuclear Energy in Germany
The DAtF has published the new poster Nuclear Energy in Germany
| Status: February 2018. This poster is not just an update to the
January 2017 edition of Nuclear Power in Germany concerning the
status of NPPs, waste disposal and of selected interim storage
facilities but is a new product consolidating other maps into one.
The poster now features research reactors, a more comprehensive
overview on interim storage and conditioning facilities and state
collection centers for radioactive waste from medicine, research and
industry.
3 It can be downloaded and ordered at kernenergie.de.
Kernenergie in Deutschland
Nuclear Energy in Germany
SCHLESWIG- Kiel
HOLSTEIN
Brunsbüttel
Greifswald/ C C D
C
Rubenow
Brokdorf C
MECKLENBURG-
HAMBURG Schwerin VORPOMMERN
Krümmel
C
Stade
Geesthacht
Unterweser
D
BREMEN
Gorleben
Rheinsberg
Munster C C D E
1)
Emsland
NIEDERSACHSEN
A C
Berlin
Leese
BERLIN
Lingen
Hannover Braunschweig
D
Potsdam
Grohnde
E Morsleben
A D Gronau
Asse E
Magdeburg
C
BRANDENBURG
Konrad
C
E
Ahaus
2)
SACHSEN-ANHALT
Hamm-
Würgassen
Krefeld
Uentrop
D
NORDRHEIN-
Düsseldorf WESTFALEN
Jülich
THÜRINGEN
Dresden
C D
SACHSEN
Dresden
3)
HESSEN
Erfurt
D
Ebsdorfergrund
Mülheim-
Hanau
Kärlich
A Großwelzheim
Wiesbaden
Ellweiler
Kahl
Mainz
D
C
Mainz
C
Biblis
Karlstein Grafenrheinfeld
C
Mitterteich
RHEINLAND-
SAARLAND PFALZ
Elm-Derlen
Obrigheim
BAYERN
Saarbrücken
C Neckarwestheim
Philippsburg
C
B C D
Niederaichbach
Karlsruhe Stuttgart
C
Isar
C D
BADEN-
Gundremmingen
Garching
WÜRTTEMBERG
Neuherberg
München
KKW in Betrieb Leistung Betriebsbeginn
brutto (kommerziell)
NPP in operation
Rated Start of
capacity commercial
gross operation
(MWe)
Brokdorf 1.480 1986
Emsland 1.406 1988
Grohnde 1.430 1985
Gundremmingen C 1.344 1985
Isar 2 1.485 1988
Neckarwestheim II 1.400 1989
Philippsburg 2 1.468 1985
Gesamt ı Total 10.013
Stand: Februar 2018 ı Status: February 2018
In Deutschland sind 7 Kernkraftwerke mit einer
Leistung von insgesamt 10.013 MWe (brutto)
in Betrieb.
In Germany 7 nuclear power plants are in operation
with a total installed capacity of 10,013 MWe (gross).
For further details
please contact:
Nicolas Wendler
DAtF
Robert-Koch-Platz 4
10115 Berlin
Germany
E-mail: presse@
kernenergie.de
www.kernenergie.de
Kernkraftwerk
Nuclear
power plant
Forschungsreaktor
Research
reactor
A
Kernbrennstoffversorgung
Nuclear fuel
supply facility
B
Wiederaufarbeitungsanlage
Reprocessing
plant
C
Zwischenlager
Interim storage
facility
D
Konditionierung
Conditioning
E
Endlager
Final
repository
• Landessammelstelle
Federal state
collection centers
In Betrieb
In operation
Abgeschaltet/
Stilllegung
End of operation/
Decommissioning
Rückbau
Dismantling
«Grüne Wiese»
Greenfield site
Errichtung
Construction
Bergwerk in Erkundung
(seit 2013 eingestellt)
Exploration mine
(discontinued since 2013)
1) Pilot-Konditionierungsanlage ı Pilot conditioning plant
2) Bereitstellung Mitte der 2020er-Jahre ı Operational by the mid 2020s
3) AVR-Behälterlager ı AVR flask store
info@
www. kernenergie.de
DAtF Notes
atw Vol. 63 (2018) | Issue 3 ı March
148
Calendar
2018
CALENDAR
04.03.-09.03.2018
82. Jahrestagung der DPG. Erlangen, Germany,
Deutsche Physikalische Gesellschaft (DPG),
www.dpg-physik.de
11.03.-17.03.2018
International Youth Nuclear Congress (IYNC).
Bariloche, Argentina, IYNC and WiN Global,
www.iync.org/category/iync2018/
26.03.-27.03.2018
Fusion energy using tokamaks: can development
be accelerated? London, United Kingdom,
The Royal Society, royalsociety.org
08.04.-11.04.2018
International Congress on Advances in Nuclear
Power Plants – ICAPP 18. Charlotte, NC, USA,
American Nuclear Society (ANS), www.ans.org
08.04.-13.04.2018
11 th International Conference on Methods and
Applications of Radioanalytical Chemistry –
MARC XI. Kailua-Kona, HI, USA, American Nuclear
Society (ANS), www.ans.org
16.04.-19.04.2018
Einführung in die Kerntechnik. Mannheim,
Germany, TÜV SÜD, nucleartraining@tuev-sued.de
16.04.-17.04.2018
VdTÜV Forum Kerntechnik – Sicherheit im Fokus.
Berlin, Germany, VdTÜV mit Unterstützung des
TÜV NORD, des TÜV SÜD und des TÜV Rheinland,
www.tuev-sued.de/tagungen
17.04.-19.04.2018
World Nuclear Fuel Cycle 2018. Madrid, Spain,
World Nuclear Association (WNA),
www.world-nuclear.org
18.04.-19.04.2018
9. Symposium zur Endlagerung radioaktiver
Abfälle. Vorbereitung auf KONRAD – Wege zum
G2-Gebinde. Hanover, Germany, TÜV NORD
Akademie, www.tuev-nord.de/tk-era
22.04.-26.04.2018
Reactor Physics Paving the Way Towards More
Efficient Systems – PHYSOR 2018. Cancun, Mexico,
www.physor2018.mx
08.05.-10.05.2018
29 th Conference of the Nuclear Societies in Israel.
Herzliya, Israel. Israel Nuclear Society and Israel
Society for Radiation Protection, ins-conference.com
13.05.-19.05.2018
BEPU-2018 – ANS International Conference on
Best-Estimate Plus Uncertainties Methods. Lucca,
Italy, NINE – Nuclear and INdustrial Engineering S.r.l.,
ANS, IAEA, NEA, www.nineeng.com/bepu/
13.05.-18.05.2018
RadChem 2018 – 18 th Radiochemical Conference.
Marianske Lazne, Czech Republic, www.radchem.cz
14.05.-16.05.2018
ATOMEXPO 2018. Sochi, Russia, atomexpo.ru
15.05.-17.05.2018
11 th International Conference on the Transport,
Storage, and Disposal of Radioactive Materials.
London, United Kingdom, Nuclear Institute,
www.nuclearinst.com
20.05.-23.05.2018
5 th Asian and Oceanic IRPA Regional Congress
on Radiation Protection – AOCRP5. Melbourne,
Australia, Australian Radiation Protection Society
(ARPS) and International Radiation Protection
Association (IRPA), www.aocrp-5.org
29.05.-30.05.2018
49 th Annual Meeting on Nuclear Technology
AMNT 2018 | 49. Jahrestagung Kerntechnik.
Berlin, Germany, DAtF and KTG,
www.nucleartech-meeting.com
03.06.-07.06.2018
38 th CNS Annual Conference and 42 nd CNS-CNA
Student Conference. Saskotoon, SK, Canada,
Candian Nuclear Society CNS, www.cns-snc.ca
03.06.-06.06.2018
HND2018 12 th International Conference of the
Croatian Nuclear Society. Zadar, Croatia, Croatian
Nuclear Society, www.nuklearno-drustvo.hr
04.06.-07.06.2018
10 th Symposium on CBRNE Threats. Rovaniemi,
Finland, Finnish Nuclear Society, ats-fns.fi
04.06.-08.06.2018
5 th European IRPA Congress – Encouraging
Sustainability in Radiation Protection. The Hague,
The Netherlands, Dutch Society for Radiation
Protection (NVS), local organiser, irpa2018europe.com
06.06.-08.06.2018
2 nd Workshop on Safety of Extended Dry Storage
of Spent Nuclear Fuel. Garching near Munich,
Germany, GRS, www.grs.de
25.06.-26.06.2018
index2018 – International Nuclear Digital
Experience. Paris, France, Société Française d’Energie
Nucléaire, www.sfen.org, www.sfen-index2018.org
27.06.-29.06.2018
EEM – 2018 15 th International Conference on the
European Energy Market. Lodz, Poland, Lodz
University of Technology, Institute of Electrical Power
Engineering, Association of Polish Electrical
Engineers (SEP), www.eem18.eu
29.07.-02.08.2018
International Nuclear Physics Conference 2019.
Glasgow, United Kingdom, www.iop.org
05.08.-08.08.2018
Utility Working Conference and Vendor
Technology Expo. Amelia Island, FL, USA, American
Nuclear Society (ANS), www.ans.org
22.08.-31.08.2018
Frédéric Joliot/Otto Hahn (FJOH) Summer School
FJOH-2018 – Maximizing the Benefits of
Experiments for the Simulation, Design and
Analysis of Reactors. Aix-en-Provence, France,
Nuclear Energy Division of Commissariat à l’énergie
atomique et aux énergies alternatives (CEA) and Karlsruher
Institut für Technologie (KIT), www.fjohss.eu
28.08.-31.08.2018
TINCE 2018 – Technological Innovations in
Nuclear Civil Engineering. Paris Saclay, France,
Société Française d’Energie Nucléaire, www.sfen.org,
www.sfen-tince2018.org
05.09.-07.09.2018
World Nuclear Association Symposium 2018.
London, United Kingdom, World Nuclear Association
(WNA), www.world-nuclear.org
09.09.-14.09.2018
21 st International Conference on Water Chemistry
in Nuclear Reactor Systems. San Francisco, CA, USA,
EPRI – Electric Power Research Institute, www.epri.com
10.09.-13.09.2018
Nuclear Energy in New Europe – NENE 2018.
Portoroz, Slovenia, Nuclear Society of Slovenia,
www.nss.si/nene2018/
17.09.-21.09.2018
62 nd IAEA General Conference. Vienna, Austria.
International Atomic Energy Agency (IAEA),
www.iaea.org
17.09.-20.09.2018
FONTEVRAUD 9. Avignon, France,
Société Française d’Energie Nucléaire (SFEN),
www.sfen-fontevraud9.org
17.09.-19.09.2018
4 th International Conference on Physics and
Technology of Reactors and Applications –
PHYTRA4. Marrakech, Morocco, Moroccan
Association for Nuclear Engineering and Reactor
Technology (GMTR), National Center for Energy,
Sciences and Nuclear Techniques (CNESTEN) and
Moroccan Agency for Nuclear and Radiological
Safety and Security (AMSSNuR), phytra4.gmtr.ma
30.09.-04.10.2018
TopFuel 2018. Prague, Czech Republic, European
Nuclear Society (ENS), American Nuclear Society
(ANS). Atomic Energy Society of Japan, Chinese
Nuclear Society and Korean Nuclear Society,
www.euronuclear.org
02.10.-04.10.2018
7 th EU Nuclear Power Plant Simulation ENPPS
Forum. Birmingham, United Kingdom,
Nuclear Training & Simulation Group,
www.enpps.tech
14.10.-18.10.2018
12 th International Topical Meeting on Nuclear
Reactor Thermal-Hydraulics, Operation and
Safety – NUTHOS-12. Qingdao, China, Elsevier,
www.nuthos-12.org
14.10.-18.10.2018
NuMat 2018. Seattle, United States,
www.elsevier.com
16.10.-17.10.2018
4 th GIF Symposium at the 8 th edition of Atoms
for the Future. Paris, France,
www.gen-4.org
22.10.-24.10.2018
DEM 2018 Dismantling Challenges: Industrial
Reality, Prospects and Feedback Experience. Paris
Saclay, France, Société Française d’Energie Nucléaire,
www.sfen.org, www.sfen-dem2018.org
22.10.-26.10.2018
NUWCEM 2018 Cement-based Materials for
Nuclear Waste. Avignon, France, French
Commission for Atomic and Alternative Energies
and Société Française d’Energie Nucléaire,
www.sfen-nuwcem2018.org
24.10.-25.10.2018
Chemistry in Power Plant. Magdeburg, Germany,
VGB PowerTech e.V., www.vgb.org
05.11.-08.11.2018
International Conference on Nuclear Decommissioning
– ICOND 2018. Aachen, Eurogress,
Germany, achen Institute for Nuclear Training GmbH,
www.icond.de
Calendar
atw Vol. 63 (2018) | Issue 3 ı March
Russian Nuclear Energy Technologies
for the Development of the Arctic
Andrej Yurjewitsch Gagarinskiy
Small nuclear facilities have become an integral part of two important areas of human activities, namely, they are the
basis of nuclear ships and scientific/educational research reactors that are in fact the main training facilities for new
nuclear specialists all over the world. However, despite great and justified expectations of their developers, small
nuclear power plants (SNPPs), with their obvious advantages (compared to conventional energy sources) in hardlyaccessible
areas, have not yet managed to start playing a notable role in the power industry.
This is also completely true as concerns the task of using
nuclear technologies for the development of the Arctic,
where only the nuclear ship propulsion can be considered
as an accomplished technology [1].
1 Civil nuclear ships
Russia is the world’s only country that has civil nuclear
ships in operation. Nuclear shipbuilding experience of
other countries (Savannah, 1962–1979, USA; Otto Hahn,
1968–1980, FRG; and Mutsu, 1974 –1991, Japan) was
relatively brief. Plans to construct nuclear icebreakers
repeatedly declared by countries such as USA, Canada,
Argentina and China are still just intentions.
Table 1 presents both the past (starting from the
world’s first nuclear icebreaker Lenin) and the present of
Russia’s civil nuclear fleet, which is intended exclusively
for the development of the country’s Arctic regions.
Currently the Russian civil nuclear shipbuilding is
resurging. To timely replace the existing icebreakers to
enable reliable continuous navigation and year-round
delivery of goods via the Northern Sea Route, the
government in the summer of 2011 has decided to build
and launch three universal nuclear icebreakers: the pilot
one in 2017 and two serial ones in 2019 and 2020,
respectively. The pilot icebreaker’s keel was laid at the
Baltic Plant in 2013.
The Iceberg Design Bureau has developed a detailed
design of a nuclear icebreaker with improved icebreaking
capability and variable draught (from 10.5 m in deep
waters to 8.5 m in shallow ones). This variable draught
would allow this icebreaker to operate not only in Arctic
seas, but also in the mouths of northern rivers. The new
nuclear facility – RITM-200 – developed by OKBM
Afrikantov for this icebreaker includes two integral PWRs
of 175 MWth each; its lifetime makes up to 40 years and its
period of continuous operation is 26,000 hours.
Icebreaker parameters are: displacement – 23,000 t;
length – 172.2 m, width – 33 m, height – 15 m, speed – 22
knots. This ship – that would allow for up to 6 months of
independent sailing – is intended for operation in the
Western Arctic (Barents Sea, Pechora Sea, Kara Sea, mouth
of the Yenissei and the Ob Bay region). This pilot icebreaker
Arktika (Figure 1), already afloat, is currently
under construction at the Baltic Plant, as well as two serial
icebreakers of the same design, Sibir (Arktika’s successor
on the berth) and Ural (keel laid). As by late 2017, their
commissioning was expected between 2019 and 2021.
| | Fig. 1.
Launching of the new Arktika, 2016.
Revised version of a
paper presented at
the Annual Meeting
of Nuclear Technology
(AMNT 2017), Berlin.
149
ENERGY POLICY, ECONOMY AND LAW
Ship Year of commissioning Power facility Current status
Lenin 1959 2 OK-900 reactors,
32.4 MW (44,000 hp)
Arktika 1975 2 reactors,
55 MW (75,000 hp)
Decommissioned in 1989
Museum since 2010
Decommissioned in 2008
Sibir 1977 same Decommissioned in 1992
Sent for disposal in 2016
Rossiya 1985 same Decommissioned in 2013
Sovetsky Soyuz 1989 same Decommissioned in 2010
Restoration being considered
Yamal 1989 2 OK-900A reactors In operation
Taymyr 1989 KLT-40 reactor,
36.8 MW (50,000 hp.)
In operation
Vaygach 1990 same In operation
50 Let Pobedy 2007 2 reactors,
55 MW (75,000 hp)
In operation
Sevmorput (LASH) 1988 29.4 MW (39,000 hp) In operation
(restored in 2013–2015
| | Tab. 1.
Russian civil nuclear fleet.
Energy Policy, Economy and Law
Russian Nuclear Energy Technologies for the Development of the Arctic ı Andrej Yurjewitsch Gagarinskiy
atw Vol. 63 (2018) | Issue 3 ı March
ENERGY POLICY, ECONOMY AND LAW 150
Renovation of the country’s icebreaker fleet will
continue. Currently another icebreaker, Leader, is being
developed. This ship would enable year-round navigation
of ships with up to 100,000 t deadweight and up to
50-m-wide hull over the whole Northern Sea Route. This
would be a huge ship over 200 m long and about 40 m
wide. Its capacity – 120 MW – would be unprecedented for
icebreakers (though such military ships and passenger
liners do exist). Russia already has an engineering design
ready for the Leader. Negotiations are currently underway
to identify its manufacturer plant and construction
schedule. Powerful icebreaker fleet became increasingly
demanded following the start of the Yamal-LNG Project
that “opened new horizons for our national economy”,
according to President Putin.
2 Nuclear power plants for the Arctic
As concerns nuclear energy for hardly-accessible areas,
decades of RD&D have not yet yielded any significant
advancement of nuclear sources in this seemingly obvious
consumption sector.
Initially, all works related to the development of both
stationary and transportable SNPPs were concentrated in
the USA and the USSR.
At the very beginning of 1950ies, the United States have
for the first time started to pay serious attention to SNPPs,
exclusively because of their army’s interest. Such SNPPs
(with capacities ranging from 0.3 to 3 MW) intended as
energy sources for remote military bases have been
deployed in Alaska, Greenland and even the Antarctic, but
in the sixties all of them have been shut down. In 1968, the
United States have installed a floating NPP – MH-1A
Sturgis (10 MW) – in a lake near the Panama Canal. It has
operated for 8 years (Figure 2)
operation since 1974, but the concept of building small
stationary NPPs similarly to large ones was abandoned.
Rosenergoatom Concern (the Russian nuclear generating
company) considers this NPP, with its low efficiency and
too many workers required per power capita, rather as an
encumbrance than as a prototype for the future.
The global situation with SNPPs is quite similar. The
IAEA small- & medium-sized reactor (SMR) database [2]
(IAEA: International Atomic Energy Agency) contains
information on dozens of designs – but virtually all of them
are still paper designs at various stages of development.
There are still no market signals to confirm enthusiastic
forecasts of some experts and companies (such as, e.g., the
U.S. NuScale Power) who predict good commercial future
for SMRs. Only the 25-MWe CAREM (that demonstrates
obvious features of a prototype ship reactor) and pilot
high-temperature reactors are currently under construction
in Argentina (since 2014) and China (since 2012 –
two-module Shidao-Bay-1), respectively.
| | Fig. 3.
Finally the FNPP construction is nearing completion.
| | Fig. 2.
Mobile and transportable NPPs.
As for the Soviet Union, it has launched its strategic
R&D on small reactors in the middle of 1950ies. In October
1956, a governmental decision on SNPP deployment has
been adopted.
Figure 2 presents some interesting designs (TES-3,
PAMIR, ARBUS) that have achieved the implementation
stage. However, all these facilities were demonstrationonly.
The only exclusion is the Bilibino NPP with its four
12 MWe water-graphite reactor units. The plant is in
In 1990ies, Russia has adopted a long-ranging decision
of principle: to build a floating NPP (FNPP) to demonstrate
the advantages the nuclear energy offers for remote
isolated regions. This NPP was to be barge-based, factorybuilt
and returned to the special site for every refueling
and repairs [3]. KLT-40, a nuclear icebreaker reactor
with proven high reliability and safety, was chosen for
installation at this FNPP. After its start in 2007, the FNPP
construction went on with great difficulties – it has
survived not only the change of the manufacturer plant
and multiple changes of the first operating site
( Severodvinsk, Vilyuchinsk, Pevek), but also what was
maybe the worst – on-the-go redesign to allow for use of
low-enriched fuel. In 2016, the FNPP – Akademik
Lomonosov – achieved the stage of dock trials (Figure 3).
Unfortunately, this redesign reduced the capacity and
hence the refueling interval (to 2–3 years) of the FNPP, so
that it had to be equipped with refueling equipment and
spent fuel storage. This contradicts with the key conceptual
requirement, which inhibits any onboard operations
with fuel for future floating NPPs. So today the developers
are facing the task to extend the refueling interval of future
floating NPPs to 10–12 years.
This task is becoming increasingly important with the
latest incentives intended to solve the energy supply issue
in the Russian Arctic – and pertinent to the strategic issue
of supplies to hardly accessible areas and, prima facie, to
the “Arctic vector” of the Russian energy industry [4].
Below follows the opinion of Mikhail Kovalvchuk,
President of the Kurchatov Institute: “In recent years, the
development of Arctic areas became a strategic priority for
Energy Policy, Economy and Law
Russian Nuclear Energy Technologies for the Development of the Arctic ı Andrej Yurjewitsch Gagarinskiy
atw Vol. 63 (2018) | Issue 3 ı March
Design Refueling interval, years Lifetime, years Development stage
ABV-6 10–12 50 – Pilot reactor and NPP unit Volnolom – detailed design (1993)
– FNPP for the Far North – feasibility study
– Nuclear co-generation plant for Kazakstan – feasibility study
– Pilot bench – in operation
KLT-40S 2.5–3 40* – Equipment for two reactors – supplied to the
FNPP Akademik Lomonosov
RITM-200 4.5–5 40* – Two reactors for the pilot universal icebreaker – preparation
for complete shipment (2016)
– Reactors for the next two icebreakers – scheduled supply
in 2018 and 2019, respectively
VBER-300 1.5–2 60 – NPP with two VBER-300 units – quotation (2002)
– VBER-300 reactor facility – conceptual design (2004)
– VBER-300 units for Kazakhstan – detailed design (2007–2009)
VBER-600 1.5–2 60 – 100 – 600 MW capacity range – concept (2007–2008)
– NPP with VBER-460/600 – R&D (2008–2012)
* – allows for extension to 60 years
| | Tab. 2.
SMR designs under development.
our country. President of the Russian Federation has approved
the “Fundamentals of the Russian State Policy in
the Arctic to 2020 and beyond” (2008) and the “Strategy of
the Russian Arctic Zone Development and National
Security Assurance to 2020” (2013). The following aspects
of the tasks to be solved should be emphasized: first, a
state-of-the-art computerized energy infrastructure should
be an integral part of the comprehensive socioeconomic
development of the Arctic. Second, many large-scale oil/
gas and other projects are now underway in the Arctic.
Third, long distances between – and unreliable energy
supplies to – local communities are a specific feature of the
Russian Arctic. Local conditions require a distributed
energy supply system, which should account for both
extreme operating conditions. On the whole, the Arctic
energy supply system consists of onshore and offshore
components. The latter are based on the practical
experience of efficient application of Russian shipbuilding
technologies…”
Indeed, Russian nuclear designers are experienced in
developing and operating ship reactors, both for the Navy
and for the civil fleet. Table 2 [5] lists the designs produced
by OKBM Afrikantov, the country’s leading developer of
small and medium reactors (6 – 600 MW).
Another well-known RD&D institute, NIKIET, has
developed a family of SNPPs with capacities ranging from
1 to 20 MWe, including facilities such as Shelf and Uniterm
of about 6 MWe each [6].
Developers of conventional stationary reactors also do
not lose hope to join the competition for entering the
future SNPP market. For example, VVER developers are
already offering an integral facility (VVER-I) of 100, 200
and 300 MW. This design is based on the natural circulation
of coolant, so it couples higher safety with compact
equipment, thus allowing for modular arrangement of the
NPP.
Another SNPP development line is presented by smaller
units of 0.5–1 MWe (5–10 MWt) that can be deployed on
the basis of unmanned autonomous thermoelectric power
plants.
Practical feasibility of this class of energy sources is
confirmed by the Kurchatov Institute’s experience in
constructing power facilities based on the direct
heat-to-electricity conversion. Romashka built in 1962 as a
pilot facility intended for space applications was the first
such facility in the world. In 1982, the Kurchatov Institute
has built and launched Gamma – a prototype thermoelectric
facility intended for ship applications [1] – which
| | Fig. 4.
Gamma – a prototype unmanned underwater power source
(launched in 1982).
has operated for many years and made it possible
to perform an exhaustive scope of studies and tests
(Figure 4).
In the mid-80ies, proceeding from the Gamma’s
successful operating experience, the design of Elena NPP
was developed in the framework of conversion programs.
This type of power facilities is based on the following three
cornerstones:
• water-water reactor with power self-regulation as a
heat source;
• heat removal by natural circulation of coolant in the
primary and secondary circuit;
• thermoelectric conversion of heat into electricity.
As a result, such facilities – whose technical feasibility is
now doubtless – offer considerable advantages compared
to those based on turbine energy conversion.
3 Nuclear technologies for the
development of the Arctic shelf
As concerns the Arctic shelf development, the Energy
Strategy of Russia to 2035 estimates the country’s
continental shelf to contain 90 billion tons of oil equivalent
(toe), including 16 billion tons of oil with condensate and
74 trillion m 3 of gas. About 70% of these resources find
themselves on the Barents, Pechora and Kara Sea shelves,
which together make about a half of the Russian Arctic
shelf. Experts forecast that by 2035 Russia will annually
produce up to 30 million tons of oil and 130 billion m 3 of
gas on its Arctic shelf.
The averaged total electricity demand by the hydrocarbon
production industry is estimated above 3 GW, so
ENERGY POLICY, ECONOMY AND LAW 151
Energy Policy, Economy and Law
Russian Nuclear Energy Technologies for the Development of the Arctic ı Andrej Yurjewitsch Gagarinskiy
atw Vol. 63 (2018) | Issue 3 ı March
ENERGY POLICY, ECONOMY AND LAW 152
the summary demand of future oil & gas rigs on the Russian
Arctic shelf may be quite high. About 40 % of this demand
can be covered by underwater feeder cables, but this
option is limited by distances below 200 km from the
shore. Another 60% from rigs situated beyond this distance
can be covered by autonomous underwater/sub-ice power
plants. As concerns this application, small autonomous
reactors seem to have no alternative [7].
By the end of 1980-ies, the USSR already had a concept
of underwater NPP with small reactor units [8]. Table 3
lists some nuclear facilities proposed by the leading
Russian design companies for application on oil & gas
Facility
Basic parameters
Submarine tanker Carrying capacity – 20,000 t,
propeller power – 30 MW
Underwater
nuclear compressor
station
Underwater station
for LNG production
Nuclear drill
submarine
| | Tab. 3.
SMR designs under development.
Displacement – 7,500 m 3 ,
compressor output – 40 MW,
continuous unmanned operation time
– 10,000 hours
The station includes: tankers,
gas storages, liquefaction units,
nuclear power facilities, terminals etc.
Displacement – 20,000 m 3 ,
reactor capacity – 6 MWe
fields in heavy ice conditions.
In late 2017, the media have published some information
on the Iceberg project developed by the Rubin and
OKBM Afrikantov design bureaus: a 24-MW underwater
NPP capable of autonomous unmanned operation for a
year (total lifetime 30 years). This NPP is intended as a
power source for oil/gas drill and extraction rigs in areas
with thick ice – in fact, this is a return to one of unique
unimplemented designs of the eighties.
In the developers’ opinion, nuclear energy supplies to
underwater/sub-ice oil/gas production on the Arctic shelf
should be based on system approach (“made in factory and
shipped to sites”), with a maximum use of long operating
experience of nuclear ships. This would enable:
• no atmospheric releases plus localization and
minimization of heat impact on the Arctic Ocean water
to negligible values (compared to natural temperature
fluctuations);
• lower risk of oil spills – that cannot be efficiently
liquidated by available technologies – in ice con ditions;
• higher reliability and safety of power facilities;
• minimized workforce requirements (up to total
autonomy);
• efficient and safe offshore operation under water/ice at
distances of 1,000 km from the coast and beyond.
The policy currently implemented by the government with
regard to the Arctic region, as well as the scientific and
technical experience accumulated by Russia, both allow
for confident conclusion that considerable advances in the
development of nuclear power facilities for the Arctic are
to be expected in the short term.
References
1. Kurchatov Specialists and Atomic Fleet. Editor: M.V. Kovalchuk,
NRC KI, Moscow, 2016 (in Russian).
2. Status of Small and Medium-Sized Reactor Designs. A
Supplement to the IAEA Advanced Reactor Information System
(ARIS). IAEA, 2012
3. Russia’s Nuclear Energy Strategy to 2050. NRC KI, Moscow, 2013
(in Russian).
4. M.V. Kovalchuk. Arctic Vector of Russian Energy. Priroda, 2016
(in Russian).
5. V.V. Petrunin et al.: Prospects for Small and Medium Nuclear
Power Plants: a New Development Area. In: Small Nuclear Power
Plants a New Development Area, IBRAE, Moscow, 2015
(in Russian).
6. A.I. Alekseev et al.: Uniterm SMR: a Frontline Area of Nuclear
Power Development. In: Small Nuclear Power Plants a New
Development Area, IBRAE, Moscow, 2015 (in Russian).
7. E.P. Velikhov et al. Nuclear Energy for the Arctic Shelf. V Mire
Nauki, v.10, 2015 (in Russian).
8. V.S. Nikitin, V.S. Ustinov et al.: Nuclear Energy in the Arctic Region.
The Arctic: Ecology and Economy, v.4(20), 2015 (in Russian).
Authors
Andrej Yurjewitsch Gagarinskiy
National Research Centre “Kurchatov Institute”
Moscow, Russian Federatio
Energy Spotlight Policy, on Nuclear Economy Lawand Law
Russian U.S. Regulators Nuclear Reject Energy Proposal Technologies to Subsidize for the Nuclear Development and Coal of the Power Arctic Prices ı Andrej ı Andrej Yurjewitsch Gagarinskiy
atw Vol. 63 (2018) | Issue 3 ı March
U.S. Regulators Reject Proposal to Subsidize Nuclear and
Coal Power Prices
Jay R. Kraemer
On January 8, 2018, the U.S. Federal Energy Regulatory Commission (“FERC”) unanimously rejected a rulemaking
proposed by Secretary of Energy Rick Perry designed to enable the owners of coal and nuclear power plants to charge higher
prices for their output, and thereby to prevent further premature retirements of such plants. The FERC has exclusive
authority, under the Federal Power Act, to establish rules for interstate wholesale sales of electricity. Although the FERC
simultaneously initiated a new proceeding to consider how to enhance the resilience of electricity supply and delivery in
the U.S., that proceeding seems unlikely to offer near-term relief to nuclear plants that are approaching closure due to
their inability to compete economically both with facilities fueled by low-priced natural gas and with renewable power
sources benefitting from favorable tax provisions. Accordingly, the American nuclear power industry wil+l probably have
to look elsewhere for relief from its present dire economic circumstances.
Last fall, Secretary Perry concluded that U.S. wholesale
electricity markets, as operating in power auctions
conducted in accordance with FERC regulations, were
not adequately compensating the “resiliency” benefits of
nuclear and coal-fired “fuel-secure generation” facilities.
Accordingly, he issued a directive instructing the FERC to
develop and publish new market rules to correct that shortcoming.
See, “Grid Resiliency Pricing Rule,” 82 Federal Register
46940-48 ( October 10, 2017) (the “ Proposed Rule”).
Specifically, he called upon the FERC to amend its regulations
to require that each of the six regional entities
( Independent System Operators (“ISOs”) and Regional
Transmission Organizations (“RTOs”)) conducting FERCregulated
power auctions promptly establish new rates for
the purchase of power from certain generating facilities.
Such rates would provide for recovery of the facilities’ costs
of operation, fuel, capital, and financing, as well as a fair
return on equity. Eligible generating facilities were defined
in the Proposed Rule so as to include power plants that were
not currently subject to cost-of- service rate regulation, had a
90-day fuel supply on site, and were able to supply certain
reliability energy services, such as voltage support, frequency
services, and operating reserves. As a practical
matter, therefore, the Proposed Rule called for the FERC to
adopt regulations requiring electricity rate tariffs allowing
full cost and reasonable profit recovery for coal-fired and
nuclear “ merchant” power plants which, on the document’s
face, appeared to be the only generating facilities that could
meet the applicable definitions.
The FERC received extensive comments on the Proposed
Rule from ISOs, RTOs, electric utilities, non- utility elec tricity
generators, trade associations repre senting a wide variety of
energy interests, and many others. Meanwhile, the composition
of the FERC itself changed markedly in the two
months following publication of the Proposed Rule, including
the confirmation of a new Chairman who assumed office
in early December 2017 (and one of whose first official
actions was to request an additional 30 days within which to
respond to the Proposed Rule).
In its unanimous Order terminating the rulemaking proceeding
initiated in response to the Proposed Rule, the FERC
briefly reviewed the development of the U.S. electric power
industry and its own efforts to help ensure the resilience of
the bulk power system. It then held that neither the Proposed
Rule nor the record in that rule making proceeding
had shown that the current RTO/ISO rates were unjust or
unreasonable, or that they were unduly preferential or discriminatory
– the statutory criteria in the Federal Power Act
for changing rates. In addition, the FERC found no basis in
the record to conclude that there was a threat to grid
resilience, either in the current rates charged for power or
otherwise. It then specifically rejected the Proposed Rule’s
concept that all qualifying generating facilities should
receive a cost-of-service recovery rate regardless of the need
for power or the resulting prices to power consumers.
Two FERC Commissioners – both Democrats – wrote concurring
opinions that were quite critical of the Proposed
Rule. One stated that, by “simply designat[ing facilities] for
support rather than determining what services needed to be
provided,” the Proposed Rule “sought to freeze yesterday’s
resources in place indefinitely, rather than adapting to the
resources that the market is selecting today or toward which
it is trending in the future.” (Concurring Statement of Commissioner
LaFleur, at 4.) The other described the Proposed
Rule’s remedy as a “multi-billion dollar bailout targeted at
coal and nuclear generating facilities,” and pointed to the
transmission and distri bution systems in the U.S., rather
than to generating facilities, as a greater threat to grid resilience.
(Concurring Statement of Commissioner Glick, at 2.) A
third Commissioner, after applauding “Secretary Perry’s
bold leadership in jump- starting a national conversation on
this urgent challenge,” stated that he would have preferred
to move expeditiously to direct the RTOs/ISOs either to submit
interim rate revisions for existing power plants that were
providing resilience attributes and were at risk of retiring
before the new FERC proceeding was concluded or to explain
why such rate revisions were not necessary. ( Concurring
Statement of Commissioner Chatterjee, at 1, 3.)
After terminating the proceeding involving the Proposed
Rule, the FERC began a new proceeding to address potential
grid resiliency challenges in the RTOs/ISOs, including a
better understanding of what resiliency means and requires.
The FERC ordered each RTO and ISO to submit, within 60
days, comments on those issues, on how the RTOs/ISOs
assess threats to resiliency, and on how they mitigate threats
to resilience. Following those sub missions, other interested
parties will have 30 days to submit reply comments.
The new FERC proceeding is much more “open-ended”
than was the Proposed Rule, in terms of its potential
outcome, whether it will in fact lead to any new rule making,
and especially whether it will result in higher rates for
nuclear plants threatened with premature retirement. Some
states, most particularly Illinois and New York, have already
put in place arrangements that permit compensation to the
owners of nuclear plants for their non-carbon-emitting
power production. Other states, such a Connecticut, New
Jersey, and Pennsylvania have similar schemes under consideration.
However, because the Trump Administration
appears wedded to continued efforts to support the coal
industry (and, relatedly, seems unwilling to recognize the
climate benefits of carbon-free generation of electricity), it
appears that any economic relief to at-risk nuclear power
plants is more likely to come from state-sponsored plans, or
possibly proposals initiated by ISOs and/or RSOs themselves,
than from initiatives from the Federal Government.
Author
Jay R. Kraemer
Of Counsel
Fried, Frank, Harris, Shriver & Jacobson LLP
801 17 th Street, NW Washington, DC 20006, USA
153
SPOTLIGHT ON NUCLEAR LAW
Spotlight on Nuclear Law
U.S. Regulators Reject Proposal to Subsidize Nuclear and Coal Power Prices ı Jay R. Kraemer
atw Vol. 63 (2018) | Issue 3 ı March
154
ENVIRONMENT AND SAFETY
The Importance of Integration of
Deterministic and Probabilistic
Approaches in the Framework of
Integrated Risk Informed Decision
Making in Nuclear Reactors
Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia and Ehsan Zarifi
Introduction For many years, decision making on safety issues has been based on either deterministic safety
assessment (DSA) or probabilistic safety assessment (PSA). In recent years, integrated risk informed decision-making
(IRIDM) approach has been suggested to integrate in a systematic manner quantitative and qualitative (deterministic
and probabilistic) safety considerations to attain a balanced decision [1, 2, 3, 4, 5, 6, 7]. The IRIDM and investigation of
the combination of deterministic and probabilistic approaches are important issues, which have attracted much
attention in recent years. United States Nuclear Regulatory Commission (USNRC) has developed reports on integrated
risk-informed decisions and applications of deterministic and probabilistic approaches since 1998 [8, 9, 10, 11, 12, 13].
They considered the high-level criteria for defence-in-depth and all of safety margin by using the IRIDM concept. Collins
[14] investigated risk informed safety and regulatory decision making based on USNRC perspective. He investigated the
methods to enhance the safety criteria, regulatory effectiveness and efficiency, and public confidence. Impediments for
the application of risk-informed decisions making (RIDM) in nuclear safety were considered by Hahn et al [15]. They
suggested that the PSA method could not be replaced or substituted by DSA method. IAEA has overviewed risk- informed
regulation of nuclear facilities [4]. In the overview, the application of RIDM to provide safety level in all types of nuclear
facility is considered. Risk-informed decision making in the context of the National Aeronautics and Space Administration
(NASA) risk management is studied by Dezfuli et al [16, 17, 18]. In this investigation, evolution of risk-related policy and
guidance documents and NASA’s risk management approach are discussed. The International Nuclear Safety Group
(INSAG) has also published a framework for an integrated RIDM process (INSAG 25, 77, etc) [19, 20, 21, 22]. In this
report, the framework, principles and key elements for RIDM are identified and their interrelationship are described. In
another study, Fontes et al [23, 24] considered ITO model of pit corrosion in pipelines by applying RIDM. Talarico [25,
26] indicated RIDM of safety investments by using the disproportion factor, Process safety and environmental protection.
For this purpose a systematic approach, Cost-benefit analysis, determination model and simulations on realistic data
were presented. Veeramany et al [27, 28] investigated a framework for modeling of high-impact and low-frequency
power grid events to support RIDM. In this report, an integrated high-impact and low-frequency risk framework was
applied for improvement of the risk models. Borgonovo and Apostolakis [29, 30] introduced an importance measure,
the differential importance measure (DIM), for RIDM. Using this method, the problems exiting in Fussell-Vesely (FV)
and risk achievement worth (RAW) methods were solved.
A risk-informed defence-in-depth
frame work for existing and advanced
reactors are considered by Fleming
and Silady [31, 32, 33, 34]. A new
definition of defence-in-depth including
the inherent characteristics,
design features of a nuclear reactor,
and the quantification of the design
features importance is suggested.
Mohammad Modarres [35] proposed
and discussed implications of a largely
probabilistic regulatory framework
using best estimate, goal-driven,
risk-informed, and performancebased
methods.
The traditional defense-in-depth
design and operation regulatory
philosophy are used to propose a
framework when uncertainty in
conforming to specific goals and
objectives is high. The steps need to
develop a corresponding technologyneutral
regulatory approach from the
proposed framework explained.
Kang and Sung [36, 37] studied
analysis of safety-critical digital
systems for RIDM. The fault tree
analysis framework of the safety of
digital systems are presented and the
relationship between the important
characteristics of digital systems and
the PSA results using mathematical
expressions are described quantitatively.
Kim et al [38, 39, 40] discussed
the risk-informed approach that have
proposed to make a safety case for
advanced nuclear reactors. They also
considered a risk-informed safety
analysis approach suggested by
Westinghouse. In this paper, the
risk-informed approach and its
potential to improve the conventional
and deterministic approaches because
of various desirable characteristics are
discussed. Future nuclear reactor
designs meet an uncertain regulatory
environment. Delaney et al [41, 42,
43] considered the risk-informed
design guidance for this reactor
systems. Some level of probabilistic
insights in the regulations and
supporting regulatory documents for
generation-IV nuclear reactors are
anticipated. This paper presented an
iterative four-step risk-informed
methodology to guide the design of
future-reactor systems.
Deterministic approach
Deterministic safety approach (DSA)
applies a set of conservative rules
and requirements for the design and
operation of a nuclear facility. Thereby
providing a way of taking into account
uncertainties in the performance of
equipment and humans. DSA provides
the defence-in-depth that assures the
successive performance of barrier to
prevent accidents. A safe for operator
of nuclear power plant, and environment
during the normal and abnormal
operation can be achievable by
Environment and Safety
The Importance of Integration of Deterministic and Probabilistic Approaches in the Framework of Integrated Risk Informed Decision Making in Nuclear Reactors
Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia and Ehsan Zarifi
atw Vol. 63 (2018) | Issue 3 ı March
applying an appropriate defence- indepth.
It is needed to determine the
design basis accidents to analyze
safety of nuclear facilities in deterministic
approach, that its analysis as
well as presence of DID can increase
the safety margin, which has an
important role in prevention and
mitigation of the accidents. If these
parameter are met, the level of risk to
operators and public from operation
of the nuclear facility will be acceptably
low [4, 5, 7, 19].There are
also uncertainties in deterministic
approach; For example, there are
uncertainties in the analytical models,
computer codes, and the capability of
structures, systems and components,
etc. The involved uncertainties are
determined by applying conservative
assumptions, as well as models and
data. Deterministic approach has
advantages and disadvantages. The
main advantage of deterministic
approach is that it is well developed
for applying to all types of nuclear
facilities [4, 5, 7, 19]. In addition to its
advantages, there are defects like
indicating the rare fault instead of
lesser faults that are more frequent to
the risk, disability to balance a design
and reduction in level of risk.
Probabilistic approach
Probabilistic approach is used for the
analysis of safety of nuclear power
plants. This method has three safety
levels. By application of this approach,
it is possible to analyze all transients
and accidents including fires and
floods, Core Damage Frequency
(CDF) and Large Early Release
Frequency (LERF). In addition, all
sources of radioactive material,
human errors, and levels of risk can be
considered in this method. Probabilistic
approach can be used in all the
modes of operation of the plant. The
scope of the PSA applying may be less
than this and, the limitations of PSA
method must be recognized when it is
used as part of the IRIDM process.
At first, initial events are determined
in probabilistic safety analysis,
then it must calculated whether the
core damage frequency and associated
risk can satisfy the required requirements
or not.
The PSA method uses comprehensive
list of initiating events and determines
all the fault sequences that
could lead to core damage or a large
early release. The levels of risk,
parameters uncertainty, and sensitivity
studies can be also considered
by using PSA approach.
The deficiency in the probabilistic
approach is that the PSA model cannot
determine all the initiating events
and fault sequences that could affect
to the risk. The uncertainties in some
areas of the PSA model are very large.
Nevertheless, The PSA model can explicitly
explain many of uncertainties
by using modern PSA computer codes.
The PSA approach is a part of decision-making
and cannot replace it, individually.
It can only be a contributor
to the decision making.
Integration of PSA and DSA
methods into the integrated
risk informed decisionmaking
The deterministic and probabilistic
approaches must be used to control
the level of nuclear facilities risk to
satisfy the safety of operators. There
are many differences between deterministic
and probabilistic approaches
in evaluation methods and boundary
conditions. The deterministic approach
is conservative but Probabilistic
approach is more realistic and uses
best estimate approach. The deterministic
approach usually uses some
of initiating events and fault
sequences, while the Probabilistic
approach uses a comprehensive set of
initiating events and hazards for
analysis. In deterministic approach,
accident conditions are addressed
separately, so that the PSA approximately
integrates all initiating events
and safety systems in the same model.
DSA approach uses approximate
method for calculating initiating
events frequencies and systems and
components failure probabilities,
while PSA uses explicit methods for
these purposes. Uncertainties are
addressed by conservative assumptions
and can be quantified by using
explicit methods in deterministic and
probabilistic models.
Generally, in view of intiating
events, DSA only considers design
basis accidents, howerver PSA considers
all design basis and beyond
design accidents. By considering the
safety systems, DSA only indicates
singular failure criterion, however PSA
indicates both of singular and combined
failiure criterion . In deterministic
approach, with the respect of the
operator instruction, nothing should
be done in 30 minutes, but afterwards
instructions should be implemented
completely. Whereas in the PSA the
operator's proceeding is more realistic.
In other words, the basis of DSA is
more conservative while the PSA is
realistic as much as possible.
The PSA can complement the
deterministic methods because:
• PSA considers thousands of accident
sequences instead of the
relatively few.
• It analyses more complex failure
modes.
• It quantifies the remaining risk.
• It identifies non-conservative and
overly conservative in the design.
• It quantifies the part of the uncertainties,
contributing to the understanding
of the issues.
Integrated approach can determine
that design is balanced against
initiating events. Also, determines the
importance of structures, systems and
components (SSCs). In all cases, a
combination of deterministic and
probabilistic approaches is made to
achieve acceptable safety level. Each
approach has separate viewpoint, it is
possible to use the result of each
approach for another one instead of
the applying assumptions into them.
In this way, the deterministic success
criteria, which is obtained in the
deterministic approach, can be used
in probabilistic approach. In addition,
the new design basis events and
re-classified structures, systems
and components from probabilistic
approach can be used in the deterministic
approach. Then, deterministic
and probabilistic results are compared
with regulation and the assessed risk
metrics, respectively. Finally, the
acceptable safety level can be achieved
by using the integrated risk-informed
decision. If the safety level is not
satisfied, the measures should be
re-implemented to enhance the safety
level [1, 2, 3, 4, 7, 19, 20, 33, 44],
Figure 1.
Early safety management focused
primarily on the safety of the plant
and equipment (the technology),
while subsequent practices also
| | Fig. 1.
Process of safety analysis by integration of DSA and PSA.
ENVIRONMENT AND SAFETY 155
Environment and Safety
The Importance of Integration of Deterministic and Probabilistic Approaches in the Framework of Integrated Risk Informed Decision Making in Nuclear Reactors
Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia and Ehsan Zarifi
atw Vol. 63 (2018) | Issue 3 ı March
ENVIRONMENT AND SAFETY 156
| | Fig. 3.
Requirements for IRIDM.
considered several factors such as
human operators, organization, etc.
The IRIDM approach to managing
safety adopted by many operators
worldwide addresses all aspects and
the complex interaction between
them, Figure 2.
| | Fig. 2.
Important parameter for IRIDM.
Experience has shown that an
integrated decision making process,
including deterministic and probabilistic
analyses with good engineering
practices, consideration of
operating experience and sound
managerial arrangements, is effective
in refining and improving safe design
and safe operation of nuclear installations.
A risk-based on integrated
decision-making process provides a
defensible basis for making decisions.
In addition, it is possible to recognize
the greatest risks and prioritize
attempts to minimize or omit them.
Decision making case
DSA
method
This approach has many benefits
including a greatly improved understanding
of the safety and identifying
safety vulnerabilities that have
not identified using standards-based
evaluation techniques. IRIDM is a
consultative process that applies a set
of performance measures, with other
considerations, to “inform” decisionmaking.
IRIDM is invoked for key
decisions, which typically requires
setting of requirements. It is applied in
many different fields, risk assessment,
engineering design decisions and
configuration management processes,
etc. Using the IRIDM, assures project
success and best decision making for
risk assessment, etc [4, 17, 19]. The
comparison between several methods
for safety analysis and decision
making is shown in Table 1.
Integrated Risk Informed Decision
Making is a best practice approach to
safety management and decision
making. IRIDM is a modular model
that considers all relevant and important
factors in an appropriate way to
reach a balanced decision for taking
account of all the risks and hazards
posed by the facility. The main goal of
the model is to develop an integrated
data bank for informed decision
making in necessary cases. The integrated
data bank includes: operational
feedback, organizational factor analysis,
human factor, inspection, Deterministic
Safety Analysis, Living
Probabilistic Safety Analysis, security
and safeguard and etc. The scheme of
this model is shown in Figure 3.
A series of requirements and
criteria including different steps are
needed for IRIDM process. The first
step is defining the any types of issues
that can be considered in safety analysis.
The second step is identifying the
requirements and criteria related to
the specific issue. In this step, the
mandatory requirements, deterministic
and probabilistic insights and other
requirements should be determine for
PSA
method
| | Tab. 1.
Comparison between several methods for safety analysis.
RIDM
method
IRDM
method
Comprehensiveness
of events considered
Ç – – Ç
Quality assurance – Ç – Ç
Review of SAR report – Ç Ç Ç
Emergency preparedness
and resparde
– – Ç Ç
Licensing Ç Ç – Ç
implementation of IRIDM process. In
third step, weighting of inputs is
determined. A specific weight of each
parameter attributes based on its importance
for different issues. Then,
the evaluating methods of safety
issues can be recognized by these
weights. The forth step is decision
making. The aim of this step is to make
a decision whether the change should
be made in design or operation of
the plant, the regulation under consideration,
etc. A good decision
making process requires conducting
the preceding steps. Because improper
decision making will result in
necessity of redoing all steps. After
making a good decision, it should be
implemented. The operators should
receive proper training and, required
changes in the associated instruments
should be applied. The final step is
monitoring of the process. In order to
have proper implementation of the
aforementioned issue, a complete
regulation should be performed. in
the case, the adequate efficiency has
not been achieved in the implemented
steps, the procedure should be revised
or re-planed [4, 5, 7, 19, 44].
Advantages of IRIDM approach is
include:
• Transparency, as the weighting
of the elements and the way
resolution is achieved is clear;
• Balanced, if all elements are
weighted properly;
• Logical, if carried out in a structured
way;
• Consistency, if weighting developed
appropriately;
• Accountable, if documented properly
so the process can be reconstructed;
It is necessary to be considered that
complexity of integration of quantitative
and qualitative information is
very high.
According to give explanation in
this paper, the importance of using
the combination of both deterministic
and probabilistic approaches in the
framework of integrated risk informed
decision making is quite evident.
For more realistic analysis of nuclear
accidents should be done using
both deterministic and probabilistic
approaches. The required parameters
(for example, deterministic success
criteria, new design basis event,
re-classified SSCs…) for an approach
should be used in the other one or vice
versa. In addition, the final decision
will be made on basis of IRIDM by
using deterministic and probabilistic
insights. This will lead to greater
safety of operators and environment,
Environment and Safety
The Importance of Integration of Deterministic and Probabilistic Approaches in the Framework of Integrated Risk Informed Decision Making in Nuclear Reactors
Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia and Ehsan Zarifi
atw Vol. 63 (2018) | Issue 3 ı March
Determination of greater defense
barriers, lower costs, Selection of
limiting cases for detailed quantitative
analysis, less energy dissipation, Performance
of detailed quantitative
analysis for each limiting case, Evaluation
of compliance to the acceptance
criteria and safety margins, etc.
Conclusion
In general, when the analysis of
nuclear accidents are separately done
by deterministic and probabilistic
approaches are faced with shortcomings
and drawbacks. It is not
possible to provide a comprehensive
prediction for nuclear accidents. In
deterministic approach, many effective
factors in the event are not considered
but in probabilistic approach,
most effective factors in the event are
used for determining the frequency of
occurrence and total error. Therefore,
for better understanding and comprehensive
analysis of events, deterministic
and probabilistic assessment
is necessary at the same time.
This review indicates that the integrated
risk-informed approach has
great potential to improve safety level
by using probabilistic and deterministic
approaches. By using IRIDM
approach, determining of initiating
events, multiple failures and event
sequences are possible. The final decision
should be based on integrated
risk-informed rather than the risk,
itself. Risk assessment should only
be part of the decision process. For
the final decision, integrated risk
informed should be based on combination
of deterministic and probabilistic
approach.
Adopting an IRIDM model is way
of helping prevent these incidents and
accidents as well as other benefits
such as:
• Safer and more secure operations
have reduced risks through more
comprehensive understanding of
operational risks;
• Greater resilience, including the
ability to cope with unforeseen
threats and adverse events;
• Better integration of operations
and technical systems, with financial
and human resource management;
• Greater efficiency, including more
productive operations, higher staff
morale, lower staff turnover, more
efficient and effective control
measures;
• Greater ability to identify weaknesses
so that they can be actively
corrected to prevent opportunities
for accidents to happen.
Reference
1. IAEA, Applications of Probabilistic
Safety Assessment (PSA) for Nuclear
Power Plants, IAEA-TECDOC-1200,
Vienna 2001.
2. IAEA, Living Probabilistic Safety
Assessment (LPSA), IAEA-TECDOC-1106,
Vienna 1999.
3. IAEA, Review of Probabilistic Safety
Assessments by Regulatory Bodies,
Safety Reports Series No. 25, IAEA,
Vienna 2002.
4. IAEA, Risk-informed regulation of
nuclear facilities: overview of the
current status (IAEATECDOC-1436),
Technical report, IAEA, Vienna, 2005.
5. IAEA, The Interface between Safety and
Security at Nuclear Power Plants,
INSAG-24, IAEA, Vienna, 2010.
6. US NUCLEAR REGULATORY
COMMISSION, Framework for Risk-
Informed Changes to the Technical
Requirements of 10 CFR 50,
Attachment 1 to SECY-00-198, USNRC,
Rockville, MD 2000.
7. E. Zio, N. Pedroni, Risk-informed
decision-making processes, An
overview, 2012.
8. USNRC, An approach for plant-specific,
risk-informed decision-making: Graded
quality assurance, Regulatory guide
1.176, Technical report, US Nuclear
Regulatory Commission, Washington,
D.C., 1998a.
9. USNRC, An approach for plant-specific,
risk-informed decision-making: Inservice
inspection of piping, Regulatory guide
1.178, Technical report, US Nuclear
Regulatory Commission, Washington,
D.C., 1998b.
10. USNRC, An approach for plant-specific,
risk-informed decision-making: Inservice
testing, Regulatory guide 1.175,
Technical report, US Nuclear Regulatory
Commission, Washington, D.C., 1998c.
11. USNRC, An approach for plant-specific,
risk-informed decision-making:
Technical specifications, Regulatory
guide 1.177, Technical report, US
Nuclear Regulatory Commission,
Washington, D.C., 1998d.
12. USNRC, An approach for using
probabilistic risk assessment in riskinformed
decisions on plant-specific
changes to the licensing basis
(NUREG-1.174), Technical report, US
Nuclear Regulatory Commission,
Washington, D.C., 2002.
13. USNRC, Guidance on the treatment of
uncertainties associated with PRAs in
risk-informed decision making
(NUREG-1855), Technical report, US
Nuclear Regulatory Commission,
Washington, D.C., 2009.
14. S. J. Collins, Risk informed safety and
regulatory decision making: an NRC
perspective, In Proceedings of the 2001
IAEA international conference on
Topical issues in nuclear safety, Vienna,
IAEA, 2001.
15. L. Hahn, Impediments for the application
of risk-informed decision making in
nuclear safety (IAEA-CN-82/49), In
International Conference on Topical
Issues in Nuclear Safety, Vienna, 2002.
16. H. Dezfuli, M. Stamatelatos, G. Maggio,
C. Everett, Risk-informed decision
making in the context of NASA risk management,
In Proceedings of the PSAM
10 Conference, Seattle, WA., 2010.
17. NASA, Risk-informed decision making
handbook (NASA/SP-2010-576).
Technical report, NASA, 2010.
18. NPR 8000.4, Agency Risk Management
Procedural Requirements 2009, NPR
8000.4, Agency Risk Management
Procedural Requirements, 2009.
19. IAEA, A framework for an integrated
risk informed decision making process /
a report by the International Nuclear
Safety Group, Vienna, INSAG series,
ISSN 1025–2169, no. 25, 2011.
20. IAEA, Safety Assessment for Facilities
and Activities, IAEA Safety Standards
Series No. GSR Part 4, IAEA, Vienna,
2009.
21. OECD Nuclear Energy Agency, Nuclear
Regulatory Decision Making, OECD,
Paris, 2005.
22. OECD Nuclear Energy Agency,
Improving nuclear regulation, Nuclear
Regulation, OECD, Paris, 2009.
23. G.S. Fontes, An ITO model of pit
corrosion in pipelines for evaluating
risk-informed decision making. Instituto
Militar de Engenharia, Nov 24, 2015.
24. M. Chang, R. Chang, C. Shu, K. Lin,
Application of risk based inspection in
refinery and processing piping, J. Loss
Prev. ProcessInd.18, 397–402, 2005.
25. L. Talarico, R. Genserik, Risk-informed
decision making of safety investments
by using the disproportion factor,
Process safety and environmental
protection / Institution of Chemical
Engineers [London],ISSN 0957-5820 -
100p 117-130, 2016.
26. J. Janssens, L. Talarico, G. Reniers, K.
Sörensen, A decision model to allocate
protective safety barriers and mitigate
domino effects. Reliab. Eng. Syst. Saf.
143, 44–52, 2015.
27. A. Veeramany, S.D. Unwin, G.A. Coles,
J.E. Dagle, W.D. Millard, J. Yao, C.S.
Glantz, S.N.G. Gourisetti, Framework for
Modeling High-Impact and Low- Frequency
Power Grid Events to Support
Risk-Informed Decisions, PNNL-24673,
Pacific Northwest National Laboratory,
Richland, WA, 2015.
28. G. Apostolakis, M. Cunningham, C. Lui,
G. Pangburn, W. Reckle, A Proposed
Risk Management Regulatory Framework.
NUREG-2150, U.S. Nuclear
Regulatory Commission, Washington
D.C, 2012.
29. E. Borgonovo, G.E. Apostolakis, A new
importance measure for risk informed
decision making, reliability engineering
and study safety, Cambridge, USA,
2001.
30. M.C. Cheok, G.W. Parry, R.R. Sherry, Use
of importance measures in riskinformed
regulatory applications.
Reliability Engineering and System
Safety; 60:213-26, 1998.
31. K. N. Fleming, F. A. Silady, A risk
informed defense-in-depth framework
for existing and advanced reactors, Reliability
Engineering and System Safety,
San Diego, CA 92121-2767, USA, 2002.
ENVIRONMENT AND SAFETY 157
Environment and Safety
The Importance of Integration of Deterministic and Probabilistic Approaches in the Framework of Integrated Risk Informed Decision Making in Nuclear Reactors
Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia and Ehsan Zarifi
atw Vol. 63 (2018) | Issue 3 ı March
ENVIRONMENT AND SAFETY 158
32. A. Carnino, M. Gaparini, Defense in
depth and development of safety
requirements for advanced reactors.
Workshop on Advanced Nuclear
Reactor Safety Issues and Research
Needs, Paris; February 18–20, 2002.
33. IAEA, Defence in Depth in Nuclear
Safety, IAEA; INSAG-10, IAEA, Vienna,
1996.
34. J.N. Sorensen, G.E. Apostolakis, T.S.
Kress, D.A. Powers, on the role of
defense-in-depth in risk informed
regulation. Presented at PSA’99,
Washington DC, USA, August 22–25,
La Grange Park, IL, USA: American
Nuclear Society; 1999.
35. M. Modarres, Advanced nuclear power
plant regulation using risk-informed
and performance-based methods,
Reliability Engineering and System
Safety, College Park, MD 20874, USA,
2009.
36. H.G. Kang, T. Sung, An analysis of safety-critical
digital systems for risk-informed
design, Reliability Engineering
and System Safety, Taejon 305-600,
South Korea, 2002.
37. I.S. Kim, T.K. Kim, M.C. Kim, B.S. Kim,
S.W. Hwang, K.C. Ryu, Suitability review
of FMEA and reliability analysis for
digital plant protection system and
digital engineered safety features
actuation system. KINS/HR-327; 2000.
38. I. S. Kim, S.K. Ahn, K.M. Oh, Deterministic
and risk-informed approaches
for safety analysis of advanced reactors:
Part II, Risk- informed approaches,
Reliability Engineering and System
Safety, Daejeon 305-338, Republic of
Korea, 2010.
39. M.C. Jacob, J.P. Rezendes, Development
of risk informed safety analysis
approach and pilot application.
Westinghouse, WCAP-16084-NP, rev 0,
September, 2003.
40. DOE, USNRC, Next generation nuclear
plant licensing strategy – a report to
congress, August, 2008.
41. M.J. Delaney, G.E. Apostolakis, M. J.
Driscoll, Risk-informed design guidance
for future reactor systems, Nuclear
Engineering and Design, Cambridge,
MA 02139-4307, USA, 2005.
42. G.E. Apostolakis, How useful is
quantitative risk assessment?, Risk Anal.
24, 515–520, 2004.
43. G.E. Apostolakis, M.W. Golay, A.L.
Camp, A.L. Duran, D.J. Finnicum, S.E.
Ritterbusch, June 4–5, A new riskinformed
design and regulatory
process. In: Proceedings of the Advisory
Committee on Reactor Safeguards
Workshop on Future Reactors, Report
NUREG/CP-0175, pp. p237–p248, US
Nuclear Regulatory Commission,
Washington, DC, 2001.
44. A. Lyubarskiy, I. Kuzmina, M. E.
Shanawany, Advances in Risk Informed
Decision Making – IAEA’s Approach,
Vienna, Austria, 2011.
Authors
Mohsen Esfandiari
Gholamreza Jahanfarnia
Department of Nuclear
Engineering
Science and Research Branch
Islamic Azad University, Tehran,
Iran
Kamran Sepanloo
Ehsan Zarifi
Reactor and Nuclear Safety
Research School
Nuclear Science and Technology
Research Institute (NSTRI), Tehran,
Iran.
Applied Reliability Assessment for the
Passive Safety Systems of Nuclear Power
Plants (NPPs) Using System Dynamics (SD)
Yun Il Kim and Tae Ho Woo
1 Introduction A new kind of passive system is investigated in case of an accident in nuclear power plants
(NPPs). Conventional passive systems have the limitations in the conditional integrity like the piping system of the
coolants. In this paper, the free-falling of emergency coolants are proposed where the flying machine, drone, is imported
to carry out the coolants on the upper position of the containment building. In the cases of the Fukushima and Chernobyl,
the piping systems were blown away. So, the emergency coolants couldn’t flow into the reactor core position where the
reactor fuels were making continuous very high energy without stabilizing of the power level. Although the integrity of
the piping injection systems have been investigated as the good conditions, the previous history couldn’t give the
satisfactions to the public.
During the Fukushima disaster, the
operator had been seeking for the
prime minister to take a permission to
open the gas leak valve in the containment
building when the reactor pump
was out of order and the hydrogen
gases were produced continuously.
Eventually, the hydrogen explosion
happened and the four plants were
collapsed within several days after
East-Japan earthquake impact on the
Fukushima coast and its related areas.
Furthermore, even if there was an
opportunity to make use of the sea
water in order to cool down the
reactor core, the operator didn’t use it
for keeping the expensive reactor
structure from the saluted sea water
in which the material corrosions could
been happened and the material could
be in the significantly damaged situation.
Then, all kinds of the cooling
systems were gone permanently.
The dangerous radioactive contaminations
to the environment have been
done continuously. Considering the
case of the Fukushima nuclear accident,
the piping system has the crucial
fault that the safety system can’t
make any role in the post-accident or
on-accident. Piping in the NPPs should
be incorporated with the alternative
coolant supply method. So, the
detached system from plant building
could be imagined in this study.
The merit of the passive system is
operated without in-site electricity.
So, the natural circulation or gravity
could be acted for the designed system
by injection of the coolants. However,
even the action of switch of the system
operation should be done to start. So,
the manual based stating action is
needed for the operation of passive
system. As the same condition of the
Environment and Safety
Applied Reliability Assessment for the Passive Safety Systems of Nuclear Power Plants (NPPs) Using System Dynamics (SD) ı Yun Il Kim and Tae Ho Woo
atw Vol. 63 (2018) | Issue 3 ı March
initial action, the detached lifted
coolant carrying by drone is similar in
the starting state. However, the non
in-site power is supplied by the battery
in the drone’s flying system. ‘Passive’
means that the power is not used from
the in-site system of the plant. The
battery is supplied from the external
energy source. So, the drone could be
considered as one for constructing the
passive system in NPPs. There are the
comparisons of the passive systems in
Table 1.
Type
Natural
circulation
Gravity
Free-fall
Power
| | Tab. 1.
List of passive systems.
Non in-site electricity
Non in-site electricity
Non in-site electricity,
Battery or engine
installed in drones
| | Fig. 1.
Simplified configuration of NPPs in the accident.
| | Fig. 2.
Passive systems of NPPs.
ENVIRONMENT AND SAFETY 159
There are some passive safety
system related papers. Cho et al.
worked for the passive auxiliary feedwater
system (PAFS) [Cho et al. 2016].
In addition, Gou et al. studied that the
thermal hydraulic investigations were
done for a new type of passive residual
heat removal system (PRHRS) [Gou et
al. 2009]. Park et al. showed that the
advanced modular integral type rector
is investigated by the natural circulation
performance [Park et al. 2007].
2 Method
2.1 Overview
Figure 1 shows the simplified configuration
of the NPPs in the accident
where the water tank is carried by the
drones. The water falls as the free-fall
for the water tank in which the water
are entering to the reactor building.
The passive action by the free-fall is
done completely, which could be used
in the case of the piping based
injection system failure. There are
some passive systems in Figure 2
where the natural circulation and
gravity are shown. In this paper, the
free-fall is described. There are the
conceptual comparisons of passive
systems of NPPs in Figure 3 that the
water falls down from flying drone
containing water tank and the water is
injected from the conventional water
tank attached to the reactor building.
This is revolutionary different from
the conventional passive system in
which the piping integrity should be
kept. Otherwise, in the free-fall
system, the reservoir could be an
active role on or after accident. So,
| | Fig. 3.
Conceptual comparisons of passive systems in NPPs.
this means that the post-accident
safety system is installed in this new
system. In the current commercial
NPPs, there is not any kind of the
post-accident safety system. It has
been experienced in Chernobyl as well
as Fukushima cases that it was impossible
to make the coolant enter into
the reactor core where the nuclear
fuels were continuing the nuclear
reactions and producing the heats.
Table 2 shows the specifications of
the condensate water storage tank as
the emergency water tank [The Virtual
Nuclear Tourist, 2016]. Newly developed
drone could supply 500 kg [Air-
Mule, 2016]. Therefore, it takes about
1,137 times supplies to carry the tank
water. If one uses 10 units of drone, it
reduced to about 113 times. However,
| | Fig. 4.
Major factors for the free fall of coolants.
Tank
(Condensate storage tank)
Mass flow rate
Content
| | Tab. 2.
Specification of emergency water tank.
the coolant carrying quantity is
changeable by the situation and
carrier design.
2.2 Cooling by the free-fall
The modeling of this paper is to show
the capability of the free-fall coolant
in which this should make the
enhanced integrity to the piping based
injection systems. So, the major factor
of the fee-fall coolants is the coolant
quantity with mass flow rate which is
150,000 gallons
(567,812 liters, 568,500 kg water)
200 ~ 400 gallons/min.
Environment and Safety
Applied Reliability Assessment for the Passive Safety Systems of Nuclear Power Plants (NPPs) Using System Dynamics (SD) ı Yun Il Kim and Tae Ho Woo
atw Vol. 63 (2018) | Issue 3 ı March
ENVIRONMENT AND SAFETY 160
in Figure 4. Following the Newtonian
mechanics, the uniform gravitational
field without air resistance can
show the terminal velocity shows [The
Physics Classroom, 2016],
v(t)= -gt+ v o (1)
So, one can find the pressure using
Bernoulli’s principle [Clancy, 2006],
(2)
The coolant quantity is obtained by
mass flow rate [Potter, 2007],
ṁ = v(t)∙ρ (3)
Therefore, using continuity equation
[Potter, 2007],
Q = ṁ ∙A = v(t) ∙ ρ ∙ A(4)
where,
v o is the initial velocity (m/s)
v(t) is the vertical velocity
to time t (m/s)
g is the gravitational acceleration
(9.8 m/s 2 )
z is the elevation of the point
ρ is the density of the water
(1,000 kg/m 3 )
ṁ is the mass flow rate (kg/m 2 s)
Q is the mass rate (kg/s)
A is the area (m 2 )
2.3 Configuration of the drone
The water tank is carried out by the
drone where the mechanics of the
flying robotics is exploited. There is
the mechanical analysis of the drone
for nuclear engineering applications
in the below equations [Cho and Woo,
2016]. The mathematical forms of the
movement of the flying is described as
the flight dynamics in which three
kinds of the parameters are done as
roll, pitch, and yaw. These are angles
of rotation in three dimensions
about the vehicle’s center of mass
[NASA, 2014]. The configurations are
shown in Figure 5 [The Smithsonian’s
National Air and Space Museum,
2014]. In the control of the four thrust
forces from four rotors, there are three
angles Ø, θ, ψ and the altitude z to
make the six motions and then the
control inputs are [Jeong and Jung,
2014],
(5)
where, k pø , k iø , k dø are the proportional-integral-derivative
(PID) controller
gains for the roll angle control,
k pθ , k iθ , k dθ are PID controller gains for
the pitch angle control, and k pψ , k iψ ,
k dψ are PID controller gains for the
yaw angle control, respectively.
Furthermore, the altitude control of
PID controller is as follows [Jeong and
Jung, 2014],
(6)
where, m is the mass, g is the gravitational
acceleration, and then V z is,
(7)
where, k pz , k iz , k dz are PID controller
gains for the altitude control and
altitude data zs are obtained using a
sonar sensor.
2.4 System dynamics (SD)
Algorithm
The SD was created by Dr. Jay Forrest
in MIT around 1960s in which the
scientific and technological matters
as well as social and humanities
are quantified as the mathematical
SD
modeling [SDS, 2014]. The interested
event is described by the Boolean
values and the designed modeling
could show the event scenarios. There
are several kinds of characteristics as
the complexed non-linear manipulations
in the problems. The event flows
backward in the modeling, which is a
particular merit in the SD modeling.
The event quantification could be the
stocking of the values of the event
which is called as ‘Level’. In addition,
the cause loop is seen by the event
flows, which is like the flow chart
in the computer programming. Each
calculation is done as the time step in
which the time interval is decided by
the author. The software in this study
is Vensim code system as the window
version 6.3 [Ventana, 2016]. There
are the comparisons between the SD
and conventional safety assessments,
probabilistic safety assessment (PSA),
in Table 3. The event values are made
by the Boolean value based quantifications
with calculation interval of
designed time step. Hence, the realtime
calculations are reasonably
possible in SD which is basically the
dynamical simulations. There are
several companies for the SD software
in the world.
2.5 Modeling of the event
The modeling of the event is constructed
by passive system sequences.
Designed scenarios are initiated by
the loss of coolant accident (LOCA)
and it is needed to find the integrity of
reactor [Ha, 2006]. So, the conventional
event tree is made which is in
Figure 6. Based on the event tree, the
SD modeling in done in Figure 7
which is modified from conventional
work during early 1,000 minutes. The
characteristics of the SD are reflected
in the modeling where the non-linear
algorithm is expressed. The line is
used as the curved line as well as
the straight line so that the event
flow could be drawn without any
PSA
Theory Random number based Boolean value Probability
Event Non-linear lines Event tree, Fault tree
Result Relative value Probability value
Graphics Colorful Black & white
Topic Variable Variable
Dynamics Time step based Operator manipulated
Real-time Possible Impossible
Speed Quick Time needed
Commercialization Very active Moderate
| | Fig. 5.
Three parameters’ motions.
| | Tab. 3.
Comparisons between the SD and PSA.
Environment and Safety
Applied Reliability Assessment for the Passive Safety Systems of Nuclear Power Plants (NPPs) Using System Dynamics (SD) ı Yun Il Kim and Tae Ho Woo
atw Vol. 63 (2018) | Issue 3 ı March
| | Fig. 6.
Event tree of event.
| | Fig. 7.
SD modeling.
Event
| | Tab. 4.
List of event value.
| | Fig. 8.
Causes tree of SD modeling.
Content
LOCA (if then else(random 0 1 () < 0.8, 0, 1))
/ Reactor
Piping Integrity if then else(random 0 1 () < 0.3, 0, 1)
Alarm Alert if then else(random 0 1 () < 0.5, 0, 1)
* LOCA * Piping Integrity
Manual Actions if then else(random 0 1 () < 0.4, 0, 1)
* Alarm Alert * Piping Integrity
Reactor SCRAM if then else(random 0 1 () < 0.6, 0, 1)
* Manual Actions *Piping Integrity
Coolant Tank Integrity if then else(random 0 1 () < 0.5, 0, 1)
Flying Integrity if then else(random 0 1 () < 0.3, 0, 1)
Drone Action
Coolant Tank Integrity * Flying Integrity
Emergency Cooling by Operator if then else(random 0 1 () < 0.5, 0, 1)
* Drone Action *Reactor SCRAM
Reactor if then else(random 0 1 () < 0.5, 0, 1)
+ Emergency Cooling by Operator + 0.001
restriction. One of most important
merits in SD is used as the feedback
algorithm in which Reactor is connected
to LOCA. This means the final
event, Reactor, affects to the initial
event, LOCA. There are some cartoon
shapes which could give the operator
the sign of meaning. In the arrow line,
the plus sign means the additive
values of the event. In Table 4, the
values of the event are shown, which
are decided by expert’s judgments. In
the case of Piping Integrity, if the
randomly generated number between
0 and 1 is lower than 0.3, the value is
0.0. Otherwise it is 1.0. So, the
Boolean value is obtained. The others
are similar to this case. In the case of
LOCA and Reactor, the values are
accumulated using the ‘Level’ function
in which the values are summed up by
the designed time step.
3 Results
The simulation is performed for the
SD modeling. Using passive system of
the free-fall of coolant, the designed
scenarios are quantified. Figure 8 is
the causes tree of SD modeling which
is from the Figure 7. There are results
of the modeling. In Figure 9, there are
the cause tree’s results of SD modeling
as (a) Reactor and (b) LOCA. In
Figure 9 (a), the possibility for LOCA
is shown. The Y-axis has the relative
value where the value is stabilized after
it increases abruptly. In the final
stage as Reactor in Figure 9 (b), the
integrity of the reactor is increased.
4 Conclusions
The complex algorithm of the SD
modeling is done in the passive
cooling system. The free-fall could be
another kind of the nuclear passive
system which is different from the
conventional passive systems as
gravity and natural circulation. There
are some finding in this study as
follows,
• The nuclear passive system is modeled
using the free-fall concept.
• System dynamics (SD) based
algorithm is performed for nuclear
accident.
• More realistic safety assessment is
described.
• New kind of nuclear safety analysis
is done successfully
The nuclear passive system by the
free-fall is successfully modeled for
the LOCA accident. Conventional
passive systems of gravity or natural
circulation could be performed when
the piping systems are not damaged.
However, in the Fukushima and
Chernobyl cases, the piping was blown
ENVIRONMENT AND SAFETY 161
Environment and Safety
Applied Reliability Assessment for the Passive Safety Systems of Nuclear Power Plants (NPPs) Using System Dynamics (SD) ı Yun Il Kim and Tae Ho Woo
atw Vol. 63 (2018) | Issue 3 ı March
ENVIRONMENT AND SAFETY 162
| | Fig. 9.
Results of SD modeling, (a) LOCA and (b) Reactor.
away. So, the external coolant supply
system is introduced in the paper
where the water is poured into the
reactor. The guiding piping or tube
could be equipped for entering the
water into the reactor core. If the
explosion happens, the coolants could
be showering into the reactor core and
its building. New kind of passive
system is expected successfully in the
on-site black out, because the drone
could be operated by battery or
engine.
References
| | AirMule. 2016. Technology, Urban
Aeronautics LTD. Urban Aeronautics
AirMule, http://www.urbanaero.com/
category/airmule/.
| | Cho, Y.J., Bae, S.W., Bae, B.U., Kim, S.,
Kang, K.H. and Yun, B.J. 2016.
Analytical studies of the heat removal
capability of a passive auxiliary feedwater
system (PAFS). Nuclear Engineering
and Design 2016, 248, 306-316.
| | Cho, H.S. and Woo, T.H. 2016.
Mechanical analysis of flying robot for
nuclear safety and security control by
radiological monitoring. Annals of
Nuclear Energy, 94, 138-143.
| | Clancy, L.J. 2006. Aerodynamics.
India: Sterling Book House.
| | Gou, J., Qiu, S., Su, G. and Jia, D. 2009.
Thermal Hydraulic Analysis of a Passive
Residual Heat Removal System for an
Integral Pressurized Water Reactor.
Science and Technology of Nuclear
Installation, 473795.
| | Ha, T. and Garland, W. 2006. Loss of
Coolant Accident (LOCA) Analysis for
McMaster Nuclear Reactor through
Probabilistic Risk Assessment (PRA), presented
at 27 th Annual Conference of
the Canadian Nuclear Society, Toronto,
Ontario, Canada, June 11-14, 2006.
| | Jeong, S.H. and Jung, S.A. 2014. A
quad-rotor system for driving and flying
missions by tilting mechanism of rotors:
From design to control. Mechatronics,
24, 1178-1188.
| | NASA. 2014. Dynamics of Flight,
National Aeronautics and Space
Administration (NASA). Available on:
http://www.grc.nasa.gov/
WWW/k- 12/UEET /StudentSite/
dynamicsofflight.html/.
| | Park, H.S., Choi, K.Y., Cho, S., Park, C.K.,
Yi, S.K., Song, C.H. and Chung, M.K.
2007. Experiments on the Heat Transfer
and Natural Circulation Characteristics
of the Passive Residual Heat Removal
System for an Advanced Integral Type
Reactor. Journal of Nuclear Science and
Technology, 44, 703-713.
| | Potter, M. and Wibbert, D. 2007.
Schaum’s Outline of Fluid Mechanics
(Schaum's Outlines), 1 st Edition. New
York (NY): McGraw-Hill Education.
| | SDS. 2014. Introduction to System
Dynamics, System Dynamics Society
(SDS). Available on:
http://www.systemdynamics.org/
joining/#aboutsd/.
| | The Physics Classroom, Kinematic
Equations and Free Fall, 2016. Available
online: http://www.physicsclassroom.com/class/1DKin/Lesson-6/Kinematic-Equations-and-Free-Fall/.
| | The Virtual Nuclear Tourist. 2006.
Emergency Feedwater Systems.
Available online: http://www.nucleartourist.com/systems/af.htm.
| | The Smithsonian’s National Air and
Space Museum. 2014. Roll, Pitch, and
Yaw. Available on: http://howthingsfly.
si.edu/flight-dynamics/roll-pitch-andyaw.
| | Ventana. Vensim code system. 2016.
Vensim PLE (Evaluation or Educational)
6.4, Ventana Systems, Inc. Available on:
https://vensim.com.
Authors
Yun Il Kim
Korea Institute of Nuclear Safety
62 Gwahak-ro, Yuseong-gu
Daejeon 34142
Republic of Korea;
Tae Ho Woo
Department of Mechanical and
Control Engineering
The Cyber University of Korea
106 Bukchon-ro, Jongno-gu
Seoul 03051
Republic of Korea
Environment and Safety
Applied Reliability Assessment for the Passive Safety Systems of Nuclear Power Plants (NPPs) Using System Dynamics (SD) ı Yun Il Kim and Tae Ho Woo
atw Vol. 63 (2018) | Issue 3 ı March
Untersuchungen zum Geometrieeinfluss
von Hartmetalllamellen beim Betonfräsen
Simone Müller und Sascha Gentes
Einleitung und Motivation Die Minimierung kontaminierter Abfälle ist bei Rückbauvorhaben im kerntechnischen
Bereich von höchster Priorität. Im Bereich der Gebäudedekontamination ist hierbei eine effiziente Bearbeitung
aller betroffenen Betondecken, -wände und -böden unerlässlich und führt schnell zu einer zu bearbeitenden Fläche von
mehreren tausend Quadratmetern. Die Dekontamination erfolgt überwiegend durch den Einsatz von Fräsen, z.B.
Bodenfräsen, die ursprünglich für die Bearbeitung von Estrichen und niederfesten Betonen ausgelegt sind. Bei der
Bearbeitung normalfester Betone, wie sie in Kernkraftwerken üblicherweise verbaut sind, verringert sich die Standzeit
gegenüber Estrichen aufgrund der höheren Betonfestigkeiten jedoch drastisch. Daraus ergibt sich, neben vermehrten
Rüstzeiten zum Werkzeugwechsel und einem daraus resultierenden Kontaktrisiko der Mitarbeiter zu kontaminiertem
Werkzeug, auch ein erhöhtes Aufkommen an Sekundärabfall durch den vermehrten Anfall von verschlissenen
Fräslamellen.
Das vom Bundesministerium für Wirtschaft
und Energie (BMWi) geförderte
Forschungsprojekt „Entwicklung und
Optimierung eines Schlagwerkzeugs
zum Abtrag von (kontaminierten)
Beton oberflächen“ (EOS, Förderkennzeichen:
KF2286004LL3) nimmt sich
dieser Aufgabenstellung mit dem Ziel
eines effizienteren Betonabtrags durch
eine Weiterentwicklung der Fräslamellen
an. Ein schnellerer Betonabtrag
führt unweigerlich auch zu
geringerem Personaleinsatz. Die effizientere
Dekontamination gewinnt
daher, vor dem Hintergrund der
zunehmenden Anzahl von Rückbauprojekten
im kerntechnischen Bereich,
an ökonomischer und sicherheitstechnischer
Relevanz. Im Rahmen des
Forschungsprojektes arbeiten als
Kooperationspartner das Karlsruher
Institut für Technologie (KIT) und
die Contec Maschinenbau & Entwicklungstechnik
GmbH (Alsdorf/Sieg)
zusammen.
Methodik und
Vorgehensweise
Am Institut für Technologie und
Management im Baubetrieb (TMB) des
KIT, Abteilung Rückbau konventioneller
und kerntechnischer Bauwerke,
wurde zur Erprobung verschiedener
Fräslamellengeometrien
ein Versuchstand konzipiert. Mit
diesem können, bei definiertem
Fräsen vorschub, -drehzahl und Zustellung,
gezielt verschiedene Belastungswege
der Fräslamelle nachgebildet
werden. Im Anschluss kann
der an der Lamelle aufgetretene Verschleiß
gemessen werden.
| | Abb. 1.
Bodenfräse CT320 des Herstellers Contec GmbH
zur Führung der Verfahreinheit der
Fräse angebracht sind (Abb. 2). Der
Grundkörper, eine handelsübliche
Betonfräse, wie in Abbildung 1
dargestellt, ist über eine Zustelleinheit
mit einem Verfahrschlitten verbunden.
Dieser Schlitten läuft auf den
horizontalen Schienen, siehe Abbildung
2. Im Gehäuse der Betonfräse
befindet sich die Werkzeugtrommel
mit den Achsen, auf denen die Fräslamellen
gelagert sind. Auf dem
Boden des Versuchsstandes lassen
sich darüber hinaus auch unterschiedliche
Betonproben befestigen (Abbildung
3).
| | Abb. 2.
Versuchsstand
Aufbau der Fräslamellen
und das Fräsverfahren
Die Fräslamellen sind fliegend auf
den Achsen der Werkzeugtrommel
gelagert. Der Aufbau der Werkzeugtrommel
und der Fräslamellen ist in
Abbildung 4 dargestellt. Die Außengeometrie
ist bei handelsüblichen
Lamellen sternförmig.
Je nach Maschinengröße und
Hersteller besitzt eine Lamelle fünf
bis zwölf Spitzen. An den Sternspitzen
ist ein Hartmetallstift eingelassen, der
die Materialabnutzung verringert
(siehe Abbildung 4 rechts). Die
Innen geometrie der Achsenlagerung
163
DECOMMISSIONING AND WASTE MANAGEMENT
Versuchsstand
Der eingesetzte Versuchsstand besteht
aus einem symmetrischen Außengerüst,
an dem horizontale Schienen
| | Abb. 3.
links: Fräslamelle in Fräse; rechts: Frässpuren
Decommissioning and Waste Management
Studies on the Geometric Influence on Hard Metal Shavers During Concrete Shaving ı Simone Müller and Sascha Gentes
atw Vol. 63 (2018) | Issue 3 ı March
DECOMMISSIONING AND WASTE MANAGEMENT 164
| | Abb. 5.
Laserscan des Betonabtrags
| | Abb. 4.
Aufbau der Frästrommel
der Lamellen ist rund. Durch diese
Form ist eine Positionierung der Hartmetallspitzen
zur Betonoberfläche
nicht gegeben und im Normalgebrauch
nicht vorgesehen.
Im Betrieb drücken die durch die
Trommelrotation induzierten Fliehkräfte
die Fräslamellen radial von
der Trommelmittelachse weg. Durch
die Zustellung der Fräse zum Boden
schlagen die Fräslamellen bei
Trommel rotation auf die zu bearbeitende
Betonoberfläche. Durch das
spröde Werkstoffverhalten des Betons
fragmentiert die Betonoberfläche infolge
des Stoßes. Die Hartmetalllamelle
wird von der Betonoberfläche
in Richtung der Trommelachse gedrückt
und rollt auf der Oberfläche
ab. Nach dem Überwinden der Oberfläche
legt sich die Lamelle wieder an
der Achseninnenseite an. Dieser Vorgang
wiederholt sich für alle Trommelachsen
zyklisch bei jeder Umdrehung
der Werkzeugtrommel. Eine ausführliche
und weiterführende Erläuterung
des Fräsvorgangs ist in [2] dargestellt
Beton und Versagensmechanik
Nach DIN 1045 ist Beton ein künstlicher
Stein. Hergestellt wird dieser
aus einem Gemisch von Zement,
Betonzuschlag (Gesteinskörnung),
Wasser und je nach Anwendungsfall
speziellen Zusatzstoffen. Es ergibt
sich ein zweiphasiges System aus
Zementmatrix und Zuschlagsstoff [5].
Aufgrund der unterschiedlichen
mechanischen Eigenschaften der
Zuschlagskörnung und des Zements
sind die Versagensmechanismen von
Beton körpern sehr komplex. Die
unter schiedlichen mechanischen Eigen
schaften der einzelnen Bestandteile
des Betons führen zu deutlichen
lokal-ungleichmäßigen Werkstoffkennwerten.
Das Auftreffen einer Lamelle auf
der Zementmatrix bzw. auf einem
Zuschlagskorn oder im Randgebiet
zwischen Zuschlagskorn und Zementmatrix
führt aufgrund verschiedener
Festigkeiten der Komponenten zu
unterschiedlichem Abtrag. Um eine
möglichst gleichbleibende Reproduzierbarkeit
der Abtragsmechanik der
Lamellen erreichen zu können, wurde
darauf geachtet, dass der Beton im
Rahmen des Versuchsprogramms
möglichst gleichmäßige Eigenschaften
besitzt. Durchgeführte Voruntersuchungen
zeigten, dass die Wahl
eines geringen Durchmessers des
Zuschlaggrößtkorns ein homogeneres
Abtragsergebnis erzielt. Für die durchgeführten
Versuchsreihen wurde aufgrund
dieser Ergebnisse ein Durchmesser
von 8 mm gewählt, der dem
geringsten Größtkorndurchmesser
nach DIN 1045-2 [6] entspricht.
Nach Manns [7] sind in Kernkraftwerken
vorwiegend Normalbetone
verbaut. Alle Versuche im Rahmen der
Untersuchung erfolgten auf Basis
eines Normalbetons in der Mitte der
Bandbreite mit einer Festigkeitskasse
von C30/37.
Messtechnik
Zur Auswertung der Versuche kommen
zwei Verfahren zum Einsatz.
Einerseits wird durch Wiegen der
Fräslamellen vor und nach Versuchseinsatz
der Massenabtrag an der
Fräslamelle bestimmt. Aus dem
Massenverlust ergibt sich ein Maß
des Lamellenverschleißes.
Andererseits wird mit Hilfe eines
Laserscanners der durch die Fräslamelle
verursachte Materialabtrag
bestimmt. Der Laserscanner vermisst
genau die Oberfläche der Betonprobe.
Mit diesen Daten können geometrische
Größen der Fräsrille wie
Abtragstiefe und -fläche berechnet
werden. Abbildung 5 zeigt einen
solchen Scan.
Der verwendete Laserscanner
arbeitet nach dem Lichtschnittverfahren,
das das Prinzip der optischen
aktiven Triangulation nutzt [1]. Bei
diesem Messprinzip strahlt ein Laser
im eindimensionalen Fall auf das zu
untersuchende Testobjekt und wird
von dessen Oberfläche in diffuser
Streuung abgelenkt. Optisch ist dies
als Lichtfleck auf dem zu messenden
Punkt zu erkennen. Ein Teil des
diffus gestreuten Lichts wird über ein
Objektiv auf einen photoelektrischen
Detektor geworfen. Durch die Anordnung
mehrerer einzelner Detektoren
in einer Reihe (Zeilensensor) kann die
Koordinate des auftreffenden Lichts
entlang der Detektorachse bestimmt
werden. Mit dem bekannten Abstand
des Detektors zur Lichtquelle ergibt
sich ein Dreieck, mit dem der Abstand
des untersuchten Objekts zur
Lichtquelle errechnet werden kann
[2, 1, 3].
Beim Lichtschnittverfahren wird
der Laserstrahl mit einer vorgesetzten
Linse zusätzlich ausgeweitet, sodass
eine Linie auf das Testobjekt projiziert
wird. Der benötigte Sensor wird dafür
um eine Dimension erweitert (Matrixsensor).
So können alle Punkte auf
der projizierten Linie simultan und
ohne relative Verschiebung des Messgerätes
zum Testobjekt gemessen
werden. Um ein dreidimensionales
Abbild zu bekommen, muss lediglich
eine Relativbewegung orthogonal
zur Laser linie durchgeführt werden
[2, 3, 4].
Variationen der Fräslamelle
Neben der Änderung der Betriebsparameter
der Betonfräse, die im
Rahmen von [2] betrachtet wurden,
bietet die Variation der Fräs lamellengeo
metrie eine Möglichkeit zur Einflussnahme
auf den Betonabtrag.
Abbildung 6 und Abbildung 7
zeigen eine handelsübliche Fräslamelle
im unbenutzten Zustand und
mit einem Beanspruchungsweg von
ca. 540 m.
Mögliche Stellgrößen der Variation
der Lamelle sind das Fräslamellengewicht
und die Außengeometrie der
Fräslamelle so wie die Größe der
verwendeten Hartmetallstifte.
Decommissioning and Waste Management
Studies on the Geometric Influence on Hard Metal Shavers During Concrete Shaving ı Simone Müller and Sascha Gentes
atw Vol. 63 (2018) | Issue 3 ı March
| | Abb. 6.
Fräslamelle Beanspruchungsweg: 0 m
| | Abb. 7.
Fäslamelle Beanspruchungsweg: 540 m
Fräslamellengewicht
Die Betrachtung der allgemeinen
Stoßgleichung:
(wobei m die Masse der Stoßkörper
bezeichnet und v bzw. v' die Geschwindigkeiten
vor- bzw. nach
dem Stoß) zeigt, dass die in den Stoß
eingebrachte Energie neben den
Geschwindigkeiten der Stoßpartner
auch von deren Gewicht abhängt. Der
Betonabtrag beim Fräsen mittels Hartmetalllamellen
sollte also auch vom
Fräslamellengewicht abhängen. Zur
Klärung dieser Hypothese erfolgten
Versuche mit einer Fräslamelle mit
veränderlicher Masse.
Mit den in Abbildung 8 und Abbildung
9 gezeigten Stahlscheiben lässt
sich das Gewicht der Lamelle schrittweise
erhöhen.
Außengeometrie und Größe der
verwendeten Hartmetallstifte
Durch die Erhaltung der gegebenen
Außendimensionen wurde gewährleistet,
dass die modifizierten Lamellengeometrien
auch weiterhin in
konventionell erhältlichen Maschinen
zum Einsatz kommen können.
Im Rahmen der durchgeführten
Versuche zur Variation der Geometrie
sind Lamellen mit einem Spitzenwinkel
von 30 und 60 Grad untersucht
worden. Zusätzlich erfolgte die Untersuchung
einer Oktaedergrundfläche
(siehe Abbildung 10) sowie der
| | Abb. 8.
CAD Zeichnung: Hartmetalllamelle mit veränderlicher Masse
Einfluss verschiedener Hart metallspitzen
durchmesser bei gleicher Lamellengeometrie
(siehe Abbildung
11). Um dabei eine gleichbleibende
Gesamtmasse der veränderten Lamellen
gewährleisten zu können, wurde
der Grundkörper durch gewichtsreduzierende
Bohrungen versehen. Je
nach Geometrie ergeben sich unterschiedliche
Bohungsdurchmesser. Die
hierdurch geschaffene gleichbleibende
Masse gewährleistet die Vergleich barkeit
der verschiedenen Lamellengeometrien.
Veränderungen des Gewichts
würden ein verändertes kinetisches
Verhalten verursachen und so die
jeweilige Abtragsleistung, wie die
Ergebnisse zur Änderung des Fräslamellengewichts
zeigen, beeinflussen.
| | Abb. 10.
Untersuchte Fräslamellen: Variation der Außengeometrie
| | Abb. 11.
Variation des Hartmetallspitzendurchmessers
| | Abb. 12.
Abtrag in Abhängigkeit des Lamellenzusatzgewichtes
| | Abb. 9.
Hartmetalllamelle mit veränderlicher Masse
Ergebnisse
Die Versuche wurden mit den
oben beschriebenen Variationen der
Lamellen durchgeführt, im Einzelnen
sind dies Variationen des Gewichts,
der Außengeometrie und der Größe
der verwendeten Hartmetallstifte.
Dabei sind Beton (alle Probekörper
stammen aus einer Betoncharge), Fräsenvorschub
sowie Drehzahl und
DECOMMISSIONING AND WASTE MANAGEMENT 165
Decommissioning and Waste Management
Studies on the Geometric Influence on Hard Metal Shavers During Concrete Shaving ı Simone Müller and Sascha Gentes
atw Vol. 63 (2018) | Issue 3 ı March
DECOMMISSIONING AND WASTE MANAGEMENT 166
| | Abb. 13.
Abtrag in Abhängigkeit der Außengeometrie
Variation
Fräsenzustellung konstant gehalten
worden. Die Auswertung der durchgeführten
Versuche soll im Hinblick auf
Frässpurtiefe und -fläche sowie den
Massenabtrag an der Fräslamelle
(Vgl.: [8], [9]) exemplarisch betrachtet
werden:
Das Diagramm in Abbildung 12
zeigt die Tiefe der durch die Fräslamelle
entstandenen Frässpur im
Betonkörper über das zusätzlich an
der Fräslamelle angebrachte Gewicht.
Es ist zu erkennen, dass ein linearer
Zusammenhang zwischen dem Gewicht
der Fräslamelle und dem
Betonabtrag besteht. Durch eine
Massen zunahme von 120 g ergibt sich
beispielsweise eine Erhöhung der
Abtragstiefe um 0,3 mm, dies entspricht
einer Zunahme um etwa 10%
des ursprünglichen Ausgangsab trages.
Die Versuche bei Variation der
Außengeometrie, die in Abbildung
13 abgebildet sind, zeigen, dass die
Anordnung von möglichst viel Masse
an dem Lamellenaußendurchmesser
höhere Abtragswerte um bis zu rund
10 Prozent liefert.
Die Verwendung unterschiedlich
großer Hartmetallspitzen (Abbildung
11) resultiert, wie das Diagramm in
Abbildung 14 zeigt, in einem fast
sechzigfach geringeren Massenverlust
und Verschleiß bei größerem Spitzendurchmesser,
bei rund anderthalbfacher
Abtragsfläche. Gleichzeitig verringert
sich die erreichte Abtragstiefe
bei größeren Spitzendurchmessern
um rund 10 Prozent.
Einfluss auf Abtrag
Gewicht Abtragstiefe ± 10%
Außengeometrie Abtragstiefe ± 10%
Hartmetallspitzendurchmesser
| | Tab. 1.
Ergebnisse des Forschungsprojektes EOS.
Änderung des Massenverlusts der Fräslamellen
zueinander um das 60fache
Zusammenfassung und
Ausblick
Die im Rahmen des Forschungsprojektes
EOS durchgeführten Versuche
zeigen einen Zusammenhang
zwischen der Geometrie der Fräslammelle
und dem Betonabtrag beziehungsweise
dem Verschleiß der
Lamelle in Form des Massenverlustes
der Lamelle. Es konnte im Versuchsaufbau
gezeigt werden, dass die Variation
der Außengeometrie durch Anordnung
von möglichst viel Masse an
dem Lamellenaußendurchmesser höhere
Abtragswerte von bis zu 10 Prozent
liefert. Weiterhin führt die
Vergrößerung des Hartmetallspitzendurchmessers
zu einem größeren,
flächigen Betonabtrag bei sechzigfach
geringerem Massenverlust (Verschleiß)
an der Fräslamelle. Die
Ergebnisse sind in Tabelle 1 zusammengefasst.
Somit wird im Verhältnis
zum Lamellenverschleiß ein größeres
Abtragsvolumen erreicht. Dies führt
zu einer Verlängerung der Standzeit,
Reduktion der Rüstanzahl und somit
Verringerung des Sekundärabfalls.
Eine Übertragung der erzielten
Versuchsergebnisse in die Praxis ist
vorgesehen.
Literatur
| | Abb. 14.
Variation des Hartmetallspitzendurchmessers
[1] MICRO-EPSILON MESSTECHNIK GmbH
u. Co. KG (Hrsg.): Betriebsanleitung
scanCONTROL 2700 / 2710 / 2750.
MICRO-EPSILON MESSTECHNIK GmbH
u. Co. KG.
[2] Deutsches Institut für Normung (Hrsg.):
Optoelectronic measurement of form,
profile and distance: Deutsche Norm :
DIN 32877. Berlin: Deutsches Institut
für Normung, (DIN 32877).
[3] VDI Verein Deutscher Ingenieure e.V.:
Genauigkeit von Koordinatenmeßgeräten;
Kenngrößen und deren
Prüfung = Coordinate measuring
machines with optical probes optical
sensors for one-dimensional distance
measurement. Februar 1999, Ausg.
deutsch- englisch. Berlin, 1999 (VDI-
VDE-Richt linien ; 2617,6,2). – Frühere
Ausg.: 11.96 Entwurf, deutsch.
[4] Sackewitz, Michael (Hrsg.): Leitfaden
zur optischen 3D-Messtechnik.
Stuttgart : Fraunhofer-Verl., 2014
( Vision-Leitfaden ; 14). – ISBN 978–3–
8396–0761–9. – Literaturangaben.
[5] Bergmeister K.; Wörner J.: Beton
Kalender 2005 – Fertigteile Tunnelbauwerke,
2005, Kapitel VIII: Hans-Wolf
Reinhardt – Beton, Ernst & Sohn, Verlag
für Architektur und technische Wissenschaften
GmbH & Co. KG, Berlin.
[6] Verein Deutscher Zementwerke e.V.;
Biscoping M.: Gesteinskörnungen für
Normalbeton; Zement-Merkblatt
Beton technik B 2 1.2012; http://www.
beton.org/fileadmin/beton-org/
media/Dokumente/PDF/Service/
Zementmerkbl%C3%A4tter/B2.pdf
(Abgerufen: 25.04.2017).
[7] Manns W.: Beton für den Bau von
Kernkraftwerken 1971, Betontechnische
Berichte, Verein Deutscher
Zementwerke.
[8] Tagungsband KOTEC 2017: 13. Internationales
Symposium “Konditionierung
radioaktiver Betriebs- und Stilllegungsabfälle,”
22.-24. März 2017; Untersuchungen
zum Geometrieeinfluss der
Hartmetalllamellen beim Betonfräsen;
M.Sc. Simone Müller, Prof. Dr. Sascha
Gentes.
[9] Tagungsband 48th Annual Meeting on
Nuclear Technology 2017, 16 - 17 Mai
2017: Untersuchungen zum Geometrieeinfluss
auf die Abtragsleistung von
Hartmetalllamellen beim Betonfräsen;
M.Sc. Simone Müller, Prof. Dr. Sascha
Gentes.
Authors
M. Sc. Simone Müller,
Prof. Dr.-Ing Sascha Gentes,
Institut für Technologie und
Management im Baubetrieb
des Karlsruher Instituts für
Technologie (KIT)
Geb. 50.31
Am Fasanengarten
76131 Karlsruhe, Deutschland
Decommissioning and Waste Management
Studies on the Geometric Influence on Hard Metal Shavers During Concrete Shaving ı Simone Müller and Sascha Gentes
Kommunikation und
Training für Kerntechnik
Strahlenschutz – Aktuell
In Kooperation mit
TÜV SÜD Energietechnik GmbH
Baden-Württemberg
Seminar:
Das neue Strahlenschutzgesetz –
Folgen für Recht und Praxis
Seminarinhalte
1. Teil | Das neue Strahlenschutzgesetz (StrlSchG)
ı Das neue StrlSchG: Historie
ı Inkrafttreten des StrlSchG
ı Überblick über grundlegende Änderungen
ı Die Entwürfe der neuen Strahlenschutzverordnung(en) (soweit zum Seminarzeitpunkt vorliegend)
2. Teil | Auswirkungen auf die betriebliche Praxis
ı Genehmigungen, Zuständigkeiten
ı Begriff der Expositionssituation (geplant, bestehend, Notfall), NORM
ı Aufsichtsprogramm, § 180 StrlSchG, Rechtfertigung
ı Notfallpläne
ı Änderungen für SSV/SSB
ı Dosisgrenzwerte
ı Strahlenschutzregister
3. Teil | Strahlenschutz im Back End
ı Freigabe und Entsorgung
ı Altlasten
ı Baustoffe
Zielgruppe
Die 2-tägige Schulung wendet sich an Fach- und Führungskräfte, an Projekt- und Abteilungsleiter und
Experten aus den Bereichen Betrieb, Abfälle, Genehmigung, Strategie und Unternehmens kommunikation
sowie an Juristen.
Maximale Teilnehmerzahl: 12 Personen
Referenten
RA Dr. Christian Raetzke
Maria Poetsch
Wir freuen uns auf Ihre Teilnahme!
ı CONLAR Consulting on Nuclear Law, Licensing and Regulation
ı Strahlenschutzexpertin bei der TÜV SÜD Energietechnik GmbH
Baden-Württemberg
Bei Fragen zur Anmeldung rufen Sie uns bitte an oder senden uns eine E-Mail.
Termin
2 Tage
5. bis 6. Juni 2018
Tag 1: 10:30 bis 17:30 Uhr
Tag 2: 09:00 bis 16:30 Uhr
Veranstaltungsort
Geschäftsstelle der INFORUM
Robert-Koch-Platz 4
10115 Berlin
Teilnahmegebühr
1.598,– € ı zzgl. 19 % USt.
Im Preis inbegriffen sind:
ı Seminarunterlagen
ı Teilnahmebescheinigung
ı Pausenverpflegung
inkl. Mittagessen
Kontakt
INFORUM
Verlags- und Verwaltungsgesellschaft
mbH
Robert-Koch-Platz 4
10115 Berlin
Petra Dinter-Tumtzak
Fon +49 30 498555-30
Fax +49 30 498555-18
seminare@kernenergie.de
atw Vol. 63 (2018) | Issue 3 ı March
168
RESEARCH AND INNOVATION
The Technology of TVHTR-Nuclear- Power
Stations With Pebble Fuel Elements
Power and Heat for the Production of Drinking Water Out of Seawastewater
and/or Hydrogen in Combination with Solar Plants
Urban Cleve
Basic design features and
operational experiences
Design principals
of TVHT reactors
The German development of TVHTR
Power Stations [4, 5, 6] was primarily
initiated through the ideas of Prof. Dr.
R. Schulten. He developed this technology
in the 1950`s while employed
by Brown Boveri. Dr. Schulten became
CTO at the new BBC/Krupp Reaktorbau
GmbH in Mannheim and later as
Professor and Director of KFA-Jülich
Nuclear Research Department [6]. Dr
Schulten stated:
“In the field of Nuclear Energy,
the AVR Reactor occupies a specific
unique position. Helium gas cooled,
graphite moderated, inherently safe
and the hottest reactor worldwide. It
is the story of the only pure German
development of nuclear power plant
technology.”
Main design features of the AVR
Reactor are:
• Spherical graphite fuel elements
which contain the fission material.
• Graphite as main core construction
material and as reflector and moderator.
• A safe integrated reactor concept
with helium used for the cooling
gas.
• Enclosed primary helium gas circuit
in one reactor vessel.
These are the most important basics
for safe operation. The goal until
now has been the construction of an
inherently safe nuclear power station
with out-standing nuclear and design
safety [6, 19].
AVR power station
The technology of the AVR was set up
from “zero”, Figure 1, as there was no
prior experience with engineering
and design of components operating
in a helium environment [1, 2].
The complete new development of
all components was a huge challenge
and consequently routine delays and
cost increases were experienced.
Additionally, the TÜV, a regulatory
oversight business, underwent phases
| | Fig. 1.
The AVR 46 MWth/15 MWel Experimental HTR
Power plant.
of learning and had to develop better
testing methods for the nuclear power
stations. During cold tests under normal
environmental temperature and
pressure all components were extensively
and successfully tested.
• The steam generator, Figure 2,
was constructed several times and
during production new test procedures
had to be developed. After
completion it underwent a helium
pressure test, the first of its kind
worldwide.
| | Fig. 2.
The AVR steam generator during manufacturing.
• The absorbing rods functioned
hundreds of times without showing
any problems. After installing
into the reactor and tested in a
helium atmosphere they failed
completely. It needed extensive
design improvements, after which
functioned perfectly.
• All components of the pebble
charging system were tested over
years of operation. They showed
only some problems during operation
and improvements could be
performed under radioactive conditions
using specially designed
equipment.
• Nearly 600 helium valves manufactured
by suppliers failed completely
and had to be newly
designed and tested under helium
conditions. The new design (by
BBK) was a great success. No
further problems were identified
after testing in a helium atmosphere.
All problems had been solved and an
average yearly availability of 66.4 %
with a maximum of 92 % per year was
achieved during 23 years of operation
including the periods for which numerous
experiments were performed.
This probably established a world
record for a completely new reactor
design.
The section through the AVR with
inner core, the graphite reflector,
thermal shield, inner reactor pressure
vessel, biological shield 1 and the
outer pressure vessel is shown in
Figure 3.
| | Fig. 3.
Section through the AVR reactor.
| | Fig. 4.
View into the core of the AVR.
Research and Innovation
The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve
atw Vol. 63 (2018) | Issue 3 ı March
• We had only one major problem,
an incident of INES 1. Only one of
the some thousand weldings of the
steam generator leaked. After several
months of repair the steam
generator functioned very good
again with full capacity. [6, 7].
• The inner core structure, Figure 4,
has a diameter of 3 m and 4.5 m
high.
• The fuel charging unit, [7, 8]
Figure 5, designed and developed
by BBK, with all its numerous components
functioned sensationally
well. In 23 Years of operation only
220 pebbles were discharged. This
was a figure of 0.0092 % of the
2,400,000 moved pebbles. A basic
diagram of the fuel cycle shows
Figure 6 [7, 8, 9].
| | Fig. 5.
View into the core of the AVR.
• Because of the excellent functioning
of all de- and remounting
equipment for the components,
repairs could be done during operating
of the reactor. No personal
had been injured by radiation.
• The AVR had to be shut down only
by political reasons in 1988. It
was an excellent test reactor for a
variety of different fuel elements
with different kinds of compositions
of Uranium, Thorium and
Plutonium. All these international
experiments must be stopped, a
very poor decision for future development
of HTR-Power-Stations
worldwide.
As a result, it can be confirmed, that
the operation of the AVR Reactor was
a unique success story.
The AVR modul reactor
An AVR design, modified with an integrated
He prim /He sec heat exchanger
and only one steel pressure vessel,
is the far best developed and operational
completely tested.
| | Fig. 7.
THTR-300 MWel/750MWth Demonstration
Power Station.
Modul concept of a
Small Model HTR (SMHTR) up
to 100 MWth/40 MWel
The design of the THTR-300el
Demonstration Nuclear Power
Station
The basic design of the THTR-300
Power Station started in 1965,
Figure 7. No prior experience from
the AVR could be brought into the new
design (Figure 8).
The main design differences of the
THTR-300 to the AVR are:
• Pre-stressed concrete pressure
vessel (PCPV) instead of two steelvessels
(Figure 9). The dimension
was 25 meters in diameter and
28 meters high. The PCPV was
chosen primarily for safety reasons.
A model with a scale of 1:20 was
tested with water pressure. Very
small cracks occurred at a pressure
between 90-120 bar. The main
crack was Occurred at 190 bar.
After a pressure drop to 40 bar the
vessel was nearly gastight again.
This test was the baseline for the
calculation of the THTR-300 PCPV
[28].
• A closed inner circuit of helium
cooling gas to avoid the release of
fission products and graphite dust.
This was the most important
design factor to avoid release
of contaminated primary helium
gas or contaminated particles of
graphite dust.
• Helium gas flow from top to
bottom.
• TRISO-Pebbles as fuel elements.
• All other components such as
blowers, fuel element feeding and
handling components, graphite
structures, etc. were designed and
improved very similar to the components
of the AVR and showed
no problems.
New nuclear calculations of the reactor
physics showed, that the diameter
RESEARCH AND INNOVATION 169
| | Fig. 6.
Fuel cycle of pebble bed transportation
system.
• After decommissioning in 1989 it
was ascertained, that the complete
graphite interior had not moved by
one millimeter. It looked as newly
installed. Only some very small
accumulations of graphite dust in
some corners could be detected.
• According to the INES scale only
one incident occurred with “1“, all
other events had an INES level of
“zero“ during 23 years of operation
[6, 7].
| | Fig. 8.
Survey of the THTR-300.
Research and Innovation
The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve
atw Vol. 63 (2018) | Issue 3 ı March
Plant parameter Units Calculated values Measured values
RESEARCH AND INNOVATION 170
| | Fig. 9.
Pre-stressed concrete pressure vessel and
THRT-300 core.
| | Fig. 10.
Concept of pebble bed ring core.
of the core with 5.6 m was too large,
so the shutdown rods in the surrounding
graphite reflector could not cool
the pebbles to the low temperatures
necessary in case of shutdown of
the reactor. Until this time no prior
experience was available with the
behavior of the graphite core structure
during extended operation.
Therefore, the decision was made to
insert the shutdown rods directly into
the pebble bed with the potential
danger of crushing the fuel elements.
An alternative design with a pebble
bed ring core PBRC (Figure 10) [4]
could not be chosen, as no prior
experience existed with the behavior
of the graphite structure in the AVR.
Testing of the insertion of rods into
the pebble bed could not be performed
under operational conditions.
This decision was discovered later
when operating the THTR-300 during
commissioning of the power station
which was a terrible mistake. There
was no nuclear risk, but 0.6 % of
the pebbles ruptured which was
Reactor thermal power MW 761.65 763.5
Circulated speed rpm 5,369 5,361
Helium flow kg/s 297 293.9
SG inlet He temperature °C 750 750.4
SG outlet He temperature °C 247 245.9
Feedwater flow kg/s 254 253.9
Main steam temperature °C 545 544.3
Main steam pressure bar 186 184.9
Reheat flow kg/s 247.3 237.9
Reheat temperature °C 535 532.3
Reheat pressure bar 46.3 47.5
Generator output MWe 305.9 306
Net electric output MWe 295.5 295.6
Net heat rate kcal/kWh 2,145 2,134
| | Tab. 1.
THTR-300, Comparison of key plant parameters.
substantially higher when compared
to the results of the AVR at 0.0092 %.
All operational difficulties with the
THTR-300-Reactor based on this
unique problem.
Table 1 [14] shows the differences
between calculated design parameters
and the parameters in operation.
Smaller differences cannot be calculated
and it was determined that
without the problems of a high
percentage of crushed pebbles, the
THTR-300 would have been operated
with the same high operational times
as obtained with the AVR.
Today, it can be determined that
the PBRC would have avoided all of
these difficulties. The stability of the
graphite structure of the AVR ascertained
after the shutdown of the AVR,
proved this design could be the basis
for a new PBRC which was patented in
1965 [4].
The positive results of the operation
of the THTR-300 include [11, 12,
13]:
• HTR power stations can be operated
and connected to the power
grid in the same manner as conventional
power plants.
• Rupture of fuel elements does not
increase the radioactivity of primary
helium cooling gas.
• Thermodynamic efficiency is as
high as in conventional power
plants.
• The nuclear and radiological safety
of personal and environment is
excellent.
• No radiation injuries, neither in
the AVR nor in the THTR-300
occurred.
• The contaminated primary helium
gas and graphite dust are safely
surrounded and contained in the
PCPV.
• The pre-stressed concrete pressure
vessel PCPV showed it was an
excellent safety barrier against
radiation, plane crashes, terrorist
attacks, and earthquakes up to the
highest magnitudes, etc.
The pebble fuel elements
Design and operational
experiences with pebble fuel
elements
The most important components of a
nuclear power station are the fuel
elements. They contain the fissile
material for generating the energy
and the more robust the fuel elements
the safer the nuclear plant. The main
material of a pebble fuel element is
graphite and they have a diameter of
| | Fig. 11.
Original concept of a pebble and later
installed TRISO pebble.
| | Fig. 12.
Arrangement of a TRISO-pebble.
Research and Innovation
The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve
atw Vol. 63 (2018) | Issue 3 ı March
60 mm while the diameter of the inner
fuel containing matrix is 50 mm [14].
Figure 11 shows the difference
between the first idea of a pebble with
non-coated fuel and the current type.
The inner diameter of the coated fuel
particles is 0.5 mm. Embedded in the
inner graphite matrix are approximately
15,000 coated particles (cp) in
one pebble and contain the fuel
material (Figure 12). The fuel kernel
is encapsulated by three layers of very
hard and pressure resistant PyC-/-SiC-
/-PyC and is gas tight (Figure 13).
These are the “TRISO” Fuel Elements
and each coated particle has a
diameter of 0.9 mm.
| | Fig. 14.
Treatment of pebbes by hand, first pebble
loading into the core of the AVR-HTR.
| | Fig. 15.
Storage of burnt-down pebbles in casks.
describes results of an experiment: “A
High Voltage Head-End Process for
Waste Minimization and Reprocessing
of Coated Particle Fuel for High
Temperature Reactors.” [10] This
process is proposed for the separation
of coated kernels from the fuel matrix
and makes it possible to reprocess the
burnt down fuel by separation of the
coatings and the fuel kernel. The fuel
kernels remain intact and has been
successfully demonstrated in experiments
as shown in Figure 16, 17, and
18. The characteristics of the coated
fuel kernels and the complete pebbles,
manufactured by NUKEM, is shown in
Table 2.
This process, proposed and studied
with experiments by EU-JRC-Petten,
envisages the complete removal of the
coating-layers to make the fuel accessible
for further reprocessing and
manufacturing of new fuel kernels.
RESEARCH AND INNOVATION 171
| | Fig. 13.
Composition of a TRISO-pebble.
Without coating the radioactivity
of the primary helium gas in the AVR
was calculated initially to be 10 7
Curie. Therefore, the AVR was
designed with two pressure vessels.
All piping and helium operated components
were surrounded with clean
helium gas, to prevent primary contaminated
Helium gas from entering
the reactor vessel. These fuel elements
were not initially used.
The newly developed TRISO
elements avoid fission and decay
products, which are the sources of
dangerous radioactivity. Three layers
form a containment for every CP
and keep all fission products safely
enclosed. The layers remain gas tight
from 1,620 °C to 1,800 °C and do not
deteriorate or corrode even under
high pressure.
As previously mentioned, AVR
was initially designed with a helium
primary gas activity of 10 7 Curie. After
the development of the pebbles with
coated particles the primary helium
gas activity was measured at only
360 Curie [3], a factor of 0.000036
lower. They were proven in long term
operation in the AVR as reliable fuel
elements and have very excellent
advantages in comparison with all
fuel elements in other nuclear power
stations.
Fresh pebbles can be stored and
handled without any risk of radiation
(Figure 14). Radiated, burnt down
pebbles or graphite balls will be stored
(Figure 15). primarily in specially
designed containers or stockrooms
inside the basement of the reactor
building. No cooling is necessary and
they can be stored over a longtime
without risk of contamination or
radiation of the surrounding area or
personnel [15, 16, 17].
Breeding of fissile Uranium-233
by using Thorium-232
Sufficient Thorium can be found in
the surface of the earth to generate
electricity and heat by nuclear power
stations for a very long time. [20, 21,
22] However, fissile fuel needs to be
produced from the Thorium. This is
possible by breeding 232 Th up to 233 Th
using slow neutrons initially resulting
in Protactinium ( 233 Pa) which decays
to fissionable 233 Uranium. This process
is a very good possibility in a
THTR power station.
The coated fuel kernels can contain
Uranium 235/238, Plutonium 238-
242, or Thorium 232 [15, 17, 18].
These fuel materials can be combined
in a pebble matrix and burned
together. After extracting the core,
every single pebble can be measured
to its degree of burn-up. In HTR-
Pebble Bed reactors the disposal of Pu
can be extensively controlled and
each pebble is treated individually. A
very detailed and full control of Pu
disposal is guaranteed and possible
through inspection to meet the NPT.
Decommissioning and Reprocessing
of Fuel Elements and
Coated particles
The paper by the Netherlands
European Joint Research Centre JRC
Pebble Bed Ring-Core Design
for very large TVHT-Reactors
Important discoveries were generated
from the long-term operation of
the AVR and relatively short period
of three years operation of the
THTR-300, The information obtained
from these two power plants is
Coated particle
Particle batch HT 354-383
Kernel composition UO 2
Kernel diameter in
micro-meter
Enrichment
[U-235 wt. %]
Thickness of coatings
in micro-meter
501
Buffer 92
Inner PyC 38
SiC 33
Outer PyC 41
16.75
Particle diameter 909
Pebble
Heavy metal loading
[g/pebble]
U-235 contents
[g/pebble]
Number of coated
particles per pebble
Volume packaging
fracture [%]
Defective SiC layers
[U/U tot ]
6.0
1.00 +/-1%
9,560
6.2
7.8 x 10 -6
Matrix graphite grade A3-3
Matrix density [kg/m 3 ] 1,750
Temp. at final heat
treatment [°C]
1,900
| | Tab. 2.
Typical chracteristics of coated particles and
pebbles produced by NUKEM.
Research and Innovation
The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve
atw Vol. 63 (2018) | Issue 3 ı March
RESEARCH AND INNOVATION 172
| | Fig. 16.
Reprocessing of pebbles before separaing
coating.
| | Fig. 17.
Reprocessing of pebbles, separated coating
shells.
| | Fig. 18.
Reprocessing of pebbes, fuel kernels
separated from coating.
necessary for the design and construction
of future large commercial V/
HTR power plants. The experience
gained with the graphite structures
are excellent and new PBRC design
based on the experiences may not
produce any problems. The PCPV [4]
of the THTR-300 was designed without
any prior experience and was a
first-time solution.
Together with the improved manufacturing
of the graphite by suppliers
and extensive knowledge from previous
designs it is possible to construct
graphite cores and reflectors with
high long term stability (Figure 4).
The internal inspection of the AVR
core showed no shift of graphite
blocks after more than 23 years
in operation and development of
graphite as a suitable material in
HTR-Reactors made good advancements
with improved development.
Unlike the THTR-300 the absorber
rods are installed in the surrounding
graphite moderator to prevent damage
to the graphite pebbles. This was a
major problem with the THTR-300
(Figure 19).
The core parameters shall be small
and not too high. This is important
for lower decay heat temperatures
in case of a loss of coolant accident
(Figure 20).
The dimensions of a ring-core can
be optimized by:
• difference between inner and outer
diameter,
• height of fuel zone,
• core volume,
• power density of fuel zone,
• maximum helium gas temperature,
• optimal flow of pebbles through
the core.
These six factors can be optimised
with regard to maximum decay heat
temperature, which must not exceed
1,600 °C in case of cooling loss (loca)
and/or pressure drop (lopa), which
would indicate an MC Accident.
The possible main design features
for this new concept may include:
• TRISO pebbles as fuel elements.
• Use of U-235 together with Th-232
to breed U-233, PU [20, 21].
| | Fig. 19.
Pebble bed of the THTR-300 with shot down
rods in the pebble bed.
| | Fig. 20.
Results of loss of coolant LOCA/MCA accident
of AVR.
• A pre-stressed concrete pressure
vessel to surround the primary
helium completely with extreme
safeguarding against all types of
potential critical events, terrorrist
attacts, and disturbances inside
and outside of the powerplant, and
absolutely safe against cyberattacks
[26].
• The new design of a pebble bed
core in a ring form, (Figure 10) [4]
with several extraction devices for
the pebbles below the core. An
advantage of this design is an
improved and more regular or
symmetrical flow of pebbles
through the core with higher
possible burn up of the fuel and
improved symmetrical cooling of
the complete pebble bed [7].
• Shut down and regulation rods
only in the graphite reflector,
• He primary /He Secondary heat exchangers
in the primary helium circuit of
the PCPV to avoid water ingression
[4].
• Only one heat transport system to
supply the different secondary
plants with high temperature heat
will reduce costs and simplify
design of the pressure vessel.
• The secondary pure helium is
inside the pipes and will have a
slightly higher pressure against
the primary integrated helium
circuit. In case of a leak, the
ingressing pure helium will be
contaminated and can be cleaned
up by the helium cleaning plant
and refilled into the clean helium
circuit.
• This design makes it possible, to
install the He/He-heat exchanger
tightly into the pressure vessel.
Several different exchanger
systems were constructed without
the ability to extract them from
the vessel as practiced in the
THTR-300.
• This design makes it impossible to
contaminate anything outside of
the reactor vessel and all possible
industrial processes can be designed
without danger of radioactive
contamination in a quite
normal conventional construction.
• This nuclear power facility makes
it possible to construct every
secondary industrial production
plants close to the HTR Power
Station.
• Helium gas flow upstream from
bottom to ceiling. The experience
from the AVR shows this solution
has some advantages compared
with downstream design in the
THTR-300.
Research and Innovation
The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve
atw Vol. 63 (2018) | Issue 3 ı March
One of the most important feature of
this design is the small core, very
similar to the core of the AVR. The
results of the MCA tests with heat
rise by decay heat (Figure 20) can
be put into consideration. So, we
are able to increase the primary
maximum helium heat temperature to
the highest possible temperatures,
possibly to 1,100 °C, limited only
by the maximum allowable metallic
tube temperature of the He/He heat
exchanger inside the PCPV.
Design of important components
for a new 600 MW el /
1.500 MW th Pebble Bed
Reactor and potential risks
The Pre-stressed concrete
pressure vessel. (PCPV)
The reactor vessel is, for safety reasons,
the most important component
of every nuclear power station. The
calculation for larger cores for pebble
bed reactors showed that the diameter
of the core is too great for construction
using steel pressure vessels and
therefore cannot be manufactured
using metallic materials. It was
decided to look for other construction
materials for a large HTR pebble bed
design with high volume and high
pressure.
Two solutions had been taken into
consideration, a pre-stressed cast iron
vessel and a pre-stressed concrete
pressure vessel. The PCPV had been
chosen due to its excellent safety
advantages versus the cast iron vessel.
Several safety conditions could not be
reached with a pre-stressed cast iron
vessel and the construction would
have some fundamental problems.
This HTR design was a completely
new construction without any prior
experience and the operational
helium gas pressure was calculated
at 40 bar. It was decided to perform
experiments with a 1:20 scale model.
The model was pressurized with
warm water. Very small cracks began
to form at a pressure between 90-120
bar. The main crack was reached at
190 bar.
After the pressure dropped to 40
bar, the vessel was nearly gastight
again. After the pressure drop the
cables pulled the concrete together
[4]. These results were deemed very
important since this test proved that
oxygen could not enter into the vessel
in event of a crash. Throughout the
testing, all necessary factors were
measured and used as a baseline for
new calculation programs to calculate
the PCPV for the THTR-300.
| | Fig. 21.
Arrangement of stressing cables of the
THRT-PCPV.
| | Fig. 22.
Top of the steam generator of THTR-300.
| | Fig. 23.
Installation of the thermal shield.
Development, design and
erection of the THTR-300
pre-stressed concrete pressure
vessel
Figure 21 shows the cross section of
the reactor [26]. Located Inside are
the core, graphite and carbon brick
structures, thermal shield, six steam
generators, blowers, shut down rods,
measuring devices, and isolation with
liner and liner cooling system further
the penetrations for the steam generators,
the holes in the concrete are
reinforced by steel layers with steel
tops (Figure 22). There are 135 penetrations
in total, the largest of which
are for extracting the steam generators
at 2.25 m. All of the penetrations
are surrounded by cables and have
| | Fig. 24.
PCPV during manufacturing.
| | Fig. 25.
Model of bottom of THTR-300 core.
| | Fig. 26.
Results of pressure test of the THTR-PCPV.
encountered no design problems. The
construction phase is demonstrated in
Figures 23, 24 and 25.
The results of the pressure test
Figure 26 shows the accuracy between
the measured and calculated
factors. The pressure tests were performed
using nitrogen and helium to
ensure accurate measuring. The design
pressure was 39.2 bar and the
highest possible pressure in case of an
accident was calculated at 46.1 bar.
The test reached the calculated and
highest possible pressure (as required
RESEARCH AND INNOVATION 173
Research and Innovation
The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve
atw Vol. 63 (2018) | Issue 3 ı March
RESEARCH AND INNOVATION 174
by the TÜV) without any problems
arising [14]. As a result, it can be assured
that existing design knowledge
and calculation program are sufficient
to calculate larger PCPV up to the
highest possible capacities, potentially
reaching 4.000 MWth.
Safety criterions
The main safety criterion [19] of a
PCPV are:
• Safety against plane crashes,
terrorist attacks, political disturbances.
• Safety against air ingress.
• Safety against loss of contaminated
graphite dust.
• Safety against all kind of crashes or
cracks.
• Safety against earthquakes up to
highest degrees.
Within the inner He/He heat exchanger:
• Safety against water ingress.
• Safety against tritium ingress.
Graphite reflector and
ceramic structure
The large numbers of design experiences
with both reactors will lead
to the best technical solutions. SGL
Group is a very important supplier for
both graphite and carbon bricks production
and is capable of designing
very reliable structures, Figure 4.
and symmetrical pebble flow through
the pebble bed. The best test results
obtained from the wall designed for
the AVR was thoroughly tested in
advance at the test laboratory of BBC/
Krupp. [1] Figure 27. This design
leads to a very symmetrical gas flow
across the pebble bed from bottom up
and consequently leads to very good
symmetrical cooling of all pebbles
across the bed. The calculation factors
for this design had been developed
in the BBC/Krupp laboratory and
showed excellent results [6, 7].
The pebble flow in the AVR was
much better than in the THTR-300
due to the larger diameter of the
THTR bed. Diameters that are too
large lead to very different pebble
flow velocities, up to a factor of 10
times, between the wall and center of
the bed [7, 14]. Very high burnt-up
results of the fuel can be achieved
with good symmetrical pebble flow.
Helium-pr/Hes-ec heat
exchangers
• The calculations can be based on
the results of the tests performed
by FZ-Jülich with the test devices
(Figure 28) [36].
• The results of the very high temperature
steam boiler tests, with
steam temperatures of 600 °C,
done in the GKM Mannheim,
Germany Power Station, can be put
into consideration.
• The secondary helium shall have a
higher pressure than the primary
helium circuit. No radioactivity can
pollute the secondary part of the
power station.
• Manufacturing is done same with
the design, proved in the THTR-300
with the steam generators (Figure
29).
The Helium blowers
The blowers in the AVR and in the
THTR-300 showed no problems at all.
An increase to higher capacities may
be possible without problems. They
should be still oil lubricated (Figure
30).
The shut down and
regulation rods
• An identical design of the
THTR-300 regulation rods can be
used, only more pieces will be
necessary (Figure 31).
The fuel element circuit
• The experience with the AVRinstallation
during 23 years of
operation is excellent [5, 6, 8].
Core and Helium gas flow
The experience of the AVR proves that
the flow from bottom up has some advantages.
The helium gas temperature
range is 230 °Cto 280 °C and entrance
temperature from 750 °C to 950 °C
possible reach 1,100 °C at the highest.
This is dependent on the metallic
material stresses and strength of the
tube material.
The design of the wall of the graphite
reflector is very important for good
| | Fig. 28.
Test facility of He-He heat exchangers
in FZ-Jülich laboratory.
| | Fig. 30.
Helium blower of THTR-300.
| | Fig. 27.
Pebble bed flow experiments in the laboratory
of BBC/Krupp with 1:1 scale.
| | Fig. 29.
Manufacturing of the THTR steam generator.
| | Fig. 31.
Shut down and regulation rod of THTR-300.
Research and Innovation
The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve
atw Vol. 63 (2018) | Issue 3 ı March
No changing or enlarging of
com ponents is necessary. Several
charging units shall operate
parallel. These components, previously
designed by BBC/Krupp,
can be used without changing the
construction, Figure 5.
The Helium Cleaning Plant
• The task of the Helium cleaning
plant is to clean in a bypass the
helium gas of the primary circuit
from impurities such as solid
graphite dust and the radioactive
chemical elements Krypton,
Xenon, Argon and Tritium. A
detailed description is published
in ATW 5/1966 [23].
Safety systems and MCA tests
The AVR was the worldwide only
nuclear power station with two times
MCA test-simulations [4, 5, 19].
The first was done in spring 1967
during the commissioning period. As
mentioned, we had a lot of undecided
problems with the unknown behavior
of important components, so mainly
with the absorber rods. We had an
agreement with the TÜV that a
MCA-test-simulation should prove
the inherent nuclear safety and
the good behavior of all these components.
At highest helium gas temperature
of 850 °C and full power of 46 MW th
the blowers were stopped by quick
stop. The complete power plant was
without electricity, also the reservediesel-engines
were out of operation
and the absorber rods were blocked.
Only the core temperature measuring
was in function. After stop, by the
temperature moved by decay heat
slowly up to about 1.000 °C. [3] Then
the temperature falls down during the
next days to normal degrees. Some
days later we re-started the complete
power station without any problem
[4].
After this test, full licensing was
granted by the TÜV for the completed
power station.
A second the test was done in 1976.
[6] This time all instruments could
be considered and all data were taken
to measure the temperature course
by the simulation of a loss of coolant
accident to develop a calculation program
for such a future case (Figure
20).
These two worldwide first experiments
had been the simulation of a
worst-case scenario, an MCA, the only
tests in nuclear power stations up to
now.
We knew exactly, that there was no
nuclear risk at all, as the radioactivity
of the primary helium gas was very
low. The coated particles made a very
good job.
A similar experiment was done in
1986 in Chernobyl. There the fuel
was not coated and the reactor not
inherent safe. The result is wellknown.
Also, loss of coolant was the reason
for the MCA in Fukushima, again the
fuel was not coated.
This shows the difference and
advantages of the reliability of pebble
fuel elements with coating of the fuel
particles in case of accidents versus
other Nuclear Power Station designs.
Compared with the originally
calculated radioactive contamination
for the AVR power plant of 10 7 Curie
the measured radioactivity of the AVR
in operation with coated particles was
360 Curie. The resultant calculation
factor is 0.000036.
With the Chinese Experimental
HTR-10 MW th reactor a further
successful loss of coolant test was
done with TRISO pebble fuel elements.
Further we will install the following
additional installations to safe the
reactor in every case of heavy danger
[19]:
• Diesel motor driven generators for
electrical reserve power.
• Quick extraction of all pebbles
from the core to a special safe store.
• Shut down rods in the graphite
reflector.
• Gastight design of the Reactor
building as containment.
• Water tight basement.
Summary and Safety Conclusions:
• Inherently safe design.
• No melting of the core is possible.
• Gastight integrated helium circuit.
• Safe against water ingress.
• Safe against air ingress.
• Safe against heavy earth quakes.
• The PCPV is safe against terrorism
and other severe attacks and has
proved as an excellent containment.
• The PCPV has proved after decommissioning
as an excellent bunker
for longtime storage of all contaminated
components, up to now for
more than 25 years.
• No graphite burning possible.
• Continuous cooling of the pebbles
is not necessary for the new elements,
pebbles in the core, or in
the castors and store.
“The safest Nuclear Power Station is
the most economical Power Station.“
The Secondary electric and/
or heat producing parts
of a HTR-Power Station
Nuclear safety regulations
No nuclear safety regulations are necessary
for every secondary industrial
plant in connection with nearby HTR-
Power station [24, 25, 26, 27].
In 23 Years of operation there was
not the smallest radioactive contamination
measured in the turbine part of
the AVR. After the shutdown of the
THTR-300 the complete secondary
part had been sold and is still in operation
in another conventional power
station connected to a normal steam
boiler plant.
The Helium secondary /water-steam
generator
The secondary helium, coming from
the He/He-heat exchanger in the
primary helium circuit, is lead to a
new design of Helium/water-steam
generator. This generator produces
the steam for the steam turbinegenerator
set to produce the electricity.
The steam data are conventional
with a steam pressure of may be
220 bar and 525 °C and intermediate,
if required two times, reheating to
525 °C.
The temperature of the secondary
helium will be calculated in accordance
with the he/he- heat exchanger
in the primary helium circuit. These
temperatures depend on the cubematerial,
the higher the temperature,
the smaller the heat-exchanger. This is
only an economical question.
The steam turbine generator set
and auxiliary components
No design changes or modifications
are necessary [29]. The same construction
as in conventional power
stations can be designed and installed.
That means a conventional turbine
with temperature entrance of 525 °C,
220 bar steam pressure, intermediate
heating one or two times up to 525 °C,
| | Fig. 32.
Precleaning installation for sea/wastewater.
RESEARCH AND INNOVATION 175
Research and Innovation
The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve
atw Vol. 63 (2018) | Issue 3 ı March
RESEARCH AND INNOVATION 176
the water-cooled condenser and the
generator. The water leaving the condenser
is pumped through several
heat exchangers, which are fed by
extracted steam from the turbine.
Everything as conventional as in all
conventional Power Stations. All
components and installations of the
secondary part can be designed as in
normal conventional power stations.
There is not a difference in design.
The sea/wastewater
desalination plant
Overview
The sea/wastewater desalination
plant can be installed with experienced
components [30, 31, 32]. These
will consist of the seawater precleaning
installation, Figure 32, and
the following different heat exchangers
for heating up the water
until evaporation. The distillated
water is free of solid particles, and can
be used as drinking water or for many
other purposes. The residual salt,
brine and further solids can be sold or
deposited.
A solar plant can be used to reduce
the necessary heat from the steam turbine
during sunshine. The produced
heat in the nuclear part can be nearly
completely used with highest thermodynamic
efficiency. The Seawater is
extracted from the sea and precleaned.
Turbine condenser
The condenser of the turbine, Figure
33, is the first stage to heat up the
seawater. Seawater resistant tubes are
necessary in the condenser. The quantity
of cooling seawater, the temperature
rise and condenser pressure must
be economically optimized. The efficiency
of the thermodynamic process
must be calculated. Normally the
temperature rise in the condenser is
calculated with 5 ° -10 °C. Also the
quantity of cooling water can vary, for
a 600 MWel unit between 20.000 –
40.000 m 3 / hour. If the required
cooling water quantity is too high for
| | Fig. 33.
chematic of a turbine condenser.
the desalination plant, the water can
be released back into the Sea (Figure
33).
Solar plant
A conventional solar plant, Figure 34,
can be installed. The solar energy
depends on sunshine intensity, which
depends mainly the daily time and
seasonal periods of the year and
environmental conditions (Figure
35). The heat from the solar plant
must be transported to the heat exchanger
as second heating stage. This
circuit makes it possible, to reduce the
extracted steam from the turbine. The
safe steam can be used for additional
production of electric energy in the
low pressure part of the turbine by
expension the steam down to condenser
pressure. The solar plant is
able to produce elec tricity indirectly.
| | Fig. 34.
Solar plant.
| | Fig. 35.
Average solar energy in Tunis CIty, 1997.
Desalination plant
Well know seawater desalination
plants can be installed, working as
distillation process so as MSF (multistage-flash)-plant
(Figure 36). The
preheated sea-water will be brought
with the steam extracted from the
turbine to a temperature of 90 °C to
| | Fig. 36.
Multi-stage-flash desalination plant.
| | Fig. 37.
Multi effect distillation plant.
135 °C, (1.0-1.5 bar). Then the seawater
streams to the evaporating
chambers with economically optimized
number of stages. The distillate
then can be used as drinking water.
With nearly the same technic works
the MED (multi-effect-distillation)
process (Figure 37). Chemicals must
be added as far as necessary, this is
depending from the quality of the
seawater.
An economically plant optimization
is to be carried out to choose the
best process.
The brine, consisting of the chemicals,
salt and other solid components
of the seawater will be evaporated. To
evaporate the solid particles several
possibilities are applicable, evaporating
by the sun directly, by solar heat
or by low pressure steam from the
turbine. The solid parts will be dried
and stabilized. Then they may be sold
or stored.
An analysis should be carried out,
which demonstrates the influence of
different plant designs, operating parameters
and environmental conditions
on the efficiency and the costs of
the plant and their thermodynamic
efficiency.
Advantages of co-generation of
electric power and water
• The use of pre-cleaned seawater as
cooling water for the turbine condenser
makes it possible to operate
this process without cooling towers
or smaller ones if necessary. All
residual heat from the thermodynamic
process to generate
electric power, which otherwise is
dissipated in the cooling towers, is
used for pre-heating the sea-water
during the first stage.
• The extracted low pressure steam
from the turbine feeds the
high-pressure line of the turbine
to produce electricity and the residual
heat of the steam is then
used in the evaporating process for
the desalinization plant.
• The thermodynamic efficiency of
the combined processes can reach
nearly 100 %.
• The combined feeding of the evaporators
by steam from the turbine
and with heat from the solar plant
makes it possible to operate the
evaporators of the desalination
plant up to 8,760 hours per year.
This provides nearly 100 % operational
time for this high investment
costs.
• The solar plant replaces the extracted
steam from the turbine.
More electricity can be indirectly
produced.
Research and Innovation
The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve
atw Vol. 63 (2018) | Issue 3 ı March
• The final evaporation and drying
of the brine can be completed using
solar heat, a very economical
process.
• The water produced can be collected
and stored. Both processes can
be produced separately and alternatively,
according to operational
demands as a main or by-product.
Summary and conclusions
Main Design Principals of large
VHTR-Power Plants:
Future designs of VHT- Reactors
must have the following design elements
[38], mostly by safety reasons:
• Pebbles with TRISO coated particles.
• inherent safe design, no melting of
the core is possible.
• Gastight closed primary helium
circuit in one pressure vessel.
• Pre-stressed concrete pressure
vessel.
• Helium primary /Helium secondary heat
exchangers in the primary circuit.
• Pebble bed ring core (PBRC).
• Small core dimensions.
• Several extractions for pebbles.
• Safe against all possible dangerous
events, extern and intern.
• Safe against all types of terroristic
attacks, cyber-attacks, plane
crashes and similar attacks.
• High magnitude earthquakes.
• Highest possible safety standard.
Economical advantages:
• Very high primary helium gas
temperatures.
• No shut down for fuel elements
changing and transportation.
• Thermodynamic efficiency as high
as in fossil power stations.
• One/two times intermediate
reheating possible.
• Very high burn up of nuclear
material.
• Use of 232 thorium in combination
with 235 Uranium to breed 233 Uranium.
• Burn up of Plutonium, weapons
plutonium included.
• Reaching the non-proliferation-treaty
agreement (NPT).
• Safe storage of all nuclear material.
• Safe and easy storing of radioactive
material.
(V)HTR to Co-Generate Electricity
and high- plus low-temperature heat
for several Industrial Processes (23,
24, 33):
Production of electricity by gas
turbines [37]:
• Hydrogen production [34, 35].
• Chemicals.
• Industrial Gases.
• Steel making.
• Nuclear Preheating.
• Town Heating.
and so on.
Literature and References
1. U. Cleve: Die Gesamtanlage des AVR
Versuchsatomkraftwerkes in Jülich,
Inbetriebnahme und Funktionsprüfungen.
atw: 5/1966.
2. AVR Versuchsatomkraftwerk mit Kugelhaufenreaktor
in Jülich. Sonderdruck
atw 5/1966
3. Urban Cleve: Der AVR-Kugelhaufenreaktor
und seine Weiterentwicklung.
Elektrik+Elektronik Heft 3 /1969.
4. U. Cleve, K. Kugeler, K. Knizia: The
Technology of High Temperature-
Reactors, Design, Commissioning and
Operational Results of 15 MW el Experimental
Reactor Jülich, Germany and
THTR-300 MW el Demonstration Reactor
Hamm and Their Impact on Future
Designs. IACPP-Congress Nice 2011,
5. U. Cleve: Die Technik der Hochtemperatur
Reaktoren, Kolloquium RWTH
Aachen, IEHK Juli 2011.
6. AVR – Experimental High-Temperature-
Reactor: 21 Years of Successful Operation
for an Future Technology. VDI-
Verlag ISBN 3-18-401015-5 1990.
7. U. Cleve: Fragen und Antworten zum
Experten-Bericht über Störfälle mit dem
AVR. FZ-Jülich, 2014.
8. U. Cleve: Fuel handling facility of high
temperature pebble bed reactor.
THTR-Meeting Brüssel 1967.
9. U. Cleve: Onload fuelling of pebble bed
high temperature reactor. HTR-
Symposium London 1968.
10. Fütterer at al.: A High Voltage Head-
End Process for Waste Minimization
and Reprocessing of coated Particle Fuel
for High Temperature Reactors.
Proceedings of ICAPP San Diego USA
June 2010.
11. U. Cleve: Die Technik der Hochtemperaturreaktoren.
atw 12/ /2009.
12. U. Cleve: Technik und Einsatzmöglichkeiten
nuklearer Hochtemperaturreaktoren.
Fusion Heft 1/2011.4
13. HKG: THTR-Projektinformationen
1962 – 1985.
14. HRB: The commissioning of the
THTR-300, a performance report.
15. H. Bonnenberg: High Temperature Gas
Cooled Reactor with spherical fuel
elements. DGAP 2007.
16. N. Nabielek, K.Verfondern, M.J. Kania:
HTR Fuel Testing in AVR and MTRs. HTR
Conference, Prague 2010.
17. N. Nabielek, C.Tang, A.Müller: Recent
Advances in HTR Fuel Manufacture.
HTR-Conference Prague 2010.
18. E. Mulder, D.Serfontaine, W. van der
Merve: Thorium and Uranium fuel Cycle
symbiosis in a pebble bed high
temperature reactor. HTR-Conference
Prague 2010.
19. K. Kugeler: Gibt es den katastrophenfreien
Reaktor? Physikalische Blätter 37
/ 2001.
20. U. Cleve: Zukunftsdialog der Bundeskanzlerin:
Thorium als Energiequelle.
Argumente und Stellungnahmen.
Beiträge im Internet 2012.
21. U. Cleve: Breeding of fissile 233 Uranium
using 232 thorium with Pebble Fuel
Elements. EIR-Conference: Report 49,
May 2013.
22. U. Cleve, Thorium: Brennstoff aus der
Erde für tausende von Jahren.
23. J. Schöning et.al Die Heliumgasreinigungsanlage.
atw 5/1966.
24. G. Wrochna: Results from Nuclear
Cogeneration Industrial Initiative. NC2I
National Center for Nuclear Research
(NCBJ) Poland. 2016,
25. Fütterer et.al.: The ARCHER Projekt,
Advanced HTR for Cogeneration of heat
and Electricity. Proceedings of the HTR,
China 2014.
26. U. Cleve: Nukleare Hochtemperaturreaktoren
zur Erzeugung flüssiger
Brennstoffe, von Wasserstoff und
elektrischer Energie. atw 6/2011.
27. U. Cleve: The Technology of High
Temperature Reactors and Production
of Nuclear Process Heat. NUTECH -2011,
University of Cracow 2011.
28. Auslegung, Konstruktion und Errichtung
des Spannbetondruckbehälters
des THTR-300. Ablauf und Ergebnisse.
29. U. Cleve: Auslegung und Konstruktion
großer Dampfturbinen. Technische
Mitteilungen des HdT Heft 1, 1964.
30. U. Cleve: Dampf-Wärme-Umwelttechnische
Verfahrenskombinationen.
Symposium Katovic 1976.
31. T. Brendel: Solare Meerwasserentsalzungsanlagen
mit mehrstufiger
Verdunstung. Dissertation: Ruhr
Universität Bochum 2003.
32. J.Gebel, S.Yüce: An Engineering Guide
to Desalination. VGB PowerTech. (2008).
33. U.Cleve: Cost Valuation of Electricity
and Heat for several industrial processes
by co-generation in Power Stations.
Dissertation: University of Heidelberg
1960.
34. K.R.Schultz, L.C.Brown, G.E.Besenbruch,
C.J.Hamilton: Large Scale Production of
Hydrogenby Nuclear Energy for Hydrogen
Economy. GA-Report A 74265,
35. S. Schulien: Ein Weg aus der Abhängigkeit
von Erdöl – Nutzbarmachung der
Wasserstofftechnik. FH Wiesbaden.
36. Sun Guohui et al. Discussion of High-
Temperature Performance of Alloy 625
for HTR Steam Generators. Proceedings
of HTR, Weihei, China 2014.
37. W. von Lensa: Internationale
Entwicklungsprogramme zum
Hochtemperaturreaktor. Bericht
FZ-Jülich.
38. U. Cleve: Konstruktionsprinzipien zur
nuklearen und betrieblichen Sicherheit
on HTR-KKW.
Authors
Dr.-Ing. Urban Cleve
Ex. CTO/HA-Leiter Technik
of BBC/Krupp Reaktorbau GmbH,
Mannheim
Hohenfriedbergerstr. 4
44141 Dortmund, Germany
RESEARCH AND INNOVATION 177
Research and Innovation
The Technology of TVHTR-Nuclear- Power Stations With Pebble Fuel Elements ı Urban Cleve
atw Vol. 63 (2018) | Issue 3 ı March
RESEARCH AND INNOVATION 178
Zur Rationalität des Deutschen
Kernenergieausstieges
Wolfgang Stoll
Einleitung Platon stellte 400 vor Christus fest: „Was immer Du tust, Du tust einem anderen Böses.“ Streng genommen
müsste das ebenso für Unterlassungen gelten – aber unser Leben ist mehr auf Handlungen und Handlungsfolgen
eingestellt.
Zum Rahmen unserer Handlungsoptionen
gehört auch das Gewerberecht.
Nach seinen etablierten Regeln
erlaubt es gewerbliche Tätigkeiten,
die den Nachbarn jenseits der Grenzen
des Grundstücks, auf dem das
Gewerbe ausgeübt wird, nicht unzumutbar
gefährden. Das Ausmaß der
Gefährdung, das der Nachbar zu
tolerieren hat, darf das allgemein als
akzeptiert betrachtete „Restrisiko“ als
Äquivalent von einem (statistischen)
Todesfall unter 1 Million Menschen
und Jahr nicht überschreiten. (Für die
Grenzen der Zumutbarkeit des fremd
verschuldeten Risikos, das zu akzeptieren
ist, gibt es in der deutschen
Rechtsprechung das Kalkar-Urteil).
Das ist ungefähr 1 % des aus der
mittleren Lebenserwartung ableitbaren
individuellen statistischen
Ablebensrisikos aus allen Lebensrisiken
einschließlich des Todes durch
Krankheit. Wo auch der Nutzen des
Einzelnen dagegen bilanziert werden
kann, wie bei vielen individuell eingegangenen
Risiken, wie z.B. im
Straßen verkehr, liegt das akzeptierte
Todesrisiko (Autounfälle) bei derzeit
50 Menschen pro Million und Jahr.
Es kann bisher nicht sicher ausgeschlossen
werden, dass bei einem
Störfall in einem Kernkraftwerk der
üblichen Bau- und Betriebsweise diese
in Deutschland festgelegte Zumutbarkeitsgrenze
überschritten wird. Die
Höhe des Restrisikos ergibt sich aus
im Wesentlichen zwei Risikosträngen,
wie sie sowohl aus mangelnder Organisationsqualität,
wie sie auch aus
Mängeln der technischen Qualität des
Systems entstehen können. Für die
Beurteilung der Zumutbarkeitsgrenze
nach obigem Todesfallrisiko wird hier
die Wirkung ionisierender Strahlung
auf Menschen in der Umgebung
des Kraftwerkes herangezogen, die
alle sonst noch möglichen Schadwirkungen
überwölbt. Die herrschende
Interpretation dieser Schädigung
fußt auf einer Schadensvermutung
auch bei sehr geringer Überschreitung
der natürlichen Strahlenexposition,
die eine Person durch die Summe an
Inhalation, Ingestion und äußerer
Bestrahlung vom Kernkraftwerk her
erfährt. Eine kausale Schadenszuordnung
an der Einzelperson mit
gleicher Maximalfolge (Krebs) ist
wegen der Multikausalität (parallel
wirkende mögliche andere Schadstoffe)
ausgeschlossen. Es gibt allenfalls
in großen Bevölkerungskollektiven
statistisch erkennbare Schäden
in eintretenden Krankheiten, einer
Lebensverkürzung und dem Tod in
einem sowohl zeitlich, wie örtlich
unscharf begrenzten Umfeld.
Verstellte Wirklichkeit.
Mit zunehmendem Lebensalter – und
das erreichen bei uns immer mehr
Menschen – rückt das Bewusstsein
der Endlichkeit immer näher. Man
kann das „Leben“ mit ein paar Zahlen
umfassen. Nehmen wir einen
94- Jährigen. Er besteht aus etwa einer
Million Milliarden Zellen, von denen
jede Sekunde eine Million zugrunde
gehen. Die Ausscheidungen in den
Eiweißbestandteilen in Stuhl und Urin
beweisen das täglich. Leben umschließt
also ein fortlaufendes Sterben
von Zellen, was für dieses Menschenleben
eine Bildung neuer Zellen im
etwa Zehnfachen seines Körpergewichtes
(rund 3 x 10E+15 Zellen)
erfordert.
Es sind aber nicht alle Organe
gleichmäßig betroffen. Herausragend
sind Haut, Haare, die Darmzotten und
die Lunge. Unsere Lunge muss im
Durchschnitt jährlich mit der Atemluft
70 Gramm zellzerstörendes Ozon
verkraften, was nur durch eine Neubildung
von Zellen in den Alveolen
gelingt. Enzyme, die das Abräumen
der so beschädigten Zellen besorgen,
nennen wir beschönigend „Reparaturenzyme“.
Diese werden besonders
dort und dann gebildet, wenn
gehäufte Zellfehlbildungen und
damit Zelltod signalisiert wird. Diese
Korrekturen sind besonders beim
wachsenden Organismus nötig,
weshalb Kleinkinder bis zum Zehnfachen
der Reparaturenzymkonzentration
des Erwachsenen erreichen.
Setzt man beim Erwachsenen einen
Zellschaden, wie z.B. bei der ionisierenden
Bestrahlung der ohnehin
auf den fortlaufenden Zelltod programmierten
Alveolen der Lunge, z.B.
durch die Alphastrahlung von Radon,
so antwortet der Körper mit einem
Anstieg der Reparaturenzymkonzentration.
Der Vorgang ist aber relativ
langsam, also erst nach Stunden,
und bleibt auch länger wirksam,
sodass die Reparaturenzyme im
ganzen Organismus auch andere
vorgeschädigte Zellen ausscheiden.
Erst eine Schädigung in Intervallen
(mehrere Tage Pause) bringt die
Reparaturenzyme auf den Wert des
Babys, wo sie allerdings nur mehrere
Wochen verharrt. Das begründet
die Wirkung von Radonbädern
auf Rheuma und andere Gewebsschädigungen.
Es kommt aber auf die
Dosis und die intermittierende
Schädigung an – Dauerschädigung
bewirkt durch Überlastung des Reparatursystems
das Gegenteil. Diese
wichtige Unter scheidung spiegelt sich
nicht in unserem Gefahren-Bewusstsein.
Unser streng nach kausaler Verknüpfung
von Ursache und Wirkung
aufgebautes Rechtssystem wird,
sobald irgendwelche Schäden eingetreten
oder auch nur zu befürchten
sind, damit gegen alle Logik zur
Bewertung nur statistisch erfassbarer
Wirkungen als pseudokausal herangezogen.
In angstzentrierten Gesellschaften,
wie der unseren, kann diese
Pseudokausalität schon im Vorfeld
der Handlungen zu Totalverboten
führen. Das erklärt auch das Abschaltgebot
nach Fukushima, obwohl es
an Deutschen Kernkraftwerken keine
mit dem dortigen Unfallablauf
und dessen Folgen vergleichbare
Szenarien gibt.
Zum deutschen
Risikoverständnis
Unsere Befindlichkeit erscheint dann
im Gleichgewicht, wenn sie sich
zwischen Chance und Risiko einpendelt.
Research and Innovation
On the Rationality of the German Nuclear Phase-out ı Wolfgang Stoll
atw Vol. 63 (2018) | Issue 3 ı March
Dabei ist das Verhältnis zwischen
individuellen Glückserwartungen
und ertragenem Risiko je nach dem
Gemütszustand des Einzelnen sehr
verschieden. Es liegt in unserem
Selbstverständnis, dass überschaubare
individuelle Risiken eher eingegangen
werden, als von außen
unsteuerbar aufgezwungene.
Man kann unser individuelles
Risiko feld als Schalenmodell darstellen,
bei dem die innerste Schale
die schiere Existenzerhaltung bildet,
die von der Schale des nicht Hungerns
(Essen), des nicht Frierens (Bekleidung),
darum herum des Geborgenseins
(Wohnen, Abstand) und schließlich
der Schale der sozialen Akzeptanz
(Familie, Gesellschaftliche Einbettung)
umfangen wird. Im Gegensatz
zu anderen Teilen der Welt weiß sich
der Deutsche Bürger in den oben genannten
Schalen sicher umfangenen
und baut auch auf deren Kontinuität.
Die Angst des Einzelnen, die sich stets
auf Objektsuche befindet, weist bei
unserem durchschnittlichen Bürger
daher nach außen auf die eher kollektiven
und weniger gegenständlichen
Angstobjekte, besonders wenn sie
vom Einzelnen nicht direkt beeinflussbar
und in einer zeitlich wie örtlich
unscharfen kollektiven Schadensvermutung
allgegenwärtig sind. Die
Angst vor ionisierender Strahlung gehört
in diesen Problemkreis, wobei
eine individuell mit einer Heilungsvermutung
erduldete ionisierende
Strahlung in der Medizin schon wegen
ihrer örtlichen und zeitlichen Begrenzbarkeit
davon weitgehend ausgenommen
ist.
Der Zugang zu Wechselfällen des
Lebens, wie er aus solchen Gefährdungen
entsteht, kann ja nach Einstellung
überwiegend aktiv und verändernd
(wie im Christentum) oder
überwiegend ertragend und kontemplativ
(wie z.B. im „Kismet“-Denken
des Islam) ausgerichtet sein. Schon
aus biblischen Ursprüngen ist unsere
abendländische Denkschablone in
Schuld und Sühne aktiv und kausal.
Wir vereinfachen die oft nur scheinbar
kausalen Zusammenhänge, die oft
nur das nahe an 100 % herankommende
Ende von Wahrscheinlichkeiten
darstellen, wobei wir dem
„Wunder“ den unscheinbaren Rest bis
zur vollen Kausalität überlassen. Das
gilt für alle Ereignisse, die wir wahrnehmen
können, vierdimensional, das
heißt in Raum und Zeit. Die daraus
abgeleitete scheinbare Unentrinnbarkeit
bei Schadereignissen entsteht
durch Überdehnung großer Dimensionen
ins Unendliche: Zeitlich im
„Ewig“ und „immer“, örtlich im „Überall“.
Die Kernenergiegegner operieren
zur allgemeinen Angstmache geschickt
mit dieser Begriffsüberdehnung.
Das Problem ist aber von
ganz allgemeiner Natur. Klassische
wissenschaftliche Erkenntnisse kommen
überwiegend aus dem Bereich
der sehr hohen Wahrscheinlichkeit,
die wir vereinfacht als kausale Verknüpfung
von Ursache und Wirkung
kennzeichnen. Ganz allgemein wird
aber im Vordringen unseren Wissens
in immer kompliziertere Zusammenhänge
bis in das so genannte statistische
„Rauschen“ der Zusammenhang
von Ursache und Wirkung
immer weniger eindeutig. Diese
Unschärfe eröffnet einen großen
Ermessensspielraum (ein Beispiel ist
die globale Erwärmung). Zusätzlich
werden dann aus Gründen der Vereinfachung
auch noch die Randbedingungen
weggelassen, mit denen
eine statistische Aussage von der
Wissenschaft zusätzlich oft eingeschränkt
wird. Schon Immanuel Kant
fand, dass der Bedarf an Entscheidungen
immer größer wäre als der
Vorrat an Erkenntnissen. Der Einzelne
vereinfacht aber im Alltag seine
Schlussfolgerungen durch die im
Recht und in der Religion anerzogene
strenge Kausalität. Überlässt man
scheinbar gefahrengeneigte Tätigkeiten
den abergläubischen und
nur ausschnittsinformierten Angstbürgern
als neue Warnungen vor
Ungemach und als mögliche Katastrophenszenarien,
so versteifen Mehrheiten
diese daher vereinfachend als
„Gewissheiten“ und leiten daraus
kollektive Handlungsanweisungen ab.
So hat in unserer Gesellschaft die
Angst eine Vorliebe für alle jetzt und
hier vermeidbaren Angstobjekte,
ohne die Spätfolgen (auch die des
Unterlassens) ausreichend im Blick
zu haben. In Gesellschaftssystemen,
die sich weniger perfektioniert geben,
sind auch die Ordnungssysteme
weniger strikt durchgehalten und der
Bürger sorgt in der für ihn stets erwiesenen
Unzuverlässigkeit vorsichtig
für sich selbst, wobei er in einem allgegenwärtigen
gefährlicheren Risikofeld
weniger Anstoß an verbleibenden
Restrisiken nimmt. In Aufstellen und
Durchhalten von Ordnungssystemen
ist jedoch gerade Deutschland ein
Extrembeispiel, was schon im sprachlichen
Doppelbegriff der Sicherheit,
die sowohl Gewissheit, wie auch die
Gefahrenabwesenheit meint (lateinisch:
certitudo securitatis), zum Ausdruck
kommt. Der den Doppelbegriff
einfordernde Bürger macht sich nicht
klar, dass genau dies alle gefahrengeneigte
Technik fast schon definitionsgemäß
ausschließt, was im
Besonderen die Kerntechnik trifft.
Die unkonditionierte
Ablehnung
Einziger Ausweg aus diesem typisch
deutschen Dilemma, bei dem man
sich stets in einem überschaubaren
und geregelten Umfeld wähnt, kann
nur ein kategorischer Ausschluss einer
radioaktive Stoffe hantierenden Technik
sein.(Obwohl dies objektiv wahrscheinlich
gar nicht im strengen Sinne
nötig wäre).
Daraus folgt, dass jede unkontrollierte
Freisetzung von Radionukliden,
wie immer diese zustande kommt,
ausgeschlossen werden muss. Begrifflich
verlangt das für Radionuklide
geschlossene Quellen, die allenfalls
Strahlung, aber keine Dispersion bewirken.
Eine radioaktive Freisetzung
aus Betrieb oder Unfall in einem Kernkraftwerk
muss somit auf das Betriebsgelände
oder besser auf den
Kernenergieanteil der Anlage beschränkt
bleiben. Dies gilt nicht nur
für den Normalbetriebsfall, in dem
eine wie immer geschulte Betreibermannschaft
sichernd eingreifen kann,
sondern auch für eine unbeherrschte
Betriebsstörung ohne menschlichen
Steuerungseingriff.
Streng genommen gälte das für
alle von einer Dispersion von Radionukliden
gefährdeten Flächen, die ja
auch an Landesgrenzen nicht Halt
macht, wie man an dem Unfall in
Tschernobyl erfahren musste. Die
zu einem solchen weit reichenden
Ausschluss nötigen internationalen
Instrumente fehlen bisher jedoch.
Es gibt für den Radionuklideinschluss
bei schweren Störfällen bereits
technische Teil-Lösungen, (z.B.
das Kraftwerk Olkiluoto III in Finnland
und Flamanville III in Frankreich), bei
denen ein eventuell schmelzender
Rektorkern sicher aufgefangen wird.
Der überwiegende Teil der Menschheit
hält derartige etwas teurere
Konzepte wegen der geringen Eintrittswahrscheinlichkeit
der Schäden
auch nach Fukushima bisher noch
nicht für nötig.
Schon die „umhüllte radioaktive
Quelle“ verlangt, dass die Umhüllungen
des Systems unzerstört bleiben
muss und dass sie einen sich aufbauenden
Innendruck allenfalls nur
über Filter abbauen darf, die alle
gefährlichen Radionuklide zurückhalten
können. Für einen geometrisch
noch intakten Reaktor gibt es im Prinzip
zwei primäre Störkräfte, die auf
RESEARCH AND INNOVATION 179
Research and Innovation
On the Rationality of the German Nuclear Phase-out ı Wolfgang Stoll
atw Vol. 63 (2018) | Issue 3 ı March
RESEARCH AND INNOVATION 180
ihn einwirken können: Die Kettenreaktion
selbst und die abzuführende
Nachwärme. Der Abbruch der Kettenreaktion
erfolgt nach Verlust des
Kühlmittels automatisch, solange das
Kühlmittel auch der einzige Moderator
ist. Das gilt für alle wassermoderierten
Systeme. Die Nachwärme
entspricht im Abschaltzeitpunkt
etwa 4 % der Reaktorleistung
und fällt nach einer Woche auf etwa
0,5 % ab. Solange das Rohrleitungssystem
noch intakt ist und eines der
mehreren redundant und diversitär
ausgelegten Nachkühlsysteme noch
funktioniert, kann die Restwärme
abgeführt werden. Selbst wenn der
Systemumlauf nicht mehr funktioniert,
so kann der mit Wasser be deckte
Reaktorkern noch durch Ver dampfung
gekühlt werden. Die frei werdende
Wärme der ersten 10 Tage nach Abschaltung
eines 1.000 MWe Reaktors
entspricht der Verdampfungswärme
von 40.000 Kubikmetern Wasser (also
etwa 3 großen Schwimmbecken).
Nach diesen 10 Tagen ist der Hauptteil
des kurzlebigen radioaktiven Jods
zerfallen und es muss von den flüchtigen
Bestandteilen im Wesentlichen
noch das ausdampfbare Cäsiumjodid
zurückgehalten werden.
Soweit keine Kühlung erfolgt, wird
bis dahin der Kern mit allen seinen
auch nicht aktiven Bestandteilen
zu einem geschmolzenen Klumpen
(das sogenannte Corium) umgeformt
worden sein, der langsam durch sein
Gewicht in den Beton des Bodens
des Reaktorgebäudes einsinkt. Im
medialen Sprachgebrauch hat sich
dieser Vorgang plakativ als das
„Chinasyndrom“ verselbstständigt
und überschattet so alle parallel
laufenden, möglicherweise sogar
schwerer wiegenden Freisetzungsvorgänge.
Es ist höchst spekulativ, ob
das eindringende Corium irgendwann
das meist mehrere Meter dicke Betonfundament
durchschmelzen kann
(schon eine einige Meter dicke Lage
von Quarzsand kann das verhindern)
und ob dann das Schmelzgut noch
flüchtige Spaltprodukte nach außen
durch den Boden freisetzen würde.
Jedenfalls kann man dieses Risiko
relativ einfach durch eine hochtemperaturfeste
Wanne unter dem Reaktordruckgefäß
(=core catcher) oder
durch einen entsprechend dicken
Stahlboden (Wie in neuen Russischen
Reaktordruckgefäßen vorgesehen)
soweit verlangsamen, dass der Vorgang
mit abnehmender Restwärme
ohne Durchbruch nach außen zum
Stillstand kommt.
Man geht derzeit dazu über, die
Kühlmöglichkeiten des abgeschalteten
Reaktors so weit zu perfektionieren,
dass das System sich selbsttätig
und ohne Umlegen von Hebeln oder
Einschalten von Notstromaggregaten
auch ohne menschlichen Eingriff ausreichend
mit Wasser kühlt. Das bleibt
aber immer „engineered safety“ und
ist, soweit man nicht auf Wasser aus
einem statischen Gefälle, z.B. von
einem großen Hochbehälter zurückgreifen
kann, von Pumpen, also einer
funktionierenden Energiezufuhr und
einem intakten Rohrleitungssystem
abhängig.
Wenn nichts davon funktioniert,
(wenn z.B. der Druckbehälter auch
nicht mehr mit Zu- und Ableitungen
verbunden sein sollte), ist der Kernschmelzunfall
nach etwa 25 Minuten
Tatsache.
Es ist verständlich, dass unabhängig
davon, durch welche Ursache
| | Editorial Advisory Board
Frank Apel
Erik Baumann
Dr. Maarten Becker
Dr. Erwin Fischer
Eckehard Göring
Dr. Ralf Güldner
Carsten Haferkamp
Dr. Petra-Britt Hoffmann
Dr. Guido Knott
Prof. Dr. Marco K. Koch
Dr. Willibald Kohlpaintner
Ulf Kutscher
Andreas Loeb
Dr. Thomas Mull
Dr. Ingo Neuhaus
Dr. Joachim Ohnemus
Prof. Dr. Winfried Petry
Dr. Tatiana Salnikova
Dr. Andreas Schaffrath
Dr. Jens Schröder
Dr. Wolfgang Steinwarz
Prof. Dr. Bruno Thomauske
Dr. Walter Tromm
Dr. Hans-Georg Willschütz
Dr. Hannes Wimmer
Ernst Michael Züfle
Imprint
| | Editorial
Christopher Weßelmann (Editor in Chief)
Im Tal 121, 45529 Hattingen, Germany
Phone: +49 2324 4397723
Fax: +49 2324 4397724
E-mail: editorial@nucmag.com
| | Official Journal of
Kerntechnische Gesellschaft e. V. (KTG)
| | Publisher
INFORUM Verlags- und
Verwaltungsgesellschaft mbH
Robert-Koch-Platz 4, 10115 Berlin, Germany
Phone: +49 30 498555-30, Fax: +49 30 498555-18
www.nucmag.com
| | General Manager
Christian Wößner, Berlin, Germany
| | Advertising and Subscription
Sibille Wingens
Robert-Koch-Platz 4, 10115 Berlin, Germany
Phone: +49 30 498555-10, Fax: +49 30 498555-19
E-mail: sibille.wingens@nucmag.com
| | Prize List for Advertisement
Valid as of 1 January 2018
Published monthly, 9 issues per year
Germany:
Per issue/copy (incl. VAT, excl. postage) 24.- €
Annual subscription (incl. VAT and postage) 176.- €
All EU member states without VAT number:
Per issue/copy (incl. VAT, excl. postage) 24.- €
Annual subscription (incl. VAT, excl. postage) 176.- €
EU member states with VAT number
and all other countries:
Per issues/copy (no VAT, excl. postage) 22.43 €
Annual subscription (no VAT, excl. postage) 164.49 €
| | Copyright
The journal and all papers and photos contained in it
are protected by copyright. Any use made thereof outside
the Copyright Act without the consent of the publisher,
INFORUM Verlags- und Verwaltungsgesellschaft mbH,
is prohibited. This applies to reproductions, translations,
microfilming and the input and incorporation into
electronic systems. The individual author is held
responsible for the contents of the respective paper.
Please address letters and manuscripts only to the
Editorial Staff and not to individual persons of the
association´s staff. We do not assume any responsibility
for unrequested contributions.
Signed articles do not necessarily represent the views
of the editorial.
| | Layout
zi.zero Kommunikation
Berlin, Germany
Antje Zimmermann
| | Printing
inpuncto:asmuth
druck + medien gmbh
Baunscheidtstraße 11
53113 Bonn
ISSN 1431-5254
Research and Innovation
On the Rationality of the German Nuclear Phase-out ı Wolfgang Stoll
atw Vol. 63 (2018) | Issue 3 ı March
(einschließlich absichtlicher Kernzerstörung)
eine unkontrollierte
Freisetzung von Radionukliden mit
der weiträumigen Verseuchung bewohnter
Landstriche stattfinden kann,
kein dicht besiedeltes Umfeld einem
solchen Risiko ausgesetzt werden darf.
Von diesem Risiko ist der Weiterbetrieb
der in Europa, besonders aber
Deutschland laufenden Kernkraftwerke
eben nicht grundsätzlich frei –
wie klein auch immer man eine Wahrscheinlichkeit
dafür ansetzt.
Soweit man die Reaktionen der
Reaktorbetreiber auf Fukushima
bisher beurteilen kann, werden die
EVA-Ereignisse (= Einwirkung von
Außen, einschließlich Flutung) und
die Notkühlsysteme überprüft und
auskömmlich (je 4 Systeme) sowohl
auf Redundanz, wie auf Diversität
verbessert. In den USA prüft man
zusätzlich die Evakuierungsmöglichkeiten
der Kraftwerksumgebung. Die
21 von Russland geplanten neuen
Kernkraftwerke haben alle einen verstärkten
Druckgefäßboden und ein
zweites Containment. Sofortabschaltungen
gibt es nur in Deutschland,
Auslaufen der Kernenergie ist in
der Schweiz geplant, Neubaupläne
wurden in Italien gestoppt. Die
anderen Nuklearnationen bewegen
sich zwischen Prüfungen, Verbesserungen,
Laufzeitverkürzungen und
verzögertem Neubau, ohne dass es
bisher allgemein gültige Verhaltensregeln
gibt.
Die mehr grundsätzlichen
Alternativen
Die Summe aller dieser Vorkehrungen
mindert die Wahrscheinlichkeit, dass
es nach entsprechenden Störungen
zum Kernschmelzen und in der Folge
zum unkontrollierten Austritt von
Spaltprodukten kommt. Ausgeschlossen
sind derartige Folgen aber
nicht grundsätzlich. Damit bleibt
die diffuse Angst vor ionisierender
Strahlung und deren Folge für die
nähere und auch weitere Kraftwerksumgebung
erhalten.
Will man sich darauf einstellen, so
darf das äußere System der Umschließung
– das Containment oder
der umhüllende zweite Druckbehälter
– keiner zusätzlichen zerstörenden
Kraft mehr ausgesetzt werden. Untersucht
man die Risiken dazu, so fallen
zunächst die Zirkon-Wasser-Reaktion
mit Wasserstoffbildung und eine
nachfolgende Knallgasexplosion am
schwersten ins Gewicht. Man kann
den Reaktorraum mit Stickstoff
fluten, um Luftzutritt zu verhindern,
aber auch diese Vorkehrung kann
im Störfall durch Eindringen von
Luft über Undichtigkeiten versagen.
Rekombinatoren (Platinmetalle) helfen
auch nur so lange, als der Gasumlauf
diese ausreichend schnell
erreicht, noch genügend Sauerstoff
vorhanden ist und die Rekombinations-Rate
mit der Zirkon-Wasserrektion
Schritt halten kann – was
nicht in allen Fällen gewährleistet ist.
Überhitzt kann er sogar direkt zur
Zündquelle werden.
Zirkon als reaktives Metall ausschließen
heißt auf andere Hüllmaterialien
ausweichen. Dafür bietet sich
rostfreier Stahl an, was allerdings
die Anreicherungskosten für das Uran
fast verdoppelt und Ansprüche an
die Tritium-Rückhaltung im Betrieb
erhöht.
Bei Schiffsreaktoren wird das
überwiegend so praktiziert. (Eine
etwas ferner liegende Lösung wäre die
Verwendung der Spaltedelmetalle als
Hüllrohr, wozu man diese allerdings
aus den Spaltprodukten der Wiederaufarbeitung
abtrennen, für thermische
Reaktoren das Rhodium seiner
starken Neutronenabsorption wegen
von Palladium und Ruthenium
trennen und die Menge von 10 abgebrannten
Kernen für den Metallbedarf
eines Folgekerne zusammenkommen
lassen müsste, wonach es allerdings
für nachfolgende Kerne jeweils wieder
verwendet werden könnte).
Das Zusammenschmelzen und
damit die Corium-Bildung würden
dadurch zwar stark verzögert, aber
nicht grundsätzlich verhindert. Das
gilt im Übrigen auch für den gepriesenen
Hochtempera tur reaktor, da der
als Moderator verwendete Grafit bei
Luftzutritt abbrennen und Radionuklide
freisetzen würde. Für die Absorption
der Hauptmenge der gasförmigen
Spaltpro dukte Jod und Cäsium wäre
ein Wasser filter ( Berieselung oder
Wäscher) am einfachsten. Der Rest
der dis pergierbaren Radionuklide
wäre technisch am besten an
großober flächige Produkte zu binden.
Da humoser Boden Cäsium am
längsten festhält, könnte wahrscheinlich
stattdessen gewöhnlicher Torf
als Rück halte medium dienen. Auch
Aktiv kohle wirkt ähnlich. Dabei
kommt es nicht auf eine dauerhafte
Rück haltung, sondern nur auf eine
zeit liche Ver zögerung bis zum radioaktiven
Zerfall der Hauptmenge Jod
im Cäsiumjodid an. Wenn man das
Brandrisiko von Aktivkohle auch noch
ausschließen will, muss man auf
Zeolithe als Filtermedium ausweichen,
was das Filtervolumen etwa
verdreifacht.
Als nächste Stufe der Vermeidung
derartiger Störfälle bliebe nur der
Weg, das System so zu verändern,
dass auch bei Kernzerstörung entweder
ein umschließendes Medium
die freigesetzten Radionuklide auffängt
oder keine Dispersionskräfte zur
Ausbreitung mindestens von atmosphärischen
Freisetzungen mehr existieren.
Das bedeutet zunächst die
Trennung von Drucksystemen wie der
Dampferzeugung vom nuklearen Kern
durch Zwischenwärmeübertragung
mit einem nicht-dispergierenden
Kühlmittel wie z.B. durch ein hoch
siedendes flüssiges Metall. Es bedeutete
auch, dass Druckgebende chemische
Reaktionen ausgeschlossen
werden müssen, was u.a. Zircaloy und
Wasser als Paarung ausschließt. Wenn
dann schon die Kernschmelze als
Möglichkeit unterstellt wird, sollte die
Wärmekapazität des sich erhitzenden
Systems so gering wie möglich sein,
um die äußere Kühlleistung zu minimieren.
Das führt ganz automatisch
zum Schnellen Reaktor, bei dem auch
kein Moderator mit erhitzt wird und
der wegen seiner hohen Energiedichte
im Kern nur wenige Prozent des
Volumens eines Druckwasserreaktors
gleicher Leistung benötigt, die es
dann zu kühlen gilt.
Es gibt bereits Reaktoren, die
diesem Konzept schon recht nahe
kommen, wie z.B. die Blei-Wismutgekühlten
Reaktoren der Russischen
U-Boote der A-Klasse. Obwohl schon
einige davon gesunken sind, hat man
noch nirgends Radionuklide in schädigendem
Ausmaß an der Meeresoberfläche
gefunden. Man kann
davon ausgehen, dass selbst ein bis
zur Dispersion von Radionukliden
zerstörter Reaktor zwar das darüber
stehende Wasser verunreinigt, aber
dennoch keine akute Gefahr darstellt,
solange die über einem Reaktor
stehende Wassermenge für die Nachkühlung
ausreichend groß ist und sich
in einem einigermaßen geschlossenen
Becken befindet. Diese Randbedingungen
würden von jedem mittelgroßen
Stausee erfüllt, während man
die stromführenden Teile und die
Bedienung auf der trockenen Seite der
Staumauer anordnen könnte.
Schlussbemerkung
Das mag alles sehr futuristisch
klingen, aber man kann bei Betrachtung
der auch heute noch in Planung
und Bau befindlichen Kernkraftwerke
davon ausgehen, dass die Menschheit
nicht grundsätzlich auf die Nutzung
der Kernenergie verzichten wird.
Andererseits wird das Ausmaß an
RESEARCH AND INNOVATION 181
Research and Innovation
On the Rationality of the German Nuclear Phase-out ı Wolfgang Stoll
atw Vol. 63 (2018) | Issue 3 ı March
182
STATISTICS
(Manuskript Erstfassung:
2012,
im November 2017
überarbeitet)
Organisationsversagen immer wieder
in Einzelfällen ausreichen, auch die
ausgeklügeltsten ingenieurmäßigen
Sicherheitsvorkehrungen unwirksam
zu machen. Da bisher wegen der hohen
Anfangskosten Kernkraftwerke
bevorzugt in reichen und technisch
fortschrittlichen Ländern gehäuft
betrieben wurden, hat man dort auch
alle bezahlbaren Sicherheitsvorkehrungen
getroffen. Jetzt bauen
aber vorwiegend ärmere Länder neue
Kernkraftwerke, womit dann gerade
dort das Eintreten schwerer Störfälle
denkbar ist. Wegen der aber auch
dort wachsenden ausgeprägten
Risiko aversion wären zur Aufrechterhaltung
der nuklearen Option
voll abgesicherte, wenn auch teure
Abhilfen gerechtfertigt. Es dürfte sich
daher lohnen, System mindestens zu
planen und zu erproben, die unter
wirklich allen Umständen eine
Dispersion ausschließen.
Authors
Prof. Dr. Wolfgang Stoll
Hanau, Deutschland
Nuclear Power Plants:
2017 atw Compact Statistics
Editorial
At the end of the last year 2017 (key date: 31 December 2017), nuclear power plants were operating in 31 countries
worldwide (cf. Table 1). In total, 448 nuclear power plants were operating on the key date. This means that the
number decreased by 2 units compared to the previous year’s number on 31 December 2016 (450, which means the
highest number of units since the first start of an commercial nuclear power plant in 1956) due to first criticalities on the
one hand and shut-downs on the other. The gross power output of these nuclear power plant units amounted to
around 420 GWe*, the net power output was approximately 396 GWe. This means that the available gross capacity
was about 1 GW, i.e. -0,25 % and the net capacity about 1 GW below the previous year’s values of about 421 GWe gross
and 397 GWe net.
Three (3) nuclear power plants started (nuclear)
operation 1 in two countries in 2017. These units reached
initial criticality, were synchronized with the grid and
started commercial operation for the first time in 2017
(cf. Tab. 1): China: Fuqing 4 (1089 MW, PWR, CGO),
Tianwan 3 (1126 MW, PWR, CGO), Pakistan: Chasnupp-4
(340 MW, PWR, CGO). One unit was synchronized with
the grid and started commercial operation for the first
time in 2017: China: Yangjiang 4 (1086 MW, GO).
For the third time since the accidents in Fukushima
( Japan) two nuclear power units, Takahama 3 (870 MW,
PWR) and Takahama 4 (870 MW, PWR) resumed operation
in 2017 in Japan after a longer shut-down.
Five nuclear power plant units were definitively
per manently shut-down worldwide in 2017. In Germany
the unit Gundremmingen B (1344 MW) was shut-down
after 33 years of successful operation. In Japan the prototype
fast breeder reactor Monju (280 MW) was shut down
22 years after first criticality. In the Republic of Korea the
PWR Kori 1 (608 MW) was permanently shut down. The
BWR Oskarshamn 1 (492 MW) was shut down in Sweden.
The Spanish nuclear power plant Santa Maria de Garona
(466 MW) was permanently shut down after five years of
lay-up operation due to an applied for but not approved
prolonged operation license.
Three new projects started with the first concrete and
further build activities. In Bangladesh one new build project
started with Rooppur 1(1200 MW), India started the
new build of the third unit at Kudankulam (1000 MW) and
in the Republic of Korea one additional project started
with Shin-Kori 5 ( 1455 MW).
In total 56 reactors are under construction worldwide
in 15 countries. The total gross capacity of this projects is
about 61 GW*, the net capacity 58 GW, in other words the
number was lower (2) compared to the previous year number
due to the three operation starts, three new build projects
and the suspension of one project with two reactors.
Compared with the millennium change 1999/2000 this
means that the number of projects under construction has
risen, when 30 nuclear power plants were under construction
worldwide.
Two projects in the USA were stopped. South Carolina
Public Service Authority (minority partner of the project,
40 %) decided to stop the new build project Virgil C. Summer
2 and 3. Construction of two advanced pressurized
water reactors (APR 1000, 1080 MW) by Westinghouse
started in 2013. In March 2017, Westinghouse Electric
Company filed for Chapter 11 bankruptcy because of $9
billion of losses from its two U.S. nuclear construction projects.
SCANA (share in project: 60 %) considered its options
for the project, and ultimately decided to abandon
the project in July 2017 after the decision of its minority
partner.
Active construction projects (numbers in brackets)
listed are: Argentina (1), Bangladesh (1), Belarus (2), Brazil
(1), China (18), Finland (1), France (1), India (7), Japan
(2), Republic of Korea (4), Pakistan (2), Russia (7),
Slovak Republic (2), Taiwan (2), the USA (2) and the United
Arab Emirates (4).
In addition, there are about 125 nuclear power plant
units in 25 countries worldwide that are in an advanced
planning stage, others are in the pre-planning phase
( status: 31 December 2017).
Statistics
Nuclear Power Plants: 2017 atw Compact Statistics
atw Vol. 63 (2018) | Issue 3 ı March
Country
Location/
Station name
Status Reactor type
Capacity
gross
[MW]
Capacity
net
[MW]
1st
Criticality
[Year]
Argentina
Atucha 1 p D2O-PWR 357 341 1974
Embalse p Candu 648 600 1983
Atucha 2 p D2O-PWR 745 692 2014
CAREM25 P PWR 29 25 (2020)
Armenia
Metsamor 2 p VVER-PWR 408 376 1980
Belarus
Belarusian 1 P VVER-PWR 1 194 1 109 (2019)
Belarusian 2 P VVER-PWR 1 194 1 109 (2021)
Bangladesh
Rooppur 1 [2] P VVER-PWR 1 200 1 080 (2022)
Belgium
Doel 1 p PWR 454 433 1975
Doel 2 p PWR 454 433 1975
Doel 3 p PWR 1 056 1 006 1982
Doel 4 p PWR 1 090 1 039 1985
Tihange 1 p PWR 1 009 962 1975
Tihange 2 p PWR 1 055 1 008 1983
Tihange 3 p PWR 1 094 1 046 1985
Brazil
Angra 1 p PWR 640 609 1984
Angra 2 p PWR 1 350 1 275 1999
Angra 3 P PWR 1 300 1 245 (2020)
Bulgarien
Kozloduj 5 p VVER-PWR 1 000 953 1987
Kozloduj 6 p VVER-PWR 1 000 953 1989
Canada
Bruce 1 p Candu 824 772 1977
Bruce 2 p Candu 786 734 1977
Bruce 3 p Candu 805 730 1977
Bruce 4 p Candu 805 750 1979
Bruce 5 p Candu 872 817 1985
Bruce 6 p Candu 891 822 1984
Bruce 7 p Candu 872 817 1986
Bruce 8 p Candu 845 817 1987
Darlington 1 p Candu 934 878 1993
Darlington 2 p Candu 934 878 1990
Darlington 3 p Candu 934 878 1993
Darlington 4 p Candu 934 878 1993
Pickering 1 p Candu 542 515 1971
Pickering 4 p Candu 542 515 1973
Pickering 5 p Candu 540 516 1983
Pickering 6 p Candu 540 516 1984
Pickering 7 p Candu 540 516 1985
Pickering 8 p Candu 540 516 1986
Point Lepreau p Candu 705 660 1983
China
CEFR p SNR 25 20 2011
Changjiang 1 p PWR 650 610 2015
Changjiang 2 p PWR 650 601 2016
Fangchenggang 1 p PWR 1 080 1 000 2015
Fangchenggang 2 p PWR 1 088 1 000 2016
Fangjiashan 1 p PWR 1 080 1 000 2014
Fangjiashan 2 p PWR 1 080 1 000 2014
Fuqing 1 p PWR 1 087 1 000 2014
Fuqing 2 p PWR 1 087 1 000 2015
Fuqing 3 p PWR 1 089 1 000 2016
Fuqing 4 [1] p PWR 1 089 1 089 2017
Guandong 1 p PWR 984 944 1993
Guandong 2 p PWR 984 944 1994
Hongyanhe 1 p PWR 1 080 1 000 2013
Hongyanhe 2 p PWR 1 080 1 000 2013
Hongyanhe 3 p PWR 1 080 1 000 2014
Hongyanhe 4 p PWR 1 119 1 000 2016
Lingao 1 p PWR 990 938 2002
Lingao 2 p PWR 990 938 2002
Lingao II-1 p PWR 1 087 1 000 2010
Lingao II-2 p PWR 1 087 1 000 2011
Ningde 1 p PWR 1 087 1 000 2012
Ningde 2 p PWR 1 080 1 000 2014
Ningde 3 p PWR 1 080 1 000 2015
Ningde 4 p PWR 1 089 1 018 2016
Qinshan 1 p PWR 310 288 1992
Qinshan II-1 p PWR 650 610 2002
Qinshan II-2 p PWR 650 610 2004
Qinshan II-3 p PWR 642 610 2010
Qinshan II-4 p PWR 642 610 2011
Qinshan III-1 p Candu 728 665 2002
Qinshan III-2 p Candu 728 665 2003
Tianwan 1 p VVER-PWR 1 060 1 000 2005
Country
Location/
Station name
Status Reactor type
Capacity
gross
[MW]
Capacity
net
[MW]
1st
Criticality
[Year]
Tianwan 2 p VVER-PWR 1 060 1 000 2007
Tianwan 3 [1] p VVER-PWR 1 060 1 000 2017
Yangjiang 1 p PWR 1 080 1 000 2013
Yangjiang 2 p PWR 1 080 1 000 2015
Yangjiang 3 p PWR 1 080 1 000 2015
Yangjiang 4 [1] p PWR 1 086 1 000 2016
Fangchenggang 3 P PWR 1 080 1 000 (2020)
Fangchenggang 4 P PWR 1 080 1 000 (2022)
Fuqing 5 P PWR 1 087 1 000 (2020)
Fuqing 6 P PWR 1 087 1 000 (2020)
Haiyang 1 P PWR 1 180 1 100 (2016)
Haiyang 2 P PWR 1 180 1 100 (2016)
Hongyanhe 5 P PWR 1 080 1 000 (2020)
Hongyanhe 6 P PWR 1 080 1 000 (2021)
Sanmen 1 P PWR 1 180 1 100 (2016)
Sanmen 2 P PWR 1 180 1 100 (2016)
Shidaowan 1 P HTGR 211 200 (2016)
Taishan 1 P PWR 1 750 1 660 (2017)
Taishan 2 P PWR 1 750 1 660 (2018)
Tianwan 4 P VVER-PWR 1 060 990 (2018)
Tianwan 5 P VVER-PWR 1 118 1 000 (2020)
Tianwan 6 P VVER-PWR 1 118 1 000 (2022)
Yangjiang 5 P PWR 1 080 1 000 (2018)
Yangjiang 6 P PWR 1 080 1 000 (2018)
Czech Republic
Dukovany 1 p VVER-PWR 500 473 1985
Dukovany 2 p VVER-PWR 500 473 1986
Dukovany 3 p VVER-PWR 500 473 1987
Dukovany 4 p VVER-PWR 500 473 1987
Temelín 1 p VVER-PWR 1 077 1 027 1999
Temelín 2 p VVER-PWR 1 056 1 006 2002
Finland
Loviisa 1 p VVER-PWR 520 496 1977
Loviisa 2 p VVER-PWR 520 496 1981
Olkiluoto 1 p BWR 890 860 1979
Olkiluoto 2 p BWR 890 860 1982
Olkiluoto 3 P PWR 1 600 1 510 (2019)
France
Belleville 1 p PWR 1 363 1 310 1987
Belleville 2 p PWR 1 363 1 310 1988
Blayais 1 p PWR 951 910 1981
Blayais 2 p PWR 951 910 1982
Blayais 3 p PWR 951 910 1983
Blayais 4 p PWR 951 910 1983
Bugey 2 p PWR 945 910 1978
Bugey 3 p PWR 945 910 1978
Bugey 4 p PWR 917 880 1979
Bugey 5 p PWR 917 880 1979
Cattenom 1 p PWR 1 362 1 300 1986
Cattenom 2 p PWR 1 362 1 300 1987
Cattenom 3 p PWR 1 362 1 300 1990
Cattenom 4 p PWR 1 362 1 300 1991
Chinon B-1 p PWR 954 905 1982
Chinon B-2 p PWR 954 905 1983
Chinon B-3 p PWR 954 905 1986
Chinon B-4 p PWR 954 905 1987
Chooz B-1 p PWR 1 560 1 500 1996
Chooz B-2 p PWR 1 560 1 500 1997
Civaux 1 p PWR 1 561 1 495 1997
Civaux 2 p PWR 1 561 1 495 1999
Cruas Meysse 1 p PWR 956 915 1983
Cruas Meysse 2 p PWR 956 915 1984
Cruas Meysse 3 p PWR 956 915 1984
Cruas Meysse 4 p PWR 956 915 1984
Dampierre 1 p PWR 937 890 1980
Dampierre 2 p PWR 937 890 1980
Dampierre 3 p PWR 937 890 1981
Dampierre 4 p PWR 937 890 1981
Fessenheim 1 p PWR 920 880 1977
Fessenheim 2 p PWR 920 880 1977
Flamanville 1 p PWR 1 382 1 330 1985
Flamanville 2 p PWR 1 382 1 330 1986
Golfech 1 p PWR 1 363 1 310 1990
Golfech 2 p PWR 1 363 1 310 1993
Gravelines B-1 p PWR 951 910 1980
Gravelines B-2 p PWR 951 910 1980
Gravelines B-3 p PWR 951 910 1980
Gravelines B-4 p PWR 951 910 1981
Gravelines C-5 p PWR 951 910 1984
Gravelines C-6 p PWR 951 910 1985
Nogent 1 p PWR 1 363 1 310 1987
183
STATISTICS
Statistics
Nuclear Power Plants: 2017 atw Compact Statistics
atw Vol. 63 (2018) | Issue 3 ı March
184
STATISTICS
Country
Location/
Station name
Status Reactor type
Capacity
gross
[MW]
Capacity
net
[MW]
1st
Criticality
[Year]
Nogent 2 p PWR 1 363 1 310 1988
Paluel 1 p PWR 1 382 1 330 1984
Paluel 2 p PWR 1 382 1 330 1984
Paluel 3 p PWR 1 382 1 330 1985
Paluel 4 p PWR 1 382 1 330 1986
Penly 1 p PWR 1 382 1 330 1990
Penly 2 p PWR 1 382 1 330 1992
St. Alban 1 p PWR 1 381 1 335 1986
St. Alban 2 p PWR 1 381 1 335 1987
St. Laurent B-1 p PWR 956 915 1981
St. Laurent B-2 p PWR 956 915 1981
Tricastin 1 p PWR 955 915 1980
Tricastin 2 p PWR 955 915 1980
Tricastin 3 p PWR 955 915 1980
Tricastin 4 p PWR 955 915 1981
Flamanville 3 P PWR 1 600 1 510 (2018)
Germany
Brokdorf p PWR 1 480 1 410 1986
Emsland p PWR 1 406 1 335 1988
Grohnde p PWR 1 430 1 360 1985
Gundremmingen B [6] V BWR 1 344 1 284 1984
Gundremmingen C p BWR 1 344 1 288 1985
Isar 2 p PWR 1 485 1 410 1988
Neckarwestheim II p PWR 1 400 1 310 1989
Philippsburg 2 p PWR 1 468 1 402 1985
Hungary
Paks 1 p VVER-PWR 500 470 1983
Paks 2 p VVER-PWR 500 473 1984
Paks 3 p VVER-PWR 500 473 1986
Paks 4 p VVER-PWR 500 473 1987
India
Kaiga 1 p Candu (IND) 220 202 2001
Kaiga 2 p Candu (IND) 220 202 1999
Kaiga 3 p Candu (IND) 220 202 2007
Kaiga 4 p Candu (IND) 220 202 2010
Kakrapar 1 p Candu (IND) 220 202 1993
Kakrapar 2 p Candu (IND) 220 202 1995
Kudankulam 1 p VVER-PWR 1 000 917 2013
Kudankulam 2 p VVER-PWR 1 000 917 2016
Madras Kalpakkam 1 p Candu (IND) 220 205 1984
Madras Kalpakkam 2 p Candu (IND) 220 205 1986
Narora 1 p Candu (IND) 220 202 1992
Narora 2 p Candu (IND) 220 202 1991
Rajasthan 1 p Candu 100 90 1973
Rajasthan 2 p Candu 200 187 1981
Rajasthan 3 p Candu (IND) 220 202 1999
Rajasthan 4 p Candu (IND) 220 202 2000
Rajasthan 5 p Candu (IND) 220 202 2009
Rajasthan 6 p Candu (IND) 220 202 2010
Tarapur 1 p BWR 160 150 1969
Tarapur 2 p BWR 160 150 1969
Tarapur 3 p Candu (IND) 540 490 2006
Tarapur 4 p Candu (IND) 540 490 2005
Kakrapar 3 P Candu (IND) 700 640 (2018)
Kakrapar 4 P Candu (IND) 700 640 (2019)
PFBR (Kalpakkam) P SNR 500 470 (2020)
Kudankulam 3 P VVER-PWR 1 000 917 (2018)
Rajasthan 7 P Candu (IND) 700 630 (2019)
Rajasthan 8 P Candu (IND) 700 630 (2019)
Iran
Bushehr 1 p VVER-PWR 1 000 953 2011
Japan
Fukushima Daini 1 p BWR 1 100 1 067 1982
Fukushima Daini 2 p BWR 1 100 1 067 1984
Fukushima Daini 3 p BWR 1 100 1 067 1985
Fukushima Daini 4 p BWR 1 100 1 067 1987
Genkai 2 p PWR 559 529 1981
Genkai 3 p PWR 1 180 1 127 1994
Genkai 4 p PWR 1 180 1 127 1997
Hamaoka 3 p BWR 1 100 1 056 1987
Hamaoka 4 p BWR 1 137 1 092 1993
Hamaoka 5 p BWR 1 267 1 216 2004
Higashidori 1 p BWR 1 100 1 067 2005
Ikata 2 p PWR 566 538 1982
Ikata 3 p PWR 890 846 1994
Kashiwazaki Kariwa 1 p BWR 1 100 1 067 1985
Kashiwazaki Kariwa 2 p BWR 1 100 1 067 1990
Kashiwazaki Kariwa 3 p BWR 1 100 1 067 1993
Kashiwazaki Kariwa 4 p BWR 1 100 1 067 1994
Kashiwazaki Kariwa 5 p BWR 1 100 1 067 1990
Kashiwazaki Kariwa 6 p BWR 1 356 1 315 1996
Country
Location/
Station name
Status Reactor type
Capacity
gross
[MW]
Capacity
net
[MW]
1st
Criticality
[Year]
Kashiwazaki Kariwa 7 p BWR 1 356 1 315 1997
Mihama 3 p PWR 826 781 1976
Monju [6] V FBR 280 246 1994
Ohi 1 p PWR 1 175 1 120 1979
Ohi 2 p PWR 1 175 1 120 1979
Ohi 3 p PWR 1 180 1 127 1991
Ohi 4 p PWR 1 180 1 127 1993
Onagawa 1 p BWR 524 496 1984
Onagawa 2 p BWR 825 796 1995
Onagawa 3 p BWR 825 798 2002
Sendai 1 p PWR 890 846 1984
Sendai 2 p PWR 890 846 1985
Shika 1 p BWR 540 505 1993
Shika 2 p BWR 1 358 1 304 2005
Shimane 2 p BWR 820 791 1989
Takahama 1 p PWR 826 780 1974
Takahama 2 p PWR 826 780 1975
Takahama 3 [4] p PWR 870 830 1985
Takahama 4 [4] p PWR 870 830 1985
Tokai 2 p BWR 1 100 1 067 1978
Tomari 1 p PWR 579 550 1989
Tomari 2 p PWR 579 550 1991
Tomari 3 p PWR 912 866 2009
Tsuruga 2 p PWR 1 160 1 115 1986
Shimane 3 P BWR 1 375 1 325 (2022)
Ohma P BWR 1 385 1 325 (2023)
Korea (Republic)
Kori 1 [6] V PWR 603 576 1978
Kori 2 p PWR 676 639 1983
Kori 3 p PWR 1 042 1 003 1985
Kori 4 p PWR 1 041 1 001 1986
Shin Kori 1 p PWR 1 048 996 2010
Shin Kori 2 p PWR 1 045 993 2011
Shin Kori 3 p PWR 1 400 1 340 2016
Hanul 1 p PWR 1 003 960 1988
Hanul 2 p PWR 1 008 962 1989
Hanul 3 p PWR 1 050 994 1998
Hanul 4 p PWR 1 053 998 1998
Hanul 5 p PWR 1 051 996 2003
Hanul 6 p PWR 1 051 996 2004
Wolsong 1 p Candu 687 645 1983
Wolsong 2 p Candu 678 653 1997
Wolsong 3 p Candu 698 675 1999
Wolsong 4 p Candu 703 679 1999
Shin Wolsong 1 p PWR 1 043 991 2012
Shin Wolsong 2 p PWR 1 000 960 2015
Hanbit 1 p PWR 996 953 1986
Hanbit 2 p PWR 993 945 1987
Hanbit 3 p PWR 1 050 997 1995
Hanbit 4 p PWR 1 049 997 1996
Hanbit 5 p PWR 1 053 997 2001
Hanbit 6 p PWR 1 052 995 2002
Shin Kori 4 P PWR 1 400 1 340 (2018)
Shin Kori 5 P PWR 1 400 1 340 (2022)
Shin Hanul 1 P PWR 1 400 1 340 (2020)
Shin Hanul 2 P PWR 1 400 1 340 (2022)
Mexico
Laguna Verde 1 p BWR 820 765 1990
Laguna Verde 2 p BWR 820 765 1995
Netherlands
Borssele p PWR 515 482 1973
Pakistan
Kanupp 1 p Candu 137 909 1972
Chasnupp 1 p PWR 325 300 2000
Chasnupp 2 p PWR 325 300 2011
Chasnupp 3 p PWR 340 315 2016
Chasnupp 4 [1] P PWR 340 315 2017
Kanupp 2 P PWR 1 100 1 014 (2021)
Kanupp 3 P PWR 1 100 1 014 (2022)
Romania
Cernavoda 1 p Candu 706 650 1996
Cernavoda 2 p Candu 706 655 2007
Russia
Balakovo 1 p VVER-PWR 1 000 953 1986
Balakovo 2 p VVER-PWR 1 000 953 1988
Balakovo 3 p VVER-PWR 1 000 953 1990
Balakovo 4 p VVER-PWR 1 000 953 1993
Beloyarsky 3 p FBR 600 560 1981
Beloyarsky 4 p FBR 800 750 2014
Bilibino 1 p LWGR 12 11 1974
Bilibino 2 p LWGR 12 11 1975
Statistics
Nuclear Power Plants: 2017 atw Compact Statistics
atw Vol. 63 (2018) | Issue 3 ı March
Country
Location/
Station name
Status Reactor type
Capacity
gross
[MW]
Capacity
net
[MW]
1st
Criticality
[Year]
Bilibino 3 p LWGR 12 11 1976
Bilibino 4 p LWGR 12 11 1977
Kalinin 1 p VVER-PWR 1 000 953 1985
Kalinin 2 p VVER-PWR 1 000 953 1987
Kalinin 3 p VVER-PWR 1 000 953 2004
Kalinin 4 p VVER-PWR 1 000 953 2011
Kola 1 p VVER-PWR 440 411 1973
Kola 2 p VVER-PWR 440 411 1975
Kola 3 p VVER-PWR 440 411 1982
Kola 4 p VVER-PWR 440 411 1984
Kursk 1 p LWGR 1 000 925 1977
Kursk 2 p LWGR 1 000 925 1979
Kursk 3 p LWGR 1 000 925 1984
Kursk 4 p LWGR 1 000 925 1986
Leningrad 1 p LWGR 1 000 925 1974
Leningrad 2 p LWGR 1 000 925 1976
Leningrad 3 p LWGR 1 000 925 1980
Leningrad 4 p LWGR 1 000 925 1981
Novovoronezh 4 p VVER-PWR 417 385 1973
Novovoronezh 5 p VVER-PWR 1 000 953 1981
Novovoronezh II-1 p VVER-PWR 1 000 955 2016
Rostov 1 p VVER-PWR 1 000 953 2001
Rostov 2 p VVER-PWR 1 000 953 2010
Rostov 3 p VVER-PWR 1 085 1 011 2014
Smolensk 1 p LWGR 1 000 925 1983
Smolensk 2 p LWGR 1 000 925 1985
Smolensk 3 p LWGR 1 000 925 1990
Akademik Lomonosov I P PWR 40 35 (2019)
Akademik Lomonosov I P PWR 40 35 (2019)
Baltic 1 (Kaliningrad) P VVER-PWR 1 170 1 080 (2020)
Leningrad II-1 P VVER-PWR 1 170 1 085 (2020)
Leningrad II-2 P VVER-PWR 1 170 1 085 (2021)
Novovoronezh II-2 P VVER-PWR 1 000 955 (2018)
Rostov 4 P VVER-PWR 1 085 1 011 (2019)
Slovakia
Bohunice 3 p VVER-PWR 505 472 1985
Bohunice 4 p VVER-PWR 505 472 1985
Mochovce 1 p VVER-PWR 470 436 1998
Mochovce 2 p VVER-PWR 470 436 1999
Mochovce 3 P VVER-PWR 440 408 (2019)
Mochovce 4 P VVER-PWR 440 408 (2019)
Slovenia
Krsko p PWR 727 696 1983
South Africa
Koeberg 1 p PWR 970 930 1984
Koeberg 2 p PWR 970 930 1985
Spain
Almaraz 1 p PWR 1 049 1 011 1981
Almaraz 2 p PWR 1 044 1 006 1983
Ascó 1 p PWR 1 033 995 1984
Ascó 2 p PWR 1 027 997 1985
Cofrentes p BWR 1 092 1 064 1985
Trillo 1 p PWR 1 066 1 002 1988
Vandellos 2 p PWR 1 087 1 045 1987
Santa Maria de Garoña [6] V BWR 466 446 1971
Sweden
Forsmark 1 p BWR 1 022 984 1980
Forsmark 2 p BWR 1 158 1 120 1981
Forsmark 3 p BWR 1 212 1 170 1985
Oskarshamn 1 [6] V BWR 492 473 1972
Oskarshamn 2 p BWR 661 638 1975
Oskarshamn 3 p BWR 1 450 1 400 1985
Ringhals 1 p BWR 910 878 1976
Ringhals 2 p PWR 847 807 1975
Ringhals 3 p PWR 1 117 1 064 1981
Ringhals 4 p PWR 990 940 1983
Switzerland
Beznau 1 p PWR 380 365 1969
Beznau 2 p PWR 380 365 1972
Gösgen p PWR 1 060 1 010 1979
Leibstadt p BWR 1 275 1 220 1984
Mühleberg p BWR 390 373 1973
Taiwan, China
Chin Shan 1 p BWR 636 604 1978
Chin Shan 2 p BWR 636 604 1979
Kuosheng 1 p BWR 985 948 1981
Kuosheng 2 p BWR 985 948 1983
Maanshan 1 p PWR 951 890 1984
Maanshan 2 p PWR 951 890 1985
Lungmen 1 P BWR 1 356 1 315 (2020)
Lungmen 2 P BWR 1 356 1 315 (2021)
Country
Location/
Station name
Status Reactor type
Capacity
gross
[MW]
Capacity
net
[MW]
1st
Criticality
[Year]
United Arab Emirates
Barakah 1 P PWR 1 400 1 340 (2018)
Barakah 2 P PWR 1 400 1 340 (2019)
Barakah 3 P PWR 1 400 1 340 (2020)
Barakah 4 P PWR 1 400 1 340 (2021)
United Kingdom
Dungeness B-1 p AGR 615 520 1985
Dungeness B-2 p AGR 615 520 1986
Hartlepool-1 p AGR 655 595 1984
Hartlepool-2 p AGR 655 585 1985
Heysham I-1 p AGR 625 585 1984
Heysham I-2 p AGR 625 575 1985
Heysham II-1 p AGR 682 595 1988
Heysham II-2 p AGR 682 595 1989
Hinkley Point B-1 p AGR 655 610 1976
Hinkley Point B-2 p AGR 655 610 1977
Hunterston B-1 p AGR 644 460 1976
Hunterston B-2 p AGR 644 430 1977
Sizewell B p PWR 1 250 1 191 1995
Torness Point 1 p AGR 682 595 1988
Torness Point 2 p AGR 682 595 1989
Ukraine
Khmelnitski 1 p VVER-PWR 1 000 950 1985
Khmelnitski 2 p VVER-PWR 1 000 950 2004
Rovno 1 p VVER-PWR 402 363 1981
Rovno 2 p VVER-PWR 416 377 1982
Rovno 3 p VVER-PWR 1 000 950 1987
Rovno 4 p VVER-PWR 1 000 950 2004
Zaporozhe 1 p VVER-PWR 1 000 950 1985
Zaporozhe 2 p VVER-PWR 1 000 950 1985
Zaporozhe 3 p VVER-PWR 1 000 950 1987
Zaporozhe 4 p VVER-PWR 1 000 950 1988
Zaporozhe 5 p VVER-PWR 1 000 950 1988
Zaporozhe 6 p VVER-PWR 1 000 950 1989
South Ukraine 1 p VVER-PWR 1 000 950 1983
South Ukraine 2 p VVER-PWR 1 000 950 1985
South Ukraine 3 p VVER-PWR 1 000 950 1989
USA
Arkansas Nuclear One 1 p PWR 969 903 1974
Arkansas Nuclear One 2 p PWR 1 006 943 1980
Beaver Valley 1 p PWR 955 923 1976
Beaver Valley 2 p PWR 957 923 1987
Braidwood 1 p PWR 1 289 1 225 1988
Braidwood 2 p PWR 1 289 1 225 1988
Browns Ferry 1 p BWR 1 200 1 152 1974
Browns Ferry 2 p BWR 1 193 1 152 1975
Browns Ferry 3 p BWR 1 232 1 190 1977
Brunswick 1 p BWR 1 074 1 002 1977
Brunswick 2 p BWR 1 075 1 002 1975
Byron 1 p PWR 1 307 1 225 1985
Byron 2 p PWR 1 304 1 225 1987
Callaway p PWR 1 316 1 236 1985
Calvert Cliffs 1 p PWR 935 918 1975
Calvert Cliffs 2 p PWR 939 911 1977
Catawba 1 p PWR 1 286 1 205 1985
Catawba 2 p PWR 1 286 1 205 1986
Clinton 1 p BWR 1 175 1 138 1987
Comanche Peak 1 p PWR 1 283 1 215 1990
Comanche Peak 2 p PWR 1 283 1 215 1993
Donald Cook 1 p PWR 1 266 1 152 1975
Donald Cook 2 p PWR 1 210 1 133 1978
Columbia (WNP 2) p BWR 1 244 1 200 1984
Cooper p BWR 844 801 1974
Davis Besse 1 p PWR 971 925 1978
Diablo Canyon 1 p PWR 1 236 1 159 1985
Diablo Canyon 2 p PWR 1 246 1 164 1985
Dresden 2 p BWR 1 057 1 009 1970
Dresden 3 p BWR 1 057 1 009 1971
Duane Arnold p BWR 737 680 1975
Farley 1 p PWR 933 888 1977
Farley 2 p PWR 934 888 1981
Fermi 2 p BWR 1 317 1 217 1988
FitzPatrick p BWR 918 882 1975
Ginna p PWR 713 614 1970
Grand Gulf 1 p BWR 1 516 1 440 1985
Hatch 1 p BWR 891 857 1974
Hatch 2 p BWR 905 865 1979
Hope Creek 1 p BWR 1 360 1 291 1986
Indian Point 2 p PWR 1 348 1 299 1974
Indian Point 3 p PWR 1 051 1 012 1976
La Salle 1 p BWR 1 242 1 170 1984
185
STATISTICS
Statistics
Nuclear Power Plants: 2017 atw Compact Statistics
atw Vol. 63 (2018) | Issue 3 ı March
186
KTG INSIDE
Country
Location/
Station name
Status Reactor type
Capacity
gross
[MW]
Capacity
net
[MW]
1st
Criticality
[Year]
La Salle 2 p BWR 1 238 1 170 1984
Limerick 1 p BWR 1 203 1 139 1986
Limerick 2 p BWR 1 199 1 139 1990
McGuire 1 p PWR 1 358 1 220 1981
McGuire 2 p PWR 1 358 1 220 1984
Millstone 2 p PWR 946 91 0 1975
Millstone 3 p PWR 1 308 1 253 1986
Monticello p BWR 734 685 1971
Nine Mile Point 1 p BWR 671 642 1969
Nine Mile Point 2 p BWR 1 302 1 259 1988
North Anna 1 p PWR 1 035 980 1978
North Anna 2 p PWR 1 033 980 1980
Oconee 1 p PWR 955 887 1973
Oconee 2 p PWR 955 887 1974
Oconee 3 p PWR 961 893 1974
Oyster Creek p BWR 595 550 1969
Palisades p PWR 870 81 2 1971
Palo Verde 1 p PWR 1 528 1 403 1986
Palo Verde 2 p PWR 1 524 1 403 1988
Palo Verde 3 p PWR 1 524 1 403 1986
Peach Bottom 2 p BWR 1 233 1 1 60 1974
Peach Bottom 3 p BWR 1 233 1 1 60 1974
Perry 1 p BWR 1 397 1 31 2 1987
Pilgrim p BWR 71 2 670 1972
Point Beach 1 p PWR 696 643 1970
Point Beach 2 p PWR 696 643 1972
Prairie Island 1 p PWR 642 593 1973
Prairie Island 2 p PWR 641 593 1974
Quad Cities 1 p BWR 1 061 1 009 1973
Quad Cities 2 p BWR 1 061 1 009 1973
RiverBend 1 p BWR 1 073 1 036 1986
Robinson 2 p PWR 855 769 1971
Salem 1 p PWR 1 276 1 1 70 1977
Salem 2 p PWR 1 303 1 1 70 1981
Seabrook 1 p PWR 1 330 1 242 1990
Sequoyah 1 p PWR 1 259 1 221 1981
Sequoyah 2 p PWR 1 279 1 221 1982
Shearon Harris 1 p PWR 983 951 1987
South Texas 1 p PWR 1 41 0 1 354 1988
Country
Location/
Station name
Status Reactor type
Capacity
gross
[MW]
Capacity
net
[MW]
1st
Criticality
[Year]
South Texas 2 p PWR 1 41 0 1 354 1989
St. Lucie 1 p PWR 1 1 22 1 080 1976
St. Lucie 2 p PWR 1 1 35 1 080 1983
Virgil C. Summer p PWR 1 071 1 030 1984
Surry 1 p PWR 900 848 1972
Surry 2 p PWR 900 848 1973
Susquehanna 1 p BWR 1 374 1 298 1983
Susquehanna 2 p BWR 1 374 1 298 1985
Three Mile Island 1 p PWR 1 021 976 1974
Turkey Point 3 p PWR 906 877 1972
Turkey Point 4 p PWR 800 760 1973
Vogtle 1 p PWR 1 223 1 1 60 1987
Vogtle 2 p PWR 1 226 1 1 60 1989
Waterford 3 p PWR 1 250 1 200 1985
Watts Bar 1 p PWR 1 370 1 270 1996
Watts Bar 2 p PWR 1 240 1 180 2016
Wolf Creek p PWR 1 351 1 268 1984
Vogtle 3 P PWR 1 080 1 000 (2019)
Vogtle 4 P PWR 1 080 1 000 (2020)
Virgil C. Summer 2 [3] P PWR 1 080 1 000 (-)
Virgil C. Summer 3 [3] P PWR 1 080 1 000 (-)
1) Start of nuclear operation (first criticality: C, first grid connection: G, commercial operation: O):
3 units in 2017 (CGO), China: Fuqing 4 (1089 MW, PWR, CGO), Tianwan 3 (1126 MW, PWR, CGO),
Pakistan: Chasnupp-4 (340 MW, PWR, CGO); 1 unit in 2017 (GO), China Yangjiang 4 (1086 MW, GO).
2) Start of construction (first concrete), 3 units in 2017: Bangladesh: Rooppur 1 (1200 MW),
India: Kudankulam 3 (1000 MW), South Korea: Shin-Kori 5 (1455 MW).
3) Project under construction (finally) cancelled: USA: Virgil C. Summer 2 and Virgil C. Summer 3
(1080 MW).
4) Resumed operation: Japan: Takahama 3 (PWR, 870 MW) and Takahama 4 (PWR, 870 MW).
5) Nuclear power plant in long-term shutdown: none.
6) Nuclear power plants permanently shutdown in 2017 (5 units): Germany: Gundremmingen B
(BWR, 1344 MW); Japan: Monju (FBR, 280 MW); South Korea: Kori 1 (PWR, 608 MW);
Spain: St. Maria de Garona (BWR, 466 MW); Sweden: Oskarshamn 1 (BWR, 492 MW).
(All capacity data in MWe gross)
AGR: Advanced Gas-cooled Reactor, BWR: Boiling water reactor, Candu: CANada Deuterium
Uranium reactor (IND: Indian type), D 2 O-PWR: heavy water moderated, pressurised water reactor,
PWR: pressurised water reactor, GGR: gas-graphite reactor, LWGR/GLWR: light water cooled
graphite moderated reactor (Russian type RBMK), FBWR: advanced boiling water reactor, FBR: fast
breeder reactor
| | Tab. 1.
Nuclear power plant units worldwide on 31.12.2016 in operation (p), under construction (P), in lay-up operation/long-term shutdown (1) or permanently shut-down in 2016 (V)
[Sources: Operators, IAEO]. All information and data refer to the year 2016. Data have been updated with reference to the sources
Herzlichen
Glückwunsch
März 2018
91 Jahre wird
27. Prof. Dr. Bernhard Liebmann,
Kronberg
88 Jahre werden
6. Prof. Dr. Hubertus Nickel, Jülich
25. Dr. Hans-Ulrich Borgstedt,
Karlsruhe
25. Dr. Peter Borsch, Dresden
87 Jahre wird
17. Dipl.-Ing. Hans Waldmann
86 Jahre wird
14. Dr. Peter Engelmann,
Eggenstein-Leopoldshafen
85 Jahre werden
26. Dipl.-Ing. Gerhard Frei, Uttenreuth
30. Dipl.-Phys. Dieter Pleuger, Kiedrich
84 Jahre werden
1. Prof. Dr. Günther Kessler, Stutensee
18. Dipl.-Ing. Willi Riebold, München
30. Prof. Dr. Helmut Völcker, Essen
83 Jahre werden
2. Dipl.-Ing. Joachim Hospe, München
14. Dr. Hermann Kraemer, Seevetal
82 Jahre werden
2. Dr. Ralf-Dieter Penzhorn, Bruchsal
8. Prof. Dr. Erich Tenckhoff, Erlangen
19. Dr. Hermann Hinsch, Hannover
81 Jahre wird
29. Dipl.-Ing. Friedrich Garzarolli, Fürth
80 Jahre werden
4. Dr. Rainer Göhring, Nauen
6. Dipl.-Math. Udo Harten, Stutensee
10. Dr. Hein-Jürzen Kriks, Braunschweig
11. Peter Vagt, Rösrath
14. Dr. Peter Paetz, Bergisch Gladbach
16. Prof. Dr. Helmut Röthmeyer,
Braunschweig
22. Dr. Bruno-J. Baumgartl, Weiterstadt
79 Jahre werden
1. Prof. Dr. Günter Höhlein, Wiesbaden
1. Dipl.-Ing. Wolfgang Dietz, Lindlar
7. Dr. Kurt Vinzens, Berg-Aufkirchen
17. Dipl.-Phys. Renate von Le Suire,
Seeshaupt
2. Dipl.-Ing. Helmut Pekarek,
Wonga Park/AUS
25. Dipl.-Ing. Joachim Koch, Mömbris
78 Jahre werden
1. Dipl.-Ing. Wolfgang Stumpf, Moers
3. Dr. Lutz Niemann, Holzkirchen
3. Dipl.-Ing. Eberhard Schomer, Erlangen
7. Dr. Volker Klix, Gehrden
12. Prof. Dr. Arndt Falk, Sterup
18. Dipl.-Ing. Friedhelm Hülsmann,
Garbsen
21. Uwe Göldner, Krefeld
29. Ing. Dieter-W. Sauer, Berlin
29. Dipl.-Phys. Harald Reinhardt,
Leverkusen
KTG Inside
atw Vol. 63 (2018) | Issue 3 ı March
Inside
187
Sicherheit, Kompetenz und
unsere Jahrestagung (AMNT)
Liebe KTGler, liebe atw-Leser, für den zuverlässigen Betrieb eines Kernkraftwerks sind die technische
Kompetenz und das Sicherheitsbewusstsein der Betriebsmannschaft sowie die Sicherheit der Anlage wesentliche
Voraussetzungen. In Deutschland ist nun das Ende des Betriebs von Leistungsreaktoren beschlossen, nicht so bei vielen
unserer europäischen Nachbarn. Sollen und können wir die kerntechnische Kompetenz in Deutschland weiterhin
erhalten?
Im Rahmen der Energievorsorgeforschung liegt es zur
Sicherheit der Bevölkerung und der Umwelt nahe, das
Know-how, die Kompetenz in der Kerntechnik zu erhalten
und noch weiter auszubauen. Kurzfristig zur Gewährleistung
des sicheren Restbetriebs in Deutschland sowie
langfristig zur Bewertung der Sicherheit benachbarter
Anlagen und vor allem, um einen Beitrag zur Erhöhung
der Sicherheit geplanter Neubauten im internationalen
Umfeld leisten zu können.
Zu der nachgewiesenen, hohen Zuverlässigkeit der
deutschen Anlagen tragen sehr viele bei, vor allem
die Betreiber selbst, aber auch, um hier nur einige zu
nennen, technische Sicherheitsorganisationen, Gutachter,
Genehmigungsbehörden, die Reaktor-Sicherheitskommission,
der Kerntechnische Ausschuss sowie Forschungszentren
und Hochschulen mit den die (Sicherheits-)
Forschung fördernden Ministerien und Projektträgern.
Diese Situation erfordert die Aufstellung eines sorgfältigen
Konzeptes zum perspektivischen Erhalt der Kompetenz,
was angesichts der vielfältigen und verschiedenartigen
Know-how-Träger eine anspruchsvolle Aufgabe ist.
Der Kompetenzerhalt/-ausbau braucht dabei zwingend
die Einbeziehung und Motivation junger Menschen.
Hierzu bietet sich als ein Instrument die Reaktorsicherheitsforschung,
als eine Säule des Kompetenzerhalts in der
Kerntechnik, an.
Erste Anlaufstellen wären hier die Universitäten mit
ihren Studierenden und geförderten nationalen kerntechnischen
Forschungsprojekten und internationalen
Forschungskooperationen, die ihren Doktoranden eine
vertiefte Auseinandersetzung mit der Thematik ermöglichen.
Wichtig ist aber auch die Zusammenführung von
Nachwuchswissenschaftlern (m/w) mit Spezialisten aus
relevanten beteiligten Institutionen. Dies umso mehr, da
die Kerntechnik ein hochgradig multidisziplinäres Arbeitsgebiet
ist.
Für den Kompetenzerhalt kommt der KTG und ihrer
Jahrestagung (AMNT) eine besondere Rolle zu, da sie die
verschiedenen Disziplinen sowie die nationalen und
internationalen Experten in einem Netzwerk verknüpfen
kann. Von Bedeutung ist dabei auch der Einfluss, den die
Mitglieder direkt oder durch Ansprache der Vertreter in
den Gremien auf die Gestaltung und Schwerpunktsetzung
der Jahrestagung nehmen können und sollten.
Bringen Sie sich ein, um unser Know-how zu erhalten!
| | Prof. Dr.-Ing.
Marco K. Koch
(54), Bochum
Stellvertretender
Vorsitzender
der KTG
KTG Inside
Verantwortlich
für den Inhalt:
Die Autoren.
Lektorat:
Sibille Wingens,
Kerntechnische
Gesellschaft e. V.
(KTG)
Robert-Koch-Platz 4
10115 Berlin
T: +49 30 498555-50
F: +49 30 498555-51
E-Mail: s.wingens@
ktg.org
KTG INSIDE
Ihr Marco K. Koch
www.ktg.org
77 Jahre werden
4. Ing. Ulrich Ristow, Neu-Isenburg
8. Dr. Frank Steinbrunn, Fröndenberg
14. Dipl.-Ing. Bernd Jürgens, Hirschberg
22. Dipl.-Phys. Gerhard Jourdan, Landau
76 Jahre wird
10. Dipl.-Phys. Alfons Scholz, Brühl
75 Jahre werden
7. Dr. Peter Royl, Stutensee
16. Dipl.-Ing. Jochen Heinecke, Kürten
20. Dipl.-Ing. Jörg Brauns, Hanau
26. Dr. Jürgen P. Lempert, Hannover
26. Graeme William Catto,
Buch a. Erlbach
70 Jahre werden
5. Dipl.-Wirtsch.-Ing. Bernd Pontani,
Alzenau
13. Dipl.-Kfm. Jochen Bläsing,
Mörlenbach
22. Dr. Volker Mirschinka, Essen
65 Jahre wird
21. Dr. Ulrich Rohde, Dresden
60 Jahre wird
26. Dr. Sheikh Shahee, Leinburg
50 Jahre werden
20. Thomas Wiese, Ebermannstadt
30. Dipl.-Ing. Heiko Ringel, Offingen
April 2018
97 Jahre wird
2. Prof. Dr. Albert Ziegler, Karlsbad
87 Jahre werden
9. Dr. Klaus Penndorf, Geesthacht
11. Hubert Bairiot, Mol/B
19. Dr. Klaus Einfeld, Murnau
28. Dipl.-Ing. Rudolf Eberhart,
Burgdorf
85 Jahre wird
6. Ing. Reinhard Faulhaber, Köln
84 Jahre wird
22. Dipl.-Ing. Gert Slopianka,
Gorxheimeral
83 Jahre werden
3. Dipl.-Psych. Georg Sieber, München
5. Prof. Dr. Hans-Henning Hennies,
Karlsruhe
19. Dr. Ernst Müller, Rösrath
19. Dr. Gottfried Class,
Eggenstein-Leopoldshafen
21. Dipl.-Ing. Walter Jansing,
Bergisch Gladbach
30. Dr. Friedrich-Wilhelm Heuser,
Overath
82 Jahre werden
4. Helmut Kuhne, Neunkirchen
6. Dipl.-Ing. Hans Pirk, Rottach-Egern
10. Dipl.-Ing. Franz Stockschläder,
Bad Bentheim
11. Dipl.-Ing. Bernhard-F. Roth,
Eggenstein-Leopoldshafen
24. Dipl.-Ing. Horst Schott, Overath
81 Jahre werden
7. Dipl.-Ing. Helmut Adam,
Neuenhagen
13. Dr. Martin Peehs, Bubenreuth
KTG Inside
atw Vol. 63 (2018) | Issue 3 ı March
188
NEWS
Wenn Sie keine
Erwähnung Ihres
Geburtstages in
der atw wünschen,
teilen Sie dies bitte
rechtzeitig der KTG-
Geschäftsstelle mit.
80 Jahre werden
4. Prof. Dr. Klaus Kühn,
Clausthal-Zellerfeld
5. Dr. Hans Fuchs, Gelterkinden/CH
9. Dr. Carl Alexander Duckwitz, Alzenaz
28. Prof. Dr. Georg-Friedrich Schultheiss,
Lüneburg
79 Jahre wird
8. Dr. Siegbert Storch, Aachen
78 Jahre wird
18. Dipl.-Ing. Norbert Granner,
Bergisch Gladbach
77 Jahre werden
17. Dipl.-Phys. Ernst Robinson, Gehrden
28. Dr. Ludwig Richter, Hasselroth
76 Jahre werden
9. Prof. Dr. Hans-Christoph Mehner,
Dresden
27. Dr. Dieter Sommer, Mosbach
27. Dr. Jürgen Wunschmann, Eggenstein
29. Dr. Klaus-Detlef Closs, Karlsruhe
75 Jahre werden
15. Dr. Werner Dander, Heppenheim
18. Dipl.-Betriebsw. Uwe Janßen,
Weinheim
18. Dipl.-Ing. Victor Luster, Bamberg
26. Ing. Helmut Schulz, Kürten
70 Jahre werden
6. Dr. Wolfgang Tietsch, Mannheim
9. Ing. Herbert Moryson, Essen
22. Dr. Heinz-Dietmar Maertens, Arnum
26. Dr. Rainer Heibel, Ness Neston/GB
27. Ulrich Wimmer, Erlangen
65 Jahre werden
10. Dipl.-Phys. Harold Rebohm, Berlin
24. Dipl.-Phys. Michael Beczkowiak,
Karben
60 Jahre werden
4. Dipl.-Ing. Holger Bröskamp,
Höhnhorst
4. Dipl.-Ing. (FH) Franz Xaver Pirzer,
Schwandorf
50 Jahre werden
16. Rainer Bezold, Dormitz
16. Dr. Matthias Messer, Tetbury/GB
30. Dr. Christian Raetzke, Leipzig
Die KTG gratuliert ihren Mitgliedern
sehr herzlich zum Geburtstag und
wünscht ihnen weiterhin alles Gute!
Top
Foratom: Europe needs
nuclear for climate change
and energy security
(foratom) Nuclear energy contributes
to the European Union’s three key
energy objectives laid out in the bloc’s
energy union initiative of security of
supply, competitiveness and environmental
sustainability, Yves Desbazeille,
director-general of industry group
Foratom, told journalists in Brussels
on 29 January 2018.
According to Mr Desbazeille, the EU
must continue to focus on achieving its
ultimate goal of cutting CO 2 emissions,
transitioning to a low- carbon economy,
ensuring security of energy supply and
creating jobs. He said the EU should
continue to use “all the best tools available”,
including nuclear energy.
Mr Desbazeille said nuclear was
not mentioned in the EU’s latest ‘Clean
Energy for All Europeans’ legislative
package, although it is currently
providing almost half of the EU’s lowcarbon
electricity.
He said adjustments are also
needed to the way the European
energy markets work in order to stimulate
investment in long-term energy
capacities. A higher price to carbon
emissions is needed to encourage such
investments and a revision of the EU
emissions trading scheme (ETS) will
be a “key instrument” for decarbonising
the EU’s economy, Mr Desbazeille
said.
On the UK leaving the Euratom
treaty as part of Brexit, Mr Desbazeille
said the EU and UK should not delay
negotiating their future relationship
in the civil nuclear field and in
particular defining the parameters of
a transitional period.
Euratom is the treaty which underpins
the nuclear industry and the
trade in nuclear materials in the EU.
| | (18501457), www.foratom.org
WNA outlines vision
for future of electricity
(wna) Harmony is the nuclear industry
vision supported by the World
Nuclear Association (WNA) for the
future of electricity and how nuclear
energy can help the world achieve its
2° climate target.
According to WNA, nuclear power
capacity will need to grow signifi cantly
around the world in order to meet
the International Energy Agency’s 2°
scenario. “By 2050, nuclear energy
must account for 25 % of energy
genera tion if we are to meet our
climate targets. With nuclear making
up 11 % of generation in 2014, an extra
1000 GW in nuclear capacity will need
to be built by 2050” states Agneta
Rising, WNA Director General. “However,
meeting this goal will not be
easy”, she adds.
One of the actions being undertaken
by the Harmony programme is
an evaluation of current barriers and
recommended solutions. These can be
summarised as follows:
Electricity market failures: Ensure
a level playing field for all low carbon
energy sources including nuclear.
Regulatory barriers: Harmonise
international regulatory processes to
ensure consistency, efficiency and
predictability.
Misconception of risks and benefits:
Address public concerns and put the
health, environmental and safety risks
of nuclear in perspective compared to
other power generation technologies.
“FORATOM very much welcomes
the work being undertaken by the
WNA. Indeed, Europe faces many of
the same challenges, and opportunities,
as other regions”, underlines
Yves Desbazeille, FORATOM Director
General. “Globally, the EU is the
region which emits the lowest amount
of CO 2 emissions from electricity generation
thanks to nuclear energy. We
look forward to continuing our fruitful
cooperation with the WNA and
making sure our positive messages
about the real value of nuclear energy
resonate across Europe”.
For more information about the
Harmony programme check out the
website: world-nuclear.org/harmony.
| | (18501447), www.world-nuclear.org,
www.foratom.org
World
Head of ROSATOM Alexei
Likhachev announced 2018
the Year of Nuclear Science
(rosatom) On the 6th of February
2018, speaking at the function at the
Presidium of Scientific and Technical
Board of ROSATOM dedicated to the
Russian Science Day, Director General
of ROSATOM Alexei Likhachev
announced 2018 the Year of Nuclear
Science.
Likhachev reminded that the
nuclear sector had appeared in the
world owing to fundamental scientific
discoveries and today’s achievements
of Russian nuclear scientists in many
respects were based on scientific
News
atw Vol. 63 (2018) | Issue 3 ı March
Operating Results October 2017
Plant name Country Nominal
capacity
Type
gross
[MW]
net
[MW]
Operating
time
generator
[h]
Energy generated. gross
[MWh]
Month Year Since
commissioning
Time availability
[%]
Energy availability Energy utilisation
[%] *) [%] *)
Month Year Month Year Month Year
OL1 Olkiluoto BWR FI 910 880 523 453 505 6 084 788 253 316 643 70.17 93.53 67.01 91.99 66.89 91.65
OL2 Olkiluoto BWR FI 910 880 745 687 245 5 131 241 242 948 381 100.00 77.68 100.00 76.66 101.37 77.29
KCB Borssele PWR NL 512 484 703 352 921 2 653 908 157 458 349 93.60 71.62 93.63 72.12 92.49 69.50
KKB 1 Beznau 1,2,7) PWR CH 380 365 0 0 0 124 746 087 0 0 0 0 0 0
KKB 2 Beznau 1,2,7) PWR CH 380 365 745 283 718 2 370 828 130 602 984 100.00 85.94 100.00 85.41 100.25 84.71
KKG Gösgen 7) PWR CH 1060 1010 745 788 371 7 019 814 303 630 449 100.00 91.62 99.98 91.20 99.83 90.77
KKM Mühleberg BWR CH 390 373 745 286 910 2 560 350 123 772 595 100.00 91.47 99.97 90.80 98.75 89.98
CNT-I Trillo PWR ES 1066 1003 745 791 502 6 975 968 237 469 685 100.00 90.51 100.00 90.20 99.03 89.19
Dukovany B1 PWR CZ 500 473 745 371 657 2 094 026 107 904 400 100.00 59.16 100.00 58.76 99.77 57.40
Dukovany B2 PWR CZ 500 473 745 368 190 2 590 373 103 913 002 100.00 72.79 100.00 72.20 98.84 71.01
Dukovany B3 PWR CZ 500 473 0 0 2 309 273 101 934 129 0 74.25 0 63.88 0 63.30
Dukovany B4 PWR CZ 500 473 745 370 436 2 197 298 102 725 449 100.00 71.01 99.55 60.37 99.45 60.23
Temelin B1 PWR CZ 1080 1030 745 802 035 7 883 127 105 511 286 100.00 100.00 99.96 99.96 99.68 100.04
Temelin B2 PWR CZ 1080 1030 745 808 164 6 031 344 99 895 666 100.00 76.21 100.00 75.84 100.44 76.54
Doel 1 PWR BE 454 433 745 337 695 2 951 580 133 564 553 100.00 89.85 99.88 89.32 99.46 88.90
Doel 2 PWR BE 454 433 745 339 506 2 939 341 131 592 990 100.00 90.56 99.98 90.17 99.85 88.21
Doel 3 PWR BE 1056 1006 0 0 6 732 621 251 169 221 0 86.76 0 86.57 0 86.93
Doel 4 PWR BE 1084 1033 745 812 158 6 281 391 252 953 842 100.00 81.41 100.00 80.78 99.48 78.75
Tihange 1 PWR BE 1009 962 0 0 2 690 977 289 954 051 0 38.01 0 37.60 0 36.54
Tihange 2 PWR BE 1055 1008 745 786 476 5 870 641 247 389 709 100.00 80.71 100.00 76.52 100.69 76.58
Tihange 3 PWR BE 1089 1038 745 804 709 7 855 132 267 335 829 100.00 100.00 99.98 99.98 99.07 98.76
189
NEWS
Operating Results December 2017
Plant name
Type
Nominal
capacity
gross
[MW]
net
[MW]
Operating
time
generator
[h]
Energy generated, gross
[MWh]
Time availability
[%]
Energy availability Energy utilisation
[%] *) [%] *)
Month Year Since Month Year Month Year Month Year
commissioning
KBR Brokdorf DWR 1480 1410 744 932 450 5 778 146 340 192 059 100.00 51.68 93.41 48.23 84.26 44.37
KKE Emsland 4) DWR 1406 1335 744 1 001 858 11 323 704 335 323 283 100.00 93.28 100.00 93.13 95.68 91.94
KWG Grohnde DWR 1430 1360 744 971 810 9 684 880 366 627 579 100.00 86.06 94.84 82.24 90.74 76.66
KRB B Gundremmingen 4) SWR 1344 1284 732 636 949 9 689 710 331 342 654 98.39 93.06 97.96 92.22 62.39 81.55
KRB C Gundremmingen SWR 1344 1288 744 982 473 9 929 820 320 579 893 100.00 87.85 100.00 85.93 97.80 83.86
KKI-2 Isar DWR 1485 1410 744 1 083 616 11 523 513 341 598 323 100.00 91.53 99.96 91.15 97.80 88.26
KKP-2 Philippsburg DWR 1468 1402 744 1 065 419 7 853 827 355 167 516 100.00 63.18 100.00 63.12 95.90 60.10
GKN-II Neckarwestheim DWR 1400 1310 744 995 400 10 540 800 320 123 134 100.00 88.93 100.00 88.60 95.72 86.10
findings of the father-founders of the
sector. “The sectoral science all the
way has proved the theorem of the
sector existence,” he said, noting that
the contemporary challenges required
solving many new topical tasks on
which the future development of
nuclear industry is dependent and
ROSATOM’s competitiveness on the
world market is maintained.
According to Likhachev, ROSATOM’s
management pays the high priority
attention to the development of the
sectoral science that is confirmed by the
staff and organizational decisions
made last year and setting the highpriority
tasks which include building
up the sectoral plan in scientific areas,
creation of the scientific eco-environs,
provisions for sustainable financing of
scientific activities, raising prestige of
scientific work, and many others.
“One more important task we are
facing is the broadening scientific
contacts, including our ‘blood brother’
NRC Kurchatov Institute as well as
with the Russian Academy of Sciences.
In April 2018, we plan to hold a large
scientific conference of the sector
where we will summarize certain
results and possibly make decisions on
development in promising areas,”
Alexei Likhachev said.
“Using this opportunity, I would like
to announce 2018 the Year of Nuclear
Science,” the head of sector said.
In turn, President of the Russian
Academy of Sciences Aleksandr Sergeev
noted in his address that today
“RAS and ROSATOM work on friendly
terms and in concert”. “In our interaction,
ROSATOM is the support of RAS
and, perhaps, today RAS needs ROSA-
TOM more than ROSATOM needs
RAS,” he said.
The meeting was attended by
leading Russian scientists, heads of
ROSATOM, Russian Academy of
Sciences, directors of nuclear research
centers, and NRC Kurchatov Institute.
At the function, welcoming speeches
and presentations were made by Head
of Proryv Project Evgeniy Adamov;
Director of NRC Kurchatov Institute
Denis Minkin; Director of SRC RF
TRINITY (part of ROSATOM’s Science
Division) Vladimir Cherkovets; Director
of Institute for Laser Physical Research,
Academician of RAS Sergey
Garanin; Deputy General Director of
*)
Net-based values
(Czech and Swiss
nuclear power
plants gross-based)
1)
Refueling
2)
Inspection
3)
Repair
4)
Stretch-out-operation
5)
Stretch-in-operation
6)
Hereof traction supply
7)
Incl. steam supply
8)
New nominal
capacity since
January 2016
9)
Data for the Leibstadt
(CH) NPP will
be published in a
further issue of atw
BWR: Boiling
Water Reactor
PWR: Pressurised
Water Reactor
Source: VGB
News
atw Vol. 63 (2018) | Issue 3 ı March
190
NEWS
NMRC for Radiology Sergey Ivanov
and others.
| | (18501542), www.rosatom.ru
IAEA mission: France
committed to safe,
responsible management
of radioactive waste
(iaea) An International Atomic Energy
Agency (IAEA) team of experts said
France demonstrated a comprehensive
commitment to safety with a
responsible approach to the management
of radioactive waste and spent
nuclear fuel. The team also made
suggestions aimed at further enhancements
and noted several good practices.
The Integrated Review Service for
Radioactive Waste and Spent Fuel
Management, Decommissioning and
Remediation (ARTEMIS) team concluded
an 11-day mission to France on
24 January. The mission, requested by
the Government of France, was hosted
by the Directorate General of Energy
and Climate (DGEC), with the participation
of officials from several relevant
organizations including the
French National Radioactive Waste
Agency (ANDRA) and the Nuclear
Safety Authority (ASN), which is responsible
for nuclear and radiation
safety regulation in the country.
ARTEMIS missions provide independent
expert advice from an international
team of specialists convened
by the IAEA. Reviews are based on the
IAEA safety standards as well as international
good practices. The mission
to France aimed to help the country
meet European Union obligations that
require an independent peer review of
national programmes for the safe and
responsible management of spent fuel
and radioactive waste.
Nuclear power currently generates
more than 70 percent of France’s electricity.
The country has 58 operating
nuclear power reactors, which will
require the continuing safe management
of radioactive waste and spent
fuel. France operates facilities for
the disposal of very low-level and
| | Members of the ARTEMIS team which carried out a mission to France that
concluded on 24 January 2018. (Photo: IAEA)
low- level wastes, and is developing a
deep geological repository for the disposal
of high-level waste.
“On the basis of the review, the
team concluded that France’s waste
management programme is comprehensive
and coherent in fostering
safety,” said ARTEMIS team leader
Peter De Preter, Senior Advisor at
ONDRA/NIRAS, the Belgian agency
for the management of radioactive
waste. “Our review highlights France’s
commitment to safety.”
The ARTEMIS team said France is
well positioned to continue meeting
high standards of safety. It noted a
number of good practices to be shared
with the global waste management
community, while making suggestions
for further enhancing the programme.
Good practices identified by the
team included:
• A clear government commitment
to the national strategy and programme
for waste management,
including safe disposal.
• The development of a transparent
national waste inventory.
• Deliberate efforts towards maintaining
a high level of professional,
competent staff.
Suggestions made by the team
included:
• Facilitate implementation of the
requirement for decommissioning
to take place in the shortest time
possible.
• Optimize management of very low
level wastes.
• Consider mechanisms to address
disposal liabilities for small waste
producers.
The team comprised 13 experts from
Belgium, Canada, Cuba, Finland,
Germany, the Netherlands, Spain and
the United Kingdom as well as three
IAEA staff members. The team held
meetings with officials from the
Government and several relevant
organizations.
“This peer review represents an
important element in our efforts to
ensure the safety of the French waste
management programme, establish
greater public confidence and respond
to the EU waste directive,” said Aurelien
Louis, Head of the Nuclear Industry
Department at DGEC. “The outcome
of the mission was very positive
while also providing us with suggestions
that will be a good basis for future
enhancements.”
IAEA Deputy Director General
Juan Carlos Lentijo, Head of the Department
of Nuclear Safety and Security,
noted that the French mission
was the second ARTEMIS carried out
to meet EU obligations, following a recent
review in Poland.
“The French national programme
is characterized by a pervasive proactive
attitude combined with a high level
of professionalism, which together
demonstrates an enduring commitment
to safety,” Lentijo said. “The
French programme review provides
all of us a valuable reference with an
established, diverse and coherent programme.”
The final mission report will be
provided to the Government in about
two months.
About ARTEMIS
ARTEMIS is an integrated expert
review service for radioactive waste
and spent fuel management, decommissioning
and remediation programmes.
This service is intended for
facility operators and organizations
responsible for radioactive waste
management, as well as for regulators,
national policy makers and other
decision makers.
| | (18501336), www.iaea.org
IAEA and EU review progress
on cooperation
(iaea) The International Atomic
Energy Agency (IAEA) and the European
Union (EU) reviewed progress
achieved in working together on a
range of nuclear activities and agreed
to further enhance cooperation during
their sixth annual Senior Officials
Meeting in Vienna.
The talks on 8 February at the
IAEA’s headquarters provided a forum
for exchanging views on strengthening
collaboration on nuclear safety,
security, safeguards, sustainable development,
nuclear energy research
and increasing innovation. The two
organizations welcomed the fruitful
cooperation and progress achieved
over the past years. They agreed to
deepen cooperation in several areas,
particularly in the promotion of
nuclear applications for sustainable
development.
“The EU is a significant partner for
the IAEA and these annual gatherings
of senior officials serve an important
role in helping to coordinate our
activities,” said Cornel Feruta, Chief
Coordinator for the IAEA. “We have
been pleased by progress made in
working together on several nuclearrelated
issues, and look forward to
deepening our cooperation, in particular
in the area of nuclear applications
for sustainable development.”
“Nuclear safety and security remain
our key priorities, both in
News
atw Vol. 63 (2018) | Issue 3 ı March
| | Cornel Feruta (centre), Chief Coordinator for
the IAEA, making opening remarks at the sixth
annual IAEA/EU Senior Officials Meeting held
in Vienna on 8 February 2018.
Europe and globally,” said Gerassimos
Thomas, Deputy Director General in
the Directorate-General for Energy of
the European Commission. “In 2018,
the EU will conduct its first ever
topical peer review on ageing management
of nuclear power plants under
the amended Nuclear Safety Directive.
It will also advance its strategic
agenda on non-power applications in
medicine, industry and research. We
are working in close cooperation with
the IAEA on these matters.”
The EU and the IAEA reaffirmed
support for the Joint Comprehensive
Plan of Action (JCPOA) based on their
respective mandates. The EU High
Representative, as Coordinator of the
Joint Commission established under
the JCPOA, will remain in close
contact with the IAEA regarding
continued implementation of the
agreement.
EU support for a variety of IAEA
activities has delivered consistent and
concrete results over the past year.
Officials commended the long-standing
and successful cooperation under
the Instrument for Nuclear Safety
Cooperation. The EU also welcomed
joint efforts to address environmental
remediation in Central Asia and the
upcoming donors’ conference in fall
2018.
During the talks, the EU and the
IAEA agreed to further strengthen cooperation
in training as well as research
and development. They welcomed
progress in advancing activities
on nuclear applications since the
signing of Practical Arrangements in
this field last year. The EU also reaffirmed
its support for the implementation
of the IAEA’s 2018-2021 Nuclear
Security Plan.
The sides welcomed the launch of
the IAEA’s new ARTEMIS peer review
service of national decommissioning
and waste management programmes,
to which the European Commission
contributes. First reviews have taken
place in some EU Member States
under the EU waste directive. The safe
long-term operation of nuclear power
plants and developments related to
Small Modular Reactors (SMRs) were
also discussed.
Officials reviewed progress on the
implementation of nuclear safeguards
in EU Member States and on the
European Commission Support Programme
to the IAEA. Exchanges took
place on the 2018 Preparatory
Committee for the 2020 Review
Conference on the Treaty on the
Non-Proliferation of Nuclear Weapons
(NPT), scheduled to be held 23 April
to 4 May 2018 at the United Nations
Office in Geneva.
The next Senior Officials Meeting
is expected to take place in Luxembourg
in early 2019.
| | (18501339), www.iaea.org
IAEA mission sees significant
improvements to Belgian
regulatory framework and
identifies areas for further
enhancement
(iaea) An International Atomic Energy
Agency (IAEA) team of experts said
Belgium has made significant improvements
to its regulatory framework
for nuclear and radiation safety
since 2013 by clarifying the regulatory
body’s roles and responsibilities and
strengthening its independence. The
team also observed other improvements
and identified areas for further
enhancement.
The Integrated Regulatory Review
Service (IRRS) peer-review team concluded
a nine-day follow-up mission
today to review Belgium’s implementation
of recommendations and
suggestions made by a 2013 mission.
The review was conducted at the
request of the Government and hosted
by the country’s nuclear regulatory
body, comprising the Belgian Federal
Agency for Nuclear Control (FANC)
and its technical support arm, Bel V.
Using IAEA safety standards and
international good practices, IRRS
missions are designed to strengthen
the effectiveness of the national
nuclear regulatory infrastructure,
while recognizing the responsibility of
each country to ensure nuclear safety.
The IRRS team said the regulatory
body had adequately addressed most
of the recommendations and suggestions
made by the 2013 mission. The
team also said the regulatory body
should remain focused on tackling
outstanding issues.
“Belgium has made key improvements
to the national regulatory
framework, making it more effective
and efficient,” said team leader Robert
Campbell of the United Kingdom’s
Office for Nuclear Regulation. “The
independence of the regulatory body
has now been strengthened in legislation,
and the roles and responsibilities
between the regulator and the
National Agency for Radioactive Waste
Management have been clarified.”
Belgium has seven operating
nuclear power reactors at two sites,
Doel and Tihange, providing just over
half of the country’s electricity and
other nuclear installations including
research reactors, a radioactive waste
treatment facility and an isotope production
facility. In addition, medical
and industrial applications of radioactive
sources are widely used. By law,
nuclear power will start to be phased
out in 2022.
The scope of the 2013 and the 2017
missions covered areas including: the
responsibilities and functions of the
Government and the regulatory body;
the management system of the regulatory
body; activities of the regulatory
body related to regulation of the full
range of nuclear facilities and activities;
emergency preparedness and
response; control of medical exposure
and radiation safety; and the interface
between nuclear safety and nuclear
security.
The team found that the regulatory
body has taken positive steps to:
• Establish a central information
system for sealed source tracking
and inventory as well as inspection
recording.
• Develop a tool to assist in reviewing
and assessing safety-related
modifications through a clearly
defined graded approach.
• Improve patient radiation protection
by raising awareness
about the need to justify medical
examinations.
• Enhance openness and transparency,
including more communications
on regulatory activities
aimed at improving public trust.
“We are very pleased with the results,
which show that the work we’ve
carried out in the last four years is
recognized by international experts.
I particularly appreciate the comments
on transparency and the independence
of the regulator,” said Jans
Bens, director-general of FANC. “I’d
like to thank the staff of the regulatory
body for their contribution to this
achievement, and we look forward to
making continued efforts at improving
the regulatory framework.”
The IRRS team also identified a few
areas for further enhancing the effectiveness
of the regulatory body, including
by completing the programme
of work on its management system.
191
NEWS
News
atw Vol. 63 (2018) | Issue 3 ı March
192
NEWS
“The team has recognised the progress
made by the regulatory body
since the 2013 review,” said David
Senior, head of the IAEA’s Regulatory
Activities Section. “The mission found
that the regulatory body has addressed
the findings from the initial
review, demonstrating a commitment
to continuous improvement of the
regulatory framework against IAEA
safety standards.”
The 12-member IRRS team comprised
experts from Canada, Finland,
France, Greece, Hungary, the Netherlands,
the United Kingdom and the
United States of America as well as
four IAEA staff members.
The final mission report will be
provided to the Government in about
three months. Belgium plans to make
it public.
| | (18501410), www.iaea.org
First‐of‐its‐kind nuclear safety
culture forum puts the
spotlight on national context
(nea) The influence of national context
on nuclear safety culture was the
focus of the country‐specific forum
held on 23‐24 January 2018 by the
Nuclear Energy Agency (NEA) in
Stockholm, Sweden, in co‐operation
with the World Association of Nuclear
Operators (WANO) and the Swedish
Radiation Safety Authority (SSM).
The purpose of this forum was to
create awareness on potential safety
culture challenges related to national
context, with the objective of helping
organisations maintain a healthy
safety culture for safe operations of
nuclear installations and for effective
regulatory activities. The event
brought together over 60 experts from
the Swedish nuclear community and
international observers from France,
Finland, Japan, Korea, South Africa
and the United States, representing
the industry and regulatory organisations.
Opening remarks were delivered
by NEA Director‐General William D.
Magwood, IV, SSM Director General
Mats Persson and WANO Chief
Executive Officer (CEO) Peter Prozesky.
Participants, then, spent one and
a half days self‐reflecting upon their
national cultural attributes in relation
to safety culture. They held focus
group discussions, analysed data and
identified traits relevant to their
national context that may strengthen
or jeopardise safety. Through interactive
roleplay, they explored how
their national context may affect
nuclear safety‐relevant behaviours.
In plenary sessions, the participants
shared ways and approaches to work
with the national context in order to
improve or maintain healthy safety
culture.
“The fundamental objective of all
nuclear regulatory bodies is to ensure
that nuclear licensees conduct their
activities related to the peaceful use
of nuclear energy in a safe manner
within their respective countries,”
said NEA Director‐General Magwood.
“National influences on nuclear power
plant operations and safety culture
should also be considered in fostering
and enhancing nuclear safety. Every
country has to find how best to leverage
its national context in order to
build and maintain a healthy safety
culture.”
“We have to consider the national
context, as it has good impacts on
nuclear safety culture while also
presenting some challenges,” added
SSM Deputy Director General Fredrik
Hassel.
WANO CEO Prozesky said, “We are
pleased to work together with the
NEA to explore different ways to
enhance global nuclear safety, particularly
in the area of nuclear safety
culture.”
“The NEA has worked in recent
years to advance the human aspects of
nuclear safety,” said Mr Magwood.
“We have been working with our
membership, other international
organisations and partners like WANO
to make sure that we’re taking the
right actions to enhance nuclear safety
worldwide.”
A summary report of the forum
and its outcomes is in preparation and
will be provided online to serve as
reference point and training tool on
safety culture. It will analyse national
influences on safety culture, identify
country‐specific traits and practical
methods to address challenges, and
propose a roadmap to solutions.
CTBTO: Ground-breaking
ceremony for the permanent
Equipment, Storage &
Maintenance Facility (ESMF)
(ctbto) On 25 January CTBTO held a
ground-breaking ceremony for its new
permanent Equipment, Storage and
Maintenance Facility (ESMF) in
Seibersdorf, Lower Austria. The
Facility will be primarily used as a
storage and maintenance facility for
the equipment of the On-Site
Inspections Division, but will also
benefit the Organization as a whole
with state-of-the-art training facilities,
a media centre and more.
The decision to build a permanent
facility at Seibersdorf is a significant
event for the CTBTO as it will contribute
to the further development of the
monitoring and verification system of
the Treaty, making the work of the
Organization even more visible and
attesting to the fact that it is already
capable of operating to its mandate.
Among the participants of the
ceremony were Michael Linhart,
Vice-Minister & Secretary-General of
the Federal Ministry for Europe,
Integration and Foreign Affairs of the
Republic of Austria, Ambassador
Maria Assunta Accili Sabbatini,
Permanent Representative of the
Republic of Italy and the Chairperson
of the CTBTO PrepCom, Dr. Hannes
Androsch, Chairman of the Supervisory
Board of the Austrian Institute
for Technology (AIT), Gerhard Karner,
Second President of the State
Parliament of Lower Austria, Franz
Ehrenhofer, Mayor of Seibersdorf, as
well as permanent representatives to
the International Organizations in
Vienna.
The symbolic ground-breaking was
only the first small step in the construction
process, as shortly the
construction team will have to dig 150
meters deeper into the ground before
| | Groundbreaking Ceremony of CTBTO’s permanent ESMF Facility in Seibersdorf, Austria 25 January 2018.
Photo: The Official CTBTO Photostream
News
atw Vol. 63 (2018) | Issue 3 ı March
starting work on the facility itself. The
construction of the ESMF is expected
to be completed by the end of 2018.
At the ceremony, Secretary-
General Linhart pointed out that policies
of nuclear disarmament and
non-proliferation remain among the
main priorities of Austria’s foreign
policy. He reaffirmed Austria’s strong
support for the CTBTO and concluded
that “by building the permanent
Equipment, Storage and Maintenance
Facility in Seibersdorf, the CTBTO’s
links with the host country will be
even stronger”.
Other speakers also highlighted
the importance of the ESMF both for
the strengthening of the CTBTO
verification regime and for Austria
itself, at the level of scientific and
regional development.
| | (18501413), www.ctbto.org
UK Parliament: Brexit: energy
security report published
(uk-par) The EU Energy and Environment
Sub-Committee publishes its
report on Brexit: energy security,
looking at implications for energy
supply, consumer costs and decarbonisation.
Key findings
The report states that Brexit will put
the UK’s current frictionless trade in
energy with the EU at risk. The Committee
calls on Government to set out
how it will work with the EU to anticipate
and manage supply shortages,
and to assess what impact leaving the
Internal Energy Market would have on
the price paid by consumers for their
energy.
The Committee also heard that the
UK’s ability to build future nuclear
generation sites, including Hinkley
Point C, is in doubt if access to
specialist EU workers is curtailed, and
that failure to replace the provisions
of the Euratom Treaty by the time the
UK leaves the EU could result in the
UK being unable to import nuclear
materials.
The Committee found that EU
investment has made a significant
contribution to constructing and
maintaining a secure energy system
in the UK, and that replacing this
funding will be critical to ensuring
sufficient infrastructure is in place to
enable future energy trading.
The report concludes that,
post-Brexit, the UK may be more
vulnerable to energy shortages in
the event of extreme weather or
unplanned generation outages, and
asks the Government to set out how it
will work with the EU to anticipate
and manage such conditions.
Chair’s comments
Chair of the Committee Lord Teverson
said:
“Individuals and businesses across
the UK depend on a reliable and
affordable supply of energy. In recent
years, the UK has achieved such a
supply in partnership with the EU,
working with other Member States to
make cross-border trade in energy
easier and cheaper.
“Over the course of the inquiry the
Committee heard benefits of the UK’s
current energy relationship with the
EU, and the Minister acknowledged
these benefits when he stated his hope
that Brexit would result in as little
change as possible. It remains unclear,
however, how this can be achieved,
without remaining in the single
market, IEM and the other bodies that
develop and implement the EU’s
energy policy.”
| | (18501424), www.parliament.uk
NIA welcomes Greg Clark’s
Written Ministerial Statement
on Euratom
(nia) The UK-based Nuclear Industry
Association NIA has welcomed the
government’s statement on Euratom
and its commitment to update Parliament
every three months as well as
clarity on its intention to negotiate an
implementation period to ensure a
smooth transition from the current to
new arrangements.
Commenting Tom Greatrex, Chief
Executive of the Nuclear Industry
Association, said:
“The Secretary of State’s statement
on Euratom is a useful and welcome
step in setting out the government’s
approach in seeking to secure equivalent
arrangements to those we benefit
from as a member of Euratom.
“The UK industry and research
facilities have been consistently clear
with government about the importance
of these issues since the referendum,
and given the complex nature of
multilateral agreements that will need
to be negotiated, the recognition of
the necessity of transitional arrangements
and the desire for a close future
association with Euratom is welcome.
“Even with a suitable transition,
there remains much work for the
government to do to prevent the
significant disruption that industry is
concerned about.
“There is much still to do in
equipping the UK’s regulator to take
on Euratom’s safeguarding activities;
agreeing a voluntary offer with the
IAEA; negotiating and ratifying
new bilateral Nuclear Co-operation
Agreements with the USA, Canada,
Australia, Japan and others; agreeing
new trading arrangements with the
Euratom community and concluding a
new funding agreement for the UK to
continue its world-leading work in
Euratom’s fusion R&D activities. It is
vital government continues to prioritise
these issues in the period ahead if
there is to be a successful outcome.”
| | (18501421), www.niauk.org
NEI: Nuclear industry urges
prompt next steps for
electricity market reforms
(nei) This afternoon (8 January 2018)
the Federal Energy Regulatory
Commission (FERC) issued its order
responding to a Notice of Proposed
Rulemaking related to resilience
from the U.S. Department of Energy.
Following is comment from Maria
Korsnick, president and chief executive
officer of the Nuclear Energy
Institute.
“We are disappointed that FERC
did not take affirmative action that
would preserve our nation’s nuclear
plants. America’s nuclear fleet must remain
a strategic asset contributing to
energy security, resilience, reliability,
economic growth and environmental
protection. The status quo, in which
markets recognize only short-term
price signals and ignore the essential
role of nuclear generation, will lead to
more premature shutdowns of wellrun
nuclear facilities. Once closed,
these facilities are shuttered forever.
“We applaud the Secretary’s effort
to place this issue on the national
agenda. To that end, FERC’s order
concluded that resiliency of generation
‘remains an important issue that
warrants the Commission’s continued
attention,’ and that its endorsement of
electricity markets ‘does not conflict
with its oversight of reliability.’ The
Commission has opened a new proceeding
‘to specifically evaluate the
resilience of the bulk power system in
the regions operated by regional
transmission organizations (RTO)
and independent system operators
(ISO).’
“We are committed to working
with FERC, the Department of Energy
and other federal and state policymakers
to ensure that America’s
nuclear fleet continues to deliver
electricity reliably and affordably. We
believe the direction to the RTOs/
ISOs to ‘take a proactive stance on
addressing and ensuring resilience’
193
NEWS
News
atw Vol. 63 (2018) | Issue 3 ı March
194
NEWS
must lead to prompt and meaningful
action, including on issues such as
price formation.”
| | (18501442), www.nei.org
Reactors
European Union: Thematic
peer review – ageing management
of power and research
reactors
(asn) In 2014, the Council of the
European Union adopted directive
2014/87/EURATOM on nuclear security.
The main purpose of this directive,
supplementing a directive of
2009, was to ensure that the licensees
of nuclear facilities learned the lessons
from the Fukushima Daiichi Nuclear
Power Plant (NPP) accident which
occurred in 2011.
The peer review process, considered
as an important instrument
for promoting the implementation
of continuous safety improvement
measures, was introduced by the
directive in 2014: a peer review of the
nuclear facilities of each Member
State must thus be carried out every
6 years. This in-depth review
process, inspired by that performed
during the stress tests on nuclear
facilities carried out in the wake of
the Fukushima Daiichi NPP accident,
started in 2017.
In July 2015, from among the
proposals made by WENRA, the 30 th
meeting of ENSREG selected ageing
management of power and research
reactors as the topic for this first peer
review. In addition to the national
policies developed on this subject,
particularly close attention was
paid to how they are applied to the
following four technical topics: reactor
vessels, containments, concealed
pipes and electrical cables. In accordance
with the provisions [1] regulating
this peer review, the 19 Member
States concerned and participating in
this review are required to submit
their national reports before the end
of 2017. For the nuclear facilities
concerned, ASN publishes its report
in both English and French on its
website. This report is also published
on the ENSREG website.
Following the publication of the
reports from each Member State, a
peer review of the 19 reports for
mutual examination of the steps taken
by the licensees and their assessment
by the regulators will begin in 2018. A
first workshop is scheduled from 14 to
18 May 2018. It will be an opportunity
to discuss ageing and identify best
practices. The conclusions of this peer
review will be presented to ENSREG.
| | (18501609),
www.french.nuclear-safety.fr
Russia’s nuclear electricity
share increased up to 18.9 %
in 2017
(rosatom) Following 2017, a share of
electricity production by Russian
nuclear power plants (parts of Power
Division of ROSATOM, Rosenergoatom)
has increased up to 18.9 %
(18.3 % in 2016).
In 2017, the capacity factor has also
grown to reach 83.29 % (83.1 % in
2016).
In 2017, electricity generation
at Russian NPPs reached another
record of 202.868 billion kWh
(196.366 billion kWh in 2016). Thus,
cumulative production has increased
more than 6.6 billion kWh while the
FAS balance of 2017 was exceeded by
3 billion kWh or 1.5 % (at the target
indicator of 199.84 billion kWh).
Russian NPPs set the absolute record
over the entire history of the Russian
nuclear power getting closer to the
absolute pro duction record reached
only during the Soviet Union times in
1989 (212.58 billion kWh, considering
plants in Ukraine, Lithuania and
Armenia).
According to the online data of the
System Operator of the United Energy
System of Russia, the generation of
electricity in Russia in 2017 was
1,073.6 billion kWh that is 0.2 % more
than in 2016. UES of Russia’s power
plants produced 1,053.7 billion kWh
that is 0.5 % more than in 2016.
| | (18501543), www.rosatom.ru
Rosatomflot increased the
number of ice-breaking
escorts through the Northern
Sea Route in 2017
(rosatom) FSUE Atomflot (an enterprise
of ROSATOM) has summed up
the results of 2017. According to the
results, 492 ships of the total gross
tonnage of 7.17 million tons passed
the Northern Sea Route assisted by
nuclear ice-breakers in 2017 (for comparison,
in 2016 there were 410 ships
of the gross tonnage of 5.28 million
tons).
“Off-shipment of hydrocarbon products
is the key factor of the nuclear
icebreaker fleet demand. In future,
the escort numbers will rise. Crews of
the port nuclear icebreakers and tow
boats are maximum responsible for
their contractual commitments. This
is the best ads of their work for their
potential clients,” Mustafa Kashka,
Chief Engineer of Atomflot, says.
Atomflot ensures stable annual
growth of earnings. This is due to the
work the company does to keep the
existing icebreaker service consumers
and to find new clients. In 2017, earnings
of the company grew up to RUB
6,622 million (in 2013 – RUB 1,828
million). In total, over five years (2013
to 2017) this indicator grew up by 3.6
times.
Labor efficiency grew from RUB
1,511,000 in 2013 up to RUB 3,667,000
in 2017. The indicator was up by
243 %.
Mustafa Kashka says: “Based on
the 2016 results, for the first time the
united atomic technological complex
has been formed, the company has got
the net profit of RUB 1,201 million due
to company’s effective performance.
The positive financial result was kept
in 2017: Rosatomflot’s net profit is
estimated at RUB 696 million based
on the year results.”
In 2017, Rosatomflot completed
planned works to extend service lives
of reactors at the Vaygach and Taimyr
icebreakers up to 200,000 hours. The
operation time of the icebreakers was
increased to 5 years.
The planned implementation of
the icebreaker reactor life extension
program allows Atomflot completely
excluding an “ice pause” and smoothly
starting operation of universal
nuclear icebreakers of Project 22220
while strictly following the contractual
commitments.
The Baltijskiy Zavod – Sudostroyenie
continues building universal
nuclear icebreakers (UNI) of Project
22220. In September 2017, the first
UNI Sibir was launched. The leading
UNI Arktika will be set off in mid-2019;
the first series-build nuclear icebreaker
Sibir – November 2020 and
the second series-build nuclear icebreaker
Ural – in November 2021.
In 2017, Atomflot continued its
Portoflot project. It was established by
Rosatomflot as part of the global
Yamal LNG project which is implemented
in the Russia’s Arctic Zone.
The building of a port icebreaker, two
icebreaker towing boats and two tow
boats of ice class are to ensure roundthe-year
safe berthing of large-capacity
ships at berths of Sabetta Port.
In November 2017, the icebreaker
towing boat Yuribei of Project T40105
was put in operation. It is of ice class
Arc 6 that allows the ship to render specialized
services to large-size vehicles
carrying liquefied natural gas and stable
gas condensate. In December 2017,
News
atw Vol. 63 (2018) | Issue 3 ı March
| | Rosatomflot increased the number of ice-breaking escorts through the Northern Sea Route in 2017
the Yuribei took part in loading the
first batch of Yamal LNG.
The contract for the port fleet
services is in effect till December 2040
with potential prolongation to two
periods of 5 years each.
The “Atomflot’s Plan of Measures to
Hold the Environmental Year in 2017”
was implemented. The company
operates with no spent nuclear fuel
and radioactive waste accumulating.
In 2017, the disposal of the nuclear
icebreaker Sibir and floating maintenance
base Lepse continued.
In June 2017, the off-shipment of
the first batch of spent nuclear fuel
from Andreeva Bay’s storage facility
for further reprocessing at the
Rosatomflot’s lighter ship Rossita was
the important event for rehabilitation
of the North-West Region.
The positive developments of
Atomflot and the work to conclude
long-term contracts on ice-breaking
services in large-scale projects in the
Arctic Zone of Russia are expected to
allow Rosatomflot to keep with pace
in all main businesses of the company
in 2018.
| | (18501545), www.rosatom.ru
Fennovoima: Support has
increased for Finland’s
Hanhikivi Nuclear Project
(nucnet) Local support for the Hanhikivi-1
nuclear power plant project in
Finland has increased by 7.6 % since
last year, according to a telephone
survey of 850 people.
Project developer Fennovoima said
75 % of residents in the Pyhäjoki area
support the plant, which is scheduled
to begin commercial operation in
2024.
When surrounding municipalities
were also taken into account, 71.9 %
of residents were in favour of the
project, an increase of 9.9 % over a
similar survey last year.
Fennovoima said the increased support
is an indication that the impact of
the Hanhikivi-1 project, which is using
Russian reactor technology, is becoming
more visible. Fennovoima said
local companies have been “strongly
involved” in the project.
| | (18501707), www.fennovoima.fi
Saudi Arabia to award nuclear
contracts by end of year
(nucnet) Saudi Arabia, the world’s
biggest oil exporter, plans to award
contracts in December 2018 for the
construction of its first nuclear power
plants, Bloomberg reported, quoting a
government official involved with the
project.
The kingdom has received requests
from five bidders from China, France,
the US, South Korea and Russia to
perform the engineering, procurement
and construction work on two
nuclear reactors, Abdulmalik al
Sabery, a consultant in the business
development department at King
Abdullah City for Atomic and Renewable
Energy, said in an interview in
Abu Dhabi.
“By April we will sign a project
development agreement with two to
three selected vendors,” Mr al Sabery
said. “We are going to have only one
winner that will be building the two
reactors.” The government expects
construction to start next year and is
aiming to commission the plants in
2027, he said.
Saudi Arabia wants to diversify its
economy and lessen its dependence
on oil sales for most of its official
revenue. As part of these reforms, the
country wants to meet a larger share
of its energy needs from renewables
such as solar power and from nuclear
plants.
Its neighbour the United Arab
Emirates is close to completing the
first of four reactors supplied by South
Korea at the Barakah nuclear station.
In September 2017 a Saudi official
told the International Atomic Energy
Agency that the kingdom was carrying
out feasibility studies before deciding
how and where to build its first reactors.
The official said Saudi Arabia
would have an independent body to
supervise its nuclear industry by the
third quarter of 2018.
| | (18501719), www.emergy.gov.sa
Finland: Loviisa had record
production year in 2017
(nucnet) Fortum’s two-unit Loviisa
nuclear power station had a record
production year in 2017, generating
8.16 TWh (net) of power, which is
more than 10 % of Finland’s total
electricity production.
Fortum said the 92.7 % load factor
of the Loviisa facility was among the
best in the world for pressurised water
reactor power plants.
Loviisa-1’s load factor was 92.7 %
and Loviisa-2’s was 92.6 %. Production
output at Loviisa-1 was the
highest in the station’s history and at
Loviisa-2 was the second highest.
Both units underwent a short
refuelling annual outage in 2017. Unit
1 was out of production for 21 days
and Unit 2 for 17 days.
In addition to normal scheduled
maintenance and fuel replacement,
high-pressure safety injection pump
motors were renewed. A turbine’s
high-pressure housing was modernised
and two turbine reheaters
replaced to increase the power plants’
production and improve efficiency.
Fortum sad its investments in
Loviisa in 2017 were approximately
€90m ($108m), compared to €100m
in 2016. Investments in the coming
years will continue to be significant,
the company said.
Both Fortum units are 502-MW
PWRs supplied by Russia. Unit 1
began commercial operation in May
1977 and Unit 2 in January 1981.
| | (18501713), www.fortum.com
China: Tianwan-3
aynchronised to grid
(nucnet) The Tianwan-3 nuclear plant
under construction in Jiangsu province,
northeastern China, has been
synchronised to the grid and has
delivered its first kilowatt-hours of
electrical energy at a power level of
25 %, Russia’s state nuclear corporation
Rosatom said on 2 January
2017.
Rosatom said the 990-MW VVER
V-428M unit, which reached first
criticality in September 2017, would
now undergo a series of tests at power
levels of 50 %, 75 % and 100 %. At
100 % power the unit will be operated
for 100 hours before regulators
195
NEWS
News
atw Vol. 63 (2018) | Issue 3 ı March
196
NEWS
* Ouranos, the Greek
god who became
Uranus in Roman
mythology and from
whom the planet
Uranus takes its
name, was later to
serve as a point of
reference when the
term “uranium” was
created.
approve commercial operation. Constriction
of the unit began in December
2012.
The Tianwan nuclear station is the
largest economic cooperation project
between Russia and China, an earlier
statement said. Tianwan-1 and -2,
also VVER V-428M units, began
commercial operation in 2007. The
Tianwan-4 VVER V-428M unit is also
under construction by Russia.
Tianwan-5 and -6 will be indigenous
Generation II+ CNP-1000 units.
| | (18501708), www.rosatom.ru,
www.cnnc.com.cn
France: EDF ompletes cold
functional testing at Flamanville-3
EPR
(nucnet) France’s nuclear operator
EDF has completed the cold func tional
test phase for the Flamanville-3
EPR under construction in northern
France, the state-controlled company
said in a statement on 8 January 2018.
The cold functional testing phase
is part of the system performance
testing, which started in the first
quarter of 2017, to check and test
operation of all the EPR’s systems.
The cold functional test phase,
which started on 18 December 2017
and was completed on 6 January
2018, saw the successful completion
of the leak performance test on the
primary system at a pressure greater
than 240 bar – higher than the
pressure of this system in operation.
More than 500 welds were inspected
during this hydrostatic testing, supervised
by the regulator ASN.
EDF is now preparing hot functional
testing of the 1,600-MW unit to
be started in July 2018. The objective
is to demonstrate the good working
order of the plant by testing components
with temperature and pressure
levels similar to operating conditions.
EDF said fuel loading and start-up
of the reactor is scheduled for the last
quarter of 2018.
The group has also confirmed the
cost of the project set at €10.5bn
($12.5bn). A previous estimate of the
total cost in July 2011 was €8bn.
| | (18501715), www.edf.com
Russia: Rostov-4 reaches
first criticality
(nucnet) The Rostov-4 nuclear unit
near Volgodonsk in southern Russia
has reached first criticality and minimum
controlled power, state nuclear
corporation Rosatom said.
Construction of the VVER-1000/
V-320 unit began in June 2010. There
are three other units of the same
design in commercial operation at
Rostov.
When Rostov-4 reaches full power
and commercial operation, nuclear
power will provide 54 % of power in
southern Russia, Rosatom said.
According to the International
Atomic Energy Agency, Russia has 35
nuclear units in commercial operation
and seven, including Rostov-4, under
construction. In 2016 nuclear energy’s
share of electricity production was
17.14 %.
| | (18501710), www.rosatom.ru
Spain: Nuclear reactors
lead electricity generation
with more than 21 %
(nucnet) Spain’s seven commercial
nuclear reactors produced 55.6 TWh
of electricity in 2017, making nuclear
the energy source that contributed
most to the country’s electric system,
the Madrid-based industry group Foro
Nuclear said on 8 January 2017.
Quoting figures from grid operator
Red Eléctrica de España (REE), Foro
Nuclear said Spain’s nuclear fleet
accounted for 7.06 % of installed
power generation capacity, but produced
21.17 % of the total electric
energy consumed. This compares to
21.38 % in 2016 and 20.34 % in 2015.
Foro Nuclear said nuclear power
plants were operational for 7,500
hours during 2017, or 86 % of the
time, the highest number of hours of
any generation source.
Foro Nuclear president Ignacio
Araluce said the nuclear sector’s
performance “represents the availability,
reliability, stability and predictability
offered by nuclear energy”
as it operates continuously and facilitates
the proper management of the
electric system.
He said nuclear power plants do
not emit contaminating gasses or
particles to the atmosphere. In 2017
nuclear production accounted for
almost 40 % of emissions-free electricity
generated in Spain.
| | (18501714), www.foronuclear.org
UAE’s Barakah-3 and -4
connected to grid
(nucnet) The Barakah-3 and -4 nuclear
units under construction in the United
Arab Emirates have been connected to
the grid, Emirates Nuclear Energy
Corporation (ENEC) said today.
ENEC said connecting Units 3 and
4 to the grid will allow the next stage
of testing and the completion of
auxiliary buildings on the site.
The UAE is building four South
Korean APR-1400 reactors at the
Barakah nuclear site, about 240km
west of Abu Dhabi city.
According to ENEC, Unit 4 is more
than 60 % complete, Unit 3 is more
than 79 %, Unit 2 is more than 90 %,
and Unit 1 is undergoing commissioning
and testing before a regulatory
review and receipt of the operating
Licence from the Federal Authority for
Nuclear Regulation.
| | (18501711), www.enev.gov.ua
Company News
New Areva:
We are now Orano!
(orano) New Areva has become
Orano. Refocused on nuclear materials
development and waste management,
Orano’s activities encompass
mining, conversion-enrichment, used
fuel recycling, nuclear logistics, dismantling
and engineering. The group
has 16,000 employees, with a revenue
of 4 billion euros and an order backlog
that represents the equivalent of
nearly eight years of revenue. Its
mining and conversion-enrichment
activities place it in the top three
worldwide. Orano is a leader in
nuclear recycling and logistics, and
is developing its business in the
medical field.
The name Orano has its etymological
roots in the word “uranium”*,
from which nuclear fuel is produced.
“Orano symbolizes a new start. A
new start that has been under preparation
for several years now. We have
set up a new organizational structure,
a new business plan, a new strategic
action plan and a new social contract.
Our new identity is the natural result
of all this.
Our new name symbolizes our
conviction: nuclear power has a
future, as it is a competitive, lowcarbon
energy that creates jobs. Orano
has all it needs to play a key role in
this. We have high ambitions for
Orano, namely for it to become the
leader in the production and recycling
of nuclear materials, waste management,
and dismantling within the
next ten years. I have full confidence
in our capacity to give nuclear energy
its full value.
I am very proud of leading this
group and the men and women who
are part of it,” comments Philippe
Knoche, CEO of Orano.
| | (18501521), www.orano.group
News
atw Vol. 63 (2018) | Issue 3 ı March
New AREVA (Orano) and
CNNC acknowledge the
substantial progress made
in the negociation of the
contract for the Chinese commercial
used fuel treatmentrecycling
plant project
(n-a) New AREVA and its Chinese
partner China National Nuclear Corporation
(CNNC) signed on 9 January
2018 in Beijing, in the presence of the
President of the People’s Republic of
China, Mr. Xi Jinping, and the
President of the French Republic, Mr.
Emmanuel Macron, a memorandum
of commercial agreement for the
Chinese commercial used fuel treatment-recycling
plant project.
Through this memorandum, New
AREVA and CNNC reaffirm their
mutual commitment to complete the
negotiations of the contract for the
Chinese commercial used fuel treatment-recycling
plant project at the
soonest, to launch the project in 2018,
and acknowledge the substantial progress
made in the negotiation during
the past few months.
The Chinese treatment-recycling
plant (800 tons capacity) will be built
on the model of the La Hague and
Melox plants recognized for their
proven technologies, highest standards
of safety and security, and
industrial performance.
Philippe Knoche, Chief Executive
Officer of New AREVA, commented:
“CNNC and New AREVA have stepped
up their efforts to reach agreement on
the contract and we are seeing today
very positive results. I am looking
forward to finalizing the negotiations
soon, and starting the implementation
of this landmark project with
our partner CNNC in 2018.”
| | (18501522), www.orono.group
CASTOR® casks support
dismantling in Switzerland
GNS supplies eight spent fuel casks for
the final fuel elements of the Mühleberg
nuclear power plant.
GNS Gesellschaft für Nuklear-
Service mbH and BKW Energie AG
have concluded a contract for the
supply of eight CASTOR® V/52 transport
and storage casks. The casks to be
delivered in 2021 are designated for
the remaining fuel elements of the
Mühleberg nuclear power plant in
Switzerland, which is to be shut-down
at the end of 2019. After the final fuel
elements have been transferred to the
central Swiss interim storage facility
ZWILAG, the boiling water reactor
plant, which was commissioned in
1972, will be fuel-free. This is a decisive
prerequisite for efficient dis mantling.
With its casks, GNS ensures this
important step in the decommissioning
process of the Mühleberg nuclear
power plant and supports the first decommissioning
project in Switzerland
in its optimised dis mantling.
The supply contract was preceded
by a contract for the licensing of
CASTOR® V/52 for Switzerland,
which was concluded last year.
| | (18520857), www.gns.de
MHI completes investment
into France’s Framatome
• MHI acquires 19.5 percent stake in
Framatome, based on prior agreement
from July 2017
• EDF and MHI to collaborate on
ATMEA nuclear reactor jointventure
(framatome) Mitsubishi Heavy Industries,
Ltd. (MHI) has completed
investment into Framatome, a French
company that designs and manufactures
nuclear power plant (NPP)
equipment and systems and renamed
from New NP. MHI now holds a 19.5 %
equity stake in Framatome, an affiliate
of Electricité de France (EDF) recently
established as part of the reorganization
of AREVA Group. The investment
is aimed at establishing a global
structure for delivering the latest
technologies for safe and reliable
nuclear power generation through
strategic collaboration between MHI,
Framatome and EDF. It will also
support the promotion of sales of the
ATMEA1 reactor through collaboration
with EDF.
| | The representatives from BKW Energie AG and GNS Gesellschaft für Nuklear-Service mbH
on the occasion of signing the contract for CASTOR® casks. (Courtesy: GNS)
Framatome evolved from AREVA
NP, an AREVA Group company
with extensive experience in design
and manufacture of NPP equipment,
plant construction and fuel supply.
Framatome will specialize in aftersale
servicing of existing plants as
well as fuel supply, and the design,
manufacture and sale of reactor
equipment for new plants; an area
expected to generate stable earnings.
The completion of the investment
will also result in a reorganization of
ATMEA. ATMEA was formed as a joint
venture between MHI and AREVA
NP to develop the next-generation
ATMEA1 reactor. Under the new
structure, there will be fifty-fifty
ownership of ATMEA between MHI
and EDF, along with a special share
owned by Framatome.
Following completion of the investment,
MHI President and CEO
Shunichi Miyanaga commented,
“MHI has been a key player in cooperation
between Japan and France in
the development of nuclear power
generation technologies for many
years. With the completion of our
investment into Framatome, a new
structure has been created that will
further strengthen the ties between
our nuclear energy industries, and I
am confident this new relationship
will enable further improvement in
technologies to ensure the long-term
sustainability and reliability of nuclear
energy.”
Under the new arrangement, MHI,
EDF and Framatome will collaborate
in promoting worldwide sales of the
ATMEA1 reactor. Further, cooperative
ties between France and Japan’s
nuclear power industries will be
strengthened in areas including equipment
supply to NPPs, after-sale servicing,
and decommissioning work.
Cooperation between MHI and
the AREVA Group began in the 1990s
with collaboration in the fuel cycle
business. In 2006 the two parties
concluded a wider cooperation agreement
in the nuclear energy field.
Following this, integration of the two
partners’ technologies resulted in
development of the ATMEA1; a
pressurized water reactor (PWR), in
the 1,200 megawatt (MW) class, providing
the world’s highest levels of
safety and reliability. Since that time,
prospects for the sale of the ATMEA1
have been expanding worldwide,
especially in emerging economies,
where new NPP construction plans
are moving ahead.
Going forward, through the increasingly
close ties forged with EDF,
197
NEWS
News
atw Vol. 63 (2018) | Issue 3 ı March
198
NEWS
Framatome and the AREVA Group,
MHI will promote the development of
global markets for a broad range of
nuclear power generation-related
technologies. In this way, MHI will
contribute to the formation of a
worldwide structure enabling stable
acquisition and supply of energy with
low emission.
MHI is also scheduled to acquire a
5 percent equity stake in New AREVA
Holding (formerly referred to as
“NewCo”), a company primarily
focused on the fuel cycle field business.
The investment is due to be completed
by the end of January 2018.
| | (18501525), www.framatome.com
USA: Framatome to acquire
Instrumentation and Control
nuclear business of Schneider
Electric
(framatome) Framatome announced
an agreement with Schneider Electric
to acquire its nuclear automation
business. The two companies recently
signed an asset purchase agreement
that outlines the terms of the sale,
which is expected to close before the
end of the first quarter of 2018.
The acquisition expands Framatome’s
instrumentation and control
(I&C) offerings. These systems are the
central nervous system of a nuclear
power plant allowing operators to
control reactor operations. Modernizations,
upgrades and ongoing
support, are vital to manage economic
long-term operation of nuclear power.
More than 80 safety I&C systems have
been installed by Framatome on 44
reactors in 17 countries across the
world, and approximately 250 automation
systems have been installed
or are being installed by Schneider
Electric.
The agreement between Framatome
and Schneider Electric also
creates a long-term manufacturing
partnership, which gives customers
I&C options based on a comprehensive
global technical expertise and
market knowledge.
“This is an exciting time of growth
for our company, and the acquisition
and partnership with Schneider
Electric build on our long history of
providing nuclear operators with both
digital and analog I&C solutions,” said
Gary Mignogna, president and CEO of
Framatome Inc. “With this acqui sition,
we will provide long-term support for
our customers’ systems and serve as
the original equipment manufacturer
for their I&C upgrades and modernizations.”
| | (18501526), www.framatome.com
Lightbridge and Framatome
launch Enfission to
commercialize innovative
nuclear fuel
(framatome) Lightbridge Corporation
(NASDAQ: LTBR) and Framatome
finalized and launched Enfission, a
50-50 joint venture company to
develop, license and sell nuclear fuel
assemblies based on Lightbridgedesigned
metallic fuel technology and
other advanced nuclear fuel intellectual
property. Lightbridge is a U.S.
nuclear fuel development company
and Framatome is a leader in designing,
building, servicing, and fueling
today’s reactor fleet and advancing
nuclear energy.
The two companies already began
joint fuel development and regulatory
licensing work under previously
signed agreements initiated in March
2016. The joint venture is a Delawarebased
limited liability company.
Bernard Fontana, Chairman of the
Managing Board and CEO of Framatome,
said: “This is an exciting time
of growth for Framatome and we are
proud to work with Lightbridge on
Enfission. Together, we are developing
an innovative fuel technology
that will provide significant benefits
for our customers, helping them to
generate more electricity from their
nuclear power plants and better compete
in the marketplace. Framatome
provides its next generation of fuel
assembly designs to more than 100 of
the approximately 260 light water
reactors worldwide. Through this
work, we help our customers to
meet their operational goals with
a high level of safety. We are confident
that our strategic partnership
with Lightbridge on Enfission will
strengthen our position as a key
international reference in the global
fuel market.”
Seth Grae, Lightbridge president
and CEO, said: “With the world calling
for more reliable, economic and
carbon- free baseload power, Lightbridge’s
innovative metallic fuel
technology will help both existing and
new nuclear plants fill that need.
Framatome is the ideal partner with
established
manufacturing
| | Joint Venture Negotiation Team Lightbridge
and Framatome
capabilities, an impeccable reputation
as a nuclear fuel supplier and a large
global footprint. We appreciate the
strong support we have already
received from the leading nuclear
operators, both in the U.S. and around
the world. The world’s energy and
climate needs can only be met if
nuclear power grows as a part of
the energy-generating mix. We are
honored to work with Framatome on
this important project and believe
the economic and safety benefits of
our fuel will encourage greater use of
nuclear power.”
| | (18501527), www.framatome.com
Lightbridge awarded key
patents in Europe and China
for innovative metallic
fuel design
(lightbridge) Lightbridge Corporation
(NASDAQ:LTBR), a nuclear fuel technology
company, today announced it
has been awarded key patents in
both Europe and China related to
Lightbridge’s innovative metallic fuel
design that each extend through
2034. These patents follow Notices of
Allowances that were issued by the
European Patent Office and the State
Intellectual Property Office of the
People’s Republic of China, as
reported in October 2017.
The newly issued patents cover an
alternative embodiment of a multilobe
fuel rod design; an all-metal
pressurized water reactor (PWR) fuel
assembly design incorporating multilobe
fuel rods based on the alternative
embodiment; and an all-metal PWR
fuel assembly design incorporating
multi-lobe fuel rods arranged into a
mixed grid pattern, thereby covering
the all-metal fuel assembly design
after the most recent optimization.
Seth Grae, President and CEO of
Lightbridge, said: “These latest
patents are a critical step in solidifying
our intellectual protection around
the world as we gear up for commercialization
through Enfission, our
newly formed joint venture with
Framatome. Our fuel is ideally suited
for the European and Chinese
markets, as it is designed to significantly
enhance both the economics
and safety of existing and planned
nuclear reactors. With 181 operating
nuclear power plants across Europe,
and China poised to become the
largest market for nuclear, these
patents provide us a crucial and
defensible foothold in each of these
markets for years to come.”
Lightbridge has patents pending in
various countries around the world,
News
atw Vol. 63 (2018) | Issue 3 ı March
including the United States, South
Korea, Canada, Japan, Eurasia, and
Australia, as well as additional patents
pending in Europe and China.
| | (18501531), www.ltbridge.com
Rosatom: RITM-200 installed
at Sibir Icebreaker
(rosatom) In Saint Petersburg, the
Baltic Shipyard completed the installation
of the second RITM-200 reactor
on the new generation Sibir nuclear
icebreaker.
Installation of the first reactor was
completed earlier, on 14 December.
RITM-200 is an innovative pressurized
water reactor developed and
manufactured for the icebreaker
fleet by AtomEnergoMash, Rosatom’s
engineering division. The new reactor
unit is unparalleled for its compact
size and cost efficiency. Its integrated
design provides for the placement of
core equipment inside the steam
generator shell and makes the unit
twice as light, half more compact and
25 MW more powerful than the
existing icebreaker reactors of the KLT
series. The reactor design enables the
icebreaker to be used both in deep
Arctic waters and river estuaries and
improves its icebreaking speed and
other performance indicators. The
reactors have a service life of 40 years
and are protected by a containment
made of steel, water and concrete.
| | (18501539), www.rosatom.ru
Westinghouse to continue
nuclear fuel delivery to
Ukraine through 2025
(westinghouse) Westinghouse Electric
Company announced that it has
signed a nuclear fuel contract extension
with Ukraine’s State Enterprise
National Nuclear Energy Generation
Company (SE NNEGC) Energoatom.
The contract includes nuclear fuel
deliveries to seven of Ukraine’s 15
nuclear power reactors between 2021
and 2025, expanding and extending
the existing contract for six reactors
that was set to expire in 2020.
“This contract extension solidifies
Westinghouse’s role as a strategic
partner for Energoatom and demonstrates
our ability to support
Ukraine with their energy diversification.
Under the terms of the new
contract, our relation ship with
Ukraine will be strengthened through
our plan to source some of the
fuel components from a Ukrainian
manufacturer,” said José Emeterio
Gutiérrez, Westinghouse president
and chief executive officer.
While commenting on the agreement,
Yurii Nedashkovskyi, President
of SE NNEGC Energoatom, emphasized
that Energoatom is the only operating
utility of VVER-1000 reactors in the
world that has fully diver sified sources
of nuclear fuel supply. Mr. Nedashkovskyi
com mented, “ Cooperation with
Westinghouse was integral to achievement
of this goal.”
Nuclear fuel from Westinghouse
has played an important role in
Ukraine’s work for independence for
more than a decade. Westinghouse
began supplying fuel to Ukraine in
2005, when the first lead test assemblies
were delivered to South-Ukraine
NPP Unit 3.
“We are pleased that Energoatom
is continuing to trust Westinghouse
as an alternative supplier of nuclear
fuel to VVER reactors,” said Aziz
Dag, Westinghouse vice president
and managing director, Northern
Europe.
The manufacturing and assembly
of the nuclear fuel will be performed
by the Westinghouse fuel fabrication
facility in Västerås, Sweden, where
parts of the production lines are solely
dedicated to VVER-1000 fuel. Deliveries
against the contract will begin
in 2021, immediately following the
conclusion of existing contract.
| | (18501538),
www.westinghousenuclear.com
Wood wins Hinkley Point C
contract worth $16m
(wood) Wood has won a contract as
sole supplier of inspection qualification
services to the Hinkley Point C
nuclear power station. EDF Energy,
the station developer, has commissioned
Wood’s Inspection Validation
Centre (IVC) to qualify ultrasonic
inspections on high inte grity welds in
primary circuit com ponents for the
two 1.6GW reactors.
The contract is effective immediately
and the initial task order is
worth $16m.
Wood’s teams will assess the
inspection procedures and their supporting
technical justifications and
will carry out practical trials to demonstrate
that the procedures can be
applied and meet their objectives.
Using flaw implantation techniques,
faults will be introduced into welded
test pieces to test and ultimately assure
that inspectors can identify them.
The work will create a total of 35
new jobs at the IVC in Warrington, UK,
which works with specialist suppliers
across the world.
| | (18501551), www.woodplc.com
Forum
Consumption in the EU above
the energy efficiency target
(eu) The European Union (EU) has
committed itself to reducing energy
consumption by 20 % by 2020 compared
to projections. This objective is
also known as the 20 % energy
efficiency target. In other words, the
EU has pledged to attaining a primary
energy consumption of no more than
1 483 million tonnes of oil equivalent
(Mtoe) and a final energy consumption
of no more than 1 086 Mtoe in 2020.
In 2016, primary energy consumption
in the EU was 4 % off the
effi ciency target. Since 1990, the first
199
NEWS
| | Primary energy consumption in the EU, 2016 | | Final energy consumption in the EU, 2016
News
atw Vol. 63 (2018) | Issue 3 ı March
200
NEWS
year for which data are available, the
consumption has reduced by 1.7 %.
However, over the years, the distance
from primary energy consumption
target has fluctuated greatly. The
biggest divergence from the target
was in 2006 (16.2 %, a consumption
level of 1 723 Mtoe), while a record
low was reached in 2014 (1.7 %,
1 509 Mtoe). Over the last two years
the gap rose again, to 4 % above the
2020 target, equating to a consumption
of 1 543 Mtoe in 2016.
In 2016, gross inland energy
consumption in the European Union,
which reflects the energy quantities
necessary to satisfy all inland consumption,
amounted to 1 641 Mtoe.
This was a 10.8 % decrease compared
with the peak of nearly 1 840 Mtoe in
2006, but a 6.1 % increase compared
to the decade between 1996 and 2006.
Energy consumption falling
mainly in Greece, Malta and
Romania over last decade
While 19 Member States increased
their energy consumption between
1996 and 2006, growth in energy
consumption was recorded in only
two Member States between 2006 and
2016: Estonia (13.4 % increase to
6.2 Mtoe in 2016) and Poland (3.2 %
increase to 99.9 Mtoe in 2016).
Among the 26 Member States where
energy consumption decreased,
Greece (-23.6 %), Malta (- 22.5 %)
and Romania (-20.2 %) recorded
decreases of more than 20 %.
These figures are issued by Eurostat,
the statistical office of the European
Union, and are complemented by
an article on energy saving in the EU.
| | (18501600), ec.europa.eu
People
FORATOM welcomes new
President, Dr Teodor Chirica
(foratom) FORATOM is pleased to
announce that Dr Teodor Chirica has
been appointed by the association’s
General Assembly as FORATOM
President for a two-year period
starting on 1 January 2018. Furthermore,
Mr Esa Hyvärinen, Senior Vice
President of Corporate Relations at
Fortum, has been elected as Vice
President for the same period.
“I look forward to the next two
years working with the General
Assembly, Executive Board, FORATOM
Members and the Secretariat”, states
Dr Chirica. “We have many challenges
ahead of us, but I am certain that by
working together and with our partners
at EU level we will be successful.
Indeed, nuclear energy is essential if
Europe wants to meet its goals in terms
of decarbonising the power sector,
ensuring security of supply and stimulating
growth and jobs in Europe.”
Dr Teodor Chirica has over 40
years’ experience in the Romanian
nuclear energy industry. Actively
involved in the development of the
CANDU project in Romana since the
early 70’s, Dr Chirica has worked for
the CANDU Owners Group, ISPE,
CITON and RENEL. Following this, he
has served in different managerial
positions at Nuclearelectrica (1998-
2009) becoming CEO between March
2005 and January 2009. He also
acted as Managing Director of AMEC
Nuclear Romania (2009-2013) and
as CEO of EnergoNuclear – SPV for
Cernavoda Units 3 & 4 from November
2013. Since October 2017, Dr Chirica
is Senior Adviser to the CEO of
Nuclear electrica. He holds a PhD in
nuclear science from the Polytechnics
University in Bucharest. Dr Chirica
has been instrumental in the setting
up of the Romanian Atomic Forum
(ROMATOM, 2000) and in its affiliation
to FORATOM. He is a FORATOM
Executive Officer since 2006 and
FORATOM Vice President since 2017.
In addition, since 2015, he acts as
Special Advisor ROEC.
Teodor Chirica replaces Bertrand
de L’Epinois, Senior Vice President
for Safety Standards at AREVA, who
has reached the end of his mandate
as FORATOM President. FORATOM
wholeheartedly thanks Bertrand de
L’Epinois for his efforts over the last
two years.
| | (18501444),
www.foratom.org
Market data
(All information is supplied without
guarantee.)
Nuclear Fuel Supply
Market Data
Information in current (nominal)
U.S.-$. No inflation adjustment of
prices on a base year. Separative work
data for the formerly “secondary
market”. Uranium prices [US-$/lb
U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =
0.385 kg U]. Conversion prices
[US-$/kg U], Separative work
[US-$/SWU (Separative work unit)].
January to December 2013
• Uranium: 34.00–43.50
• Conversion: 9.25–11.50
• Separative work: 98.00–127.00
January to December 2014
• Uranium: 28.10–42.00
• Conversion: 7.25–11.00
• Separative work: 86.00–98.00
January to December 2015
• Uranium: 35.00–39.75
• Conversion: 6.25–9.50
• Separative work: 58.00–92.00
2016
January to June 2016
• Uranium: 26.50–35.25
• Conversion: 6.25–6.75
• Separative work: 58.00–62.00
July to December 2016
• Uranium: 18.75–27.80
• Conversion: 5.50–6.50
• Separative work: 47.00–62.00
2017
January 2017
• Uranium: 20.25–25.50
• Conversion: 5.50–6.75
• Separative work: 47.00–50.00
February 2017
• Uranium: 23.50–26.50
• Conversion: 5.50–6.75
• Separative work: 48.00–50.00
March 2017
• Uranium: 24.00–26.00
• Conversion: 5.50–6.75
• Separative work: 47.00–50.00
April 2017
• Uranium: 22.50–23.50
• Conversion: 5.00–5.50
• Separative work: 45.50–48.50
May 2017
• Uranium: 19.25–22.75
• Conversion: 5.00–5.50
• Separative work: 42.00–45.00
June 2017
• Uranium: 19.25–20.50
• Conversion: 5.55–5.50
• Separative work: 42.00–43.00
July 2017
• Uranium: 19.75–20.50
• Conversion: 4.75–5.25
• Separative work: 42.00–43.00
August 2017
• Uranium: 19.50–21.00
• Conversion: 4.75–5.25
• Separative work: 41.00–43.00
September 2017
• Uranium: 19.75–20.75
• Conversion: 4.60–5.10
• Separative work: 40.50–42.00
October 2017
• Uranium: 19.90–20.50
• Conversion: 4.50–5.25
• Separative work: 40.00–43.00
News
atw Vol. 63 (2018) | Issue 3 ı March
November 2017
• Uranium: 20.00–26.00
• Conversion: 4.75–5.25
• Separative work: 40.00–43.00
December 2017
• Uranium: 23.50–25.50
• Conversion: 5.00–6.00
• Separative work: 39.00–42.00
2018
January 2018
• Uranium: 21.75–24.00
• Conversion: 6.00–7.00
• Separative work: 38.00–42.00
| | Source: Energy Intelligence
www.energyintel.com
| | Uranium spot market prices from 1980 to 2018 and from 2007 to 2018. The price range is shown.
In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.
201
NEWS
Cross-border Price
for Hard Coal
Cross-border price for hard coal in
[€/t TCE] and orders in [t TCE] for
use in power plants (TCE: tonnes of
coal equivalent, German border):
2012: 93.02; 27,453,635
2013: 79.12, 31,637,166
2014: 72.94, 30,591,663
2015: 67.90; 28,919,230
2016: 67.07; 29,787,178
I. quarter: 56.87; 8,627,347
II. quarter: 56.12; 5,970,240
III. quarter: 65.03, 7.257.041
IV. quarter: 88.28; 7,932,550
2017:
I. quarter: 95.75; 8,385,071
II. quarter: 86.40; 5,094,233
III. quarter: 88.07; 5,504,908
| | Source: BAFA,
some data provisional
www.bafa.de
EEX Trading Results
January 2018
(eex) In January 2018, the European
Energy Exchange (EEX) achieved a
total volume of 240.9 TWh on its
power derivatives markets (January
2017: 291.1 TWh). The January
volume comprised 140.3 TWh traded
at EEX via Trade Registration with
subsequent clearing. Clearing and
settlement of all exchange transactions
was executed by European
Commodity Clearing (ECC).
On the markets for France
(23.8 TWh, +42 %), Spain (5.3 TWh,
+30 %) and Italy (46.6 TWh, +89 %),
EEX was able to significantly increase
volumes year-on-year. On the German
markets, nearly 80 % of the total
volume was traded in the Phelix-DE
Future which EEX launched in April
2017 in light of the of the German-
Austrian price zone split and which
| | Separative work and conversion market price ranges from 2007 to 2018. The price range is shown.
)1
In December 2009 Energy Intelligence changed the method of calculation for spot market prices. The change results in virtual price leaps.
has established itself as the benchmark
for European power.
The Settlement Price for base
load contract (Phelix Futures) with
delivery in 2019 amounted to 34.21 €/
MWh. The Settlement Price for peak
load contract (Phelix Futures) with
delivery in 2019 amounted to 42.90 €/
MWh.
On the EEX markets for emission
allowances, trading volumes increased
by 37 % to 109.8 million tonnes of CO 2
in January (January 2017: 80.1 million
tonnes of CO 2 ). Primary market
auctions contributed 66.5 million
tonnes of CO 2 to the total volume.
In particular, the EUA derivatives
market recorded a significant growth
of 154 % to 40.3 million tonnes of CO 2
(January 2017: 15.9 million tonnes of
CO 2 ).
The EUA price with delivery in
December 2017 amounted to
7.66/9.46 €/ EUA (min./max.).
| | www.eex.com
MWV Crude Oil/Product Prices
December 2017
(mwv) According to information and
calculations by the Association of the
German Petroleum Industry MWV e.V.
in December 2017 the prices for
super fuel, fuel oil and heating oil
noted inconsistent compared with the
pre vious month November 2017. The
average gas station prices for Euro
super consisted of 136.84 €Cent
( November 2017: 138.54 €Cent,
approx. -1.23 % in brackets: each
information for pre vious month or
rather previous month comparison),
for diesel fuel of 119.01 €Cent (118.52;
+0.41 %) and for heating oil (HEL)
of 60.65 €Cent (60.06 €Cent,
+0.98 %).
The tax share for super with
a consumer price of 138.54 €Cent
(138.54 €Cent) consisted of
65.45 €Cent (47.24 %, 65.45 €Cent)
for the current constant mineral oil
tax share and 21.85 €Cent (current
rate: 19.0 % = const., 22.12 €Cent)
for the value added tax. The product
price (notation Rotterdam) consisted
of 37.18 €Cent (27.17 %, 39.06 €Cent)
and the gross margin consisted of
12.36 €Cent (9.03 %; 11.91 €Cent).
Thus the overall tax share for super
results of 66.83 % (66.24 %).
Worldwide crude oil prices
(monthly average price OPEC/Brent/
WTI, Source: U.S. EIA) were again
higher, approx. +2.43 % (+9.43 %)
in December compared to November
2017.
The market showed a stable
development with higher prices; each
in US-$/bbl: OPEC basket: 62.06
(60.74); UK-Brent: 64.37 (62.70);
West Texas Inter mediate (WTI): 57.88
(56.64).
| | www.mwv.de
News
atw Vol. 63 (2018) | Issue 3 ı March
202
NUCLEAR TODAY
Links to reference
sources:
UK National Audit
Office report:
http://bit.ly/2t1kFLg
US Senate hearing on
nuclear’s contribution:
http://bit.ly/2BIYihS
Exelon Generation
statement on
FitzPatrick
nuclear plant:
http://bit.ly/2FVpFTX
Could Our Nuclear Vision Benefit
From a Spell of Tesla Magic?
John Shepherd
As I put the finishing touches to this latest article, US entrepreneur and boss of the Tesla car giant, Elon Musk,
successfully launched a new rocket, the Falcon Heavy, from the Kennedy Space Center in Florida.
The vast vehicle is the most powerful shuttle system to date
and the whole exercise was ‘only’ a test – or should that be
taste – of what is to come. The rocket’s payload did not
include an array of satellites or other such paraphernalia.
Instead, it carried an unmistakably entrepreneurial touch
– Musk’s old cherry-red Tesla sports car. On top of that,
there was a mannequin in a spacesuit strapped into the
driver’s seat of the car and the radio was set to play a David
Bowie soundtrack.
Maybe this is a bit too theatrical for some, but we’ve
come to expect that of Mr Musk. It was he, after all, who
made a bet with the government of South Australia to
deliver the state the world’s biggest battery within 100 days
of being ordered or deliver it free of charge.
Musk of course delivered the Tesla 100nMW/129nMWh
Powerpack system on time and it is now paired with French
utility Neoen’s Hornsdale wind farm and helping to prevent
power outages in South Australia. Such was the success of
the project – never mind the countless free publicity the
project generated around the world – other Australian
states are investing in similar projects and Tesla is at the
front of the queue.
At this point, you’re probably asking yourself what all
this has to do with nuclear today. Technologically speaking
nothing, of course. But think ‘outside the box’ – as I’m
sure many of you have been told in those corporate
management- training classes. The answer is: ‘vision’. The
unabashed vision to be bold, daring, imaginative. The
vision to believe in technology an