15.12.2012 Views

scipy tutorial - Baustatik-Info-Server

scipy tutorial - Baustatik-Info-Server

scipy tutorial - Baustatik-Info-Server

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SciPy Reference Guide, Release 0.8.dev<br />

pdtrc<br />

y=pdtrc(k,m) returns the sum of the terms from k+1 to infinity of the Poisson distribution: sum(exp(-m) * m**j<br />

/ j!, j=k+1..inf) = gammainc( k+1, m). Arguments must both be positive and k an integer.<br />

pdtri<br />

m=pdtri(k,y) returns the Poisson variable m such that the sum from 0 to k of the Poisson density is equal to the<br />

given probability y: calculated by gammaincinv( k+1, y). k must be a nonnegative integer and y between 0 and<br />

1.<br />

stdtr<br />

p=stdtr(df,t) returns the integral from minus infinity to t of the Student t distribution with df > 0 degrees of<br />

freedom: gamma((df+1)/2)/(sqrt(df*pi)*gamma(df/2)) * integral((1+x**2/df)**(-df/2-1/2), x=-inf..t)<br />

stdtridf<br />

t=stdtridf(p,t) returns the argument df such that stdtr(df,t) is equal to p.<br />

stdtrit<br />

t=stdtrit(df,p) returns the argument t such that stdtr(df,t) is equal to p.<br />

chdtr<br />

p=chdtr(v,x) Returns the area under the left hand tail (from 0 to x) of the Chi square probability density function<br />

with v degrees of freedom: 1/(2**(v/2) * gamma(v/2)) * integral(t**(v/2-1) * exp(-t/2), t=0..x)<br />

chdtrc<br />

p=chdtrc(v,x) returns the area under the right hand tail (from x to infinity) of the Chi square probability density<br />

function with v degrees of freedom: 1/(2**(v/2) * gamma(v/2)) * integral(t**(v/2-1) * exp(-t/2), t=x..inf)<br />

chdtri<br />

x=chdtri(v,p) returns the argument x such that chdtrc(v,x) is equal to p.<br />

ndtr<br />

y=ndtr(x) returns the area under the standard Gaussian probability density function, integrated from minus<br />

infinity to x: 1/sqrt(2*pi) * integral(exp(-t**2 / 2),t=-inf..x)<br />

ndtri<br />

x=ndtri(y) returns the argument x for which the area udnder the Gaussian probability density function (integrated<br />

from minus infinity to x) is equal to y.<br />

smirnov<br />

y=smirnov(n,e) returns the exact Kolmogorov-Smirnov complementary cumulative distribution function (Dn+<br />

or Dn-) for a one-sided test of equality between an empirical and a theoretical distribution. It is equal to the<br />

probability that the maximum difference between a theoretical distribution and an empirical one based on n<br />

samples is greater than e.<br />

smirnovi<br />

e=smirnovi(n,y) returns e such that smirnov(n,e) = y.<br />

kolmogorov<br />

p=kolmogorov(y) returns the complementary cumulative distribution function of Kolmogorov’s limiting distribution<br />

(Kn* for large n) of a two-sided test for equality between an empirical and a theoretical distribution. It is<br />

equal to the (limit as n->infinity of the) probability that sqrt(n) * max absolute deviation > y.<br />

kolmogi<br />

y=kolmogi(p) returns y such that kolmogorov(y) = p<br />

tklmbda<br />

432 Chapter 3. Reference

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!