16.12.2012 Views

Annals of Warsaw University of Life Sciences - SGGW

Annals of Warsaw University of Life Sciences - SGGW

Annals of Warsaw University of Life Sciences - SGGW

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

�uu� 1<br />

�ij � i, j � j, i , � ij � C ijks�<br />

ks , � ij, j � 0 , (1)<br />

2<br />

Where, i u , � ij and � ij are respectively, the displacement, stress and strain. The<br />

repeated indices imply summation; a comma stands for differentiation and C ijks are the<br />

elastic constants which are assumed to be fully symmetric. A general solution satisfying Eq.<br />

(1) has been presented [5, 6] as<br />

where<br />

� Af �z� Af �z� , � Bf �z��Bf �z� u �<br />

A � �aaa�, �bbb� 1<br />

2<br />

� � � � � � � � ��T<br />

z � f z , f z , f z<br />

1<br />

1<br />

2<br />

3<br />

2<br />

3<br />

� (2a)<br />

B � ,<br />

3<br />

1<br />

2<br />

3<br />

f , z � x � p x , � � 1,<br />

2,<br />

3.<br />

(2b)<br />

�<br />

u and � , are 1<br />

u 1 , u2,<br />

u3<br />

and the stress<br />

functions �� 1 , �2,<br />

�3<br />

�.<br />

The stress function � i is related to the stresses by<br />

38<br />

1<br />

� 2<br />

3� column vectors denoting the displacements � �<br />

� i1<br />

� ��i,<br />

2 , i2<br />

i, 1 � �<br />

� . (2c)<br />

The superscript T denotes the transpose and the overline represents the conjugate <strong>of</strong> a<br />

complex number. The material eigenvalues � p , and eigenvectors � a , b� are determined by<br />

the following eigenrelations<br />

N � � p�<br />

, (3a)<br />

where<br />

and<br />

� �<br />

�N1<br />

N 2 �<br />

N � �<br />

T � ,<br />

�N3<br />

N1<br />

�<br />

N �T<br />

R<br />

-1 T<br />

1 � ,<br />

�a�<br />

� � � � ,<br />

�b�<br />

-1<br />

N 2 T �<br />

ik i1k1<br />

C Q � , ik i1k<br />

2 C<br />

� N ,<br />

T<br />

2<br />

-1 T<br />

N3 RT R �Q<br />

�<br />

� N<br />

(3b)<br />

R � , ik i2k<br />

2 C T � . (3c)<br />

� � z f , � =1, 2, 3, are three holomorphic functions <strong>of</strong> complex variables z � , which will be<br />

determined by the boundary conditions set for each particular problem. The surface traction<br />

vector t can be calculated by using Cauchy’s formula [4], i.e., ti � � ijm<br />

j where m j is the unit<br />

normal to the surface boundary. Usually, the stress components along any coordinate axes are<br />

calculated using the transformation law <strong>of</strong> second order tensors. An alternative approach to<br />

determining stress components <strong>of</strong> the rotated coordinate axes has been introduced [6]. Let (n,<br />

m) be the unit vector tangent and normal to a surface boundary then we have<br />

where<br />

�<br />

�<br />

mm<br />

nn<br />

T<br />

T<br />

� m ����, n , � mn � n ����, n , � m3<br />

� �� , n � , 3<br />

T<br />

� �n<br />

����, m , � nm � �m<br />

����, m � � mn<br />

T<br />

, n3<br />

� ���<br />

, m �3 T<br />

T<br />

n �����cos� , sin�<br />

, 0�,<br />

������sin� , cos�,<br />

0�<br />

T<br />

3<br />

� , (4a)<br />

m , (4b)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!