16.12.2012 Views

Annals of Warsaw University of Life Sciences - SGGW

Annals of Warsaw University of Life Sciences - SGGW

Annals of Warsaw University of Life Sciences - SGGW

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Contents:<br />

<strong>Annals</strong><br />

<strong>of</strong> <strong>Warsaw</strong><br />

<strong>University</strong><br />

<strong>of</strong> <strong>Life</strong><br />

<strong>Sciences</strong><br />

– <strong>SGGW</strong><br />

Forestry and Wood Technology No 71<br />

<strong>Warsaw</strong> 2010<br />

ANDRZEJ ANTCZAK “The study <strong>of</strong> thermal degradation <strong>of</strong> s<strong>of</strong>twood<br />

cellulose in the presence <strong>of</strong> antioxidants – FT-IR analysis” .................................................... 9<br />

ANTCZAK ANDRZEJ “The study <strong>of</strong> thermal degradation <strong>of</strong> s<strong>of</strong>twood cellulose<br />

in the presence <strong>of</strong> antioxidants – SEC analysis” ................................................................... 14<br />

BEER PIOTR, FUCZEK DOROTA, KOWALUK GRZEGORZ, ZBIE� MARCIN<br />

“Possibilities and limits <strong>of</strong> the finishing <strong>of</strong> the particleboards from fibrous chips” ............... 20<br />

BELCHINSKAYA L.I., SEDLIACIK JAN, VARIVODIN V.A., ANISIMOV �.�.<br />

“��������� ������������ ����������� ������� ����������,<br />

���������� ������������” .............................................................................................. 24


BIERNACKA JUSTYNA, SEDLIA�IKOVÁ MARIANA „The analysis <strong>of</strong><br />

roundwood and sawnwood production in selected European Union countries” .................... 28<br />

BIERNACKA JUSTYNA, SEDLIA�IKOVÁ MARIANA “Competitiveness analysis<br />

<strong>of</strong> wood industry sector in selected European Union countries” ........................................... 31<br />

BODNÁR FERDINAND, JAB�O�SKI MAREK “Stress concentration factors <strong>of</strong> an<br />

anisotropic elastic plate with an elliptical hole ...................................................................... 37<br />

BOMBIN A.M., MORDVINOV P.S. “Two special plants for drying <strong>of</strong> wood by<br />

superhigh frequency <strong>of</strong> electromagnetic energy” .................................................................. 42<br />

BORATY�SKI EMILIAN, JANKOWSKA AGNIESZKA,<br />

SZCZ�SNA MAGDALENA “Influence <strong>of</strong> the accelerated ageing red oak wood<br />

(Quercus rubra L.) on compressive strength along the fibers” .............................................. 47<br />

BORUSZEWSKI PIOTR, BORYSIUK PIOTR, DOBROWOLSKA EWA,<br />

MAMI�SKI MARIUSZ, NICEWICZ DANUTA „Interactions with water <strong>of</strong> novel<br />

wood-fiber material with lignins as binder” .......................................................................... 51<br />

BORYSIUK PIOTR, BORUSZEWSKI PIOTR, KRAJEWSKI KRZYSZTOF,<br />

JABLO�SKI MAREK, RUŽINSKÁ EVA „Shear strength <strong>of</strong> bonds in plywood<br />

made <strong>of</strong> veneers treated with pyrethroid and triazole based bio-preservatives” .................... 56<br />

BORYSIUK PIOTR, SZO�UCHA MARCIN, JASKÓ�OWSKI WALDEMAR,<br />

CZECHOWSKA JOANNA „Low-density particleboards with foamed<br />

polystyrene additive” ............................................................................................................ 62<br />

������� ������� “����������� ������-������������ �������<br />

��������� ������” .............................................................................................................. 67<br />

CHUCHALA D., MISZKIEL K., ORLOWSKI K.A. „Methods <strong>of</strong> determining<br />

cutting forces during woodcutting” ....................................................................................... 70<br />

CYRANKOWSKI MARIUSZ, BAJKOWSKI BOGUS�AW “The role <strong>of</strong> lighting in<br />

vision systems” ..................................................................................................................... 75<br />

CYRANKOWSKI MARIUSZ, WROTEK HUBERT “Advanced quality control<br />

methods for wood” ................................................................................................................ 79<br />

CZARNECKI RAFA�, DUKARSKA DOROTA “Estimating the possibilities <strong>of</strong><br />

applying Sida hermaphrodita Rusby to the production <strong>of</strong> low-density particleboards” ........ 83<br />

CZARNIAK PAWE�, WILKOWSKI JACEK, MAZUREK ANDRZEJ „Influence<br />

<strong>of</strong> tool wear and cutting force on machining quality during milling <strong>of</strong><br />

laminated particleboard ......................................................................................................... 87<br />

CZECHOWSKA JOANNA, BORYSIUK PIOTR, MAMI�SKI MARIUSZ „Selected<br />

properties <strong>of</strong> low-density pine and poplar-pine particleboards” ............................................ 92<br />

DANIHELOVÁ ANNA, �ULÍK MARTIN, RUŽINSKÁ EVA,<br />

JAB�O�SKI MAREK, ZBIE� MARCIN “The magnetic properties spruce wood<br />

and their influence on wood quality” .................................................................................... 97<br />

2


�������� �����, �������� ��������, ���������� ������<br />

“������������ ���������� ������������ ���������������������� �������<br />

���������” ........................................................................................................................ 101<br />

�������� �����, �������� ��������, ������� ������<br />

“�������������� �������� ����������� ���� �������� �������” ............................. 106<br />

DIETZ HANS, KRZOSEK S�AWOMIR “Entwicklungstendenzen bei<br />

Bandsägeführungen im Sägewerk” ..................................................................................... 110<br />

DOBROWOLSKA EWA, KOZAKIEWICZ PAWE� “Die Sägegatter in der deutschen<br />

Literatur des 18. Jh. Nach Sturm und Zedler” ..................................................................... 114<br />

DOLACIS J�NIS, ANTONS ANDIS, PAVLOVI�S GUN�RS, C�RULE DACE<br />

“Relationship between the anatomical structure elements and mechanical properties<br />

in the trunk transverse and longitudinal direction for wood <strong>of</strong> Norway spruce<br />

(Picea abies (L.) Karst.) growing in Latvia” ....................................................................... 126<br />

DOLNY STANIS�AW, ROGOZI�SKI TOMASZ „Preliminary research <strong>of</strong> the<br />

processes <strong>of</strong> filtering purification <strong>of</strong> the air polluted by dust arisen during tooling<br />

the particleboards” .............................................................................................................. 130<br />

DOLNY STANIS�AW, ROGOZI�SKI TOMASZ “Air pulse pressure in conditions<br />

<strong>of</strong> air cleaning from wood dusts by filtration” .................................................................... 134<br />

DOLNY STANIS�AW, ROGOZI�SKI TOMASZ “Influence <strong>of</strong> moisture content<br />

on the physical and aerodynamic properties <strong>of</strong> dusts from working <strong>of</strong> particleboards” ...... 138<br />

DRÁBEK JOSEF, SEDLIA�IKOVÁ MARIANA, BIERNACKA JUSTYNA<br />

“The suggesting approach to the measuring and evaluating <strong>of</strong> the efficiency <strong>of</strong><br />

Small and Medium Enterprises (SMEs) in the furniture industry” ...................................... 142<br />

DRO�D�EK MICHA� “Influence <strong>of</strong> isolation conditions on the degradation degree<br />

<strong>of</strong> scots pine wood (Pinus sylvestris L.)” ............................................................................ 147<br />

DUKARSKA DOROTA, ��CKA JANINA “Synthetic silica as a filler <strong>of</strong> phenolic<br />

resin in the manufacture <strong>of</strong> exterior plywood” .................................................................... 152<br />

DUKARSKA DOROTA, ��CKA JANINA, ZAJDLER MAGDALENA<br />

„The influence <strong>of</strong> adding <strong>of</strong> TiO2 and CaCO3 to phenolic resin upon the colour<br />

<strong>of</strong> glue line and properties <strong>of</strong> water-resistant plywood” ..................................................... 157<br />

DZIURKA DOROTA “Improved water resistance and adhesive performance <strong>of</strong> a<br />

commercial UF resin with small pMDI additions” ............................................................. 162<br />

DZIURKA DOROTA, ��CKA JANINA “Veneered lightweight particleboards for<br />

furniture industry” ............................................................................................................... 166<br />

FABISIAK EWA, CUNDERLIK IGOR, MOLI�SKI WALDEMAR<br />

“Ultrastructure and ultrasound wave propagation velocity in spruce (Picea abies L.)<br />

resonance wood” ................................................................................................................. 170<br />

FOJUTOWSKI ANDRZEJ, KROPACZ ALEKSANDRA, NOSKOWIAK ANDRZEJ<br />

“Resistance <strong>of</strong> thermomodified spruce and alder wood to moulds fungi” .......................... 177<br />

3


GÁBORÍK JOZEF, DUDAS JURAJ, KULÍK JOZEF “Selected properties <strong>of</strong> laminated<br />

wood <strong>of</strong> poplar” .................................................................................................................. 182<br />

GAFF MILAN, MACEK ŠTEFAN, ZEMIAR JÁN “Model analysis <strong>of</strong> laminar<br />

materials stressed by bending” ............................................................................................ 187<br />

������� ��������, �������� ������ “����������� �����������<br />

������������� ��������� � ��������� ���������� � ���� �������” ......................... 194<br />

GOZDECKI CEZARY, KOCISZEWSKI MAREK, WILCZY�SKI ARNOLD<br />

“Wood-polyethylene composite with industrial wood particles” ........................................ 199<br />

GOZDECKI CEZARY, KOCISZEWSKI MAREK, WILCZY�SKI ARNOLD,<br />

MIROWSKI JACEK „Effect <strong>of</strong> wood bark content on mechanical properties<br />

<strong>of</strong> wood-polyethylene composite” ...................................................................................... 203<br />

GROBELNY TOMASZ, KARDA� DOROTA, GÓRALSKI TOMASZ<br />

“Perforation <strong>of</strong> blade as a way to increase the stiffness <strong>of</strong> frame saw” ............................... 207<br />

GROBELNY TOMASZ, KARDA� DOROTA, JASI�SKI BARTOSZ<br />

“Influence <strong>of</strong> rake angle <strong>of</strong> scoring saw on cutting quality” ............................................... 211<br />

GRZE�KIEWICZ MAREK, K�DZIERSKI ANDRZEJ, SWACZYNA IRENA,<br />

POLICI�SKA-SERWA ANNA „Comparative studies <strong>of</strong> varying characteristics <strong>of</strong><br />

wood surfaces after exposure to natural climate and accelerated aging” ............................ 217<br />

GRZE�KOWIAK WOJCIECH �., BARTKOWIAK MONIKA “Flammability <strong>of</strong><br />

thermally modified wood originated from the industry – part I - mass losses” ................... 221<br />

GRZE�KOWIAK WOJCIECH �., BARTKOWIAK MONIKA<br />

“Flammability <strong>of</strong> thermally modified wood originated from the industry – part II -<br />

temperature distribution” .................................................................................................... 225<br />

GRZE�KOWIAK WOJCIECH �., WI�NIEWSKI TOMASZ<br />

“Fire safety <strong>of</strong> fireplaces – wood based products speed <strong>of</strong> charring” .................................. 229<br />

H’NG P.S., CHAI L.Y., CHIN K.L., MAMI�SKI M. “Oil palm wood (Elaeis<br />

guineensis Jacq.) as an underutilized resource <strong>of</strong> raw materials” ........................................ 235<br />

JAB�O�SKI MAREK, SEDLIA�IK JÁN, RUŽINSKÁ EVA<br />

“Less popular application <strong>of</strong> trees and bushes growing in Poland and Slovakia” ............... 240<br />

JANDA�KA JOZEF, KAPJOR ANDREJ, PAPU�ÍK ŠTEFAN,<br />

LENHARD RICHARD “Emission and power parameters <strong>of</strong> combined heat source on<br />

wood biomass combustion” ................................................................................................ 245<br />

JANDA�KA JOZEF, HUŽVÁR JOZEF, KAPJOR ANDREJ<br />

“Project <strong>of</strong> micro co-generation unit on wood pellets combustion” .................................... 250<br />

JANDA�KA JOZEF, HOLUB�ÍK MICHAL, NOSEK RADOVAN, PILÁT PETER<br />

“The effect <strong>of</strong> additives for production <strong>of</strong> wood pellets” .................................................... 255<br />

JANDA�KA JOZEF, PILÁT PETER, NOSEK RADOVAN, �AJA ALEXANDER<br />

“The influence <strong>of</strong> boiler regulation to emission parameters and heat power” ..................... 261<br />

4


JANDA�KA JOZEF, NOSEK RADOVAN, PAPU�ÍK ŠTEFAN,<br />

CHABADOVÁ JANA “The influence <strong>of</strong> fuel supply to emissions parameters and<br />

heat power <strong>of</strong> domestic boiler” ........................................................................................... 265<br />

JANKOWSKA AGNIESZKA, KOZAKIEWICZ PAWE�, SZCZ�SNA MAGDALENA<br />

“Discoloration <strong>of</strong> bilinga (Nauclea diderrichii (De Wild. & Th.Dur.) Merr.) and iroko<br />

(Milicia excelsa (Welw.) C.C.Berg.) wood, caused by coatings and light aging” ............... 270<br />

JANKOWSKA AGNIESZKA “Comparative analysis <strong>of</strong> wood ageing methods” .............. 275<br />

JANKOWSKA AGNIESZKA, ST�PNIEWSKI SEBASTIAN “Research on colour<br />

change <strong>of</strong> thermal modified birch wood caused by UV and accelerated ageing ................. 280<br />

JASKÓ�OWSKI WALDEMAR, MAMI�SKI MARIUSZ “Emissions CO and CO2<br />

from particleboard filled with mineral wool in fire conditions” .......................................... 285<br />

JASKÓ�OWSKI WALDEMAR, BORYSIUK PIOTR “Emissions <strong>of</strong> CO and CO2<br />

from particleboard filled with polystyrene in fire conditions” ........................................... 291<br />

JASKÓ�OWSKI WALDEMAR, KOZAKIEWICZ PAWE�, SZWED MAREK<br />

“Thermogravimetric research on the influence <strong>of</strong> wood species on its thermal<br />

decomposition” ................................................................................................................... 296<br />

JASKÓ�OWSKI WALDEMAR, KOZAKIEWICZ PAWE�, POP�AWSKI MAREK<br />

“Study on the influence <strong>of</strong> thickness <strong>of</strong> dust layer to ignition temperature in selected<br />

types <strong>of</strong> exotic woods” ........................................................................................................ 300<br />

JASTRZ�B JOANNA ”Die Eigenschaften der OSB–Platten modifiziert mit<br />

thermoplastischen Kunstst<strong>of</strong>fen in der Abhängigkeit von der Presstemperatur” ................ 304<br />

JASTRZ�B JOANNA “Der Einfluss des Aktivators auf die Eigenschaften der<br />

OSB–Platten modifiziert mit thermoplastischen Kunstst<strong>of</strong>fen” ......................................... 309<br />

JASZCZUR ANNA, MODZELEWSKA IZABELA, KOKOSZKA AGNIESZKA,<br />

�O�NOWSKI PAWE� „Strength properties and biodegradation <strong>of</strong> paper products<br />

manufactured from broad-leaved bleached kraft pulp supplemented with starch and<br />

resin glue additives” ............................................................................................................ 314<br />

JAVOREK L., HRIC J. “The curved cutting edge wearing (back face) during<br />

greenwood turning “ ............................................................................................................ 319<br />

JAVOREK L., PAULINY D., HRIC J. “The influence <strong>of</strong> the tool design to<br />

cutting force “ ..................................................................................................................... 323<br />

JELONEK TOMASZ, TOMCZAK ARKADIUSZ “Biomechanics <strong>of</strong> Scots pine<br />

(Pinus sylvestris L.) trees coming from mature stands” ...................................................... 328<br />

JELONEK TOMASZ, PAZDROWSKI WITOLD, TOMCZAK ARKADIUSZ,<br />

JAKUBOWSKI MARCIN „Dynamics <strong>of</strong> heartwood formation in European larch<br />

(Larix decidua Mill.) in terms <strong>of</strong> age and variation in social tree position in the stand” ..... 336<br />

KARPOVI� ZBIGNEV, JASKÓ�OWSKI WALDEMAR,<br />

MA�IULAITIS ROMUALDAS, PRANIAUSKAS VLADAS “Studies on<br />

combustibility <strong>of</strong> treated wood with fire retardant and antiseptic solutions” .................... 342<br />

5


K�DZIERSKI ANDRZEJ, POLICI�SKA – SERWA ANNA<br />

“The effect <strong>of</strong> ageing in natural conditions on the basic properties <strong>of</strong> water-based<br />

paint coatings” .................................................................................................................... 347<br />

KHODOSOVA N.A., SEDLIACIK JAN, VARIVODIN V.A., ANISIMOV �.�.<br />

“������������ ��������, �������� �� ������� ������������� �� ������” ........... 351<br />

KOWALCZYK SYLWESTER “Application <strong>of</strong> acoustic<br />

signals in preventing <strong>of</strong> animal damages in farming and forest cultivations” ..................... 355<br />

KOPECKÝ ZDEN�K, ROUSEK MIROSLAV, VESELÝ P�EMYSL<br />

“The noise level <strong>of</strong> circular sawblades with the irregular tooth pitch” ................................ 360<br />

KOWALUK GRZEGORZ, BORUSZEWSKI PIOTR, BORYSIUK PIOTR, ZBIE�<br />

MARCIN „Thermal characteristic <strong>of</strong> the particleboards produced from fibrous chips” ..... 367<br />

KOWALUK GRZEGORZ, ZBIE� MARCIN, BEER PIOTR<br />

“The quality <strong>of</strong> milling <strong>of</strong> the particleboards produced from fibrous chips” ....................... 371<br />

KOZAKIEWICZ PAWE�, SZCZ�SNA MAGDALENA, TOMCZAK<br />

MA�GORZATA “Shrinkage and swell in pine wood coming from XIX-th century<br />

constructional wood” .......................................................................................................... 374<br />

KOZAKIEWICZ PAWE�, MATEJAK MIECZYS�AW „Kreissägen” ............................ 378<br />

KOZAKIEWICZ PAWE�, DOBROWOLSKA EWA „Die Sägegatter in der deutschen<br />

Literatur des 18. Jh. Nach Florin und Leupold” .................................................................. 383<br />

KRAJ�OVI�OVÁ MÁRIA “Holzspielzeuge damals und Heute in der Slowakei” ........... 390<br />

KRAJEWSKI ADAM , MAZUREK ANDRZEJ “Exotic species <strong>of</strong> wood borers in<br />

investigations <strong>of</strong> Wood Protection Division <strong>SGGW</strong> in <strong>Warsaw</strong> in years 1997 – 2009” ..... 395<br />

KRAJEWSKI ADAM “The species <strong>of</strong> wood construction in historic churches in<br />

Mazovia region - Part 2” ..................................................................................................... 400<br />

KRAUSS ANDRZEJ, SZYMA�SKI WALDEMAR, PINKOWSKI GRZEGORZ<br />

„The radial variability <strong>of</strong> the modulus <strong>of</strong> elasticity along the grain <strong>of</strong> Scots pine wood” ... 404<br />

KRUTUL DONATA, ZIELENKIEWICZ TOMASZ, RADOMSKI ANDRZEJ,<br />

ZAWADZKI JANUSZ, DRO�D�EK MICHA�, ANTCZAK ANDRZEJ<br />

„Influence <strong>of</strong> urban environment originated heavy metals pollution on the content<br />

<strong>of</strong> extractives, cellulose and lignin in the oak wood” .......................................................... 410<br />

KRYSTOFIAK TOMASZ, PROSZYK STANIS�AW, LIS BARBARA, JURGA ANNA<br />

“Effect <strong>of</strong> thermal aging on properties <strong>of</strong> HDF boards finished in lacquer analogue<br />

printing technology. Part I. Coatings resistance upon thermal factors” ............................... 417<br />

KRYSTOFIAK TOMASZ, LIS BARBARA, PROSZYK STANIS�AW, JURGA ANNA<br />

“Effect <strong>of</strong> thermal aging on properties <strong>of</strong> HDF boards finished in lacquer analogue<br />

printing technology. Part II. Coatings resistance upon mechanical factors” ....................... 421<br />

KRZOSEK S�AWOMIR “Qualität von polnischem festigkeitssortierten<br />

Kieferschnittholz aus verschiedenen Wuchsgebieten” ........................................................ 425<br />

6


KUROWSKA AGNIESZKA, KOZAKIEWICZ PAWE� “Density and shear strength<br />

as solid wood and glued laminated timber suitability criterion for window woodwork<br />

manufacturing” ................................................................................................................... 429<br />

KUROWSKA AGNIESZKA, KOZAKIEWICZ PAWE�, BORYSIUK PIOTR<br />

“An attempt at the use <strong>of</strong> laboratory density analyzer for determination <strong>of</strong> solid wood<br />

cross section density distribution” ....................................................................................... 435<br />

������� ��������, ������ ������� “���� ������� ��� ������������<br />

����� MDF �������� ������������� ������” .............................................................. 440<br />

������� ��������, ������ ������� “������� ������-������������<br />

������� ����� MDF � �������� ������ �� �������� ��������� � ��������<br />

������������” ................................................................................................................... 444<br />

LIS BARBARA, KRYSTOFIAK TOMASZ, PROSZYK STANIS�AW<br />

“Studies <strong>of</strong> the resistance upon some factors <strong>of</strong> UV acrylic lacquer coatings<br />

on MDF boards. Part I. Resistance <strong>of</strong> heat and cold liquid action “ ................................... 450<br />

LIS BARBARA, KRYSTOFIAK TOMASZ, PROSZYK STANIS�AW<br />

“Studies <strong>of</strong> the resistance upon some factors <strong>of</strong> UV acrylic lacquer coatings on<br />

MDF boards. Part II. Mechanical factors” .......................................................................... 454<br />

LIS BARBARA, KRYSTOFIAK TOMASZ, PROSZYK STANIS�AW, WO�NIAK<br />

AGNIESZKA „Influence <strong>of</strong> thermal aging <strong>of</strong> veneering boards finished PUR lacquers<br />

in HC technology upon coatings properties. Part III. Resistance to thermal and<br />

chemical factors” ................................................................................................................ 458<br />

LIS BARBARA, KRYSTOFIAK TOMASZ, PROSZYK STANIS�AW, WO�NIAK<br />

AGNIESZKA „Influence <strong>of</strong> thermal aging <strong>of</strong> veneering boards finished <strong>of</strong> PUR lacquers<br />

in HC technology upon coating properties. Part IV. Wettability and adherence” ............... 462<br />

MAKOWSKI ANDRZEJ “Strength analysis <strong>of</strong> layered wood composite” ........................ 467<br />

MAKOWSKI A., NOSKOWIAK A., PAJCHROWSKI G., SZUMI�SKI G.<br />

“Strength and modulus <strong>of</strong> elasticity in bending <strong>of</strong> pine structural timber with square<br />

and round cross-section” ..................................................................................................... 473<br />

MAKSIMOWSKI PAWE�, ZAWADZKI JANUSZ , RADOMSKI ANDRZEJ<br />

“Use <strong>of</strong> pinene as component <strong>of</strong> special paints” ................................................................. 479<br />

MA�KOWSKI PIOTR, RADOMSKI ANDRZEJ<br />

“Thermal and photolytic ageing <strong>of</strong> Winacet RA” .............................................................. 484<br />

MA�KOWSKI PIOTR, ZIELENKIEWICZ TOMASZ, BORUSZEWSKI PIOTR<br />

“Iron chloride solution penetration into oak wood” ............................................................ 490<br />

�������� �������, ����� �������<br />

“������ ��������� ���������� �������������� �� ������� �����������” ............. 495<br />

MATYAŠOVSKÝ JÁN, JURKOVI� PETER, DUCHOVI� PETER<br />

“Collagen modified hardener for melamine-formaldehyde adhesive for increasing<br />

water-resistance <strong>of</strong> plywood” .............................................................................................. 499<br />

7


MAZELA BART�OMIEJ, HOCHMA�SKA PATRYCJA, RATAJCZAK IZABELA,<br />

SZENTNER KINGA „Enhancing the fungal performance <strong>of</strong> wood coatings by<br />

pre-treatment with Na2O-SiO2 solution” ............................................................................. 504<br />

MIKO�AJCZAK EL�BIETA “Biomass as a source <strong>of</strong> renewable energy in Poland” ....... 509<br />

MIRSKI RADOS�AW, DERKOWSKI ADAM<br />

“Bending strength <strong>of</strong> OSB subjected to boiling test” .......................................................... 515<br />

Board <strong>of</strong> reviewers:<br />

Pr<strong>of</strong>. dr hab. Bogus�aw Bajkowski<br />

Pr<strong>of</strong>. dr hab. Piotr Beer<br />

Dr hab. Ewa Dobrowolska<br />

Pr<strong>of</strong>. dr hab. Jaros�aw Górski<br />

Pr<strong>of</strong>. dr hab. Adam Krajewski<br />

Pr<strong>of</strong>. dr hab. Krzyszt<strong>of</strong> Krajewski<br />

Pr<strong>of</strong>. dr hab. Donata Krutul<br />

Dr hab. S�awomir Krzosek<br />

Dr hab. Hanna Pachelska<br />

Pr<strong>of</strong>. dr hab. Andrzej Starecki<br />

Pr<strong>of</strong>. dr hab. Irena Swaczyna<br />

Pr<strong>of</strong>. dr hab. Wac�aw Szymanowski<br />

Dr hab. Piotr Witomski<br />

Dr hab. Janusz Zawadzki<br />

D<strong>of</strong>inansowano ze �rodków Ministra Nauki i Szkolnictwa Wy�szego<br />

Polska Akademia Nauk Komitet Technologii Drewna<br />

WARSAW UNIVERSITY<br />

OF LIFE SCIENCES PRESS<br />

e-mail: wydawnictwo@sggw.pl<br />

ISSN 1898-5912<br />

SERIES EDITOR<br />

Ewa Dobrowolska<br />

Marcin Zbie� PRINT: ZPW POZKAL


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 9-13<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

The study <strong>of</strong> thermal degradation <strong>of</strong> s<strong>of</strong>twood cellulose in the presence <strong>of</strong><br />

antioxidants – FT-IR analysis<br />

ANDRZEJ ANTCZAK<br />

Department <strong>of</strong> Wood Science and Wood Protection, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Abstract: The study <strong>of</strong> thermal degradation <strong>of</strong> s<strong>of</strong>twood cellulose in the presence <strong>of</strong> antioxidants – FT-IR<br />

analysis. The purpose <strong>of</strong> the study was examination antioxidant’s influence on cellulose crystallinity, which was<br />

submitted to thermal aging in 130°C. FT-IR spectroscopy was used to evaluate cellulose crystallinity. Generally,<br />

results obtained indicate that thermal aging <strong>of</strong> cellulose with/without antioxidant in oxygen conditions causes<br />

increase <strong>of</strong> cellulose crystallinity. Degradation <strong>of</strong> cellulose in the presence <strong>of</strong> THBP and EQ in 130ºC – air<br />

atmosphere probably proceeds mainly in amorphous regions. Addition <strong>of</strong> PG to cellulose matrix favors<br />

proceeding thermal cellulose degradation both in amorphous and crystalline regions. For aged cellulose in non<br />

extracted wood similar results were obtained. Thermal aging <strong>of</strong> cellulose with/without antioxidant in nitrogen<br />

atmosphere does not cause significant changes in cellulose crystallinity index.<br />

Keywords: thermal degradation, antioxidants, cellulose aging, FT-IR, crystallinity index<br />

INTRODUCTION<br />

Studies <strong>of</strong> cellulose degradation met with great interest in last years. This subject area<br />

is very important in many different industries (electrical, paper and textile) or in archives and<br />

libraries. To explain and understand cellulose degradation more precise and sensitive methods<br />

are required.<br />

Fourier transform infrared (FT-IR) spectroscopy is one <strong>of</strong> this technique. Using FT-IR<br />

method crystallinity <strong>of</strong> cellulose can be characterized. Nelson and O’Connor [1964 a, b]<br />

showed that bands at 1430 and 900 cm -1 are particularly sensitive to changes in crystallinity.<br />

Several authors have noted that cellulose undergoes changes in crystallinity upon chemical<br />

and physical treatments, for example heating. The increase in crystallinity may be explained<br />

as crystallization in quasicrystalline amorphous regions due to rearrangement or reorientation<br />

<strong>of</strong> cellulose molecules inside these regions. The second reason can be rate difference <strong>of</strong><br />

cellulose degradation in amorphous and crystalline regions. It is well known that the<br />

amorphous regions degrade more rapidly than crystalline ones.<br />

The purpose <strong>of</strong> the study was examination antioxidant’s influence on cellulose<br />

crystallinity, which was submitted to thermal aging in 130°C. FT-IR analysis application can<br />

give more detailed information about cellulose degradation.<br />

MATERIALS AND METHODS<br />

Research material<br />

- non extracted sawdust <strong>of</strong> pinewood (Pinus sylvestris L.) from sapwood zone<br />

- extracted sawdust <strong>of</strong> pinewood (Pinus sylvestris L.) from sapwood zone (without<br />

extractives) extracted by ethanol:chlor<strong>of</strong>orm (3:97)w mixture according to own method<br />

[Antczak et al. 2006]<br />

- cellulose – separated from above-mentioned extracted pinewood (Pinus sylvestris L.)<br />

by Kürschner-H<strong>of</strong>fer method [Krutul 2002]<br />

- above-mentioned pinewood cellulose with antioxidant – propyl gallate (PG), 2,4,5trihydroxyphenone<br />

(THBP) and ethoxyquin (EQ) which were coated on cellulose fibre<br />

by method with stirring [Antczak et al. 2007]. The method consisted in immersing a<br />

sample <strong>of</strong> cellulose in 0.2% antioxidant solution in methanol and then total<br />

evaporation <strong>of</strong> solvent under vacuum while stirring.<br />

9


Structural formulas <strong>of</strong> antioxidants (propyl gallate, etoxyquin and 2,4,5trihydroxybutyrophenone)<br />

are presented in Fig. 1.<br />

C<br />

H 3<br />

CH 2<br />

O<br />

CH 3<br />

N<br />

H<br />

HO<br />

HO<br />

etoxyquin<br />

CH 3<br />

CH 3<br />

OH<br />

O<br />

10<br />

O<br />

propyl gallate<br />

CH 2<br />

CH 2<br />

HO<br />

HO<br />

CH 3<br />

O<br />

OH<br />

CH 2<br />

CH 2<br />

2,4,5 - trihydroxybutyrophenone<br />

Fig. 1. Structural formulas <strong>of</strong> antioxidants (propyl gallate, etoxyquin and 2,4,5-trihydroxybutyrophenone)<br />

Accelerated ageing tests in air atmosphere<br />

At the beginning non extracted and extracted pinewood from sapwood zone, cellulose<br />

and cellulose with antioxidant (PG, THBP, EQ) were placed in desiccator with phosphorus<br />

pentaoxide (P2O5) (anhydrous conditions). In this vessel samples were submitted to<br />

accelerated ageing tests. Ageing tests were carried out in thermal chamber (KC 100/200,<br />

Elkon company) at 130ºC. Samples were collected after 15 days and were prepared to FT-IR<br />

analysis.<br />

Accelerated ageing tests in nitrogen atmosphere<br />

In this studies cellulose samples and samples <strong>of</strong> cellulose with antioxidant (PG, THBP,<br />

EQ) were used only. They were placed in desiccator with P2O5. Vacuum pump was used to<br />

remove the air to 6.6 mbar, then desiccator was filled with the nitrogen. The procedure was<br />

repeated three times. After that, samples in desiccator were submitted to accelerated ageing<br />

tests. Ageing tests were also carried out in thermal chamber (KC 100/200, Elkon company) at<br />

130ºC. Samples were also collected after 15 days and were prepared to FT-IR analysis.<br />

FT-IR analysis<br />

Preparation <strong>of</strong> cellulose samples to analysis<br />

Heat-treated (after 15 days) and untreated (control) cellulose samples were ground to<br />

homogeneous powder. Disintegrated samples were embedded in potassium bromide (KBr)<br />

pellets and were submitted to FT-IR analysis.<br />

CH 3


Conditions <strong>of</strong> FT-IR analysis and determination <strong>of</strong> cellulose crystallinity index<br />

FT-IR analysis <strong>of</strong> cellulose samples was carried out with using Spectrum 2000<br />

spectrophotometer (Perkin Elmer). FT-IR analysis conditions were as follows:<br />

- resolution: 4 cm -1<br />

- range <strong>of</strong> wavenumbers: 4000-400 cm -1<br />

- number <strong>of</strong> scans: 16<br />

Determination <strong>of</strong> cellulose crystallinity index was carried out from the ratio <strong>of</strong> the peaks areas<br />

absorbance at 1430 and 900 cm -1 (A1430/A900). This method gives the best results and was<br />

<strong>of</strong>ten used in many publications [Nelson & O’Connor 1964 a, 1964 b, O’Connor 1969,<br />

Klenkova 1976, Krutul 1986, Ali et al. 2001, Carrillo et al. 2004, Krutul et al. 2005, Krutul et<br />

al. 2009]. Baseline for maximum peak 1431.0 cm -1 was plotted from 1497.6 cm -1 to 1408.5<br />

cm -1 . Whereas baseline for maximum peak 897.3 cm -1 was plotted from 913.6 cm -1 do 847.9<br />

cm -1 . For each cellulose sample two measurements were done. Crystallinity index was used in<br />

order to better explanation <strong>of</strong> thermal cellulose degradation with/without antioxidant.<br />

RESULTS AND DISCUSSION<br />

In Table 1 and 2 cellulose crystallinity index (A1430 /A900) was presented from FT-IR<br />

analysis. Results showed in Table 1 indicate that thermal aging <strong>of</strong> cellulose in oxygen<br />

conditions causes increase <strong>of</strong> cellulose crystallinity. The highest increase was observed for<br />

thermally aged cellulose with THBP and EQ. Moreover thermal degradation <strong>of</strong> cellulose in<br />

extracted and non extracted wood also causes increase <strong>of</strong> crystallinity index, but to a lesser<br />

extent. In other hand PG addition to cellulose matrix does not cause significant changes in<br />

cellulose crystallinity.<br />

Table 1. Crystallinity index (A1430 /A900) <strong>of</strong> cellulose, cellulose with antioxidant (EQ, PG, THBP) and cellulose<br />

in extracted and non extracted wood aged in 130ºC in air atmosphere after 15 days<br />

Sample name A1430 /A900<br />

cellulose (control-unaged) 2.76<br />

cellulose (aged) 3.03<br />

cellulose with THBP (aged) 3.31<br />

cellulose with PG (aged) 2.79<br />

cellulose with EQ (aged) 3.28<br />

cellulose in non extracted wood (aged) 2.82<br />

cellulose in extracted wood (aged) 2.94<br />

The crystallinity index might be expected to increase, since the amorphous regions<br />

degrade more rapidly than the crystalline ones. So, it can be concluded that degradation<br />

process <strong>of</strong> cellulose in the presence <strong>of</strong> THBP and EQ in 130ºC – air atmosphere probably<br />

proceeds mainly in amorphous regions. Addition <strong>of</strong> other antioxidant (PG) to cellulose matrix<br />

favors proceeding thermal degradation <strong>of</strong> cellulose both in amorphous and crystalline regions.<br />

For cellulose in non extracted wood similar results were obtained. It is well known that propyl<br />

gallate has similar chemical structure to some wood extractives. So, in these two cases<br />

degradation <strong>of</strong> cellulose might proceed analogically.<br />

11


In relation to thermal aging <strong>of</strong> cellulose with/without antioxidant in nitrogen<br />

atmosphere (Table 2) it can be observed that inert gas conditions does not cause significant<br />

changes in cellulose crystallinity index.<br />

Table 2. Crystallinity index (A1430 /A900) <strong>of</strong> cellulose and cellulose with antioxidant (EQ, PG, THBP) aged in<br />

130ºC in nitrogen atmosphere after 15 days<br />

Sample name A1430 /A900<br />

cellulose (control-unaged) 2.76<br />

cellulose (aged) 2.80<br />

cellulose with THBP (aged) 2.78<br />

cellulose with PG (aged) 2.86<br />

cellulose with EQ (aged) 2.89<br />

CONCLUSIONS<br />

On the basis <strong>of</strong> the performed studies following conclusions can be drawn:<br />

1. Results obtained indicate that thermal aging <strong>of</strong> cellulose with/without antioxidant in<br />

oxygen conditions causes increase <strong>of</strong> cellulose crystallinity. Only for cellulose with PG<br />

and cellulose in non extracted wood changes <strong>of</strong> crystallinity are not significant.<br />

2. Degradation <strong>of</strong> cellulose in the presence <strong>of</strong> THBP and EQ in 130ºC – air atmosphere<br />

proceeds mainly in amorphous regions. Addition <strong>of</strong> PG to cellulose matrix favors<br />

proceeding thermal cellulose degradation both in amorphous and crystalline regions.<br />

For cellulose in non extracted wood similar results were obtained.<br />

3. Thermal aging <strong>of</strong> cellulose with/without antioxidant in nitrogen atmosphere does not<br />

cause significant changes in cellulose crystallinity index.<br />

REFERENCES<br />

1. M.L. NELSON, R.T. O’CONNOR, Relation <strong>of</strong> certain infrared bands to cellulose<br />

crystallinity and crystal lattice type. Part I. Spectra <strong>of</strong> lattice types I, II, III and<br />

amorphous cellulose, J. Appl. Polym. Sci. 8 (1964 a) 1311-1324.<br />

2. M.L. NELSON, R.T. O’CONNOR, Relation <strong>of</strong> certain infrared bands to cellulose<br />

crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation <strong>of</strong><br />

crystallinity in cellulose I and II, J. Appl. Polym. Sci. 8 (1964 b) 1325-1341.<br />

3. ANTCZAK, A. RADOMSKI, J. ZAWADZKI, Benzene Substitution in Wood<br />

Analysis, <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong>, Forestry and Wood Technology<br />

58 (2006) 15-19.<br />

4. D. KRUTUL, �wiczenia z chemii drewna oraz wybranych zagadnie� chemii<br />

organicznej, <strong>SGGW</strong>, Warszawa, 2002.<br />

5. ANTCZAK, A. RADOMSKI, J. ZAWADZKI, Determination <strong>of</strong> antioxidants in<br />

cellulose matrix, <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>, Forestry and Wood<br />

Technology 61 (2007) 15-19.<br />

6. R.T. O’CONNOR, Infrared absorption spectroscopy in the evaluation <strong>of</strong> cellulose and<br />

cellulose derivatives, Tappi 52 (1969) 566-572.<br />

7. N.I. KLENKOVA, Struktura i reakcjonnaja sposobnost’ cellulozy, Leningrad, 1976,<br />

pp. 31-52.<br />

12


8. D. KRUTUL, Charakterystyka celulozy w drewnie d�bowym wzd�u� osi i promienia<br />

pnia, Rozprawy Naukowe i Monografie, <strong>SGGW</strong>, Warszawa, 1986, p. 24.<br />

9. M. ALI, A.M. EMSLEY, H. HERMAN, R.J. HEYWOOD, Spectroscopic studies <strong>of</strong><br />

the ageing <strong>of</strong> cellulosic paper, Polymer 42 (2001) 2893-2900.<br />

10. F. CARRILLO, X. COLOM, J.J. SUNOL, J. SAURINA, Structural FTIR analysis and<br />

thermal characterization <strong>of</strong> lyocell and viscose-type fibres, European Polymer Journal<br />

40 (2004) 2229-2234.<br />

11. D. KRUTUL, J. ZAWADZKI, A. RADOMSKI, D. KAZEM-BEK, Application <strong>of</strong> IR<br />

spectrophotometry in comparative investigations <strong>of</strong> spruce wood (Picea excelsa L.)<br />

cellulose determined by laboratory methods, <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural<br />

<strong>University</strong>, Forestry and Wood Technology 56 (2005) 377-382.<br />

12. D. KRUTUL, M. DRO�D�EK, T. ZIELENKIEWICZ, A. RADOMSKI, J.<br />

ZAWADZKI, A. ANTCZAK, Distribution and some properties <strong>of</strong> cellulose in the<br />

stem <strong>of</strong> oak wood (Quercus petraea Liebl.), <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong><br />

<strong>Sciences</strong>, Forestry and Wood Technology 68 (2009) 436-443.<br />

Streszczenie: Badanie termicznej degradacji celulozy z drewna iglastego w obecno�ci<br />

przeciwutleniaczy – analiza FT-IR. Celem badania by�o sprawdzenie wp�ywu<br />

przeciwutleniacza na krystaliczno�� celulozy, która zosta�a poddana termicznemu starzeniu w<br />

130°C. Do okre�lenia krystaliczno�ci celulozy wykorzystano spektroskopi� FT-IR.<br />

Generalnie, otrzymane wyniki bada� wskazuj�, �e termiczne starzenie celulozy z/bez<br />

przeciwutleniacza w warunkach tlenowych powoduje wzrost krystaliczno�ci celulozy.<br />

Degradacja celulozy w obecno�ci THBP i EQ w 130°C – atmosfera powietrza,<br />

prawdopodobnie g�ównie przebiega w obszarach amorficznych. Dodatek PG do matrycy<br />

celulozy sprzyja przebiegowi termicznej degradacji celulozy zarówno w obszarach<br />

amorficznych jak i krystalicznych. Podobne wyniki uzyskano dla starzonej celulozy w<br />

drewnie nieekstrahowanym. Termiczne starzenie celulozy z/bez przeciwutleniacza w<br />

atmosferze azotu nie powoduje istotnych zmian w indeksie krystaliczno�ci celulozy.<br />

Acknowledgements: This scientific study is funded from the financial resources for science in years 2008-2010<br />

as a research project N N309 296834<br />

Corresponding author:<br />

Andrzej Antczak<br />

Department <strong>of</strong> Wood Science and Wood Protection,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> (<strong>SGGW</strong>)<br />

ul. Nowoursynowska 159, 02-776 <strong>Warsaw</strong>, Poland<br />

e-mail: andrzej_antczak@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 14-19<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

The study <strong>of</strong> thermal degradation <strong>of</strong> s<strong>of</strong>twood cellulose in the presence <strong>of</strong><br />

antioxidants – SEC analysis<br />

ANDRZEJ ANTCZAK<br />

Department <strong>of</strong> Wood Science and Wood Protection, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Abstract: The study <strong>of</strong> thermal degradation <strong>of</strong> s<strong>of</strong>twood cellulose in the presence <strong>of</strong> antioxidants – SEC<br />

analysis. The purpose <strong>of</strong> the study was examination antioxidants influence on degradation <strong>of</strong> cellulose during<br />

thermal ageing in 130°C. Size-exclusion chromatography was used to evaluate cellulose depolymerization. On<br />

the basis <strong>of</strong> these results, it was observed, that higher decrease <strong>of</strong> the polymerization degree <strong>of</strong> cellulose is in the<br />

air than in nitrogen atmosphere. Antioxidant addition – 0.2% (EQ, PG, THBP) to cellulose matrix considerably<br />

reduces the weight average polymerization degree <strong>of</strong> cellulose during thermal aging (130ºC) in air atmosphere.<br />

Also the presence <strong>of</strong> low molecular substances (extractives) accelerates thermo oxidative degradation <strong>of</strong><br />

cellulose. On the other hand, in nitrogen atmosphere, the presence <strong>of</strong> antioxidants does not cause significant<br />

changes in degradation <strong>of</strong> cellulose.<br />

Keywords: thermal degradation, antioxidants, cellulose aging, SEC<br />

INTRODUCTION<br />

Studies <strong>of</strong> cellulose degradation met with great interest in last years. This subject area<br />

is very important in many different industries (electrical, paper and textile) or in archives and<br />

libraries. It is generally known that cellulose degradation in natural conditions runs very slow.<br />

In order to model long-term changes in a shorter time scale, accelerated tests are used. In<br />

these tests samples are artificially aged by exposing them to elevated temperatures, specified<br />

humidity and atmosphere conditions.<br />

Size exclusion chromatography (SEC) is modern analytical technique which can be<br />

used to study cellulose degradation. This method gives information about the weight average<br />

molar mass (Mw), the number average molar mass (Mn) and also, what is the most important,<br />

the molar mass distribution (MMD) <strong>of</strong> polymeric sample. Moreover, the degree <strong>of</strong><br />

polymerization (DP) <strong>of</strong> cellulose can be obtained.<br />

The aim <strong>of</strong> the study was examination antioxidant’s influence on cellulose degradation<br />

during thermal ageing in 130°C. Natural antioxidants (extractives, lignin) and synthetic<br />

(especially phenolic compounds) are widely applied in a number <strong>of</strong> manufactured products to<br />

prevent oxidative degradation. However their effectiveness in thermal conditions still remains<br />

poorly understood.<br />

MATERIALS AND METHODS<br />

Research material<br />

- non extracted sawdust <strong>of</strong> pinewood (Pinus sylvestris L.) from sapwood zone<br />

- extracted sawdust <strong>of</strong> pinewood (Pinus sylvestris L.) from sapwood zone (without<br />

extractives) extracted by ethanol:chlor<strong>of</strong>orm (3:97)w mixture according to own method<br />

[Antczak et al. 2006]<br />

- cellulose – separated from above-mentioned extracted pinewood (Pinus sylvestris L.)<br />

by Kürschner-H<strong>of</strong>fer method [Krutul 2002]<br />

- above-mentioned pinewood cellulose with antioxidant – propyl gallate (PG), 2,4,5trihydroxyphenone<br />

(THBP) and ethoxyquin (EQ) which were coated on cellulose fibre<br />

by method with stirring [Antczak et al. 2007]. The method consisted in immersing a<br />

sample <strong>of</strong> cellulose in 0.2% antioxidant solution in methanol and then total<br />

evaporation <strong>of</strong> solvent under vacuum while stirring.<br />

14


Structural formulas <strong>of</strong> antioxidants (propyl gallate, etoxyquin and 2,4,5trihydroxybutyrophenone)<br />

are presented in Fig. 1.<br />

C<br />

H 3<br />

CH 2<br />

O<br />

CH 3<br />

N<br />

H<br />

HO<br />

HO<br />

etoxyquin<br />

CH 3<br />

CH 3<br />

OH<br />

O<br />

15<br />

O<br />

propyl gallate<br />

CH 2<br />

CH 2<br />

HO<br />

HO<br />

CH 3<br />

O<br />

OH<br />

CH 2<br />

CH 2<br />

2,4,5 - trihydroxybutyrophenone<br />

Fig. 1. Structural formulas <strong>of</strong> antioxidants (propyl gallate, etoxyquin and 2,4,5-trihydroxybutyrophenone)<br />

Accelerated ageing tests in air atmosphere<br />

At the beginning non extracted and extracted pinewood from sapwood zone, cellulose<br />

and cellulose with antioxidant (PG, THBP, EQ) were placed in desiccator with phosphorus<br />

pentaoxide (P2O5) (anhydrous conditions). In this vessel samples were submitted to<br />

accelerated ageing tests. Ageing tests were carried out in thermal chamber (KC 100/200,<br />

Elkon company) at 130ºC. Samples were collected every 3 days during 15 days and were<br />

prepared to SEC analysis in order to study cellulose degradation.<br />

Accelerated ageing tests in nitrogen atmosphere<br />

In this studies cellulose samples and samples <strong>of</strong> cellulose with antioxidant (PG, THBP,<br />

EQ) were used only. They were placed in desiccator with P2O5. Vacuum pump was used to<br />

remove the air to 6.6 mbar, then desiccator was filled with the nitrogen. The procedure was<br />

repeated three times. After that, samples in desiccator were submitted to accelerated ageing<br />

tests. Ageing tests were also carried out in thermal chamber (KC 100/200, Elkon company) at<br />

130ºC. Samples were also collected every 3 days during 15 days and were prepared to SEC<br />

analysis in order to examine cellulose degradation.<br />

SEC analysis<br />

Preparation <strong>of</strong> cellulose samples to analysis<br />

In order to study cellulose degradation in aged non extracted and extracted wood,<br />

cellulose was separated by Kürschner-H<strong>of</strong>fer method. All cellulose samples (50 mg <strong>of</strong> each)<br />

were treated with 50ml 0.01M sodium borohydride (NaBH4). After about 24h, cellulose was<br />

filtered through glass filter (G3) and washed with 5% acetic acid (20 ml) and next washed<br />

with water to neutral pH. After that, cellulose samples were treated with 1% sodium<br />

CH 3


hydroxide (NaOH) (20 ml) in nitrogen atmosphere for 1 hour using magnetic stirrer at room<br />

temperature (25ºC). Then cellulose was filtered and washed as earlier. This procedure<br />

facilitate complete dissolution <strong>of</strong> cellulose. Air-dry cellulose samples prepared in this way<br />

were submitted to activation and dissolution procedure. The procedure was carried out in<br />

vacuum Baker system SPE-12G and was as follows:<br />

- cellulose samples (15 mg) were placed in test-tubes (6 ml), poured distilled water (3 ml)<br />

and allowed to swell overnight;<br />

- next day the samples were carried to capillary tubes and subsequently washed with<br />

methanol, filtered and poured the next portion <strong>of</strong> methanol and left for 1 hour; this<br />

procedure with methanol was repeated twice;<br />

- after that, the samples were washed with N,N-dimethylacetamide (DMAc), filtered and<br />

poured the next portion <strong>of</strong> DMAc and left for 1 hour; this procedure was repeated and<br />

cellulose with DMAc was left untill the next day;<br />

- next day, the samples were filtered and poured 8% lithium chloride (LiCl) in DMAc (4<br />

ml);<br />

- cellulose dissolution in 8% LiCl/DMAc was realised using mixer (RM-2M, Elmi<br />

company);<br />

- after 1-2 days <strong>of</strong> dissolution, part <strong>of</strong> the sample (0.2 ml) was diluted to 0.5% LiCl<br />

concentration with pure DMAc (3 ml);<br />

- finally, prepared samples were submitted to SEC analysis.<br />

Conditions <strong>of</strong> SEC analysis<br />

SEC analysis <strong>of</strong> cellulose samples was carried out with using HPLC (High<br />

Performance Liquid Chromatography) system (LC-20AD, Shimadzu company), which was<br />

equipped with differential refractive detector (RID 10A, Shimadzu), pump (LC-20AD,<br />

Shimadzu) and oven (CTO-20A, Shimadzu). SEC analysis conditions were as follows:<br />

- 0.5% LiCl/DMAc as eluent<br />

- column – crosslinked polystyrene-divinylbenzene gel (PSS GRAM 10000, 10μ,<br />

8×300 mm) connected with guard column (PSS GRAM 10μ)<br />

- oven temperature: 80°C<br />

- flow rate: 2ml/min<br />

- injection volume: 200μl<br />

The chromatographic data were processed with PSS WinGPC scientific 2.74 s<strong>of</strong>tware.<br />

Twelve narrow molecular weight polystyrene standards (Polymer Laboratories) were used to<br />

calibrate the column. The polystyrene standards were prepared as mixed standards in four<br />

separate solutions in DMAc. The first standard solution contained polystyrene <strong>of</strong> the<br />

following peak molecular mass: 6 850 000, 565 000 and 11 300 Da, the second contained:<br />

3 950 000, 170 600 and 2 960 Da, the third contained: 3 150 000, 66 000 and 1 700 Da, and<br />

the fourth contained: 1 290 000, 28 500 and 580 Da. This polystyrene standards were used to<br />

calculate molecular mass <strong>of</strong> cellulose according to Mark-Houwink universal calibration:<br />

[�]=K×M � , where K and � are parameters, which depend on polymer type, solvent and<br />

temperature. For our chromatographic conditions, that parameters are the following: for<br />

polystyrene K=17.35×10 -3 cm 3 /g and �=0.642 [Timpa 1991] and for cellulose K=2.78×10 -3<br />

cm 3 /g and �=0.957 [Bikova & Treimanis 2002].<br />

RESULTS AND DISCUSSION<br />

Size exclusion chromatography was used to study thermal degradation <strong>of</strong> cellulose.<br />

This method enables determination <strong>of</strong> the weight average polymerization degree <strong>of</strong> cellulose.<br />

16


In Fig. 2, 3, 4 relationship between the weight average polymerization degree and aging time<br />

<strong>of</strong> cellulose aged in 130ºC in air and nitrogen atmosphere was presented. Results show, that in<br />

these aging conditions, pure cellulose is the most resistant to thermal degradation. Antioxidant<br />

addition – 0.2% (EQ, PG, THBP) to cellulose matrix considerably reduces the weight average<br />

polymerization degree <strong>of</strong> cellulose (Fig. 2). PG and THBP are the most aggressive<br />

antioxidants in oxygen conditions, especially at the beginning <strong>of</strong> aging process (during the<br />

first 6 days). EQ slower accelerates cellulose degradation. Only after 9 days considerable<br />

decrease <strong>of</strong> the weight average polymerization degree <strong>of</strong> cellulose with EQ is observed.<br />

(DPw)×10 -3<br />

2,7<br />

2,2<br />

1,7<br />

1,2<br />

Thermal aging in air atmosphere<br />

17<br />

R 2 = 0.9845<br />

R 2 = 0.9909<br />

cellulose<br />

R 2 cellulose with THBP<br />

= 0.9941<br />

R 2 = 0.9994<br />

0 3 6 9 12 15 18<br />

cellulose with EQ<br />

cellulose with PG<br />

aging time/days<br />

Fig. 2. Relationship between the weight average polymerization degree (DPw) and aging time <strong>of</strong> cellulose,<br />

cellulose with antioxidant (EQ, PG, THBP) aged in 130ºC in air atmosphere<br />

(DPw)×10 -3<br />

2,7<br />

2,2<br />

1,7<br />

1,2<br />

Thermal aging in air atmosphere<br />

R 2 = 0.9975<br />

R 2 = 0.9845<br />

R 2 = 0.9926<br />

0 3 6 9 12 15 18<br />

aging time/days<br />

cellulose<br />

cellulose in extracted<br />

wood<br />

cellulose in non<br />

extracted wood<br />

Fig. 3. Relationship between the weight average polymerization degree (DPw) and aging time <strong>of</strong> cellulose,<br />

cellulose in extracted and non extracted wood aged in 130ºC in air atmosphere<br />

Changes <strong>of</strong> the weight average polymerization degree <strong>of</strong> cellulose with PG and THBP<br />

are very interesting (Fig. 2). After 6 days <strong>of</strong> aging process in air atmosphere thermal<br />

degradation <strong>of</strong> cellulose with PG and THBP slows down. This phenomenon can be caused by<br />

production <strong>of</strong> more thermo stable oxidation products, which have stabilizing properties.


Another explanation can be fast consumption <strong>of</strong> antioxidant at the beginning <strong>of</strong> aging process.<br />

But rather the most probably reason <strong>of</strong> this phenomenon is the occurrence <strong>of</strong> amorphous<br />

regions, which are more susceptible to degradation. So, at the beginning <strong>of</strong> aging process,<br />

cellulose degradation mainly proceeds in the most accessible regions and decrease <strong>of</strong> the<br />

weight average polymerization degree <strong>of</strong> cellulose is the highest – for cellulose with PG and<br />

THBP. These assumptions are in agreement with the results <strong>of</strong> cellulose crystallinity index<br />

[Antczak 2010]. Results obtained for cellulose with EQ (Fig. 2) indicate that etoxyquin better<br />

inhibit cellulose degradation than other antioxidants, especially at the beginning <strong>of</strong> aging<br />

process. After 6 days cellulose degradation poceeds probably mainly in amorphous regions.<br />

Prove it the results <strong>of</strong> cellulose crystallinity index [Antczak 2010].<br />

In relation to thermal aging <strong>of</strong> extracted and non extracted wood the results presented<br />

in Fig. 3 indicate that cellulose in non extracted wood is the most degraded. Similarly as for<br />

cellulose with synthetic antioxidants, the presence <strong>of</strong> low molecular substances (extractives)<br />

accelerates thermal degradation <strong>of</strong> cellulose. Increase <strong>of</strong> cellulose degradation susceptibility<br />

in 130ºC in air atmosphere, probably can be caused by formation additional products from<br />

thermal decomposition or oxidation <strong>of</strong> synthetic antioxidants and extractives. These<br />

substances may have radical or hydroperoxide character. Such, very reactive products may<br />

contribute to effective degradation <strong>of</strong> cellulose chains [Kolar 1997].<br />

(DPw)×10 -3<br />

2,7<br />

2,2<br />

1,7<br />

1,2<br />

Thermal aging in nitrogen atmosphere<br />

18<br />

R 2 = 0.9919<br />

0 3 6 9 12 15 18<br />

aging time/days<br />

cellulose<br />

cellulose with EQ<br />

cellulose with PG<br />

cellulose with THBP<br />

Fig. 4. Relationship between the weight average polymerization degree (DPw) and aging time <strong>of</strong> cellulose,<br />

cellulose with antioxidant (EQ, PG, THBP) aged in 130ºC in nitrogen atmosphere<br />

Results <strong>of</strong> thermal aging <strong>of</strong> cellulose in nitrogen atmosphere in 130ºC (Fig. 4) indicate<br />

that antioxidant addition (EQ, PG, THBP) to cellulose matrix does not cause significant<br />

changes in degradation <strong>of</strong> cellulose. Probably, in this high temperature, synthetic antioxidants<br />

are less stable and rapidly undergo decomposition or evaporation, so their stabilizing activity<br />

is much worse.<br />

CONCLUSIONS<br />

On the basis <strong>of</strong> the performed studies following conclusions can be drawn:<br />

1. Antioxidant addition – 0.2% (EQ, PG, THBP) to cellulose matrix considerably reduces<br />

the weight average polymerization degree <strong>of</strong> cellulose during thermal aging (130ºC) in<br />

air atmosphere. Also the presence <strong>of</strong> low molecular substances (extractives) accelerates<br />

thermal degradation <strong>of</strong> cellulose.


2. Results obtained for cellulose with EQ indicate that etoxyquin in oxygen conditions<br />

better inhibit cellulose degradation than other antioxidants, especially at the beginning<br />

<strong>of</strong> aging process.<br />

3. Thermal aging <strong>of</strong> cellulose in nitrogen atmosphere characterizes lesser decrease <strong>of</strong> the<br />

weight average polymerization degree than in air atmosphere. Addition <strong>of</strong> antioxidant<br />

(EQ, PG, THBP) to cellulose matrix does not cause significant changes in degradation<br />

<strong>of</strong> cellulose.<br />

REFERENCES<br />

A. ANTCZAK, A. RADOMSKI, J. ZAWADZKI, Benzene Substitution in Wood<br />

Analysis, <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong>, Forestry and Wood Technology<br />

58 (2006) 15-19.<br />

1. D. KRUTUL, �wiczenia z chemii drewna oraz wybranych zagadnie� chemii<br />

organicznej, <strong>SGGW</strong>, Warszawa, 2002.<br />

2. ANTCZAK, A. RADOMSKI, J. ZAWADZKI, Determination <strong>of</strong> antioxidants in<br />

cellulose matrix, <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>, Forestry and Wood<br />

Technology 61 (2007) 15-19.<br />

3. J.D. TIMPA, Application <strong>of</strong> universal calibration in gel permeation chromatography<br />

for molecular weight determinations <strong>of</strong> plant cell wall polymers; cotton fiber, Agrric.<br />

Food Chem. 39 (1991) 270-275.<br />

4. T. BIKOVA, A. TREIMANIS, Problems <strong>of</strong> the MMD analysis <strong>of</strong> cellulose by SEC<br />

using DMA/LiCl: A review, Carbohydrate Polymers 48 (2002) 23-28.<br />

5. ANTCZAK, The study <strong>of</strong> thermal degradation <strong>of</strong> s<strong>of</strong>twood cellulose in the presence<br />

<strong>of</strong> antioxidants – FT-IR analysis, <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>,<br />

Forestry and Wood Technology 71 (2010) – in press<br />

6. J. KOLAR, Mechanism <strong>of</strong> Autoxidative Degradation <strong>of</strong> Cellulose, Restaurator 18<br />

(1997) 163-176.<br />

Streszczenie: Badanie termicznej degradacji celulozy z drewna iglastego w obecno�ci<br />

przeciwutleniaczy – analiza SEC. Celem badania by�o sprawdzenie wp�ywu<br />

przeciwutleniacza na degradacj� celulozy podczas termicznego starzenia w 130°C. Do opisu<br />

zjawiska degradacji celulozy wykorzystano metod� chromatografii wykluczania<br />

przestrzennego (SEC). Na podstawie wyników bada� stwierdzono, �e w atmosferze powietrza<br />

dochodzi do wi�kszego spadku stopnia polimeryzacji celulozy ni� w atmosferze azotu.<br />

Dodatek przeciwutleniacza – 0,2% (EQ, PG, THBP) do matrycy celulozy znacznie obni�a<br />

�redni wagowy stopie� polimeryzacji celulozy podczas termicznego starzenia (130°C) w<br />

atmosferze powietrza. Równie� obecno�� ma�ocz�steczkowych substancji (ekstrakcyjnych)<br />

przyspiesza termo utleniaj�c� degradacj� celulozy. Z kolei w atmosferze azotu obecno��<br />

przeciwutleniaczy nie powoduje istotnych zmian w procesie degradacji celulozy.<br />

Acknowledgements: This scientific study is funded from the financial resources for science in years 2008-2010<br />

as a research project N N309 296834<br />

Corresponding author:<br />

Andrzej Antczak<br />

Department <strong>of</strong> Wood Science and Wood Protection,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> (<strong>SGGW</strong>)<br />

ul. Nowoursynowska 159, 02-776 <strong>Warsaw</strong>, Poland<br />

e-mail: andrzej_antczak@sggw.pl<br />

19


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 20-23<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Possibilities and limits <strong>of</strong> the finishing <strong>of</strong> the particleboards from fibrous<br />

chips<br />

PIOTR BEER 1 , DOROTA FUCZEK 2 , GRZEGORZ KOWALUK 3 , MARCIN ZBIE� 4<br />

1 Department <strong>of</strong> Construction and Technology <strong>of</strong> Final Wood Products, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> Science,<br />

Nowoursynowska 159, 02-776 <strong>Warsaw</strong>, Poland<br />

2 Wood–Based Materials and Glues Department, Wood Technology Institute, Winiarska Str. 1, 60-654<br />

Pozna�, Poland<br />

3 Certification Centre <strong>of</strong> Wood Industry Products, Wood Technology Institute, Winiarska Str. 1, 60-654<br />

Pozna�, Poland<br />

4 Department <strong>of</strong> Mechanical Processing <strong>of</strong> Wood, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> Science, Nowoursynowska 159, 02-<br />

776 <strong>Warsaw</strong>, Poland<br />

Abstract: Possibilities and limits <strong>of</strong> the finishing <strong>of</strong> the particleboards from fibrous chips. In the present paper<br />

the investigation results <strong>of</strong> the surface roughness <strong>of</strong> the particleboards produced from the fibrous chips from<br />

willow Salix Viminalis L. and robinia Robinia Pseudoacacia L. are described. There is no special limitations<br />

according to the finishing technology <strong>of</strong> the panels from fibrous chips. The surface <strong>of</strong> the panels produced from<br />

the fibrous chips are better than the surface <strong>of</strong> the panels made out from the industrial particles.<br />

Keywords: Particleboard, fibrous chip, surface, finishing, roughness.<br />

INTRODUCTION<br />

There are number <strong>of</strong> methods <strong>of</strong> finishing <strong>of</strong> the faces <strong>of</strong> the particleboards for furniture<br />

production. The most common industrial method is the overlapping by short-cycle laminating<br />

film, HPL or CPL. Another way is finishing with use <strong>of</strong> natural wood veneers. Because <strong>of</strong> the<br />

not attractive surface <strong>of</strong> raw particleboards, finishing <strong>of</strong> these panels with use transparent<br />

lacquers is practically unparalleled. The roughness <strong>of</strong> the finished surface can not be the most<br />

important when finishing by veneers with higher thicknesses. In case <strong>of</strong> thin overlapping<br />

materials, e.g. Touchwood, the finished surface should have the surface roughness well<br />

prepared, without appreciable cavities or irregularities. The “microchips” fractions used<br />

in particleboards’ face layers production, with high resination, help with achieving the proper,<br />

smooth surface. According to [Hiziroglu and Suzuki 2007] 1, also the density <strong>of</strong> the panels<br />

can influence the surface roughness. This conclusion is confirmed by [Nemli et al. 2005] 2.<br />

According to [Rolleri and R<strong>of</strong>fael 2009] 3 the particleboards with the outer layers made out<br />

from recycled particles had the roughest surfaces irrespective <strong>of</strong> the adhesive used, compare<br />

to the “fresh” microchips. There is no research conducted on the surface roughness in the light<br />

<strong>of</strong> the surface finishing method, for the particleboards produced from fibrous chips.<br />

The aim <strong>of</strong> this work was to investigate the surface roughness <strong>of</strong> the panels produced<br />

from fibrous chips from willow Salix Viminalis L. and robinia Robinia Pseudoacacia L.<br />

MATERIALS AND METHODS<br />

The panels from fibrous chips were prepared as it was mentioned by [Kowaluk et al.<br />

2010] 4. The three types <strong>of</strong> particles were used to panels production: robinia, willow and<br />

industrial particles. The panels were produced with two different densities: 660 and 600<br />

kg/m 3 . This give 6 different panel types: industrial particles (ip660 and ip600), robinia (r660<br />

and r600) and willow (w660 and w600). For investigations the sanded panels were taken<br />

before the finishing by laminate film. The measurements <strong>of</strong> the chosen parameters<br />

20


<strong>of</strong> the panels from fibrous chips surface roughness were conducted on MITUTOYO<br />

SURFTEST SJ-301 device, controlled by PC.<br />

RESULTS AND DISSCUSION<br />

The results <strong>of</strong> the measurement <strong>of</strong> the roughness <strong>of</strong> the panels produced from fibrous<br />

chips, as well as from industrial particles, are displayed on fig. 1 (parameters Ra and Rz) and<br />

fig. 2 (parameters Rp and Rv). As it is shown on fig. 1, the two highest values <strong>of</strong> Ra are for<br />

panels made out from industrial particles (ip660 and ip600). The lowest values <strong>of</strong> Ra are for<br />

panels made out from willow fibrous chips. The values <strong>of</strong> Rz have the similar tendency:<br />

highest for ip600 and the lowest for w660. It can be pointed that the roughness <strong>of</strong> the panels is<br />

getting better (the Ra and Rz) are smaller when the density <strong>of</strong> the panels is higher.<br />

Ra [�m]<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

ip660 ip600 r660 r600 w660 w600<br />

Fig. 1. The values <strong>of</strong> Ra and Rz parameters for investigated panels.<br />

According to the fig. 2, where the values <strong>of</strong> the Rp and Rv for the investigated panels are<br />

displayed, the highest values <strong>of</strong> both mentioned parameters are for ip600 and the lowest for<br />

w660. The tendency <strong>of</strong> the better surface with the higher panel density is also clearly visible.<br />

Rp [�m]<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Rp<br />

Rv<br />

ip660 ip600 r660 r600 w660 w600<br />

Fig. 1. The values <strong>of</strong> Rp and Rv parameters for investigated panels.<br />

21<br />

Ra<br />

Rz<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Rz [�m]<br />

Rv [�m]


In the light <strong>of</strong> future finishing <strong>of</strong> the panels’ faces, more usable parameters are Rp and Rv.<br />

Those two parameters gives the information about the height <strong>of</strong> the peaks (Rp) and depth <strong>of</strong><br />

the valleys (Rv). If the Rp is low, the finishing material, i.e. laminate sheet will be better<br />

supported by face <strong>of</strong> the panel. The value <strong>of</strong> the Rv provides the characteristic <strong>of</strong> the surface<br />

in case <strong>of</strong> the future glues or lacquers/paints demand: the deeper valleys (higher Rv value)<br />

needs more above mentioned liquids to become fulfilled. It can be pointed, that the panels<br />

with the higher density have the better surface quality to finish with the most common<br />

method, i.e. laminating. It should be also mentioned, that, generally, the panels made out from<br />

the fibrous chips have the better surface quality, compare to the panels produced from the<br />

industrial particles.<br />

CONCLUSION<br />

On the basis <strong>of</strong> the above mentioned results, the following conclusions and remarks can<br />

be formulated:<br />

- the quality <strong>of</strong> the surface <strong>of</strong> the panels made out from the fibrous chips, measured<br />

by Ra, Rz, Rp and Rv is better than the surface <strong>of</strong> the panels produced from the<br />

industrial particles,<br />

- the quality <strong>of</strong> the panels is getting better with the panels’ density increase,<br />

- there is no special limitation in case <strong>of</strong> the finishing method <strong>of</strong> the panels produced<br />

from the fibrous chips, compare to the panels made out from the industrial particles.<br />

ACKNOWLEDGEMENTS<br />

This paper was financially supported by the Polish Ministry <strong>of</strong> Science and Higher Education<br />

within grant number N309 1068 33.<br />

REFERENCES<br />

1. S. HIZIROGLU, S. SUZUKI, Evaluation <strong>of</strong> surface roughness <strong>of</strong> commercially<br />

manufactured particleboard and medium density fiberboard in Japan, Journal<br />

<strong>of</strong> Materials Processing Technology 184 (2007) 436–440.<br />

2. G. NEMLI, I. OZTURK, I. AYDIN, Some <strong>of</strong> the parameters influencing surface<br />

roughness <strong>of</strong> particleboard, Building and Environment 40 (2005) 1337–1340.<br />

3. ROLLERI, E. ROFFAEL, Surface roughness <strong>of</strong> uncoated particleboards and its<br />

relation with the raw material, adhesive and climatic conditions, Eur. J. Wood Prod.<br />

DOI 10.1007/s00107-009-0363-8 (2009).<br />

4. G. KOWALUK, M. ZBIE�, P. BEER, The quality <strong>of</strong> milling <strong>of</strong> the particleboards<br />

produced from fibrous chips, Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010.<br />

22


Streszczenie: Mo�liwo�ci oraz ograniczenia wyka�czania p�yt wiórowych z wiórów<br />

w�óknistych. W niniejszym artykule opisano wyniki pomiarów chropowato�ci powierzchni<br />

p�yt wiórowych z wiórów w�óknistych z wierzby Salix Viminalis L. oraz robinii Robinia<br />

Pseudoacacia L. Badania nie wykaza�y szczególnych ogranicze� co do technologii<br />

wyka�czania powierzchni badanych p�yt, w porównaniu do przemys�owych p�yt wiórowych.<br />

Powierzchnia p�yt z wiórów w�óknistych charakteryzowa�a si� wy�sz� jako�ci� w porównaniu<br />

do powierzchni p�yt z wiórów przemys�owych.<br />

Corresponding author:<br />

Certification Centre <strong>of</strong> Wood Industry Products, Wood Technology Institute, Winiarska Str. 1,<br />

60-654 Pozna�, Poland<br />

E-mail address: g_kowaluk@itd.poznan.pl (Grzegorz Kowaluk)


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 24-27<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

��������� ������������ ����������� ������� ����������,<br />

���������� ������������<br />

L.I. BELCHINSKAYA, JAN SEDLIACIK*, V.A. VARIVODIN, �.�. ANISIMOV<br />

Faculty <strong>of</strong> wood processing technology <strong>of</strong> Voronezh State Academy <strong>of</strong> forestry Engineering<br />

*���������� ����������� �����������, ��������, �. ������<br />

Abstract: ����������� ������� ����������� ��������� ������������ ������� ���������� �����- ��<br />

���������� ��������� ���� ��� ������������ ��������� ��������� ��������. � ��������<br />

������������ �������������� ��������� ��������������� ��������, ������������<br />

������������������� ���������. ��� �������� 2 % ��������� � ������� ���������� ���������<br />

������������� �� ������ ��������� � 2,2 ����, ��� ������������ ��������� ������������� ����������<br />

� ����������������, ����� ���������� � ���������� ����� � �����.<br />

Keywords: ������������, ���������� ��������� ����, �����������, ��������������� ��������,<br />

���������, ������� ����������, ������<br />

INTRODUCTION<br />

������� ������������ ������� � ������������� ������������� ���������� �<br />

����� ���������� �������� ������� ��������� ��� ���������� �������� ���������.<br />

� ������������� ���������� � ����� ���������� ����������� ������� ����������.<br />

���������� ������������ ������������� � ������� �������������� ���������<br />

���������� 0,1 ��/� 3 . ����������� ��������� ������� � ��������� ���������,<br />

������������ ���������, �������� � �������������� ������������������������<br />

���� � ����� �� �� ������. ����������� ������������������������ �������<br />

���������� �������� ������� ���������� �������������, ���������� ��������<br />

���������� � ���������� ����������� � ��������������� �������������� �����.<br />

������������ �������� ������� ������������, ����������� ������������ ��<br />

��������� �������� ����, ���� � ������� ����������� �����, ������� ������� [1, 2].<br />

�������� ����������� ����������, ���������� �������� ���������� ������� �������<br />

� ������� �������� ���� �������������� ���������, �������� ����������, ����������<br />

� ����������������� ��������. ������������ �������� ���������� �� ���������<br />

������� �� ������ ������������������������ ��� ��������������������� ����<br />

(���������, ����, �������, �������� �������� � ��). ��� ������������ ����������<br />

������������� ���������� ������������� � ����� ����������, ��� ��� � �������<br />

������� ��������� ��� ���������� ������� �� �������� ��������. � ������ �����������<br />

������� �������� ������� ������������� ��� �������� ��������� �������������� �<br />

������� ���������� �� ������ ������������������������ �����.<br />

MATERIALS AND METHODS<br />

� ������ ������ � �������� ������������ ������������ ��������: ������ –<br />

������������� � ������� ��������� ���������� (�) � �������������� (�) – ��������<br />

������� � ������������� ����������� �������.<br />

��� ������������� ������� ������������� ��������� ����������������<br />

��������������� ��������� ��������� � ���������� ��������� ���� � ���������<br />

24


��������� 0,011 �� � ����� 48 ����� ������� ���������� ������������ ��� 453 � [3].<br />

������������ �������������, ����������� �� ������� ����������,<br />

���������� ���������������� ������� [3], ��������� ������������� �� ������ –<br />

�������� �������.<br />

�������� ���������� �� ������������ ��-4.<br />

RESULTS AND DISCUTION<br />

����������� ������� ���������� ��������� � ���� �������� �� ������������<br />

����������� ������������� �� ������� ����������. ���������� �������� � ���������<br />

���� ����������� � �������� 1 - 3 % �� ����� ����. ���������� ������ ������������ �<br />

������� 1.<br />

������� 1. ������� ���������� ��������� �������� �� ������� �������������, ��/� 3<br />

�������<br />

���������� ����������� � ������� ����������, %<br />

1 2 3<br />

�������������� 0,138 0,134 0,133<br />

������������� 0,129 0,124 0,122<br />

����������� ���������� ��������� �������� ���������� 2 %.<br />

��������������� �������������� ����� (��������, ��, ����� �������������) �<br />

����������� 2 % ����������� ����������� �� �������� (����. 2).<br />

������� 2. ������-���������� �������� ������������ ����� � ����� � ������������<br />

����� �����<br />

�������� ����<br />

������ �������,<br />

%<br />

��������, �<br />

25<br />

�����<br />

�������������<br />

��� 20 � �<br />

1<br />

65,<br />

5<br />

55 �� ����� 10<br />

��-�<br />

7,85<br />

2<br />

67,<br />

5<br />

55,<br />

5<br />

�����<br />

����������<br />

1 – � ��������� ���������� �����, �� ���������� ��������-�����������;<br />

2 – � ����������� ���������� ����� � ������������<br />

���������� ��������� ������������� �� ������� ���������� � ������ ��<br />

������ ������������������������ ����� ��� �������� ��������� � ��������������<br />

������������ ���������. ��� ����������� ��������� ������������� �� ������� ����<br />

������������ ���������������� �����, � ��� ������������ ������� ������������� ��<br />

������ – ��������. ������ ������������ � ������� 3.<br />

������� 3. ������� ������������� �� ������� ���������� � ����������� �� ��������������������<br />

�������� ��������� � ���� ��������������� ���������<br />

���<br />

����������<br />

��������<br />

������� ������������� �� ������� ����, ��/� 3<br />

���������<br />

��������<br />

�/� ��������<br />

��������,<br />

������������ �<br />

���<br />

��<br />

��������,<br />

������������<br />

�/� � � ���<br />

� � � � � � � �<br />

0,141 0,134 0,124 0,099 0,085 0,084 0,105 0,075 0,081<br />

����������: �/� – ����������������� ��������; ��� – ��������, ������������ �<br />

���������� ��������� ����.<br />

��� ���������� � ���� ��������� ��������� ������� �������������<br />

��������� �� 5 – 12 %. �������������� � ������� ������� ���������� �� �����������<br />

������� ��������������, ��������� ��������� ������������� ����������� �� 31 %, �<br />

��� �������� ������������������ ��������������� – �� 26 %. ��������� ��������� �


���������� ��������� ���� ����� ������ �� �������� ������� ������������� ��<br />

������� ���������� � ���������������� (�� 38 %) � ����� �� ���������<br />

������������� �� ������� ���������� � ��������������� (�� 15%). ����������<br />

������������� �������� �������� ������� ����������, � ������� �������� 2 %<br />

���������������� �����������, ������������� ��������������� �����������<br />

��������� (� ���������� ��������� ���� � �����������). ��������� �������������<br />

����������� �� 44% ��� ���������� ���������������, �������� ��������������<br />

������� ������� �� 35 %.<br />

���������� ������� ���������� ������������ ��� ������������ ������ �<br />

���������� ������� �� ������������� �� ��������� ������������� (����. 4).<br />

������� 4. – ��������� ������������� �� ������ � ����������� �� �������������������� ��������<br />

��������� � ���� ��������������� ���������<br />

���<br />

����������<br />

��������<br />

������� ������������� �� ������, ��/� 3<br />

���������<br />

��������<br />

�/� ��������<br />

26<br />

��������,<br />

������������ �<br />

���<br />

��������,<br />

������������<br />

�/� � � ���<br />

� � � � � � � �<br />

0,124 0,120 0,112 0,087 0,076 0,072 0,091 0,056 0,073<br />

����������: �/� – ����������������� ��������; ��� – ��������, ������������ �<br />

���������� ��������� ����.<br />

��� �������� ��������� ������������ ��������� ������������� �� ������<br />

��������� �������������: � – �� 3 %, � – �� 10 %. �������������� ��������������<br />

�������� ������ �������� ��������� ������������� �� 38 %, � ��� ����������<br />

��������������� – �� 28 %. ��������� � ��� ���� ����������� �������� �����<br />

������������ �������� ����������� �� ������ ���������������, ��� ��� ���������<br />

������������� ����������� �� 40 %, � ��� ������������� ������������������<br />

����������� ���������� ������������� ��������� ������ �� 20 %.<br />

��� ����������� ��������� ������ ����������, �� ������� ���������� �<br />

���������������� ��������� ������������� ����������� �� 53 %, � ��������������� –<br />

35 %.<br />

CONCLUSION<br />

����������, ��� ������������� ������������� ��������� ������� �� ����<br />

��������������� ���������. �� ��������� ���������� ������ ��������� ��������<br />

������������� ������� ������� �������������. ������������ ��������������<br />

����������� ��� ��������������, � ����������� ����������� ���������� ���� – ��<br />

��������������. �������� ���������������, ������������� ���������� � ��� �<br />

����������, �������� � �������� ������� ������������� �� ������� ���������� ��<br />

40 %, � ��� �������� � ����� �������������� – �� 35 %. �� ������, ��������� ��<br />

������ � ����������� �������������� ������������ (�/� + ���) ���������<br />

��������������� � ��������������, ������� ������������� ��������� �� 53 % � 35%<br />

��������������.<br />

LITERATURE<br />

1. �����, ��.�. ������������ / ��. �. ����� – �.: ���. ������-����. ���.<br />

���������� ����������. 1957. – 608 �.


2. �������� �������, ���������, ���������������� ���������, ������� �<br />

��������� ��������, ������������� ��� ��������. �� 1.1.029-98.- �.:<br />

������������������ ������, 1995. – 17 �.<br />

3. �����������, �. �. ��������� ������������� �� ����������� ������������<br />

���������, ������������ ���������� ��������� ����� / ����������� �. �.,<br />

�������� �.�., �������� �.�. // ����������� ����������� � ������<br />

����������. – 2009. – �.45. �2. – �.218-221.<br />

4. Khodosova, N.A. Formaldehyde adsorption from a gas phase on thermomodification<br />

zeolite / Khodosova N.A., L.I. Belchinskaya // Achievements and Perspectives <strong>of</strong><br />

Modern Chemistry : Materials <strong>of</strong> II nd International Conference <strong>of</strong> the Chemical<br />

Society <strong>of</strong> the Republic Moldova, October 1-3, 2007 / Institute <strong>of</strong> Chemistry. –<br />

Chisinau, 2007. – P.37<br />

5. ��������, �.�. ����������� ����������� �� ������������������ ����<br />

������������� ��������������������� ������� � ��������������<br />

�������������: ��������-������. / �.�. �������� �. �. ��������, �.�.<br />

��������. – �.: ��������������, 1987. – �. 16-19. – (����� � ������; ���.<br />

12).<br />

Streszczenie: Uzyskanie skutecznej kompozycji klej�cej wype�niacza zawieraj�cego<br />

formaldehyd Stosowane jako wype�niacze glinokrzemian o ró�nej strukturze<br />

krystalograficznej. Wraz z wprowadzeniem 2% sorbentów w kleju sk�ad emisji formaldehydu<br />

ze sklejki zmniejszy� si� o 2,2 razy, a tym samym ogólna poprawa sytuacji ekologicznej w<br />

przemy�le, pomieszczeniach mieszkalnych i �rodowisku.


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 28-30<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

The analysis <strong>of</strong> roundwood and sawnwood production in selected European<br />

Union countries<br />

JUSTYNA BIERNACKA 1) , MARIANA SEDLIA�IKOVÁ 2)<br />

1) Department <strong>of</strong> Technology, Organisation and Management in Wood Industry,<br />

Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> (<strong>SGGW</strong>)<br />

2) Department <strong>of</strong> Business Economics,<br />

Faculty <strong>of</strong> Wood Science and Technology, Technical <strong>University</strong> in Zvolen<br />

Abstract: The analysis <strong>of</strong> roundwood and sawnwood production in selected European Union countries. In this<br />

paper production, export and import <strong>of</strong> roundwood and sawnwood <strong>of</strong> selected European Union countries. were<br />

analysed. This values analysis can provide many useful data for further, more detailed analysis, primarily in the<br />

competitiveness analysis <strong>of</strong> individual wood industry enterprise, but also the domestic wood industry sector<br />

competitiveness compared to other countries.<br />

Keywords: roundwood, sawnwood, production analysis, competitiveness.<br />

INTRODUCTION<br />

The roundwood and sawnwood production volume analysis is very important for wood<br />

industry companies. It can provide many useful information for the company management,<br />

but the analysis may provide many data to other entities, namely the statistical <strong>of</strong>fices. This<br />

data can be used in predicting future trends and facilitate taking appropriate strategic<br />

decisions.<br />

RESULTS<br />

In this paper the analysis <strong>of</strong> roundwood and sawnwood production and some values <strong>of</strong><br />

export and import in three European countries: Czech Republic, Poland and Slovakia were<br />

analysed. In the calculation the Eurostat and OECD data from 2004 to 2008 were used. The<br />

results were shown in table 1.<br />

Table 1. Total roundwood and sawnwood annual production changes in selected European Union countries<br />

Country Production<br />

2004<br />

Year (2004=100%)<br />

2005 2006 2007 2008<br />

Czech Republic<br />

roundwood<br />

sawnwood<br />

100,00%<br />

100,00%<br />

-0,58%<br />

1,60%<br />

13,31%<br />

28,93%<br />

18,63%<br />

38,43%<br />

3,76%<br />

17,66%<br />

Poland<br />

roundwood<br />

sawnwood<br />

100,00%<br />

100,00%<br />

-2,41%<br />

-10,23%<br />

-1,07%<br />

-3,63%<br />

9,78%<br />

18,01%<br />

4,70%<br />

1,15%<br />

Slovakia<br />

roundwood<br />

sawnwood<br />

100,00%<br />

100,00%<br />

28,48%<br />

42,68%<br />

8,69%<br />

32,83%<br />

12,31%<br />

51,39%<br />

28,02%<br />

54,71%<br />

Source: Authors’ own calculation based on Eurostat data<br />

Table 1 data analysis shows that in year 2005, compared to the 2004 a roundwood<br />

production in Poland and the Czech Republic has decreased (by 2,41% and 0,58%). This<br />

decreases however, can be regarded as negligible, because previous years data shows that<br />

both countries have significantly increased the roundwood production after their accession to<br />

the European Union (in the Czech Republic the increase <strong>of</strong> roundwood production in 2004<br />

28


compared to previous year reached over 8%, while in Poland over 25%). Only the Slovak<br />

Republic in 2005 noted the roundwood production increase, which compared to the year <strong>of</strong><br />

country's accession to the European Union reached approximately 30%. The data can indicate<br />

a positive evaluation <strong>of</strong> wood products market by wood-sector companies and their<br />

assumption <strong>of</strong> increasing the sales market as a result <strong>of</strong> opening European Union markets<br />

borders for central Europe countries.<br />

Figure 1 shows the graphic presentation <strong>of</strong> changes in the roundwood and sawnwood<br />

production in the three European Union countries. Figure 1 analysis shows that in recent years<br />

<strong>of</strong> analysed period the 2005 year’ increases <strong>of</strong> roundwood production (left scale) and<br />

sawnwood production (right scale) are gradually slowing down. The reason for this is<br />

continuous economic downturn in European and in global market. Reduction <strong>of</strong> sawnwood<br />

production can be seen especially in Poland and the Czech Republic. In the year 2008<br />

compared to the previous year the sawnwood production in these countries decreased by<br />

about 15%. Since 2006 only the Slovak Republic noted an upward trend <strong>of</strong> sawnwood<br />

production (in 2008 over the previous year production growth was just over 2%).<br />

35,00%<br />

30,00%<br />

25,00%<br />

20,00%<br />

15,00%<br />

10,00%<br />

5,00%<br />

0,00%<br />

-5,00%<br />

-10,00%<br />

2005<br />

2006<br />

29<br />

2007<br />

2008<br />

Czech Republic - roundwood production<br />

Poland - roundwood production<br />

Slovakia - roundwood production<br />

Czech Republic - sawnwood production<br />

Poland - sawnwood production<br />

Slovakia - sawnwood production<br />

65,00%<br />

55,00%<br />

45,00%<br />

35,00%<br />

25,00%<br />

15,00%<br />

5,00%<br />

-5,00%<br />

-15,00%<br />

Figure 1. Total roundwood and sawnwood annual production changes in Czech Republic, Poland and Slovakia<br />

(2004=100%)<br />

CONCLUSIONS<br />

The analysis showed, that in the initial years after Czech, Polish and Slovak accession to<br />

the European Union all roundwood and sawnwood production values in all mentioned<br />

countries had an upward trend. In comparison to the values <strong>of</strong> 2004 particularly positive<br />

results <strong>of</strong> changes in the roundwood production can be observed in Slovakia – throughout<br />

analysed period the country noted only positive values (from 8 to about 29%). A little worse<br />

are values <strong>of</strong> the roundwood production in the other two analysed countries, but only in recent<br />

years, the decrease <strong>of</strong> roundwood production can be observed. A similar situation can be<br />

observed in the case <strong>of</strong> sawnwood production, Slovakia has the best results once again. The


oundwood and sawnwood production growth decrease can be explained by the worsening<br />

market condition, both in the European Union and in world markets. The data from<br />

subsequent years can provide an interesting information, especially in the case <strong>of</strong> Slovakia,<br />

which was the only one <strong>of</strong> analysed countries which joined the euro area in 2009.<br />

REFERENCES<br />

1. NOGA M., STAWICKA M. K., 2008: Co decyduje o konkurencyjno�ci polskiej<br />

gospodarki?, Wyd. CeDeWu Sp. z o.o.;<br />

2. OLCZYK M., 2008: Konkurencyjno�� – teoria i praktyka, Wyd. CeDeWu, Warszawa;<br />

3. WZI�TEK-KUBIAK A., 2003: Konkurencyjno�� polskiego przemys�u, Dom<br />

wydawniczy Bellona, Warszawa;<br />

4. http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/themes<br />

5. http://www.oecd.org/statsportal/0,3352,en_2825_293564_1_1_1_1_1,00.html<br />

Streszczenie: Analiza pozyskania drewna okr�g�ego i tarcicy na przyk�adzie wybranych<br />

krajów Unii Europejskiej. W niniejszym opracowaniu poddano analizie zmiany wielko�ci<br />

pozyskania drewna okr�g�ego oraz produkcji tarcicy w wybranych krajach Unii Europejskiej,<br />

a mianowicie w Czechach, Polsce i na S�owacji w latach 2004 - 2008. Analiza uzyskanych<br />

wielko�ci dostarczy� mo�e wielu pomocnych danych do dalszych analiz, przede wszystkim<br />

mo�e by� przydatna w badaniach konkurencyjno�ci pojedynczych przedsi�biorstw przemys�u<br />

drzewnego, ale równie� konkurencyjno�ci krajowego sektora przemys�u drzewnego na tle<br />

innych pa�stw.<br />

Corresponding authors:<br />

Justyna Biernacka<br />

Department <strong>of</strong> Technology, Organisation and Management in Wood Industry,<br />

Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> Agricultural <strong>University</strong> (<strong>SGGW</strong>)<br />

02-787 <strong>Warsaw</strong>, ul. Nowoursynowska 166<br />

e-mail address: justyna_biernacka@sggw.pl<br />

Ing. Mariana Sedlia�iková, PhD.<br />

Department <strong>of</strong> Business Economics<br />

Faculty <strong>of</strong> Wood Science and Technology<br />

Technical <strong>University</strong> in Zvolen<br />

T. G. Masaryka 24<br />

960 53 Zvolen, Slovakia<br />

e-mail address: sedliacikova@vsld.tuzvo.sk


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 31-36<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Competitiveness analysis <strong>of</strong> wood industry sector in selected European<br />

Union countries<br />

JUSTYNA BIERNACKA 1) , MARIANA SEDLIA�IKOVÁ 2)<br />

1) Department <strong>of</strong> Technology, Organisation and Management in Wood Industry,<br />

Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> (<strong>SGGW</strong>)<br />

2) Department <strong>of</strong> Business Economics,<br />

Faculty <strong>of</strong> Wood Science and Technology, Technical <strong>University</strong> in Zvolen<br />

Abstract: Competitiveness analysis <strong>of</strong> wood industry sector in selected European Union countries. In this paper,<br />

an attempt to analyze the competitiveness <strong>of</strong> selected European Union countries were made. In analysis some<br />

measures <strong>of</strong> competitiveness based primarily on the quantities <strong>of</strong> exports and imports <strong>of</strong> wood products were<br />

used. Analysis <strong>of</strong> the results, particularly the long-term, can provide many useful information about the condition<br />

<strong>of</strong> the wood industry sector and its competitive position in relation to other countries.<br />

Keywords: competitiveness indicators, wood industry.<br />

INTRODUCTION<br />

There are many different competitiveness measures in the literature. They allow to<br />

measure the competitiveness <strong>of</strong> individual companies as well as whole economies. Basic<br />

criteria <strong>of</strong> indicators classification are shown in table 1.<br />

Table 1. Competitiveness indicators basic classification criteria<br />

Criteria Indicators<br />

Time<br />

static<br />

dynamic<br />

Method <strong>of</strong> measuring<br />

ex post<br />

ex ante<br />

Competitiveness type<br />

price competitiveness<br />

non-price competitiveness<br />

The degree and scale <strong>of</strong> global<br />

statistical data aggregation detail<br />

Source: M. Olczyk: Konkurencyjno�� – teoria i praktyka, Wyd. CeDeWu, Warszawa, 2008<br />

Various authors mention many different group <strong>of</strong> competitiveness indicators for whole<br />

economies analysis. Based on Wzi�tek-Kubiak work [Wzi�tek-Kubiak, 2003] the following<br />

group <strong>of</strong> international competitiveness indicators are listed:<br />

1. Methods <strong>of</strong> competitiveness measure in field <strong>of</strong> international trade:<br />

a) coverage indicators (counted as a ratio <strong>of</strong> export to import in particular<br />

article group)<br />

b) export related indicators;<br />

c) structural indicators;<br />

d) indicators based on net export;<br />

2. Methods <strong>of</strong> competitiveness measure related to competing processes:<br />

a) relative prices indicators;<br />

b) effectiveness indicators;<br />

c) sector/product market share related indicators.<br />

31


METHODS AND STUDY<br />

In this paper selected effectiveness indicators in the wood industry sector <strong>of</strong> Czech<br />

Republic, Poland and Slovakia were analysed. Calculation based on Eurostat and OECD data<br />

from 2000 to 2009 were used.<br />

In this paper the following indicators were calculated:<br />

a) Country’s percentage share in world export market<br />

Ei<br />

U � �100%<br />

E<br />

, whereas: (1)<br />

j<br />

U – country’s percentage share in world export market;<br />

Ei –value <strong>of</strong> country’s export;<br />

Ej –value <strong>of</strong> worlds export<br />

b) Trade balance indicator:<br />

S � Ei<br />

� Ii<br />

, whereas: (2)<br />

S – trade balance;<br />

Ei – value <strong>of</strong> country’s export;<br />

Ij – value <strong>of</strong> country’s import<br />

c) Import penetration indicator:<br />

Ii<br />

P �<br />

Q � Ei<br />

� I<br />

, whereas: (3)<br />

i<br />

P – import penetration indicator;<br />

Ii – value <strong>of</strong> country’s import;<br />

Q – value <strong>of</strong> country’s production;<br />

Ij – value <strong>of</strong> country’s export<br />

d) Coverage indicator:<br />

Ei<br />

TC � �100%<br />

I<br />

, whereas: (4)<br />

i<br />

TC – coverage indicator;<br />

Ei – value <strong>of</strong> country’s export in selected group <strong>of</strong> goods;<br />

Ij – value <strong>of</strong> country’s import in selected group <strong>of</strong> goods.<br />

RESULTS<br />

Values <strong>of</strong> the country’s percentage export share in world export indicator are shown in<br />

table 1 and figure 1. This indicator is one <strong>of</strong> the most commonly used indicators in the<br />

analysis <strong>of</strong> competitiveness. Analysis <strong>of</strong> the table 1’ and figure 1’ data shows that in all<br />

countries this ratio value is steadily increasing and this testifies about growing international<br />

competitiveness <strong>of</strong> these countries.<br />

32


Table 1. Wood and wood and cork products export market share relative to the world<br />

Country<br />

2000 2001<br />

Export market share relative to the world<br />

2002 2003 2004 2005 2006 2007 2008<br />

Czech<br />

Republic<br />

0,98 1,05 1,02 1,11 1,21 1,19 1,29 1,54 1,68<br />

Poland 1,85 1,92 2,14 2,62 2,69 2,77 2,87 3,25 3,56<br />

Slovakia 0,39 0,44 0,46 0,55 0,56 0,67 0,76 0,85 0,91<br />

Source: Authors’ own calculation based on Eurostat and OECD data<br />

4,00<br />

3,00<br />

2,00<br />

1,00<br />

0,00<br />

2000 2001 2002 2003 2004 2005 2006 2007 2008<br />

Czech Republic Poland Slovakia<br />

Figure 1. Wood and wood and cork products export market share relative to the world<br />

As an addition to competitiveness analysis <strong>of</strong> wood industry sector in Czech Republic,<br />

Poland and Slovakia, indicator <strong>of</strong> trade balance was used. This measure describes the<br />

difference between domestic exports and imports. The results were presented in table 2 and<br />

figure 2.<br />

Values <strong>of</strong> trade balance in 2000-2007 show an upward trend for all examined countries -<br />

slight decreases <strong>of</strong> this indicator are noted in 2001 in all countries. In last analysed year the<br />

values <strong>of</strong> trade balance are decreasing, which could be caused by the global market downturn.<br />

Country<br />

2000<br />

Table 2. Wood and wood and cork products trade balance<br />

Wood and products <strong>of</strong> wood and cork trade balance<br />

2001 2002 2003 2004 2005 2006 2007 2008<br />

Czech<br />

Republic<br />

319,39 315,05 298,07 347,85 481,98 503,79 630,26 794,71 724,26<br />

Poland 712,40 674,35 764,64 1145,85 1452,44 1457,16 1591,14 1861,11 1737,38<br />

Slovakia 127,60 120,47 144,34 173,76 238,01 288,28 339,97 319,28 287,97<br />

Source: Authors’ own calculation based on Eurostat and OECD data<br />

33


2000,00<br />

1500,00<br />

1000,00<br />

500,00<br />

0,00<br />

2000 2001 2002 2003 2004 2005 2006 2007 2008<br />

Czech Republic Poland Slovakia<br />

Figure 2. Wood and wood and cork products trade balance<br />

The results <strong>of</strong> indicator <strong>of</strong> import penetration analysis are presented in table 3 and<br />

figure 3. An indicator <strong>of</strong> import penetration measures a share <strong>of</strong> import in domestic supply <strong>of</strong><br />

goods. The higher indicator value means higher import share in the market total goods supply.<br />

For a given country a value close to 100 in a certain industry, implies that domestic demand is<br />

mainly fulfilled by imports and domestic production tends to be exported. A value close to 0<br />

means self sufficient, i.e. domestic demand is mainly satisfied by domestic production. A<br />

value above 100 illustrates measurement problems which may occur when combining<br />

production and trade data. The highest values <strong>of</strong> this indicator are noted for Slovakia and<br />

reached 25-34. Czech Republic and Poland reach similar values <strong>of</strong> this indicator, respectively:<br />

15-22 and 11-19.<br />

Country<br />

Table 3. Wood and wood and cork products import penetration indicator<br />

Wood and products <strong>of</strong> wood and cork Import penetration indicator<br />

2000 2001 2002 2003 2004 2005 2006 2007 2008<br />

Czech<br />

Republic<br />

21,44 18,58 16,01 15,74 18,79 17,40 17,10 18,15 18,06<br />

Poland 11,57 11,72 14,19 16,39 15,58 17,03 18,98 18,07 16,53<br />

Slovakia 31,64 33,46 28,50 29,28 25,03 28,21 28,80 30,00 28,80<br />

Source: Authors’ own calculation based on Eurostat and OECD data<br />

35,00<br />

30,00<br />

25,00<br />

20,00<br />

15,00<br />

10,00<br />

5,00<br />

0,00<br />

2000 2001 2002 2003 2004 2005 2006 2007 2008<br />

Czech Republic Poland Slovakia<br />

Figure 3. Wood and wood and cork products import penetration indicator<br />

34


Analysis <strong>of</strong> the results <strong>of</strong> table 4 can provide an interesting information. In this table<br />

values <strong>of</strong> the coverage indicator (see formula 4) for the 2000-2008 were included, a graphic<br />

illustration <strong>of</strong> data was shown on figure 4. The coverage indicator determines an exceed<br />

degree <strong>of</strong> the group <strong>of</strong> goods exports in their import. Indicator values higher than 100%<br />

means that the country generates an advantage in trade <strong>of</strong> a particular group <strong>of</strong> goods.<br />

The coverage indicator values are higher than 200% in most analyzed countries. It<br />

means that exports value exceeds more than twice the value <strong>of</strong> country's imports in this group<br />

<strong>of</strong> goods. Highest values <strong>of</strong> the coverage indicator are observed for Poland, especially in the<br />

early years <strong>of</strong> analysis. Poland reaches the highest value <strong>of</strong> this ratio in 2003, namely an<br />

approximately 315%. Since 2004 the results <strong>of</strong> the coverage ratio for Poland are beginning to<br />

fall, and a reason <strong>of</strong> this may be a difficulties in compete with better equipped EU companies.<br />

The coverage indicator maintains downward trend for all countries in 2007 and 2008<br />

year probably caused by the global economic slowdown.<br />

Table 4. Wood and wood and cork products export share in import<br />

Country<br />

2000 2001 2002 2003<br />

Year<br />

2004 2005 2006 2007 2008<br />

Czech<br />

Republic<br />

233,21% 236,60% 209,85% 220,41% 221,10% 212,16% 228,84% 219,07% 195,78%<br />

Poland 283,67% 262,66% 270,26% 314,77% 286,46% 241,53% 233,34% 212,14% 193,50%<br />

Slovakia 284,03% 243,76% 228,39% 213,86% 231,73% 258,08% 209,35% 170,09% 162,06%<br />

Source: Authors’ own calculation based on Eurostat and OECD data<br />

350%<br />

300%<br />

250%<br />

200%<br />

150%<br />

100%<br />

50%<br />

0%<br />

CONCLUSIONS<br />

2000 2001 2002 2003 2004 2005 2006 2007 2008<br />

Czech Republic Poland Slovakia<br />

Figure 4. Wood and wood and cork products export share in import<br />

Analysis <strong>of</strong> the results indicate that the competitive position all analysed countries in the<br />

wood and wood products market appears to be stable, however some indicators in recent<br />

years <strong>of</strong> analysis, especially the coverage indicator, may show worsening situation in this<br />

sector companies.<br />

In this paper the data from years 2000-2008 were used and only selected indicators were<br />

calculated. Expanded competitiveness analysis and specific data from 2009 may provide the<br />

answer to a question about improve situation symptoms in world markets and thereby, an<br />

exports <strong>of</strong> wood and wood products.<br />

35


REFERENCES<br />

1. NOGA M., STAWICKA M. K., 2008: Co decyduje o konkurencyjno�ci polskiej<br />

gospodarki?, Wyd. CeDeWu Sp. z o.o.;<br />

2. OLCZYK M., 2008: Konkurencyjno�� – teoria i praktyka, Wyd. CeDeWu, Warszawa;<br />

3. SZCZAWI�SKI M., 2006: Analiza wieloczynnikowa konkurencyjno�ci przemys�u<br />

drzewnego na rynku Unii Europejskiej, Intercathedra No22, Pozna�, pp. 153-155;<br />

4. WZI�TEK-KUBIAK A., 2003: Konkurencyjno�� polskiego przemys�u, Dom<br />

wydawniczy Bellona, Warszawa;<br />

5. http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/themes<br />

6. http://www.oecd.org/statsportal/0,3352,en_2825_293564_1_1_1_1_1,00.html<br />

Streszczenie: Analiza konkurencyjno�ci przemys�u drzewnego w wybranych krajach Unii<br />

Europejskiej.W niniejszej pracy podj�ta zosta�a próba analizy konkurencyjno�ci wybranych<br />

krajów Unii Europejskiej. W analizie konkurencyjno�ci wykorzystane zosta�y g�ówne<br />

mierniki konkurencyjno�ci, wykorzystuj�ce g�ównie wielko�ci dotycz�ce importu i eksportu<br />

produktów drzewnych. Analiza wyników, zw�aszcza w d�ugim okresie, mo�e dostarczy�<br />

wielu u�ytecznych informacji na temat stanu sektora przemys�u drzewnego i jego pozycji<br />

konkurencyjnej w stosunku do innych krajów.<br />

Corresponding authors:<br />

Justyna Biernacka<br />

Department <strong>of</strong> Technology, Organisation and Management in Wood Industry,<br />

Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> Agricultural <strong>University</strong> (<strong>SGGW</strong>)<br />

02-787 <strong>Warsaw</strong>, ul. Nowoursynowska 166<br />

e-mail address: justyna_biernacka@sggw.pl<br />

Ing. Mariana Sedlia�iková, PhD.<br />

Department <strong>of</strong> Business Economics<br />

Faculty <strong>of</strong> Wood Science and Technology<br />

Technical <strong>University</strong> in Zvolen<br />

T. G. Masaryka 24<br />

960 53 Zvolen, Slovakia<br />

e-mail address: sedliacikova@vsld.tuzvo.sk


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 37-41<br />

(Ann. WULS - <strong>SGGW</strong>, For. and Wood Technol.,71, 2010)<br />

Stress concentration factors <strong>of</strong> an anisotropic elastic plate with an elliptical<br />

hole<br />

FERDINAND BODNÁR 1) , MAREK JAB�O�SKI 2)<br />

1) Department <strong>of</strong> Mechanics and Engineering, Technical <strong>University</strong> in Zvolen, Slovakia<br />

2) Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Abstract: Stress concentration factors <strong>of</strong> an anisotropic elastic plate with an elliptical hole. The analytical<br />

solution <strong>of</strong> stresses around the elliptical hole boundary in two-dimensional orthotropic linear elastic plate is<br />

presented here. The orthotropic plate with the elliptical hole is subjected to an uniaxial inplane tension or<br />

pressure loading at infinity. The aim is to know the influence <strong>of</strong> the elliptical hole shape and <strong>of</strong> the principal<br />

directions <strong>of</strong> elasticity on concentration <strong>of</strong> stresses. Realised computations <strong>of</strong> stresses on the hole boundary and<br />

<strong>of</strong> the stress concentration factor are based on the linear theory <strong>of</strong> anisotropic bodies with using <strong>of</strong> a Stroh<br />

formalism. This solution enables to discover influence <strong>of</strong> the one <strong>of</strong> three main factors <strong>of</strong> stress concentration,<br />

viz. material properties, hole geometry and loading conditions.<br />

Keywords: Stress concentration, elliptical hole, anisotropic plate, Stroh formalism.<br />

INTRODUCTION<br />

It is well known that holes cause serious problems <strong>of</strong> stress concentrations due to the<br />

geometry discontinuity. These problems are even more serious in structures <strong>of</strong> materials with<br />

anisotropic behaviour. In order to predict the structural behaviour <strong>of</strong> these structures a<br />

detailed study <strong>of</strong> effect <strong>of</strong> hole geometry on stress distribution around the hole is necessary.<br />

Analytical solutions are available in the literature with different degree <strong>of</strong> mathematical<br />

complexity. Lechnickij [2] gave solutions for stress around different shapes <strong>of</strong> holes using<br />

series method. Savin’s approach [3] by conformal mapping and Schwartz formula is much<br />

simpler. Analytical calculation <strong>of</strong> stress concentrations in plane with infinite dimensions<br />

under mechanical loads have been performed by many authors mainly using the methods <strong>of</strong><br />

complex valued stress functions and conformal mappings. Ukadgaonker and Rao [7] adapted<br />

Savin’s formulation to get general solution for inplane loading problem. A general solution is<br />

developed by introducing a general form <strong>of</strong> mapping function and an arbitrary biaxial loading<br />

condition into the boundary conditions.<br />

It is known that Stroh formalism is mathematically elegant and technically powerful in<br />

determining the two-dimensional deformations <strong>of</strong> anisotropic elastic solids [5], [6]. Here the<br />

Stroh formalism <strong>of</strong> plane strain elasticity is used for calculation <strong>of</strong> stress concentration around<br />

elliptical hole in anisotropic plate because the elliptic hole problem is the basis <strong>of</strong> a crack<br />

problem in elastic analysis. To denote the highest stress caused by the hole, the stress<br />

concentration factor (SCF) is used and defined to be the maximum stress at the hole boundary<br />

divided by the remote uniform stress. The effect <strong>of</strong> material properties on stress distribution<br />

around the hole was not studied here.<br />

THEORETICAL BACKGROUND<br />

For a two-dimensional anisotropic linear elastic medium, the basic equations <strong>of</strong> straindisplacement,<br />

stresss-strain and equilibrium may be written as<br />

37


�uu� 1<br />

�ij � i, j � j, i , � ij � C ijks�<br />

ks , � ij, j � 0 , (1)<br />

2<br />

Where, i u , � ij and � ij are respectively, the displacement, stress and strain. The<br />

repeated indices imply summation; a comma stands for differentiation and C ijks are the<br />

elastic constants which are assumed to be fully symmetric. A general solution satisfying Eq.<br />

(1) has been presented [5, 6] as<br />

where<br />

� Af �z� Af �z� , � Bf �z��Bf �z� u �<br />

A � �aaa�, �bbb� 1<br />

2<br />

� � � � � � � � ��T<br />

z � f z , f z , f z<br />

1<br />

1<br />

2<br />

3<br />

2<br />

3<br />

� (2a)<br />

B � ,<br />

3<br />

1<br />

2<br />

3<br />

f , z � x � p x , � � 1,<br />

2,<br />

3.<br />

(2b)<br />

�<br />

u and � , are 1<br />

u 1 , u2,<br />

u3<br />

and the stress<br />

functions �� 1 , �2,<br />

�3<br />

�.<br />

The stress function � i is related to the stresses by<br />

38<br />

1<br />

� 2<br />

3� column vectors denoting the displacements � �<br />

� i1<br />

� ��i,<br />

2 , i2<br />

i, 1 � �<br />

� . (2c)<br />

The superscript T denotes the transpose and the overline represents the conjugate <strong>of</strong> a<br />

complex number. The material eigenvalues � p , and eigenvectors � a , b� are determined by<br />

the following eigenrelations<br />

N � � p�<br />

, (3a)<br />

where<br />

and<br />

� �<br />

�N1<br />

N 2 �<br />

N � �<br />

T � ,<br />

�N3<br />

N1<br />

�<br />

N �T<br />

R<br />

-1 T<br />

1 � ,<br />

�a�<br />

� � � � ,<br />

�b�<br />

-1<br />

N 2 T �<br />

ik i1k1<br />

C Q � , ik i1k<br />

2 C<br />

� N ,<br />

T<br />

2<br />

-1 T<br />

N3 RT R �Q<br />

�<br />

� N<br />

(3b)<br />

R � , ik i2k<br />

2 C T � . (3c)<br />

� � z f , � =1, 2, 3, are three holomorphic functions <strong>of</strong> complex variables z � , which will be<br />

determined by the boundary conditions set for each particular problem. The surface traction<br />

vector t can be calculated by using Cauchy’s formula [4], i.e., ti � � ijm<br />

j where m j is the unit<br />

normal to the surface boundary. Usually, the stress components along any coordinate axes are<br />

calculated using the transformation law <strong>of</strong> second order tensors. An alternative approach to<br />

determining stress components <strong>of</strong> the rotated coordinate axes has been introduced [6]. Let (n,<br />

m) be the unit vector tangent and normal to a surface boundary then we have<br />

where<br />

�<br />

�<br />

mm<br />

nn<br />

T<br />

T<br />

� m ����, n , � mn � n ����, n , � m3<br />

� �� , n � , 3<br />

T<br />

� �n<br />

����, m , � nm � �m<br />

����, m � � mn<br />

T<br />

, n3<br />

� ���<br />

, m �3 T<br />

T<br />

n �����cos� , sin�<br />

, 0�,<br />

������sin� , cos�,<br />

0�<br />

T<br />

3<br />

� , (4a)<br />

m , (4b)


and the angle � is directed counterclockwise from the positive x1 -axis to the direction <strong>of</strong> n.<br />

Although the solutions to an anisotropic elasticity problem is, in general, expressed in terms<br />

<strong>of</strong> the Stroh eigenvalues and eigenvectors are complex, there are identities which express<br />

certain combination <strong>of</strong> the eigenvalues and eigenvectors in terms <strong>of</strong> real matrices and Barnet-<br />

Lothe tensors [1].<br />

RESULTS OF NUMERICAL EXAMPLES<br />

Calculations <strong>of</strong> stress concentration factors were made for the orthotropic rectangular<br />

plate with an elliptical hole at the centre. Used ratios <strong>of</strong> the elliptical hole halfaxises are<br />

a b � 5,<br />

2,<br />

1,<br />

1 2 and 1 5.<br />

The diameter <strong>of</strong> the opening is taken to be small in comparison<br />

with the length <strong>of</strong> the plate sides and the principal directions <strong>of</strong> elasticity are parallel to the<br />

sides <strong>of</strong> the plate. The tangential wooden plate <strong>of</strong> Picea Excelsa is loaded by uniaxial tension<br />

at infinity in x� direction. In the first case wood fibers are parallel with x� – axis (i.e.: �= 0°)<br />

and in the second case the fibers are<br />

parallel with y�– axis (i.e.: �= 90°).<br />

Fig. 1 Problem configuration<br />

Used elasticity coefficients, Poisson�s ratios and calculated material eigenvalues for<br />

both solved cases are given in Table 1.<br />

Table 1 Material properties and calculated material eigenvalues<br />

Picea Excelsa<br />

Ex<br />

�MPa�<br />

Ey<br />

�MPa�<br />

Gxy<br />

�MPa�<br />

�yx �xy p1 p2<br />

� � 0�<br />

9290 650 870 0.420 0.033 0.0000 + 1.2581i 0.0007 + 3.0058i<br />

� � 90�<br />

650 9290 870 0.033 0.420 -0.3943 + 0.3302i 0.3944 + 0.3306i<br />

A hoop stress � � originates on the hole boundary. It’s distribution around the<br />

elliptical hole with halfaxes ratio ( a b � 1 2 ) for both solved cases is presented in Fig. 2.<br />

a) b)<br />

Fig. 2 Distribution <strong>of</strong> � � : a) �= 0°, b) �= 90°<br />

39


Calculated stress concentration factors for all observed elliptical hole halfaxises ratios<br />

and fiber orientations are given in Table 2.<br />

Table 2. Stress concentration factors<br />

Picea<br />

Stress concentration factor<br />

Excelsa a/b=5 a/b=2 a/b=1 a/b=1/2 a/b=1/5<br />

� � 0�<br />

1.85 3.13 5.26 9.53 20.61<br />

� � 90�<br />

1.13 1.33 3.13 4.37 6.26<br />

- 3.79 - 3.79 -3.79 -3.79 -3.79<br />

CONCLUSION<br />

When fibers orientation is along the x� – axis, (i.e.: �= 0°), compression stress ��<br />

around the elliptical hole is negligible. Locations with maximum values always occurs at<br />

� � 90�<br />

and 270°. Moreover, the maximum value <strong>of</strong> the stress concentration factor increases<br />

when the hole axes ratio a b decreases.<br />

In the case that wood fibers are perpendicular on loading stress direction, great<br />

concentration <strong>of</strong> stresses is caused by compression stress � � in locations about � � 0�<br />

and<br />

180°. These SCF are negative numbers, and moreover for all halfaxises ratios these ones are<br />

equal. Positive SCF increases when the hole axes ratio a b decreases but corresponding stress<br />

concentration factors are smaller as in the cases when �= 0°. Locations <strong>of</strong> the positive stress<br />

concentration factors change from angle � � 22�<br />

up to 158° and from 202° up to 338°.<br />

REFERENCES<br />

1. BARNETT D.M., LOTHE J. 1973. Synthesis <strong>of</strong> the sextic and the integral formalism<br />

for dislocations, Green’s function and surface waves in anisotropic elastic solids.<br />

Physica Norvegica, 7, 1973: 13-17.<br />

2. LECHNICKIJ S. G. 1957: Anizotropnyje plastinki. Moskva: Gostechizdat, Moskva-<br />

Leningrad: 1957, 463 pp.<br />

3. SAVIN G. N. 1951: Koncentacija naprjaženij okolo otverstij. Gostechizdat, Moskva-<br />

Leningrad: 1951, 496 pp.<br />

4. SOKOLNIKOFF I. S. 1956: Mathematical Theory <strong>of</strong> Elasticity. McGraw-Hill, New<br />

York: 1956.<br />

5. STROH A. N. 1958: Dislocations and cracks in anisotropic elasticity. Philosophical<br />

Magazine 7, 1958: 625- 646.<br />

6. TING T.C.T. 1996: Anisotropic Elasticity – Theory and Applications. Oxford Science<br />

Publications, New York: 1996.<br />

7. UKADGAONKER V. G., RAO D. K. N. 2000: A general solution for moments<br />

around holes in symmetric laminates. Composite Structures, 49, 2000: 41 –54.<br />

40


Streszczenie: Rozk�ad napr��e� w anizotropowej p�ycie spr��ystej z otworem eliptycznym.<br />

Praca prezentuje rozwi�zanie analityczne zagadnienia rozk�adu napr��e� w dwuwymiarowej<br />

spr��ystej p�ycie naoko�o eliptycznego otworu. Ortotropowa p�yta z otworem eliptycznym<br />

jest wystawiona na dzia�anie niesko�czonych napr��e� wieloosiowych. Celem pracy by�o<br />

okre�lenie wp�ywu otworu eliptycznego na rozk�ad napr��e� w p�ycie. Przeprowadzone<br />

obliczenia napr��e� wokó� otworu oraz wspó�czynników rozmieszczenia napr��e� bazowa�y<br />

na teorii cia� anizotropowych Stroha. Rozwi�zanie pozwala okre�li� wp�yw trzech g�ównych<br />

czynników rozk�adu napr��e�, w�a�ciwo�ci materia�u, geometrii otworu oraz typu obci��enia.<br />

This research was supported by Slovak Scientific Grant Agency under project No. 1/0579/08<br />

“Stress and strain analysis around stress concentrators in parts <strong>of</strong> wooden constructions”.<br />

Corresponding authors:<br />

Ferdinand Bodnár,<br />

Department <strong>of</strong> Mechanics and Engineering,<br />

Technical <strong>University</strong> in Zvolen, Slovakia,<br />

e-mail: bodnar@vsld.tuzvo.sk<br />

Marek Jab�o�ski,<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

02-776 <strong>Warsaw</strong>,<br />

159 Nowoursynowska st.,<br />

Poland<br />

e-mail: marek_jablonski@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 42-46<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Two special plants for drying <strong>of</strong> wood by superhigh frequency <strong>of</strong><br />

electromagnetic energy<br />

A.M. BOMBIN 1 , P.S. MORDVINOV 2<br />

1 Voronezh state Academy <strong>of</strong> Forestry Engineering, Voronezh, Russia,<br />

2 Post-graduate student <strong>of</strong> Russian State Commercial and Economic <strong>University</strong>, Voronezh, Russia<br />

Abstract: Two special plants for drying <strong>of</strong> wood by superhigh frequency <strong>of</strong> electromagnetic energy (SHF<br />

EME) submitted in the article. First plant drying boards 3 metre length for furniture. Second plant drying <strong>of</strong> logs<br />

and beams 6 metre length for production <strong>of</strong> wooden houses. Each <strong>of</strong> this plants consume minimum <strong>of</strong> electric<br />

energy for drying <strong>of</strong> wood with needed characteristics. Boards for furniture must have moisture 6%. Logs and<br />

beams must have moisture 15%. During the process <strong>of</strong> drying boards moisture going out like steam from sides <strong>of</strong><br />

boards. During the process <strong>of</strong> drying <strong>of</strong> logs and beams moisture going out like water and steam from end<br />

surface <strong>of</strong> logs and beams. Control panel fulfilled <strong>of</strong> manycannel programmable intellectual relay type Zelio<br />

Logic.<br />

Keywords: superhigh frequency <strong>of</strong> electromagnetic energy, drying <strong>of</strong> logs, wooden house-building, drying<br />

boards for furniture<br />

���� ���������� ��������� ��� ����� ��������� ���������������� ��������<br />

������������ ������� (��� ���) �������, ��� ������������� ���������<br />

������������������ ���������, ��������������� ��� ����� ������������� ����<br />

��������� ��� ������� �� ���������. ������������� ��������� ���������� ���������,<br />

����������� �� �������� «������������� – ���������». ��������� ����� ����� ���<br />

����� �����������, ������������ ������������� ����� ������������ ������� ��<br />

���������. ������������� ������������������ ��������� �������� �����������<br />

�������������� ������� �� ������������ ��������� ���������� ������������<br />

���������.<br />

� ������ ������ ����������� ��� ������������������ ��������� ��� �����<br />

��������� �� ��������� ��� ���. ���� ��������� ������������� ��� �����<br />

�������������� �������� �� 6 ��, ������� �� 30 �� � ������ �� 3 �,<br />

��������������� ��� ������������ ������. ��������� �������� ��������� �����<br />

���������� 6-8%. ������ ��������� ������������� ��� ����� ������ � ����� ���������<br />

�� 26 �� � ������ �� 6 �, ��������������� ��� ������������ ���������� �����.<br />

��������� �������� ��������� ������ � ����� ���������� 15-17%.<br />

� ������ ��������� ����� �� ����� ������� � �������� � ���� ���� �����<br />

������� ����������� �����. �� ������ ��������� ����� �� ������ � ����� ������� �<br />

�������� � ���� �������� ����� ����� ������ ��� �����.<br />

�������������� ��������� ������������ � �������� 1 � 2.<br />

������� 1 – �������������� ��������� ����� ����� ��� ������ (����-3�)<br />

������������ �������������� ��������<br />

1. ������ �����, �� 3000�300�50<br />

2. ���������� ����� � ���� ���, �� 26<br />

3. ����������� �����, � � 80-105<br />

4. ������� ���������, ��� 2450<br />

42


5. ������������ ��������, ��� 14<br />

6. ����� ���������� ��� ���, �� 16<br />

7. ������������ ����������, � 220<br />

8. ������������ ����� �� 60% �� 8% ���������, ����� 3-7<br />

9. �������� ���������, �� 3500�1400�2000<br />

10. ����� ���������, �� 500<br />

11. ����� ��������, � 3 1-2<br />

12. ������� �������������� �� ����� 1 � 3 �����, ����� 500-1500<br />

13. ����������� ������������, � � +10 ÷ +40<br />

14. ���������� ��������� ����������� �������<br />

80<br />

��� +20 � �,%<br />

15. ����������� ���� ������������, ������� 8<br />

16. ��������������� ����, ���.�. 400<br />

������� 2 – �������������� ��������� ����� ������ � ����� ��� ������������<br />

(����-6�)<br />

������������ �������������� ��������<br />

1. ������ ���������, ��<br />

�) ��������������� ������, �������� �����<br />

�) ����������� ����, �������������������<br />

43<br />

260�6000<br />

200�200�6000<br />

2. ���������� ������, �� 8-10<br />

3. ����������� �����, � � 90-105<br />

4. ������� ���������, ��� 2450<br />

5. ������������ ������������ ��������, ��� 19<br />

6. ������� ������������ ��������, ��� 14<br />

7. ����� ���������� ��� ���, �� 36<br />

8. ������������ ����������, � 220<br />

9. ������������ ����� �� 15% ���������, ��� 20-24<br />

10. �������� ���������, �� 7500�1300�2000<br />

11. ����� ���������, �� 1000<br />

12. ����� ��������, � 3 2<br />

13. ������� �������������� �� ����� 1 � 3 ������, ����� 150<br />

14. ����������� ������������, � � +10 ÷ +40<br />

15. ���������� ��������� ����������� �������<br />

��� +20 � �,%<br />

80<br />

16. ����������� ���� ������������, ������� 8<br />

17. ��������������� ����, ���.�. 700<br />

���������� ��������� ����� ������ � ����� ������������ �� ������� 1. ��<br />

������� ����������: 1 – ������, 2 – ��������� ��� ���, 3 – �����, 4 – ����<br />

����������.<br />

���������� ��������� ����� ����� ��� ������ ������������ �� ������� 2. ��<br />

����� ��� ��������� ������ ��������� ����� ������ � ����� � ����� �� �����<br />

�������������� ��������� ����� ������� ������������ �������. �� �������<br />

����������: 1 – ������, 2 – ��������� ��� ���, 3 – �����.


������� 1 – ����� ��� ��������� ����� ������ � ����� ��� ������������<br />

������� 2 – ����� ��� ��������� ����� ����� ��� ������<br />

44


��������� �������� � ������������� ���� ������ ����� ���������� ��� ���<br />

������������ �� �����������. �������� ����� ���������� ������� �� ����������<br />

��� ��� ���������� ������������ ��������� �� ���� ± 45 � .<br />

������ ������ ������������ �� �������<br />

(1)<br />

D � 2 ( � � l ) ,<br />

��� � – ������� ������������� ��� ��� � �������;<br />

l – ���������� �� ������ ������ �� �������.<br />

������� ������������� ��� ��� � ������� ������������ �� ������� [1]<br />

� ��<br />

2 ��<br />

� � �<br />

�<br />

2�<br />

`<br />

2<br />

�� � � 1�<br />

tg � �1���<br />

(2)<br />

��� � – ����� ����� ���������;<br />

�`– ������������� ��������������� �������������;<br />

tg � – ������� ���� ��������������� ������.<br />

����������� ���������� �� ������ ������ �� ������� ������������ �� �������<br />

S<br />

l � ,<br />

min<br />

0<br />

��<br />

�<br />

2n<br />

�tg<br />

2<br />

(3)<br />

��� S – ��� ������, ��� ����� �������;<br />

n – ����� ���������� ��� ��� ���� �� ������, ���� �� ����� �������.<br />

(4)<br />

0 1<br />

��<br />

� �<br />

2<br />

45<br />

�<br />

a<br />

�<br />

b<br />

1/<br />

2<br />

0 0<br />

� 70 � 60 �,<br />

��� �� 0 � – ������� �������� ������ ��������� �������������� ��������� �����<br />

��������� (�������) ������� ��������� ��� ���; a – ������ ���������; b<br />

– ������ ���������; � – ����� ����� ���������.<br />

������������� ��������� ������� ���������� ��� l > lmin. ���������� l ��<br />

��������� � lmin ������ ��������� ��� ���������� ������������ ������.<br />

���� ���������� �������� � �������������� �����������������<br />

���������������� ���� Zelio Logic.<br />

REFERENCES:<br />

1.TORGOVNIKOV G.I., 1993: Dielectric Properties <strong>of</strong> Wood and Wood-Based Materials.<br />

Springer-Verlag 1993 . Printed in Germany.<br />

,


Streszczenie: Dwa specjalne urz�dzenia do suszenia drewna energi� elektromagnetyczn�<br />

wysokiej cz�stotliwo�ci. Pierwsza z suszarek, przeznaczona dla meblarstwa, s�u�y do suszenia<br />

tarcicy o d�ugo�ci do 3 metrów, druga, przeznaczona do zak�adu produkuj�cego domy<br />

drewniane, do belek i k�ód o d�ugo�ci do 6 metrów. Obie suszarki zu�ywaj� minimalne ilo�ci<br />

energii konieczne do wysuszenia drewna do wymaganego poziomu. Deski dla meblarstwa<br />

musz� mie� oko�o 6% wilgotno�ci, belki i k�ody do domów drewnianych oko�o 15%. W<br />

trakcie sszenia k�ód oraz belek wilgo� z wn�trza drewna jako woda oraz para wydostaje si� z<br />

czó� materia�u. Zastosowano wielokana�owy programowalny kontroler Zelio Logic.<br />

Corresponding authors:<br />

pr<strong>of</strong>. Bombin A.M.<br />

Voronezh State Academy <strong>of</strong> Forestry Engineering,<br />

Timiryazev St., 8, Voronezh<br />

394087, Russia, e-mail chem@vglta.vrn.ru<br />

Mordvinov P.S.<br />

Russian State Commercial and Economic <strong>University</strong>,<br />

Fr. Engelsa St., 2-18, Voronezh<br />

394000, Russia, e-mail chem@vglta.vrn.ru


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> Live <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 47-50<br />

(Ann. WULS-<strong>SGGW</strong>, For. And Wood Technol., 71, 2010)<br />

Influence <strong>of</strong> the accelerated ageing red oak wood (Quercus rubra L.) on<br />

compressive strength along the fibers<br />

EMILIAN BORATY�SKI, AGNIESZKA JANKOWSKA, MAGDALENA SZCZ�SNA<br />

Department <strong>of</strong> Wood Science and Wood Protection, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> Live Science - <strong>SGGW</strong><br />

Abstract: Because <strong>of</strong> the length <strong>of</strong> a natural process <strong>of</strong> ageing <strong>of</strong> wood, the investigation on ageing wood and its<br />

results are carried out using methods simulating weather conditions. Influence <strong>of</strong> the accelerated ageing on wood<br />

properties is not known well. The information about this need to be completed. The subject <strong>of</strong> research was<br />

northern red oak wood (Quercus rubra L.). As a result <strong>of</strong> research, it was proved that artificial ageing <strong>of</strong> wood<br />

causes the change in wood appearance, fall in its density and compression along the fibers.<br />

Key words: red oak, accelerated ageing <strong>of</strong> wood, wood durability.<br />

INTRODUCTION<br />

As the years pass, wood undergoes a gradual degradation as a result <strong>of</strong> influence <strong>of</strong><br />

external factors, both biotic and abiotic ones. The influence <strong>of</strong> these factors results in a loss <strong>of</strong><br />

initial properties <strong>of</strong> wood. Due to slowness <strong>of</strong> the process, examination ageing <strong>of</strong> wood and<br />

consequences <strong>of</strong> it is difficult. Substantial changes <strong>of</strong>ten appear in real terms <strong>of</strong> using wood<br />

after a lot <strong>of</strong> years (Kozakiewicz and Matejak 2006).<br />

From this reason, various methods <strong>of</strong> accelerated ageing were drew up in laboratories,<br />

simulating natural influence <strong>of</strong> weather conditions, eg. defined in PN-EN 335-1, to determine<br />

changes occurring in wood. These methods differ between themselves in the order and<br />

intensity <strong>of</strong> the effect <strong>of</strong> individual factors <strong>of</strong> the decline (Heli�ska-Raczkowska and<br />

Raczkowski 1971, Matejak and �wietliczny 1977; Kami�ski, Matejak and Popowska 1982;<br />

Matejak, Popowska and Rabiej 1983; Krzosek and Starecka 1996; Kozakiewicz K. and<br />

Matejak 1998).<br />

One <strong>of</strong> the methods, described by Matejak, Popowska and Szejka (1983), consisted in<br />

wood drying in temperature <strong>of</strong> 70 °C during 8 hours and soaking in water in room<br />

temperature during 16 hours. According to the authors, approximately 11 cycles (one cycle <strong>of</strong><br />

ageing takes 24 hour) correspond to a yearly response <strong>of</strong> wood in external conditions in<br />

moderate climate. Tests <strong>of</strong> artificial ageing was conducted on pine, oak and beech wood have<br />

demonstrated that a decrease in compressive strength along the fibres with respect to one<br />

ageing cycle tends to be slower with a growing number <strong>of</strong> completed ageing cycles.<br />

So far for, research on the influence <strong>of</strong> the accelerated ageing was made on the popular<br />

species <strong>of</strong> wood from Europe. In relation to opening branches <strong>of</strong> the wood industry and the<br />

acting shortage <strong>of</strong> wood, it is necessary to undertake the research on processes occurring<br />

during the precipitated atmospheric corrosion and other grades <strong>of</strong> wood.<br />

The aim <strong>of</strong> this work was determine changes (compressive strength along the fibres)<br />

occurring in red oak wood (Quercus rubra L.). The knowledge acquired in this respect is<br />

gaining the more and more great practical significance.<br />

MATERIAL AND METHODS<br />

At assuming the lack <strong>of</strong> influences <strong>of</strong> biotic factors, a simplified method was applied<br />

simulating real terms <strong>of</strong> the work <strong>of</strong> wood outside drawn up through Matejak, Popowska and<br />

Szejka (1983). 110 artificial ageing cycles (corresponding with ageing in open air for ten<br />

years in the temperate climate typical <strong>of</strong> the area <strong>of</strong> Poland) were conducted in total.<br />

47


The scope <strong>of</strong> work included determination <strong>of</strong> the most significant properties having an<br />

impact, first <strong>of</strong> all, on durability and quality <strong>of</strong> wood in elements used outdoors, exposed to<br />

variable weather conditions. The effect <strong>of</strong> a gradual degradation <strong>of</strong> wood caused by variable<br />

thermal and moisture conditions was determined on the basis <strong>of</strong> tests <strong>of</strong> wood density<br />

(according to Polish Standard PN-77/D-04101) and wood compressive strength along the<br />

fibres (according to Polish Standard PN-79/D-04102). The use <strong>of</strong> slightly smaller dimensions<br />

<strong>of</strong> samples, i.e. 15 x 15 x 22 mm, was a departure from the above-mentioned norms. The<br />

deviation from demands <strong>of</strong> the Polish Standard concerning the sample size occurred in view<br />

<strong>of</strong> the fact that no relationship existed between the compressive strength along the fibres and<br />

the size <strong>of</strong> samples when they geometrically similar and when section <strong>of</strong> the samples<br />

contained at least a couple <strong>of</strong> annual increments. Testers <strong>of</strong> wood <strong>of</strong> every kind were being<br />

acquired from one board, getting so-called „identical samples”. Thanks to that a density<br />

moved close and a structure were kept for so that happening changes in the ageing process are<br />

a main factor deciding on examined properties.<br />

RESULTS<br />

The samples <strong>of</strong> the tested wood species developed a colour changes as a result <strong>of</strong><br />

accelerated ageing. At first the colour was becoming darker, and then wood was assuming the<br />

colour grey-ashen. As a result <strong>of</strong> the ageing process on the surface <strong>of</strong> wood cracks appeared.<br />

As first running cracks were turning up at radial direction, and then in tangential direction.<br />

Coming into existence <strong>of</strong> cracks <strong>of</strong> surface layers <strong>of</strong> wood, leading to the degradation<br />

<strong>of</strong> this material, is a result <strong>of</strong> uneven drying outside and <strong>of</strong> inner layers generating strong<br />

desorption stresses.<br />

The ageing has caused a decrease in density <strong>of</strong> the tested wood species. The higher the<br />

number <strong>of</strong> ageing cycles, the bigger the difference in density between the unaged wood and<br />

the wood treated by the process. Artificial ageing caused wood fall in the density in case <strong>of</strong><br />

red oak wood from the initial average value <strong>of</strong> 804 kg/m 3 up to 771 kg/m 3 what constitutes c.<br />

12,7 %. It is possible to suppose this fall is triggered above all with scouring the row <strong>of</strong> nonstructural<br />

substances from cell walls and to a lesser degree with partial hydrolysis<br />

hemicelluloses and celluloses in layers surface <strong>of</strong> samples. In order to illustrate the impact <strong>of</strong><br />

accelerated ageing on density <strong>of</strong> the tested wood species, an approximate percentage decrease<br />

corresponding to one cycle <strong>of</strong> the process has been determined (fig. 1). The first artificial<br />

wood ageing cycles had the biggest impact on density. Non-structural substances were being<br />

washed out from the wood cell walls in the most intensive way. The decrease in density<br />

related to one ageing cycle tended to be smaller with a growing number <strong>of</strong> artificial ageing<br />

cycles completed and was nearing a constant value (asymptotically to zero).<br />

With the increase number <strong>of</strong> cycles <strong>of</strong> ageing, at the testing compressive strength<br />

along the fibres an image is changing scrap <strong>of</strong> samples – from pressing for oblong cracks. The<br />

change <strong>of</strong> character <strong>of</strong> damage is attesting to the fall in the strength <strong>of</strong> wood triggered process<br />

artificial ageing. Analyzing the average values <strong>of</strong> wood compressive strength along the fibres,<br />

it has been observed that artificial ageing caused a decrease in strength <strong>of</strong> red oak wood from<br />

initial value 64,3 MPa to 57,9 MPa (fall about c. 7,1 %). The decrease in wood compressive<br />

strength is caused by changes occurring in the wood structure. Cyclic changes in thermal and<br />

moisture conditions resulted in strong stresses exceeding internal cohesion forces <strong>of</strong> the<br />

wood. It caused this occurrence <strong>of</strong> fractures in cell walls. Loss <strong>of</strong> mass also took place to the<br />

effect <strong>of</strong> washing the row <strong>of</strong> nonstructural substances out <strong>of</strong> cell walls and relaxing the<br />

skeleton lignin- cellulose. In order to illustrate the impact <strong>of</strong> ageing on compressive strength<br />

along the fibres, an approximate percentage decrease <strong>of</strong> this feature corresponding to one<br />

cycle was determined (fig. 2). The nature <strong>of</strong> the changes is the same as in the case <strong>of</strong> density.<br />

48


The first ageing cycles had the biggest influence on compression along the fibres due<br />

to the fact that the initial rapid changes in moisture cause the strongest sorption stresses and<br />

consequently an intensive development <strong>of</strong> cracks. With a growing number <strong>of</strong> artificial ageing<br />

cycles, as similarly as in case <strong>of</strong> the density, fall in the strength with reference to one cycle<br />

ageing he is more and more small and he is making his way asymptotic towards the constant<br />

value. It is probably a consequence <strong>of</strong> it that in separated (small) elements arising as a result<br />

<strong>of</strong> earlier tearing samples (during the first cycles ageing), desorption stresses weren't already<br />

so high and they didn't trigger more further deepening fractures and in the process <strong>of</strong> lowering<br />

the strength. With acting ageing changes <strong>of</strong> the strength <strong>of</strong> wood were more and more small.<br />

Fig. 1. Relative decrease <strong>of</strong> the red oak (Quercus<br />

rubra L.) density in conversion to one aging cycle<br />

depending on the number <strong>of</strong> aging cycles<br />

49<br />

Fig. 2. Relative decrease <strong>of</strong> the red oak (Quercus<br />

rubra L.) compressive strength along the fibres in<br />

conversion to one aging cycle depending on the<br />

number <strong>of</strong> aging cycles<br />

CONCLUSION<br />

The research conducted on influence <strong>of</strong> the accelerated ageing northern red oak wood<br />

(Quercus rubra L.) on its density and compressive along the fibres, allow to reach the<br />

following conclusions:<br />

1. Precipitated application <strong>of</strong> the method artificial ageing <strong>of</strong> wood simulating real terms <strong>of</strong><br />

this work for determining changes <strong>of</strong> the property <strong>of</strong> wood in the realistically short time<br />

and in the process predicting keeping it allows.<br />

2. The ageing has causes a decrease in density <strong>of</strong> the red oak wood. The decrease in density<br />

related to one ageing cycle tended to be smaller with a growing number <strong>of</strong> artificial<br />

ageing cycles completed and was nearing a constant value (asymptotically to zero).<br />

3. The accelerated ageing process causes a considerable decrease in compressive strength<br />

along the fibres. The decrease in the wood strength tends to be bigger with a longer period<br />

<strong>of</strong> wood treatment by the ageing process.


REFERENCES:<br />

1. HELI�SKA-RACZKOWSKA L., RACZKOWSKI J.,1971: Niektóre zagadnienia<br />

przyspieszonego starzenia drewna. Roczniki WSR w Poznaniu 6.<br />

2. KAMI�SKI M., MATEJAK M., POPOWSKA E., 1982: Einfluss des Alterns von<br />

Holz unter künstlichen Klimabedingungen auf seine Druckfestigkeit längs der Faser.<br />

Holzforschung und Holzvermertung, Heft 2, s. 21-24.<br />

3. KOZAKIEWICZ K., MATEJAK M., 1998: Wp�yw procesu sztucznego starzenia na<br />

wytrzyma�o�� drewna na �ciskanie wzd�u� w�ókien. Przemys� Drzewny 10/1998: s.<br />

26-28.<br />

4. KOZAKIEWICZ P., MATEJAK M., 2006: Klimat a drewno zabytkowe. Wyd.<br />

<strong>SGGW</strong> Warszawa.<br />

5. KRZOSEK S., STERECKA D., 1996: Modu� spr��ysto�ci jako kryterium oceny<br />

zmian wytrzyma�o�ci drewna sztucznie starzonego. Mat. z X Konferencji Naukowej<br />

Wydzia�u Technologii Drewna <strong>SGGW</strong> nt.: Drewno – tworzywo in�ynierskie. Wyd.<br />

Fundacji Rozwój <strong>SGGW</strong> Warszawa 1996: s. 65-72.<br />

6. MATEJAK M., POPOWSKA E., RABIEJ R., 1983: Starzenie drewna i konstrukcji<br />

drewnianych. Przemys� Drzewny 2/1983: s. 17-19.<br />

7. MATEJAK M., POPOWSKA E., SZEJKA E., 1983: Vergleichende Untersuchungen<br />

über Methoden des beschleunigten Alterns von Holz, Holzforschung und<br />

Holzvermertung, Heft 5, s. 117-119.<br />

8. MATEJAK M., �WIETLICZNY M., 1977: Odporno�� tworzyw drzewnych na<br />

dzia�anie czynników klimatycznych. Zeszyty naukowe <strong>SGGW</strong>-AR w Warszawie,<br />

Technologia Drewna, 8, Warszawa 1977: s. 101-114.<br />

9. PN-EN 335-1: Trwa�o�� drewna i materia�ów drewnopochodnych. Definicja klas<br />

zagro�enia ataku biologicznego.<br />

10. PN-79/D-04102 Drewno. Oznaczenie wytrzyma�o�ci na �ciskanie wzd�u� w�ókien.<br />

11. PN-77/D-04101 Drewno. Oznaczanie g�sto�ci.<br />

12. PN-79/D-04100 Drewno. Oznaczenie wilgotno�ci.<br />

Streszczenie: Wp�yw sztucznego starzenia drewna d�bu czerwonego (Quercus rubra L.) na<br />

wytrzyma�o�� na �ciskanie wzd�u� w�ókien. Z powodu d�ugo�ci trwania naturalnego procesu<br />

starzenia opracowano wiele metod postarzania drewna symuluj�cych jego prace w<br />

naturalnych warunkach zewn�trznych. Jeden cykl procesu starzenia obejmowa� moczenie<br />

próbek w wodzie przez 16 godzin i suszenie w temperaturze 343 K przez 8 godzin. Ogó�em<br />

przeprowadzono 110 cykli sztucznego starzenia, co w przybli�eniu odpowiada<br />

dziesi�cioletniej pracy drewna na zewn�trz w klimacie umiarkowanym, typowym dla obszaru<br />

Polski. Do bada� u�yto drewna d�bu czerwonego (Quercus rubra L.). Wykazano, �e sztuczne<br />

starzenie powoduje zmian� wygl�du drewna (zamiana barwy i chropowato�ci powierzchni),<br />

spadek wytrzyma�o�ci na �ciskanie wzd�u� w�ókien oraz ubytek masy (spadek g�sto�ci).<br />

Zmniejszanie si� g�sto�ci i wytrzyma�o�ci na �ciskanie wzd�u� w�ókien drewna jest<br />

najwyra�niejsze w pierwszych cyklach starzenia. Wraz z post�puj�cym starzeniem<br />

zachodz�ce zmiany s� coraz mniejsze.<br />

Corresponding author:<br />

Agnieszka Jankowska, Magdalena Szcz�sna<br />

Department <strong>of</strong> Wood <strong>Sciences</strong> and Wood Protection,<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

Ul. Nowoursynowska 159,<br />

02-776 <strong>Warsaw</strong>, Poland<br />

e-mail: agnieszka_milewska@sggw.pl, e-mail: magdalena_szczesna@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 51-55<br />

(Ann. WULS - <strong>SGGW</strong>, For. and Wood Technol.,71, 2010)<br />

Interactions with water <strong>of</strong> novel wood-fiber material with lignins as binder<br />

BORUSZEWSKI PIOTR, BORYSIUK PIOTR, DOBROWOLSKA EWA, MAMI�SKI<br />

MARIUSZ, NICEWICZ DANUTA<br />

Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Abstract: Interactions with water <strong>of</strong> novel wood-fiber material with lignins as binder. A biocomposite made <strong>of</strong><br />

wood fiber compounded with lignins was manufactured in an injection moulding process. The sorption<br />

behaviour <strong>of</strong> the material when in contact with water was examined and compared to typical high density<br />

hardboard. It was found that interactions with water <strong>of</strong> the novel material were reduced.<br />

Keywords: lignin, hardboard, injection moulding process<br />

INTRODUCTION<br />

Wood based fibrous materials like medium density fiberboard, insulation board and<br />

hardboard have been well known and recognized as ecomonic and versetile materials. All <strong>of</strong><br />

them are derived from defibrated wood i.e. fiber pulp invented by Asplund (Anon 1997).<br />

Recently, biocomposites based on wood and biopolymers became the field <strong>of</strong> research<br />

which scientists’ attention has been paid to. The concept is to compound thermoplastic<br />

materials with lignocellulosic fibers or isolated components <strong>of</strong> wood (Pritchard 2004, Selke<br />

and Wachman 2004, Mohanty et al. 2000, Maya and Sabu 2008).<br />

It is known that natural resources provide large amounts <strong>of</strong> biopolymers like<br />

polysaccharides (e.g. starch), proteins (e.g. collagen) and others (e.g. lignin) (Stevens 2002).<br />

The latter is the most abundant aromatic polymer occuring in nature. Its content in<br />

wood ranges from 20 % to 30 %, so that its stock from paper manufacturing is as high as 80<br />

million tones. Having in mind that lignin is thermplastic - glass transition temperature is 110-<br />

130 o C (Irvine 1984, Kelly et al. 1987) and flow temperature ca. 170 o C (Olsen and Packett<br />

1999).<br />

It is reported in literature that lignin could be used as a binder for fibrous materials (Li<br />

et al. 1997, Chakar and Ragauskas 2004, Kadla and Kubo 2004, Le Digabel and Ave´rous<br />

2006, Guigo et al. 2009, Haensel et al. 2009, 2010) as well as its binding efficacy could be<br />

increased by enzymatic treatments (Widsten and Kandelbauer 2008).<br />

Thus, a novel wood-fiber lignin-bonded material was developed and examined in<br />

terms <strong>of</strong> interactions with water. The results <strong>of</strong> the experiments were described below.<br />

METHODIC<br />

The objective <strong>of</strong> the studies was to compare the selected properties <strong>of</strong> injected<br />

fibrous lignin-bonded composites with those <strong>of</strong> traditional hardboards. Two types <strong>of</strong><br />

laboratory-made materials were used in the experiments:<br />

� Biocomposite panels (4 mm thick, density 1250 kg/m 3 ) made through injection <strong>of</strong> wood<br />

fibers compounded with lignin (manufactured in Faculty <strong>of</strong> Mechanical Engineering,<br />

Chemnitz <strong>University</strong> <strong>of</strong> Technology).<br />

� Hardboard (4 mm thick, density 1250 kg/m 3 ) made through traditional wet metod<br />

(manufactured in Faculty <strong>of</strong> Wood Technology <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> –<br />

<strong>SGGW</strong>).<br />

51


The biocomposite lignin-bonded panels were manufactured from pellets (5x5x5 mm 3 )<br />

by injecting moulding. The material was composed <strong>of</strong> lignin (Indulin AT), wood fibers and<br />

natural additives improving processing. Panels <strong>of</strong> dimensions 220 x 150 x 4 mm 3 were<br />

formed in a Krauss Maffei 380 CX. Maximum pressure ranged from 110 to 160 MPa.<br />

Maximum process temperature 160 o C.<br />

Hardboards (300 x 150 x 4 mm 3 ) were made <strong>of</strong> the pulp <strong>of</strong> freeness 45 DS as 1.5% wt<br />

suspension in water. Phenol-formaldehyde glue load was 2% based on dry wood weight.<br />

After draining, the boards were pressed at 200 o C according to the following regimé: 19 MPa –<br />

4 min � 3 MPa 4 min � 19 MPa – 5 min. Pressing parameters were set empirically during<br />

the initial experiments. Prior to tests, the panels were condition.ed at 20 ± 2 o C and 65 ± 5%<br />

RH for 7 days.<br />

The following parameters were examined:<br />

� Thickness swelling and water absorptivity after 2 and 24 h <strong>of</strong> water soaking (according to<br />

EN 317:1999)<br />

� Water sorption dynamics<br />

� Surface absorption (according to EN 382-2:2001)<br />

� Water wetting and surface energy. Contact angles were measured using Phoenix 300<br />

contact angle analyzer (Surface Electro Optics, Korea) equipped with CCD camera and<br />

microscopic lenses. Surface energy calculations were based on the acid-base method.<br />

Diiodomethane, formamide and water were used as reference liquids.<br />

Significance <strong>of</strong> differences were tested by t-Student test with 95 % confidence level.<br />

RESULTS<br />

The results <strong>of</strong> the respective tests are shown in Tables 1 and 2 as well as in Figures 1<br />

and 2. The densities <strong>of</strong> the investigated panels were comparable (Table 1) – the differences<br />

did not exceed 7%. The obtained results for thickness swelling and water absorptivity shown<br />

in Table 1 reveal highly hydrophobic nature <strong>of</strong> injected biocomposite panels. The parameters<br />

determined for that material were lower by 90% than those <strong>of</strong> the hardboards. The<br />

observation can be explained by hydrophobicity <strong>of</strong> lignin.<br />

Table 1. Thickness swelling and water absorptivity<br />

Average Swelling [%] Absorptivity [%]<br />

Panel type density<br />

[kg/m 3 ]<br />

2 h x 24 h x 2 h x 24 h x<br />

Biocomposite ligninbonded<br />

panels<br />

1283 1.9<br />

11<br />

4.4<br />

3<br />

1.3<br />

6<br />

4.2<br />

3<br />

Hardboard<br />

x – variation coefficient [%]<br />

1201 24.3 15 41.2 10 27.7 16 44.6 8<br />

The observed sorption dynamics <strong>of</strong> the biocomposite lignin-bonded panels was lower<br />

by 50% when compered to hardboard. (Fig. 1). The reference hardboard after 1 hr achieved<br />

51% <strong>of</strong> the maximum soak-level and 87% after 6 hrs. The respective results for the ligninbonded<br />

biocomposite were 24% and 46% <strong>of</strong> the maximum soak-level. The tested<br />

biocomposites exhibited linear increase in moisture content within 24 hr test, while that for<br />

the hardboard occurred to be logarythmic. The high correlation coefficients confirm that<br />

52


observatuion (R 2 = 0,9882 for biocomposite lignin-bonded panels and 0,9513 for the<br />

hardboard).<br />

Fig 1. Sorption dynamics <strong>of</strong> the studied panels<br />

The properties tabulated in Table 2 also allow to describe interactions <strong>of</strong> the material<br />

with water, and - what is important - remain in accordance with the other results.<br />

Table 2. Surface properties <strong>of</strong> the studied panels<br />

Panel type<br />

Surface absorption<br />

[g/m 2 ]<br />

Contact angle �<br />

Biocomposite ligninbonded<br />

panels<br />

21 51.7 ± 4.9 o 58.4<br />

Hardboard 927 37.8 ± 3.4 o 59.5<br />

a) b)<br />

53<br />

Total free surface energy<br />

�tot [mJ/m 2 ]<br />

Fig 2. Images <strong>of</strong> water droplets deposited onto: a) biocomposite lignin-bonded panels, b) hardboard<br />

Surface properties <strong>of</strong> the studied materials were shown in Table 2. Both surface<br />

sorption, swelling and water absorption determined for the biocomposite panels were 44 times


lower that those for the reference hardboards which proves significantly reduced water<br />

sorption for the biocomposite. In addition, the assumption is in agreement with the contact<br />

angles which for the injected biocomposites were by 14º higher than those for the hardboards<br />

(fig. 2) Also, higher hydrophobicity <strong>of</strong> the lignin-bonded panels confirms the lower total free<br />

surface energy.<br />

However, it should be stressed that high water contact angles may indicate poor<br />

wetting with aqueous adhesives, thus, some problems during finishing or bonding may occur.<br />

SUMMARY<br />

The injected fibrous lignin-bonded composites were found to be new materials<br />

featured with required hydrophobic nature higher than that <strong>of</strong> the traditional hardboards.<br />

The described lignin-bonded biocomposites may possibly be applied where water<br />

resistance is required and no high loads bearing occurs. And, last but not least, advantage <strong>of</strong><br />

the injected lignin-wood fiber composites is a possibility <strong>of</strong> 3D forming during injection.<br />

ACKNOWLEDGMENT<br />

This work was carried out as a part <strong>of</strong> the ERA-IB-project: Improvement <strong>of</strong> strength<br />

properties and reduction <strong>of</strong> emission <strong>of</strong> volatile organic compounds by enzymatic<br />

modification <strong>of</strong> lignin containing biopolymers and composites (VOC reduction <strong>of</strong> lignin<br />

containing materials).<br />

REFERENCES<br />

1. ANON (1997): Fiber Processing Pioneer. The World <strong>of</strong> Fiber Processing, 2, 8–11.<br />

2. CHAKAR F S, RAGAUSKAS A J (2004): Review <strong>of</strong> current and future s<strong>of</strong>twood kraft<br />

lignin process chemistry. Industrial Crops and Products 20, 131–141.<br />

3. GUIGO N, VINCENT L, MIJA A, NAEGELE H, SBIRRAZZUOLI N (2009): Innovative<br />

green nanocomposites based on silicate clays / lignin / natural fibres. Composites Science<br />

and Technology 69, 1979–1984.<br />

4. HAENSEL T, COMOUTH A, LORENZ P, AHMED S I-U, KRISCHOK S, ZYDZIAK<br />

N, KAUFFMANN A, SCHAEFER A (2009): Pyrolysis <strong>of</strong> cellulose and lignin. Applied<br />

Surface Science 255, 8183–8189.<br />

5. HAENSEL T, COMOUTH A, ZYDZIAK N, BOSCH E, KAUFFMANN A, PFITZER J,<br />

KRISCHOK S, SCHAEFER A, AHMED S I-U (2010): Pyrolysis <strong>of</strong> wood-based polymer<br />

compounds. Journal <strong>of</strong> Analytical and Applied Pyrolysis 87, 124–128.<br />

6. KADLA J F, KUBO S (2004): Lignin-based polymer blends: analysis <strong>of</strong> intermolecular<br />

interactions in lignin – synthetic polymer blends. Composites: Part A 35, 395–400.<br />

7. LE DIGABEL F and AVE´ROUS L (2006): Effects <strong>of</strong> lignin content on the properties <strong>of</strong><br />

lignocellulose-based biocomposites. Carbohydrate Polymers 66, 537–545.<br />

8. LI Y, MLYNAR J, SARKANEN S (1997): The First 85% Kraft Lignin-Based<br />

Thermoplastics. Journal <strong>of</strong> Polymer Science Part B: Polymer Physics 12 (35), 1899–1910.<br />

9. MAYA J J and SABU T (2008): Bi<strong>of</strong>ibres and biocomposites. Carbohydrate Polymers 71,<br />

343–364<br />

10. MOHANTY A K, MISRA M, HINRICHSEN G (2000): Bi<strong>of</strong>ibres, biodegradable<br />

polymers and biocomposites: An overview. Macromolecular Materials and Engineering<br />

276/277, 1–24<br />

11. OLSEN P O and PLACKETT D V (1999): Perspectives on the performance <strong>of</strong> natural<br />

plant fibers presented at natural fibres performance forum, Copenhagen, May 27 – 28.<br />

http://www.ienica.net/fibresseminar/olsen.pdf<br />

12. PRITCHARD G (2004): Two technologies merge: wood plastic composites. Reinforced<br />

plastics 6, 26–29.<br />

54


13. SELKE S E and WACHMAN I (2004): Wood fiber / polyolefin composites. Composites:<br />

Part A, 35, 321–326.<br />

14. STEVENS E S (2002): Green Plastics. Princeton: Princeton <strong>University</strong> Press.<br />

15. WIDSTEN P, KANDELBAUER A (2008): Laccase applications in the forest products<br />

industry: A review. Enzyme and Microbial Technology 42, 293–307.<br />

16. IRVINE G.M., CSIRO 1984: The glass transitions <strong>of</strong> lignin and hemicellulose and their<br />

measurement by differential thermal analysis. TAPPI Journal 67, 5, 118-121<br />

17. KELLEY S.S., RIALS T.G., GLASSER W.G. 1987: Relaxation behaviour <strong>of</strong> the<br />

amorphous components <strong>of</strong> wood. Journal <strong>of</strong> Materials Science 22, 2, 617-624<br />

Streszczenie: W�a�ciwo�ci sorpcyjne materia�ów w�óknistych spajanych lignin�. W ramach<br />

bada� wykorzystano biokompozyty w�ókniste spajane lignin� wytworzone metod� iniekcji.<br />

Dla badanych materia�ów oznaczono w�a�ciwo�ci sorpcyjne i porównano je z w�a�ciwo�ciami<br />

p�yt pil�niowych twardych. Ustalono, �e biokompozyty w�ókniste spajane lignin�<br />

charakteryzuja si� wy�sz� hydr<strong>of</strong>obowo�ci� w stosunku do p�yt pil�niowych twardych.<br />

Corresponding authors:<br />

Boruszewski Piotr, Borysiuk Piotr, Dobrowolska Ewa, Mami�ski Mariusz, Nicewicz Danuta<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

02-776 <strong>Warsaw</strong>,<br />

159 Nowoursynowska st.,<br />

Poland<br />

e-mail: piotr_boruszewski@sggw.pl<br />

e-mail: potr_borysiuk@sggw.pl<br />

e-mail: ewa_dobrowolska@sggw.pl<br />

e-mail: danuta_nicewicz@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 56-61<br />

(Ann. WULS - <strong>SGGW</strong>, For. and Wood Technol.,71, 2010)<br />

Shear strength <strong>of</strong> bonds in plywood made <strong>of</strong> veneers treated with<br />

pyrethroid and triazole based bio-preservatives.<br />

PIOTR BORYSIUK 1) , PIOTR BORUSZEWSKI 1) , KRZYSZTOF KRAJEWSKI 1) , MAREK<br />

JABLO�SKI 1) , EVA RUŽINSKÁ 2)<br />

1)<br />

Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

2)<br />

Department <strong>of</strong> Environmental Technology, Faculty <strong>of</strong> Environmental and Manufacturing Technology,<br />

Technical <strong>University</strong> in Zvolen, Slovakia<br />

Abstract: Shear strength <strong>of</strong> bonds in plywood made <strong>of</strong> veneers treated with pyretroid and triazole based biopreservatives.<br />

Pine and beech veneers were protected with preservatives containing pyrethroids (cypermerine,<br />

biphentrine) and triazole (tebuconazole, propiconazole). Protected veneers were pressed into three layer plywood<br />

with urea-formaldehyde and phenolic-formaldehyde resins. It was determined that bond quality <strong>of</strong> pine plywood<br />

deteriorates in comparison to control samples independently <strong>of</strong> glue used. In case <strong>of</strong> beech plywood<br />

preservation decreases strength with urea-formaldehyde resin, with phenol-formaldehyde strength is increased.<br />

Key words: plywood preservation, gluing, wood staining fungi<br />

INTRODUCTION<br />

Full utilization <strong>of</strong> wood and wood-based materials as a constructional materials is<br />

limited by susceptibility to biodegradation. This phenomena may be limited by<br />

biopreservation, temporarily protecting wood. Market <strong>of</strong>fers wide range <strong>of</strong> protective<br />

insecticides and fungicides, like pyrethroid-based (third generation <strong>of</strong> insecticides, lethal for<br />

insects and not harmful to humans and warm-blooded animals) or triazole-based<br />

(preservatives from fungicide group. Biologically protecting preservatives can be used for<br />

plywood treatment. This can be done in two ways, treatment <strong>of</strong> ready-made product or veneer<br />

protecting in the production phase. Second case requires extensive tests <strong>of</strong> preservation<br />

influence on veneer gluability.<br />

METHODIC<br />

During performed test, pine veneers (moisture content 5 %, density 470 kg/m 3 ) and<br />

beech veneers (moisture content 6 %, density 660 kg/m 3 ) <strong>of</strong> 1,8 mm thickness were preserved<br />

with water solutions <strong>of</strong> tested biopreservatives. Table 1 shows treatment description and<br />

average load. Preservatives were brushed into veneer on both sides, after that veneers were<br />

seasoned for 14 days. In the same time control, unpreserved veneers were prepared.<br />

After seasoning veneers were tested against water wetting angle (�). Wetting angle<br />

tests were made on Surface Electro Optics Phoenix 300 goniometer. Analyzer is quipped with<br />

digital microscopic camera and stepper motor, which enables precise drop dosing. Wetting<br />

angles for all veneers tested were determined after 1 second after dropping.<br />

56


Table 1. Veneers’ preservation variants<br />

Variant Description<br />

veneers preserved with water-based treatment<br />

load *<br />

Variant A containing cypermethrine (C22H19Cl2NO3) and<br />

propiconazole (C15H17Cl2N3O2)<br />

8,7 g/m 2 / 350 g/m 2<br />

veneers preserved with water-based treatment<br />

Variant B<br />

containing biphentrine (C23H22ClF3O2),<br />

tebuconazole (C16H22ClN3O ) and propiconazole<br />

(C15H17Cl2N3O2)<br />

14,7 g/m 2 / 340 g/m 2<br />

Variant K control samples, unpreserved<br />

* dry preservative mass/ preservative solution mass on 1 m 2 <strong>of</strong> veneer<br />

With prepared veneers three layer plywood was made, with urea-formaldehyde (UF)<br />

and phenol-formaldehyde (PF) resin. Recipes <strong>of</strong> glue and pressing parameters are shown in<br />

table 2. Viscosity <strong>of</strong> glue mass was tested with Brookfield apparatus (spindle 64, 50 rpm).<br />

Table 2. Glue mass recipes and pressing parameters..<br />

Parameter Pine veneer Beech veneer<br />

Glue recipe<br />

UF – resin 100 w.p., filler (rye flour) 15 w.p., hardener (10 %<br />

solution (NH4)2SO4) 4 w.p., water10 w.p.<br />

PF – resin100 w.p., filler (rye flour with tanning agents) 15<br />

w.p., water 10 w.p.<br />

Glue load 160 g/m 2<br />

Pressure 1,0 MPa 1,4 MPa<br />

Temperature 110 o C 130 o C<br />

Pressing time 6 min<br />

After pressing plywood was seasoned for 7 days and then cut into shear strength test<br />

samples in accordance to PN-EN 314-1:2007 standard. 20 samples were tested for each<br />

variant.<br />

RESULTS<br />

Wetting angle test results are presented in table 3 and on figures 1 and 2. Shear<br />

strength est results are presented in table 4 and on figures 3 – 6. Wetting angle testing gives<br />

possibility <strong>of</strong> glue spread assessment on protected veneer’s surface. Wetting angle is an<br />

indicator <strong>of</strong> wetting solution interaction on the base. Lower values testifies <strong>of</strong> better material<br />

wettability which enables better coating. At the same time glue may penetrate into base too<br />

deeply, causing thin joints <strong>of</strong> lower strength.<br />

Table 3. Water wetting angles <strong>of</strong> tested veneers.<br />

Variant<br />

pine veneer<br />

wetting angle<br />

beech veneer<br />

A 52,8 O ± 5,7 O 48,4 O ± 5,1 O<br />

B 42,1 O ± 5,8 O 47,0 O ± 5,7 O<br />

K 77,8 O ± 5,4 O 68,6 O ± 5,6 O<br />

57


Fig. 1. Water dropped on pine veneer (treated with A, B preservatives and untreated)<br />

Fig. 2. Water dropped on beech veneer (treated with A, B preservatives and untreated)<br />

In case <strong>of</strong> tested veneers, preservation with any preservative caused lowering <strong>of</strong><br />

wetting angle (table 3, fig. 1 and 2). With treated pine veneers glued with both UF and PF<br />

resin shear strength decrease was observed in comparison with unprotected samples. Strength<br />

loss was noticed when dry (by 10 – 15 %) and after soaking (by 11 – 56 %) (table 4, fig 3,<br />

4). With beech veneers strength loss was visible only with UF (by 0 – 26 % when dry and 14<br />

– 71 % after soaking). Application <strong>of</strong> PF resin for veneer gluing increased shear strength <strong>of</strong><br />

the joints both when dry (by 13 – 17 %) and after soaking (by 44 %).<br />

Preserved veneers bonded with UF resin show significant strength loss probably due to<br />

excessive glue penetration in to wood, causing thin joint. Pine veneers penetrate even better<br />

with its low density and coarse surface. It is necessary to remark that glues showed different<br />

viscosity, UF – 1520 cP and PF – 2088 cP, which takes its part in the final joint performance.<br />

In case <strong>of</strong> impregnated beech veneers application <strong>of</strong> PF caused better glue spread and lower<br />

penetrating effect which increased shear strength in comparison to control samples in dry and<br />

wet state. It is necessary to remark that in all cases value <strong>of</strong> 1 N/mm 2 , required by the PN –<br />

EN 314-2:2001 standard, was exceeded.<br />

Table 4. Shear strength <strong>of</strong> the joints.<br />

Shear strength <strong>of</strong> the joints<br />

Pine veneer Beech veneer<br />

dry wet dry wet<br />

[N/mm 2 ]<br />

z<br />

wood<br />

failure [N/mm2 ]<br />

z<br />

wood<br />

failure<br />

[N/mm 2 ]<br />

z<br />

wood<br />

failure<br />

[N/mm 2 UF resin<br />

]<br />

z<br />

wood<br />

failure<br />

A 1,8 13 30 0,8 16 0 1,9 16 0 1,2 16 0<br />

B 1,7 10 20 0,4 18 0 1,4 12 0 0,4 19 0<br />

K 2,0 13 40 0,9 17 0<br />

PF resin<br />

1,9 18 20 1,4 18 0<br />

A 2,2 20 60 1,3 16 10 2,8 9 50 2,3 15 20<br />

B 2,2 13 60 1,5 19 10 2,7 9 50 2,3 18 20<br />

K 2,6 17 70 1,9 16 30 2,4 10 60 1,6 14 30<br />

z – variation coefficient [%], average wood failure [%]<br />

Variant<br />

58


Shear strength [N/mm 2 ]<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

K A B<br />

59<br />

Variant<br />

Fig. 3. Pine plywood shear strength in dry state<br />

Shear strength [N/mm 2 ]<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

K A B<br />

Variant<br />

Fig. 4. Pine plywood shear strength in wet state<br />

Shear strength [N/mm 2 ]<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

K A B<br />

Variant<br />

Fig. 5. Beech plywood shear strength in dry state<br />

UF PF<br />

UF PF<br />

UF PF


Shear strength [N/mm 2 ]<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

K A B<br />

Variant<br />

Fig. 6. Beech plywood shear strength in wet state<br />

SUMMARY<br />

60<br />

UF PF<br />

Shear strength <strong>of</strong> glue joints in plywood made <strong>of</strong> veneers preserved with pyrethroid<br />

(biphentrine, cypermethrine) and triazole (tebuconazole, propiconazole) based preservatives<br />

depends on wood species and glue type. Gluing quality <strong>of</strong> plywood made <strong>of</strong> preserved pine<br />

veneers decreases in comparison to unprotected samples. In case <strong>of</strong> beech plywood<br />

preservation with mentioned chemicals decreases strength with UF resin applied, but<br />

increases with PF resin. Impregnation <strong>of</strong> veneers with pyrethroid (biphentrine, cypermethrine)<br />

and triazole (tebuconazole, propiconazole) based preservatives increases their wettability.<br />

REFERENCES<br />

1. AYDIN_I., COLAKOGLU G. 2007: Variation in surface roughness, wettability and<br />

some plywood properties after preservative treatment with boron compounds.<br />

Building and Environment 42, 3837–3840.<br />

2. BORYSIUK P., DZIURKA D., JAB�O�SKI M., ZBIE� M. 2008: CGluability <strong>of</strong><br />

pine wood protected with bio and fire preservaties”. VII th International Symposium<br />

Composite Wood Materials Zvolen, June 25-27, 104–108.<br />

3. DANIHELOVÁ A., JAB�O�SKI M., SEDLIA�IK J., RUŽINSKÁ E., 2010: „Shear<br />

strength <strong>of</strong> urea-formaldehyde, phenol-formaldehyde and polyvinyl acetate glue bonds<br />

in fungi and insect-preserved pine plywood”. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong><br />

<strong>Sciences</strong> – <strong>SGGW</strong>, Forestry and Wood Technology No 70, 2010 s. 63-66.<br />

4. DIESLE A., KRAUSE A., BOLLMUS S., MILITZ H. 2009: Gluing ability <strong>of</strong><br />

plywood produced with DMDHEU-modified veneers <strong>of</strong> Fagus sp., Betula sp., and<br />

Picea sp. International Journal <strong>of</strong> Adhesion & Adhesives 29, 206–209.<br />

5. DOMA�SKI M., DZIURKA D., JAB�O�SKI M., KRAJEWSKI K. 2007: „Shear<br />

strength <strong>of</strong> selected glue types in pine wood protected with multipurpose bio and firepro<strong>of</strong>ing<br />

FIRESMART BIO P/PO� preservative”. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong><br />

<strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>, Forestry and Wood Technology No 61, 178–181.<br />

6. DZIURKA D., JAB�O�SKI M., OSIPIUK J., SEDLIA�IK J., ZBIE� M. 2006:<br />

„Shear strenght <strong>of</strong> Melfemo S melamine-urea-phenol-formaldehyde glue bonds in pine<br />

wood preserved with fire-pro<strong>of</strong> agents”. VI th International Symposium Composite<br />

Wood Materials Zvolen, June 21-23., 113–116.


7. JAB�O�SKI M., OSIPIUK J., DOMA�SKI M. 2003: „Die Scherfestigkeit von<br />

Leimfugen (aus Melamin-Harnst<strong>of</strong>fleim „Dynomel L-435) bei<br />

antipyrensalzbehandeltem Kiefernholz”. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricul. Univ. Forestry<br />

and Wood Technology No 54, 87–90.<br />

8. JAB�O�SKI M., RUŽINSKÁ E., ZBIE� M., 2009: „Treatment <strong>of</strong> pine wood with<br />

selected reservatives and its influence on strength <strong>of</strong> glue bonds”. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong><br />

<strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>, Forestry and Wood Technology No 67 2009 s.<br />

126-130.<br />

9. WYTWER T., STARECKI A., 1995: „Wp�yw �rodka ognioochronnego Fungitoxu NP<br />

na w�a�ciwo�ci sklejki bukowej”. Materia�y konferencyjne na XII Sympozjum<br />

„Pokroky vo výrobe a použiti lepidiel v drevopriemysle”, Zvolen, 6 - 8.09., 263–270.<br />

Streszczenie: Wytrzyma�o�� spoin na �cinanie w sklejkach wytworzonych z fornirów<br />

zabezpieczanych �rodkami biochronnymi opartymi na pyretroidach i triazolach. W ramach<br />

bada� zabezpieczono forniry sosnowe i bukowe preparatami zawieraj�cymi pyretroidy<br />

(cypermetryn�, bifentryn�) i triazole (tebukonazol, propikonazol). Z przygotowanych<br />

fornirów wytworzono 3 warstwowe sklejki przy wykorzystaniu klejów UF i PF. Ustalono, �e<br />

jako�� sklejenia dla sklejek wytworzonych z fornirów sosnowych ulega pogorszeniu w<br />

stosunku do sklejek kontrolnych niezale�nie od zastosowanego kleju. W przypadku sklejek<br />

bukowych impregnacja w/w �rodkami wp�ywa ujemnie na warto�ci wytrzyma�o�ci spoin na<br />

�cinanie przy zastosowaniu �ywicy UF, za� korzystnie przy zastosowaniu �ywicy PF.<br />

Corresponding authors:<br />

Piotr Borysiuk, Piotr Boruszewski, Krzyszt<strong>of</strong> Krajewski, Marek Jab�o�ski,<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

02-776 <strong>Warsaw</strong>,<br />

159 Nowoursynowska st.,<br />

Poland<br />

e-mail: potr_borysiuk@sggw.pl<br />

e-mail: piotr_boruszewski@sggw.pl<br />

e-mail: krzyszt<strong>of</strong>_krajewski@sggw.pl<br />

e-mail: marek_jablonski@sggw.pl<br />

Eva Ružinská,<br />

Faculty <strong>of</strong> Environmental and Manufacturing Technology,<br />

Department <strong>of</strong> Environmental Technology<br />

Technical <strong>University</strong> in Zvolen, Slovakia<br />

e-mail: evaruzin@vsld.tuzvo.sk


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 62-66<br />

(Ann. WULS - <strong>SGGW</strong>, For. and Wood Technol.,71, 2010)<br />

Low-density particleboards with foamed polystyrene additive<br />

PIOTR BORYSIUK 1) , MARCIN SZO�UCHA, WALDEMAR JASKÓ�OWSKI 2) ,<br />

JOANNA CZECHOWSKA 1)<br />

1) Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

2) The Main School <strong>of</strong> Fire Service (SGSP)<br />

Abstract: Low-density particleboards with foamed polystyrene additive. Particleboards with density <strong>of</strong><br />

500 kg/m 3 <strong>of</strong> industrial s<strong>of</strong>twood chips, bonded with urea-formaldehyde glue have been manufactured for this<br />

study. Foamed polystyrene in amounts <strong>of</strong> 0%, 5%, 10%, 15%, 20% and 25% has been added to the chips<br />

provided for core layer so that the assumed density <strong>of</strong> the board could be maintained. Selected physical and<br />

mechanical properties <strong>of</strong> the manufactured particleboards have been examined. It has been found that addition <strong>of</strong><br />

foamed polystyrene to the core layer <strong>of</strong> the board in amount <strong>of</strong> 20% will result in increase <strong>of</strong> MOR and decrease<br />

<strong>of</strong> MOE. Thickness swelling and absorbability <strong>of</strong> the board decreases along with increase in content <strong>of</strong><br />

polystyrene.<br />

Keywords: low density particleboards, foamed polystyrene<br />

INTRODUCTION<br />

Particleboards, now being one <strong>of</strong> the basic materials for furniture industry, are<br />

characterized by favorable strength parameters on one hand and “relatively high” specific<br />

weight on the other. Density <strong>of</strong> typical particleboards, depending on their thickness, ranges<br />

between 650 kg/m 3 and 750 kg/m 3 , which goes over to relatively high unit weight: 11.7 kg/m 2<br />

–13.5 kg/m 2 (for 18 mm thick boards). In certain applications (e.g. with large board elements)<br />

the parameters are an essential disadvantage <strong>of</strong> this popular wood based panels. An attempt to<br />

cope with and eliminate this “disadvantage” when making use <strong>of</strong> the particleboards is<br />

manufacturing <strong>of</strong> lowered density particleboards (500 kg/m 3 and less). In this case however,<br />

this generally affects/causes decrease in their strength parameters significantly. Decrease in<br />

density is accompanied with increase in roughness <strong>of</strong> the board structure also. The solution<br />

might be implementation <strong>of</strong> additional light filler which would strengthen the inner structure<br />

<strong>of</strong> the boards and contribute to their quality improvement. Foamed polystyrene in a form <strong>of</strong><br />

granules has been applied as a filler in the framework <strong>of</strong> this study.<br />

METHODIC<br />

Three layer particleboards with density <strong>of</strong> 500 kg/m 3 and thickness <strong>of</strong> 18 mm were<br />

manufactured in the scope <strong>of</strong> the research. Foamed polystyrene in a form <strong>of</strong> granules in<br />

amount <strong>of</strong> 5%, 10%, 15%, 20% and 25% was added to core layer <strong>of</strong> the boards so that the<br />

assumed density <strong>of</strong> the board could be maintained. A control variant <strong>of</strong> particleboard –<br />

without foamed polystyrene additive, was manufactured for comparison. Totally 6 variants <strong>of</strong><br />

the boards bonded with UF resin were manufactured. Board manufacturing parameters are<br />

presented in table 1.<br />

62


Table 1. Board manufacturing parameters<br />

Parameter Value<br />

Glue rates: Wz / Ww 12 % / 8 %<br />

Contents <strong>of</strong> layers: Wz / Ww 50 % / 50 %<br />

Recipe <strong>of</strong> glue UF resin – 100 wt., hardener (10 % NH4Cl aqueous<br />

solution) – 4 wt., water – 15 wt.<br />

Pressing temperature 180 o C<br />

Maximum unit pressure 2,5 MPa<br />

Pressing factor 18 s/mm<br />

Wz – face layer, Ww – core layer<br />

After manufacturing, the boards were subject to 7 day conditioning in laboratory<br />

conditions and then specimen were taken for further examinations. The following properties<br />

were determined for the manufactured boards:<br />

� density and density pr<strong>of</strong>iles (Laboratory Density Analyser DAX GreCon)<br />

� MOR i MOE (PN-EN 310:1994)<br />

� IB (PN-EN 319:1999)<br />

� thickness swelling and absorbability after 2 and 24 h soaking (PN-EN 317:1999)<br />

For each <strong>of</strong> the determined parameters, 10 repetitions were made for each variant.<br />

Significance differences <strong>of</strong> the obtained values were checked with the use <strong>of</strong> T-Student Test<br />

for significance level <strong>of</strong> 95%.<br />

RESULTS<br />

The results <strong>of</strong> the carried out examinations have been presented in tables 2 and 3 and<br />

in fig. 1. The manufactured particleboards were characterized by approximate average<br />

densities in scope <strong>of</strong> 482 – 517 kg/m 3 . Generally it is assumed that when comparing<br />

properties <strong>of</strong> the boards, the differences in their density should nor exceed 10%, for the<br />

examined boards maximum differences in density would not exceed 7%. The noted decrease<br />

in density <strong>of</strong> the boards was related to the increase in their thickness after pressing due to<br />

greater re-deformation <strong>of</strong> the boards. It was caused by addition, to core layer <strong>of</strong> the board, <strong>of</strong><br />

greater amount <strong>of</strong> “elastic” polystyrene granules. It resulted in considerable drop in density <strong>of</strong><br />

the core layer (max. by 27% with respect to the board without polystyrene additive). And<br />

increase in density <strong>of</strong> the face layers <strong>of</strong> the boards (max. by 21% with respect to the board<br />

without polystyrene additive), which could be seen on the density pr<strong>of</strong>iles <strong>of</strong> particular<br />

variants <strong>of</strong> the boards (fig. 1). The increased density <strong>of</strong> the face layers resulted from the fact<br />

that the polystyrene granules worked as “support” for the chips and thus caused greater<br />

compression <strong>of</strong> the face layers. It should be noted at this point that all board variants were<br />

characterized by typical “U” shape density pr<strong>of</strong>ile.<br />

Table 2. Strength parameters <strong>of</strong> the manufactured boards<br />

Polystyrene<br />

addition<br />

Density MOR MOE IB<br />

[%] [kg/m 3 ] z [N/mm 2 ] z [N/mm 2 ] z [N/mm 2 ] z<br />

0 517 6 5,3 14 1057 12 0,18 15<br />

5 515 6 5,8 16 1122 10 0,18 15<br />

10 516 7 7,6 11 954 6 0,21 13<br />

15 505 8 8,0 10 986 11 0,18 21<br />

20 487 4 9,2 5 717 4 0,14 22<br />

25 482 5 8,0 10 731 6 0,19 21<br />

z – variation coefficient [%]<br />

63


Fig. 1. Density pr<strong>of</strong>iles <strong>of</strong> the manufactured boards<br />

Considering the strength parameters <strong>of</strong> the manufactured boards it can be generally<br />

stated that increased content <strong>of</strong> foamed polystyrene in core layer affected increase <strong>of</strong> MOR<br />

and simultaneous decrease <strong>of</strong> MOE (table 2). In case <strong>of</strong> MOR, for all board variants, apart<br />

from the boards with 5% foamed polystyrene additive, the noted increase was statistically<br />

significant. It amounted to max. 74% for the boards containing 20% foamed polystyrene<br />

additive as compared with the control variant boards. This effect can be related to the above<br />

mentioned increase in density <strong>of</strong> face layers <strong>of</strong> the boards. In case <strong>of</strong> MOE, statistically<br />

significant decrease as compared with the control boards was noted for the boards with 10%,<br />

20% and 25% polystyrene additive. It was max. 32%. The reason for MOE decrease is<br />

increased elasticity <strong>of</strong> the board, caused by implementing, in its core layer, <strong>of</strong> polystyrene<br />

characterized by low MOE value.<br />

As a result <strong>of</strong> polystyrene addition to core layer <strong>of</strong> particleboards, the IB value,<br />

between control variant and that with 25% participation <strong>of</strong> polystyrene, did not change<br />

significantly. The strength fluctuations surely resulted from uneven distribution <strong>of</strong><br />

polystyrene granules at the cross section <strong>of</strong> the board.<br />

Table 3. Thickness swelling and absorbability <strong>of</strong> the manufactured boards<br />

Polystyrene Thickness swelling Absorbability<br />

addition 2 h 24 h 2 h 24 h<br />

[%] [%] z [%] z [%] z [%] z<br />

0 13,7 9 16,8 7 113,8 9 124,4 7<br />

5 13,3 11 16,5 9 105,5 5 112,5 5<br />

10 13,7 12 16,1 6 94,8 7 105,6 8<br />

15 12,8 13 15,2 9 86,6 4 95,6 5<br />

20 11,3 17 13,0 13 76,9 11 91,4 10<br />

25 10,2 27 11,8 6 73,0 12 86,8 7<br />

z – variation coefficient [%]<br />

64


Analyzing the thickness swelling and absorbability <strong>of</strong> the boards after 2 and 24 hrs<br />

soaking in water it can be stated that along with increased content <strong>of</strong> polystyrene in the board,<br />

the parameters decrease. For thickness swelling, the statistically significant decrease, as<br />

compared with the control boards, was noted for the boards with 20% and 25% content <strong>of</strong><br />

polystyrene and amounted to about 26% after 2 hrs and 30% after 24 hrs soaking in water. For<br />

absorbability, all variants were characterized by statistically significant drop <strong>of</strong> the values as<br />

compared with the control boards. It was max. 36% after 2 hrs and 30% after 24 hrs <strong>of</strong><br />

soaking in water for the boards with 25% polystyrene content. The improved hydrophobic<br />

properties results from the fact that the foamed polystyrene, filling the core structure <strong>of</strong> the<br />

board does nor absorb water practically and is not subject to swelling under the influence <strong>of</strong><br />

water. Simultaneously it “blocked” water access to core part <strong>of</strong> the boards.<br />

SUMMARY<br />

On the basis <strong>of</strong> the research carried out it can be generally stated that foamed<br />

polystyrene in a form <strong>of</strong> granules can be used as a filler for manufacturing <strong>of</strong> particleboards<br />

with lowered density. The additive affects increase <strong>of</strong> MOR and decrease in thickness<br />

swelling and absorbability <strong>of</strong> the boards. The research carried out showed that favorable<br />

content <strong>of</strong> polystyrene in core layer <strong>of</strong> the manufactured particle boards amounted to 15%-<br />

20%. The increase in content above 20% affected greater re-deformation tendency in the<br />

boards after pressing, which resulted in decrease in their density. Foamed polystyrene additive<br />

in amount up to 20% will nor affect the IB <strong>of</strong> the boards significantly and will cause MOE<br />

decrease.<br />

REFERENCES<br />

1. CZECHOWSKA J., BORYSIUK P., MAMI�SKI M., JASKÓ�OWSKI W. 2010:<br />

Some properties <strong>of</strong> low-density particleboards filled with pop-corn. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong><br />

<strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong>. Forestry and Wood Technology 70, 52–56<br />

2. CZECHOWSKA J., BORYSIUK P., MAMI�SKI M., BORUSZEWSKI P. 2008:<br />

Low-density particleboards filled with waste PUR foam. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong><br />

<strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>, Forestry and Wood Technology 63, 156–160<br />

3. HIKIERT M. A. 2008: Nowe materia�y drewnopochodne dla meblarstwa i nie tylko,<br />

Meble materia�y i akcesoria, (91), s. 130 –133<br />

4. NIEMZ P. 1993: Physik des Holzes und der Holzwerkst<strong>of</strong>fe. DRW-Verlag.<br />

5. STOSCH M. 2009: Leichtbau – Werkst<strong>of</strong>fe, Technologie, Verarbaitung. BM Bau- und<br />

Möbelschreiner, BM Special, Konradin Verlag, Leinfelden-Echterdingen, Germany.<br />

6. THOEMEN H. 2008: Lightweight panels for the European furniture industry: Some<br />

recent developments, Proceedings <strong>of</strong> Cost E49 Conference: Lightweight wood-based<br />

composites Production, properties and usage, Slovenia, 23 – 25 June, 1–14.<br />

7. WONG E., ZHANG M., WANG Q., KAWAI S. 1999: Formation <strong>of</strong> the density<br />

pr<strong>of</strong>ile and its effects on the properties <strong>of</strong> particleboard, Wood Science and<br />

Technology Vol. 33, 327–340.<br />

65


Streszczenie: Lekkie p�yty wiórowe z dodatkiem spienionego polistyrenu. W ramach pracy<br />

wytworzono p�yty wiórowe o g�sto�ci 500 kg/m3 z wiórów przemys�owych iglastych<br />

zaklejonych klejem mocznikowo – formaldehydowym. Do wiórów przeznaczonych na<br />

warstw� �rodkow� dodano spieniony polistyren w ilo�ci 0%, 5%, 10%, 15%, 20%, 25% w ten<br />

sposób aby zachowa� za�o�on� g�sto�� p�yty. Zbadano wybrane w�a�ciwo�ci fizyczne i<br />

mechaniczne wytworzonych p�yt. Ustalono, �e dodanie spienionego polistyrenu do warstwy<br />

�rodkowej p�yty w ilo�ci 20% zwi�ksza MOR oraz obni�a MOE. Wraz ze wzrostem<br />

zawarto�ci polistyrenu, zmniejsza si� sp�cznienie i nasi�kliwo�� p�yty.<br />

Corresponding author:<br />

Piotr Borysiuk, Joanna Czechowska<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

02-776 <strong>Warsaw</strong>,<br />

159 Nowoursynowska st.,<br />

Poland<br />

e-mail: potr_borysiuk@sggw.pl<br />

e-mail: joanna_czechowska@sggw.pl<br />

Waldemar Jaskó�owski,<br />

The Main School <strong>of</strong> Fire Service,<br />

Department <strong>of</strong> Combustion and Fire Theory,<br />

52/54 S�owackiego St.,<br />

01-629 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: wjaskolowski@sgsp.edu.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 67-69<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

����������� ������-������������ ������� ��������� ������<br />

������� �������<br />

������� ���������� ��������������� ������������� ������������ ����������� � ������������������<br />

������� – ����� �������<br />

Abstract: Features <strong>of</strong> physical and mechanical properties <strong>of</strong> wood knots. In the article are considered features<br />

<strong>of</strong> knots and their influence on physical and mechanical properties. Found that wood density and compression<br />

strength along fibers in wood knots twice the same indicators in the wood <strong>of</strong> a tree trunk.<br />

Keywords: Knots, tracheids, shrinkage, tensile strength<br />

� ��������� ����� ��� ������� ������������ �������� ������������ ������<br />

����������. � ����� ���������� ��������� � ���������, ������� ������ ������������<br />

� ���������� ������������. ����� �� �������� ������� ��������� �������� �����.<br />

��������� � ������������ ������������ ����������� ������������ ����������. �<br />

�������� �������� ����������� �������� �� ���������� � ���������� �����, ������<br />

����� � ������� �������, ������ � ����������. ����� �� ����������� ������������ �<br />

���� �����. ��� ������ ����� ������� ������� ����� ����������� ������ �<br />

����������, �������������� � ������������� ������������. �� ���������� �������<br />

����� ��������� ������� ����������� �������� ������ � �� ������-������������<br />

��������, ������� ������������ �������.<br />

��� �������, ���������� ������������ ����������������� ��������,<br />

������������ ����������� ������, ��������� � ������ ��������� ��� ������ �����<br />

�������.<br />

��� ������������ ���������� � ������������ ������� ��������� ������ ����<br />

����������� ������� ����� �������� 10�10�� �� ���������� � ������ ��� ������.<br />

��� ��������� ��������������� �������� ������� �� ������� ���� � ����<br />

���������� ������ �� 100��, ��� ���� ���� �������������, ����� � ������� �������<br />

� ������ �������� �������� ����, ���������� � ���� ���.<br />

���������������� ������������ �������� ��������� ������ ���� ���������<br />

�.�. �������� [1] � ��������, ��� �������� ������ ���� ���� ����� ����� �����<br />

������� ������ �� ��������� � ���������� ���� ������. �������� ����� � ����������<br />

������� ������������ � �������� � �� �������� ����� ��������� � ������ � �������<br />

����� ����. � ������� ���� ������ � ������ ���� ������� �������� ����������<br />

�������, � � ������� – ��������������. �������� ���� ����� ����� � ��� ���� ������,<br />

��� �������� ������.<br />

���������� ����������������� ������ �� ������������ �������� ������ �<br />

���������� ����������� ��������, ��� ������ � ���������� � ������ ���� ��������<br />

����� ����������� ��������� � �������������� ����� ������ ��������� ������<br />

(����.1). � �������������� ����������� ������ � ������ � ��������� ������<br />

��������� ���������� � ������� ����, ��� ������������� ������������ ������ [2].<br />

���� �� ���������� ���� �������� ����� �����, �� �����, ��� ����������� ��������<br />

������ � ���������� ���� ���� � ����������� ����� ������ ��������� ������. �<br />

������ ���� ����������� �������� ������ ����������� ���������� �� ������ �<br />

���������� ���� � �� ������ ��������� ������. ����� �������� ������� � �������<br />

�������� ������� � ���������� ��� � ��������� ������ ������ �������� ���������.<br />

67


������� 1. ���������� ������������ ��������� ���������� ������� ��������� ������ � �������<br />

���� �������� �����<br />

�����:<br />

����������<br />

����������� ��������<br />

������:<br />

���������� ������<br />

������� ��<br />

���������<br />

�����<br />

���������<br />

������<br />

� ���������� ����������� 0,16 0,14 0,15 0,16<br />

� ��������������<br />

�����������<br />

0,26 0,18 0,22 0,28<br />

����������� ��������<br />

������<br />

��������� ���������, �/��<br />

0,480 0,38 0,43 0,50<br />

3 :<br />

� ��������� �����<br />

���������<br />

0,774 0,930 0,852 0,417<br />

��� ��������� 12% 0,880 1,044 0,961 0,474<br />

����������� �������� ������ � ���������� ���� �������� ����� �����<br />

����������� ����� �������� ������ ��������� ������.<br />

��������� ��������� ������ ����������� � ��� ���� ��������� ���������<br />

��������� ������. ��� ������� � ����������� ������������ �������� � �������<br />

������, � ��� ����� ������ �� ����������� ������������� ���������� �� ����������<br />

������. ��� ����������� �������� ������� � �������� �� ������ ������������<br />

�������� [1]. ���� �����������, ��� ������������� ���������� ������ ���������<br />

���������� � ������ ��� ����� ����� ������, � ���������� ������� ��� ������ �<br />

��������� � ���������������� ������ ����� ������ (���� 2).<br />

������� 2. ������������� ������ ���������� ��������� ������ � ������ (%)<br />

���� ����� ���� ������<br />

���� ����:<br />

���������� ������ ������ �������<br />

56,8 31,4 46,2 28,4 76,9 20,0<br />

���� ��������� ������ ������ � ������� ������ �������� ����� ������ �<br />

��������� ������, ����� �������, ��� ���������� ��������� ������ � ��� ���� ������,<br />

��� � ��������� ������, ��� � ��������� ������� ��������� ��������� ������ [1].<br />

��� ������������ ������������ ������� ���� ��������� ��������� �� ������<br />

����� �������. ������� ���� �������� �� ��������� ������ �5 ��� �������� 1000��.<br />

���� ����� �� 30 �������� �� ���������� � ������ ���� ������ � 60 ��������� ������.<br />

��������� ������������ �������� ���������� 12%. ��� ��������� ���������������<br />

������� ������ �������� ������� �� ������� ������������ ����� � �����������<br />

������������� �������� �� ������ � ������� ���������� � ������ ���.<br />

����������� �������������� ��������� ����������� ������������ ��������, ���<br />

���������� �� �������� ��������������� ��������� � ���������� ��������.<br />

���������� �������� ��������� ������ �������������� �������, ��� �������<br />

� ������� ���������. � �������� ��������� ������ ����� ����������� ������ ������.<br />

��������, ������ ��������� ��� ������ ����� ������� � ��������� ������ �������� �<br />

��� ���� ����, ��� � ��������� ������.<br />

68


������� 3. ���������� ��������� ������� ��������� ��� ������ ����� �������<br />

�������<br />

M<br />

���<br />

�,% �, %<br />

��������� ������<br />

��������� �����:<br />

29,1 1,1 100<br />

���������� ���� 48,3 0,8 166<br />

������ ���� 55,5 1,0 191<br />

������� 52,1 0,0 179<br />

�������� ���������� ���������� � ������������ ������� ��������� ������ �<br />

������ �����������, ��� ������� ���������� � ���� ������� ��������� � ��������<br />

�����, ���������� � ������� ������ ������� � ������������� ���������� . ����<br />

������� ��������� � ���������� ���� ������ � ��� ���� ����, ��� � ��� �� �����<br />

������. ������������� ����������, ������� �������� ������ ����������� �������� �<br />

������������� �������� ���������� � ������������ �������� ���������, �������<br />

���� ����� ����� � ������� ���� ������ � ��������� � ������ ����� ����� ������, �<br />

���������� ������� ��� ����� � ������� �� 10% ������ ���������� ����� ������.<br />

������������ �������� ������ � ���������� � �������������� ������������<br />

���������� ���� ����� ����� ��������� � �������������� ������ ���� ������.<br />

������ ������ ���� ����� ����� � ���������� ����������� � ��������<br />

��������� ���������� �� ������ ����� ������. ����������� ������ � ��������������<br />

����������� � ����������� �������� ������ ����������� ������ �������������<br />

������ ����� ������, ��� ����������� ������� �������� ������� � ��������� ������<br />

�������.<br />

�������� ������� ������������� ���������� ��������� ������, ��������� ��<br />

��������� � ������ ��������� ��� ������ ����� ������� � ��� ���� ������ ����<br />

����������� ��� ��������� ������.<br />

��������� ���������� ���� ����� ��� ������ ������� ������� � ����������<br />

����������� ����� ���������� �������� ��������� ������� ���������.<br />

���������� ������ � ���������� ����� �������������� � «����������»<br />

���������.<br />

REFERENCES:<br />

1.�������� �.�. 1969: ������-������������ �������� ��������� ������ �����.<br />

�������� ������ ������� ��������� «������ ������», �1, c.93-96.<br />

2. ������ �. �. 2001: ���������������� � �������� ������� �������������. �������<br />

��� ��������������� �����. �.: ���-�� ����. 340 �.<br />

3.�������� �.�. 1960: ������ �� �������� �������� ������� �����, ���.- ������� �����<br />

����������� ��������������������� ��������, �.XVI, �.151-158.<br />

Streszczenie: Fizyczne i mechaniczne w�a�ciwo�ci s�ków. Artyku� przedstawia w�asno�ci<br />

s�ków i ich wp�yw na fizyczne i mechaniczne w�asno�ci drewna. Wykazano �e g�sto�� oraz<br />

wytrzyma�o�� na �ciskanie s�ków wzd�u� w�ókien jest dwukrotnie wy�sza ni� drewna w<br />

pniu.<br />

Corresponding author:<br />

Natalia Byiskih<br />

Department od Wood Processing<br />

National <strong>University</strong> <strong>of</strong> <strong>Life</strong> and Environmental <strong>Sciences</strong> <strong>of</strong> Ukraine,<br />

Kyiv,vul.Geroiv Oborony 15,03041, Ukraine<br />

OPinchewska@gmail.com


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 70-74<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Methods <strong>of</strong> determining cutting forces during woodcutting<br />

D. CHUCHALA 1 , K. MISZKIEL 2 , K.A. ORLOWSKI 3<br />

1 Radmor S.A. - Zak�ad Mechaniczny , ul. Hutnicza 3, 81-212 Gdynia<br />

2 JS Fabryka Przek�adni Spó�ka z o.o., ul. Grodzka 147, Bierkowo, 76-200 S�upsk<br />

3 Gdansk <strong>University</strong> <strong>of</strong> Technology, Faculty <strong>of</strong> Mechanical Engineering, Department <strong>of</strong> Manufacturing<br />

Engineering and Automation, Narutowicza 11/12, 80-233 Gdansk, Poland<br />

Abstract: Methods <strong>of</strong> determining cutting forces during woodcutting. In this paper basic methods <strong>of</strong><br />

determining the woodcutting forces, which underwent modification with the progress resulting from research <strong>of</strong><br />

the process are presented. The methods were divided into two groups: the classic approach and an innovative<br />

approach using fracture mechanics, which take into account the different properties which affect the cutting<br />

process. The classic method based on the specific cutting resistance and also a new approach which bases on<br />

modern fracture mechanics, in which the effect <strong>of</strong> fracture toughness <strong>of</strong> the machined material is taken into<br />

account, are characterised.<br />

Keywords: wood, cutting force, specific cutting resistance, toughness fracture<br />

INTRODUCTION<br />

The methods <strong>of</strong> woodworking by cutting undergoes changes within the space <strong>of</strong> years.<br />

The modifications enclose also the tools. This development is caused by intention to restrict<br />

waste <strong>of</strong> raw material, loss <strong>of</strong> energy and increase accuracy <strong>of</strong> dimension [1 Orlowski]. The<br />

continuous development <strong>of</strong> woodcutting’s technologies is accompanying by the new more<br />

adequate to actual conditions methods <strong>of</strong> cutting forces determining. The almost all <strong>of</strong> them<br />

are based on specific cutting resistance kc [MPa]. Some, as this presented by Orlicz (1988),<br />

was elaborated a few decades ago, but in some cases are the best choice. The others, more<br />

high-tech are based on contemporary fracture mechanic, which includes specific work <strong>of</strong><br />

surface formation R [J/m 2 ] [3 Atkins]. Orlowski (2003) suggested some modification to the<br />

method <strong>of</strong> determining <strong>of</strong> the specific cutting resistance formulated by Orlicz (1988) and<br />

proposed instead <strong>of</strong> the classical cutting resistance a new coefficient called a surface-friction<br />

cutting resistance. It is especially useful for determination <strong>of</strong> cutting forces and cutting power<br />

consumption during woodcutting with narrow kerf saws.<br />

Nomenclature<br />

AD cross- sectional area <strong>of</strong> the cut [mm 2 ]<br />

FC cutting force, parallel to the cut surface [N]<br />

FV<br />

FS<br />

thrust force (passive), do FC [N]<br />

shear force, [N]<br />

St kerf (overall set, width <strong>of</strong> cut) [mm or m]<br />

R fracture toughness, specific work <strong>of</strong> fracture [J/m 2 ]<br />

Q friction factor [-]<br />

cr coefficient taking into account a kind <strong>of</strong> wood [-]<br />

cw coefficient taking into account a moisture content <strong>of</strong> wood [-]<br />

c� coefficient taking into account a cutting angle [-]<br />

cg coefficient taking into account a chip thickness [-]<br />

cs coefficient taking into account a dulling <strong>of</strong> the tool [-]<br />

ct coefficient taking into account a wood temperature [-]<br />

cv coefficient taking into account a machining velocity [-]<br />

ck coefficient taking into account a dimensions and a shape <strong>of</strong> cutting edge [-]<br />

cn coefficient taking into account a pressure on wood in front <strong>of</strong> a cutting tool [-]<br />

cf coefficient taking into account a wood-cutting edge friction effect [-]<br />

feed per tooth (uncut chip thickness, depth <strong>of</strong> cut) [mm]<br />

fz<br />

70


kc specific surface cutting resistance [MPa]<br />

k� basic value <strong>of</strong> specific surface cutting resistance taking into account a positions <strong>of</strong> machining with<br />

reference to grain direction [MPa]<br />

to uncut chip thickness (depth <strong>of</strong> cut) [mm]<br />

�c orientation <strong>of</strong> primary shear plane with respect to cut surface [ o ]<br />

�� friction angle given by tan -1 � = ��, [rad]<br />

� shear strain along primary shear plane [-]<br />

�f tool rake angle (measured form the normal to the cut surface) [ o ] or [rad]<br />

� coefficient <strong>of</strong> Coulomb friction on rake face <strong>of</strong> tool [-]<br />

�y shear yield stress along primary shear plane [Pa]<br />

�r directional angle <strong>of</strong> a work movement [°]<br />

�k directional angle <strong>of</strong> a cutting edge [°]<br />

directional angle <strong>of</strong> a chip thickness [°]<br />

�k<br />

CLASSICAL APPROACH<br />

The forces during woodcutting are usually determined in a function <strong>of</strong> specific surface<br />

cutting resistance. One <strong>of</strong> the method <strong>of</strong> evaluating is based on its experimental values<br />

determined in defined conditions <strong>of</strong> both the flank surface and the rake during machining with<br />

elementary cutting tool and the corrective factors taking deviation from the basic conditions<br />

into consideration.<br />

k c cr<br />

�c<br />

w �c<br />

� �c<br />

g �c<br />

s �c<br />

t �c<br />

v �c<br />

k �c<br />

n �c<br />

f<br />

� � k<br />

(1)<br />

This method was diffused by Manžos and Orlicz [2 Orlicz]. The literature announces the<br />

values <strong>of</strong> specific surface cutting resistances for three main directions (fig. 1): transversal k � ,<br />

longitudinal � k and perpendicular k � .<br />

Fig. 1. The main directions <strong>of</strong> cutting edge (a) and the directional angles defined its position (b) [2 Orlicz].<br />

In order to determine the value <strong>of</strong> specific surface machining resistance in any direction<br />

<strong>of</strong> cutting edge it is necessary to use the equation [2 Orlicz]:<br />

k�=k ·cos 2 �r+ k ·cos 2 �k + k ·cos 2 �g<br />

The cutting force per one saw’s cutting edge is determined as:<br />

71<br />

�<br />

(2)


F � k � A<br />

(3)<br />

c<br />

The presented method is fully tabled and was successfully applied by Gorski (2001), who<br />

studied the woodcutting process with the chain electric saw.<br />

The way to determine cutting forces elaborated by Orlicz (1988) takes into consideration<br />

only phenomena on the primary cutting edge. However, during woodcutting also seconadary<br />

cutting edges take part in the process, what is especially noticeable during machining by using<br />

thin saws. The preliminary researches carried out by Orlowski (2003) recommended taking in<br />

this case the new model <strong>of</strong> specific cutting resistance, so-called surface-friction cutting<br />

resistance. The specific surface cutting resistance on the primary cutting edge kcS and the<br />

specific surface cutting resistance on the secondary cutting edges 2k'cS’ are its components.<br />

They are closely connected with the length <strong>of</strong> the cutting edge, so a relationship on specific<br />

surface-friction machining resistance has the form:<br />

c<br />

72<br />

D<br />

k �<br />

'<br />

"<br />

c�<br />

� k cS � S t � 2k<br />

cS ' f z<br />

(4)<br />

Presented in Eq. (4) specific resistances per the unit length <strong>of</strong> the primary cutting edge (k'cS)<br />

and the secondary cutting edge (k”cS’) are engaged in sawing process in defined changeability<br />

range <strong>of</strong> analyzed factors [1 Orlowski].<br />

AN APPROACH WITH FRACTURE TOUGHNESS APPLICATION<br />

Many years <strong>of</strong> experimental research in cutting both wood and other materials carried out<br />

by Atkins'a (2003, 2005, 2009), gave a rise to the conclusion that the forces occurring in the<br />

process <strong>of</strong> cutting depend not only on the blade geometry and basic material properties, but at<br />

a large extent on the processes related to fracture mechanics. Fracture toughness R [J/m2] is<br />

a property which represents the fracture mechanics in this approach [3, 6 Atkins]. Fracture<br />

toughness is also known as - the energy needed to produce a unit crack surface during cutting<br />

(the critical energy release rate) [7 Ashby and Jones].<br />

Fig. 2 Simplified geometric model <strong>of</strong> the cutting zone (Atkins, 2009).<br />

Atkins (2003) using the original equation <strong>of</strong> Ernst-Merchant (describing the angle <strong>of</strong><br />

shear), based on the results <strong>of</strong> their research, and additionally assuming a rectangular<br />

arrangement <strong>of</strong> the cutting tool (fig. 2) developed an equation <strong>of</strong> forces acting in the cutting<br />

process [3, 5, 6 Atkins]. The usefulness <strong>of</strong> this new model in the application to narrow-kerf<br />

saw blades in the case <strong>of</strong> wood sawing was studied by Orlowski and Atkins (2007). Cutting<br />

force can be in this approach described as follows:


� y ��<br />

� S t �t<br />

0 R � S t<br />

F c�<br />

�<br />

Q Q<br />

where Q is the correction factor <strong>of</strong> friction conditions, described by the relationship:<br />

And � - shear strain along the shear plane, is:<br />

� � � �� �<br />

� sin � � �sin<br />

� c �<br />

Q � �1<br />

�<br />

(6)<br />

��<br />

cos � � � � f �cos<br />

� c � � f �<br />

cos � f<br />

� �<br />

(7)<br />

cos<br />

��c��f��sin � c<br />

And eventually �c is the angle <strong>of</strong> shear plane with respect to cut surface, which could be<br />

determined in the simplified approach with the Ernst-Merchant equation:<br />

� � � 1<br />

� c � � � � �<br />

� 4 � 2<br />

73<br />

���� However, in fact �c is a complex function in which also raw material properties such as<br />

fracture toughness R and shear yield stress along primary shear plane �y are involved [3, 6<br />

Atkins], and may be calculated only numerically [9 Orlowski and Ochrymiuk].<br />

CONCLUSIONS<br />

The methods for determining the cutting forces presented in this paper have shown the<br />

gradual development <strong>of</strong> this issue. Nevertheless up till now a classical approach to<br />

determining cutting forces is still the most popular method. On the other hand, both Orlowski<br />

(2003) and Atkins (2003) by developing their models based on the results <strong>of</strong> experimental<br />

studies, developed the basic relationships, by widening the group <strong>of</strong> properties having<br />

a significant impact upon the process <strong>of</strong> cutting force estimation, in the case <strong>of</strong> Atkins also to<br />

other machining processes. The new models are not as popular as the classic ones, but with<br />

the emerging research findings further confirming its validity, could be an effective tool to<br />

determine the energetic effects <strong>of</strong> the wood cutting process.<br />

REFERENCES<br />

[1] ORLOWSKI K., Materia�ooszcz�dne i dok�adne przecinanie drewna pi�ami, Monografie-<br />

Politechnika Gda�ska 40, Wydawnictwo PG, Gda�sk, 2003.<br />

[2] ORLICZ T., Obróbka drewna narz�dziami tn�cymi, wyd. VI, Skrypt <strong>SGGW</strong>-AR,<br />

Warszawa, 1988.<br />

[3] ATKINS, A.G., Modelling metal cutting using modern ductile fracture mechanics:<br />

quantitative explanations for some longstanding problems. International Journal<br />

<strong>of</strong> Mechanical <strong>Sciences</strong>, 45(2003): 373-396.<br />

[4] GÓRSKI J., Proces ci�cia drewna elektryczn� pilark� �a�cuchow�, Rozprawy naukowe<br />

i monografie, Wydawnictwo <strong>SGGW</strong>, Warszawa, 1988.<br />

[5] ATKINS, A.G., Toughness and cutting: a new way <strong>of</strong> simultaneously determining ductile<br />

fracture toughness and strength. Engineering Fracture Mechanics, 72(2005):849-860.<br />

� �<br />

f<br />

(5)<br />

(8)


[6] ATKINS, T., The Science and engineering <strong>of</strong> cutting. The mechanics and processes <strong>of</strong><br />

separating, scratching and puncturing biomaterials, metals and non-metals, Butterworth-<br />

Heinemann is an imprint <strong>of</strong> Elsevier, Oxford, UK, 2009.<br />

[7] ASHBY M.F., JONES D.R.H., Materia�y in�ynierskie. W�asno�ci i zastosowanie 1<br />

(Engineering materials. Properties and applications 1), Wydawnictwo Naukowo-Techniczne,<br />

Warszawa, 1995.<br />

[8] OR�OWSKI, K.A., ATKINS, A.G., Determination <strong>of</strong> the cutting power <strong>of</strong> the sawing<br />

process using both preliminary sawing data and modern fracture mechanics, Proceedings <strong>of</strong><br />

third international symposium on wood machining. Lausanne (Switzerland) 21-23 May 2007:<br />

39-42<br />

[9] ORLOWSKI, K.A., OCHRYMIUK T., The prediction method <strong>of</strong> the shear angle in the<br />

cutting zone during wood sawing. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: (Ann. WULS-<strong>SGGW</strong>, For and Wood Technol.<br />

71, 2010) (in press)<br />

Streszczenie: Sposoby okre�lania si� przy przecinaniu drewna. W artykule przedstawiono<br />

podstawowe metody okre�lania si� przy przecinaniu drewna, które ulega�y modyfikacjom<br />

wraz z post�pem wynikaj�cym z bada� nad tym procesem. Przedstawione metody<br />

podzielono na dwie grupy: podej�cie klasyczne oraz nowatorskie podej�cie z zastosowaniem<br />

mechaniki p�kania, które uwzgl�dniaj� ró�ne w�asno�ci maj�ce wp�yw na proces przecinania.<br />

Podej�cie klasyczne reprezentuj� metody opieraj�ce si� na w�a�ciwym powierzchniowym<br />

oporze skrawania, podczas gdy w nowym uj�ciu opartym na mechanice p�kania uwzgl�dnia<br />

si� wp�yw wi�zko�ci materia�u obrabianego.<br />

Corresponding author:<br />

Gdansk <strong>University</strong> <strong>of</strong> Technology, Faculty <strong>of</strong> Mechanical Engineering, Department <strong>of</strong> Manufacturing<br />

Engineering and Automation, Narutowicza 11/12, 80-233 Gdansk, Poland<br />

E-mail address: korlowsk@pg.gda.pl (Kazimierz Orlowski)


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 75-78<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

The role <strong>of</strong> lighting in vision systems<br />

MARIUSZ CYRANKOWSKI, BOGUS�AW BAJKOWSKI<br />

Department <strong>of</strong> Mechanical Woodworking , <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Abstract: „The Role <strong>of</strong> Lighting in Vision Systems”. The article discusses matters related to lighting as part <strong>of</strong><br />

vision systems both in terms <strong>of</strong> the importance <strong>of</strong> lighting for the accuracy <strong>of</strong> visual inspection and in terms <strong>of</strong><br />

various technical solutions.<br />

Keywords: vision systems, lighting, wood.<br />

INTRODUCTION<br />

The selection <strong>of</strong> a component lighting array is very important for the quality <strong>of</strong> image<br />

recorded by the camera. The choice <strong>of</strong> illuminators should address factors such as object<br />

geometry, surface structure, or the unique features <strong>of</strong> the whole array. There are many<br />

illuminator models, such as toroidal LED arrays (Fig. 1) or rectangular LED matrices.<br />

Camera<br />

Target<br />

Toroidal<br />

illuminator<br />

Fig. 1: Toroidal LED illuminator<br />

Source: www.automatyka2b.pl<br />

Dome-shaped illuminators (Fig. 2) are recommended for convex and glossy objects.<br />

Camera<br />

Target<br />

Domical<br />

illuminator<br />

Fig. 2: Domical illuminators provide diffused lighting with reduced glare<br />

Source: www.automatyka2b.pl<br />

75


Today, LEDs are the most common light source for vision systems. LEDs can be configured<br />

in various arrays and operated in either continuous or stroboscopic mode. Another popular<br />

light source are laser line generators. These are helpful in dimensioning products. Visual<br />

inspection systems use various object lighting techniques apart from different light sources.<br />

BASIC CLASSIFICATION OF ILLUMINATORS<br />

The basic classification <strong>of</strong> illuminators is performed using a solid angle that defines the<br />

surface <strong>of</strong> a sphere that transmitted light. Depending on the size <strong>of</strong> the solid angle, lighting<br />

can be either focused (small angle) or diffused (large angle).<br />

Focused (spot) lighting (point-like lighting) is easy to provide as illuminators are typically<br />

compact and can be placed near the target. LEDs or waveguide outputs can be used as the<br />

light source(s). These produce strong light. Spot lighting provides sharp images and highlights<br />

all unique surface features.<br />

Diffused lighting is, by definition, cast at a large solid angle around the target. Fluorescent<br />

tubes or linear LED arrays are the examples <strong>of</strong> such illuminators. (A diffuser placed in front<br />

<strong>of</strong> a spot light can be used as an alternative.) The benefit <strong>of</strong> such illuminators is that they<br />

provide good glare-free visibility <strong>of</strong> reflective surfaces.<br />

LIGHT AND DARK FIELD LIGHTING<br />

The light field lighting method consists in casting light on the target surface at a certain angle<br />

(Fig. 3). Most vision systems use this simple lighting configuration.<br />

Target<br />

Camera<br />

and lens<br />

Backlight<br />

Collinear light<br />

Light field<br />

Dark field<br />

Fig. 3: Various lighting techniques<br />

Source: www.automatyka2b.pl<br />

Collinear lighting that requires an additional beam divider (Fig. 4) is a variation <strong>of</strong> this<br />

technique. Light rays reflected from the divider are cast on the whole target surface at<br />

approximately right angle.<br />

76


Camera<br />

Target<br />

Beam divider<br />

Light<br />

source<br />

Diffuser<br />

Fig. 4: Collinear illuminator<br />

Source: www.automatyka2b.pl<br />

The other technique, so-called “dark field lighting”, casts light from the side <strong>of</strong>, and in<br />

parallel to, the target surface. This method reveals the texture, including contamination,<br />

scratches and other imperfections. In practice, this effect can be achieved by placing an<br />

annular array <strong>of</strong> LEDs around and almost flush with the target (Fig. 5).<br />

Camera<br />

Small<br />

angle <strong>of</strong><br />

incidence<br />

Dark field<br />

illuminator<br />

Target<br />

Fig. 5: A Nerlite Dark-Field illuminator consists <strong>of</strong> a line <strong>of</strong> LEDs placed at a 70° or 90° angle relative to the<br />

surface-perpendicular axis<br />

Source: www.automatyka2b.pl<br />

Backlighting the target is the third technique (Fig. 6). It is used in two cases: for candling<br />

transparent and translucent items and for tracing the contours <strong>of</strong> opaque objects.<br />

Camera<br />

Backlight<br />

Target<br />

Fig. 6: Object backlighting<br />

Source: www.automatyka2b.pl<br />

77


However, the latter use is more frequent. The resulting image, binary and two-dimensional, is<br />

relatively easy to process.<br />

SUMMARY<br />

Lighting plays a fundamental role in any vision system as it is the light that makes the most <strong>of</strong><br />

the quality <strong>of</strong> the camera-recorded image. The machine vision system cannot do without a<br />

light source. Light, whether natural or artificial, “makes the world visible” both to our eyes<br />

and to the cameras <strong>of</strong> a visual monitoring system.<br />

Any visual monitoring system depends on the quality <strong>of</strong> its monitoring devices and, on the<br />

other hand, evenness and intensity <strong>of</strong> lighting <strong>of</strong> the target. Lighting is critical to not only the<br />

quality <strong>of</strong> the image but also the very ability <strong>of</strong> an industrial camera to capture the target.<br />

REFERENCES<br />

1. DZBE�SKI W., 1984: Nieniszcz�ce badania mechanicznych w�a�ciwo�ci iglastej tarcicy<br />

konstrukcyjnej wybranymi metodami statycznymi i dynamicznymi. Wyd. <strong>SGGW</strong>-AR,<br />

Warszawa<br />

2. FORINTEK CANADA CORP.,2005: An Evaluation <strong>of</strong> the Detection Capacity <strong>of</strong><br />

Automated Defect Detection Systems, nr 3,<br />

3. GRÖNLUND U., 1995: Quality improvements in forest products industry. Dissertation.<br />

Luleå <strong>University</strong> <strong>of</strong> Technology. Sweden<br />

4. LYCKEN A., 2006: Appearance Grading <strong>of</strong> Sawn Timber, http://www.ltu.se/ske<br />

5. NYSTRÖM J., 2003: Automatic measurement <strong>of</strong> fiber orientation in s<strong>of</strong>twoods by using<br />

the tracheid effect, Computers and Electronics in Agriculture, Volume 41, Issues 1-3,<br />

December, 91-99<br />

6. �NSALAM C., et al.: Defect inspection <strong>of</strong> wood surfaces,<br />

vpa.sabanciuniv.edu/modules/aytulercil/rrDIWS.pdf<br />

7. WYK L., TURNER J., 2003: Evaluation <strong>of</strong> defect scanners for chop saws, Sawmilling, nr<br />

7<br />

Streszczenie: The Role <strong>of</strong> Lighting in Vision Systems. W artykule przedstawiono zagadnienia<br />

zwi�zane z o�wietleniem w systemach wizyjnych, zarówno od strony jego znaczenia dla<br />

poprawno�ci inspekcji wizyjnej, jak i od strony jego ró�nych rozwi�za� technicznych.<br />

Corresponding author:<br />

Bogus�aw Bajkowski, Mariusz Cyrankowski<br />

Wood Mechanical Processing Department ,<br />

Wood Industry Mechanisation and Automation Institute ,<br />

e-mail: boguslaw_bajkowski@sggw.pl<br />

e-mail: mariusz_cyrankowski@sggw.pl<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

02-776 <strong>Warsaw</strong> ,<br />

Nowoursynowska 159<br />

Poland


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 79-82<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Advanced quality control methods for wood<br />

MARIUSZ CYRANKOWSKI, HUBERT WROTEK<br />

Department <strong>of</strong> Mechanical Woodworking , <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Abstract: „Advanced Quality Control Methods for Wood”. The work discusses selected wood and wood-base<br />

material quality evaluation methods. It presents and explains flaw detection methods and selected methods for<br />

measuring physical quantities <strong>of</strong> wood materials used for contactless detection <strong>of</strong> wood faults. Further, the paper<br />

elaborates on possible future developments in wood quality control methods.<br />

Keywords: nondestructive testing, flaw detection, wood.<br />

INTRODUCTION<br />

Recent developments in industry mechanization and automation created a demand for<br />

implementing automated wood quality control (QC) processes in place <strong>of</strong> the conventional<br />

random tests. The physical properties <strong>of</strong> wood subject to testing include moisture content,<br />

color, gloss, density, hardness and wood structure. Typically, nondestructive contact or<br />

contactless methods are used for automated wood QC (determination <strong>of</strong> physical properties)<br />

in industrial settings.<br />

Contact methods: Measuring sensors/gauges touch the target (e.g., for the measurement <strong>of</strong><br />

moisture content based on wood resistivity or capacitance).<br />

Contactless methods: Tests can be performed continuously and in-line (e.g., moisture content<br />

measurement with microwaves or detection <strong>of</strong> metal splinters).<br />

The latter are preferred and, in fact, most popular, as the process is noninvasive and<br />

performed in-line. These methods will be improved and developed with the best wood QC<br />

performance in mind.<br />

SELECTED METHODS OF ADVANCED WOOD QUALITY CONTROL<br />

Flaw detection and selected microwave technologies are used for determining physical<br />

properties and detecting faults:<br />

� Microwave metrology using 3-30 GHz microwaves<br />

Microwave technologies play an important role in moisture monitoring applications where<br />

contact methods are unsuitable. Microwave hygrometers use 3-30 GHz frequencies. This<br />

technology enables noninvasive moisture content monitoring in real time, which provides real<br />

benefits in monitoring production processes.<br />

The method measures the electromagnetic wave phase shift and wave attenuation in wood<br />

that depend on electric permittivity <strong>of</strong> the material consisting <strong>of</strong> dry mass and water.<br />

Comparing the results enables the determination <strong>of</strong> the total quantity <strong>of</strong> water and, thus,<br />

moisture content.<br />

Another moisture content measuring method is based on resonance frequency registration.<br />

The change <strong>of</strong> frequency and resonator quality factor are the indicators.<br />

� Radiological flaw detection – detection <strong>of</strong> internal wood flaws by means <strong>of</strong> X- or<br />

gamma-rays passing through the tested material<br />

These methods use ionizing radiation, the absorption <strong>of</strong> which by the material depends on the<br />

type, density and faults <strong>of</strong> the material and sample thickness. Typically, the methods detect<br />

internal flaws in intermediate and finished wood products with thickness up to 300 mm.<br />

Flaws can be detected due to structural differences <strong>of</strong> wood, which significantly affects X-ray<br />

absorbability. Cracks or larval galleries (voids) absorb less radiation and appear lighter while<br />

knots and metallic objects absorb more radiation that the surrounding normal layers and<br />

appear darker. Darker and lighter areas are visible on the image recorded on a photographic or<br />

79


luminescent plate, which reflect the type and location <strong>of</strong> various flaws and structural<br />

differences.<br />

� Infrared (IR) flaw detection – application <strong>of</strong> IR and thermometric paint<br />

Methods using infrared radiation are useful in detecting structural flaws in thin solid wood or<br />

gluing flaws in laminated wood. Infrared radiation undetectable to the human eye emitted by<br />

heated objects within the 0.74-2000 micrometer wavelength range is absorbed by up to 6 mm<br />

thick wood layers.<br />

The limited depth <strong>of</strong> IR penetration is the disadvantage <strong>of</strong> the method.<br />

The sample is placed between an IR radiator and a receiver. Wood absorbs a part <strong>of</strong> IR<br />

radiation and the remaining part penetrates to the receiver (typically a complex registration<br />

system). Again, the image contains lighter and darker spots reflecting heterogeneous wood<br />

structure. IR flaw detectors are used for automatic detecting cracks and porosities and for<br />

controlling veneer laying and cutting processes. Samples <strong>of</strong> laminated wood (e.g., plywood)<br />

may be covered with thermometric paints (the color <strong>of</strong> which responds to temperature<br />

changes) to facilitate quality control.<br />

� Sonic flaw detection based on propagation <strong>of</strong> elastic longitudinal and transverse 20-<br />

500 kHz sound waves in wood<br />

Sonic methods include the measurement <strong>of</strong> propagation <strong>of</strong> 16 Hz to 20 kHz sound waves in<br />

wood that depends on elastic properties <strong>of</strong> the medium. The characteristics <strong>of</strong> sound<br />

propagation can reveal flaws in structural elements. Typical sonic flaw detection methods are<br />

based on wave attenuation or propagation speed measurements.<br />

� Ultrasonic flaw detection using 20-500 kHz longitudinal waves<br />

Ultrasounds are sound waves with frequency larger than 20 kHz. Although the equipment is<br />

much more “capable”, only ultrasounds with frequency below 1 MHz (typically within the<br />

20-200 kHz range) are used for wood and wood-base materials and raw materials or<br />

intermediate products. For higher frequencies, the effect <strong>of</strong> wave dissipation (caused by<br />

partial reflections from tracheids or fibers) is too strong. The higher the frequency, the<br />

stronger is the effect, so attenuation in the material – and the acceptable distance between the<br />

transmitter and receiver – decreases. This means higher ultrasound range is unsuitable for<br />

testing large or long wooden components.<br />

We distinguish three basic types <strong>of</strong> ultrasonic tests: the echo, transmission and resonance<br />

methods.<br />

� Optical flaw detection used for detecting surface faults using photoelectric or<br />

photoluminescent measuring devices<br />

Optical flaw detectors – consisting <strong>of</strong> optoelectronic devices such as cathode-ray<br />

oscilloscopes, photomultipliers, lasers, etc. – use photoconductivity and photoluminescence <strong>of</strong><br />

wood.<br />

The beam <strong>of</strong> coherent light reflected from the sample interferes with the reference beam (e.g.,<br />

on the photographic film plane). This interference produces an image consisting <strong>of</strong> apparently<br />

random holographic combination <strong>of</strong> diffraction lines and rings. The image is registered on the<br />

film. Once the hologram is lighted with coherent reproducing light cast from the same<br />

direction as the reference beam, light becomes diffracted and the waves produce a 3-D image.<br />

This holographic method is used in wood industry for testing materials and components <strong>of</strong><br />

structures, such as vibrating parts <strong>of</strong> resonance boxes <strong>of</strong> musical instruments, or for detecting<br />

internal wood flaws.<br />

� Optical/Visual Methods<br />

Recent optical developments include a few alternative methods for contactless testing the<br />

strength <strong>of</strong> planks. The existing automatic sawn timber evaluators combine multiple visual<br />

technologies. Devices are used that for optic measurement <strong>of</strong> sawn wood vibration for<br />

80


evaluation <strong>of</strong> rigidity. However, after examining flaw defection effectiveness <strong>of</strong> these<br />

systems, their performance failed to live up to expectations.<br />

The most promising sawn wood testing method is based on the so-called “tracheid effect”.<br />

Wood fibers operate as optical waveguides. When a beam <strong>of</strong> laser light is cast on wood<br />

surface, part <strong>of</strong> the light is reflected directly from the surface and the rest penetrates to the<br />

outermost layers <strong>of</strong> the surface and is dissipated in the material.<br />

The attenuation <strong>of</strong> the transmitted part <strong>of</strong> light propagating in wood via cell walls is stronger<br />

than the attenuation <strong>of</strong> light passing through cell lumens. Transmitted light propagated<br />

through the outermost layers <strong>of</strong> the surface <strong>of</strong> wood will finally emerge from the surface in<br />

the area surrounding the laser beam spot. This returned light forms an elliptical spot on the<br />

surface. The longer axis <strong>of</strong> the ellipse is oriented fiberwise. For a laser beam diameter smaller<br />

than 1 mm the ellipse can be approx. 10 mm long fiberwise. This phenomenon was called<br />

“tracheid effect” because it was first observed for tracheids <strong>of</strong> coniferous wood.<br />

Dissipated laser light reflected along individual wood fibers produces an image <strong>of</strong> tracheids.<br />

The tracheid effect can be used for detecting various wood flaws, such as healthy knots,<br />

decay, compression wood or bark. Such flaws have the structure <strong>of</strong> cells that reduce light<br />

transmittance or, for healthy knots, have different orientation. The image reflects the structure<br />

<strong>of</strong> cells that reduce light transmittance or, for healthy knots, cells with different orientation.<br />

SUMMARY<br />

Concluding from the foregoing overview <strong>of</strong> the selected wood QC methods, we should expect<br />

short- and long-term developments in fault identification and measuring technologies using<br />

noninvasive and contactless methods.<br />

These methods enable continuous in-line measurement without need for preparing samples in<br />

laboratories and automatic production control in real time and eliminate the risk material<br />

fouling or damaging during the measurement.<br />

REFERENCES<br />

1. DZBE�SKI W., 1984: Nieniszcz�ce badania mechanicznych w�a�ciwo�ci iglastej<br />

tarcicy konstrukcyjnej wybranymi metodami statycznymi i dynamicznymi. Wyd.<br />

<strong>SGGW</strong>-AR, Warszawa<br />

2. FORINTEK CANADA CORP.,2005: An Evaluation <strong>of</strong> the Detection Capacity <strong>of</strong><br />

Automated Defect Detection Systems, nr 3,<br />

3. GRÖNLUND U., 1995: Quality improvements in forest products industry.<br />

Dissertation. Luleå <strong>University</strong> <strong>of</strong> Technology. Sweden<br />

4. JAWOROWSKA M., 2008, Mikr<strong>of</strong>alowe pomiary zawarto�ci wilgotno�ci,<br />

http://automatykab2b.pl/technika/2117-mikr<strong>of</strong>alowe-pomiary-zawartosci-wilgotnosci<br />

5. LYCKEN A., 2006: Appearance Grading <strong>of</strong> Sawn Timber, http://www.ltu.se/ske<br />

6. NYSTRÖM J., 2003: Automatic measurement <strong>of</strong> fiber orientation in s<strong>of</strong>twoods by<br />

using the tracheid effect, Computers and Electronics in Agriculture, Volume 41, Issues<br />

1-3, December, 91-99<br />

7. �NSALAM C., et al.: Defect inspection <strong>of</strong> wood surfaces,<br />

vpa.sabanciuniv.edu/modules/aytulercil/rrDIWS.pdf<br />

8. WYK L., TURNER J., 2003: Evaluation <strong>of</strong> defect scanners for chop saws,<br />

Sawmilling, nr 7<br />

81


Streszczenie: „Advanced Quality Control Methods for Wood”. W pracy przedstawiono<br />

wybrane metody oceny jako�ci drewna oraz oceny jako�ci materia�ów drewnopochodnych.<br />

Przedstawiono i scharakteryzowano defektoskopi� oraz wybrane sposoby pomiaru wielko�ci<br />

fizycznych materia�ów drzewnych s�u��ce do wykrywania wad drewna metod� bezstykow�.<br />

Wskazano kierunki mo�liwego rozwoju metod s�u��cych do kontroli jako�ci materia�ów<br />

drzewnych.<br />

Corresponding author:<br />

Mariusz Cyrankowski, Hubert Wrotek<br />

Wood Mechanical Processing Department ,<br />

Wood Industry Mechanisation and Automation Institute ,<br />

e-mail: hubert_wrotek@sggw.pl<br />

e-mail: mariusz_cyrankowski@sggw.pl<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

02-776 <strong>Warsaw</strong> ,Nowoursynowska 159,<br />

Poland


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forest and Wood Technology No 71, 2010: 83-86<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Estimating the possibilities <strong>of</strong> applying Sida hermaphrodita Rusby to the<br />

production <strong>of</strong> low-density particleboards<br />

RAFA� CZARNECKI, DOROTA DUKARSKA<br />

Department <strong>of</strong> Wood-Based Materials, Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>.<br />

Abstract: Estimating the possibilities <strong>of</strong> applying Sida hermaphrodita Rusby to the production <strong>of</strong> low density<br />

particleboards. The paper investigates the possibility <strong>of</strong> producing low-density particleboards (600 and<br />

500 kg/m 3 in relation to the original value <strong>of</strong> 700 kg/m 3 ) with use <strong>of</strong> Sida hermaphrodita Rusby. The degree <strong>of</strong><br />

substituting wood particles with Sida was 25% in case <strong>of</strong> UF and MUPF resins, 10% in case <strong>of</strong> PMDI resin and<br />

100% for all the investigated resins. The obtained results lead to the conclusion that low-density particleboards<br />

produced with use <strong>of</strong> Sida hermaphrodita Rusby do not differ much from boards made entirely from wood<br />

particles.<br />

Key words: particleboard, Sida hermaphrodita Rusby, density<br />

INTRODUCTION<br />

For a number <strong>of</strong> years researchers have been working on possible uses <strong>of</strong> non-wood<br />

lignocellulose materials in the production <strong>of</strong> particleboards and fibreboards, as the resources<br />

<strong>of</strong> these plants are estimated to be much wider than the needs <strong>of</strong> wood-based industry. In spite<br />

<strong>of</strong> worse properties <strong>of</strong> these particles, they can be successfully applied in the production <strong>of</strong><br />

boards with good mechanical properties. Among numerous naturally occurring fibrous<br />

materials, cereal straw is <strong>of</strong> the greatest significance (Dalen 1999, Grigoriou 2000, Bekhta<br />

2003). This material has been the most thoroughly investigated, yet it is not the only one to<br />

be applied. Boards can be produced from particles <strong>of</strong> annual and perennial plants, such as<br />

linen, hemp, colza, sugar cane, bamboo, sunflower, jute and cotton (Koz�owski et al. 2001,<br />

Papadopoulus et al. 2002, Guler and Ozen 2004).<br />

More and more attention is focused on fast-growing species used for energy purposes. One <strong>of</strong><br />

promising plants, along with quite commonly widespread basket willow, topinambur, reed<br />

canary grass or miscanthus, is Sida hermaphrodita Rusby, which can be a potential material<br />

also in the production <strong>of</strong> wood-based boards.<br />

Sida hermaphrodita Rusby has the form <strong>of</strong> a dense roots bush with a few dozen <strong>of</strong> stems with<br />

the length <strong>of</strong> 400 cm and diameter <strong>of</strong> 5 to 35 cm. The plant is reproduced by means <strong>of</strong> root<br />

cuttings, stem cuttings or seeds. The plant is not very demanding in terms <strong>of</strong> soil and climate<br />

conditions, and it can be cultivated for 15-20 years. It is a plant <strong>of</strong> a great yielding potential<br />

and it has attracted interest <strong>of</strong> power industry. The plant can also be successfully applied in<br />

the production <strong>of</strong> pulp, which is used in pulp and paper industry (Ma�ko 1996, B�czy�ska<br />

and Stanis�awczyk 1988, Borkowska and Styk 2006). The pulp obtained from Sida<br />

hermaphrodita Rusby may be used as an insulating material and in the production <strong>of</strong><br />

agglomerated materials (Ma�ko and Noskowiak 2002).<br />

Taking into consideration the great potential <strong>of</strong> Sida hermaphrodita Rusby and the growing<br />

deficiency <strong>of</strong> timber, the researchers from the Department <strong>of</strong> Wood-Based Materials <strong>of</strong><br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> conduct investigations whose purpose is to explore the<br />

possibility <strong>of</strong> producing particleboards with use <strong>of</strong> this plant and with various kinds <strong>of</strong> resins.<br />

The aim <strong>of</strong> the present research is to investigate the possibility <strong>of</strong> manufacturing lowdensity<br />

particleboards with use <strong>of</strong> Sida hermaphrodita Rusby.<br />

83


MATERIAL AND METHODS<br />

In order to produce the boards, pulverized stems <strong>of</strong> Sida hermafrodita Rusby were<br />

used as well as pine particles. The characteristics <strong>of</strong> the pine and Sida particles are presented<br />

in Table 1.<br />

Table 1. Moisture content and dimension <strong>of</strong> pine and Sida particles used in the investigations<br />

Investigated properties Pine particles<br />

Sida hermaphrodita<br />

Rusby particles<br />

Moisture content 2.0 2.7<br />

Average dimension, (l x b x a) 10.54 × 1.80 ×0.51 6.63 × 2.02 × 0.88<br />

The boards were glued with UF, MUPF and PMDI resins. Single-layer particleboards were<br />

manufactured in laboratory conditions, with use <strong>of</strong> the following constant parameters:<br />

� thickness <strong>of</strong> the boards: 12 mm<br />

� density <strong>of</strong> the boards: 700, 600 and 500 kg/m 3<br />

� dimension <strong>of</strong> the boards: 600 × 500 mm<br />

� pressing temperature: 200 o C<br />

� maximum unit pressure <strong>of</strong> pressing: 2.5 N/mm 2<br />

� pressing time: 22s per mm <strong>of</strong> the board thickness<br />

� resin level: UF and MUPF – 12%, PMDI – 8%<br />

� degree <strong>of</strong> substituting Sida for wood particles: 25% for UF and MUPF resins, 10% for<br />

PMDI resin and 100% for the applied resins.<br />

In case <strong>of</strong> UF and MUPF resins, a curing agent NH4NO3 was used; it was added in the<br />

amount <strong>of</strong> 2% in relation to dry mass <strong>of</strong> the resin. The manufactured particleboards were<br />

subjected to the following tests:<br />

� bending strength and modulus <strong>of</strong> elasticity in bending according to EN 310<br />

� internal bond according to EN 319<br />

� internal bond after the boil test according to EN 1087-1 (only for MUPF and PMDI)<br />

� swelling in thickness after 24h according to EN 317<br />

� formaldehyde content according to EN 120 (only for UF and MUPF)<br />

DISCUSSION OF RESULTS<br />

The results <strong>of</strong> the investigations upon properties <strong>of</strong> boards with various density<br />

produced with use <strong>of</strong> Sida hermaphrodita Rusby are shown in Tables 2 and 3. They show<br />

that, regardless <strong>of</strong> the density <strong>of</strong> boards glued with PMDI resin, the increase in the amount <strong>of</strong><br />

Sida particles results in the deterioration <strong>of</strong> all the mechanical and resistance properties.<br />

Particleboards glued with UF and MUPF behave differently. For each density value, bending<br />

strength and modulus <strong>of</strong> elasticity in bending decrease. No such effect is observed for internal<br />

bond before and after the boil test. For all the investigated values <strong>of</strong> density, the increase in<br />

the amount <strong>of</strong> Sida does not deteriorate these values, but it even improves them.<br />

In case <strong>of</strong> boards glued with UF resin, Sida hermaphrodita Rusby significantly deteriorates<br />

their short-term resistance to the action <strong>of</strong> water measured by swelling in thickness after 24h.<br />

For boards glued with MUPF, this effect is not that strong. The observations are the same for<br />

boards with various density levels.<br />

Regardless <strong>of</strong> the density <strong>of</strong> the boards glued with UF and MUPF, the formaldehyde content<br />

is within the permissible limits. Yet, the increase in the amount <strong>of</strong> Sida results in the growth<br />

<strong>of</strong> this value in case <strong>of</strong> boards glued with MUPF resin.<br />

84


Table 2. The influence <strong>of</strong> density <strong>of</strong> particleboards produced with use <strong>of</strong> Sida hermaphrodita Rusby<br />

upon their mechanical properties<br />

Density<br />

[kg/m 3 ]<br />

700<br />

600<br />

500<br />

Bending strength Modulus <strong>of</strong> elasticity Internal bond<br />

N/mm 2<br />

Substitution<br />

degree<br />

[%] UF MUPF PMDI UF MUPF PMDI UF MUPF PMDI<br />

0 15.1 18.1 20.1 3160 3110 3010 0.81 1.09 1.50<br />

25/10* 14.0 17.8 16.9 2580 2880 2950 0.88 1.05 1.39<br />

100 11.5 16.4 15.6 1920 2300 2360 0.80 1.23 1.36<br />

0 10.0 11.8 14.4 2170 2380 2380 0.65 0.73 1.38<br />

25/10* 8.1 11.7 13.9 1370 2230 2270 0.53 0.79 1.27<br />

100 6.3 10.7 10.9 1199 1830 1830 0.79 1.01 1.21<br />

0 6.3 7.6 8.6 1350 1610 1630 0.49 0.47 0.91<br />

25/10* 5.4 7.9 7.8 980 1570 1450 0.50 0.49 0.83<br />

100 5.2 7.3 5.3 959 1300 1020 0.63 0.68 0.76<br />

* – 25% in case <strong>of</strong> UF and MUPF, 10% in case <strong>of</strong> PMDI<br />

Table 3. The influence <strong>of</strong> density <strong>of</strong> particleboards produced with use <strong>of</strong> Sida hermaphrodita Rusby<br />

upon resistance properties and formaldehyde content<br />

Density,<br />

kg/m 3<br />

700<br />

600<br />

500<br />

Internal bond after<br />

Swelling in thickness Formaldehyde content<br />

boil test<br />

N/mm 2 Substitution<br />

degree,<br />

% mg CH2O/100g d.m.b.<br />

%<br />

UF MUPF PMDI UF MUPF PMDI UF MUPF PMDI<br />

0 - 0.16 1.38 34.8 23.6 18.8 4.43 4,23 -<br />

25/10* - 0.22 0.92 37.8 26.1 22.3 4.23 5.61 -<br />

100 - 0.23 0.32 53.4 31.4 25.4 4.59 7.05 -<br />

0 - 0.12 0.95 23.8 21.9 16.0 4.31 3.36 -<br />

25/10* - 0.15 0.73 30.8 23.1 19.6 4.12 6.79 -<br />

100 - 0.17 0.26 43.1 28.1 22.9 4.26 5.50 -<br />

0 - 0.11 0.53 18.6 18.9 14.2 3.66 3.10 -<br />

25/10* - 0.10 0.43 29.6 19.0 15.8 3.82 4.30 -<br />

100 - 0.16 0.19 34.7 26.5 26.9 4.78 4.60 -<br />

* – 25% in case <strong>of</strong> UF and MUPF, 10% in case <strong>of</strong> PMDI<br />

CONCLUSIONS<br />

Sida hermaphrodita Rusby can be treated as an almost full-value material for the<br />

production <strong>of</strong> particleboards, as the vast majority <strong>of</strong> the obtained results show. Only when<br />

PMDI resin is used as a bonding agent, a full substitution <strong>of</strong> Sida for wood particles does not<br />

seem possible.<br />

Apart form formaldehyde content, the investigated properties quite expectedly deteriorate, as<br />

the amount <strong>of</strong> Sida increases. However, the observed tendencies <strong>of</strong> these changes are the<br />

same for the density values <strong>of</strong> 700, 600 and 500 kg/m 3 . It leads to the conclusion that lowdensity<br />

boards made with use <strong>of</strong> Sida hermaphrodita Rusby do not differ considerably from<br />

those made entirely from wood particles.<br />

85


REFERENCES<br />

1. B�CZY�SKA K., STANIS�AWCZYK P., 1988: Informacja dotycz�ca wst�pnej analizy<br />

chemicznej �odyg sidy. Instytut Celulozowo - Papierniczy, �ód�.<br />

2. BEKHTA P., 2003: P�yty ze s�omy: stan obecny i perspektywy rozwoju. Biuletyn<br />

Informacyjny OBRPPD w Czarnej Wodzie 1-2: 12-18.<br />

3. BORKOWSKA H, STYK B., 2006: �lazowiec pensylwa�ski. Uprawa i wykorzystanie.<br />

Wydawnictwo AR, Lublin.<br />

4. DALEN H., 1999: Raw material and process factors to consider when producing board with<br />

straw. Panel World, 18: 20-22.<br />

5. GRIGORIOU A., 2000: Straw-wood composites bonded with various adhesive systems.<br />

Wood Science and Technology 34: 355-365.<br />

6. GULER C., OZEN R., 2004: Some properties <strong>of</strong> particleboards made from cotton stalks<br />

(Gossypirum hiristum L.). Holz als Roh- und Werkst<strong>of</strong>f, 62: 40-43.<br />

7. KOZ�OWSKI R., MIELENIAK B., PRZEPIERA A., 2001: Odpady ro�lin<br />

jednorocznych jako materia�y surowcowe do produkcji p�yt lignocelulozowych. Przemys�<br />

Drzewny 3: 17-21.<br />

8. MA�KO P., 1996: Sposób usuwania z gleby zanieczyszcze�, zw�aszcza metali ci��kich<br />

oraz wykorzystanie powstaj�cej biomasy do celów przemys�owych. Patent PL 177699.<br />

9. MA�KO P., NOSKOWIAK A., 2002: Sposób wytwarzania materia�ów aglomerowanych<br />

z biomasy w postaci p�yty lub elementu pr<strong>of</strong>ilowanego oraz materia�y aglomerowane z<br />

biomasy w postaci p�yty lub elementu pr<strong>of</strong>ilowanego. Patent PL 198570.<br />

10. PAPADOPOULOS A.N., HILL C.A.S., GKARAVELI A., NTALOS G.A.,<br />

KARASTERGIOU S.P., 2004: Bamboo chips (Bambusa vulgaris) as an alternative<br />

lignocellulosic raw material for particleboards manufacture. Holz als Roh- und Werkst<strong>of</strong>f<br />

62: 36-39.<br />

Streszczenie: Ocena mo�liwo�ci wykorzystania �lazowca pensylwa�skiego do wytwarzania<br />

p�yt wiórowych o obni�onej g�sto�ci. Zbadano mo�liwo�� wykorzystania �lazowca<br />

pensylwa�skiego do wytwarzania p�yt wiórowych o obni�onej g�sto�ci (600 i 500 kg/m 3 w<br />

stosunku do pierwotnej warto�ci 700 kg/m 3 ). Stopie� substytucji wiórów drzewnych<br />

�lazowcem wynosi� 25% w przypadku �ywic UF i MUPF, 10% w przypadku �ywicy PMDI<br />

oraz 100% dla wszystkich zastosowanych �ywic. Uzyskane wyniki pozwalaj� na<br />

stwierdzenie, �e p�yty o obni�onej g�sto�ci wytworzone z udzia�em �lazowca<br />

pensylwa�skiego nie wykazuj� istotnych ró�nic w stosunku do analogicznych p�yt<br />

wytwarzanych wy��cznie z drewna.<br />

Corresponding authors:<br />

Rafa� Czarnecki, Dorota Dukarska<br />

Pozna� <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Department <strong>of</strong> Wood-Based Materials<br />

Wojska Polskiego 38/42<br />

60-627 Pozna�,<br />

Poland<br />

e-mail: rczarnec@up.poznan.pl<br />

e-mail: ddukar@up.poznan.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No , 2010: 87-91<br />

(Ann. WULS–<strong>SGGW</strong>, For and Wood Technol. , 2010)<br />

Influence <strong>of</strong> tool wear and cutting force on machining quality during<br />

milling <strong>of</strong> laminated particleboard<br />

PAWE� CZARNIAK, JACEK WILKOWSKI, ANDRZEJ MAZUREK<br />

Wood Mechanical Processing Department, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>– <strong>SGGW</strong><br />

Abstract: Influence <strong>of</strong> tool wear and cutting force on machining quality during milling <strong>of</strong> laminated<br />

particleboard. Two standard router bits with tipped edges from sintered carbide, with the same geometry but<br />

made by two different producers, were used in work. Machining was began with brand new tools. Standard<br />

laminate chipboard was subjected to milling. Measurement <strong>of</strong> cutting forces with usage <strong>of</strong> multi component<br />

piezoelectric sensor was carried out during machining. In the whole tool life was monitored direct tool wear<br />

indicator VBmax and number <strong>of</strong> laminate chips on the edge <strong>of</strong> grooves, which is typical indicator <strong>of</strong> machining<br />

quality, was counted. There were proved statistically significant <strong>of</strong> correlation dependence between following<br />

pairs <strong>of</strong> factors: tool wear versus machining quality, tool wear versus cutting force (components Fx and Fy) and<br />

cutting force (components Fx and Fy) versus machining quality. These correlations turned out stronger for tool<br />

1.<br />

Key words: tool wear, cutting force, machining quality, laminated particleboard<br />

INTRODUCTION<br />

Relationship between tool wear and machining quality is not strong during laminated<br />

chipboards milling what results from great inhomogeneous <strong>of</strong> material and influence <strong>of</strong><br />

different factors such as degree <strong>of</strong> outer chip layers gluing or quality and properties <strong>of</strong><br />

melamine cover used to finish laminated chipboard. Extremely relevant are the differences in<br />

durability to tearing <strong>of</strong> outer layers in machined material [Porankiewicz 1993, Porankiewicz<br />

and Tanaka 2001]. This variety to a high extent decides about machined surface quality which<br />

can be expressed as number <strong>of</strong> chips on the chipboard edge per 1m. This measure is widely<br />

used for example by [Boehme and Munz 1987; Lemaster et al. 2000]. Changes <strong>of</strong> edge<br />

geometry, during process <strong>of</strong> tool wearing, deteriorate his cutting properties. Direct tool<br />

indicators [Salje et al. 1985; Szwajka and Górski 2006] describe these changes in the most<br />

objective way. Maximal width <strong>of</strong> abrasion on clearance face i.e. VBmax belong to them<br />

[Wilkowski and Górski 2006]. In above work were investigated correlation dependences<br />

between relevant factors during milling <strong>of</strong> laminated chipboards such as tool wear, machining<br />

quality and cutting forces. There were correlated following indicators: VBmax, number <strong>of</strong><br />

chips per 1m and values <strong>of</strong> two components <strong>of</strong> cutting forces, both parallel to feed direction<br />

force Fx and perpendicular to feed direction force Fy .<br />

MATERIALS AND METHODS<br />

Two router bits equipped with two edges made from sintered carbide were used in<br />

experiment. Both tool had the same edge geometry but came from different producers.<br />

Diameter <strong>of</strong> tool amounted 12mm, length <strong>of</strong> working part 51mm (the whole length 102mm).<br />

Machining was conducted on standard working center CNC (BUSELLATO JET 130). Three<br />

layers laminated chipboard (Kronopol-U511) widely used in furniture production was milled<br />

in researches. Grooves with width which corresponds to diameter <strong>of</strong> working part <strong>of</strong> tool and<br />

87


depth 6mm were made. Measurement <strong>of</strong> cutting force components (component Fx parallel and<br />

component Fy perpendicular to the feed direction) and tool wearing (in working cycle) was<br />

carried out in each cycle. Schema <strong>of</strong> experimental procedure with cutting parameters was<br />

showed in Fig.1. Cutting parameters during measurement and tool wearing were the same.<br />

Measurement platform was equipped with multi component piezoelectric transducer – Kistler<br />

Type 9601A3. Measurement signals were registered with sampling frequencies 50kHz on<br />

acquisition card NI PCI-6111 installed in PC. Measurement <strong>of</strong> direct tool wear indicator<br />

(VBmax maximal wear <strong>of</strong> clearance face) took place between cycles with usage <strong>of</strong><br />

microscope. Assessment <strong>of</strong> machining quality consisted in visual counting <strong>of</strong> chips on groove<br />

edges and conversing these values on 1m.<br />

RESULTS AND DISCUSSION<br />

Fig.1. Scheme <strong>of</strong> experimental procedure<br />

Wear curves <strong>of</strong> investigated router bits are showed in Fig.2. Both tools wear with<br />

similar intensity in the stage <strong>of</strong> run in. Tool 1 achieved higher value <strong>of</strong> VBmax (0,19mm) than<br />

tool 2 after feed distance about 130m (end <strong>of</strong> the wearing). The level <strong>of</strong> VBmax had the<br />

influence on chip number. These relationships proved significant differences between<br />

particular tools and determination coefficient were respectively: 0,71 i 0,46 (Fig.3). For tool 2<br />

which was blunted to lower extent was observed better quality but linear correlations were<br />

weaker than for tool 1 (R 2 =0,46). There were obtained strong dependencies between indicator<br />

VBmax and components Fx i Fy <strong>of</strong> cutting force (Fig.4 and Fig.5). Similarly as in Fig.3,<br />

determination coefficients were higher for tool 1. Equally strong relationships were obtained<br />

particularly between components <strong>of</strong> cutting force and machining quality (Fig.6 and Fig.7).<br />

Coefficient R 2 got the values in range 0,76 do 0,87 and it was equally high as well for tool 1<br />

as for tool 2.<br />

88


Fig.2. Wear curves for tool 1 and 2 Fig.3. Influence <strong>of</strong> tool wear on machining quality<br />

Fig.4. Influence <strong>of</strong> tool wear on component Fx Fig.5. Influence <strong>of</strong> tool wear on component Fy<br />

Fig.6. Influence <strong>of</strong> component Fx on machining quality Fig.7. Influence <strong>of</strong> component Fy on<br />

machining quality<br />

89


CONCLUSION<br />

Results <strong>of</strong> researches allow to formulate following conclusions:<br />

1. Statistically significant relationships were received between tool wear and component<br />

Fx and Fy <strong>of</strong> cutting force. Moreover, strong correlations were noticed between<br />

component Fx and Fy <strong>of</strong> cutting force and machining quality. In general with growth<br />

<strong>of</strong> tool wear, cutting force components were increasing and machining quality became<br />

worse with tool wear.<br />

2. Relationship between tool wear and machining quality turned out very strong only in<br />

case <strong>of</strong> one tool.<br />

3. Linear correlations <strong>of</strong> analyzed relationships were clearly higher for tool 1 than for<br />

tool 2..<br />

REFERENCES<br />

1. BOEHME C., MUNZ U., 1987: Zerspanungsverhalten u. Vreschleisswirkung von<br />

Normal-u Sonderplatten mit einheitlichen Beschichtung bei Anwendung<br />

unterschiedlicher Zerspannungsverfahren. Fraunh<strong>of</strong>er Institut fur Holzforschung, WKI-<br />

Bericht 17, Braunschweig 106<br />

2. LEMASTER R.L., LU L., JACKSON S., 2000: The use <strong>of</strong> process monitoring<br />

techniques on CNC wood router. Part 2. Use <strong>of</strong> vibration accelerometer to monitor tool<br />

wear and workpiece quality.<br />

3. PORANKIEWICZ B., 1993: The relation between some mechanical properties and edge<br />

quality when milling melamine coated particleboard. 11 the International Wood<br />

machining Seminar, Oslo, Norway, 515-519<br />

4. PORANKIEWICZ B., TANAKA C., 2001: The work piece edge quality after milling<br />

melamine-coated particleboard. Mem. Facul. Sci. Eng. Shimane Univ. A, 35: 139-147<br />

5. SALJE E., DRUCKHAMMER J., STUHMEIER W., 1985: Neue Erkenntnisse beim<br />

Frasen von Spanplatten mit unterschiedlichen Schnittbedingungen. Holz Roh-u. Werkst.<br />

43:501-506<br />

6. SZWAJKA K., GÓRSKI J., 2006: Evaluation tool condition <strong>of</strong> milling wood on the basis<br />

<strong>of</strong> vibration signal. International Symposium on Instrumentation Science and<br />

Technology. Journal <strong>of</strong> Physics: Conference Series 48<br />

7. WILKOWSKI J., GÓRSKI J., 2006: The influence <strong>of</strong> cutting edge wear on the quality <strong>of</strong><br />

machined surface during the milling <strong>of</strong> wood-based materials. International Scientific<br />

Conference to the 10th anniversary <strong>of</strong> FEVT foundation “Trends <strong>of</strong> wood working, forest<br />

and environmental technology development and their applications in manufacturing<br />

process” Technical <strong>University</strong> in Zvolen – Faculty <strong>of</strong> Environmental and Manufacturing<br />

Technologies - Zvolen, s.391-394<br />

Streszczenie : Wp�yw zu�ycia narz�dzia i si� skrawania na jako�� obróbki podczas frezowania<br />

p�yty wiórowej laminowanej. W badaniach wykorzystano dwa standartowe frezy trzpieniowe<br />

z nak�adkami z w�glików spiekanych, o tej samej geometrii, wyprodukowane przez dwóch<br />

ró�nych producentów. Obróbk� rozpoczynano narz�dziami fabrycznie nowymi. Frezowano<br />

p�yt� wiórow� laminowan�. W czasie obróbki dokonywano pomiaru si� skarania z u�yciem<br />

wielosk�adowego czujnika piezoelektrycznego. W ca�ym okresie trwa�o�ci narz�dzi mierzono<br />

bezpo�rednie wska�niki zu�ycia VBmax oraz zliczano wyrwania laminatu na kraw�dzi p�yty<br />

b�d�ce typowym wska�nikiem jako�ci obróbki. Wykazano istotne statystycznie zale�no�ci<br />

90


korelacyjne mi�dzy parami czynników: zu�ycie narz�dzia – jako�� obróbki, zu�ycie narz�dzia<br />

– si�a skrawania (sk�adowe Fx i Fy), si�a skrawania (sk�adowe Fx i Fy) – jako�� obróbki.<br />

Korelacje by�y istotnie wy�sze dla narz�dzia nr 1.<br />

Corresponding authors:<br />

Pawe� Czarniak<br />

e-mail: pawel_czarniak@sggw.pl<br />

Jacek Wilkowski<br />

e-mail: jacek_wilkowski@sggw.pl<br />

Andrzej Mazurek<br />

e-mail: andrzej_mazurek@sggw.pl<br />

Faculty <strong>of</strong> Wood Technology <strong>SGGW</strong><br />

Wood Mechanical Processing Department<br />

ul. Nowoursynowska 159, 02-776 <strong>Warsaw</strong>, Poland


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 92-96<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Selected properties <strong>of</strong> low-density pine and poplar-pine particleboards<br />

JOANNA CZECHOWSKA, PIOTR BORYSIUK, MARIUSZ MAMI�SKI<br />

Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Abstract: Selected properties <strong>of</strong> low-density pine and poplar-pine particleboards. Threelayer<br />

18-mm thick particleboards <strong>of</strong> density 550 kg/m 3 were prepared in two series <strong>of</strong><br />

different material composition: (1) particleboards made <strong>of</strong> pine flakes (both face and core<br />

layers) and (2) particleboards made <strong>of</strong> poplar (face layer) and pine (core layer) flakes. The<br />

real-time measured pressing parameters (pressure, temperature, mat thickness) were analyzed<br />

as well as the mechanical and physical properties <strong>of</strong> the boards were examined according to<br />

the respective standards. It was found that different mat composition altered only heat transfer<br />

while the other parameters remained unaffected. Poplar-pine boards occurred to be superior to<br />

purely pine boards.<br />

Keywords: low-density particleboard<br />

INTRODUCTION<br />

Type <strong>of</strong> the raw material used and pressing parameters are the most important factors<br />

affecting the properties <strong>of</strong> the resultant particleboards. As far as the wooden material is<br />

concerned, the crucial role play: (1) the species used, since the higher density is, the lower<br />

mechanical properties <strong>of</strong> the composite can be achieved. (Suchsland and Woodson 1991) and<br />

(2) wood flakes characteristics (length, slenderness ratio, specific surface area). On the other<br />

hand, pressing parameters (pressure, temperature and time) influence the cross-sectional<br />

density pr<strong>of</strong>ile which also determines the mechanical properties <strong>of</strong> composites [Zudrags 2009,<br />

Wong et al 1999, Moslemi 1974].<br />

The studies were aimed at manufacturing and examination <strong>of</strong> low-density (550 kg/m 3 )<br />

particleboards as well as pressing parameters were analyzed.<br />

MATERIALS AND METHODS<br />

Three-layer 18-mm thick particleboards <strong>of</strong> density 550 kg/m 3 were prepared in two series <strong>of</strong><br />

different material composition: (1) particleboards made <strong>of</strong> pine flakes (both face and core<br />

layers) and (2) particleboards made <strong>of</strong> poplar (face layer) and pine (core layer) flakes.<br />

Moisture contents: poplar 3.5%, pine 5.0% (core layer) and 4.5% (face layer). A commercial<br />

UF resin was used as a binder hardened with 10% ammonium sulphate (3% for face layers,<br />

4% for core layer – based on resin solids). Glue rates were as follows: face layer 12%, core<br />

layer 8%. A paraffin emulsion was used as hydrophobing agent (1% based on dry wood).<br />

Pressing parameters:<br />

� maximum unit pressure – 2.5 MPa,<br />

� temperature 180°C,<br />

� pressing factor 18 s/mm,<br />

� press closing rate 2 mm/s .<br />

Pressing conditions (temperature, pressure, mat thickness) were computer-controlled in real<br />

time. Selected mechanical (MOR, MOE, IB) and physical (thickness swelling and density<br />

pr<strong>of</strong>ile) properties <strong>of</strong> the manufactured boards were examined.<br />

92


RESULTS<br />

The changes in pressing parameters are shown in Fig. 1, while physical and mechanical<br />

properties <strong>of</strong> the particleboards are shown in Figs. 2-4.<br />

Fig. 1 Pressing parameters during manufacturing <strong>of</strong> the studied boards<br />

Pressing regimes set for pine and poplar-pine particleboards can be described by three curves:<br />

pressing, temperature and mat thickness (Fig. 1). One can see that pressing curves are similar<br />

for both series, however, the factor possible to affect the pressure is thickness <strong>of</strong> the mats<br />

which is determined by bulk density <strong>of</strong> the flakes. But, despite the differences in mats<br />

thickness (60 mm for pine and 70 mm for poplar), no alternations in pressing curves were<br />

observed.<br />

In all cases, target thickness <strong>of</strong> the mats was achieved after 20-28 s under maximum unit<br />

pressure 1.88 MPa. What should be noticed, the maximum target pressure 2.5 MPa was not<br />

necessary.<br />

On the contrary to pressing curves, the temperature curves measured within the core layer for<br />

both series can be distinguished. More intense heat transfer was observed for pine mats, so<br />

that 100°C was achieved after 140s, while in poplar-pine mat 100°C was achieved after<br />

158 s. The differences can be associated with the insulating properties <strong>of</strong> the material as well<br />

as with cross-sectional density pr<strong>of</strong>ile <strong>of</strong> the boards (Fig. 2). Pine wood exhibits higher<br />

thermal conductivity coefficient than poplar does, thus, poplar face layers probably lowered<br />

93


heat transfer from platens to the core <strong>of</strong> the mat. In addition, face layers <strong>of</strong> poplar-pine boards<br />

exhibited higher densities (maximum 806 kg/m 3 ) which hindered steam migration into the<br />

core <strong>of</strong> the boards.<br />

Density [kg/m 3 ]<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

pine particleboard<br />

poplar - pine particleboard<br />

0<br />

0 2 4 6 8 10 12 14 16<br />

Thickness [mm]<br />

Fig. 2 A cross-sectional density distribution in three-layer particleboards<br />

As Figs. 3 and 4 indicate, the mechanical properties <strong>of</strong> the poplar-pine boards overwhelmed<br />

those <strong>of</strong> the pine boards. MOR and MOE <strong>of</strong> the poplar-pine series were higher by 4.63<br />

N/mm 2 and 574 N/mm 2 , respectively, when compared to the pine series. Also, it is worth<br />

noting that the requirements <strong>of</strong> the PN EN 312 for P2 type boards were met.<br />

Using poplar flakes <strong>of</strong> density lower than that <strong>of</strong> the pine (450 kg/m 3 and 520 kg/m 3 ,<br />

respectively) allowed for their higher compression rate and subsequently developed greater<br />

contact area affected MOR and MOE. The alternations in compression were presented in Fig.<br />

2.<br />

Fig. 3 MOR and MOE <strong>of</strong> the boards<br />

94


The obtained IB and thickness swelling values were higher for the poplar-pine series (Fig. 4).<br />

It is not surprising, since internal bond <strong>of</strong> the core layer is mainly determined by the glue rate<br />

and compression rate. However, when density pr<strong>of</strong>iles <strong>of</strong> both series are compared, no<br />

significant differences can be seen, thus, the IB values should be comparable. In fact, IB <strong>of</strong><br />

the poplar-pine boards was higher by 0.11 N/mm 2 than that <strong>of</strong> the pine series. This<br />

discrepancy is difficult to explain and is a subject for further studies.<br />

Fig. 4 IB and swelling after 24 – hr water soaking<br />

CONCLUSIONS<br />

The obtained results allow to conclude that composition <strong>of</strong> the mat subjected to pressing<br />

affect the heat transfer and pressing time. No significant influences on pressure or mat<br />

thickness curves were observed. For both poplar-pine and pine boards, cross-sectional density<br />

pr<strong>of</strong>ile was typically U-shaped, however, the face layers <strong>of</strong> the poplar-pine boards exhibited<br />

higher compression rate when compared to pine boards.<br />

It was shown that using poplar flakes for face layers and pine for core layer allowed for<br />

manufacturing particleboards <strong>of</strong> mechanical properties superior to purely pine boards.<br />

REFERENCES:<br />

1. Moslemi A.A. 1974:Particleboard Volume 1: Materials, Southern Illinois <strong>University</strong><br />

Press, USA<br />

2. Suchsland O., Woodson G. E., 1991: Fibreboards manufacturing practices in United<br />

States. Forest Products Research Society, USA<br />

3. Wong E., Zhang M., Wang Q., Kawai S., 1999: Formation <strong>of</strong> the density pr<strong>of</strong>ile and<br />

its effects on the properties <strong>of</strong> particleboard, Wood Science and Technology Vol. 33,<br />

September, p. 327-340.<br />

4. PN-EN 310:1994 P�yty drewnopochodne – Oznaczanie modu�u spr��ysto�ci przy<br />

zginaniu<br />

i wytrzyma�o�ci na zginanie.<br />

5. PN-EN 312:2005 P�yty wiórowe - Wymagania techniczne<br />

95


6. PN-EN 317:1993 P�yty wiórowe i p�yty pil�niowe – Oznaczanie sp�cznienia na<br />

grubo�� po moczeniu w wodzie<br />

7. PN-EN 319:1999 P�yty wiórowe i p�yty pil�niowe – Oznaczanie wytrzyma�o�ci na<br />

rozci�ganie w kierunku prostopad�ym do p�aszczyzn p�yty<br />

8. Zudrags K., Medved S., Alma M.H. 2009: Mechanical properties <strong>of</strong> wood – based<br />

panels, Chapter 4, Performance in use and new products <strong>of</strong> wood based composites,<br />

Brunel <strong>University</strong> Press, London<br />

Streszczenie: Wybrane w�a�ciwo�ci sosnowych i topolowo – sosnowych p�yt wiórowych<br />

o obni�onej g�sto�ci. W ramach pracy wykonano trójwarstwowe p�yty wiórowe o obni�onej<br />

550kg/m 3 z drewna sosny oraz topoli i sosny (wióry topolowe zastosowano na warstw�<br />

zewn�trzn� p�yt). Dla otrzymanych tworzyw zbadano przebieg parametrów prasowania<br />

(ci�nienie, temperatura, grubo�� kobierców) oraz okre�lono zgodnie z obowi�zuj�cymi<br />

normami w�a�ciwo�ci fizyczne i mechaniczne. Ustalono, �e p�yty wykazuj� zró�nicowanie<br />

pod wzgl�dem szybko�ci przegrzewania kobierców do temperatury ok. 100°C, odno�nie<br />

pozosta�ych parametrów prasowania ró�nic nie dostrze�ono. P�yty topolowo – sosnowe<br />

uzyska�y korzystniejsze w�a�ciwo�ci fizyczne i mechaniczne w porównaniu z p�ytami<br />

sosnowymi.<br />

Corresponding author:<br />

Joanna Czechowska<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

02-776 <strong>Warsaw</strong>,<br />

159 Nowoursynowska st.,<br />

Poland<br />

e-mail: joanna_czechowska@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 97-100<br />

(Ann. WULS-<strong>SGGW</strong>, For. and Wood Technol. 71, 2010)<br />

The magnetic properties spruce wood and their influence on wood quality<br />

ANNA DANIHELOVÁ 1) , MARTIN �ULÍK 1) , EVA RUŽINSKÁ 1) , MAREK JAB�O�SKI 2) ,<br />

MARCIN ZBIE� 2)<br />

1) Technical <strong>University</strong> in Zvolen, Slovakia<br />

2) Warszaw <strong>University</strong> <strong>of</strong> <strong>Life</strong> Science – <strong>SGGW</strong>, Poland<br />

Abstract: The magnetic properties spruce wood and their influence on wood quality. The contribution is<br />

focused on the study <strong>of</strong> magnetic properties <strong>of</strong> spruce wood and their influence on the physical and acoustic<br />

characteristics (PACH) <strong>of</strong> wood: density – �, Young's modulus – E and acoustic constant – A. For the<br />

examination <strong>of</strong> these properties were used three methods – the resonant dynamic method, method <strong>of</strong> the<br />

Wheaston bridge and the method <strong>of</strong> induction <strong>of</strong> electric current in the coil.<br />

Keywords: Magnetic properties, spruce wood, Young's modulus, density, Courie temperature.<br />

INTRODUCTION<br />

Natural materials, which include wood and wood-based materials, have wide range <strong>of</strong><br />

application. Wood is used in the production musical instruments, as an interior facing and as a<br />

construction material. Growing demand and the growing shortage <strong>of</strong> quality wood oblige us<br />

make use <strong>of</strong> wood more effective and rational. Therefore is necessary to have a perfect<br />

knowledge <strong>of</strong> its structure and properties.<br />

The magnetic properties <strong>of</strong> wood can be compared to the magnetic properties <strong>of</strong><br />

sedimentary rocks. The sediments containing ferromagnetic particles, which can be<br />

considered elementary magnets, are in the quiet environment deposited in accordance with the<br />

orientation <strong>of</strong> the geomagnetic field, i.e. in the direction north - south. Their magnetic<br />

moments are added together and sedimentary rock shows a macroscopic magnetic moment.<br />

A similar process takes place in wood. The tree sucks from the soil nutrients and also<br />

small ferromagnetic particles. These particles are stored in wood texture. So wood can show<br />

very weak, but measurable macroscopic magnetization. We assume that magnetization affects<br />

the wood properties.<br />

MAGNETIC PROPERTIES OF WOOD<br />

Among physical characteristics <strong>of</strong> each substance include also magnetic susceptibility<br />

and magnetic polarization. The both are its basic magnetic properties. The magnetic<br />

susceptibility determines the relationship between magnetization <strong>of</strong> material (M) and intensity<br />

<strong>of</strong> magnetic field (H).<br />

M � � x �<br />

(1)<br />

Magnetic susceptibility is the ability <strong>of</strong> substances to be magnetized. The magnetization<br />

expresses whether the substance is magnetized or not. The magnetic susceptibility <strong>of</strong><br />

diamagnetic substances is negative, the ferromagnetic and paramagnetic positive. The wood is<br />

a diamagnetic material (� < 0), has a very small absolute value � = (- 0,2.10 -6 …... - 0,6.10 -6 ).<br />

MATERIALS AND METHODS<br />

Norway spruce (Picea abies L. Karts), which was being investigated came from the<br />

locality Hronec. At investigation <strong>of</strong> relevant properties were used two methods.<br />

The measurements <strong>of</strong> physical and acoustic properties have been realized by the resonant<br />

dynamic method on our original equipment REZONATOR (Fig.1). Equipment works on the<br />

principle <strong>of</strong> studying the stationary acoustic waves in wooden boards and rods.<br />

REZONATOR is complex equipment designed for determination <strong>of</strong> the respective physical<br />

97


and acoustical characteristics (density, modulus <strong>of</strong> elasticity, acoustic constant, logarithmic<br />

decrement). Measurements were made on the specimens shape <strong>of</strong> rod, cut along the fibers.<br />

Magnetic susceptibility (� ) <strong>of</strong> specimens was measured using a KLY-2 kappabridge<br />

(Agico, Brno). This device was employed also for the measurements <strong>of</strong> the change (� ) during<br />

their Curie temperature (Tc) measurements. Magnetization (M) <strong>of</strong> wood was measured with<br />

the spiner magnetometer JR-4. Specimens were shaped to the cube <strong>of</strong> 20 mm edge. All<br />

specimens were subjected to progressive demagnetization in alternative fields. The external<br />

magnetic field was compensated by the Helmholtz coils and controled by a flux-gate<br />

magnetometer. Thermal cleaning was carried out starting from 20 °C to 150 °C in steps <strong>of</strong> 50<br />

°C. Thermal cleaning was carried out in vacuum using a magnetic MAVACS (magnetic<br />

vacuum control system) – Fig.2.<br />

Fig. 1. Measuring equipment REZONATOR Fig. 2. Measuring equipment MAVACS<br />

RESULTS AND DISCUSSION<br />

Tab. 1 shows the average magnetic susceptibility and magnetic polarization –<br />

J (magnetization) with standard deviation <strong>of</strong> measurement. Magnetic susceptibility <strong>of</strong> spruce<br />

wood is negative and magnetic polarization is very low. A characteristic feature <strong>of</strong> nearly all<br />

the measured samples is the fact that during the thermal demagnetization almost did not<br />

change the value <strong>of</strong> magnetic susceptibility. Demonstrates that the curve �T/�0, which are<br />

practically straight lines. This means that during the gradual heating <strong>of</strong> wood to a temperature<br />

<strong>of</strong> 150 °C there is no change (chemical or phase) <strong>of</strong> ferromagnetic material contained in it [2].<br />

However magnetization during the heating sharply changes its direction (curved line JT/J0)<br />

and also magnitude (Fig. 3). Measured and calculated values <strong>of</strong> the physical and acoustic<br />

characteristics (PACH) at a temperature <strong>of</strong> 20 º C before and after demagnetization are in Tab.<br />

2.<br />

Tab. 1 Magnetic susceptibility – �, magnetic polarization – J<br />

n � [×10 -6 u.SI] J [nT]<br />

Norway spruce 31 –8.62 � 0.72 0.126 � 0.193<br />

98


Norway<br />

spruce<br />

Tab. 2 Physical and acoustic characteristics <strong>of</strong> Norway spruce [1]<br />

�<br />

[kg.m -3 ]<br />

99<br />

Ex<br />

[GPa]<br />

A<br />

[m 4 .kg -1 .s -1 ]<br />

c<br />

[m/s]<br />

before<br />

demagnetization<br />

MV<br />

SD<br />

CV [%]<br />

477<br />

55,95<br />

11,73<br />

15,95<br />

3,23<br />

20,27<br />

12,16<br />

1,06<br />

8,70<br />

5 751<br />

301,98<br />

5,25<br />

after<br />

demagnetization<br />

MV<br />

SD<br />

CV [%]<br />

469<br />

57,53<br />

12,27<br />

16,08<br />

3,50<br />

21,75<br />

12,51<br />

1,01<br />

8,05<br />

5 819<br />

307,50<br />

5,28<br />

Fig. 3. Graph <strong>of</strong> demagnetization and Fig. 4. 3D graph <strong>of</strong> physical and acoustic characteristics<br />

stereo-projection <strong>of</strong> remanence magnetization<br />

CONCLUSION<br />

Our results show that the influence <strong>of</strong> magnetic properties on PACH <strong>of</strong> spruce wood is<br />

not negligible [3]. Next research will be directed at the magnetic characteristics <strong>of</strong> the wood<br />

<strong>of</strong> oriented test specimens (north - south) and samples <strong>of</strong> the various parts <strong>of</strong> the tree (trunk,<br />

branches, etc.).<br />

ACKNOWLEDGEMENT<br />

Research was supported <strong>of</strong> The Slovak Ministry <strong>of</strong> Education, proj. No: 1/0841/08,<br />

Wood characteristics as objective means <strong>of</strong> quality evaluation for special wood products<br />

making.<br />

REFERENCES<br />

1. T. DÁVID, Magnetizmus a jeho vplyv na fyzikálno-akustické charakteristiky<br />

smrekového a bazového dreva pre hudobné nástroje. Diplomová práca. Zvolen, 2010,<br />

84 s.<br />

2. M. N�MEC, �. KRIŠ�ÁK, Magnetické vlastnosti smrekového dreva a ich vplyv na<br />

kvalitu dreva pre hudobné nástroje. In NOISE AND VIBRATIONS IN PRACTICE:


PROCEEDINGS OF THE 15 TH INTERNATIONAL ACOUSTIC CONFERENCE,<br />

Ko�ovce. Bratislava. Nakladate�stvo STU, 2010, s. 85 – 88.<br />

Streszczenie: W�a�ciwo�ci magnetyczne drewna �wierkowego i ich wp�yw na jako�� drewna.<br />

Praca koncentruje si� na badaniu w�a�ciwo�ci magnetycznych drewna �wierkowego i ich<br />

wp�ywu na fizyczne i akustyczne w�asno�ci drewna: g�sto�� - �, modu� Younga - E i sta�a<br />

akustyczna - A. Do badania tych w�a�ciwo�ci zosta�y wykorzystane trzy sposoby -<br />

dynamiczna rezonansowa, metod� mostu Wheastone’a i metod� indukcji pr�du w cewce.<br />

Corresponding authors:<br />

Anna Danihelová a , Martin �ulík a , Eva Ružinská b<br />

a Faculty <strong>of</strong> Wood <strong>Sciences</strong> and Technology<br />

b Faculty <strong>of</strong> Environmental and Manufacturing Technology,<br />

Technical <strong>University</strong> in Zvolen<br />

T.G.Masaryka 24, 96053 Zvolen, Slovakia<br />

adanihel@vsld.tuzvo.sk, culik@vsld.tuzvo.sk, evaruzin@vsld.tuzvo.sk<br />

Marek Jab�o�ski, Marcin Zbie�,<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

07-776 <strong>Warsaw</strong>, 159 Nowoursynowska st., Poland<br />

marek_jablonski@sggw.pl, marcin_zbiec@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 101-105<br />

(Ann. WULS–<strong>SGGW</strong>, For.and Wood Technol. 71, 2010)<br />

������������ ���������� ������������ ����������������������<br />

������� ���������<br />

����� �������� 1 , �������� �������� 2 , ������ ���������� 1<br />

1<br />

������� ������������ � ������������� ������������, ��������������� ����������� – �����,<br />

��������<br />

2<br />

������� ��������� ���������, ����������� ����������� – ������, ��������<br />

Abstract: Computation <strong>of</strong> the thermal diffusivity <strong>of</strong> frozen wood. Mathematical description <strong>of</strong> the thermal<br />

diffusivity <strong>of</strong> wood, which contains an ice from freezing <strong>of</strong> bounded and free water in it, has been suggested. In<br />

the present paper this description is used for computation <strong>of</strong> the thermal diffusivity <strong>of</strong> six wood species.<br />

The suggested mathematical description can be used for the computation <strong>of</strong> the different processes <strong>of</strong><br />

hydro-heat treatment <strong>of</strong> wood with aim <strong>of</strong> optimization <strong>of</strong> their technology and automatic control.<br />

Key words: frozen wood, mathematical description, thermal diffusivity, free water, bounded water<br />

��������<br />

��� ��������������� � ������ ���������� �������� ��������� �������� �<br />

���������������� ��������� ��������� ������������ ����������� �����������-<br />

����������� ��������� a W . ��������, ��� �� ������������ ����� ���������<br />

������������ ���������������� � ������������ �������� ������������ � ���������<br />

���������. ��� �������� ���������� �� ���������� ���� ��������� �� �����������<br />

���������������������� ����� ���������� �� ����� �����������.<br />

��� ������� ���������� ������� ���������, ������, ���������� ��������� �<br />

������� �� �� ����������� ���������������������� ������� �������� ��������<br />

����������� � ��������� ���� �� �� �������� ����������� ��������� � ������.<br />

����� ��������� ������ �������� �������������� �������� � ����������<br />

������������ ���������������������� ������� ��������� � ������������� ���<br />

�������� � ������������� ���������������������� ����������� �� ���������� ����<br />

���������.<br />

�����������<br />

���������<br />

������������ ���������������������� �������<br />

��� ��������, ���������� ���������� ����, ��������������� � ��������� ��<br />

���������� ������ ��������������� ��������� ����, �.�. ����� �����������������<br />

����������� ��������� T � 271,15 K & U NFW < U � U FSP , �����������<br />

���������������������� ��������� a W (� m 2 .s -1 ) ������� ���������� �� ��������� [2]<br />

�<br />

W<br />

a W �<br />

, (1)<br />

( cW<br />

� cBW<br />

) �W<br />

��� � W ����������� ���������������� ���������, W.m -1 .K -1 . ��������� ��� ���<br />

����������� ��� ������� � ���������� ���� � ��������� ��������� � [2, 5, 6, 7];<br />

cW - �������� ������������ ���������, J.kg -1 .K -1 . ��������� ��� �� ����������<br />

��������� � [1, 2, 4, 6];<br />

101


�W - ��������� ���������, kg.m -3 . ��������� ��� �e ����������� ��������� � [2];<br />

c �W - �������� ������������ ����, ��������������� �� ���������� ��������-<br />

������� ��������� ����, J.kg -1 .K -1 . ��� ������������ ������������ �� ��������� [2]<br />

�0, 0567�T�271,<br />

15��<br />

4<br />

exp<br />

c � 1, 8938.<br />

10 �U�0, 12�<br />

��� U > U BW FSP<br />

NFW , (2)<br />

1�<br />

U<br />

��� U – ��������� ���������, kg.kg -1 ;<br />

U - ���������� ����������� ���� � ���������, ������ [1, 2, 4]:<br />

NFW<br />

�U�0, 12�exp�0,<br />

0567�<br />

� 271,<br />

15��<br />

U NFW � 0, 12 � FSP<br />

T . (3)<br />

U FSP - ��������� ��������� �� ������� ����������������, kg.kg -1 .<br />

�� ���. 1 �������� ����������� �� ���������� (1) - (3) ��������� ������������<br />

���������������������� ������� ������� aWC ���������� � �� ���������� �����-<br />

������������ ���� ������� ���������, � ����������� �� t � U ��� U FSP = 0,31 kg.kg -1 .<br />

����������� ���������������������� a wc.10 7 ,<br />

m 2 .s -1<br />

3,4<br />

3,2<br />

3<br />

2,8<br />

2,6<br />

2,4<br />

2,2<br />

2<br />

1,8<br />

1,6<br />

1,4<br />

1,2<br />

1<br />

0,8<br />

-40 -20 0 20 40 60 80 100 120 140<br />

����������� t , 0 C<br />

102<br />

U = 0<br />

U = 0,1<br />

U = 0,2<br />

U = 0,3<br />

U = 0,4<br />

U = 0,6<br />

U = 0,8<br />

U = 1,0<br />

U = 1,2 kg/kg<br />

���. 1. ��������� ������������ ���������������������� ������� ������� aWC<br />

������� ��������� � ����������� �� t � U<br />

�� �������� �� ���.1 �����, ��� ��������� aWC � ����������� �� t �����<br />

��������� �������� ��� ���������� � ��� �� ���������� ���� ��������� –<br />

��������� t �������� ���������� aWC �� ���������� ���� � ���������� aWC<br />

���������� ��� ��������� ���������� ������������� ���������� ��������<br />

������������ cBW ��������� � ������� �� t. ����� �����, ������ ��������� aWC<br />

���������� ��� ��������� � ����������� �� t ������� ������ ������� ��������� aWC<br />

�� ���������� ���� ���������. ��������� aWC � ����������� �� t � ����������� ���<br />

������������ �������� ��������� ����� ������� �������������.


������ ��������� �������� aWC � f ( U ) ���������� ��� ��������� �����������<br />

�� ������� �� U, ������ ��� �� ���������� ���� ��������� ���� ������ �������������<br />

�����������U.<br />

��������� aWC ��������������U����� ��������� �������� ��� ����������<br />

��� �� ��������������� ��������� ���� � ��� �� ���������� ���� ��������� –<br />

a<br />

���������� U �������� ���������� aWC �� ���������� ���� � ��������� WC<br />

���������� ��� ��������� ���������� ���������� ������������ c BW . ������������<br />

���������� ����������� ��� �� ���������� ���� ��������� � U = 0,3 kg.kg -1 � t ><br />

90 0 C, ����� �� ����������� aWC ���������� ������ ��������������� �������� aWC<br />

��� ��������� � U = 0,2 kg.kg -1 . ���� ���� ����������� ������ � ����������<br />

����������������� ������ � � ������� �������� ��������� ��������� [3], ���<br />

��������������� �� ��� ���������� ��������� � �������������� ��������<br />

��������������� ������������� ���������.<br />

�� ���.1 �����, ��� �������������� ��������� aWC ������� ��������� � U = 0,2<br />

kg.kg -1 ���������� ��� t = -17,25 0 �, ��� ��� ������ ��� ���� ����������� (� = 255,9 K)<br />

� U FSP = 0,31 kg.kg -1 , �������� ��������� (3) ���������� �� ��������� ���������������<br />

��������� ���� � ��������� ����� U NFW = 0,2 kg.kg -1 . �������������� ��������� aWC<br />

����� �� ��������� � U = 0,3 kg.kg -1 ��������� ��� t = -2,95 0 �, ��� ��� ��� ����<br />

����������� (� = 270,2 K) �� ��������� (3) ���������� U NFW = 0,3 kg.kg -1 . ��� ����<br />

����������� ��������� ��������� U > U FSP �������������� ��������� aWC<br />

���������� ��� t = - 2,0 0 �. ��� ��������������� � ���������� ��������� �<br />

�������������� �������� aWC ���������� ������ �������� ���������, ��������<br />

������� ������ ��� ���� ����������� ������������� ���������� ����, ���������������<br />

� ��������� �� ���������� ��������������� ��������� ���� � ���.<br />

��� ��������, ������������� �������������� ���������, ���������� ��� ��<br />

���������� ��������� ���� � ���, �.�. ����� U > U FSP , � ������������� ���������<br />

271,15 K < T � 272,15 K ����������� ���������������������� ��������� �������<br />

���������� �� ��������� [2]<br />

�<br />

W<br />

a W �<br />

, (4)<br />

( cW<br />

� cFW<br />

) �W<br />

��� c FW - �������� ������������ ����, ��������������� �� ���������� ��������� ����,<br />

J.kg -1 .K -1 . ��� ������������ ������������ �� ��������� [1, 2, 4]:<br />

5 U �U<br />

FSP<br />

cFW<br />

� 3,<br />

34.<br />

10 ��� U > U FSP . (5)<br />

1�<br />

U<br />

�� ���. 2 �������� ����������� �� ��������� (4) ��������� ������������<br />

���������������������� ������� ������� aWC ��������� �� ����� �����,<br />

���������� ��� �� ���������� ��������� ���� � ���, � ����������� �� U > U FSP . ���<br />

�������� ������������ �������� �������� ��������� �B � U FSP ���������������<br />

��������� ����� [2].<br />

�� �������� �� ���.2 �����, ��� ��� ��������� U, ������� ������� ������ U FSP ,<br />

�������� ������������ aWC � ��������� -2 0 � < t � -1 0 C ����������� � ����, �������<br />

103


���� ����������� ����� � ����� ���������� ����, ��������������� � ��������� ��<br />

��������������� ��������� ����, �.�. ��� ������������, ������� ���� -2 0 � (��. ���.1).<br />

������ � ����������� U �� ��������� � U FSP �������� aWC ���� ����� �����������<br />

���������: �� 20 � 30 ��� ��� U � 2U FSP , �� 30 � 40 ��� ��� U � 3U FSP ��.�. ��������<br />

����� �������� ������ ��������������� � ���������� U > U FSP ��������<br />

������������ c FW , ������� ��������� � ����������� ��������� (4).<br />

����������� ����������������������<br />

a wc.10 7 , m 2 .s -1<br />

2<br />

1,8<br />

1,6<br />

1,4<br />

1,2<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2<br />

��������� ��������� U , kg.kg -1<br />

104<br />

����<br />

������<br />

���<br />

���<br />

����<br />

������-����<br />

���. 2. ��������� aWC � ��������� -2 0 � < t � -1 0 C � ����������� �� U > U FSP<br />

���������� ���������� ������������ ���������������������� � ���������<br />

-2 0 � < t � -1 0 C �� ���� ������������� ������������ ���������, ���������� ��� ��<br />

���������� � ��� ��������� ����, ������������� ������������ ���������� ���������<br />

����������� � ������������ �������� ��������� ���������� ���������� �� ����<br />

�������, ���� ���� ��� ��������� �� �������. ���� ���� ����������������<br />

���������� �������� � ������������������ ���������� [2, 3, 8, etc.].<br />

����������<br />

������������ � ��������� ������ �������������� �������� ������������<br />

���������������������� ������� ��������� ��������� ������ �������� ���������� �<br />

��������������� ������������� ���������� ����, ��������������� � ��������� ��<br />

���������� ��� ��������������� ���������, ��� � ��������� ���� � ���. ��� ���������<br />

����� ������� ������� ���������������� ������ ��������� ������ �� �� �����������<br />

����������������������.<br />

������������ ���������� � �������������� ������������� ���������������<br />

�������� ����������, ��� ����������� ���������������������� ��������� �� �����<br />

���������� ����, ��������������� � ��� �� ���������� ��������� ����, � ���������<br />

�������� ��� ������ ������������ ���������������������� ��������� �� �����<br />

���������� ����, ��������������� � ��� �� ���������� ��������� ���� � ���.<br />

���������� ��������� ������ ����� ����������� � �������� ������ ��������<br />

������������� ��������������� ���������� ���������������� ���������� �������� �<br />

���������������� ��������� ���������� ���������� ���������� ��������������.


Acknowledgement: This work was supported by the Scientific Research Sector <strong>of</strong> the<br />

<strong>University</strong> <strong>of</strong> Forestry, S<strong>of</strong>ia - project 105 / 2008, and Grant Agency KEGA - SR - project<br />

KEGA-SR �.1/6164/08.<br />

����������<br />

1. ��������, �. 2002: ������������ ���������� �������� ������������ �������<br />

� ��������� ���������. International scientific conference “Technologies <strong>of</strong> wood<br />

processing”. Zvolen; 58-65.<br />

2. ��������, �., 2003: ���������� � ���������� �� ���������� �� �������<br />

��������� � ���������. ���������� �� �.�.�., ���, �., 358 c.<br />

3. �������, �. �. 1968: ������ �������� ��������� ���������. �., �����; 255 c.<br />

4. DELIISKI, N. 1990: Mathematische Beschreibung der spezifischen Wärmekapazität des<br />

aufgetauten und gefrorenen Holzes. VIII International Symposium ‘’Fundamental<br />

Research <strong>of</strong> Wood’’, Warszawa; 229-233.<br />

5. DELIYSKI, N. 1994: Mathematical description <strong>of</strong> the thermal conductivity coefficient <strong>of</strong><br />

defrozen and frozen wood. 2 nd Internation�l Symposium “Wood Structure and Properties<br />

‘94” Zvolen; 127-133.<br />

6. DELIISKI, N. 2004: Modeling and automatic control <strong>of</strong> heat energy consumption<br />

required for thermal treatment <strong>of</strong> logs. Drvna Industria, Volume 55, � 4; 181-199.<br />

7. DZURENDA, L. 1983: Výpo�et koeficienta teplotnej vodivosti dreva. Drevo, � 11:<br />

8. STEINCHAGEN, H. P. 1991: Heat transfer computation for a long, frozen log heated in<br />

agitated water or steam - a practical rec�ipe. Holz als Roh- und Werkst<strong>of</strong>f, � 7-8.<br />

Streszczenie: Obliczenia dyfuzyjno�ci drewna zmro�onego. Zaproponowano model<br />

matematyczny dyfuzyjno�ci drewna zawieraj�cego lód z wody wolnej i zwi�zanej. Artyku�<br />

prezentuje obliczenia dla 6 gatunków drewna. Zaproponowany model matematyczny mo�e<br />

by� u�yty w wyliczeniach procesów hydrotermicznej obróbki drewna w celu optymalizacji i<br />

automatyzacji sterowania.<br />

Corresponding author:<br />

Nencho Deliiski, Faculty <strong>of</strong> Forest Industry, <strong>University</strong> <strong>of</strong> Forestry,<br />

Kliment Ohridski Bd. 10, 1756 S<strong>of</strong>ia, BULGARIA, deliiski@netbg.com<br />

Ladislav Dzurenda, Faculty <strong>of</strong> Wood Technology, Technical <strong>University</strong> <strong>of</strong> Zvolen,<br />

T.G.Masarika 24, 96053 Zvolen, SLOVAKIA, dzurenda@vsld.tuzvo.sk<br />

Slavcho Sokolovski, Faculty <strong>of</strong> Forest Industry, <strong>University</strong> <strong>of</strong> Forestry,<br />

Kliment Ohridski Bd. 10, 1756 S<strong>of</strong>ia, BULGARIA, slav_sokolovski@yahoo.com


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 106-109<br />

(Ann. WULS–<strong>SGGW</strong>, For.and Wood Technol. 71, 2010)<br />

�������������� �������� ����������� ���� �������� �������<br />

����� �������� 1 , �������� �������� 2 , ������ ������� 1<br />

1<br />

������� ������������ � ������������� ������������, ��������������� ����������� – �����,<br />

��������<br />

2<br />

������� ��������� ���������, ����������� ����������� – ������, ��������<br />

Abstract: Mathematical description <strong>of</strong> the dew point <strong>of</strong> humidity air. Using available in the literature different<br />

equations for calculation <strong>of</strong> the dew point and the partial pressure <strong>of</strong> humidity air, a mathematical description<br />

and studies <strong>of</strong> the dew point <strong>of</strong> humidity air has been made. The influence <strong>of</strong> relative humidity and the<br />

temperature is taken into consideration.<br />

The mathematical description <strong>of</strong> the dew point can be used for the computation <strong>of</strong> the different processes<br />

<strong>of</strong> hydro-heat treatment <strong>of</strong> wood with aim <strong>of</strong> optimization <strong>of</strong> their technology and automatic control.<br />

Key words: mathematical description, wood, relative humidity, temperature, partial pressure, dew point<br />

��������<br />

��� ����������� ���������� ���������� ���������� ����������������<br />

��������� ��������� � ������ ���������� ��� ������ ����������� ������������<br />

������ ���������� ��������� ��� ������� ������� ������������ �������� ���������<br />

�����- � ��������������� ��������� �������������� ����� – �������� �������.<br />

����� �� ����� ���������� �������� ����������� ���� �������.<br />

��� ����������� ����������� ���� �������� ������� ����������� ���������,<br />

����� ������� �������� � ��������� [2]. � ��������� �� ���������� ������������<br />

��� ����� ��������������� ���������� ���������������� ����������.<br />

����� ��������� ������ �������� ����������� ��������������� ��������<br />

����������� ���� �������� ������� ��� ������������� � �������������<br />

������������ � ����, ������� ��� ������������� � ����������� ��������������<br />

�������� ���������� ���������� ���������������� ��������� ���������.<br />

������������� ������ ����������� ����������� ���� �������<br />

�� ������ ��������, ��� ��������� ������� ������� �� ���������� � ����<br />

������������ � ��� ������� �����. ��� ���������� �������� ����� �����������<br />

������������� ������������ ���������� ������� �����, ������� ������ �����<br />

���������. ��� ���� ����������� �������, ��� ������� ���������� ������� �����<br />

����� ���������� � ���.<br />

������, ������� ��� ������ ����������� �� ����� ��������� ����� ���������<br />

������� �����, ������� �������� ����������. ��� ���������� ����������� �������<br />

�� ���� ���������� ������ ���������� ����� � ���� ����������. ������������<br />

��������, ��� ������� ��� ������� ���� � ������� ��������� � ������������<br />

���������, ���������� �������e� ��������� p ��� .<br />

�������� ��������� ������� ����� � ������� p ��� (� ��) � ������� ���������<br />

����������� ���������� ����������� � ����������� �� ����������� t (� 0 �) [1]:<br />

10 � 3928,<br />

5 �<br />

p ��� �1,<br />

40974.<br />

10 exp��<br />

� ��� 0<br />

� t � 231,<br />

667 �<br />

0 C � t � 300 0 C, (1)<br />

106


12 � 6150,<br />

6 �<br />

p ��� � 3,<br />

61633.<br />

10 exp��<br />

� ��� t < 0<br />

� t � 273,<br />

33 �<br />

0 C. (2)<br />

������� ����, ������� ��������� � �������, ���������� �.���. �����������<br />

������� p � , ������� �������� ������ ������ �������� �������.<br />

�����������<br />

���������<br />

�������� ������� ����� � ������� (� ��) ������������ ��<br />

p � � , (3)<br />

� � ���<br />

��� � - ������������� ��������� �������, ������� ����� ��������� ����� �������<br />

����� � ������� � ����������� ���������� �� ���������� ��� ������ ����������� t<br />

����������. �������� ����� �����������, � �������� ������������ ���������. �<br />

����������� ��������� ��������� � ������ ���������� � ����� ���������� �<br />

��������� (%), ����� ��������� �� 100 ������������� �������� �.<br />

����� ������� ������ ��������� ����������, ������������ ��� �����������<br />

��������� ��������, ��� ������� ������ ��������� � ���������� ���������. ���<br />

���������� ���������� �������� ��������� �� ���� ����������. �� ��������<br />

�����������, ��� ������� ����������� ������ ��������� ����������� ���������,<br />

������� �������� ������������ (������) ����.<br />

����������� ���� �������� ������� ������������ �� ��������� ���������� [1]:<br />

3928,<br />

5<br />

tp �<br />

� 231,<br />

67 ��� 0 C<br />

23,<br />

37 � ln p<br />

0<br />

t � , (4)<br />

�<br />

6150,<br />

6<br />

tp �<br />

� 273,<br />

33 ��� 0 C<br />

28,<br />

92 � ln p<br />

0<br />

t � , (5)<br />

�<br />

��� p� - ����������� �������� ������� ����� � �������, ��.<br />

������������ ��������� ����������� ���� �������<br />

� �������������� ��������� (1) � (5) ��������� ��������� ������������<br />

�������� � ����������� ���� �������� ������� � ���������� ���������<br />

������������� ��������� ������� �� 0 �� 100% � ����������� ������� �� -20 0 ���<br />

30 0 �. ���������� ��� ����������� ���������� ������������ �������������� �� ���.1<br />

����.2.<br />

�� �������� �� ���.1 �����, ��� ��������� ��� �, ��� � t, �������� ����������<br />

������������ �������� p � . ������� � �� p� ��������, ��������t - ����������.<br />

�� ���.2 �����, ��� ��������� ����������� ���� t� � ����������� ��� �� �, ��� �<br />

t, ����� ������� ������������� ��������, ������� �������� ��� ������������� �<br />

������������� ����������. ��������� �, ����� ��� � t, �������� ���������� t � . ���<br />

���� ������� � �� t� ����������, � ������� t - ��������.<br />

� ����������� ������������� ��������� ������� �������� t� ������������ �<br />

��������� ������� ����������� �������, ��� ������������� ������ ����������������<br />

��������. ����� � = 100% , ����� t � = t.<br />

107


����������� �������� p �, ��<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

������������� ��������� �, %<br />

108<br />

t = 30°�<br />

t = 20°�<br />

t = 10°�<br />

t = 0°�<br />

t = -10°�<br />

t = -20°�<br />

���. 1. ��������� ������������ �������� p� ������� ����� � ������� � ����������� �� � � t<br />

����������� ���� t p, o C<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

0 10 20 30 40 50 60 70 80 90 100<br />

������������� ��������� �, %<br />

t = 30°C<br />

t = 20°C<br />

t = 10°C<br />

t = 0°C<br />

t = -10°C<br />

t = -20°C<br />

���. 2. ��������� ����������� ���� t� �������� ������� � ����������� �� � � t<br />

����������<br />

������������ ������������� �������� ����������� ���� �������� �������, �<br />

����� ������������ �������� � �������� ��������� ������� ��� ������������� �<br />

������������� �� ������� ������������ ����� ����������� � �������� ������<br />

�������� ������������� ��������������� ���������� ���������� ����������������<br />

���������� ���������������� ��������� ��������� � ������ ����������.


Acknowledgement: This work was supported by the Scientific Research Sector <strong>of</strong> the<br />

<strong>University</strong> <strong>of</strong> Forestry, S<strong>of</strong>ia - project 105 / 2008, and Grant Agency KEGA - SR - project<br />

KEGA-SR �.1/6164/08.<br />

����������<br />

1. ��������, �. 1993: ������ � ������� �������. �������, �., 299 �.<br />

2. http://www.hygrooptima.com/humidity.html<br />

Streszczenie: Opis matematyczny punktu rosy wilgotnego powietrza. Przy u�yciu równa�<br />

dost�pnych w literaturze zagadnienia opracowano model matematyczny punktu rosy<br />

wilgotnego powietrza. Uwzgl�dniono równie� wp�yw wilgotno�ci wzgl�dnej oraz<br />

temperatury. Opis matematyczny punktu rosy mo�e s�u�y� obliczeniom procesów<br />

hydrotermicznej obróbki drewna w celu optymalizacji i automatyzacji technologii.<br />

Corresponding authors:<br />

Nencho Deliiski, Faculty <strong>of</strong> Forest Industry, <strong>University</strong> <strong>of</strong> Forestry,<br />

Kliment Ohridski Bd. 10, 1756 S<strong>of</strong>ia, BULGARIA, deliiski@netbg.com<br />

Ladislav Dzurenda, Faculty <strong>of</strong> Wood Technology, Technical <strong>University</strong> <strong>of</strong> Zvolen,<br />

T.G.Masarika 24, 96053 Zvolen, SLOVAKIA, dzurenda@vsld.tuzvo.sk<br />

Svetla Kirkova, Faculty <strong>of</strong> Forest Industry, <strong>University</strong> <strong>of</strong> Forestry,<br />

Kliment Ohridski Bd. 10, 1756 S<strong>of</strong>ia, BULGARIA, s.kirkova@abv.bg


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 110-113<br />

(Ann. WULS - <strong>SGGW</strong>, For. and Wood Technol.,71, 2010)<br />

Entwicklungstendenzen bei Bandsägeführungen im Sägewerk<br />

HANS DIETZ 1) S�AWOMIR KRZOSEK 2)<br />

1)<br />

Institut für Werkzeugmaschinen Universität Stuttgart (IfW)<br />

2)<br />

Lehrstuhl für Holzkunde und Holzschutz, Fakultät für Holztechnologie, Warschauer Naturwissenschaftliche<br />

Universität – <strong>SGGW</strong><br />

Abstract: Entwicklungstendenzen bei Bandsägeführungen im Sägewerk. In dem Referat werden Möglichkeiten<br />

zur Verbesserung der Schnittwarentoleranzen von Schnittware aus Bandsägewerken angesprochen. Insbesondere<br />

wird eine realisierte magnetische Bandsägeführung vorgestellt, die auf der Basis eines geschlossenen<br />

Regelkreises die Schnittbahn des Sägeblattes korrigiert.<br />

Schlüsselwörter: Sägewerk, Bandsäge, Scanning, Bogenschnitt, Astigkeit, Ausbeute, Schnittwarentoleranz,<br />

Bandsägeführung,<br />

ÜBERBLICK<br />

Die Produktion von Schnittware in Sägewerken unterliegt zunehmend stärkeren<br />

Toleranzanforderungen. Bisher haben Sägewerke auf der Basis von Kreissägen den<br />

Anforderungen besser eher entsprochen. Allerdings mit der Einschränkung einer begrenzten<br />

Schnitthöhe beim ersten Schnitt durch das Rundholz.<br />

Da man beobachtet hat, dass auch frisch geschliffene Sägeblätter in der Regel eine<br />

Tendenz zeigen, nach einer Seite stärker abzuweichen, wurden Druck-Führungen geschaffen,<br />

die das abweichende Sägeblatt gegenüber der Schnittbahn jeweils nach der einen oder<br />

anderen Seite neigen. Das ist aber keine Regelung, die die Schnittbahn wirklich korrigiert.<br />

Aus dieser logischen Einsicht wurden verschiedene Ideen entwickelt, die alle auf der<br />

Beeinflussung der Schnittbahn durch Magnetkräfte beruhen. Davon sollen zwei nicht<br />

realisierte und eine realisierte dargestellt werden.<br />

Ein Vorschlag setzt voraus, dass das Sägeblatt selbst einen Magneten mit Polen<br />

darstellt, also gezogen oder gedrückt werden kann. Das System ist nicht realisierbar, da<br />

Bandsägeblätter dünn sind; die resultierenden Kräfte deshalb zu klein sind.<br />

Gemäß einem anderen Vorschlag soll die Schnittbahn eines konventionell betriebenen<br />

Sägeblattes durch ziehende Magnetkräfte, die senkrecht zur Schnittebene durch das Holz<br />

wirken, beeinflusst werden.; Diese Methode scheitert im Moment daran, dass die<br />

geometrischen Gegebenheiten z.T. unvorstellbare Magnetkräfte, mithin unwirtschaftliche<br />

Einrichtungen erfordern würden.<br />

Die im Folgenden vorgestellte Methode zur Korrektur von Schnittbahnfehlern durch<br />

Regelvorgänge benützt anstatt der üblichen Druckführungen neu geschaffene<br />

Magnetführungen zu beiden Seiten des Sägeblattes und des Schnittgutes. Dies soll<br />

nachfolgend dargestellt werden.<br />

110


MAGNETISCHE SÄGEBLATTFÜHUNG; THEORIE<br />

Die nachfolgenden Prinzipien zeigen in<br />

Bild 1 eine konventionelle Bandsäge mit Druckführung und in.<br />

Bild 2 eine neue Bandsäge, deren Sägeband durch einen magnetischen Regelkreis geführt ist<br />

Bild 1. Konventionelle Bandsäge mit Bild 2. Neue Bandsäge mit Magnetführungen<br />

Druckführungen<br />

In Bild 1 fallen die angegebenen Biegespannungen auf. Sie werden einerseits durch<br />

die Biegung des Sägeblattes um die Bandrollen erzeugt; andererseits aber entstehen auch<br />

Biegespannungen durch die Druckführungen, die das Sägeband beidseits des Schnittgutes<br />

stabilisieren. In Bild 2 erzeugen die beidseits des Sägeblattes angeordneten Magnete keine<br />

Spannung im Bandführungsbereich. Die Biegespannung im Bereich der Bandrollen ist gleich.<br />

Um zu verdeutlichen, welche Unterschiede zwischen den beiden Systemen in Bild<br />

1/Bild 2 auftreten, soll eine Bandsäge mit Rollendurchmesser 1600 mm und Sägebanddicke<br />

1,65 mm und 200 N/mm² Blattspannung angenommen werden. Bei der konventionellen<br />

Bandsäge gemäß Bild 1 entstehen je Sägeblattumlauf 2x 400 N/mm² im Bereich der<br />

Bandsägerollen und 2x 310 N/mm² im Bereich der Druckführungen. Die Bandsäge mit<br />

Magnetführungen erzeugt im Bereich der Führungen keine zusätzliche Spannung; es<br />

entstehen je Sägeblattumlauf nur noch 2x 400 N/mm². Das sind nur noch etwa 56 % der<br />

Dauerbelastung im Vergleich zur konventionellen Bandsäge mit Druckführungen. Der Vorteil<br />

geringerer Dauerbelastung des Sägeblattes kann im praktischen Betrieb umgesetzt werden in<br />

� längeren Sägeblatteinsatz oder<br />

� höhere Schnittgeschwindigkeit bei gleicher Einsatzdauer oder<br />

� höhere Sägeblattspannung bei gleicher Einsatzdauer oder<br />

� dickere Sägeblätter<br />

� einer Mischung aus den obigen Vorteilen.<br />

Neben obigen Vorteilen ist die wesentlich verbesserte Schnittgenauigkeit nicht zu<br />

vergessen, die das Ziel dieser Innovation ist.<br />

111


MAGNETISCHE SÄGEBLATTFÜHUNG; PRAXIS<br />

Die Bilder 3 und 5 zeigen eine Quadro-Bandsäge, in der die Sägen 1 und 2 mit<br />

konventionellen Druckführungen und die Sägen 3 und 4 mit berührungslosen<br />

Magnetführungen ausgerüstet sind. Die Magnetsysteme sind seit 13 Monaten in Betrieb. Der<br />

praktische Vorteil im betreffenden Betrieb zeigt sich laut Sägewerksleitung in wesentlich<br />

besserer Schnittwarengenauigkeit (Bild 6) bei ca. 15 % höherer Leistung. Die Standzeit der<br />

Sägeblätter gegen Rissbildung ist im Vergleich zu den Druckführungen deutlich verbessert.<br />

Bild 3. Ausschnitt aus einer Quadrobandsäge Bild 4. Kontrollfunktionen in Leitstand<br />

•Sägen 1 und 2 mit Druckführungen • Position des Sägeblattes<br />

• Sägen 1 und 2 mit Magnetführungen • Sägeblattabweichung von Ideallinie<br />

• Tendenz der Sägeblattabweichung<br />

• Lenkausschlag im Magneten<br />

• Magnetkraft beim Lenkausschlags<br />

Da es sich um ein elektronisches Regelsystem handelt, können im Betrieb alle<br />

wichtigen Funktionen beobachtet werden und notfalls korrigiert werden. Für den<br />

Anlagenführer steht deshalb ein Bildschirm wie in Bild 4 gezeigt zur Verfügung, aus dem er<br />

jederzeit über den Betriebszustand des Systems informiert wird.<br />

Bild 5. Magnet-Führung im Betrieb Bild 6. Standardabweichung und Differenz Minimumm-<br />

Und Maximum -Werte<br />

LITERATUR<br />

1. DIETZ H., 2007; Vortrag bei CORMA (Corporation Chilena de la Madera),06.-10.<br />

November 2007; Ausbeuteerhöhung durch bogenfolgendes Spanen.<br />

2. DIETZ H., 2005; Vortrag auf dem 45. Internationalen Winterseminar in Rosenheim<br />

Ausbeuteerhöhung durch bogenfolgendes Spanen.<br />

112


3. DIETZ H., 2003: Der Markt verlangt eine Modernisierung der Sägewerkstechnik;<br />

Rynok trebujet obnowljenija lesopilnych proiswodstw; Russische Sonderausgabe<br />

Holzzentralblatt, 129. Jg., September, Seite 10.<br />

4. DIETZ H., 2003: Jedem das seine; Holzkurier, Jg. 58, Nr. 36, Seite 8-9.<br />

5. DIETZ H., 2004: Mehr Ausbeute durch aktive Bogenbearbeitung; Holzzentralblatt,<br />

130. Jg., Nr. 61, Seite 799.<br />

6. DIETZ H., KRZOSEK S., 2005: Roboquad – idealna maszyna dla �redniego<br />

tartaku. „Gazeta Przemys�u Drzewnego”, nr 6, str. 56.<br />

7. DIETZ H., KRZOSEK S., 2004: Vergleichende Untersuchung der<br />

Leistungsfähigkeit und Wirtschaftlichkeit von Band-und Kreissägen im Sägewerk.<br />

<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong>. Forestry and Wood Technology, No 55,<br />

Seite 112 – 118.<br />

Streszczenie: Tendencje rozwoju prowadnic pi� ta�mowych w tartaku. W artykule<br />

zaprezentowano mo�liwo�ci podwy�szenia dok�adno�ci wymiarowej tarcicy produkowanej w<br />

tartakach przy zastosowaniu pilarek ta�mowych. Przedstawiono innowacyjne rozwi�zanie<br />

polegaj�ce na zastosowaniu magnetycznych prowadnic pi� ta�mowych oraz efekty jego<br />

zastosowania w stosunku do prowadnic konwencjonalnych.<br />

Corresponding authors:<br />

Hans Dietz,<br />

Institut für Werkzeugmaschinen<br />

Universität Stuttgart,<br />

Holzgartenstraße 17,<br />

D-70174 Stuttgart,<br />

e – mail: hans.dietz@ewd.de<br />

S�awomir Krzosek,<br />

Katedra Nauki o Drewnie<br />

i Ochrony Drewna,<br />

Wydzia� Technologii Drewna <strong>SGGW</strong>,<br />

ul. Nowoursynowska 159,<br />

02 – 776 Warszawa,<br />

e– mail: slawomir_krzosek@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 114-125<br />

(Ann. WULS – <strong>SGGW</strong>, For. And Wood Technol. 71, 2010)<br />

Die Sägegatter in der deutschen Literatur des 18. Jh.<br />

Nach Sturm und Zedler<br />

EWA DOBROWOLSKA, PAWE� KOZAKIEWICZ<br />

Fakultät für Holztechnologie der Warschauer Naturwissenschaftlichen Universität – <strong>SGGW</strong><br />

Abstrakt: Die Sägegatter in der deutschen Literatur des 18. Jh. Nach Sturm und Zedler. In dem Artikel wurden<br />

zwei wichtige Veröffentlichungen deutscher Autoren zitiert, die über den Bau und die Konstruktion von<br />

Sägegattern berichten. Die erste Arbeit veröffentlichte 1718 der Mühlenbaumeister Sturm in Augsburg, die<br />

zweite ist ein Universal-Lexikon aller Wissenschaften und Künste von Johann Heinrich Zedler aus dem Jahre<br />

1733.<br />

Schlüsselwörter: Holz, Sägegatter, Geschichte<br />

Interessant und wichtig wären Daten über die Erfindung der Sägemühle, d.h. einer<br />

durch ein Wasser- oder Windrad angetriebenen Sägemaschine. Sägemühlen, von Wasser<br />

angetrieben, scheint man schon im 4. Jahrhundert und zwar an dem kleinen Fluß Roer oder<br />

Ruer in Deutschland angewendet zu haben; denn wenn auch Ausonius eigentlich von<br />

Mühlen, welche zum Schneiden von Steinen dienten, redet, so ist es doch wahrscheinlich,<br />

dass man diese zugleich oder doch später als Brettsägemühlen angewendet hat. (Ausonius<br />

Decimus Magnus * Burdigala (Bordeaux) † das. etwa 395 n. Chr. Er schrieb Gedichte,<br />

Briefe in Poesie und Prosa, Epigramme, Gedichte auf eine jenseits des Rheins erbeutete<br />

Kriegsgefangene, das Schwabenmädchen Bisulla u.a. In der Form vollendet, sind die<br />

Gedichte inhaltlich meist unbedeutend. Am berühmtesten ist seine „Mosella“, ein<br />

Preisgedicht auf die Mosel mit der Kaiserstadt Trier.)<br />

Die erste positive Nachricht über eine bestandene Sägemühle findet man in der<br />

vortrefflichen Kunst- und Handwerksgeschichte der Stadt Augsburg, in welcher bemerkt<br />

wird, dass im Jahre 1337 in und um Augsburg solche Mühlen vorhanden waren.<br />

Die erste Abbildung einer der deutschen Holzsägemühlen trägt die Jahreszahl 1612<br />

und findet sich im 3. Teil von Zeising´s Theatrum Machinarum (Zeising, Heinrich, 1612:<br />

Theatri Machinarum Erster Theil. In welchem Vilerley Künstliche MACHINA in<br />

unterschiedlichen Küpfferstücken zu sehen sindt durch welche iegliche schwere last mit<br />

vortheil kan bewegt erhoben gezogen und geführet werden. Daneben eigentlicher erklerung<br />

einer ieden küpfferplatten in sonderheit. Auch mit vorgehenden gründlichen bericht von wag<br />

und gewicht. Und zum beschluß wie eine Künstliche bewegung zu machen darinnen des<br />

gantzen Himmels lauff fürzustellenn. Allen denen, die sich mechanischen kunste, fürnemlich<br />

bauens, befleissen, im druck zusammen geordnet. Durch Henricum Zeising der Architectur<br />

Studiosum. In Verlegung Hennig Grossen des iüngern Buchhaendl.). Das erste Werk, worin<br />

sich brauchbare, für Constructeure von Holzsägemaschinen verwendbare Zeichnungen<br />

vorfanden, veröffentlichte 1718 der Mühlenbaumeister Sturm in Augsburg.<br />

In den folgenden Artikeln (Die Sägegatter in der Literatur...) möchten die Autoren eine<br />

kurze Auswahl der in deutscher Sprache erschienenen Beiträge über die Sägegatter<br />

veröffentlichen, um den Leser mit einem Ausschnitt der Sägegattergeschichte bekannt zu<br />

machen.<br />

114


Nach Sturm [1738]<br />

Tab. XXXIII. biß XXXVI . inclusive...<br />

Das erste Requisitum nun ist, daß die Sägen so wohl in dem auffziehen als in dem<br />

niederziehen schneiden sollten. Dieses ist biß diese Stunde noch in keiner Säge-Mühl erhalten<br />

worden, dessen Ursache ist, weil sie biß dato alle so gebauet worden, daß der Rahm, worinnen<br />

die Säge- Blätter eingesetzet sind, gar schwer an sich selbst in die Höhe zu ziehen ist,<br />

dahingegen er durch seine Schwere selbst willig wieder abwartz gehet, daher seine Last, wenn<br />

er ohne schneiden in die Höhe gehoben wird, der Last gleich ist , wenn er abwarts gehen und<br />

zugleich schneiden soll.<br />

Wie aber die Sperr- Räder, wodurch der Schlitten mit dem darauff liegenden Säge-<br />

Block gegen die Sägen herunter gehet und schneidet, so wäre das andere Requisitum, im Fall<br />

man das erste Requisitum erhalten köntte, daß man auch das Sperr- Rad so einrichtete, daß es<br />

den Schlitten continuirlich im auff- und niedersteigen fortziehe, welches gar nicht so leicht zu<br />

erhalten ist.<br />

Das dritte Requisitum ist, daß der Säge- Rahm leicht und stille, ohne viel Friction und<br />

rumpeln, hin und wieder gezogen werde. An diesem Requisito fehlet es allen Säge- Mühlen<br />

annach sehr, weil sie alle durch den gekröpften Hacken gezogen werden. Den weil die<br />

Stange, durch welche der Säge- Rahm gehoben, wie in den Wasser- Mühlen, oder gezogen<br />

wird, wie in den Wind- Mühlen, an dem Säge- Rahm durch ein Gewinde fest gemachtet ist,<br />

und immer eine Stelle behält, hingegen mit dem andern Ende, womit sie an dem gekröpfften<br />

Hacken hänget, mit demselben immer im Kreiß herum gehet, so ziehet oder schiebet sie fast<br />

immer perpendiculariter, sondern immer schrägs oder oblique, und dazu nach einem sich<br />

stets veränderten Winckel, welche Bewegung ohne sehr starcke Friction nicht geschehen<br />

kan, da hingegen, wann der Säge- rahm immerfort ganzu perpendicuklariter auf und nieder<br />

gezogen oder geschoben würde, nicht nur daran alles viel länger dauren könnte, sondern auch<br />

kaum die Helffte Kraft zu der Bewegung nöthig thäte, weil es insonderheit bey den Mühlen,<br />

die mit Wasser getrieben werden, ein sehr importanter Vortheil wäre.<br />

Das vierte Requisitum ist, daß man einen Block allezeit auf einmal in so viel Theile<br />

zerschneiden könne als man vorgenommen hat, oder daß wenn man nur einen oder zwey<br />

Schnitt durch einen Block thut, man zwey oder drey Blöcke in so viel besondern Säge-<br />

Rahmen schneiden könne. Dieses finden wir in der That an den Schneide- Mühlen zu Berlin,<br />

Hamburg, und vielen Holländischen, die von Wind getrieben werden. Nun ist noch die Frage,<br />

ob man dieses nicht auch auf Mühlen zuwegen bringe könne, welche von Wasser getrieben<br />

werden, welches ich zu bejahen allerdings kein Bedencken trage, wenn man eine raisonable<br />

Quantität von Wasser hat, und alle Friction so viel vermieden wird, als ich es bishero deutlich<br />

genug an die Hand gegeben habe.<br />

Das fünfte Requisitum ist, daß man die Säge-Blöcke durch die Mühle selbst mit<br />

Hülffe von wenig Menschen könne auf die Mühle und auf den Schlitten, und wenn er<br />

geschnitten worden, auch wiederum herab bringen. Dieses geschiehet bey allen Holländischen<br />

Mühlen, die wir auch in diesem Stücke nachahmen wollen, und also h<strong>of</strong>fen gute Anleitung zu<br />

geben, daß man inskünfftige bessere Sägmühlen in Teutschland bekommen, und es selbst den<br />

Holländern darinnen zuvorthun möge.<br />

TAB. XXXIII.<br />

In dieser Tabell stelle ich ganz deutlich vor Augen, wie in Holland die Säge-Blöck auf<br />

den Schlitten gezogen werden durch ein Sperr-Rad, und wie es auf dem Schlitten gegen die<br />

Säge geführet wird durch ein ander Sperr- Rad, und zwar wenn die Säge sowohl auff- als<br />

abwerts schneidet.<br />

Dieses Sperr- Rad A pfleget 490 Zähne zu haben, jeden ½ Zoll breit,....<br />

115


An der Spille dieses Rades sitzet zugleich ein Getriebe B. von 7 Stäben, welche 1�<br />

von einander stehen, welches in eine gezähnte eiserne Stange eingreiffet, welche längs unter<br />

dem Schlitten angemachet ist, und an ihren Zähnen gleiche Theilung hat CD. Es wird dieses<br />

Eisen mitten, oder besser näher an einer Seíte unter dem Schlitten angemachet , an einem<br />

Ende D. mit einem Hacken, der sich um eine eiserne Queer- Stange schläget, am andern<br />

Ende mit einem runden Loch, welches in einen Kloben gestecket, und mit einem<br />

durchgeschlagenen Nagel befestiget wird, damit man es leichtlich wieder könne loßmachen.<br />

Recht über dem Getriebe muß diese Stange noch mit einer Klammer befestiget werden, damit<br />

sie nicht aus dem Getriebe ausspringe. Die Bewegung dieses Rades geschiehet durch<br />

Hülffe der Treib-Hacken IL. und KM. welche unten bey L. und M. gespalten sind, daß sie<br />

über das Rad greiffen, oben aber einen Kloben haben bey I. und K. womit sie an den Vectem<br />

oder die Heb-Stange FG. einer vor dem Ruhe- Punckt H. der andere hinter demselben. Dieses<br />

Vectis FG. gehet durch einen eisernen Ring N. der an dem Säge- Rahm fest sitzet, und also,<br />

wenn dieser gehet, den Vectem mit beweget. Wie weit aber die Puncten I. von H. ab seyn<br />

müssen, wird am besten in einem jedem Casu durch Erfahrung gefunden, indeme der Kloben<br />

I. angehalten, und der Säg- Rahm gantz langsam auff- und nieder gezogen wird, so findet sich<br />

gar leicht, wo man den Kloben fest machen müße, damit der Treib- Hacken das Rad just<br />

einen halben Zoll, das ist eine Zahn- Breite fortschiebe.<br />

Das andere Rad O. welches dienet den Block auf den Schlitten auffzuziehen, und<br />

wenn er geschnitten worden, wiederum abzuziehen, ist eben auf diese Weise gemachet, außer<br />

daß es keine so subtile Theilung, und keine Getriebe, sondern eine wenigst Fuß dicke Spindel<br />

116


hat. Je grösser nun der Radius, dieses Rades gegen seine Welle ist, je weniger Kraft brauchet<br />

man die schwereren Blöcke zu ziehen, aber desto langsamer gehet es auch mit jedem ziehen<br />

zu, wie es allen bekannt ist, die nur die ersten Elementa der Mechanica gelernet haben. Die<br />

Erfahrung aber hat in Holland die Räder gut befunden, daran 44. Zähne jeder vier Zollbreit<br />

ist, aus welcher Zahl nach oben angewiesenem Fundament der Radius leicht gefunden wird,<br />

daß er müsse 2. Fuß 4 1 /5 Zoll halten.<br />

Auf die Welle dieser Räder werden nun zwei Thauen auffgewunden P. und Q. gegen<br />

einander. Das Thau P. geht gerade hinaus nach dem Bloch, der auffgebracht werden soll, das<br />

andere Q. gehet durch das andere Ende der Säg-Mühle durch biß, über den Platz, dahin der<br />

geschnittene Block soll gezogen werden, und nachdem es daselbst um eine befestigte Rolle<br />

gezogen worden, wieder zurück an den geschnittenen Block.<br />

Tab. XXXIV.<br />

In dieser Tabelle wird hauptsächlich die Anhängung des Sägerahms an den gekröpften<br />

Hacken, mit eineigen Remediis der Friction, und anderer guten Vortheile vorgestellet. In<br />

derselben zeiget nun Fig. 1. die weise, wie insgemein bey uns die Sägerahmen (als ABCD.)<br />

mit einer eisernen Stange HI. an einen gekröpfften Hacken K. gemachet werden. Dieser<br />

Hacken wird aufs höchste 10. aufs mindste 8. Zoll ausgebogen, damit der Sägrahm 16. bis 20.<br />

Zoll weit auf und nieder gehe. Noch habe ich in dieser Figur dazu gemachet, wie man den<br />

Sägrahm zurichten müsse, damit große und kleine Sägen können darein gesetzet werden,<br />

indem die beyde Queerhöltzer DE. und FG. also darein versetzet werden, daß man sie hinauff<br />

und herab schieben könne in de. und fg. und daselbst wieder beyderseits mit eisernen Stiften<br />

durch die dazu gebohrte Löcher befestigen. Ferner ist dabey angezeiget, wie man etlicvhe<br />

zarte Säger- Blätter zugleich einsetzen kann, einen Block dadurch in dünne Bretter zu Tischer<br />

Arbeit, und sonst auf einmal zu zerschneiden, nemlich durch Hülffe der beyden Eisen MN.<br />

und OP. die bey M und O. wie Kämme eingeschnitten sind, darein die Säge-Blätter gesetzet,<br />

und durch einen durchgeschobenen Nagel befestiget werden, das untere Eisen wird dem an<br />

den Sägerahm bey N. mit einem eisernen Keyl, das obere bey P, mit einer Schraube<br />

angezogen, die Sögen rechtschaffen fest zu spannen.<br />

Die zweite Figur giebet deutlich das Inconveniens zu erkennen, welches aus dieser Art<br />

die Sägen zu treiben erwächset, wovon ich eben schon Meldung gethan. Denn, so der<br />

gekröpffte Hacken KI nach der Seite stehet, so treibt er die Stange HI, an dem Ende I,<br />

perpendiculariter in die Höhe, da doch ihre Linea directionis nach I. zugehet, der Punct´H.<br />

aber auch nicht anderst als perpendiculariter in die Höhe gehen kann, weil er an dem<br />

Sägrahmen stehet, der in seinen Faltzen eingeschlossen stehend nicht anderst gehen kann, da<br />

er hingegen nach i. würde hinüber getrieben werden, wenn er nicht eingeschlossen wäre,<br />

woraus klar ist, daß diese Bewegung nicht ohne große Friction und Schwerigkeit geschehen<br />

könne, welche auch die Sägrahmen mit ihrem poltern und Knarren deutlich genug zu<br />

erkennen geben.<br />

Derowegen hab ich ín der 3ten Figur eine Art an die Hand gegeben, welche schon viel<br />

egaler und stiller treibet. Auf diese Erfindung bin ich gebracht worden durch den gekröpfften<br />

Hacken in einem frey schwebenden Oval Ring, welchen Zeising p. 111 seines Theatri<br />

Machinarum Fig. 13. 14. 15. in Kupfer vorgestellet, in dem Text aber nicht mit einem Wort<br />

beschrieben. Dann ob es gleich vor Augen lag, daß dieselbige Construction gar nicht<br />

practicabel war, brachte sie mich doch auf die in gegenwärtiger Figur vorgestellte<br />

Construktion, die ich in Modellen sehr gut befunden, daher ich auch einen eben so guten<br />

Effect davon in dem großen h<strong>of</strong>fe. Es bestehet aber alles in einem Loch, das an beyden<br />

Enden rund, eben so hoch als der gekröpffte Hacken, und zweymahl so lang als die Kröpffung<br />

hoch ist, welches Loch mit Kupffer auszufüttern ist oder mit Messing. Es muß dieses Loch<br />

in einem Brett oder stück Holz seyn, das in Faltzen beyderseits eingeschlossen ist, und<br />

117


darinnen auf und Abgehet. Bey dieser Figur habe zugleich eine andere Art gezeiget, wo man<br />

mit stärckern Sägeblättern einen Block auf einmahl in stärckere Bretter zerschneiden will,<br />

wie man die Sägen jede besonders einsetzen soll, doch daß sie unten und oben durch starcke<br />

Bleche ab gehen, als in der vierten Figur vorgebildet sind, damit man sie zu aller Zeit in<br />

gleicher Distanz behalte und immer eine Dicke von Brettern schneide. Wenn man also nur 4.<br />

paar solche Eisen hat, kann man viererley Sorten Bretter schneiden, nemlich nach der<br />

Oberländischen Eintheilung gantze drey viertel- und halbe Spund-Dielen oder Bretter und<br />

ordinari- Tischer- Bretter.<br />

Die 5te Figur giebet nun ferner zu erkennen, wie man das vortrefflich, in Büchern<br />

schon lang vorgestellete, und von einigen Künstlern mit großen Nutzen ins Werck gerichtete.<br />

dem ungeachtet aber doch noch gar wenig bekante mittel, welches ich oben schon bey den<br />

Papier- Mühlen an die Pumpen und Rechen appliciret habe, auch an den Sägen appliciren,<br />

und daselbst mit großer Unterbrechung der Friction appliciret habe, auch an den Sägen<br />

appliciren, und daselbst mit großer Unterbrechung der Friction, und folgewnds mit großer<br />

Erspahrung der Bewegungs Krafft, und mit langer Conservation der Machine gebrauchen<br />

könne. Es wird nemlich das Getriebe A. von 10. Stäben nur mit fünffen besetzet, die übrigen<br />

fünff hinweg gelassen, der Radius des Getriebes biß an das Centrum der Stäbe ist 8. Zoll, so<br />

ist die Theilung oder Distanz der Stäbe bey nahe 5. Zoll,. Dazu wird ein Rahm BC. gemachet,<br />

desen beyde äußere Schenckel C.I. in eben dem Faltz auf nieder gehen, in welchem der<br />

Sägerahm beweget wird, die beyde mittlere C.2. hingegen begreiffen oben beschriebenes<br />

Getriebe in sich durch Hülffe von zehen Zähnen, darein die Stäbe des Getriebes so just passen<br />

als nur möglich ist, deren fünff auf einer Seite, fünff auf er andern Seite stehen, doch so daß<br />

die Zähne der einen Seite just mitten auf die zwischen Spatia der andern Seite eintreffen.<br />

Dieser Rahm wird nun unten an den Sägrahm ohne alles Gewinde fest gemachet, so wird er<br />

recht leicht und stille können hin und wieder getrieben werden. Dich solches noch besser u<br />

effectuiren, kann man an den Seiten des Rahms, womit er in dem Faltz beyderseits lauffet<br />

eiserne oder meßnige Rollen anmachen, um aller Friction desto besser vorzubauen, und an<br />

den Sägerahm Gewichte D. und E. anhängen, die just dem Sägerahmen, und dem worinnen<br />

das Getriebe umlauffet miteinander die Gleich- Wage halten wodurch erhalten wird, daß der<br />

Sägerahm mit gleicher Krafft auf und nieder gezogen wird, und so wohl im auf als absteigen<br />

gleicher Weise arbeitet und schneidet.<br />

Die 6te Figur, giebet noch eine andere Art die Sägerahmen zu reciprociren an die<br />

Hand. Es werden nehmlich an den Sägerahm beyderseits gezahnere Eisen AB. befestiget, und<br />

darein Getriebe versetzet C. die auch nur an einer Helffte mit Stäben dörffen versehen seyn.<br />

Zu äußerst an einer oder noch besser an beyden Seiten werden schwere Schwängel DE:<br />

angehänget. Indeme nun diese Schwängel beweget werden, treiben sie durch die Getriebe C.<br />

den Sägrahm auf und nieder, und wenn die Schwängel einmahl in die Bewegung gebracht<br />

sind, können sie mit geringer Mühe darinnen erhalten werden. Aber der Sägrahm muß<br />

zuforderst durch Contrepoids im auf und niedergehen in eine accurate Gleich-Waage gebracht<br />

seyn, wie denn solche Contrepoids bey Sägmühlen fast vor ein Essentiales und nöthiges<br />

Stücke zu halten sind. Man könnte diese manier Sägen zu treiben mir großen Nutzen<br />

gebrauchen an statt des Sägens mit der Hand, wo es die Mühe nicht lohnet Sägemühlen zu<br />

bauen, also daß man solche Hand-Mühlen von einem Ort zu dem andern leicht bringen, und<br />

wenn nur die Blöcke, durch Männer auffgebracht werden, und die Schwängel einmal in<br />

Schwung gebracht werden, nachmahls durch einen Knaben fortreiben könne, weil es nur eine<br />

schwache Impression gebrauchet bey einer Vibration, die Schwängel immer in gleich starcken<br />

Schwung zu erhalten. Der Schlitten mit guten Rollen versehen, kan auf den Faltzen zweyer<br />

anderer ein wenig abwarts gelegten Balcken durch Gewichte fortgezogen werden, nach der<br />

Art, wie es in Böckleri Theatro Machinarum Fig. 63 vorgestellet ist, und also eine solche Säg-<br />

Mühle, darauf Höltzer höchstens 14 Fuß lang geschnitten werden, so leicht zusammen<br />

118


gerichtet und von einem Ort an den andern gebracht werden, als eine große Pfahlramme,<br />

daher diese Invention gar hoch zu schätzen ist, zu der ich Anlaß aus einer solchen Machine<br />

mit einem Schängel genommen, die ich zu Dömitz gesehen, welche aber impracticabel<br />

gewesen. In gegenwärtiger Figur habe ich eine Manier gezeigt solche Sägen mit sehr wenig<br />

Wasser zu treiben, wenn man nemlich ein Holtz IK. dergestallt umtriebe, daß bey jeder<br />

Vibration, wenn der Schwengel eben wieder zurücke gehen wollte, dasselbige daran schlüge,<br />

und also den natürlichen Abgang der Krafft der Vibrationen jederzeit ersetzete,<br />

Tab. XXXV.<br />

Wenn man so viel Wasser zu einer Säg- Mühle hat, daß man eine große Gewalt mit<br />

treiben kann, c. gr. wann man einen Bach hätte der zum wenigsten 3. Fuß tief und 5. Fuß<br />

breit Wasser führet, und 5. bis 8. Fuß fall hat, könte man mit großer Menage und<br />

vortrefflichem Nutzen die hier vorgestellte Mühle bauen, die sich einem jeden Machinen<br />

verständigen alsobald durch ihre Simplicität recommendieren kan. Es ist der Sägrahm AB.<br />

daran so schwer zu machen, daß wenn er in die Höhe gezogen worden, durch seine eigene<br />

Last herab dringet und das Holz schneidet. Wie groß das Gewicht seyn müßte, ist leicht zu<br />

ermessen, wenn man der stärckesten zwey Männer Krafft schätzet, welche sie haben müssen<br />

einen Block von dem härtesten Holz, der 2 ½ dick zu schneiden, und daraus abzunemhen, daß<br />

ein Sägrahm schwer genug ist, wenn er zwey Centner zum schneiden und höchstens einen<br />

Centner schwer zu Überwindung der Friction gemachet wird. Dieser Rahm wird durch zwey<br />

Seile oder Riemen ohne Ende gezogen, welche über die Rollen EH. und FG. gezogen sind,<br />

deren oberste man auch wohl also zurichten könnte, welches in dem Riß nicht angedeutet ist,<br />

daß man sie durch Schrauben in die Höhe ziehen, und die Riemen dadurch nach belieben fest<br />

angezogen oder nachgelassen werden könten. An der Spille der untern Rollen H. und G. sitzet<br />

ein Sternrad I. dessen Theilungs Cirkul um ein klein gemerckigen weniger als 1. Fuß 4. Zoll<br />

am Radio hat, und in zwanzig Theile à 5. Zoll getheilet ist, darauf nur fünff Zähne würklich<br />

gemachet, die übrigen aber hinweg gelassen sind. Dieses zu treiben sitzet an der Welle des<br />

Wasser- Rades K. ein Getriebe zu 30. Stäben eingetheilet, daher der Radius des Theilungs-<br />

Cirkuls um ein gar weniges kleiner als 2. Fuß ist. Es sind aber wechsels Weise fünff Stäne<br />

weggelassen. Wenn derowegen die fünff Stäbe von M. zu N., die fünff Zähne des Stern-<br />

Rades durchlauffen, und also den Punct P. an die Stelle O, gebracht haben, so ist der<br />

Sägerahm 20. Zoll hoch gehoben, so bald sich aber die Stäbe und Zähne auseinander gelöset<br />

haben, fället der Sägerahm wieder herunter, und ziehet damit das Sternrad an seine alte Stelle,<br />

indessen aber kömmmt das Getriebe L. mit dem Stabe Q, wieder an den Zahn O. und hebet<br />

damit den Sägerahm wieder in die Höhe, und so fort an.<br />

Tab. XXXVI.<br />

Noch eine Art die Sägen zu treiben, habe ich in dieser Tabelle vorstellen, und zugleich<br />

etwas weniges von dem Schlitten melden wollen, damit die Materia von den Sägmühle<br />

vollständig abgehandelt würde. So wird nun hier der Standriß und eine Helffte des<br />

Grundrisses von dem untern, nebst einer Helffte des Grundrisses von dem obern Stock<br />

folgende umstände deutlich anzeigen, daß die Mühle zwei Gänge hat. An jedem Gang wird<br />

der Sägrahm A. getrieben durch Hülffe eines gezahnten Eisens BC. (welches desto besser zu<br />

erkennen die Wasserrad- Welle mit ihrem Getriebe nicht gantz ausschattiret worden) durch<br />

Getriebe DE. ( so nur in dem untern Grundriß zu sehen) welches auf zwantzig Stäbe getheilet<br />

ist, aber würcklich nur fünff davon hat. Die Weite der Stäbe von eines Mitte bis zu des andern<br />

ist 5. Zoll. An diesen Getrieben sitzen außen Kammräder, von gleicher Größe und Theilung,<br />

und kommen fünff von ihren Zähnen mit den Stäben der Getriebe just überein, die folgende<br />

fünff Zähne an beyden Seiten sind auch ausgelassen, aber die letzten, welche den ersten<br />

gerad gegen über stehen, sind wiederum daran gemachet, Jedes dieser Kammräder wird nicht<br />

119


umsondern hin und wieder getrieben durch zwey Getriebe HI. so an der Welle des<br />

Wasserrades sitzen, und auf 40. Stäbe getheilet sind, aber wechsel Weiß sind fünff Stäbe<br />

eingesetzet, und fünff wiederum weggelassen. Und zwar ist zu mercken, daß beyde Getriebe<br />

solcher Gestakt angesetzet werden müssen, daß die Theilungs Puncten an beyden accurat<br />

gegen einander zutreffen, und wo an einem fünff Stäbe weggelassen sind, sie hingegen an<br />

dem andern stehen, welches eine so gleiche, ungezwungene und recht perpendiculare<br />

Reciprocation der Sägrahmen bringet, als schwerlich einige andere Art leisten kan. Denn der<br />

Sägrahm wird recht in der Mitten und dazu gantz perpendiculariter gehoben, und weil die<br />

beyden Getroiebe in der That nur eines sind, und an einer Spindel sitzen, findet auch sonst<br />

sich keine sonderliche Gelegenheit zur Friction.<br />

Von dem Schlitten, von welchem oben bereits das principaleste erinnert worden, wie<br />

er nehmlich durch das Treib-Rad und die eiserne gezahnte Stange fortgezogen werde, ist nur<br />

etwas weniges noch zu melden. Es wäre vorerst die Weise nicht zu verachten, da er durch<br />

angehängte Gewichte gezogen wird, wenn man leichtlich Stellen bekommen könne, da das<br />

Gewicht immerfort hinabgehen könnte, zweytes nicht so beschwerlich wäre, die Gewichte<br />

alsdenn wiederum in die Höhe zu bringen, und drittens der Zug nicht ein wenig ungleich<br />

wäre, weil die Gewichte, je tieffer sie hinunter kommen, ach desto schwerer werden. Denn<br />

sonst wäre sie gar simpel und von wenig Kosten, Der Schlitten muß bekannter Massen auf<br />

Rollen gehen, da nur die Frage noch ist, ob es besser sey einen glatten Boden in der<br />

Sägemühle zu legen, und die Rollen unter dem Schlitten zu befestigen, oder die Rollen in dem<br />

Boden zu befestigen, und den Schlitten darüber passieren zu lassen. Da halte ich nun, wenn<br />

120


man den Schlitten nicht also zurichten will, daß man ihn, nach dem Unterschied der darauf<br />

kommenden Blöcke weit und enge machen könne, kein großer Unterschied sey, ohne daß<br />

man weniger Rollen nöthig hat, wenn man sie unter den Schlitten befestiget. Ich hielte aber<br />

davor, daß es dienlich wäre, um desto gewisser und gerader zu schneiden, wenn man den<br />

Schlitten enger und weiter machen könnte, welches gar leicht geschehen kann, wie bey P. ist<br />

entworffen worden, wenn nemlich in den Queer- Höltzern Faltzen gemachet würden, darinnen<br />

die untere Höltzer näher wenn der Block auffgebracht worden andere Höltzer legete, und<br />

durch Keyligen fest an den Block antreibe, so läge er gantz fest in dem Situ, darinnen er<br />

anfangs geleget worden, und brauchete es weiter keines anklammerens.<br />

Die Bret= oder Schneide= oder Säge=Mühle<br />

Nach Zedler [1733]<br />

Die Bret= oder Schneide= oder Säge=Mühle ist ein recht nützliches Werck, wo es ein<br />

bequemes Treib=Wasser und Gefälle, auch viel haubares unweit herzuführendes Gehölze<br />

haben kan, dieweil man allezeit die Breter, so wohl des harten, als des weichen Holzes, nicht<br />

allein zu allem Bauen höchst von nöthen hat, sondern man kan dieselben in Ermangelung des<br />

Baues, in grossen Städten an die Tischler, Schreiner und Zimmerleute, ja fast an die meisten<br />

Handwercker zu ihrer Nothdurfft häuffig vor bare Zahlung verkaufen, und werden von<br />

Eichen=Holtze dicke Pfosten zu Mühl= und Camm=Rädern, Laveten derer Canonen und<br />

Mortiers, Bären Kasten, Aufzug= und Fall=Brücken, Fall=Thüren und Fänge wilder<br />

reissender Thiere, und dergleichen festen Arbeit, als auch von eichenen Bretern die wohl<br />

verwahrte Kasten, Laden, Thüren, Schränke und Fenster=Rähmen, ja wohl auch endlich die<br />

Särge wohl bemittelter Leute, gemacht. Von der Buche und Esche werden die Mandeln oder<br />

Rollen, ingleichen schöne Tisch=Blätter und dergleichen verfertiget. Aus Bircken=Brettern,<br />

werden verschiedene musikalische Instrumente gemacht. Die Erlenen=Breter dienen zu<br />

immerwährender Nässe, als Fisch=Kasten, Ahl=Fängen und dergleichen. Die Aespen oder<br />

Linden, weil sie gar zu weich, sind zu anders nichts dienlich, als wohl inuenierte Modelle<br />

daraus zu schneiden und hierzu nach Bedürffniß dicke Pfosten oder dünne Breter schneiden<br />

zu lassen. Die Tannene=Bretter, weil sie leicht, weiß, zart und schön sind, geben viel<br />

musikalische Instrumente, wie im Alten Testament geschehen; desgleichen, weil sie leicht<br />

und zart, werden hieraus Reise=C<strong>of</strong>fre, ingleichen Laden, Schräncke und dergleichen mehr<br />

gearbeitet. Die Fichtene Bretter dienen zu Spinden derer Stuben, Kammern und<br />

Korn=Böden; doch hält man die Kiefern, weil sie hartziger, vor dauerhafter.<br />

Ein jeder Bret=Stamm, (Bret=Stamm, so wird der Schaft eines Baumes, welcher sich<br />

zu Bretern Schickt, genennet; Denn aus diesen werden etliche Bret=Klötzer, hieraus aber auf<br />

einer Schneide= oder Sägemühle Breter von verschiedener Länge, Breite und Dicke<br />

geschnitten) so hierzu tüchtig ausgelesen werden soll, muß nothwendig einen starcken,<br />

wenigstens Klaffter dick geraden, und ohne alle Aeste, glatt und reinen Schafft oder Stamm<br />

haben, nach des Bodens Gelegenheit, von zwei biß drey Klötzer hoch gewachsen, deren<br />

jegliches 8. biß 10 Ellen lang sey, und da auch nur ein Klotz davon zu nutzen, muß solcher<br />

doch rein, von starcken Aesten, weder weiß=klüfftig, noch faul=fleckigt, schwammigt, oder<br />

Kern=schäligt seyn, weil es sonst nur hervon fleckigte, ästige, oder untaugliche Breter geben<br />

wurde, da im Aushobeln der Ast ausspringet und ein Loch machet, ob gleich nicht anfänglich,<br />

doch mit der Zeit, wenn es dürre worden. Ingleichen darff das Tangel=Holtz keine<br />

Harz=Gallen oder Pechrisse haben, weil solche rothe gerstige Flecken verursachen, auch nicht<br />

schwammigt oder knötigt seyn, welches alles der Augenschein deutlicher zu erkennen geben<br />

kan und der Praxis hierbey am besten lehren wird.<br />

Was nun die Bret=Mühle an treibendem Gezeug betrifft, erfordert selbige fürnemlich<br />

einen verständigen Wasser=Müller, solches leichte und ohne beschwerlichen Vorgelege<br />

anzugeben, wie dann ein jeder seine Erfindung hat. Insgemein und vornehmlich muß das<br />

121


Wasser=Rad, nach Höhe seines Gefälles, wie auch Breite und Menge des Wassers, entweder<br />

mit weiten, oder engen Schauffeln, von dünnen, leichten Tannen=Bretern gemachet seyn,<br />

damit es nicht zu schwer, sondern fein flüchtig und schnell umlaufe, und die Welle, mit dem<br />

daran gemachten innern Stirn=Rade und Kämmen zugleich umtreibe, welche Kämme die<br />

Kumpt=Welle und das Schwanz=Rad treiben, und so dann am Ende derselben den<br />

Krumm=Zapfen umdrehen, daß solcher, wie an einem Schleiff=Stein, den Lencker, welcher<br />

unterm Gatter angemacht, das Gatter und die Bret=Säge zugleich auf und niederschübe und<br />

den Bret=Klotz durchschneide. Weil nun die Säge in ihrer Bewegung auf und nieder<br />

beständig an einem Orte bleibet, so muß der Bret=Klotz alle Schnitte gegen die Säge rücken,<br />

und wird hierzu das Schübe=Zeug durch das Gatter eben beweget, daß die Schübe=Stange<br />

den Zahn=Ring eingreiffe und fortrücke, welcher das Getriebe und Stirn=Rädgen unter sich<br />

umtreibet. Die Welle an dem Stirn=Rädgen hat darneben ein Getriebe, welches über sich den<br />

Kamm=Baum an dem Wagen ergreiffet und solchen allgemach fortschübet; wenn nun der auf<br />

solchem Wagen fest geklammerte Bret=Klotz einmal durchgeschnitten, wird der Wagen<br />

zurück geschoben, so entweder von dem Müller oder vermittelst eines absonderlichen<br />

Getriebes nach eines jeden Erfindung geschiehet, und der Klotz loßgemacht, nach Stärke<br />

derer Breter oder Pfosten, vorn und hinten gestellet, und zum neuen Schnitt angesetzet wird.<br />

Wann denn der Klotz mit seinen Brettern geschnitten, wird es am füglichsten<br />

berechnet, wenn es zusammen mit seinen Schwarten, wie es gewesen, vorgezeiget wird: Oder<br />

es werden sonst auch die Breter, damit sie desto besser in der Luft trocknen, gebührlich<br />

angeschräncket, und entweder zum Bauen und nöthigen Gebrauch, oder zum Verkauff fertig<br />

gehalten: Letzlich ist nöthig zu erinnern, daß die im Wald abgehauene Bret=Klötzer nicht<br />

allzulang in ihrer Rinde auf blosser Erde und angezogener Feuchtigkeit liegen bleiben, denn<br />

sonsten dieselben leichtlich unter der Rinde im Splint blau anlauffen oder ganz verstocken<br />

möchten, daß hieraus nur lauter untüchtige Breter und vergebliche Mühe zu schneiden wäre:<br />

W<strong>of</strong>ern sie aber liegen sollen, muß man die Rinde davon abschälen und sie auf Träger zu<br />

legen, am allerbesten aber ist es, daß man sie gantz frisch schneide, da sie denn dauerhaffter<br />

sind. In denen Säge=Spänen halten sich die Schlangen gerne auf.<br />

Wo die Waldungen groß, und <strong>of</strong>ftmahls viel tausend Klafftern in Brüchen und<br />

Sümpfen verderben, die sonst zu Nutz gebracht werden können, so ist es gar rahtsam<br />

Schneide=Mühlen anzulegen, indem man hierdurch das Holtz gar wohl nutzen und vertreiben<br />

kan. Es ist aber doch auch nicht dienlich, die Höltzer mit allzuvielen Bret=Mühlen zu<br />

überhäuffen, sondern man muß hierbey sein Absehen auf solche Waldungen richten, wo die<br />

Höltzer nicht genutzet werden können, oder sonst in grossem Ueberschuß zu finden sind.<br />

Man muß bey denen Schneide=Mühlen alle Brüche und dürren Höltzer, so die Bloche<br />

geben, mit dazu anwenden: Zu Vermeidung alles Unterschleiffes muß man jeden Bloch zuvor<br />

mit dem Wald=Eisen bezeichnen und zuposten, und wird der Bloch nach einem gewissen<br />

Preiß von dene Schneide=Müllern erhandelt. In Ansehung des Preisses hat man vor Alters bey<br />

Verkauffung solcher Bloche den Herrschaftlichen Nutzen nicht sonderlich beobachtet,<br />

massen man in denen Privilegiis derer Schneide=Mühlen findet, wie solche Bloche ohne<br />

Unterscheid vor 1.Gr.6. Pf. auch 4 Gr. bezahlet, und die Giebel=Bloche zweye vor einen<br />

gerechnet worden, darinnen der Herrschaft gar viel Schaden geschehen: es ist dahero viel<br />

vorteilhaffter, wenn die Bloche nach dem Modell gerechnet werden. Das Modell ist aber<br />

dasjenige, nach welchem die Breter zu schneiden denen Müllern vorgeschrieben ist. So<br />

bestehet das Modell eines drey viertheiligen Bretes in 16. Zollen und 14. Schuhen Wird nun<br />

nach dem Maaß der 16. Zoll auch die Dicke des Blochs ausgemessen, welches man an dem<br />

einen Ende des Blochs ins Kreutz zu thun pfleget, so heist ein solcher Bloch ein<br />

Dreyvierteltheil=Bloch, welcher mit 4. Gr. bezahlet wird. Je dicker solcher Bloch ist, je mehr<br />

muß der Preiß steigen, und zwar alle 4. Zoll um 2. gr. da den zuweile ein Bloch auf 16. gr.<br />

kan gebracht werden. Hingegen so ein Bloch unter 16. Zoll ist, kommt solcher vor 2. gr.<br />

122


dieses ist der rechte Preiß, wodurch weder Herrschaft noch Unterthanen einigen Schaden<br />

haben können. Was die übrigen Unkosten anlanget, die der Müller anwenden muß, ehe er die<br />

Bloche zur Mühle bekommt, so muß er 9. bis 10. pf. geben, den Bloch zu machen, das<br />

Schock Bloche zu schläuffen 20. Thaler Wenn andere Leute auf der Mühle Breter schneiden<br />

lassen, so geben sie von der Diele 3. Heller. Hingegen wird der Herrschaft gemeiniglich<br />

ausbedungen, zu ihrem Bauen um die Helffte zu schneiden.<br />

Die Müller dürften die Breter nicht nach eigenem gefallen so lang und breit machen,<br />

wie sie wollen sondern es müssen die Dielen nach Herrschaftlichen Zoll und Modell<br />

geschnitten werden. Es gibt derer Breter viererley, als erstlich die Schwarte, darnach das<br />

Schwarten=Bret, welche beyde kein vorgeschriebenes Modell haben, ferner das Schmahl=B.,<br />

so 12. Zoll in die Breite, und in die Dicke einen Zoll haben muß, und endlich das<br />

Dreyviertheil=Bret, welches in die Breite 16. Zoll, und in die Dicke 1 1/2 Zoll hat. Alle<br />

müssen in die Länge 14. Schuh haben. Nachdem die Breter bestelet werden, nachdem machen<br />

sie solche 16. 17. 18. bis 20 Schuhe lang, jedoch auch nicht länger , weil der Wagen auf der<br />

Schneide=Mühle nicht länger ist. Solche Breter werden alsdenn nach der Güte um 1 gr. 14.<br />

16. 18. auch 20 pf. ingleichen 2. gr verkaufft. Aus denen Blochen werden ferner Bohlen<br />

geschnitten, die aber kein ordentliches Modell haben, sondern nachdem sie bestellet werden,<br />

auch dicke oder dünne, breit oder schmal sind, und giebt es daher zwey-Zollige,<br />

drittehalb=Zollige, drey=Zollige Bohlen und so fort. Wenn man aber wissen will, wie viel<br />

Breter aus einem jeden Bloche können geschnitten werden, so muß man erstlich solche<br />

Bloche in Bohlen austheilen, und ausmessen, da man denn bald wissen kan, wie viel Breter<br />

aus dem Bloche selbst gemacht werden können, massen ein voll Schock oder 60. Stück<br />

zwey=Zollige dreyviertheil Bohlen, nachgehends an dreyviertheil=Brettern 3 Wald=Schock<br />

das Wald=Schock zu 40 Stück gerechnet, geben muß, an Schmal=Bretern giebt es 180 Stück<br />

oder drey volle Schock. So viel Waare kan wiederum mit 15. dreyviertheil Blochen dem<br />

Schneide=Müller ersetzet werden, da denn das Schneider=Lohn mit eingerechnet wird. Aus<br />

einem vollen Schock schmalen anderthalbzolligen Bohlen kan man ein voll Schock und 30.<br />

Stück schmale Dielen bringen, und wird diese Waare auf dem Stamm mit achtehalb Blochen<br />

ersetzet. Also kan man auch, wenn man Bloche erst in Dreyviertheil=Bretern rechnet,<br />

alsdenn wissen, wie viel solches schmale Breter gebe, nemlich ein voll Schock<br />

Dreyviertheil=Breter von 14. Schuh lang, 15 Zoll Breit, und einen Zoll dicke, machen 90.<br />

Stück 90. schmale Breter, und wird solche Waare gleichfalls auf dem Stamme mit achtehalb<br />

Blochen ersetzet. Sechtzig Stück schmale Brete, so 12 Zoll breit, und 1 Zoll starck sind<br />

machen 5. Bloche, auf jedem Bloch 12. Stück Breter gerechnet. Es pflegt also alle diese<br />

Waare mit Blochen ersetzt zu werden, wenn die Herrschaft solche zu ihren Gebäuden<br />

gebrauchet.<br />

Noch ist zu mercken, daß die Schneide=Müller mit allem Fleiß verhüten müssen, daß<br />

die Wasser nicht durch die Säge=Spähne verderbet, oder die Teiche, so etwan dran gelegen,<br />

damit ausgefüllet werden, sondern man muß sie jedesmal ausschaffen, damit keine in die<br />

Gräben oder Flüsse kommen, weil solche denen Fischen überaus schädlich. Im übrigen<br />

müssen sich die Schneide=Müller aller Orten nach denen Forst=Ordungen jedes Ortes zu<br />

bezeigen wissen.<br />

LITERATURVERZEICHNIS<br />

Sturm Leonhardt Christoph 1738: Vollständige Mühlen Baukunst Darinnen werden. I.<br />

Alle Grundreguln so zu der Praxi nöthig, die doch gar wenigen recht bekannt sind freülich<br />

angewiesen; II. Die Vortheile die man bey Anlegung der Wasserräder alle Sorten von<br />

Maschinen zutreiben in acht nehmen muß, Auf den höchsten Grad der Vollkommenheit<br />

gebracht; III. Was insonderheit an Korn- Graupen- Papier- Öhl- Pulfer- Täg- Steinschneide-<br />

Bohr- Schleiff- Senken- Kessel- Eisendrath- Dächsel- und Dreschmühlen Zuverbessern,<br />

123


aufrichtig entdeckt. Also daß dieses Werck wohl vor eine Entdeckung der aller raresten und<br />

vortrefflichsten Mechanischen Vortheile in der Praxi darff angegeben werden. Kammer- und<br />

Policey- Räthen- Beamten- Statt- Magistraten, Kaufleüthen und allen sowohl der großen<br />

Oeconomie als Mechanischer Künste beflissenen Zum Nutzen getreulich eröffnet von<br />

Leonhardt Christoph Sturm Ausgpurg Verlegt von Jeremias Wolff Kunsthändlern, A o 1738.<br />

Cum Ptivilegio Sac. Cas. Majestatis.<br />

Zedler Johann Heinrich, 1733: Großes vollständiges Universal=Lexicon aller<br />

Wissenschaften und Künste, Welche bißhero durch menschlichen Verstand und Witz<br />

erfunden und verbessert worden, Darinnen so wohl die Geographisch-Politische Beschreibung<br />

der Erd- Kreyses, nach allen Monarchien, Käyserthümern, Königreichen, Fürstenthümer,<br />

Republiken , freyen Herrschaften, Ländern, Städten, See=Häfen, Festungen, Schlössern,<br />

Flecken, Aemtern, Klöstern, Gebürgen, Pässen, Wäldern, Meeren, Seen, Inseln, Flüssen, und<br />

Canälen; samt der natürlichen Abhandlung von dem Reich der Natur, nach allen<br />

himmlischen, lufftigen, wässerigen und irrdischen Cörpern, und allen hierinnen befindlichen<br />

Gesteinen., Planeten, Thieren, Pflanzen, Metallen, Mineralien, Saltzen und Steinen etc. Als<br />

auch eine ausführliche Historisch-genealogische Nachricht von den Durchlauchten und<br />

berühmtesten Geschlechtern in der Welt, Dem Leben und Thaten der Käyser, Könige,<br />

Thurfürsten und Fürsten, grosser Helden, Staats-Minister, Kriegs-Obersten zu Wasser und zu<br />

Lande, den vornehmen geist= und weltlichen Ritter=Orden etc. Ingleichen von allen Staats=<br />

Kriegs= Rechts=Policey und Haußhaltungs=Geschäften des Adelichen und bürgerlichen<br />

Standes, der Kauffmannschaft, Handthierungen, Künste und Gewerbe, ihren Innungen,<br />

Zünften und Gebräuchen, Schiffsfahrten, Jagden. Fischereyen, Berg=Wein=Acker=Bau und<br />

Viehzucht etc. Wie nicht weniger die völlige Vorstellung aller in den Kirchen=Geschichten<br />

berühmten Alt=Väter, Propheten. Apostel, Päbste, Cardinale, Bischöffe, Prälaten und<br />

Gottes=Gelehrten , wie auch Concilien, Synoden, Orden, Wallfahrten, Verfolgungen der<br />

Kirchen, Märtyrer, Heiligen, Sectierer und Ketzer aller Zeiten und Länder, Endlich auch ein<br />

vollkommener Inbegriff der allergelehresten Männer, berümter Universitäten, Academien,<br />

Societäten und der von ihnen gemachten Entdeckungen, ferner der Mythologie, Alterthümer,<br />

Müntz=Wissenschaft, Philosophie, Mathematic, Theologie, Jurisprudentz und Medicin, wie<br />

auch aller freyen und mechanischen Künste, samt der Erklärung aller derinnen<br />

vorkommenden Kunst=Wörter u.s.f. enthalten ist. Nebst einer Vorrede, von der Einrichtung<br />

dieses Mühsamen und grossen Wercks Joh. Pet. von Ludewig, JCti, Königl. Preussischen<br />

geheimen und Magdeburg. Regierungs=und Consistorial=Raths, Canzler bey der Universität,<br />

und der Juristen=Fakultät Praesidis Ordinarii, Erb=und Gerichts=Herrn auf Bendorff, Preß<br />

und Gatterstätt. Mit Hoher Potentaten allergnädigsten Privilegiis. Erster Band. A. –Am. Halle<br />

und Leipzig, Verlegts Johann Heinrich Zedler, Anno 1733.<br />

Streszczenie: Traki w niemieckiej literaturze 18 wieku na podstawie prac Sturm’a i<br />

Encyklopedi Zedlera. Prze�omem w technikach przetarcia drewna by�o zastosowanie do<br />

nap�du traków si�y wody. Czas kiedy do tego dosz�o jest nadal sporny. Z jednej strony<br />

odnajdywane s� zapiski o takich wynalazkach ju� w staro�ytno�ci. Przyk�adowo rzymski<br />

pisarz i poeta Ausonius Decimus Magnus w poemacie Mosella z 395 roku n.e. opisuje traki<br />

poruszane ko�ami wodnymi posadowione na rzeczce Roer lub Ruer w ówczesnej Galii.<br />

Wydaje si� jednak, �e znajomo�� tej techniki nie by�a powszechna. Pierwsze szkice<br />

pracuj�cych w Niemczech traków do drewna zamieszczono dopiero z trzy-tomowej ksi��ce<br />

Zeisinga pod tytu�em Theatrum Machinarum wydanej w 1612 roku. Na prawdziwie<br />

in�ynierskie (konstrukcyjne) rysunki takich urz�dze�, trzeba by�o poczeka� przez kolejne<br />

stulecie, a� do wydania w Augsburgu w 1718 opracowania budowniczego tartaków Sturm’a.<br />

W artykule zamieszczono obszerne opisy traków z drugiego wydania ksi��ki Strum’a oraz ze<br />

s�awnej encyklopedii Zedlera wydanej w roku 1733.<br />

124


Sk�adamy serdeczne podzi�kowania Pracownikom Dzia�u Starych Druków Biblioteki<br />

Uniwersytetu Warszawskiego za udost�pnienie cytowanych prac oraz ilustracji.<br />

Corresponding authors:<br />

Ewa Dobrowolska<br />

Department <strong>of</strong> Wood <strong>Sciences</strong> and Wood Protection,<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

Ul. Nowoursynowska 159,<br />

02-776 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: ewa_dobrowolska@sggw.pl<br />

Pawe� Kozakiewicz<br />

Department <strong>of</strong> Wood <strong>Sciences</strong> and Wood Protection,<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

Ul. Nowoursynowska 159,<br />

02-776 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: pawel_kozakiewicz@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 126-129<br />

(Ann. WULS-<strong>SGGW</strong>, For. and Wood Technol. 71, 2010)<br />

Relationship between the anatomical structure elements and mechanical<br />

properties in the trunk transverse and longitudinal direction for wood <strong>of</strong><br />

Norway spruce (Picea abies (L.) Karst.) growing in Latvia<br />

J�NIS DOLACIS, ANDIS ANTONS, GUN�RS PAVLOVI�S, DACE C�RULE<br />

Latvian State Institute <strong>of</strong> Wood Chemistry<br />

Abstract. Relationship between the anatomical structure elements and mechanical properties in the trunk<br />

transverse and longitudinal direction for wood <strong>of</strong> Norway spruce (Picea abies (L.) Karst.) growing in Latvia.<br />

Norway or common spruce (Picea abies (L.) Karst.) is the third dominating species in Latvia after pine and<br />

birch. However, exhaustive information about the relationship between its structure and properties, as well as its<br />

anatomical structure elements, is lacking. The main anatomical structure parameters under study were: annual<br />

ring width (Gp�), share <strong>of</strong> late wood in the annual ring (Gvk%), tracheid length (TL), double wall thickness and<br />

cross-section in radial direction in early wood (T 2w ak, TR ak) and late wood (T2W vk, TR vk). In the work, the<br />

following mechanical characteristics were considered: compressive strength in fibre direction (�com),<br />

compression modulus <strong>of</strong> elasticity in fibre direction (Ecom), bending strength in tangential direction (�bend),<br />

bending modulus <strong>of</strong> elasticity in tangential direction (Ebend), shearing strength in tangential direction (�tg), cutting<br />

strength in radial and tangential directions (�ra, �tg), tensile strength in fibre direction (�tensile), tensile modulus <strong>of</strong><br />

elasticity in fibre direction (Etensile). These mechanical characteristics, as well as the anatomical structure<br />

elements, were determined at four trunk heights (at the butt-end – R, ¼, ½ and ¾ parts <strong>of</strong> the trunk height, which<br />

corresponds to the trunk’s relative lengths 0, 25, 50 and 75 %, respectively) and in the radial direction from heart<br />

pith to sapwood. The tracheid length distribution throughout the trunk’s height and in transverse direction<br />

determines many mechanical characteristics <strong>of</strong> spruce wood - the longer the tracheids the higher mechanical<br />

indices. The tracheid length decreases in the direction from the trunk’s butt-end to the top in longitudinal and<br />

radial direction from sapwood to heart pith. Thus, for example, the tracheid length ratio in the direction from<br />

sapwood to heart pith is 1.31, ¼ – 1.27, ½ – 1.23 and ¾ – 1.18. The ratio <strong>of</strong> the early wood tracheid double wall<br />

thickness in the direction from sapwood to heart pith in the trunk’s longitudinal direction and at the butt-end is<br />

1.25, ¼ – 1.12, ½ – 1.13 and ¾ – 1.05. It is shown that the content <strong>of</strong> late wood in the annual ring determines<br />

many elevated mechanical characteristics.<br />

Keywords: Norway spruce, anatomical structure, mechanical properties<br />

INTRODUCTION<br />

Norway or common spruce (Picea abies (L.) Karst.) is the third leading tree species in<br />

Latvia, after pine and birch. Spruce wood is lighter than pine wood, has a lowest resin<br />

content, and has somewhat lower mechanical strength indices, but is most suitable for pulp<br />

and paper production. A whole range <strong>of</strong> studies on the anatomical structure and physical<br />

properties <strong>of</strong> spruce (Picea abies L. Karst.) wood, and their relationship and correlation have<br />

been carried out in Latvia (BALODE et al., 2000; 2002; 2004; HROLS et al. PRIEDKALNS<br />

et al.). Results on the anatomical structure and physical properties <strong>of</strong> the wood <strong>of</strong> spruce<br />

growing in Latvia were compared, drawing attention to the parameters <strong>of</strong> wood tracheids, as<br />

well as its physical properties such as density, swelling, shrinkage, and water and moisture<br />

absorbance. The obtained results were compared to the data available in the literature to gain<br />

insight into the quality <strong>of</strong> spruce wood, and its competitiveness with the wood <strong>of</strong> other<br />

spruces growing in Latvia. However, there is not currently enough information on the<br />

relationship between the structure <strong>of</strong> spruce wood and its anatomical structure elements. The<br />

aim <strong>of</strong> the present work was to characterise the relationship between the main anatomical<br />

structure parameters <strong>of</strong> spruce wood and physical as well as some mechanical properties,<br />

because there have not been similar studies, especially on the mechanical properties.<br />

126


MATERIALS AND METHODS<br />

For mutual comparison <strong>of</strong> the gained data, as the task <strong>of</strong> the study, determination <strong>of</strong><br />

the anatomical parameters and mechanical properties <strong>of</strong> wood in the same trunk’s site was<br />

proposed. Knowing that, in practice, it is difficult to obtain sample trees <strong>of</strong> identical<br />

dimensions, in the present study, for mutual data comparison, the sample tree trunks were<br />

divided at proportional heights (butt-end – R, ¼, ½ and ¾ from the trunk height).<br />

To investigate the anatomical parameters <strong>of</strong> wood, a special optical microscope<br />

MTK�-1 with a video camera TK-C721EG (JVC Color) was used, employing the s<strong>of</strong>tware<br />

IMAGE-PRO EXPRESS for picture analysis in reflected light. To determine the mechanical<br />

characteristics <strong>of</strong> wood, an universal material testing machine ”Roel Zwick/Z100” was used,<br />

equipped with a computer and the s<strong>of</strong>tware testXpert Version 11.02 for processing the<br />

experimental data.<br />

The mechanical characteristics were determined in compliance with the following<br />

standards: DIN 52 185, DIN 52 186, GOST 16 483.5-73, GOST 16 483.13-72, GOST 16<br />

483.23-73, GOST 16 483.24-73, GOST 16 483.26-73.<br />

Tensile modulus <strong>of</strong> elasticity in fibre direction at the given moisture W was<br />

determined in compliance with GOST16 483.2 6-73 from the equation:<br />

P � l<br />

Ew= [Pa],<br />

a � b � �l<br />

where P – load difference between the upper and lower proportionality ultimate stress, N; l –<br />

proportionality ultimate length, m; a and b – sample’s transverse sizes, m; �l – average<br />

displacement value, which corresponds to the load P, m.<br />

Compression modulus <strong>of</strong> elasticity in the fibre direction at the given moisture W was<br />

determined according to GOST16 483.24-73, from the equation:<br />

P � l<br />

Ew= [Pa],<br />

a � b � �l<br />

where P – load difference between the higher and lower proportionality ultimate stress, N; l –<br />

proportionality ultimate length, m; a and b – sample’s transverse sizes, m; �l – average<br />

displacement value, which corresponds to load P, m.<br />

RESULTS AND DISCUSSION<br />

The values <strong>of</strong> the anatomical parameters <strong>of</strong> spruce wood are shown in Table 1.<br />

Table 1. Values <strong>of</strong> spruce wood anatomical parameters<br />

H, % A, TR vk, TR ak, T 2w vk, T 2w ak, TL, Gvk, Gpl,<br />

cm mkm mkm mkm mkm mm % mm<br />

0 16 23.0 40.8 13.3 5.9 4.6 28.0 1.51<br />

10 22.9 39.9 12.4 5.1 3.8 24.6 1.58<br />

6 23.3 38.7 11.1 4.7 3.5 23.6 2.27<br />

25 10 21.3 40.3 11.6 4.6 4.7 20.3 1.03<br />

7 21.4 39.0 11.8 4.6 4.4 20.8 1.11<br />

4 20.8 36.9 10.1 4.1 3.7 12.8 1.87<br />

50 8 19.8 38.9 10.9 4.4 4.2 14.0 1.04<br />

6 19.7 37.1 10.6 4.2 4.1 14.6 1.17<br />

4 19.4 36.4 10.2 3.9 3.4 12.2 1.48<br />

75 5 19.5 36.5 9.9 4.1 4.0 13.7 1.25<br />

3 18.6 35.1 9.5 3.9 3.4 9.3 2.10<br />

Legends: H – relative height <strong>of</strong> the trunk; A – distance from the pith; TR vk – diameter <strong>of</strong> late wood tracheids; TR<br />

ak – diameter <strong>of</strong> early wood tracheids; T 2w vk – double cell wall width <strong>of</strong> late wood tracheids; T 2w ak – double cell<br />

wall width <strong>of</strong> early wood tracheids; TL – tracheids length; Gvk – late wood percentage in the annual ring; Gpl –<br />

width <strong>of</strong> annual rings, mm.<br />

127


Ultimate strength in compression, shearing, bending and tension, depending on the<br />

length <strong>of</strong> the trunk <strong>of</strong> spruce wood, is shown in Fig. 1.<br />

128<br />

Figure 1. Ultimate strength in<br />

compression, shearing, bending and<br />

tension depending on the length <strong>of</strong><br />

the trunk: 1 - R, 2 - ¼, 3 - ½, 4 - ¾.<br />

Compression and bending modules <strong>of</strong> elasticity depending on the length <strong>of</strong> the trunk<br />

<strong>of</strong> spruce wood are shown in Fig. 2. The highest compression and bending modules <strong>of</strong><br />

elasticity are also at the butt-end.<br />

Tensile and shearing modules <strong>of</strong> elasticity, depending on the length <strong>of</strong> the trunk <strong>of</strong><br />

spruce wood, are shown in Fig. 3. The indices <strong>of</strong> shearing modulus <strong>of</strong> elasticity are not so<br />

unequivocal throughout the trunk height, and those at ¼ and ¾ from the trunk’s height are<br />

similar to those for the butt-end.<br />

Figure 2. Modulus <strong>of</strong> elasticity in compression<br />

and bending depending on the length <strong>of</strong> the trunk:<br />

1 - R, 2 - ¼, 3 - ½ and 4 - ¾.<br />

Figure 3. Modulus <strong>of</strong> elasticity in tensile and shearing<br />

depending on the length <strong>of</strong> the trunk: 1 - R, 2 - ¼, 3 - ½<br />

and 4 - ¾.<br />

CONCLUSIONS<br />

1. The highest indices <strong>of</strong> the mechanical properties <strong>of</strong> wood (ultimate strength in<br />

shearing, compression, bending and tension are at the butt-end and ¼ <strong>of</strong> the trunk’s<br />

height, which agrees with the greater part <strong>of</strong> the late wood content in the annual<br />

ring and the tracheid lengths in these parts <strong>of</strong> the trunk.<br />

2. There is a positive and stable correlation (correlation coefficient r = 0.96 and r =<br />

0.74, respectively) between the compression strength in the transverse direction <strong>of</strong><br />

the spruce runk from heart pith to ¼ and ¾ <strong>of</strong> sapwood (correlation coefficient r =<br />

0.96 and r = 0.74, respectively). However, this relationship at the butt-end and the<br />

central part <strong>of</strong> the stem is negative and insignificant.<br />

3. There is a negative and insignificant correlation (correlation coefficient r = 0.49,<br />

respectively) in the transverse direction <strong>of</strong> the spruce trunk from heart pith to<br />

sapwood at the butt-end, but it is positive and insignificant at ¼ from the trunk’s<br />

height (r = 0.38). In the trunk’s central part, it is positive and significant (r = 0.91).<br />

4. There is no correlation between the tensile strength in the transverse direction <strong>of</strong><br />

the spruce trunk from heart pith to sapwood at the butt-end (correlation coefficient<br />

r = 0.08), and it is negative and insignificant (r = 0.32) at ½ from the trunk’s


height. However, it is positive and also insignificant (R = 0.35) at ½ from the<br />

trunk’s height.<br />

5. Ultimate strength in shearing in the tangential and radial directions <strong>of</strong> spruce wood<br />

is practically the same, and the distribution in the trunk’s cross-section from heart<br />

pith to sapwood is positive. This relationship at the heights R and ¼ is essential (r<br />

= 0.55 ÷ 0.80).<br />

REFERENCES<br />

1. BALODE V., ALKSNE A., DOLACIS J., HROLS J., 2002: Anatomical structure <strong>of</strong><br />

wood <strong>of</strong> Norway spruce (Picea abies L. Karst.) in forests <strong>of</strong> Western Latvia. –<br />

Proceedings <strong>of</strong> the 4 rd<br />

IUFRO Symposium “WOOD STRUCTURE AND<br />

PROPERTIES ‘02” 1-3 September, 2002, in Bystrá. Technical <strong>University</strong> in Zvolen,<br />

2003, 29-32.<br />

2. BALODE V., ALKSNE A., DOLACIS J., HROLS J., 2002: Some elements <strong>of</strong> the<br />

anatomical structure <strong>of</strong> spruce wood growing in Latvia. – <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong><br />

Agricultural <strong>University</strong>. Forestry and Wood Technology. Special Number I.<br />

<strong>Warsaw</strong>, 19-24.<br />

3. BALODE V., CIRULE D., DOLACIS J., HROLS J., KRUTUL D., KAZEM-BEK<br />

D., 2004: Morphological and physical properties <strong>of</strong> Norway spruce (Picea abies<br />

Karst.) wood growing in Latvia. – <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> –<br />

<strong>SGGW</strong>, Forest and Wood Technology, No. 55, 26-29.<br />

4. BALODE V., DOLACIS J., CIRULE D., HROL J., 2004: Physical properties <strong>of</strong><br />

Norway spruce (Picea abies Karst.) wood growing in Latvia. – Proceedings <strong>of</strong> IV<br />

International Symposium: “WOOD STRUCTURE, PROPERTIES AND<br />

QUALITY’ 04”. St. Petersburg, RUSSIA, October 13 – 16, 2004, Vol. I, 178- 180.<br />

5. PRIEDKALNS G., PUSHINSKIS V., DOLACIS J., HROLS J., 2002: Physicomechanical<br />

properties <strong>of</strong> spruce wood growing in Latvia. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong><br />

Agricultural <strong>University</strong>. Forestry and Wood Technology. Special Number I.<br />

<strong>Warsaw</strong>, 33-37.<br />

Streszczenie: Zale�no�� pomi�dzy struktur� anatomiczn� i w�asno�ciami mechanicznymi drewna a wzd�u�nym i<br />

poprzecznym po�o�eniem drewna w pniu �wierka (Picea abies (L.) Karst.) rosn�cego na �otwie. �wierk (Picea<br />

abies (L.) Karst.) jest trzecim dominuj�cym na �otwie gatunkiem po so�nie i brzozie. Brakuje jednak<br />

wyczerpuj�cych informacji o zale�no�ciach pomi�dzy struktur� oraz w�asno�ciami i budowie anatomicznej.<br />

G�ównymi analizowanymi parametrami by�y: szeroko�� s�oja rocznego (Gp�), zawarto�� drewna pó�nego w s�oju<br />

(Gvk%), d�ugo�� cewek (TL), szeroko�� i przekrój �cianek w przekroju promieniowym drewna wczesnego (T 2w ak,<br />

TR ak) i pó�nego (T2W vk, TR vk). Rozpatrywano nast�puj�ce w�asno�ci mechaniczne: wytrzyma�o�� na �ciskanie<br />

wzd�u� w�ókien (�com), modu� spr��ysto�ci przy �ciskaniu wzd�u� w�ókien (Ecom), wytrzyma�o�� na zginanie w<br />

kierunku stycznym (�bend), modu� spr��ysto�ci przy zginaniu w kierunku stycznym (Ebend), wytrzyma�o�� na<br />

�cinanie w kierunku stycznym (�tg), wytrzyma�o�� na przecinanie w kierunku stycznym i promieniowym (�ra, �tg),<br />

wytrzyma�o�� na rozci�ganie wzd�u� w�ókien (�tensile), modu� spr��ysto�ci przy rozci�ganiu wzd�u� w�ókien<br />

(Etensile). Powy�sze warto�ci by�y mierzone w czterech miejscach pnia, w odziomku oraz na ¼, ½ i ¾ wysoko�ci,<br />

oraz w kierunku promieniowym od rdzenia do bielu. Rozk�ad d�ugo�ci cewek wzd�u� pnia i w kierunku<br />

promieniowym ma zasadniczy wp�yw na w�asno�ci mechaniczne, im d�u�sze cewki tym wi�ksza wytrzyma�o��.<br />

D�ugo�� cewek zmniejsza si� w kierunku od odziomka w gór� pnia i od bielu do rdzenia. Znormalizowana<br />

d�ugo�� cewek od bielu do rdzenia wynosi 1.31, ¼ – 1.27, ½ – 1.23 oraz ¾ – 1.18. Znormalizowana grubo��<br />

�cian w kierunku od bielu do rdzenia to 1.25, ¼ – 1.12, ½ – 1.13 oraz ¾ – 1.05. Wykazano �e zawarto�� drewna<br />

pó�nego w s�oju rocznym okre�la wiele znacz�cych w�asno�ci mechanicznych.<br />

Corresponding author:<br />

Latvian State Institute <strong>of</strong> Wood Chemistry, Dz�rbenes iela 27, Riga,<br />

LV-1006, LATVIA, tel. +371 7553063, fax: +371 7550635, e-mail:<br />

dolacis@edi.lv


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 130-133<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Preliminary research <strong>of</strong> the processes <strong>of</strong> filtering purification <strong>of</strong> the air<br />

polluted by dust arisen during tooling the particleboards<br />

S. DOLNY, T. ROGOZI�SKI<br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>, Faculty <strong>of</strong> Wood Technology, Department <strong>of</strong> Working Environment<br />

Engineering<br />

Abstract: Preliminary research <strong>of</strong> the processes <strong>of</strong> filtering purification <strong>of</strong> the air polluted by dust arisen during<br />

tooling the particleboards This paper contains an attempt <strong>of</strong> testing the filtration <strong>of</strong> air polluted by dust from<br />

particleboards tooling. The course <strong>of</strong> filtration processes was described.<br />

Keywords: wood dust, filtration, non-woven fabrics<br />

INTRODUCTION<br />

The high content <strong>of</strong> dust- fractions in the total mass <strong>of</strong> waste material from the tooling<br />

<strong>of</strong> particleboards causes that bag filters find a common use as separators in dedusting<br />

installations working in the plants <strong>of</strong> the tooling <strong>of</strong> particleboards.<br />

The use <strong>of</strong> the bag filter in conditions <strong>of</strong> the additional considerable load <strong>of</strong> the filter<br />

surface with the waste material with dimensions larger than dust particles causes the risk <strong>of</strong><br />

the unnecessary increase <strong>of</strong> resistances <strong>of</strong> the air flow through the filter.<br />

Resistances <strong>of</strong> the air flow are one <strong>of</strong> two quantities characterizing the course <strong>of</strong> filter<br />

processes. The second from them is the efficiency <strong>of</strong> the dust cleaning. The determination <strong>of</strong><br />

the formation <strong>of</strong> these quantities and their detailed describing with taking into consideration<br />

the basic technological conditions including the generic and dimension diversity <strong>of</strong> dust make<br />

the first stage on the way to the delimitation <strong>of</strong> proper conditions <strong>of</strong> the course <strong>of</strong> processes <strong>of</strong><br />

the filter cleaning <strong>of</strong> air from every kind <strong>of</strong> the dust.<br />

The attempt <strong>of</strong> the characterization <strong>of</strong> the initial phase <strong>of</strong> the experimental process <strong>of</strong><br />

the filter cleaning <strong>of</strong> air from dust arisen at the production <strong>of</strong> furniture elements from<br />

particleboards was undertaken in this work.<br />

MATERIAL AND METHOD<br />

Research was conducted on the laboratory position for testing <strong>of</strong> filter processes in the<br />

enlarged scale. The construction, the principle <strong>of</strong> operation and investigative possibilities <strong>of</strong><br />

this position were described in earlier works[Dolny 1998, Dolny 1999].<br />

As filter medium was used non-woven fabric with the symbol KYS series FINESS.<br />

The working surface <strong>of</strong> this material was adapted on the stage production by the covering <strong>of</strong> a<br />

layer micr<strong>of</strong>ibers to the cleaning <strong>of</strong> air from very small dusts particles. The detailed technical<br />

characteristics and proposed range <strong>of</strong> the usage <strong>of</strong> this material gives Dobak [2004].<br />

The conducting <strong>of</strong> research in the enlarged scale, with taking into consideration the<br />

wide range <strong>of</strong> factors influencing on the course <strong>of</strong> filter processes in dust separators enables to<br />

the estimation <strong>of</strong> their influence on the formation <strong>of</strong> the separative effect <strong>of</strong> industrial bag<br />

filters in plants <strong>of</strong> the processing <strong>of</strong> wood.<br />

The waste material obtained from one plant <strong>of</strong> furniture industry situated in the north<br />

Great Poland was used in the research. Grain composition <strong>of</strong> these waste material was<br />

presented on fig. 1.<br />

130


Dust particles contents [pcs./m 3 ]<br />

35000000<br />

30000000<br />

25000000<br />

20000000<br />

15000000<br />

10000000<br />

5000000<br />

Fig. 1. Grain composition <strong>of</strong> the dust<br />

Parameters <strong>of</strong> the filtering process and remaining conditions <strong>of</strong> the experiment<br />

answered to typical practical values in filter dust cleaners in wood industry. Each value is<br />

contained in tab.1.<br />

Table 1. Conditions <strong>of</strong> filtering processes<br />

Conditions <strong>of</strong> filtering processes Value<br />

Air to cloth ratio 0,04 m·s-1 Dust concentration in the cleaned<br />

air<br />

12 g·m-3 Air relative humidity 30%<br />

Pressure <strong>of</strong> the regenerative air 0,5 MPa<br />

Duration <strong>of</strong> filtering cycle 1 min<br />

RESULTS<br />

Although the obtained results have the indicatory character they are important<br />

comparative material with relation to the results which will obtain in further stages <strong>of</strong> research<br />

works and also with relation to already well described results <strong>of</strong> the research on the filter<br />

cleaning <strong>of</strong> air from the beechwood dusts [Dolny et al. 2006, Dolny i Rogozi�ski 2009]. Some<br />

observations resulting from the analysis <strong>of</strong> obtained results show the considerable distinctions<br />

in the effectivity <strong>of</strong> the separation <strong>of</strong> dust particles from tolling <strong>of</strong> particleboards and dust<br />

from the beechwood. Here can be mentioned results <strong>of</strong> measurement <strong>of</strong> the content <strong>of</strong> dust<br />

particles in cleaned air. Their content appears in this case considerably lower (fig. 2).<br />

0<br />

0 10 20 30 40 50 60<br />

131<br />

T[min]<br />

Fig.2. Total content <strong>of</strong> dust particles in the cleaned air


The filter process conducted in this conditions is characterized with the considerable<br />

rate <strong>of</strong> the increase <strong>of</strong> resistances <strong>of</strong> the air flow in the first phase <strong>of</strong> its duration (fig. 3).<br />

Pressure drop [Pa]<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 20 40 60 80 100 120<br />

Number <strong>of</strong> filtration cycles<br />

Fig. 3. Resistances <strong>of</strong> air flow during filtration<br />

The increase <strong>of</strong> resistances <strong>of</strong> the air flow is considerably more dynamic than this<br />

increase during the filtration <strong>of</strong> air polluted by beechwood dust described in earlier works.<br />

This shows on higher energy-consuming <strong>of</strong> the cleaning <strong>of</strong> air from the dust from the tooling<br />

<strong>of</strong> particleboards.<br />

This is the typical situation because high separative efficiency <strong>of</strong> the filter layer is<br />

connected with the raised level <strong>of</strong> pressure drop in consequence <strong>of</strong> greater concentration <strong>of</strong><br />

the dust cake. It is advisable to make so selection <strong>of</strong> conditions <strong>of</strong> the conduction <strong>of</strong> the<br />

filtration and the parameters <strong>of</strong> the process that the negative effect was diminished and<br />

simultaneous the high efficiency <strong>of</strong> the dust cleaning was kept.<br />

CONCLUSION<br />

Presented here example results obtained during the research <strong>of</strong> filter cleaning <strong>of</strong> air<br />

from dusts from the tooling <strong>of</strong> particleboards conducted with the use <strong>of</strong> superficially modified<br />

nonwoven fabric type KYS series FINESS let on the ascertainment <strong>of</strong> the highly satisfactory<br />

efficiency <strong>of</strong> the cleaning <strong>of</strong> air with use <strong>of</strong> this material. Unfortunately occurring at this<br />

process high resistances <strong>of</strong> the air flow determine the problem which negatively projects on<br />

the cleaning <strong>of</strong> air from wood dusts with the method <strong>of</strong> the filtration.<br />

REFERENCES<br />

1. S. DOBAK, 2004, Oczyszczanie powietrza z py�ów drzewnych na strukturach<br />

filtracyjnych z warstw� mikrow�ókien, Doctoral Dissertation.<br />

2. S. DOLNY, 1999, Transport pneumatyczny i odpylanie w przemy�le drzewnym, AR<br />

Pozna�.<br />

3. S. DOLNY, 1998, Badania oporów przep�ywu podczas filtracyjnej separacji py�ów<br />

powsta�ych w procesach przerobu materia�ów drzewnych, AR Pozna�.<br />

4. S. DOLNY, T. ROGOZI�SKI, G. HYRCZYK, 2006, Resistances <strong>of</strong> flow during<br />

filtration <strong>of</strong> wood dust-polluted air with high relative humidity, Acta Sci. Pol., Silv.<br />

Colendar. Rat. Ind. Lignar. 5(2): pp. 159-166.<br />

5. S. DOLNY, T. ROGOZI�SKI, 2009, Moisture-content conditions <strong>of</strong> filtering wood<br />

dust out <strong>of</strong> the air. Ann. WULS – <strong>SGGW</strong>, For. And Wood Technol., 67, 2009. s. 75-<br />

79.<br />

132


Streszczenie: Wst�pne badania przebiegu procesów filtracyjnego oczyszczania powietrza z<br />

py�ów powsta�ych podczas obróbki p�yt wiórowych W pracy opisano wyniki wst�pnych bada�<br />

filtracyjnego oczyszczania powietrza z py�ów powsta�ych podczas obróbki p�yt wiórowych.<br />

This paper was found by research financial resources in years 2009-2013 as a research project.<br />

Corresponding author:<br />

Tomasz Rogozi�ski<br />

Department <strong>of</strong> Working Environment Engineering<br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>, ul. Wojska Polskiego 38/42, 60-627 Pozna�<br />

E-mail address: trogoz@up.poznan.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 134-137<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Air pulse pressure in conditions <strong>of</strong> air cleaning from wood dusts by<br />

filtration<br />

S. DOLNY, T. ROGOZI�SKI<br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>, Faculty <strong>of</strong> Wood Technology, Department <strong>of</strong> Working<br />

Environment Engineering<br />

Abstract: Air pulse pressure in conditions <strong>of</strong> air cleaning from wood dusts by filtration The paper<br />

deals with intensity <strong>of</strong> the cleaning pulse in dependence on the length <strong>of</strong> filtering bag. The<br />

overpressure inside the filtering bag in very important factor influencing on the dust cake removal<br />

from the filter surface<br />

Keywords: pulse jet baghouse, wood dust, non-woven fabrics<br />

INTRODUCTION<br />

The cleaning <strong>of</strong> bags by the compressed air is one from most <strong>of</strong>ten practical<br />

methods <strong>of</strong> the regeneration <strong>of</strong> filtering materials. Advantages <strong>of</strong> such manner <strong>of</strong><br />

the removal <strong>of</strong> separated dust cake are unquestionable: long period <strong>of</strong> the use <strong>of</strong> the<br />

filtering bags, greater air to cloth ratio, less sizes <strong>of</strong> baghouses, lower costs -<br />

comparatively to other methods - bearded on processes <strong>of</strong> the dust separation and<br />

the possibility <strong>of</strong> the continuous conduction <strong>of</strong> the air filtration process. All that<br />

causes that the improvement <strong>of</strong> the construction <strong>of</strong> the regeneration devices and the<br />

detailed recognition <strong>of</strong> occurrences during pulse jet cleaning <strong>of</strong> bags is the main<br />

interest <strong>of</strong> filters producers and research and development institutions.<br />

Fig. 1. Scheme <strong>of</strong> typical pulse jet baghouse<br />

134


Fig. 2. Surface <strong>of</strong> filtering bag; A filtration, B cleaning pulse [Neuman and Leibinger 2003]<br />

The cleaning <strong>of</strong> the bags happens by the forcing <strong>of</strong> the portion <strong>of</strong><br />

compressed air in their interior. Thereby occurs the temporary increase <strong>of</strong> the<br />

pressure causing the sudden deformation <strong>of</strong> the filtering material and the reverse air<br />

flow through the material in the moment <strong>of</strong> the regeneration. The dust cake is<br />

detached from the working surface <strong>of</strong> filtering material as result <strong>of</strong> this. The<br />

construction <strong>of</strong> the typical pulse jet baghouse is shown on the fig 1, and the<br />

dynamics <strong>of</strong> the pulse jet regeneration illustrates fig 2.<br />

The pressure in the moment <strong>of</strong> pulse jet regeneration inside the bag on its<br />

whole-length depends on constructional parameters <strong>of</strong> the cleaning device: size <strong>of</strong><br />

the nozzle forcing compressed air, kind and the construction <strong>of</strong> Venturi tube,<br />

distance between the nozzle and the Venturi tube and the kind <strong>of</strong> used valve. These<br />

parameters are the most important attribute <strong>of</strong> the pneumatic cleaning devices<br />

influencing on the level <strong>of</strong> the efficiency <strong>of</strong> the dust cake removal [Morris and<br />

Millington 1984, Rothwell 1988, Lu and Tsai 1998].<br />

MATERIAL AND METHOD<br />

This research work covers the experiments heading for the estimation <strong>of</strong> the<br />

pneumatic regeneration system running when compressed air with the pressure 0,3<br />

MPa and 0,5 MPa is supplied. The air-to-cloth ratio during these experiments was<br />

0,110 m/s. Measurements <strong>of</strong> the pressure inside the filtering bag during<br />

regeneration impulses were executed in two places: 25 and 145 cm below<br />

fastenings <strong>of</strong> Venturi tube (fig. 3).<br />

Fig. 3. Tested filtering bag<br />

135


RESULTS<br />

Considerable differences in the value <strong>of</strong> the pressure during the<br />

regeneration impulses resulting from the distance between the place <strong>of</strong> the<br />

measurement and the nozzle <strong>of</strong> the regeneration system and the pressure <strong>of</strong><br />

compressed air used to the regeneration <strong>of</strong> filtering material. The exemplary types<br />

<strong>of</strong> the course <strong>of</strong> regeneration impulses at the air-to-cloth ratio 0,11 m/s were shown<br />

on fig. 4 and 5.<br />

Pressure [Pa]<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 0,2 0,4 0,6 0,8 1<br />

136<br />

T [s]<br />

Pressure in regeneration<br />

system 0,3 MPA<br />

Pressure in regeneration<br />

system 0,5 MPA<br />

Fig. 4. Pressure inside the bag during cleaning pulse 25cm below Venturi tube<br />

Pressure [Pa]<br />

80,00<br />

60,00<br />

40,00<br />

20,00<br />

0,00<br />

-20,00<br />

-40,00<br />

-60,00<br />

-80,00<br />

0 0,2 0,4 0,6 0,8 1<br />

T [s]<br />

Pressure in regeneration<br />

system 0,3 MPa<br />

Pressure in regeneration<br />

system 0,5 MPa<br />

Fig. 5. Pressure inside the bag during cleaning pulse 145cm below Venturi tube


CONCLUSION<br />

On the ground <strong>of</strong> received results the general characteristics <strong>of</strong> the<br />

regeneration system in conditions <strong>of</strong> the different intensity <strong>of</strong> the impulses can be<br />

preliminary defined. The general description <strong>of</strong> the influence <strong>of</strong> filtration processes<br />

conduction conditions on the efficiency <strong>of</strong> the pneumatic regeneration <strong>of</strong> used in<br />

them filtering materials demands however the carrying on the further research<br />

works with regard to the extended range <strong>of</strong> the variability <strong>of</strong> filtering processes<br />

basic parameters.<br />

REFERENCES<br />

1. H. C. LU, C. J. TSAI, 1998. A pilot-scale study<strong>of</strong> the design and operation<br />

parameters <strong>of</strong> a pulse-jet baghouse. Aerosol Sci. Technol. 29, 510-534.<br />

2. K. MORRIS, C. A. MILLINGTON, 1984. Modelling fabric filters.<br />

Filtration and Separation. 20 (5), 478-483..<br />

3. U. NEUMANN, H. LEIBINGER, 2003. Cost reduction through higher<br />

performance potential for process filters in the cement industry. ZKG,<br />

International Cement. 2, 44-52<br />

4. E. ROTHVELL, 1990. Pulse-driven injectors for fabric dust filters III:<br />

Compasrative performance <strong>of</strong> model and commercial assemblies. Filtration<br />

and Separation. Essex, U. K. 27, 345-349.<br />

Streszczenie: Ci�nienie impulsu powietrza przedmuchowego w warunkach<br />

filtracyjnego oczyszczania powietrza z py�ów drzewnych W pracy<br />

scharakteryzowano intensywno�� impulsów powietrza przedmuchowego w<br />

zale�no�ci od zwi�kszaj�cej si� odleg�o�ci od miejsca zamocowania worka<br />

filtracyjnego. Nadci�nienie wewn�trz worka filtracyjnego jest jednym z g�ównych<br />

czynników wp�ywaj�cych na skuteczno�� regeneracji.<br />

Corresponding author:<br />

Tomasz Rogozi�ski<br />

Department <strong>of</strong> Working Environment Engineering<br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>, ul. Wojska Polskiego 38/42, 60-627 Pozna�<br />

E-mail address: trogoz@up.poznan.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 138-141<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Influence <strong>of</strong> moisture content on the physical and aerodynamic properties<br />

<strong>of</strong> dusts from working <strong>of</strong> particleboards<br />

S. DOLNY, T. ROGOZI�SKI<br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>, Faculty <strong>of</strong> Wood Technology, Department <strong>of</strong> Working Environment<br />

Engineering<br />

Abstract: Influence <strong>of</strong> moisture content on the physical and aerodynamic properties <strong>of</strong> dusts from working <strong>of</strong><br />

particleboards. The bulk and aerodynamic characteristics <strong>of</strong> dust arisen at particleboards tooling were presented<br />

in this paper. Also the influence <strong>of</strong> moisture content on these characteristics was there determined.<br />

Keywords: wood dust, bulk characteristics, entrainment velocity, moisture content<br />

INTRODUCTION<br />

The elaboration <strong>of</strong> effective methods <strong>of</strong> elimination <strong>of</strong> dust threats demands the<br />

detailed knowledge about the physical properties <strong>of</strong> tooling materials directly shaping the<br />

proprieties <strong>of</strong> waste material arisen during the tooling.<br />

Estimation <strong>of</strong> the degree <strong>of</strong> the fragmentation <strong>of</strong> the wood matter (solid wood and<br />

wood- materials) is very important in the process <strong>of</strong> the dedusting installation designing, in<br />

this first <strong>of</strong> all the participation <strong>of</strong> particles with the least dimensions - being situated in the<br />

range <strong>of</strong> dust fractions. In the next order appear bulk and angular properties loose and tapped<br />

particles filling containers or siloes to their storage. All these characteristics and proprieties<br />

are different for every kind <strong>of</strong> wood and for every kind <strong>of</strong> waste particles. So is there the<br />

necessity <strong>of</strong> the completely recognition <strong>of</strong> the conditions <strong>of</strong> the formation <strong>of</strong> waste particles in<br />

all cases <strong>of</strong> the tooling <strong>of</strong> wood materials. It concerns especially the dust because its removal<br />

from work-places, transportation to the place <strong>of</strong> the storage and safety by the utilization is<br />

always the considerably problem [Dolny 1999, McGlinchey 2005].<br />

The baghouse is such place in the installation <strong>of</strong> the dedusting where the excessive<br />

moisture content in particles and the air relative humidity strongly influence on the course <strong>of</strong><br />

the occurrences connected with a cleaning <strong>of</strong> air from the dust.<br />

MATERIAL AND METHOD<br />

Experimental material used to research was the waste material obtained from the plant<br />

<strong>of</strong> tooling <strong>of</strong> the particleboards. These boards were applied in production <strong>of</strong> elements <strong>of</strong> the<br />

building woodwork. They were tooled by sawing, drilling and milling. There was not the<br />

sanding in the process <strong>of</strong> the tooling. Material to research was received from the container <strong>of</strong><br />

waste material which was a last element <strong>of</strong> the installation <strong>of</strong> the pneumatic transportation.<br />

Research was carried out basing on methodical guidelines <strong>of</strong> objective Polish norms<br />

and the literature. The earlier received experience in the carrying out <strong>of</strong> similar laboratory<br />

procedures shown in hitherto existing publications was very valuable in this range [Dolny and<br />

Rogozi�ski 2003, Dolny et al. 2005].<br />

RESULTS<br />

Results <strong>of</strong> the sieve analysis were shown on the graph (fig. 1). In spite <strong>of</strong> the lack <strong>of</strong><br />

the sanding in the tooling process <strong>of</strong> the particleboards the mass fraction <strong>of</strong> dust particles in<br />

the waste material comes to 36%.<br />

138


Mass share [%]<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />


Density [g/cm 3 ]<br />

Entrainment velocity [m/s]<br />

0,4<br />

0,35<br />

0,3<br />

0,25<br />

0,2<br />

0,15<br />

0,1<br />

0,05<br />

0<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Moisture content [%]<br />

Fig. 3. Bulk density<br />

140<br />

bulk density<br />

tapped bulk density<br />

10 30 50 70 90<br />

Moisture content [%]<br />

Fig. 4. Entrainment velocity<br />

the particles. The increase <strong>of</strong> their mass is not so considerable, because in this range <strong>of</strong> the<br />

moisture content water appears in wood only as the bound water. In this range the empty<br />

spaces between the particles also increase, what is also a reason <strong>of</strong> the decrease <strong>of</strong> bulk<br />

densities. After the transgression <strong>of</strong> the saturation point <strong>of</strong> fibres the volume <strong>of</strong> particles<br />

remains invariable but their mass still grows. It is caused by the appearance <strong>of</strong> the bound<br />

water in the wood structure. The particles become more and more heavy and more exactly<br />

adhere to themselves. In the whole volume <strong>of</strong> the sample there are less and less empty spaces,<br />

and the material creates the more coherent mass. The increase <strong>of</strong> bulk densities shown on the<br />

graph is an effect <strong>of</strong> this.<br />

The entrainment velocity also grows along with the increase <strong>of</strong> the moisture content <strong>of</strong><br />

tested material. Here also appears the enlargement <strong>of</strong> the mass and the volume <strong>of</strong> the particles.<br />

It causes the evident increase <strong>of</strong> the entrainment velocity (fig. 4).


REFERENCES<br />

[1] S. DOLNY, 1999, Transport pneumatyczny i odpylanie w przemy�le drzewnym, AR<br />

Pozna�<br />

[2] S. DOLNY, G. HYRCZYK, T. ROGOZI�SKI, 2005. W�a�ciwo�ci py�u ze szlifowania<br />

drewna gatunków li�ciastych. Rocz. AR Pozn. CCCLXVIII, Technol. Drewn. 40, pp. 269-<br />

276.<br />

[3] S. DOLNY, T. ROGOZI�SKI, 2003,: Basic technical parameters <strong>of</strong> the dust wastes from<br />

sanding <strong>of</strong> beech wood, Acta Facultatis Technicae VII 2003 (1), Zvolen pp. 15-18.<br />

[4] R. McGLINCHEY, 2005, Characterisation <strong>of</strong> bulk solids. Blackwell Publishing.<br />

Streszczenie: Wp�yw wilgotno�ci na w�a�ciwo�ci fizyczne i aerodynamiczne odpadów<br />

py�owych z obróbki p�yt wiórowych W pracy przedstawiono wyniki bada� w�a�ciwo�ci<br />

fizycznych i aerodynamicznych py�ów powsta�ych przy obróbce p�yt wiórowych. Okre�lono<br />

równie� wp�yw wilgotno�ci odpadów na te w�a�ciwo�ci.<br />

This paper was found by research financial resources in years 2009-2013 as a research project.<br />

Corresponding author:<br />

Tomasz Rogozi�ski<br />

Department <strong>of</strong> Working Environment Engineering<br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>, ul. Wojska Polskiego 38/42, 60-627 Pozna�<br />

E-mail address: trogoz@up.poznan.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 142-146<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

The suggesting approach to the measuring and evaluating <strong>of</strong> the efficiency<br />

<strong>of</strong> Small and Medium Enterprises (SMEs) in the furniture industry<br />

JOSEF DRÁBEK - MARIANA SEDLIA�IKOVÁ – JUSTYNA BIERNACKA<br />

Department <strong>of</strong> Business Economics, Technical <strong>University</strong>, Zvolen, Slovakia<br />

Abstract: The paper analyzes the current issue <strong>of</strong> the evaluation <strong>of</strong> efficiency <strong>of</strong> SMEs in contemporary market<br />

conditions. An effective approach to measuring and evaluating <strong>of</strong> the efficiency <strong>of</strong> the furniture company is<br />

presented. This approach will use indicators <strong>of</strong> the financial analysis to identify the generation <strong>of</strong> economic<br />

added value, to measure the pr<strong>of</strong>it and other selected indicators. Conclusions and proposals to improve the<br />

efficiency <strong>of</strong> the enterprise will be formulated on the base <strong>of</strong> the obtained results.<br />

Keywords: Small and Medium Enterprises (SMEs), efficiency, evaluation <strong>of</strong> the efficiency, generation <strong>of</strong> the<br />

economic added value<br />

INTRODUCTION<br />

Effort <strong>of</strong> enterprises to promote in hard market conditions <strong>of</strong> business requires applying new<br />

methods <strong>of</strong> management, that are appropriate for market conditions, needs and requirements.<br />

An essential role in this effort is the evaluation <strong>of</strong> the enterprise efficiency, which results are<br />

an important source <strong>of</strong> information in the management process and decision making <strong>of</strong><br />

enterprises. It seems to be the main desire <strong>of</strong> investors and company owners to evaluate the<br />

economic efficiency <strong>of</strong> the enterprise by the simple and fast way, because they want to know<br />

if the enterprise can increase its value and give them the desired returns. The issue <strong>of</strong><br />

economic efficiency evaluation <strong>of</strong> enterprises is very large and its analysis can be accessed in<br />

many ways.<br />

MATERIAL AND METHODS<br />

The efficiency is an economic category, which is closely linked to the systemic view on<br />

its measurement and evaluation.<br />

The three elements are the essences <strong>of</strong> economic efficiency:<br />

1. Defining the target value against which an actual efficiency to a required efficiency is<br />

compared.<br />

2. Criteria <strong>of</strong> targets evaluation - an indicator or a system <strong>of</strong> indicators.<br />

3. System <strong>of</strong> measurement and evaluation <strong>of</strong> the efficiency, which defines rules for<br />

measurement <strong>of</strong> indicators and methods <strong>of</strong> their evaluation.<br />

The economic efficiency <strong>of</strong> the company is not only a topic <strong>of</strong> interest for owners<br />

(shareholders) but also for other interested subjects. Lesáková, �. (2004) represents that<br />

according to the economic theory, the enterprise efficiency is determined by the level <strong>of</strong> the<br />

transformation process in the enterprise. Inputs are changed into outputs and the level <strong>of</strong><br />

invested assets and the effectiveness <strong>of</strong> the reproductive process in the company reflect the<br />

relationship between them. To simplify, the effectiveness <strong>of</strong> the company can be defined as<br />

142


the ability to achieve the desired effects or outputs, preferably in measurable units. There are<br />

several ways, how to evaluate the enterprise efficiency, namely:<br />

a) Evaluation using one chosen indicator, which is set on one (primary), partial objective<br />

<strong>of</strong> the company.<br />

� Advantage: simplicity and clarity <strong>of</strong> the inscribed system.<br />

� Disadvantage: orientation <strong>of</strong> the company only to meet the one partial objective.<br />

b) Evaluation using the system <strong>of</strong> parameters, when a company seeks to achieve more<br />

objectives (equivalent or non-equivalent) e.g. standard methods <strong>of</strong> financial analysis.<br />

� Advantage: a comprehensive view <strong>of</strong> enterprise efficiency.<br />

� Disadvantage: difficult evaluation <strong>of</strong> opposite signals.<br />

c) Evaluation using one universal indicator that would monitor the fulfilment <strong>of</strong> several or<br />

all targets by its complexity.<br />

� Advantage: easy to express the result in the current evaluation <strong>of</strong> multiple objectives.<br />

In the present, the preferred target <strong>of</strong> companies is the increase <strong>of</strong> owners' wealth<br />

(shareholder value) or value creation. Using <strong>of</strong> different global methods was expanded in the<br />

world to measure the value creation for owners <strong>of</strong> the company. The most popular method is<br />

EVA, which is the form <strong>of</strong> application <strong>of</strong> the net present value (Pavelková, Knapkova, 2009).<br />

RESULTS AND DISCUSSION<br />

In the following part there are applied and verified modern indicators <strong>of</strong> measuring <strong>of</strong><br />

the enterprise efficiency in conditions <strong>of</strong> the selected furniture company.<br />

Table 1 presents the results <strong>of</strong> the efficiency evaluation <strong>of</strong> the analyzed company by<br />

indicators EBIT and EBITDA. The indicator EBIT represents the value <strong>of</strong> operating pr<strong>of</strong>it<br />

before interest and taxes, and indicator EBITDA is operating pr<strong>of</strong>it before interest,<br />

depreciation and taxes.<br />

Tab. 1 Enumeration <strong>of</strong> indicators - EBIT and EBITDA (in thousands €)<br />

ITEM 2004 2005 2006 2007 2008 2009<br />

Operating pr<strong>of</strong>it before taxis 5 040 12 192 1 229 3 680 -3 005 -11 299<br />

+ Cost interests 2 132 1 431 1 177 1 472 1 615 1 275<br />

Depreciation 9 150 9 764 11 892 14 959 17 553 18 315<br />

+ = EBIT 7 172 13 623 2 406 5 152 -1 390 -10 024<br />

= EBITDA 16 322 23 387 14 298 20 111 16 163 8 291<br />

.<br />

The following table shows the trend <strong>of</strong> the value-added <strong>of</strong> the analyzed company during<br />

years 2004 - 2009. The presented indicator reflects the pr<strong>of</strong>itability <strong>of</strong> the business, where the<br />

achieved pr<strong>of</strong>it is increased by the amount <strong>of</strong> depreciation and wages, what shall to ensure the<br />

long-term business development.<br />

143


Tab. 2 Enumeration <strong>of</strong> indicator - value added (in thousands €)<br />

Items needed for the<br />

2009<br />

enumeration <strong>of</strong> value added 2004 2005 2006 2007 2008<br />

Revenues from sale <strong>of</strong> goods 1 163 1 018 1 211 1 750 1 339 632<br />

+ Cost on purchase <strong>of</strong> sold good 1 163 1 000 1 213 1 745 1 316 628<br />

= Commercial margin 0 18 -2 5 23 4<br />

Revenues form sale <strong>of</strong> own<br />

goods and services<br />

164 125 167 432 192 320 223 339 230 871 195 434<br />

+ Change <strong>of</strong> the level <strong>of</strong> in-plant<br />

inventory<br />

-457 -125 -4 033 10 085 4 058 -9 197<br />

+ Activation 284 201 139 206 176 273<br />

+ = Production 163 952 167 508 188 426 233 630 235 105 186 510<br />

= Value <strong>of</strong> production (revenues)<br />

Consumption <strong>of</strong> materials,<br />

163 952 167 526 188 424 233 635 235 128 186 514<br />

energy and the other nonstored<br />

supplies<br />

113 277 108 220 122 577 162 626 164 047 124 675<br />

+ Services<br />

Intermediate consumption<br />

7 787 6 822 15 994 9 391 8 405 8 555<br />

– = (costs for raw materials and<br />

services)<br />

121 064 115 042 138 571 172 017 172 452 133 230<br />

= VALUE ADDED 42 888 52 484 49 853 61 618 62 676 53 284<br />

Table 3 presents the results <strong>of</strong> evaluation <strong>of</strong> the analysed company by the indicators<br />

CASH FLOW.<br />

Tab. 3 Indicators <strong>of</strong> Cash Flow (in thousands €)<br />

ITEM 2004 2005 2006 2007 2008 2009<br />

A*<br />

CASH FLOW from operations<br />

excluding separately reported<br />

6 322 20 952 18 684 32 638 19 470 15 329<br />

A** CASH FLOW from operations 6 338 20 964 18 713 32 646 19 481 15 337<br />

A***<br />

NET CASH FLOW from<br />

operations<br />

5 248 18 832 18 033 32 252 19 367 15 337<br />

B***<br />

NET CASH FLOWS from<br />

investing activities<br />

-11 316 -13 073 -15 625 -30 657 -11 189 -29 058<br />

C***<br />

NET CASH FLOWS from<br />

financing activities<br />

7 259 -11 608 -2 977 2 340 -2 121 5 901<br />

D. Net increase or decrease in cash 1 191 -5 849 -569 3 935 6 057 -7 819<br />

E.<br />

F.<br />

G.<br />

H.<br />

CASH at the beginning <strong>of</strong> the<br />

accounting period<br />

CASH at the end <strong>of</strong> the<br />

accounting period<br />

(before exchange differences)<br />

Exchange differences on cash at<br />

balance sheet date<br />

CASH at the end <strong>of</strong> the<br />

accounting period<br />

6 629 7 877 2 028 1 459 5 394 12 616<br />

7 820 2 028 1 459 5 394 11 451 4 797<br />

57 0 0 0 0 0<br />

7 877 2 028 1 459 5 394 11 451 4 797<br />

144


Final evaluation <strong>of</strong> the economic efficiency <strong>of</strong> the selected company is processed by the<br />

financial model <strong>of</strong> economic value added - EVA, where the operating pr<strong>of</strong>it <strong>of</strong> the company<br />

is reduced by the calculations interest as the cost <strong>of</strong> capital contributed to the business.<br />

Tab. 4 Enumeration <strong>of</strong> EVA according to the financial model (in thousands €)<br />

Items needed for the<br />

enumeration <strong>of</strong> EVA<br />

2004 2005 2006 2007 2008 2009<br />

C – total invested capital 68 804,00 75 608,00 72 920,00 83 180,00 75 871,00 85 348,30<br />

NOPAT – net operating pr<strong>of</strong>it<br />

after tax<br />

Rd – cost <strong>of</strong> the foreign capital<br />

5 809,32 11 034,63 1 948,86 4 173,12 -1 125,90 -8 119,69<br />

(weighted arithmetical<br />

average)<br />

Re – cost <strong>of</strong> own capital<br />

0,16 0,19 0,07 0,10 0,08 0,08<br />

(modular method, model<br />

INFAI)<br />

0,10 0,07 0,16 0,36 0,65 0,62<br />

Re - cost <strong>of</strong> own capital<br />

(fixed from Rd)<br />

0,21 0,24 0,12 0,15 0,13 0,13<br />

arithmetical average Re 0,15 0,16 0,14 0,25 0,39 0,37<br />

D – foreign capital 17 933,00 8 583,00 46 456,00 56 570,00 74 771,00 67 767,22<br />

E – own capita 48 200,00 56 934,00 58 847,00 59 827,00 59 663,00 52 950,77<br />

C - capital 66 133,00 65 517,00 105 303,00 116 397,00 134 434,00 120 717,99<br />

WACC – weighted average<br />

cost <strong>of</strong> capital<br />

0,16 0,16 0,12 0,21 0,26 0,24<br />

EVA -5 153,03 -1 031,38 -6 801,43 -12 965,53 -20 543,68 -28 784,55<br />

From the results, obtained by verification <strong>of</strong> the modern method <strong>of</strong> company efficiency<br />

evaluation in conditions <strong>of</strong> selected furniture company, it is possible to state that:<br />

� The analyzed company made positive values <strong>of</strong> the indicator EBITDA during the<br />

monitored period <strong>of</strong> the years from 2004 to 2009. Positive values <strong>of</strong> this indicator can be<br />

considered as affirmative, but it is possible to observe its downward trend (negative<br />

development) from 2007, which was reflected in indicators <strong>of</strong> EBIT, which took negative<br />

values from 2008, it means negative development <strong>of</strong> this indicator.<br />

� Indicator <strong>of</strong> the value added got positive values during the reporting period, but in spite <strong>of</strong><br />

that its development can not be considered to be positive (downward trend) over the last<br />

two reference years.<br />

� Operating activity <strong>of</strong> the company was evaluated by using <strong>of</strong> the cash flows indicators<br />

from operations, which got positive values during the monitored period, but it was<br />

recorded the decreasing trend (negative development) from the year 2007.<br />

� The increase <strong>of</strong> the value <strong>of</strong> the indicator EVA in time should be an ambition <strong>of</strong> every<br />

management. The companies, which achieve the positive values <strong>of</strong> EVA, can be<br />

considered as successful.<br />

� Realized researches in selected wood-processing companies in SR found that achieved<br />

EVA indicator value were negative in many cases, although the other indicators <strong>of</strong> the<br />

enterprise efficiency (e.g. EBITDA) got positive values, as it is in our analysed company<br />

(negative values during the reporting period and the raising negative trend).<br />

It ensued clearly from the presented results that since 2008 it has been coming to a gradual<br />

decline <strong>of</strong> the efficiency in the analysed furniture business (the impact <strong>of</strong> the global economic<br />

crisis) and therefore it is necessary to prepare correction actions to reverse this trend.<br />

145


CONCLUSION<br />

It is necessary to use such indicators for the evaluation <strong>of</strong> the enterprise efficiency, as well<br />

as for its overall development, which enable to evaluate the efficiency <strong>of</strong> enterprises very<br />

quickly and without great cost, according to the needs <strong>of</strong> owners and company management.<br />

These requirements are fulfilled by analyzed and verified indicators such - EBIT, EBITDA, CASF<br />

FLOW and EVA.<br />

Acknowledgement<br />

This paper was processed in the frame <strong>of</strong> the project No. 1/0517/09 as the result <strong>of</strong><br />

author’s research at significant help <strong>of</strong> VEGA agency, Slovakia.<br />

REFERENCES:<br />

1. DRÁBEK, J., POLÁCH, J. 2008. Reálne a finan�né investovanie firiem. Zvolen:<br />

Vydavate�stvo TU Zvolen, 2008. 271 s. ISBN 978-80 228-1934-3<br />

2. LESÁKOVÁ, �. 2004. Metódy hodnotenia výkonnosti malých a stredných podnikov.<br />

Banská Bystrica: OZ Ekonómia, 2004. 124 s.. ISBN 80-8055-914-7<br />

3. PAVELKOVÁ, D., KNÁPKOVÁ, A. 2009. Výkonnost podniku z pohledu finan�ního<br />

manažera. Praha: LINDE nakladatelství s.r.o., 2009. 334 s. ISBN 978-80-86131-85-6<br />

4. ZALAI, K. a kol. 2000. Finan�no-ekonomická analýza podniku. Bratislava: Sprint<br />

vfra, 2000. 337 s. ISBN 80-88848-61-X<br />

Streszczenie: Propozycja metodyki mierzenia i oceny efektywno�ci ma�ych i �rednich<br />

przedsi�biorstw przemys�u meblarskiego. W pracy dokonano analizy aktualnego zagadnienia<br />

oceny efektywno�ci ma�ych i �rednich przedsi�biorstw w warunkach dekoniunktury<br />

rynkowej. Przedstawiono skuteczne podej�cie do mierzenia i oceny efektywno�ci<br />

przedsi�biorstw z bran�y meblarskiej. Podej�cie to zak�ada wykorzystanie wska�ników<br />

analizy finansowej do okre�lania zdolno�ci generowania warto�ci dodanej, pomiaru zysku<br />

oraz innych wybranych wska�ników. Na podstawie wyników bada� sformu�owane zostan�<br />

wnioski oraz propozycje poprawy efektywno�ci przedsi�biorstwa.<br />

Corresponding authors:<br />

Doc., Ing. Josef Drábek, CSc.<br />

Department <strong>of</strong> Business Economics<br />

Faculty <strong>of</strong> Wood Science and<br />

Technology<br />

Technical <strong>University</strong> in Zvolen<br />

T. G. Masaryka 24<br />

960 53 Zvolen<br />

Slovakia<br />

mail: drabek@vsld.tuzvo.sk<br />

phone: 00421-045-5206426<br />

Ing. Mariana Sedlia�iková, PhD.<br />

Department <strong>of</strong> Business Economics<br />

Faculty <strong>of</strong> Wood Science and<br />

Technology<br />

Technical <strong>University</strong> in Zvolen<br />

T. G. Masaryka 24<br />

960 53 Zvolen<br />

Slovakia<br />

mail: sedliacikova@vsld.tuzvo.sk<br />

phone: 00421-045-5206420<br />

Ing. Justyna Biernacka, PhD.<br />

Department <strong>of</strong> Technology,<br />

Organisation and Management in<br />

Wood Industry,<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong><br />

<strong>Sciences</strong> (<strong>SGGW</strong>)<br />

02-776 <strong>Warsaw</strong>, ul.<br />

Nowoursynowska 159<br />

mail: justyna_biernacka@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No. 71, 2010: 147-151<br />

(Ann. WULS – <strong>SGGW</strong>, For. and Wood Technol., 71, 2010)<br />

Influence <strong>of</strong> isolation conditions on the degradation degree <strong>of</strong> scots pine<br />

wood (Pinus sylvestris L.)<br />

MICHA� DRO�D�EK<br />

Department <strong>of</strong> Wood Science and Wood Protection, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Abstract: In this paper modified isolation <strong>of</strong> cellulose was studied by Seifert method. There was used different<br />

time <strong>of</strong> boiling and also mixture was changing after each cycle <strong>of</strong> boiling (half an hour). Additionally cellulose<br />

was treated by 1%NaOH to remove hemicelluloses and cellulose with low degree <strong>of</strong> polymerization (DP). The<br />

purpose <strong>of</strong> this paper was Mw (the weight average molar mass) and yield determination <strong>of</strong> cellulose separated by<br />

Seifert method. Mw was determined by using size exclusion chromatography (SEC). Opportunely preparing<br />

samples to analysis is very important. Samples were dissolved in 8% LiCl/N,N-dimethylacetamide.<br />

The results prove, that the weight average molecular mass <strong>of</strong> cellulose and yield depends on boiling time in the<br />

Seifert mixture. 1% NaOH treatment gives purer cellulose and SEC results are more reliable.<br />

Key words: cellulose, Seifert method,, size exclusion chromatography (SEC), degree <strong>of</strong> polymerization<br />

INTRODUCTION<br />

Wood is one on the most important material in the world. Regardless <strong>of</strong> its structure<br />

and chemical constitution wood finds practical application in many branch <strong>of</strong> industry.<br />

Nowadays, from chemical components in wood the most useful ingredient is cellulose. Apart<br />

from cellulose in wood there are other important substances: lignin and hemicelluloses. This<br />

ingredients, like cellulose are responsible for structure <strong>of</strong> wood. They influence on strength<br />

and hardness <strong>of</strong> wood. Cellulose, lignin and hemicelluloses are connected to each other. From<br />

this reason isolation <strong>of</strong> cellulose is not very easy. Direct and indirect methods <strong>of</strong> cellulose<br />

isolation are known. Among direct methods in Europe the most popular are: Kürschner-<br />

H<strong>of</strong>fer, Cross-Bevan and Seifert. This paper concerns Seifert method. This is fast method and<br />

gives cellulose mass with high level <strong>of</strong> purity. It is connected with low efficiency. This<br />

method has one more disadvantage: cellulose has low degree <strong>of</strong> polymerization (Prosi�ski<br />

1969). In spite <strong>of</strong> polymer chains degradation, cellulose has good properties. It can be use in<br />

paper production.<br />

In article (Dro�d�ek et al. 2009) influence <strong>of</strong> boiling time in Seifert mixture on<br />

cellulose isolation was studied. Additionally, in this paper influence <strong>of</strong> reaction mixture<br />

exchange on yield and degree <strong>of</strong> cellulose polymerization was studied. Furthermore, part <strong>of</strong><br />

isolated cellulose was treated by 1% NaOH. In this way, some <strong>of</strong> polysaccharides chains with<br />

low degree <strong>of</strong> polymerization was removed (Salmen, Olson 1998).<br />

Cellulose was analyzed by size exclusion chromatography (SEC). This method gives<br />

results <strong>of</strong> the weight average molar mass (Mw), and the number average molar mass (Mn).<br />

These parameters give more information about analyzed samples. Moreover SEC s<strong>of</strong>tware<br />

gives possibility to determine molecular mass distribution <strong>of</strong> cellulose samples.<br />

MATERIALS AND METHODS<br />

Pine wood (Pinus sylvestris L.) was used as research material. Material was taken<br />

from sapwood zone. Subsequently, the samples were ground and fractionated. Seifert<br />

cellulose was isolated and conducted for sawdust fraction passing the sieve with 1.02 mm and<br />

remaining on 0.49 mm mesh sieve. That material was extracted with chlor<strong>of</strong>orm – ethanol<br />

mixture according to our own method (Antczak et al. 2006). Then the Seifert mixture to<br />

147


cellulose separation from extracted sawdust was used (Krutul 2002). Isolation <strong>of</strong> cellulose in<br />

Seifert mixture was done in this way. There different time <strong>of</strong> boiling (0.5h, 1h, 1.5h, 2h, 2.5h,<br />

3h) was used. Additionally, after every half an hour Seifert mixture was changed. Before<br />

changing, samples were washed with methanol, dioxane and acetone. Next flasks with<br />

samples were poured with Seifert mixture and boiled during next half an hour. After every<br />

cycle three samples were collected to SEC analysis and cellulose yield determination.<br />

Cellulose samples were divided into two groups and one <strong>of</strong> them was dissolved for SEC<br />

analysis according to Dupont’s method (Dupont et al. 2003). This method consists <strong>of</strong> few<br />

steps. At first stage cellulose is activated with water, which opens the structure and increases<br />

the distance between cellulose chains. Then samples are washed successively with methanol<br />

and N,N-dimethylacetamide (DMAc). Finally, samples were filtered and poured with 8%<br />

LiCl solution in DMAc. Prior to SEC analysis, cellulose samples were diluted to 0.5% LiCl<br />

concentration with pure DMAc.<br />

The remaining samples <strong>of</strong> isolated cellulose were submitted to additional treatment.<br />

The samples were treated by 1% NaOH at 95°C for 1 hour in water bath. Then cellulose<br />

samples were prepared for SEC analysis as above.<br />

Analyses were conducted using Shimadzu LC-20AD liquid chromatograph, equipped<br />

with RID-10A refractive index detector and CTO-20A column oven.<br />

Analysis conditions:<br />

- temperature 80°C<br />

- column – crosslinked polystyrene-divinylbenzene gel (PSS GRAM 10000, 10μ,<br />

8×300 mm) connected with guard column (PSS GRAM 10μ)<br />

- eluent was (w/v) 0.5% LiCl/DMAc solution<br />

- flow 2 cm 3 /min.<br />

Calibration curve was created from the results <strong>of</strong> polystyrene standards (580-6850000 g/mol,<br />

Polymer Laboratories) analysis basing on Mark-Houwink parameters from the Table 1.<br />

Table 1 Mark-Houwink parameters used for SEC calibration:<br />

Literature polystyrene<br />

cellulose<br />

(Bikova and Treimanis 2002) (Timpa 1991)<br />

(K /cm 3 g –1 )×10 3<br />

17.35 2.78<br />

� 0.642 0.957<br />

RESULT AND DISCUSSION<br />

In the Fig. 1 percentage yield <strong>of</strong> cellulose isolated by modified Seifert method is<br />

presented. Also, there are the results <strong>of</strong> samples which were treated by 1% NaOH. Cellulose<br />

yield after first cycle <strong>of</strong> boiling in Seifert mixture gives results a little above then 40%. This<br />

value is consistent with results illustrated in paper (Dro�d�ek et al. 2009). Making another<br />

cycle <strong>of</strong> boiling in Seifert mixture connected with changing <strong>of</strong> reaction mixture causes<br />

decrease <strong>of</strong> cellulose yield. It is not as high as in the first cycle. After second cycle percentage<br />

decrease <strong>of</strong> yield is constant and average about 3%. Purifying samples by 1% NaOH<br />

treatment always gives results about 10% lower then in Seifert mixture.<br />

Seifert mixture removes lignin and hemicelluloses from samples. Next cycles conduct<br />

to cellulose degradation (hydrogen chloride acid) but Seifert mixture has not got reagents<br />

which can remove these polysaccharides. Application <strong>of</strong> 1% NaOH removes low molecular<br />

cellulose (Fig. 3) and reduces yield <strong>of</strong> sample.<br />

148


yield %<br />

45<br />

38<br />

31<br />

24<br />

17<br />

10<br />

1 2 3 4 5 6<br />

number <strong>of</strong> cycle<br />

149<br />

Seifert<br />

Seifert + 1%NaOH<br />

Fig. 1. Dependence <strong>of</strong> the average cellulose yield on the number <strong>of</strong> cycle in Seifert mixture<br />

Fig. 2 shows percentage changing yield <strong>of</strong> Seifert cellulose after additional treatment<br />

by 1% NaOH. Loss <strong>of</strong> weight after every cycle is bigger. Weight <strong>of</strong> samples after first cycle<br />

decreases about 20%, but in last cycle decrease is twice bigger. It gives information about<br />

degradation <strong>of</strong> cellulose. Probably, during the next cycles lignin and hemicelluloses in<br />

samples are in low content. New portion <strong>of</strong> reaction mixture conduct to damage chains <strong>of</strong><br />

cellulose. In this way more and more cellulose with low degree <strong>of</strong> polymerization was<br />

produced. They are removed from samples with the assistance <strong>of</strong> 1% NaOH.<br />

loss <strong>of</strong> weight %<br />

50<br />

42<br />

34<br />

26<br />

18<br />

10<br />

Seifert + 1% NaOH<br />

1 2 3 4 5 6<br />

number <strong>of</strong> cycle<br />

Fig. 2. Percentage loss <strong>of</strong> weight cellulose samples after treatment by 1% NaOH<br />

On the next Fig. 3 results <strong>of</strong> SEC analysis <strong>of</strong> cellulose isolated by Seifert method are<br />

presented. On the Y axis average molecular mass <strong>of</strong> cellulose is placed. On the X axis number<br />

<strong>of</strong> cycle in Seifert mixture is presented. Molecular mass after first cycle is relatively big and<br />

has value above 200 000 Da. However, another cycles <strong>of</strong> boiling significantly influence on<br />

average molecular mass reduction. Exchange mixture on new one gives fresh reagents. Higher<br />

temperature causes faster degradation <strong>of</strong> cellulose in treated samples. Bigger decrease <strong>of</strong><br />

molecular mass takes place to third cycle. After this point bringing a new Seifert mixture does


not cause as big reduction degree <strong>of</strong> polymerization as during the first three cycles. Decrease<br />

<strong>of</strong> average molecular mass is much smaller.<br />

[Mw/g×mol -1 ]×10 -5<br />

2,8<br />

2,4<br />

2,0<br />

1,6<br />

1,2<br />

0,8<br />

0,4<br />

1 2 3 4 5 6<br />

number <strong>of</strong> cycle<br />

150<br />

Seifert<br />

Seifert + 1%NaOH<br />

Fig. 3. Dependence <strong>of</strong> the weight average molar mass <strong>of</strong> cellulose on number <strong>of</strong> cycle in Seifert mixture<br />

Additional treatment by 1% NaOH gives higher results then using only Seifert<br />

mixture. During the first three cycles the results are bigger average about 20%. In next cycles,<br />

results <strong>of</strong> Seifert cellulose and cellulose additionally treatment by 1% NaOH are similar.<br />

Value are different about 5 %.<br />

Cellulose samples after the first cycle characterize the high degree <strong>of</strong> polymerization.<br />

In the next cycles Seifert mixture damages cellulose. Using <strong>of</strong> 1% NaOH gives possibility to<br />

remove cellulose with low degree <strong>of</strong> polymerization. In this way the average molecular mass<br />

at beginning is high. In next cycles cellulose with high degree <strong>of</strong> polymerization are<br />

decreased. The average molecular mass is going down. After using 1% NaOH degree <strong>of</strong><br />

polymerization <strong>of</strong> cellulose is bigger.<br />

Table 2 Degree <strong>of</strong> cellulose polymerization isolated from pine.<br />

DP by Seifert method DP by Seifert method + 1% NaOH<br />

1342 1660<br />

733 834<br />

427 523<br />

399 421<br />

344 368<br />

339 364<br />

In Table 2 the average degree <strong>of</strong> cellulose polymerization isolated from sawdust <strong>of</strong><br />

pine by Seifert method are presented. There is many products where cellulose is used.<br />

Material strength is connected with length <strong>of</strong> cellulose chains. The border value <strong>of</strong> degree <strong>of</strong><br />

polymerization for cellulose is 100. Below this number, cellulose loses its fiber nature and<br />

does not have any strength properties. In range 100-250 strength increase is fast. Above 250<br />

degree <strong>of</strong> polymerization strength increase is slight. However degree <strong>of</strong> polymerization more<br />

then 1000 degree <strong>of</strong> polymerization does not influence on cellulose strength (Surmi�ski<br />

2006). According to this data, Seifert cellulose is possible to use in industry even after six<br />

cycles <strong>of</strong> boiling.


CONCLUSIONS<br />

- Cellulose with the optimum properties (the highest molecular mass and yield) is<br />

obtained after the first cycle (0.5h boiling in Seifert mixture).<br />

- Higher molecular mass <strong>of</strong> cellulose was obtained using 1% NaOH solution.<br />

- Higher amount <strong>of</strong> compounds soluble in 1% NaOH is formed as a result <strong>of</strong> changing<br />

and longer boiling time in Seifert mixture. This influences on cellulose degradation<br />

and purity.<br />

REFERENCES<br />

1. PROSI�SKI S. 1969: „Chemia drewna”. PWRiL Warszawa.<br />

2. DRO�D�EK M., ANTCZAK A., ZAWADZKI J., ZIELENKIEWICZ T. 2009: „SEC<br />

analysis <strong>of</strong> cellulose separated with Seifert method from pinewood (Pinus sylvestris<br />

L.)“. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> – <strong>SGGW</strong>, Forestry and Wood<br />

Technology, 63.<br />

3. SALMEN L., OLSSON A. 1998: “Interaction between hemicelluloses, lignin and<br />

cellulose: structure-property relationships”. J. Pulp Pap. Sci., 24, 3, 99-102.<br />

4. ANTCZAK A., RADOMSKI A., ZAWADZKI J. 2006: ”Benzene substitution in<br />

Wood Analysis”. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> – <strong>SGGW</strong>, Forestry and<br />

Wood Technology, 58, 15-19.<br />

5. KRUTUL D. 2002: „�wiczenia z chemii drewna oraz wybranych zagadnie� chemii<br />

organicznej”. Wydawnictwo <strong>SGGW</strong>.<br />

6. DUPONT A. L. 2003: “Cellulose in lithium chloride/N;N-dimethylacetamide,<br />

optimisation <strong>of</strong> a dissolution method using paper substrates and stability <strong>of</strong> the<br />

solutions”. Polymer 44, 4117-4126.<br />

7. BIKOVA T., TREIMANIS A. 2002: Problems <strong>of</strong> the MMD analysis <strong>of</strong> cellulose by<br />

SEC using DMA/LiCl, Carbohydrate Polymers 48, 23-28.<br />

8. TIMPA J. D., 1991: “Application <strong>of</strong> universal calibration in gel permeation<br />

chromatography for molecular weight determination <strong>of</strong> plant cell wall polymers:<br />

Cotton fiber”. J. Agric. Food Chem, 36, 270-275.<br />

9. SURMI�SKI J. 2006: “Zarys chemii drewna”. Wydawnictwo AR im. Augusta<br />

Ciszewskiego w Poznaniu.<br />

Streszczenie: Wp�yw warunków wydzielania na stopie� degradacji celulozy wyodr�bnianej z<br />

drewna sosny zwyczajnej (Pinus sylvestris L.). G�ównym celem bada� by�o sprawdzenie<br />

wp�ywu czasu gotowania trocin sosnowych w mieszaninie Seiferta. Dodatkowo podczas<br />

bada� przeprowadzano wymian� mieszaniny Seiferta w cyklach pó� godzinnych. W<br />

pozyskanej celulozie oznaczono wydajno�� oraz Mw (�rednia wagowa masa cz�steczkowa).<br />

Pozyskana celuloza zosta�a dodatkowo potraktowana 1% NaOH. Analizy masy cz�steczkowej<br />

prowadzone by�y przy pomocy chromatografii wykluczania przestrzennego (SEC).<br />

Wyniki dowodz�, �e zarówno wydajno�� jak i masa cz�steczkowa zale�� od czasu gotowania.<br />

Stwierdzono równie� du�y wp�yw wymiany mieszaniny Seiferta na wydzielan� celuloz�.<br />

Stosowanie 1% NaOH pogarsza wydajno��, zwi�kszaj�c �redni� mas� cz�steczkow�.<br />

Acknowledgements: I would like to appreciate the support for European Funds System in frame <strong>of</strong> which I<br />

pursued my research.<br />

Corresponding author:<br />

Micha� Dro�d�ek<br />

Department <strong>of</strong> Wood Science and Wood Protection,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> (<strong>SGGW</strong>)<br />

ul. Nowoursynowska 159, 02-776 <strong>Warsaw</strong>, Poland<br />

e-mail: michal_drozdzek@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> Science – <strong>SGGW</strong><br />

Forest and Wood Technology No 71, 2010: 152-156<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Synthetic silica as a filler <strong>of</strong> phenolic resin in the manufacture <strong>of</strong> exterior<br />

plywood<br />

DOROTA DUKARSKA, JANINA ��CKA,<br />

Department <strong>of</strong> Wood-Based Materials, Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> Science<br />

Abstract: Synthetic silica as a filler <strong>of</strong> phenolic resin in the manufacture <strong>of</strong> exterior plywood. The presented<br />

study investigates the possibility <strong>of</strong> using synthetic silica with a particle in the nano-scale, as the PF resin filler in<br />

the process <strong>of</strong> manufacturing water-resistant plywood. In the course <strong>of</strong> the research, the plywood was produced<br />

from birch veneer which underwent pre-treatment; the plywood was glued with PF resin with addition <strong>of</strong> either<br />

an industrial filler (based on mimosa tannin) or silica. The produced plywood was subjected to bonding quality<br />

tests as well as the bending strength and modulus <strong>of</strong> elasticity both parallel and perpendicular to the fibres <strong>of</strong> the<br />

face layers. The obtained results show that the introduction <strong>of</strong> SiO2 nanoparticles to the PF resin allows to<br />

produce water-resistant plywood with required properties and a significant lower consumption <strong>of</strong> a mixture <strong>of</strong><br />

adhesive applied on the veneer sheets.<br />

Keywords: phenolic resin, filler, fumed silica, plywood<br />

INTRODUCTION<br />

The glue mixture used in the resination <strong>of</strong> veneer sheets in the process <strong>of</strong> plywood<br />

manufacture needs to exhibit appropriate physical and performance characteristics. For these<br />

reasons different amounts and types <strong>of</strong> fillers are added to adhesive resins, regulating these<br />

properties. Moreover, an addition <strong>of</strong> a filler results in a reduction <strong>of</strong> material costs. In Poland<br />

in the production <strong>of</strong> exterior plywood resinated with phenol-formaldehyde resin (PF) most<br />

frequently a composition <strong>of</strong> calcium carbonate (chalk) and mimosa tannin is used. This filler<br />

first <strong>of</strong> all enhances the reactivity <strong>of</strong> resin, thus reducing glueing temperature. Moreover, it<br />

regulates viscosity, which reduces excessive penetration <strong>of</strong> resin into the wood tissue and the<br />

formation <strong>of</strong> bleedthrough on the surface <strong>of</strong> plywood. In turn, a disadvantage <strong>of</strong> this system is<br />

connected with large dimensions <strong>of</strong> molecules, which limits their movement in the process <strong>of</strong><br />

resin curing and the achievement <strong>of</strong> a high degree <strong>of</strong> homogenisation, which in turn hinders<br />

the application <strong>of</strong> the glue mixture. The authors <strong>of</strong> this study, when conducting studies on the<br />

lightening <strong>of</strong> colour <strong>of</strong> the glue line from PF resin using titanium dioxide, observed that a<br />

slight amount <strong>of</strong> synthetic fumed silica with a nanoscopic molecule size at only 1%<br />

introduced to the glue mixture to a considerable degree improves performance properties <strong>of</strong><br />

the mixture. Glue mixtures containing silica were characterised by a high degree <strong>of</strong><br />

homogeneity, high stability in time and appropriate flow, which to a considerable degree<br />

facilitates uniform spreading <strong>of</strong> the glue mixture onto veneer (Dukarska and ��cka 2009).<br />

Nanoparticles <strong>of</strong> SiO2 exhibited also a strong thickening and thixotropic action. It results from<br />

a review <strong>of</strong> literature that synthetic silica is at present the most universal and at the same time<br />

most effective filler. Chemically it is an amorphous silicon dioxide with a highly developed<br />

spatial structure. Its enhanced specific surface area (<strong>of</strong> 200 m 2 /g) in comparison to the<br />

traditional fillers results in it being the strongest strengthening filler. Such a high activity <strong>of</strong><br />

the silica filler results from the presence <strong>of</strong> siloxane (�SiO-Si�) and silanol (�SiOH) groups<br />

on its surface (Barthel et al. 2002, Malesa 2006). Synthetic silica is used as a nan<strong>of</strong>iller in<br />

lacquers and paints, gums and gum mixtures, sealants, plastics and resins, as well as printing<br />

inks, lubricants, in pharmaceutical products, cosmetics and in the production <strong>of</strong> optic fibres,<br />

etc. It was also shown that this filler may also be applied in the production <strong>of</strong> lacquers for<br />

wood as well as wood-based materials. Studies in the application <strong>of</strong> the UF resin complex<br />

152


with a silica sol in the manufacture <strong>of</strong> particle boards, MDF boards and plywood showed that<br />

an addition <strong>of</strong> silica to adhesive resin enhances glueing properties and reduces the emission <strong>of</strong><br />

free formaldehyde (Leonovich et al. 2002). Wood saturated with UF resin, modified at the<br />

stage <strong>of</strong> nano-SiO2 synthesis, exhibits a lower water absorption, higher fire resistance,<br />

hardness and dimensional stability (Shi 2007). Using spectroscopic methods the possibility <strong>of</strong><br />

formation <strong>of</strong> SiO2 hybrids with phenolic resin <strong>of</strong> the novolak type was also confirmed<br />

(Hernandez- Padron et al. 2002, 2004).<br />

The aim <strong>of</strong> this study was to investigate the effect <strong>of</strong> an addition <strong>of</strong> nano-SiO2 to resol<br />

PF resin on properties <strong>of</strong> exterior plywood and to determine the potential to reduce the<br />

consumption <strong>of</strong> glue mixture in the resination process.<br />

MATERIALS AND METHODS<br />

The analyses were conducted using commercial PF resin applied in the production <strong>of</strong><br />

exterior plywood. In order to ensure its adequate suitability for the resination process, a<br />

commercial filler was introduced to the resin, based on mimosa tannin (UT-10) and<br />

hydrophilic fumed silica. The amount <strong>of</strong> the filler at a ratio to 100 parts by weight <strong>of</strong> PF resin<br />

was 14 parts by weight <strong>of</strong> UT-10 (the industrial scale production formulation) or 1.5 parts by<br />

weight <strong>of</strong> SiO2. The amount <strong>of</strong> silica filler was determined on the basis <strong>of</strong> previously<br />

conducted investigations and measurements <strong>of</strong> viscosity and its changes in time at a<br />

temperature <strong>of</strong> 20�C. Due to the agglomeration tendency <strong>of</strong> SiO2 nanoparticles in this case a<br />

wetting agent was introduced to the adhesive resin solution at 0.01% in relation to filler<br />

weight.<br />

In order to eliminate undulation and reduce roughness <strong>of</strong> the surface, birch veneers<br />

were subjected to prepressing. Experimental plywood was manufactured under laboratory<br />

conditions in a three-layer system from previously prepared veneers. The amount <strong>of</strong> glue<br />

mixture, spread onto veneer sheets depending on the type <strong>of</strong> filler, amounted to:<br />

1. for UT–10 – 160 and 120 g/m 2<br />

2. for SiO2 – 160, 120 and 80 g/m 2 .<br />

After completing the sets <strong>of</strong> resinated sheets were pressed at a temperature <strong>of</strong> 135�C, at unit<br />

pressure <strong>of</strong> 1.6 N/mm 2 for 4 min.<br />

Manufactured plywoods, after the conditioning period, were subjected to bond quality<br />

testing through the determination <strong>of</strong> shear strength <strong>of</strong> glue lines after water resistance tests,<br />

required for resination class 3 according to the standard EN 314-1. In order to determine<br />

mechanical properties <strong>of</strong> manufactured plywood, their bending strength and modulus <strong>of</strong><br />

elasticity were tested parallel and perpendicular to the grain in outer layers.<br />

In the analysis <strong>of</strong> the results plywood resinated with PF resin with an addition <strong>of</strong> mimosa<br />

filler at 160 g/m 2 was adopted as the reference (control) sample.<br />

RESULTS AND DISCUSSION<br />

Results <strong>of</strong> viscosity measurements for prepared glue mixtures are presented in Figs. 1<br />

and 2. It was shown on their basis that both glue mixtures are characterised by different<br />

dynamics <strong>of</strong> changes in viscosity in time. The reference mixture up to 4 h did not exhibit<br />

significant changes, while resin with an addition <strong>of</strong> SiO2 nanoparticles as early as directly<br />

after preparation showed a significant increase in viscosity (Fig.1.). The biggest changes were<br />

recorded in the first hour <strong>of</strong> testing, in which viscosity increased by 25% (Fig.2.). This fact<br />

results from the tixotropic action <strong>of</strong> silica, which means that after the end <strong>of</strong> mixture<br />

homogenisation, during which shear forces were acting, a gradual increase in viscosity<br />

occurs. However, after the state <strong>of</strong> equilibrium was reached, adhesive resin with an addition<br />

153


<strong>of</strong> silica after 24 h from the moment <strong>of</strong> its preparation shows viscosity lower than the<br />

reference mixture.<br />

Viscosity [mPas]<br />

3600<br />

3200<br />

2800<br />

2400<br />

2000<br />

1600<br />

2135<br />

1920 1893<br />

1696<br />

2336<br />

1975<br />

2381<br />

2402<br />

2069 2107<br />

3347<br />

2610<br />

0 1 2 3 4 24<br />

Time [h]<br />

UT-10 SiO2<br />

Viscosity [mPas]<br />

154<br />

2200<br />

2100<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

0 10 20 30 40 50 60<br />

Time [min]<br />

Fig.1. Time changes <strong>of</strong> viscosity in glue mixtures Fig.2. Changes <strong>of</strong> viscosity in glue mixture<br />

depending on filler type with an addition <strong>of</strong> SiO2 immediately after preparation<br />

Analysis <strong>of</strong> testing results for bond quality in the manufactured plywood, presented in<br />

Table 1, showed that a reduction <strong>of</strong> unit spread <strong>of</strong> adhesive mixture on pre-treated veneer did<br />

not result in significant changes in bending strength either after the soaking test or a doubleboiling<br />

test. Replacement <strong>of</strong> the mimosa filler with silica also did not have a significant effect<br />

on bond quality <strong>of</strong> tested plywood. Recorded values are slightly lower than those for the<br />

reference plywood; however, they were higher than values required by the standard EN 314-2,<br />

i.e. 1.0 N/mm 2 . For such high values <strong>of</strong> shear strength the above mentioned standard does not<br />

specify requirements concerning the percentages <strong>of</strong> wood shear in the glue line. In turn, it is<br />

significant that the introduction <strong>of</strong> SiO2 nanoparticles to PF resin made it possible to reduce<br />

the consumption <strong>of</strong> the adhesive mixture by as much as 50%, i.e. to 80 g/m 2 , with no negative<br />

effect on bond quality.<br />

Table 1. Shear strength <strong>of</strong> manufactured plywood depending on the type <strong>of</strong> filler and the amount <strong>of</strong><br />

adhesive mixture spread onto veneer<br />

Type <strong>of</strong> filler<br />

Glue<br />

consumption<br />

[g/m 2 ]<br />

UT-10 SiO2<br />

24 h soaking Boiling 24 h soaking boiling<br />

fv<br />

[N/mm 2 ]<br />

�*<br />

fv<br />

[N/mm 2 ]<br />

�<br />

fv<br />

[N/mm 2 ]<br />

�<br />

fv<br />

[N/mm 2 ]<br />

�<br />

160 1.82 0.21 1.75 0.23 1.80 0.18 1.67 0.31<br />

120 1.70 0.25 1.53 0.21 1.68 0.14 1.43 0.23<br />

80 - - - - 1.61 0.37 1.48 0.28<br />

* standard deviation<br />

At such a low resination rate <strong>of</strong> veneers it was possible to considerably reduce open time.<br />

Moreover, the adhesive mixture with an addition <strong>of</strong> SiO2 was characterised by a higher<br />

homogenisation degree and better flow, which facilitated its more uniform spreading on<br />

veneer surface in comparison to those <strong>of</strong> the mixture containing mimosa curing agent.<br />

Plywoods manufactured from pre-treated veneers and those resinated with resin with<br />

an addition <strong>of</strong> both mimosa and silica fillers, showed high values <strong>of</strong> bending strength (fm) and<br />

modulus <strong>of</strong> elasticity (Em), particularly parallel to the fibres in the outer layers (table 2).


Values <strong>of</strong> fm and Em obtained for plywood manufactured with an addition <strong>of</strong> SiO2,<br />

irrespectively <strong>of</strong> the amount <strong>of</strong> used adhesive, are comparable or even higher than those <strong>of</strong><br />

reference plywood. Such high values <strong>of</strong> bending strength along the fibres result from the<br />

thickening <strong>of</strong> veneer sheets during their preparation for the resination process. Tests<br />

conducted by Bekhta et al. (2009) showed that at an adequate thickening <strong>of</strong> veneers (up to<br />

15%) bending strength <strong>of</strong> plywood manufactured from these veneers increases. In the<br />

presented study the rate <strong>of</strong> veneer pressing was 3.5 – 5%.<br />

Table 2. Bending strength and modulus <strong>of</strong> elasticity <strong>of</strong> manufactured plywood depending on the type <strong>of</strong><br />

filler and the amount <strong>of</strong> adhesive mixture spread onto veneer<br />

Glue<br />

consumption<br />

UT-10<br />

Type <strong>of</strong> filler<br />

SiO2<br />

[g/m 2 ] fm<br />

[N/mm 2 ]<br />

�*<br />

Em<br />

[N/mm 2 ]<br />

�<br />

fm<br />

[N/mm 2 ]<br />

�<br />

Em<br />

[N/mm 2 ]<br />

�<br />

Along the fibres<br />

160 126 3.17 12 200 250 126 8.24 12 500 409<br />

120 104 4.08 10 210 368 128 13.6 13 160 716<br />

80 - - - - 123 5.09 11 430 918<br />

Across the fibres<br />

160 36.0 2.05 1 520 17.5 38.4 1.83 1 820 94<br />

120 40.3 1.44 1 690 24.0 41.2 0.66 1 680 108<br />

80 - - - - 37.4 2.63 1 730 1.80<br />

CONCLUSION<br />

On the basis <strong>of</strong> conducted studies it was stated that the introduction to PF resin <strong>of</strong> a<br />

slight amount <strong>of</strong> synthetic silica (1.5 parts by weight SiO2/100 parts by weight PF) with a<br />

nanoscopic particle size, as a substitute <strong>of</strong> mimosa filler applied in commercial scale<br />

production practice, makes it possible to manufacture plywood with water resistance adequate<br />

for bond quality class 3 and high mechanical properties. Moreover, it was shown that the<br />

application <strong>of</strong> SiO2 as a filler makes it possible to considerably reduce the consumption <strong>of</strong><br />

adhesive mixture spread onto sheets <strong>of</strong> veneer and it facilitates its application. In industrial<br />

practice this would probably make it possible to reduce raw material costs.<br />

REFERENCES<br />

1. BARTHEL H., DREYER M., GOTTSCHALK-GAUDIG T., LITVINOV V., NIKITINA<br />

E. 2002: Fumed silica - rheological additive for adhesives, resins, and<br />

paints. Macromolecular Symposia 187: 573-584.<br />

2. BEKHTA P., HIZIROGLU S., SHEPELYUK O. 2009: properties <strong>of</strong> plywood<br />

manufactured from compressed veneer as building material. Materials and Design 30:<br />

947-953.<br />

3. DUKARSKA D., ��CKA J. 2009: The effect <strong>of</strong> an addition <strong>of</strong> TiO2 and SiO2<br />

nanomolecules to phenolic resin on properties and colour <strong>of</strong> glue lines in exterior<br />

plywood. Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 68, s.198-202.<br />

4. HERNANDEZ-PADRON G., LIMA R.M., NAVA R., GARCIA-GARDUNO M.V.,<br />

CASTANO V.M., 2002: Preparation and characterization <strong>of</strong> SiO2-functionalized<br />

phenolic resin hybrid materials. Advances in Polymer Technology 21(2): 116-124.<br />

155


5. HERNANDEZ-PADRON G., ROJAS F., CASTANO V.M., 2004: Ordered SiO2-<br />

(phenolic-formaldehyde resin) in situ nanocomposites. Nanotechlogy 15(1): 98-103.<br />

6. MALESA M., 2006: Nanonape�niacze kompozytów polimerowych. Cz��� II.<br />

Krzemionka. Elastomery 2(10):10-15<br />

7. SHI J., LI J., ZHOU W., ZHANG D., 2007: Improvement <strong>of</strong> wood properties by ureaformadehyde<br />

resin and nano-SiO2. Front. For. China 2(1): 104-109.<br />

Streszczenie: Syntetyczna krzemionka jako wype�niacz �ywicy fenolowej w procesie<br />

wytwarzania sklejki wodoodpornej. W prezentowane pracy zbadano mo�liwo�� zastosowania<br />

syntetycznej krzemionki o wielko�ci cz�stek w skali nano, jako wype�niacza �ywicy PF w<br />

procesie wytwarzania sklejki wodoodpornej. W ramach bada� wytworzono sklejki z fornirów<br />

brzozowych poddanych wst�pnej obróbce i zaklejonych �ywic� PF z dodatkiem wype�niacza<br />

przemys�owego (na bazie garbnika mimozowego) lub krzemionki. Wytworzone sklejki<br />

poddano badaniom jako�ci sklejenia oraz wytrzyma�o�ci na zginanie i modu�u spr��ysto�ci<br />

zarówno wzd�u� jak i w poprzek w�ókien. Na podstawie uzyskanych wyników bada�<br />

wykazano, i� wprowadzenie do �ywicy PF nanocz�steczek SiO2 pozwala na wytworzenie<br />

sklejek wodoodpornych o wymaganych w�a�ciwo�ciach przy znaczne mniejszym zu�yciu<br />

mieszaniny klejowej nanoszonej na arkusze fornirów.<br />

Corresponding authors:<br />

Dukarska Dorota, ��cka Janina<br />

Pozna� <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Department <strong>of</strong> Wood-Based Materials<br />

Wojska Polskiego 38/42<br />

60-627 Pozna�,<br />

Poland<br />

e-mail: ddukar@au.poznan.pl<br />

e-mail: jlecka@au.poznan


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> Science – <strong>SGGW</strong><br />

Forest and Wood Technology No 71, 2010: 157-161<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

The influence <strong>of</strong> adding <strong>of</strong> TiO2 and CaCO3 to phenolic resin upon the<br />

colour <strong>of</strong> glue line and properties <strong>of</strong> water-resistant plywood<br />

DOROTA DUKARSKA, JANINA ��CKA, MAGDALENA ZAJDLER *<br />

Department <strong>of</strong> Wood-Based Materials, Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> Science<br />

*Graduated student<br />

Abstract: The influence <strong>of</strong> adding <strong>of</strong> TiO2 and CaCO3 to phenolic resin upon the colour <strong>of</strong> glue line and<br />

properties <strong>of</strong> water-resistant plywood. The paper presents the possibility <strong>of</strong> applying titanium dioxide and<br />

natural calcium carbonate, i.e. chalk, in order to brighten the colour <strong>of</strong> glue line in plywood made with use <strong>of</strong> PF<br />

resin. Within the scope <strong>of</strong> the research, the brightening degree was determined for the samples <strong>of</strong> cured resins<br />

according to the model CIE L*a*b*, and the influence <strong>of</strong> TiO2 and CaCO3 upon water-resistance and mechanical<br />

properties <strong>of</strong> plywood were investigated. The conducted research shows that the optimum level <strong>of</strong> substituting<br />

chalk filler for TiO2 is 50%, which makes it possible to produce plywood with required properties, bright colour<br />

<strong>of</strong> the glue line and the lowest costs <strong>of</strong> materials. However, due to the limited colour fastness <strong>of</strong> the glue line, the<br />

investigations need to continue.<br />

Keywords: plywood, colour <strong>of</strong> glue line, titanium dioxide, chalk<br />

INTRODUCTION<br />

Plywood is a wood-based material, which owing to its mechanical properties, durability<br />

and aesthetic values has a wise range <strong>of</strong> possible uses. At present, plywood is applied in<br />

numerous realms <strong>of</strong> economy, e.g. motor industry and transportation, packaging<br />

manufacturing, furniture making and many others. Plywood is a crucial material in wooden<br />

housing construction. It a perfect construction material with great load-bearing capacity; it can<br />

be used for walls, partition walls, ceilings, doors, ro<strong>of</strong>ing, floors, stairs and also as facade<br />

material. Owing to the increasing competition in the world markets, as well as high<br />

requirements <strong>of</strong> plywood consumers, new solutions are searched for so as to improve the<br />

manufacturing process and expand the range <strong>of</strong> possible uses. The investigations are aimed at<br />

making better use <strong>of</strong> materials <strong>of</strong> poorer quality or using alternative materials, optimizing the<br />

manufacturing process, modifying the plywood surface by means <strong>of</strong> e.g. film coating, and<br />

applying new or modified resins. Nowadays, water-resistant plywood made with use <strong>of</strong><br />

phenol-formaldehyde (PF) resin makes over 65 per cent <strong>of</strong> the total production. However, the<br />

disadvantage <strong>of</strong> PF resin, along with low reactivity, is the dark colouring <strong>of</strong> glue lines, which<br />

unfavourably affects the aesthetic value <strong>of</strong> the material and reduces the number <strong>of</strong> possible<br />

uses <strong>of</strong> this kind <strong>of</strong> plywood. The authors <strong>of</strong> the present paper, have made an attempt to<br />

brighten the glue line with use <strong>of</strong> colouring agents, i.e. pigments commonly used in building<br />

chemicals, plastic processing and paper-making. Therefore, the most frequently used white<br />

pigment, i.e. titanium dioxide (TiO2) was applied; the pigment is characterized by high<br />

refractive index, nontoxicity, resistance to most organic and inorganic reagents and, first <strong>of</strong><br />

all, by the capacity to appropriately brighten the material. The investigations conducted so far,<br />

prove that it is possible to produce water-resistant plywood with class 3 bond quality, much<br />

brighter colour <strong>of</strong> the PF resin glue line and with required properties on condition that<br />

appropriate auxiliary agents, proper composition and preparation <strong>of</strong> the resin are applied<br />

(Dukarska and ��cka 2008, 2009). Yet, the used pigment is relatively expensive, which is a<br />

serious drawback. The review <strong>of</strong> literature shows, however, that there are fillers that are used<br />

along with titanium dioxide; they not only reduce the production costs <strong>of</strong> the coloured<br />

product, but also affect its physical, mechanical and optical properties. One <strong>of</strong> such fillers is<br />

calcium carbonate – chalk, which due to the high degree <strong>of</strong> whiteness and compatibility with<br />

157


most pigments, increases the covering power and as a result makes it possible to reduce the<br />

amount <strong>of</strong> much more expensive white pigments. Moreover, the filler improves the<br />

dispergation <strong>of</strong> standard pigments and affects the rheological, optical and mechanical<br />

properties <strong>of</strong> the coloured plastics, paints and paper (Albano et al. 2000, da Silva et al. 2002,<br />

Liang 2007, Zubielewicz 2007, Jakubowska et al. 2010).<br />

Therefore, the aim <strong>of</strong> the present work was to investigate the possibility <strong>of</strong> applying<br />

TiO2 and chalk filler in order to brighten the colour <strong>of</strong> glue line <strong>of</strong> water-resistant plywood<br />

manufactured with use <strong>of</strong> PF resin.<br />

MATERIALS AND METHODS<br />

For the research purposes, PF resin, used for manufacturing water-resistant plywood,<br />

was applied. As a colouring agent, titanium dioxide <strong>of</strong> the rutile kind and natural calcium<br />

carbonate were used; their properties are as follows (Table 1):<br />

Table 1. Characteristics <strong>of</strong> TiO2 and CaCO3<br />

TiO2<br />

CaCO3<br />

Parameter Value Parameter Value<br />

TiO2 content 93% CaCO3 content 98%<br />

Content <strong>of</strong> water-soluble<br />

substances<br />

0.03%<br />

Content <strong>of</strong> substances insoluble in<br />

HCl 15%<br />

0.4%<br />

Content <strong>of</strong> volatile substances 0.5% Oil absorption number 27.67g/100g<br />

pH <strong>of</strong> water solution 6.5 – 8.0 pH <strong>of</strong> water solution 9.20<br />

Sediment on 0.045 mm screen 0.01% Apparent density 0.91 g/cm 3<br />

Covering power 26 g/m 2 Brightness 96.66%<br />

Whiteness 93.5% Whiteness 89.31%<br />

Additionally, synthetic fumed silica (SiO2) was used as an auxiliary agent, which<br />

moderates the sedimentation process <strong>of</strong> solid particles <strong>of</strong> the pigment and chalk filler. The<br />

composition <strong>of</strong> the compound resin as well as the preparation method were determined on the<br />

basis <strong>of</strong> earlier investigations (Dukarska and ��cka 2008, 2009). The recipe <strong>of</strong> the compound<br />

resin used in course <strong>of</strong> the research is shown in table 2.<br />

Table 2. Recipe <strong>of</strong> the compound resin based on PF resin<br />

Lp.<br />

Composition <strong>of</strong> the compound resin [ pbw/100 pbw <strong>of</strong> PF resin ]<br />

UT – 10 SiO2 TiO2 CaCO3<br />

1. 14 - - -<br />

2. 4 -<br />

3. 3 1<br />

4. - 1<br />

1 2<br />

5. 1 3<br />

6.<br />

- 4<br />

The compound resin prepared according to variant 1, containing only mimosa filler (UT-10,<br />

industrial recipe), is the reference sample for the analysis <strong>of</strong> the obtained results.<br />

The brightening effect for the glue line was determined based on measurements <strong>of</strong> colour<br />

parameters <strong>of</strong> the cured compound resin samples in the CIE L*a*b* system. The chromatic<br />

components were determined: a* responding to the colours from green (a0), b*<br />

responding to the colours from blue (b0) and L* determining brightness.<br />

Additionally, an average value <strong>of</strong> colour shift �E, i.e. total colour difference, was calculated.<br />

158


The experimental plywood was made from birch veneer with the thickness system 1.4 ×<br />

1.7 × 1.4 mm. The amount <strong>of</strong> the compound resin applied on the veneer was 160 g/m 2 . The<br />

pressing temperature was 135 o C, the unit pressure was 1.6 N/mm 2 and the pressing time was<br />

4 min. The produced plywood, after conditioning, was subjected to bonding quality tests:<br />

shear resistance and shear fraction in wood were determined after performing the waterresistance<br />

tests required by EN 314-1 standard. Additionally, for the optimum composition <strong>of</strong><br />

compound resin, the bonding strength and modulus <strong>of</strong> elasticity were determined along and<br />

across the fibres <strong>of</strong> the face layers.<br />

RESULTS AND DISCUSSION<br />

Table 3 shows the results <strong>of</strong> investigations upon the possibility <strong>of</strong> brightening the PF<br />

resin glue line by means <strong>of</strong> applying TiO2 and CaCO3 to the resin. The presented data show<br />

clearly that the brightness effectiveness is indicated by the increase in the brightness <strong>of</strong> PF<br />

compound resins and the degree <strong>of</strong> the saturation <strong>of</strong> yellow colour. The addition <strong>of</strong> the<br />

chromatic component a*, while the value <strong>of</strong> L* is low, for the samples made only from PF<br />

resin proves the presence <strong>of</strong> dark red colour.<br />

Table 3. The effect <strong>of</strong> the composition <strong>of</strong> compound resins upon the brightness degree <strong>of</strong> their colour<br />

Amount <strong>of</strong> Amount <strong>of</strong><br />

TiO2 CaCO3<br />

L* a* b* �E<br />

[pbw] [pbw]<br />

PF 21.05 6.02 6.01 -<br />

4.0 - 76.26 5.63 31.28 -<br />

3.0 1.0 74.53 3.53 32.74 3.09<br />

2.0 2.0 71.46 5.54 31.72 4.82<br />

1.0 3.0 67.59 6.56 35.61 9.74<br />

0.0 4.0 54.66 11.46 39.05 23.68<br />

Introducing titanium dioxide into the resin leads to over threefold increase in brightness from<br />

21.06% up to 76.26%, and the growth <strong>of</strong> b* value from 6.01 up to 31.28 units, which means<br />

the colour shifts to light yellow. A gradual substitution <strong>of</strong> chalk filler for TiO2 results in the<br />

decrease in the chromatic component L* and the increase <strong>of</strong> chromatic components a* and b*,<br />

which means a decline in brightness and a further growth in the amount <strong>of</strong> red and yellow.<br />

Substituting chalk for TiO2 up to 50 per cent (i.e. 2 pbw <strong>of</strong> TiO2 + 2 pbw <strong>of</strong> CaCO3 / 100 pbw<br />

<strong>of</strong> PF) results in obtaining such a saturation degree <strong>of</strong> yellow and red which is comparable<br />

with parameters <strong>of</strong> the compound resin containing only TiO2. The difference between the<br />

colours <strong>of</strong> the two variants is determined by the average value <strong>of</strong> colour shift �E, which<br />

amounts to 4.82; according to the literature <strong>of</strong> the subject, it means that an observer can easily<br />

spot the difference. Nevertheless, the visual evaluation <strong>of</strong> the investigated samples prove that<br />

with such a substitution degree <strong>of</strong> chalk filler for TiO2, plywood with the bright colour <strong>of</strong> glue<br />

line can be manufactured with use <strong>of</strong> PF resin. Further increase in the amount <strong>of</strong> CaCO3 leads<br />

to a significant growth <strong>of</strong> �E and, at the same time, decline in brightness and increase in the<br />

saturation <strong>of</strong> red colour. The total substitution <strong>of</strong> chalk filler for TiO2 results in a considerable<br />

decrease in brightness, by approx. 30 per cent, and the increase <strong>of</strong> the component a* by 100<br />

per cent; it means a distinct colour shift towards red. The analysis <strong>of</strong> these values, as well as<br />

visual evaluation <strong>of</strong> the investigated samples exclude the possibility <strong>of</strong> totally substituting<br />

chalk filler for TiO2.<br />

Table 4 presents the results <strong>of</strong> tests on the bonding quality <strong>of</strong> the manufactured plywood<br />

determined on the basis <strong>of</strong> shear resistance and shear fraction in wood, after water-resistance<br />

tests. The obtained high values <strong>of</strong> shear resistance after 24h <strong>of</strong> soaking in water and after a<br />

159


double boiling test significantly exceed the value required by EN 314-2, i.e. 1.0 N/mm 2 . It<br />

means that the manufactured plywood, regardless <strong>of</strong> the composition <strong>of</strong> compound resin, can<br />

be classified as class 3 bonding quality, which is typical <strong>of</strong> plywood used in external<br />

conditions. The analysis <strong>of</strong> the changes in the shear resistance values shows that substituting<br />

white pigment and inorganic fillers for mimosa filler, results in a slight increase <strong>of</strong> waterresistance<br />

<strong>of</strong> the manufactured plywood, especially that determined after double boil test.<br />

Introducing various amounts <strong>of</strong> CaCO3 into compound resins, leads to a further increase in<br />

their water-resistance. Standard EN 314-2, which determines the relationship between shear<br />

resistance and shear fraction in wood, does not specify the requirements as for shear fraction<br />

in wood in case <strong>of</strong> such a high average value <strong>of</strong> shear resistance (over 1.0 N/mm 2 ). The<br />

obtained average values <strong>of</strong> shear fraction in wood do not indicate a clear relation between the<br />

percentage fraction <strong>of</strong> destruction in the glue line and the composition <strong>of</strong> the compound resin.<br />

Table 4. Bonding quality <strong>of</strong> the manufactured plywood depending on the composition <strong>of</strong> compound resin<br />

Composition <strong>of</strong> compound resin<br />

fv<br />

Shear fraction<br />

[pbw/100 pbw <strong>of</strong> PF resin] [ N/mm 2 No.<br />

] [%]<br />

UT-10 SiO2 TiO2 CaCO3 Soaking Boiling Soaking Boiling<br />

1. 14 - - - 1.92 1.47 40 30<br />

2. 4 - 1.91 1.64 30 35<br />

3.<br />

4.<br />

1<br />

3<br />

2<br />

1<br />

2<br />

1.98<br />

2.02<br />

1.93<br />

1.80<br />

50<br />

50<br />

60<br />

45<br />

5. 1 3 2.01 1.81 20 60<br />

6.<br />

- 4 2.06 1.80 50 35<br />

The results <strong>of</strong> investigations on the static bending strength and modulus <strong>of</strong> elasticity<br />

along and across the fibres <strong>of</strong> face layers, for the compound resin described above, do not<br />

show significant differences (Table 5). It means that introducing titanium dioxide into<br />

compound resin as a an agent brightening the colour <strong>of</strong> PF resin or introducing chalk as its<br />

substitute, do not affect the mechanical properties <strong>of</strong> the manufactured plywood.<br />

The visual evaluation <strong>of</strong> the produced plywood confirms the thesis that 50 per cent<br />

substitution <strong>of</strong> chalk for TiO2 is possible. Such a substitution considerably reduces the<br />

material costs <strong>of</strong> the process <strong>of</strong> manufacturing water-resistant plywood with a bright colour <strong>of</strong><br />

PF resin glue line (the economic and aesthetic aspect). However, a three-month-long<br />

observation <strong>of</strong> the manufactured plywood shows a slight, yet noticeable, change in the colour<br />

<strong>of</strong> glue lines brightened with TiO2 and CaCO3: the glue lines darkened, which proves there is<br />

a need to continue the investigations so as to achieve colour fastness.<br />

Table 5. Bending strength <strong>of</strong> plywood depending on the composition <strong>of</strong> compound resin<br />

Composition <strong>of</strong> compound resin<br />

fm<br />

Em<br />

[pbw/100 pbw <strong>of</strong> PF resin] [ N/mm 2 ] [ N/mm 2 No.<br />

]<br />

UT-10 SiO2 TiO2 CaCO3 �� � �� �<br />

1. 14 - - - 147 41.4 15 300 1 770<br />

2.<br />

3.<br />

1<br />

4<br />

2<br />

-<br />

2<br />

142<br />

138<br />

43.4<br />

41.0<br />

15 300<br />

12 610<br />

2 200<br />

1 870<br />

CONCLUSIONS<br />

The conducted investigations show that it is possible to use titanium dioxide and natural<br />

calcium carbonate, i.e. chalk, in order to manufacture water-resistant plywood with a brighter<br />

colour <strong>of</strong> PF resin glue line. The optimal degree <strong>of</strong> substituting chalk filler for TiO2 should<br />

160


not exceed 50 per cent. However, since the obtained colour fastness is satisfactory, it is<br />

necessary to continue investigations in this field.<br />

REFERENCES<br />

1. ALBANO C., GONZALEZ J., ICHAZO M., ROSALES C., DE NAVARRO CU.,<br />

PARRA C., 2000: Mechanical and morphological behavior <strong>of</strong> polyolefin blends in the<br />

presence <strong>of</strong> CaCO3. Composite Structures 48 (1-3): 49-52.<br />

2. DA SILVA ALN., ROCHA MCG., MORAES MAR., VALENTE CAR. COUTINHO<br />

FMB., 2002: Mechanical and rheological properties <strong>of</strong> composites based on polyolefin<br />

and mineral additives. Polymer Testing 21 (1): 57-60.<br />

3. DUKARSKA D., ��CKA J., (2008): Wp�yw dodatku TiO2 i wype�niacza krzemowego<br />

do �ywicy fenolowej na jako�� sklejenia oraz barw� spoiny klejowej wytworzonych<br />

sklejek. VIIth International Symposium Composite Wood Materials. Zvolen. S�owacja:<br />

204-210.<br />

4. DUKARSKA D., ��CKA J., (2009): The effect <strong>of</strong> an addition <strong>of</strong> TiO2 and SiO2<br />

nanomolecules to phenolic resin on properties and colour <strong>of</strong> glue lines in exterior<br />

plywood. Ann. WULS-<strong>SGGW</strong>, For and Wood Technol 68:1-6.<br />

5. JAKUBOWSKA P., STERZYNSKI T., SAMUJLO B., 2010: Rheological studies <strong>of</strong><br />

highly-filled polyolefin composites taking into consideration p-v-t characteristics.<br />

Polimery 55(5): 379-389.<br />

6. LIANG JZ., 2007: Tensile. flow. and thermal properties <strong>of</strong> CaCO3-filled LDPE/LLDPE<br />

composites. Journal <strong>of</strong> Applied Polymer Science 104 (3): 1692-1696.<br />

7. ZUBIELEWICZ M., 2007: Effect <strong>of</strong> mineral additives and the particle size <strong>of</strong> natural<br />

carbonate extenders on the rheological and optical properties <strong>of</strong> waterborne paint<br />

systems. Przemys� Chemiczny 86(3): 213.<br />

Streszczenie: Wp�yw dodatku TiO2 oraz CaCO3 do �ywicy fenolowej na barw� spoiny<br />

klejowej i w�a�ciwo�ci sklejki wodoodpornej. W pracy przedstawiono mo�liwo��<br />

zastosowania ditlenku tytanu oraz naturalnego w�glanu wapnia – kredy, do rozja�niania<br />

barwy spoiny klejowej z �ywicy PF sklejek wodoodpornych. W ramach przeprowadzonych<br />

bada� okre�lono stopie� rozja�nienia barwy próbek utwardzonych mieszanin klejowych wg.<br />

modelu CIE L*a*b* oraz wyp�yw dodatku TiO2 oraz CaCO3 do �ywicy PF na<br />

wodoodporno�� oraz w�a�ciwo�ci mechaniczne wytworzonych sklejek. Na podstawie<br />

uzyskanych wyników bada� ustalono, i� optymalny stopie� substytucji TiO2 wype�niaczem<br />

kredowym wynosi 50%, co pozwala na wytworzenie sklejek o wymaganych w�a�ciwo�ciach,<br />

jasnym zabarwieniu spoiny klejowej i jednocze�nie ni�szych kosztach surowcowych.<br />

Acknowledgement: This study was financed by the Polish Ministry <strong>of</strong> Science and Higher<br />

Education, grant number N N309 070236.<br />

Corresponding authors:<br />

Dukarska Dorota, ��cka Janina<br />

Pozna� <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Department <strong>of</strong> Wood-Based Materials<br />

Wojska Polskiego 38/42<br />

60-627 Pozna�,<br />

Poland<br />

e-mail: ddukar@au.poznan.pl<br />

e-mail: jlecka@au.poznan


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 162-165<br />

(Ann. WULS-<strong>SGGW</strong>, For. and Wood Technol. 71, 2010)<br />

Improved water resistance and adhesive performance <strong>of</strong> a commercial UF<br />

resin with small pMDI additions<br />

DOROTA DZIURKA<br />

Department <strong>of</strong> Wood-Based Materials, Pozna� <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Abstract: Improved water resistance and adhesive performance <strong>of</strong> a commercial UF resin with small pMDI<br />

additions The aim <strong>of</strong> the study was to determine the properties <strong>of</strong> UF resin modified with PMDI, introduced to<br />

the resin at 2.5 � 10%. Tests showed that the introduction <strong>of</strong> PMDI to urea resin results in an increase <strong>of</strong><br />

reactivity and enhances its cross-linking rate, which is manifested in the reduction <strong>of</strong> gel time at 100°C and an<br />

increase in viscosity <strong>of</strong> tested glue mixture. Analyses concerning properties <strong>of</strong> particleboards showed that the<br />

higher the amount <strong>of</strong> PMDI introduced to urea resin, the bigger the improvement <strong>of</strong> strength properties and<br />

water resistance <strong>of</strong> manufactured boards. It needs to be particularly stressed the fact that boards manufactured<br />

with a 10% proportion <strong>of</strong> PMDI in the glue mixture were characterized by water resistance measured by the<br />

V100 test at the level required by the standard for exterior boards not bearing loads (type P3).<br />

Keywords: particleboard, UF resin, pMDI, water resistance, mechanical properties<br />

INTRODUCTION<br />

In literature on the subject isocyanate adhesives and methods to utilize their properties at<br />

UF resin modification have also been focused on. Investigations conducted in this respect<br />

showed that the application <strong>of</strong> isocyanates as curing agents in urea–formaldehyde resins to a<br />

considerable degree improves glue line strength and increases their water resistance. As early<br />

as 1992 Pizzi and Walton showed that a 1 – 2% addition <strong>of</strong> polymeric MDI to UF resin<br />

effectively reduces its susceptibility to hydrolysis and accelerates cross-linking, which may<br />

result in a potential shortening <strong>of</strong> pressing time for boards manufactured with the use <strong>of</strong> such<br />

modified urea resin. In turn, studies conducted by Mansouri et al. (2006) showed that an<br />

addition <strong>of</strong> PMDI to UF resin at 15% significantly improved resistance <strong>of</strong> glue line to the<br />

action <strong>of</strong> hot water. Those authors showed that plywood manufactured under such conditions<br />

were characterized by sufficient water resistance after 27-minute boiling. In turn, Hong Lei et<br />

al. (2006) showed that already a 5% addition <strong>of</strong> PMDI to MUPF resin makes it possible to<br />

manufacture particleboards with a 130% higher water resistance, measured by internal bond<br />

after the boiling test in comparison to that <strong>of</strong> board resinated with pure MUPF resin.<br />

In view <strong>of</strong> the above mentioned reports it was decided in this study to investigate the<br />

properties <strong>of</strong> UF resin modified with PMDI and the possibility to produce waterpro<strong>of</strong>ed<br />

particleboards resinated with such modified resin.<br />

MATHERIALS AND METHODS<br />

In the resination <strong>of</strong> chips UF resin modified with PMDI added at 0, 2.5, 5 and 10% in<br />

relation to UF resin weight was used. A 2% addition <strong>of</strong> NH4NO3 in relation to dry weight <strong>of</strong><br />

UF resin was used as a curing agent for urea resin. Prior to the manufacture <strong>of</strong> boards<br />

dynamic viscosity (measured with a Brookfield rotational viscometer) and gel time at 100°C<br />

<strong>of</strong> glue solutions were determined.<br />

Analyzed single-layer particleboards with density <strong>of</strong> 700 kg/m 3 and thickness <strong>of</strong> 12 mm were<br />

manufactured from pine chips, using the following pressing parameters: pressing time <strong>of</strong> 22,<br />

162


19 and 16 s/mm board thickness, pressure <strong>of</strong> 2.5 MPa, resination rate <strong>of</strong> 12% and temperature<br />

<strong>of</strong> 200ºC.<br />

The following properties <strong>of</strong> the particleboards were examined according to the relevant<br />

European Standards (EN):<br />

- modulus <strong>of</strong> rupture (MOR) and modulus <strong>of</strong> elasticity (MOE)<br />

- internal bond (IB)<br />

- internal bond after the boiling test (V100)<br />

- swelling in thickness after immersion in water (TS)<br />

- formaldehyde content<br />

RESULTS AND DISCUSSION<br />

Results <strong>of</strong> studies on the effect <strong>of</strong> a PMDI addition to UF resin on dynamic viscosity <strong>of</strong><br />

prepared glue mixtures at a temperature <strong>of</strong> 23±05°C and gel time at 100°C are given in Table<br />

1.<br />

Table 1<br />

Dynamic viscosity and gel time <strong>of</strong> UF resin depending on the amount <strong>of</strong> added PMDI<br />

UF/PMDI<br />

[%]<br />

0<br />

Type <strong>of</strong> determination<br />

Dynamic viscosity [mPa·s] measured after time [h]<br />

1 2 3 4<br />

Gel time<br />

[s]<br />

100/0 608 608 608 610 610 75<br />

97.5/2.5 616 671 695 708 714 73<br />

95/5 653 702 720 726 738 66<br />

90/10 732 811 848 848 854 63<br />

Presented data indicate that their viscosity increases in proportion to an increase in the amount<br />

<strong>of</strong> added PMDI, from 1 to 20%, respectively, for its minimum and maximum proportion in<br />

the mixture. In successive measurement time points a more evident effect <strong>of</strong> the PMDI<br />

addition to UF resin on its dynamic viscosity may already be observed. Thus, if after 4 h from<br />

the time <strong>of</strong> preparation <strong>of</strong> glue mixtures an increase was observed in relation to pure UF resin<br />

by 17% for a 2.5% addition <strong>of</strong> PMDI, then in case <strong>of</strong> its 10% proportion in the glue mixture<br />

this increase amounted to 40%.<br />

Studies conducted in this respect showed also that depending on the amount <strong>of</strong> PMDI<br />

introduced to urea resin the mean increase in the viscosity <strong>of</strong> glue mixtures after 4 h,<br />

measured in relation to their initial viscosity, was only 17%, which should not be a problem in<br />

case <strong>of</strong> applications under industrial production conditions.<br />

In contrast, it results from the analyses on the effect <strong>of</strong> the amount <strong>of</strong> PMDI added to urea<br />

resin on its gel time at 100°C that with an increase in the addition <strong>of</strong> the modifier gel time <strong>of</strong><br />

UF resins is reduced by a maximum <strong>of</strong> 16% (Table 1).<br />

Thus generally it may be stated that an addition <strong>of</strong> PMDI to UF resin increases its reactivity,<br />

expressed by a shortening <strong>of</strong> gel time and it enhances its cross-linking rate, which is<br />

manifested in an increase <strong>of</strong> viscosity in tested glue mixtures.<br />

Results <strong>of</strong> studies on the effect <strong>of</strong> the amount <strong>of</strong> PMDI introduced to urea resin on<br />

properties <strong>of</strong> particleboards manufactured with such modified UF resin, pressed at 22 s/mm<br />

thickness, are presented in Table 2.<br />

163


Properties <strong>of</strong> particleboards depending on the amount <strong>of</strong> PMDI introduced to urea resin<br />

Amount<br />

<strong>of</strong> PMDI<br />

Pressing<br />

time<br />

% s/mm<br />

0<br />

2.5<br />

5<br />

10<br />

22<br />

* - standard deviation<br />

CH2O MOR MOE IB TS V100<br />

164<br />

N/mm 2<br />

Table 2<br />

mg/100g<br />

s.m.p.<br />

N/mm 2 %<br />

15’ 30’ 60’ 90’ 120’<br />

3.60 15.0 2570 1.00 32.3 - - - - -<br />

2.3 *<br />

390 0.10 3.6 - - - - -<br />

3.83 16.1 2620 1.24 29.0 0.06 - - - -<br />

1.3 70 0.09 2.1 0.01 - - - -<br />

2.95 18.4 2780 1.32 26.7 0.13 0.08 - - -<br />

2.5 290 0.09 1.3 0.05 0.02 - - -<br />

2.52 19.6 2960 1.32 25.1 0.30 0.25 0.14 0.10 0.09<br />

1.7 180 0.10 1.6 0.04 0.04 0.03 0.01 0.02<br />

It results from studies conducted in this respect that the higher the amount <strong>of</strong> PMDI<br />

introduced to resin, the bigger the improvement in the strength properties <strong>of</strong> boards. Thus<br />

already at a 2.5% addition <strong>of</strong> PMDI a 7% and 24% increase was observed for bending<br />

strength and internal bond, respectively, while in case <strong>of</strong> the maximum amount <strong>of</strong> the<br />

modifier (10%) these properties are improved on average by as much as 32%.<br />

The applied method <strong>of</strong> UF resin modification had a significant effect also on the improvement<br />

<strong>of</strong> hydrophobic properties in manufactured boards. It was observed that with an increase in<br />

the addition <strong>of</strong> PMDI to urea resin a considerable decrease in their hydrophilic character was<br />

found. Measurements <strong>of</strong> water resistance showed that substitution <strong>of</strong> UF resin with PMDI<br />

makes it possible to manufacture boards with hydrophobicity higher by 10 to 22%, measured<br />

by swelling <strong>of</strong> boards under the influence <strong>of</strong> soaking in water. Although absolute values <strong>of</strong><br />

swelling are higher than those specified by the standard, it needs to be taken into account that<br />

they were single-layer boards devoid <strong>of</strong> face layers with a higher resination rate, considerably<br />

hindering penetration <strong>of</strong> water into the boards, and that no additional hydrophobic agents<br />

were applied in their manufacture. Tests also showed that boards manufactured with a 10%<br />

proportion <strong>of</strong> PMDI in the glue mixture were characterized by water resistance, measured by<br />

internal bond after the boiling test, being generally <strong>of</strong> the value specified in the standard for<br />

type 3 boards (0.09 N/mm 2 according to PN-EN 312) (Table 2).<br />

As it could have been expected, the introduction <strong>of</strong> PMDI to UF resin resulted in an<br />

improvement <strong>of</strong> hygienic standard <strong>of</strong> manufactured boards. Tests conducted in this respect<br />

showed that the introduction <strong>of</strong> PMDI to UF resin at 10% resulted in a reduction <strong>of</strong><br />

formaldehyde content in the board by as much as 30% (Tabela 2), which is <strong>of</strong> particular<br />

importance in view <strong>of</strong> the current need to manufacture boards with a very low content and<br />

emission <strong>of</strong> formaldehyde. At the same time it needs to be stressed that already boards<br />

resinated with non-modified UF resin were characterized by formaldehyde content being<br />

considerably below that for class E1 (6.5 mg/100g).<br />

on urea resin<br />

CONCLUDING REMARKS<br />

Summing up the conducted analyses it needs to be stated that the introduction <strong>of</strong> PMDI as<br />

a modifier to urea resin results in an increase <strong>of</strong> reactivity and enhances its cross-linking rate,<br />

which is manifested in the reduction <strong>of</strong> gel time at 100°C and an increase in viscosity <strong>of</strong><br />

tested glue mixture. Analyses concerning properties <strong>of</strong> particleboards showed that the higher


the amount <strong>of</strong> PMDI introduced to urea resin, the bigger the improvement <strong>of</strong> strength<br />

properties and water resistance <strong>of</strong> manufactured boards. We need to particularly stress the fact<br />

that boards manufactured with a 10% proportion <strong>of</strong> PMDI in the glue mixture were<br />

characterized by water resistance measured by the V100 test at the level required by the<br />

standard for exterior boards not bearing loads (type P3).<br />

REFERENCES<br />

1. PIZZI A., WALTON T. 1992: Non - emulsifiable, water-based, mixed diisocyanate<br />

adhesive system for exterior plywood. Part I. Novel reaction mechanisms and their<br />

chemical evidence. Holzforschung 46(6): 541-547.<br />

2. MANSOURI H.R., PIZZI A., LEBAN J.M. 2006: Improved water resistance <strong>of</strong> UF<br />

adhesives for plywood by small pMDI additions. Eur J Wood Prod 64(3): 218-220.<br />

3. HONG L., PIZZI A., GUANBEN D. 2006: Coreacting PMUF/isocyanate resins for<br />

wood panel adhesives. Eur J Wood Prod 64(2): 117-120.<br />

Streszczenie: Mo�liwo�� polepszenia wodoodporno�ci oraz w�a�ciwo�ci �ywicy UF poprzez<br />

modyfikacj� PMDI. W pracy zbadano w�a�ciwo�ci �ywicy UF modyfikowanej PMDI, który<br />

wprowadzano do �ywicy w ilo�ci 2,5�10%. Przeprowadzone badania wykaza�y, i�<br />

wprowadzenie do �ywicy mocznikowej jako modyfikatora PMDI powoduje wzrost<br />

reaktywno�ci oraz zwi�ksza stopie� jej usieciowania, czego wyrazem jest skrócenie czasu<br />

�elowania w temperaturze 100°C oraz wzrost lepko�ci badanych mieszanin klejowych.<br />

Badania w zakresie w�a�ciwo�ci p�yt wiórowych zaklejanych tak zmodyfikowan� �ywic� UF<br />

wykaza�y, i� w�a�ciwo�ci wytrzyma�o�ciowe oraz wodoodporno�� wytworzonych p�yt<br />

ulega�y poprawie w stopniu tym wi�kszym, im wi�ksza by�a ilo�� wprowadzanego do �ywicy<br />

mocznikowej PMDI. Na szczególne podkre�lenie zas�uguje fakt, i� p�yty wytworzone z 10%<br />

udzia�em PMDI w mieszaninie klejowej charakteryzowa�y si� wodoodporno�ci� mierzon�<br />

testem V100 na poziomie warto�ci przewidzianej norm� dla p�yt nieprzenosz�cych obci��e�<br />

u�ytkowanych w warunkach wilgotnych (typ P3).<br />

Corresponding author:<br />

Dorota Dziurka<br />

Pozna� <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Department <strong>of</strong> Wood-Based Materials<br />

Wojska Polskiego 38/42<br />

60-627 Pozna�<br />

Poland<br />

e-mail: ddziurka@up.poznan.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 166-169<br />

(Ann. WULS-<strong>SGGW</strong>, For. and Wood Technol. 71, 2010)<br />

Veneered lightweight particleboards for furniture industry<br />

DOROTA DZIURKA, JANINA ��CKA<br />

Department <strong>of</strong> Wood-Based Materials, Pozna� <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Abstract. The paper presents analyses <strong>of</strong> properties <strong>of</strong> particleboards, both raw and veneered using birch veneer,<br />

with a reduced density (from 550 to 350 kg/m 3 ) and resinated with UF resin. As it could have been expected, a<br />

considerable decrease <strong>of</strong> modulus <strong>of</strong> rigidity and modulus <strong>of</strong> elasticity was observed with a reduction <strong>of</strong> density.<br />

In contrast, finishing <strong>of</strong> board surface with a veneer resulted in a considerable, even 2-3-fold increase in their<br />

strength in relation to that <strong>of</strong> analogous raw boards. As a result <strong>of</strong> tests it was found that it is possible to<br />

manufacture veneered particleboards with birch veneer with their density reduced to 450 kg/m 3 , meeting the<br />

requirements <strong>of</strong> the standard for P2 type particle boards in terms <strong>of</strong> mechanical properties and such boards may<br />

be used as boards in interior design, including furniture.<br />

Keywords: lightweight particleboard, UF resin, veneer<br />

INTRODUCTION<br />

An ideal wood-based product to be used in furniture production, in view <strong>of</strong> the social trend<br />

for an increased mobility <strong>of</strong> the human population, and competitiveness <strong>of</strong> the final product<br />

thanks to the easy and rapid introduction <strong>of</strong> the latest design trends, should be characterised<br />

by light weight. Requirements in this respect are met by cellular wood panels, a product<br />

known and used in furniture industry and door production for many years (pl.egger.com,<br />

www.technologia.meblarstwo.pl, www.kurierdrzewny.pl, www.ldr.grajewo.com). In this<br />

case, thanks to its layer structure with the core in the form <strong>of</strong> the so-called honey comb, we<br />

obtain a maximal weight reduction without any deterioration <strong>of</strong> load bearing capacity, rigidity<br />

or other functions <strong>of</strong> the structure. However, they are not universal materials and their most<br />

significant drawbacks include the necessity to have specialist machines and equipment, the<br />

application <strong>of</strong> special hardware as well as considerable labour consumption. Thus cellular<br />

wood panels are <strong>of</strong> relatively little use for small and medium-sized enterprises, which do not<br />

manufacture large batches <strong>of</strong> products. For this reason particleboard still remains the basic<br />

material used by the furniture industry. Due to its easy workability, stability <strong>of</strong> parameters and<br />

dimensions raw particleboard is an excellent semi-product both for the improvement <strong>of</strong> fronts<br />

and other furniture elements in the process <strong>of</strong> lamination, veneering, postforming, as well as<br />

in direct use, e.g. as structural elements in the production <strong>of</strong> upholstered furniture. Traditional<br />

particleboards are characterised by medium density <strong>of</strong> 650 kg/m 3 , and in view <strong>of</strong> the new<br />

regulations and trends such a high density starts to be a serious disadvantage. During board<br />

manufacture wood chips have the density <strong>of</strong> solid wood, from which they were produced,<br />

while the formed mat is characterised by a bulk density <strong>of</strong> 150 - 300 kg/m 3 . Thus maintaining<br />

a similar level <strong>of</strong> density in the course <strong>of</strong> pressing we may obtain low-density boards.<br />

However, when applying traditional resins such a high number <strong>of</strong> pores in the mat results in a<br />

reduced number <strong>of</strong> glue lines in the board, causing a considerable decrease <strong>of</strong> its strength.<br />

Thus a concept proposed by researchers from the WKI Institute at Braunschweig seems to be<br />

<strong>of</strong> considerable interest, suggesting the manufacture <strong>of</strong> particleboard resinated with an<br />

adhesive, which gives a glue line in the foamed form. Thus it is possible to maintain loose<br />

arrangement <strong>of</strong> chips and produce boards with a density <strong>of</strong> approx. 390 kg/m 3 , characterised<br />

by good mechanical properties and applicable in furniture manufacture.<br />

166


Undoubtedly strength <strong>of</strong> low-density boards will be improved thanks to the application,<br />

similarly as it is the case with cellular wood panels, <strong>of</strong> facing panels. Thus it was decided in<br />

this study to investigate properties <strong>of</strong> single-layer low-density particleboards resinated with<br />

UF resin and finishing in the pressing process with birch veneer.<br />

MATERIALS AND METHODS<br />

In board manufacture commercial pine chips were used together with peeled birch veneer<br />

with a thickness <strong>of</strong> 1.7 mm. Moisture content in the wood raw material used in the tests was<br />

3.8 and 5.1%, respectively. In chip resination UF resin was used, with the following<br />

parameters: solids content 69.3%, density at 25°C - 1.286 g·cm -3 , No. 4 Ford Cup viscosity<br />

128 s, gel time at 100°C – 68 s, pH - 8.7 and miscibility with water – 1.0.<br />

In order to test properties <strong>of</strong> low-density particleboards single-layer boards were produced<br />

with a density <strong>of</strong> 550, 500, 450, 400 and 350 kg/m 3 , and their surface was finished using a 1cycle<br />

process, in which decorative veneer was pressed onto the board in the board production<br />

cycle.<br />

Raw and veneered particleboards were manufactured under laboratory conditions, applying<br />

the following pressing parameters:<br />

� pressing time - 20 s/mm board thickness<br />

� unit pressure - 2.5 MPa<br />

� temperature - 200ºC<br />

� resination rate - 12%.<br />

Properties <strong>of</strong> manufactured boards were tested following the respective standards:<br />

� modulus <strong>of</strong> rigidity (MOR) and modulus <strong>of</strong> elasticity (MOE) according to EN<br />

310,<br />

� internal bond (IB) according to EN 319,<br />

� swelling in thickness (TS) after 24h soaking in water according to EN 317 and<br />

water absorbability (WA).<br />

RESULTS AND DISCUSSION<br />

Testing results <strong>of</strong> properties for particleboards with reduced density, both raw and veneered,<br />

are presented in Table 1. As it could have been expected, a considerable reduction <strong>of</strong> bending<br />

strength and modulus <strong>of</strong> elasticity was found with a decrease in particleboard density. It was<br />

observed that strength <strong>of</strong> boards with density reduced to 350 kg/m 3 constitutes only 15%<br />

strength <strong>of</strong> boards with a density <strong>of</strong> 550 kg/m 3 . Testing results <strong>of</strong> modulus <strong>of</strong> elasticity are<br />

similar. However, finishing <strong>of</strong> board surface with veneer significantly improves these<br />

properties and conducted tests showed an even 2-3-fold increase in strength in comparison to<br />

raw boards. Thus for example in case <strong>of</strong> boards with a density <strong>of</strong> 450 kg/m 3 modulus <strong>of</strong><br />

rigidity increases from 3.96 to 16.3 N/mm 2 , while modulus <strong>of</strong> elasticity increases from 930 to<br />

3060 N/mm 2 , which results in the board meeting the respective requirement <strong>of</strong> the applicable<br />

standard EN 312 for P4 boards. Assumptions <strong>of</strong> this standard stipulate that interior loadbearing<br />

boards should be characterised by a modulus <strong>of</strong> elasticity and modulus <strong>of</strong> rigidity <strong>of</strong><br />

at least 2300 and 15 N/mm 2 , respectively.<br />

Conducted tests also showed that manufactured boards exhibited high internal bond. With a<br />

reduction <strong>of</strong> density their strength deteriorated; however, the loss <strong>of</strong> strength was not as rapid<br />

as in case <strong>of</strong> bending strength. It was observed that strength <strong>of</strong> boards with the lowest density<br />

constituted as much as 35% strength <strong>of</strong> boards with the highest density. Improvement <strong>of</strong><br />

board surface with birch veneer resulted in a reduction <strong>of</strong> its strength. This may be explained<br />

167


y the fact that as a consequence <strong>of</strong> too poor bonding <strong>of</strong> the board surface with veneer its<br />

separation from the board surface occurred sooner than board rupture at mid-thickness.<br />

Table 1<br />

Mechanical and physical properties <strong>of</strong> particleboards glued with UF resin<br />

Density MOR *<br />

MOE *<br />

IB TS WA<br />

kg/m 3<br />

N/mm 2<br />

raw boards<br />

%<br />

550 8.07 1630 0.68 22 103<br />

2.3 **<br />

390 0.10 3.6 8.9<br />

500 5.87 1340 0.61 18 115<br />

1.3 70 0.09 2.1 9.7<br />

450 3.96 930 0.47 16 119<br />

0.7 290 0.09 1.3 8.2<br />

400 2.75 700 0.33 14 142<br />

0.5 180 0.10 1.6 9.2<br />

350 1.59 420 0.24 12 146<br />

0.6 110 0.04 1.1 11.3<br />

veneered boards<br />

550 27.1 3995 0.52 20 94<br />

1.9 420 0.13 3.8 5.8<br />

500 23.5 4120 0.42 18 102<br />

1.7 390 0.10 2.0 8.2<br />

450 16.3 3060 0.35 15 107<br />

1.2 210 0.09 1.3 8.8<br />

400 11.1 2690 0.22 14 118<br />

1.1 240 0.08 1.1 7.3<br />

350 7.89 2250 0.16 13 122<br />

0.9 190 0.06 1.2 6.3<br />

*<br />

- Values <strong>of</strong> MOR and MOE gives in the table constitute mean results <strong>of</strong> measurements <strong>of</strong> strength and moduli<br />

tested parallel and perpendicular to veneer grain<br />

**<br />

- standard deviation<br />

However, it may be assumed that board veneering in a separate cycle using an additional glue<br />

layer would reduce this disadvantageous phenomenon considerably. Summing up the<br />

conducted tests it may be stated that finishing <strong>of</strong> particleboards with veneer makes it possible<br />

to manufacture particleboards with a density reduced to 450 kg/m 3 and meeting the<br />

requirements concerning internal bond <strong>of</strong> the respective standard for P4 boards (0.35<br />

according to EN 312).<br />

In turn, tests concerning swelling in thickness and absorbability showed that – although<br />

swelling decreases with a reduction <strong>of</strong> density – it is accompanied by a considerable increase<br />

in absorbability. This is caused by a more porous structure <strong>of</strong> boards with a reduced density,<br />

on the one hand reducing its swelling capacity, but on the other hand increasing its capacity to<br />

absorb water. As it could have been expected, the application <strong>of</strong> veneer facing constituted a<br />

barrier hindering the penetration <strong>of</strong> water into the board, which results on a reduced<br />

absorbability <strong>of</strong> veneered boards, on average by 13%, in relation to raw boards.<br />

CONCLUDING REMARKS<br />

Conducted tests showed that it is possible to manufacture particleboards with a density<br />

reduced to 450 kg/m 3 , veneered with birch veneer and meeting in terms <strong>of</strong> bending strength,<br />

modulus <strong>of</strong> elasticity and internal bond the requirements <strong>of</strong> the standard for interior load-<br />

168


earing particleboards (type P4). Thus it may be assumed that they may be applied as boards<br />

in interior design uses, including furniture.<br />

REFERENCES<br />

1. www.technologia.meblarstwo.pl/pl_PL/artykul/4968/finsa-green-panel<br />

2. www.kurierdrzewny.pl/index.php?mact=News,cntnt01,detail,0&cntnt01articleid=197<br />

&cnt nt01lang=pl_PL&cntnt01returnid=15<br />

3. www.technologia.meblarstwo.pl/pl_PL/artykul/1948/plyta-komorkowa-dlawszystkich<br />

4. www.ldr.grajewo.com<br />

5. pl.egger.com/pl-plk/egger-pl-produkte-leichbauplatten.htm<br />

6. www.technologia.meblarstwo.pl/pl_PL/artykul/286/nowe-materialy-drewnopochodnedla-meblarstwa-i-nie-tylko<br />

Streszczenie: Lekkie p�yty wiórowe uszlachetnione fornirem. W pracy zbadano w�a�ciwo�ci<br />

p�yt wiórowych, surowych oraz uszlachetnionych fornirem brzozowym, o obni�onej g�sto�ci<br />

(od 550 do 350 kg/m 3 ) i zaklejanych �ywic� UF. Jak nale�a�o oczekiwa� wraz z obni�aniem<br />

g�sto�ci nast�powa� znaczny spadek wytrzyma�o�ci na zginanie statyczne oraz modu�u<br />

spr��ysto�ci przy zginaniu. Uszlachetnienie natomiast powierzchni p�yt fornirem<br />

spowodowa�o zdecydowany, nawet 2-3-krotny wzrost ich wytrzyma�o�ci w stosunku do<br />

analogicznych p�yt surowych. W wyniku przeprowadzonych bada� stwierdzono, i� mo�liwe<br />

jest wytworzenie uszlachetnionych fornirem brzozowym p�yt wiórowych o g�sto�ci obni�onej<br />

do 450 kg/m 3 , spe�niaj�cych w zakresie w�a�ciwo�ci mechanicznych wymagania normy dla<br />

p�yt wiórowych typu P2 i mog� znale�� zastosowanie jako p�yty do wyposa�enia wn�trz,<br />

��cznie z meblami.<br />

Corresponding author:<br />

Dorota Dziurka<br />

Pozna� <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Department <strong>of</strong> Wood-Based Materials<br />

Wojska Polskiego 38/42<br />

60-627 Pozna�<br />

Poland<br />

e-mail: ddziurka@up.poznan.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 170-176<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Ultrastructure and ultrasound wave propagation velocity in spruce (Picea<br />

abies L.) resonance wood<br />

EWA FABISIAK, IGOR CUNDERLIK 1) , WALDEMAR MOLI�SKI<br />

Department <strong>of</strong> Wood Science, Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

1) Department <strong>of</strong> Wood Science, Technical <strong>University</strong> in Zvolen<br />

Abstract: Relation between the micr<strong>of</strong>ibril angles (MFA) in the tracheid tangent walls in individual annual rings<br />

<strong>of</strong> spruce (Picea abies L.) resonance wood from the mountainous area <strong>of</strong> Slovakia and ultrasound propagation<br />

wave in longitudinal direction is studied. The MFA values are found to decrease with the progress <strong>of</strong> the<br />

vegetation season; the mean MFA in earlywood is slightly greater than in latewood, which is the reason for small<br />

ultrastructural cyclic inhomogeneity in the spruce wood studied. Low MFA values have a significant effect on<br />

the ultrasound wave propagation along the grains <strong>of</strong> the spruce resonance wood.<br />

Keywords: micr<strong>of</strong>ibril angle, ultrasound velocity, early and latewood, mature wood, spruce wood<br />

INTRODUCTION<br />

Wood has a large variety <strong>of</strong> applications so it is difficult to assess its quality as<br />

different applications need wood <strong>of</strong> different characteristics (wood for paper production<br />

should have other features than wood for construction industry or music instruments). The<br />

most popular and commonly used parameter for wood qualification for different applications<br />

has hitherto been the wood density. However, it has been proved that wood density is not<br />

always a reliable and informative parameter determining wood quality whose assessment<br />

must take into regard the ultrastructural properties <strong>of</strong> cell walls. It is particularly important for<br />

the resonance wood, which should be characterised by high elasticity modulus along the<br />

grains and low density. These requirements are apparently contradictory as the elasticity<br />

modulus increases with increasing wood density. An important property <strong>of</strong> good resonance<br />

wood is possibly the lowest cyclic inhomogeneity, which means that this type <strong>of</strong> wood should<br />

contain poorly developed latewood component. In view <strong>of</strong> the above, many authors have been<br />

studying the relations between parameters describing the cell wall ultrastructure and selected<br />

properties <strong>of</strong> wood. Yang & Evans (2003) have reported that the variation in the wood<br />

elasticity modulus is to a greater degree dependent on the micr<strong>of</strong>ibril angle than on wood<br />

density. Similar conclusions follow from the studies by Yamashia et al. (2000), Ono &<br />

Norimoto (1984), Spycher et al. (2008) who proved that the micr<strong>of</strong>ibril angle had<br />

considerable influence on the physical, mechanical and acoustic properties <strong>of</strong> wood.<br />

An important parameter used for evaluation <strong>of</strong> resonance wood is the ultrasound wave<br />

propagation velocity. This parameter brings information on the dynamic elasticity modulus <strong>of</strong><br />

wood, which is an important determinant <strong>of</strong> resonance wood quality (Ono & Norimoto 1983).<br />

The above criteria are best met by the spruce wood. It is characterised by even texture<br />

and narrow annual rings as well as low density, which makes it particularly suitable for<br />

production <strong>of</strong> sound boards <strong>of</strong> musical instruments. For instance in reference to pine wood,<br />

spruce wood has not only lower density but greater tensile strength along the grains and<br />

higher elasticity modulus in the same direction (Moli�ski et al. 2009). The spruce wood<br />

tracheids show higher mechanical strength and greater stiffness <strong>of</strong> cell walls than those <strong>of</strong><br />

pine wood. The higher mechanical parameters <strong>of</strong> spruce wood were found to be related to a<br />

more steep arrangement <strong>of</strong> MFA in cell walls. Moreover, as follows from the studies<br />

conducted in Austria and Sweden (Reiterer et al. 1999, Sahlberg et al. 1997), in earlywood in<br />

mature wood zone MFA was <strong>of</strong>ten smaller than in latewood.<br />

170


The influence <strong>of</strong> ultrastructure <strong>of</strong> cell walls on the technological quality <strong>of</strong> wood from<br />

different species has been studied for a few years at the Department <strong>of</strong> Wood Science at the<br />

<strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> in Poznan. The aim <strong>of</strong> this study was to establish and analyse the<br />

relation between the micr<strong>of</strong>ibril angles (MFA) in the tracheid tangent walls in individual<br />

annual rings <strong>of</strong> spruce (Picea abies L.) resonance wood and ultrasound propagation wave in<br />

longitudinal direction is studied. These parameters are known to determine the use <strong>of</strong> wood<br />

for production <strong>of</strong> sound boards <strong>of</strong> musical instruments.<br />

THE METHODS<br />

The material studied was resonance spruce (Picea abies L.) wood from the tree<br />

growing in the mountains <strong>of</strong> Slovakia. It was a part <strong>of</strong> a pith board coming from immediately<br />

above the breast height <strong>of</strong> the tree, granted by the Department <strong>of</strong> Wood Science (DFTU) in<br />

Zvolen, Slovakia. The experimental board <strong>of</strong> the size 3(T) x 9(R) x 50 (L) cm, covered 60<br />

annual rings from the mature wood zone. From one end <strong>of</strong> this board a slip <strong>of</strong> about 1 cm in<br />

width (along the grains) was cut <strong>of</strong> to measure the macrostructural parameters: widths <strong>of</strong><br />

annual rings and latewood zones. From the same slip a smaller one was cut out, <strong>of</strong> 5 mm in<br />

width and 4 mm in height along the grains. In this smaller slip MFA were measured in tangent<br />

walls <strong>of</strong> tracheids in selected annual rings from mature wood (6, 11, 18, 25, 31 and 47). The<br />

remaining part <strong>of</strong> the experimental material was used for determination <strong>of</strong> the ultrasound<br />

wave propagation velocity along the grains. For this purpose, in the cross-section area <strong>of</strong> the<br />

sample the same annual rings in which MFA were measured were identified and the<br />

ultrasound generating head was applied at them. The ultrasound wave propagation rate was<br />

measured by an ultrasound probe type 543, at the head generated frequency <strong>of</strong> 0.5 MHz. The<br />

resonance spruce wood density was 390 kg/m 3 and its moisture content was close to 10%.<br />

For MFA determination the samples covering the selected annual rings were subjected<br />

to a special procedure, described in details in (Fabisiak et al. 2006). After this treatment,<br />

tangent sections <strong>of</strong> 20 �m in thickness were sliced <strong>of</strong>f by a microtome and the position <strong>of</strong><br />

each section over the width <strong>of</strong> a given annual ring was identified. In the sections MFA were<br />

measured with the use <strong>of</strong> a computer image analyser and Motic 2003 program. In each section<br />

12 MFA were measured, but no more than two in the same tracheid.<br />

RESULTS<br />

The width <strong>of</strong> annual rings in the mature wood zone showed small fluctuations; its<br />

mean value over the radius section studied was 1.7 mm, but in 76% annual rings the width<br />

varied from 1 to 2 mm. The mean contribution <strong>of</strong> latewood in the annual rings analysed was<br />

22%, while in the majority <strong>of</strong> them (68%) it varied from 10 to 20%. Histograms showing the<br />

annual ring width distribution and latewood content distribution are given in Fig. 1. As<br />

follows from this figure, the spruce wood studied was characterised by narrow rings <strong>of</strong> similar<br />

widths and poorly developed latewood.<br />

Direct results <strong>of</strong> MFA measurements in the tangent walls <strong>of</strong> tracheids in selected<br />

annual rings are presented in Fig. 2. As follows from these results, MFA decreases with the<br />

time <strong>of</strong> the vegetation season, irrespective <strong>of</strong> the ring position on the tree trunk cross section.<br />

However, this decrease in the resonance spruce wood is much smaller than in the other<br />

coniferous species (Fabisiak et al. 2006, Fabisiak & Moli�ski 2008) and in spruce wood from<br />

the same region but not classified as resonance wood (Fabisiak et al. 2009). For example in<br />

ring 11 in the beginning <strong>of</strong> mature zone, in the first tracheids <strong>of</strong> earlywood, MFA was close to<br />

8 o , while in the last tracheids <strong>of</strong> <strong>of</strong> latewood MFA was close to 5.2 o . In ring 31 st in the middle<br />

<strong>of</strong> the mature zone MFA changed from 7.2 to 5.4 o . Similar values were measured at the<br />

beginning <strong>of</strong> earlywood and at the end <strong>of</strong> latewood in ring 47 and in further rings. In one<br />

annual ring and over the mature wood zone MFA decreased on average by 30%. This result<br />

171


follows first <strong>of</strong> all from the low values <strong>of</strong> MFA in earlywood. The mean value <strong>of</strong> MFA in<br />

earlywood in all rings studied is 7 o , which is only by 2 o higher than the mean MFA in<br />

latewood in all rings studied (table 1).<br />

Frequency [%]<br />

46%<br />

41%<br />

36%<br />

31%<br />

25%<br />

20%<br />

15%<br />

10%<br />

5%<br />

0%<br />

0,5 1,0 1,5 2,0 2,5<br />

Annual rings width [mm]<br />

27<br />

24<br />

21<br />

18<br />

15<br />

12<br />

9<br />

6<br />

3<br />

0<br />

Number <strong>of</strong> measurements<br />

Frequency [%]<br />

172<br />

36%<br />

31%<br />

25%<br />

20%<br />

15%<br />

10%<br />

5%<br />

0%<br />

10 15 20 25 30 35<br />

Percentage <strong>of</strong> latewood [%]<br />

Fig 1. Histograms showing a) annual ring width distribution and b) latewood contribution in mature wood<br />

distribution in spruce wood studied (Picea abies L.)<br />

These results indicate small cyclic inhomogeneity <strong>of</strong> ultrastructure <strong>of</strong> the resonance spruce<br />

wood. Similar conclusions were reported by Sahlberg et al. (1997) who studied wood from<br />

the same species but from Sweden. He proved that the mean MFA value in earlywood was<br />

only by 1 o higher than in latewood tracheids.<br />

Table 1. Statistical analysis <strong>of</strong> mean MFA in early and latewood <strong>of</strong> annual rings in mature spruce wood zone<br />

Statistical parameters<br />

Type<br />

<strong>of</strong> mean<br />

Value<br />

min max<br />

Standard<br />

deviation<br />

Standard<br />

error<br />

Variation<br />

coefficient<br />

tracheids (deg) (%)<br />

Earlywood 7.0 3.4 10.4 1.58 0.30 22<br />

Latewood 5.0 2.7 7.0 1.17 0.30 23<br />

One <strong>of</strong> the parameters permitting qualification <strong>of</strong> resonance wood is the ultrasound<br />

wave propagation velocity. It has been well established that the higher the ultrasound wave<br />

propagation velocity the better the wood quality for sound boards. Results <strong>of</strong> the ultrasound<br />

wave propagation velocity measurements along the grains are presented in Table 2. Besides<br />

the mean values also basic statistical parameters are given. The ultrasound wave propagation<br />

velocity in longitudinal direction varied from 6160 to 6300 m/s, while the variation<br />

coefficient did not exceed 1%. The very small changes in the ultrasound wave propagation<br />

velocity, that did not exceed 2.5%, were probably a consequence <strong>of</strong> the fact that the material<br />

studied represented the mature wood zone in which the wood density, the length <strong>of</strong> tracheids<br />

and MFA showed small fluctuations.<br />

21<br />

18<br />

15<br />

12<br />

9<br />

6<br />

3<br />

0<br />

Number <strong>of</strong> measurements


MFA [deg]<br />

MFA [deg]<br />

MFA [deg]<br />

16<br />

14<br />

12<br />

10<br />

8<br />

11 th ring<br />

mean stand error<br />

6<br />

4<br />

y = 8,3981+0,1542*x-1,0267*x^2<br />

R<br />

2<br />

0<br />

F (11,66) =2,9414, p=0,0032<br />

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8<br />

2 =0,6532<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Position in width <strong>of</strong> annual ring [mm]<br />

31 th ring<br />

mean stand error<br />

y = 6,5134+2,2095*x-1,7013*x^2<br />

R 2 =0,8546<br />

F (10,48) = 2,2516, p=0,0300<br />

0<br />

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8<br />

Position in width <strong>of</strong> annual ring [mm]<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

47 th ring<br />

y = 7,7393-2,8549*x+0,6578*x^2<br />

R 2 =0,9785<br />

mean stand error<br />

F (9,50) = 1,4354, p = 0,1987<br />

0<br />

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8<br />

Position in width <strong>of</strong> annual ring [mm]<br />

Fig. 2. Variation in the MFA in tangent walls <strong>of</strong> tracheids versus their location within 11, 31 and 47 annual rings<br />

in resonance spruce wood (Picea abies L.)<br />

173


Table 2. Ultrasound velocity along the grain in resonance spruce wood (Picea abies L.) and statistical parameters<br />

Number <strong>of</strong><br />

middle annual<br />

ring<br />

Ultrasound<br />

velocity (m/s) Statistical parameters Value<br />

6 6156 mean 6234<br />

11 6218 min 6156<br />

18 6239 max 6303<br />

25<br />

31<br />

6261<br />

6208<br />

standard deviation<br />

m/s<br />

47<br />

38 6250 standard error<br />

16.7<br />

47 6303 variation coefficient % 0.75<br />

The values obtained in our study were higher than those reported by Spycher et al. (2008),<br />

who obtained the ultrasound wave propagation velocity from 5100 to 5450 m/s for the<br />

resonance spruce wood <strong>of</strong> density varying from 0.36 to 0.49 g/cm 3 . Haines (1979) reported<br />

the ultrasound wave propagation rate varying in the range 5300-6000 m/s for European spruce<br />

resonance wood used for violin making.<br />

The mean MFA to the longitudinal cell axes in the annual rings studied versus the<br />

ultrasound wave propagation velocity are presented in Fig. 3. The relation between these<br />

parameters was approximated by a linear function characterised by the correlation coefficient<br />

r = - 0.834. The above presented relation in the spruce wood studied is a consequence <strong>of</strong> small<br />

variation <strong>of</strong> MFA in individual annual rings. Small differences in MFA were also reported by<br />

Hori et al. (2002) for Picea sitchensis. In earlywood MFA was close to 6 o while in latewood it<br />

was close to 5 o . According to these authors, the small difference in MFA was one <strong>of</strong> the<br />

factors responsible for high values <strong>of</strong> the elasticity modulus <strong>of</strong> spruce wood, which along with<br />

its low density, makes this type <strong>of</strong> wood suitable for musical instruments construction.<br />

Ultrasound <strong>of</strong> velocity [m/s]<br />

6350<br />

6300<br />

6250<br />

6200<br />

6150<br />

y = 6654,2 - 64,8*x<br />

r = -0,8339, p = 0,0197<br />

6100<br />

4 5 6 7 8 9<br />

MFA [deg]<br />

Fig. 3. The propagation velocity <strong>of</strong> ultrasound waves along the grain versus MFA<br />

Our results also suggest that high ultrasound wave propagation velocity in the<br />

longitudinal direction <strong>of</strong> spruce wood with a small contribution <strong>of</strong> latewood (and thus low<br />

density) is a consequence <strong>of</strong> small MFA values. High correlation coefficient characterising<br />

the relation between the ultrasound wave propagation velocity in the longitudinal direction<br />

174


and mean MFA, observed even in a small range <strong>of</strong> MFA changes (5.5 o -7.5 o ) means that the<br />

ultrastructure <strong>of</strong> the cell walls is an important determinant <strong>of</strong> wood use for production <strong>of</strong><br />

musical instruments. This opinion is shared by Ono and Norimoto 1984, who studied wood<br />

from 30 species <strong>of</strong> deciduous and coniferous trees, whose densities varied from 0.08 to 1.3<br />

g/cm 3 . He concluded that the hitherto used criteria <strong>of</strong> resonance wood classification are<br />

insufficient as the influence <strong>of</strong> wood ultrastructure, specifically MFA in S2 layer <strong>of</strong> secondary<br />

cell wall strongly correlated with the elasticity modulus, cannot be disregarded. Similar<br />

conclusions were reported by Spycher et al. (2008), who studied the influence <strong>of</strong> physical and<br />

anatomical properties <strong>of</strong> spruce (Picea abies L.) wood on its quality.<br />

CONCLUSIONS<br />

1. Throughout the vegetation season in the mature resonance spruce wood the micr<strong>of</strong>ibril<br />

angle decreases by about 30%.<br />

2. The mean value <strong>of</strong> MFA in earlywood tracheids is close to 7 o , which is only by 2 o<br />

greater than in the latewood <strong>of</strong> the annual rings studied. Close values <strong>of</strong> MFA in the<br />

early and latewood in the mature wood zone explain the low cyclic ultrastructural<br />

inhomogeneity <strong>of</strong> spruce wood.<br />

3. The ultrasound wave propagation velocity in the longitudinal direction in the spruce<br />

wood studied varied from 6160 to 6300 m/s. Small changes in this parameter are related<br />

to the steep arrangement <strong>of</strong> micr<strong>of</strong>ibrils in the tracheid tangent walls in individual<br />

annual rings, especially in the earlywood.<br />

4. Changes in the mean MFA with respect to the longitudinal axis <strong>of</strong> the cells in the annual<br />

rings studied and the ultrasound wave propagation velocity were approximated by a<br />

linear function characterised by a correlation coefficient r = - 0.834.<br />

REFERENCES<br />

1. FABISIAK E., MOLI�SKI W., CISOWSKI M., 2006: Changes in the MFA the tangent<br />

walls <strong>of</strong> tracheids in larch wood (Larix decidua Mill.) versus the cambial age <strong>of</strong> annual<br />

rings. Proc. Wood Structure and Properties , Zvolen 39-42.<br />

2. FABISIAK E., MOLI�SKI W., 2008: Variation in the micr<strong>of</strong>ibril angle in tangent walls<br />

<strong>of</strong> tracheids in individual annual rings <strong>of</strong> dominant pine trees (Pinus sylvestris L.). Ann.<br />

WULS-<strong>SGGW</strong>, Forest and Wood Technol., 65:35-41.<br />

3. FABISIAK E., CUNDERLIK I., MOLI�SKI W., 2009: Variation in the micr<strong>of</strong>ibril angle<br />

in tangent walls <strong>of</strong> tracheids in individual annual rings <strong>of</strong> spruce wood (Picea abies L.).<br />

Ann.WULS-<strong>SGGW</strong> , Forest and Wood Technol. 68: 225-236.<br />

4. HAINES D.W., 1979: On the musical instrument wood. Catgut Acoust Soc Neslett 31:<br />

23-32.<br />

5. HORI R., MÜLLER M., WATANABE U., LICHTENEGGER H.C., FRATZL P.,<br />

SUGIYAMA J., 2002: The importance <strong>of</strong> seasonal differences in the cellulose micr<strong>of</strong>ibril<br />

angle in s<strong>of</strong>twoods in determining acoustic properties. Journal <strong>of</strong> Materials Science 37;<br />

4279-4284.<br />

6. MOLI�SKI W., CUNDERLIK I., KRAUSS A., FABISIAK E., JUREK P., 2009:<br />

Gradient <strong>of</strong> density and tensile strength along the grains <strong>of</strong> spruce wood (Picea abies L.)<br />

within individual annual rings. Ann. WULS-<strong>SGGW</strong>, Forest and Wood Technol. 69: 87-92.<br />

7. ONO T., NORIMOTO M., 1983: Study on Young’s modulus and internal friction <strong>of</strong><br />

wood in relation to the evaluation <strong>of</strong> wood for musical instruments. Japanese Journal <strong>of</strong><br />

Applied Physics 22: 611-614.<br />

8. ONO T., NORIMOTO M., 1984: On physical criteria for the selection <strong>of</strong> wood for<br />

soundboards <strong>of</strong> musical instruments. Rheol Acta 23: 652-656.<br />

175


9. REITERER A., LICHTENEGGER H., TSCHEGG S., FRATZL P., 1999: Experimental<br />

evidence for a mechanical function <strong>of</strong> the cellulose micr<strong>of</strong>ibril angle in wood cell walls.<br />

Philos. Mag. A, 79(9):2173-2184.<br />

10. SAHLBERG U., SALMEN L., OSCARSSON A., 1997: The fibrillar orientation in the<br />

S2-layer <strong>of</strong> wood fibres as determined by X-ray diffraction analysis. Wood Sci. Technol.<br />

31: 77-85.<br />

11. SPYCHER M., SCHWARZE F.W.M.R., STEIGER R., 2008: Assessment <strong>of</strong> resonance<br />

wood quality by comparing its physical and histological properties. Wood Sci Technol 42:<br />

325-342.<br />

12. YAMASHITA K., HIRAKAWA Y., FUJISAWA Y., NAKADA R., 2000: Effect <strong>of</strong><br />

micr<strong>of</strong>ibril angle and density on variation <strong>of</strong> modulus <strong>of</strong> elasticity <strong>of</strong> sugi (Cryptomeria<br />

japonica) logs among eighteen cultivars. Mokuzai Gakkaishi 46: 510-522.<br />

13. YANG J.L., EVANS R., 2003: Prediction <strong>of</strong> MOE eucalypt wood from micr<strong>of</strong>ibril angle<br />

and density. European Journal <strong>of</strong> Wood and Wood Products 61(6): 449-452.<br />

Streszczenie: Ultrastruktura i pr�dko�� propagacji fal d�wi�kowych w rezonansowym<br />

drewnie �wierku (Picea abies L.). W pracy przedstawiono wyniki pomiarów k�ta nachylenia<br />

mikr<strong>of</strong>ibryl w stycznych �cianach cewek w pojedynczych przyrostach rocznych,<br />

rezonansowego drewna �wierku (Picea abies L.). Okre�lono tak�e pr�dko�� propagacji<br />

ultrad�wi�ków wzd�u� w�ókien. Wykazano, �e k�t nachylenia mikr<strong>of</strong>ibryl w cewkach strefy<br />

drewna wczesnego jest nieznacznie wi�kszy w porównaniu do cewek drewna pó�nego.<br />

Pr�dko�� propagacji d�wi�ku w kierunku pod�u�nym w obszarze 60 przyrostów rocznych<br />

strefy drewna dojrza�ego zawiera�a si� w przedziale od 6160 do 6300 m/s. Stwierdzono, �e<br />

badane rezonansowe drewno �wierku charakteryzuje si� nisk� cykliczn� niejednorodno�ci�<br />

ultrastruktury.<br />

Corresponding authors:<br />

Ewa Fabisiak, Waldemar Moli�ski<br />

Department <strong>of</strong> Wood Science,<br />

Pozna� <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>,<br />

38/42 Wojska Polskiego<br />

Igor Cunderlik<br />

Departament <strong>of</strong> Wood Science<br />

Technical <strong>University</strong> in Zvolen<br />

Slovakia<br />

e-mail: knod@up.poznan.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 177-181<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Resistance <strong>of</strong> thermomodified spruce and alder wood to moulds fungi<br />

ANDRZEJ FOJUTOWSKI 1) , ALEKSANDRA KROPACZ 1) , ANDRZEJ NOSKOWIAK 1)<br />

1) Wood Technology Institute, Pozna�,<br />

Abstract: Resistance <strong>of</strong> thermomodified spruce and alder wood to moulds fungi The wood covered with mould<br />

fungi is treated as material <strong>of</strong> lowered quality class because <strong>of</strong> its disfigurement. This can result in financial<br />

losses due a decrease in its trade value. The spores and mycotoxins emitted by many <strong>of</strong> mould fungi are harmful<br />

for environment particularly for human being as a one <strong>of</strong> reasons <strong>of</strong> allergies and disease. Thermally and thermooil<br />

modified wood as less hygroscopic usually is consider as material more durable, more resistant to decay<br />

caused by Basidiomycetes and more dimensionally stable. The filamentous fungi belonging to Ascomycetes,<br />

Deuteromycetes group, causes mould and s<strong>of</strong>t rot <strong>of</strong> wood, which have very poor nutritious requirements may<br />

however, probably, attack and growth on such modified wood. The aim <strong>of</strong> the research was to determine the<br />

resistance <strong>of</strong> thermo and thermo-oil modified and with oil impregnated Norway spruce (Picea abies) and alder<br />

(Alnus glutinosa) wood to fungi causing wood moulding. We obtain modified wood in semi-laboratory<br />

conditions. The changes in resistance <strong>of</strong> wood against mould fungi, resulting from thermal or thermal-oil<br />

modification or impregnation with natural oil, were the subject <strong>of</strong> the study, determined and described. The<br />

mould fungi mostly more strongly, easier and in a greater extent covered the samples surface <strong>of</strong> modified<br />

Norway spruce and alder wood than <strong>of</strong> control wood. Such modified wood may not be consider as resistant to<br />

mould fungi in terms <strong>of</strong> requirements <strong>of</strong> building evaluation <strong>of</strong> materials.<br />

Key words: thermowood, natural oil, resistance to fungi,<br />

1. INTRODUCTION AND AIM OF THE STUDIES<br />

Usually the growth <strong>of</strong> filamentous fungi (moulds) deteriorate functional aesthetics <strong>of</strong> wooden<br />

boards. The wood covered with mould fungi is treated as material <strong>of</strong> lowered quality class<br />

because <strong>of</strong> its disfigurement. This can result in financial losses due a decrease in its trade value.<br />

These fungi also may pose an environmental threat due to spread <strong>of</strong> fungi spores and<br />

mycotoxins emitted by fungi. With people and animals filamentous fungi may cause allergies<br />

and/or infections such as: allergic asthma, sinusitis, laryngitis, bronchitis, mycosis <strong>of</strong> skin and<br />

mucosae, and chronic fatigue syndrome [Zawisza and Smoli�ski 1998, Wiszniewska at. al.<br />

2004]. Impregnation <strong>of</strong> wood with natural oils connected with thermal treatment <strong>of</strong> wood or<br />

separate thermomodification are consider as a methods which improving some functional<br />

properties <strong>of</strong> wood. Thermally or thermo-oil modified wood is usually less hygroscopic, more<br />

dimensionally stable, more durable and resistant to fungal decay caused by Basidiomycetes<br />

fungi than natural wood [Kollman 1936, Mazela et al. 2004, Rep et al. 2004, Schwarze and<br />

Spycher 2005, Welzbacher et al. 2006, Zaman et al. 2000]. Thermal treatment <strong>of</strong> wood reduces<br />

the amount <strong>of</strong> hydroxyl groups <strong>of</strong> cellulose and hemicelluloses which are involved in oxidative<br />

degradation, fungal decay and processes <strong>of</strong> water absorption and desorption by wood [Militz<br />

2002]. The filamentous fungi belonging to Ascomycetes, Deuteromycetes group, causes mould<br />

and s<strong>of</strong>t rot <strong>of</strong> wood, which have very poor nutritious requirements may however, probably,<br />

attack and growth on such modified wood [Fojutowski et al. 2009, Skyba et al. 2008]. We tried<br />

to obtain improved wood in semi-laboratory conditions by means <strong>of</strong> thermal modification<br />

carried out also as a heat-oil treatment. The aim <strong>of</strong> the research was to determine the resistance<br />

<strong>of</strong> thermo and thermo-oil modified and with oil impregnated Norway spruce (Picea abies) and<br />

alder (Alnus glutinosa) wood to fungi causing wood moulding. Thermal modification and oil<br />

impregnation <strong>of</strong> the wood may broaden possibilities <strong>of</strong> practical use <strong>of</strong> the wood which are not<br />

durable enough.<br />

177


2. MATERIALS AND METHODS<br />

The materials used in the tests consisted <strong>of</strong> alder wood (Alnus glutinosa (L.) Gaertn.) and<br />

Norway spruce (Picea abies (L) Karst.). Little beams <strong>of</strong> wood which were prepared to<br />

treatment, were planed on four surfaces and had sharp edges –<br />

40R(thickness)x145Tx650Lmm. Besides <strong>of</strong> control wood (C-not treated) the beams were<br />

subjected to:<br />

- O - vaccum-pressure impregnation with technical linseed oil <strong>of</strong> the temperature <strong>of</strong> 65°C and<br />

density <strong>of</strong> 0.928 g/cm 3 which contained 75% <strong>of</strong> linoleic (C18H32O2) and linolenic (C18H30O2)<br />

acids,<br />

- T - thermal modification at the nominal temperature <strong>of</strong> 195 ° C and<br />

- TO - thermal modification and following impregnation with technical linseed oil, as<br />

mentioned above.<br />

Samples cut out <strong>of</strong> the little beams were conditioned for testing in normal conditions<br />

(20 ° C/65%) till equilibrium moisture content was reached. Determinations <strong>of</strong> the hygroscopic<br />

characteristics were carried out by testing an equilibrium moisture content <strong>of</strong> samples<br />

conditioned till a constant mass in normal conditions (20ºC/65%) is reached, by oven dry<br />

method [PN-EN 13183-1]. The samples for mycological tests were used in state <strong>of</strong><br />

equilibrium moisture in normal conditions (20 ° C/65%).<br />

A method adapted from building procedures [Instrukcja ITB....1995] was used for<br />

mycological testing. Test and control samples were exposed to the following fungi: Set I =<br />

Mixture <strong>of</strong>: Aspergillus niger, Penicillium funiculosum, Paecilomyces varioti, Trichoderma<br />

viride, and Alternaria tenuis or Set II: Chaetomium globosum fungus; incubation at the<br />

temperature <strong>of</strong> 27+1 o C and relative humidity <strong>of</strong> 90%. After 4 weeks the growth <strong>of</strong> mycelium<br />

on the surface <strong>of</strong> test samples was evaluated using the following scale:<br />

0 – no growth <strong>of</strong> fungi on a sample, visible under microscope,<br />

1 – trace growth <strong>of</strong> fungi on a sample, hardly visible with the naked eye but well visible under<br />

microscope or growth limited to the edges <strong>of</strong> a sample, visible with the naked eye,<br />

2 – growth <strong>of</strong> fungi on a sample, visible with the naked eye, but less than 15% <strong>of</strong> the surface<br />

is covered with fungus,<br />

3 – over 15% <strong>of</strong> the surface is covered with fungus visible with the naked eye.<br />

A standard evaluation was completed with estimation <strong>of</strong> percentage <strong>of</strong> a sample surface<br />

overgrown by mycelium. The test samples <strong>of</strong> the dimensions <strong>of</strong> 60x20x3(thickness)mm were<br />

individually placed on Petri dishes <strong>of</strong> the diameter <strong>of</strong> 100mm and outside height <strong>of</strong> 15mm.<br />

For each variant <strong>of</strong> tested wood 6 samples were used.<br />

3. RESULTS AND DISCUSSION<br />

Equilibrium moisture content <strong>of</strong> wood (Table 1) decreased very distinctly from around 11-<br />

12% for natural wood to the level <strong>of</strong> about 7% for impregnated with oil (O) or thermally<br />

modified alder wood (T) and 4% for thermo-oil modified (TO) alder wood and respectively to<br />

the level <strong>of</strong> about 11% (O), 7% (T), 6% (TO) for spruce wood. It indicated strong<br />

hydrophobization <strong>of</strong> wood by oil and thermomodification (Table 1).<br />

Table 1. Equilibrium moisture content [%] <strong>of</strong> wood at normal condition: 20 o C, 65% RH<br />

Tested wood<br />

Before<br />

modification - C<br />

After modification<br />

a<br />

O b<br />

T c<br />

TO d<br />

Alder 10.8 7.0 6.7 4.5<br />

Spruce 12.4 11.0 7.2 5.8<br />

a b 3 3 c<br />

Control, O impregnation with oil- retention <strong>of</strong> oil: alder 329 kg/m ; spruce 35 kg/m , T – Thermal<br />

modification, d TO – Thermal-oil modification – retention <strong>of</strong> oil: alder 272 kg/m 3 ; spruce 59 kg/m 3<br />

178


The virulence <strong>of</strong> strains <strong>of</strong> mould fungi used in the test was very high. The whole surface <strong>of</strong><br />

nutrient medium in Petri dishes was completely covered by fungi after 3 days from infection<br />

and the surface <strong>of</strong> Scots pine sapwood samples used as indicator <strong>of</strong> fungi activity also were<br />

being grown over with mycelium at grade 3 and 100% <strong>of</strong> the surface was covered with<br />

growing mycelium. Results <strong>of</strong> visual assessment <strong>of</strong> wood resistance to mould fungi presented<br />

in Table 2 and 3 shows that the growth <strong>of</strong> fungi mixture and the growth <strong>of</strong> Chaetomium<br />

globosum mostly reached the highest 3. degree on tested and control specimens. The grade 2.2<br />

was the smaller one, but it indicated also that tested wood has to great ability for fungal<br />

growth. According to criteria used in buildings such materials are rated among not resistant to<br />

mould fungi. Mean growth <strong>of</strong> the Mixture <strong>of</strong> fungi on thermal and thermo-oil modified alder<br />

and spruce wood was 90% to 100%. The growth <strong>of</strong> the fungi on Norway spruce and alder<br />

wood impregnated only with oil was not so great, it ranged from 20% to 60% compared with<br />

90 -100% on control wood. Control Norway spruce wood unexpectedly was covered in the<br />

test with Mixture <strong>of</strong> fungi by only 20% . The results was repeated twice in separate made<br />

tests.<br />

Table 2 The resistance <strong>of</strong> thermal modified and thermo-oil (linseed oil) modified alder and<br />

spruce wood to mould fungi – test acc. to Building Research Institute Instruction [Instrukcja<br />

ITB 355/98] using the Mixture <strong>of</strong> mould fungi – Set I<br />

Wood Mean grade <strong>of</strong> fungal growth Mean e fungal growth on sample surface[%]<br />

Alder C a<br />

3.0 90<br />

Alder O b<br />

3.0 60<br />

Alder T c<br />

3.0 100<br />

Alder TO d<br />

3.0 100<br />

– – –<br />

Spruce C a<br />

2.7 20<br />

Spruce O b<br />

3.0 60<br />

Spruce T c<br />

3.0 100<br />

Spruce TO d<br />

2.8 90<br />

Legend for a to d as for Table 1, e number rounding to 10%<br />

Table 4 The resistance <strong>of</strong> thermal modified and thermo-oil (linseed oil) modified alder and<br />

spruce wood to mould fungi – test acc. to Building Research Institute Instruction [Instrukcja<br />

ITB 355/98] using the Chaetomium globosum fungus – Set II<br />

Wood Mean grade <strong>of</strong> fungal growth Mean e fungal growth on sample surface [%]<br />

Alder C a<br />

3.0 90<br />

Alder O b<br />

3.0 60<br />

Alder T c<br />

3.0 100<br />

Alder TO d<br />

3.0 100<br />

– – –<br />

Spruce C a<br />

3.0 90<br />

Spruce O b<br />

2.2 20<br />

Spruce T c<br />

3.0 90<br />

Spruce TO d<br />

2.8 100<br />

Legend for a to d as for Table 1, e number rounding to 10%<br />

179


Heat treatment and heat-oil treatment had no significant effect on the grade <strong>of</strong> fungi Mixture<br />

growth on wood. Mean growth <strong>of</strong> Chaetomium globosum fungus on thermal and thermo-oil<br />

modified Norway spruce and alder wood was also almost the same as on control wood,<br />

however the hygroscopic <strong>of</strong> modified wood was distinctly lower than that <strong>of</strong> control wood.<br />

The effect <strong>of</strong> impregnation <strong>of</strong> wood with oil in terms <strong>of</strong> resistance against mould seems to be<br />

better than thermo- and thermo-oil modification <strong>of</strong> wood. The resistance <strong>of</strong> wood against<br />

mould fungi on thermo-oil modified wood are however generally not good. So there is no<br />

clear connection between retention <strong>of</strong> oil and grade <strong>of</strong> fungi growth on oil or heat-oil treated<br />

wood. Thermal and thermal-oil modification <strong>of</strong> alder and Norway spruce wood did not<br />

distinctly decreased the intensity <strong>of</strong> fungi growth, both the Mixture and Chaetomium<br />

globosum, on wood surface.<br />

4. CONCLUSSIONS<br />

1. An increase in hydrophobicity <strong>of</strong> wood may be expected as a result <strong>of</strong> thermal<br />

modification or thermo-oil modification or impregnation with natural oil <strong>of</strong> Norway spruce<br />

and alder wood.<br />

2. Under favourable conditions mould fungi grow very easily on the surface <strong>of</strong> thermal<br />

modificated or thermo-oil modificated or impregnated with natural oil <strong>of</strong> Norway spruce and<br />

alder wood, thus creating environmental hazard but not a significant hazard to compression<br />

strength <strong>of</strong> wood-based panels.<br />

2. Thermally modified and thermo-oil modified alder and spruce wood demonstrates a<br />

similar to natural wood lack <strong>of</strong> resistance to growth <strong>of</strong> mould fungi on its surface. However in<br />

comparison to natural wood the grade <strong>of</strong> growth <strong>of</strong> mould on the surface <strong>of</strong> wood treated only<br />

with oil was less. These wood should be classified as not resistant to mould fungi in terms <strong>of</strong><br />

requirement <strong>of</strong> building evaluation <strong>of</strong> materials..<br />

4. If the expected danger <strong>of</strong> fungi occurrence may be high for anticipated using <strong>of</strong> elements,<br />

thermal modificated or thermo-oil modificated or impregnated with natural oil <strong>of</strong> Norway<br />

spruce and alder wood, used in buildings should be protected with anti-fungal preparations to<br />

avoid lowering <strong>of</strong> disfigurement during exploitation and creation <strong>of</strong> health hazard caused by<br />

mould which may grow on the surface <strong>of</strong> the elements.<br />

5. REFERENCES<br />

1. Fojutowski A., Kropacz A., Noskowiak A., 2009: The resistance <strong>of</strong> thermo-oil modified wood<br />

against decay and mould fungi. The International Research Group on Wood Protection Doc. No<br />

IRG/WP/09-40448<br />

2. INSTRUKCJA ITB nr 355/98, 1998: Ochrona drewna budowlanego przed korozj�<br />

biologiczn� �rodkami chemicznymi. Wymagania i badania. Warszawa, Instytut Techniki<br />

Budowlanej,<br />

3. Kollmann F., 1936: Technologie des Holzes und der Holzwerkst<strong>of</strong>fe, Springer, Berlin.<br />

4. Mazela B., Zakrzewski R., Grze�kowiak W., C<strong>of</strong>ta G., Bartkowiak M. 2004: Resistance<br />

<strong>of</strong> thermally modified wood to Basidiomycetes. Electronic Journal <strong>of</strong> Polish Agricultural<br />

Universities, Wood Technology, Vol. 7, Issue 1; http://www.ejpau.media.pl.<br />

5. Militz H., 2002: Thermal treatment <strong>of</strong> wood: European processes and their background.<br />

The International Research Group for Wood Preservation. Document No. IRG/WP/02-<br />

40231, Stockholm, Sweden.<br />

6. PN-EN 13183-1 Wilgotno�� sztuki tarcicy -- Cz��� 1: Oznaczanie wilgotno�ci metod�<br />

suszarkowo-wagow� (Moisture content <strong>of</strong> a piece <strong>of</strong> sawn timber – Part 1: Determination<br />

by oven dry method)<br />

180


7. Rep G., Pohleven F., Bucar B., 2004: Characteristics <strong>of</strong> thermally modified wood in<br />

vacuum. International Research Group on Wood Protection Doc. No IRG/WP/04-<br />

40287., Stockholm, Sweden.<br />

8. Schwarze F. W. M. R., Spycher M., 2005: Resistance <strong>of</strong> thermo-hygro-mechanically<br />

densified wood to colonization and degradation by brown-rot fungi. Holzforschung vol.<br />

59, 358-363.<br />

9. Skyba O., Niemz P., Schwarze F. W. M. R., 2008: Degradation <strong>of</strong> thermo-hygromechanically<br />

(THM)-densified wood by s<strong>of</strong>t-rot fungi. Holzforschung, vol. 62, 277-<br />

283.<br />

10. Welzbacher C. R., Wehsener J., Haller P., Rapp A. O., 2006: Biologische und<br />

mechanische Eigenschaften von verdichter und thermisch behandelter Fichte (Picea<br />

abies). Holztechnologie 3, 13-18.<br />

11. WISZNIEWSKA M., WALUSIAK J., GUTAROWSKA B., �AKOWSKA Z.,<br />

PA�CZY�SKI C., 2004, Grzyby ple�niowe w �rodowisku komunalnym i w miejscu<br />

pracy – istotne zagro�enie zdrowotne (Moulds – occupational and environmental<br />

hazards), Medycyna Pracy, 55, 3 (2004) 257-266<br />

12. ZAWISZA E., SAMOLI�SKI B., 1998, Choroby alergiczne, PZWL Warszawa 1998<br />

13. Zaman A, Alén R, Kotilainen R, (2000): Thermal behaviour <strong>of</strong> Scots pine (Pinus<br />

sylvestris) and Silver birch (Betula pendula) at 200 – 230 o C. Wood Fiber Sci 32, 138-<br />

143.<br />

Streszczenie: Odporno�� termomodyfikowanego drewna �wierka i olchy na dzia�anie<br />

grzybów ple�ni. Drewno poro�ni�te przez grzyby ple�niowe (strz�pkowe) jest uwa�ane za<br />

materia� ni�szej klasy jako�ci z uwagi na zeszpecenie. Mo�e to doprowadzi� do strat<br />

finansowych spowodowanych zmniejszeniem warto�ci handlowej. Zarodniki i miko toksyny<br />

wydzielane przez wiele spo�ród grzybów ple�niowych stwarzaj� zagro�enie dla �rodowiska a<br />

szczególnie dla ludzi b�d�c jednym z powodów alergii i chorób. Drewno modyfikowane<br />

termicznie i termo-olejowo, jako mniej higroskopijne, jest zwykle uwa�ane za materia�<br />

trwalszy, bardziej odporny na rozk�ad powodowany przez Basidiomycetes i bardziej stabilny<br />

wymiarowo. Grzyby plesniowe nale��ce do Ascomycetes, Deuteromycetes powoduj�ce<br />

ple�nienie I szary rozk�ad drewna, które maj� bardzo ubogie wymagania tr<strong>of</strong>iczne, mog�<br />

jednak prawdopodobnie, atakowa� I rozwija� si� na tak modyfikowanym drewnie. Celem<br />

bada� by�o oznaczenie odporno�ci termicznie i termo-olejowo modyfikowanego oraz<br />

impregnowanego olejem drewna �wierka (Picea abies) i olchy (Alnus glutinosa) na dzia�anie<br />

grzybów powoduj�cych ple�nienie. Zmodyfikowane drewno otrzymali�my w warunkach<br />

zbli�onych do laboratoryjnych. Zbadane, oznaczone i opisane by�y zmiany w odporno�ci<br />

wobec grzybów ple�niowych wynikaj�ce z termicznej lub termo-olejowej modyfikacji lub<br />

nasycenia olejem naturalnym drewna. Grzyby ple�niowe w wi�kszo�ci silniej, �atwiej I w<br />

wi�kszym rozmiarze porasta�y powierzchnie modyfikowanego drewna �wierka i olchy, ni�<br />

drewna kontrolnego. To modyfikowane drewno nie mo�e by� uwa�ane za odporne na<br />

dzia�anie grzybów ple�niowych w sensie wymaga� dla oceny materia�ów dla budownictwa.<br />

Acknowledgements<br />

The work was financially supported by Ministry <strong>of</strong> Science and High Education as research projects <strong>of</strong><br />

Wood Technology Institute in Pozna� No ST-2-BDZ/ 2008/K and ST-1-BO�/2010/K<br />

Corresponding author:<br />

1) Wood Technology Institute<br />

Winiarska str. 1, 60 654 Pozna�,<br />

e-mail: <strong>of</strong>fice@itd.poznan.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 182-186<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Selected properties <strong>of</strong> laminated wood <strong>of</strong> poplar<br />

JOZEF GÁBORÍK, JURAJ DUDAS, JOZEF KULÍK<br />

Department <strong>of</strong> furniture and wooden product, Technical <strong>University</strong> in Zvolen<br />

Abstract: Selected properties <strong>of</strong> laminated wood <strong>of</strong> poplar. In industry, rapid-growing plants are less utilised. In<br />

Slovakia, the rapid-growing plants are mainly cultivated by plantation method in south Slovakia. For using <strong>of</strong><br />

wood, there is very important to know its primary properties and also the properties <strong>of</strong> laminated wood. In our<br />

paper, we focused on bending properties <strong>of</strong> laminated wood made from poplar. We researched static and<br />

dynamic properties <strong>of</strong> laminated wood glued with two kinds <strong>of</strong> adhesives – ureaformaldehyde adhesive and<br />

polyurethane one. Laminated wood glued with PUR adhesive shows better mechanical properties.<br />

Keywords: laminated wood, bending strength, bendability, coefficient <strong>of</strong> bendability, modulus <strong>of</strong> elasticity, work<br />

deformation at bending, durability<br />

INTRODUCTION<br />

Wood is a natural raw material whose properties are given by the botany species,<br />

growing conditions, and interventions during cultivation. To some extend, the wood<br />

properties can not be influenced. They reflect the natural process with limited possibilities <strong>of</strong><br />

action and these way possibilities <strong>of</strong> effects on the output <strong>of</strong> the process – product quality<br />

(ZEMIAR 1997).<br />

Rapid-growing wood species are industrially <strong>of</strong> small account. That’s why we decided<br />

to research on possibilities <strong>of</strong> poplar wood utilization in furniture parts making. We chose<br />

lamination non-waste technology. We tried to make a product, which should keep the good<br />

properties <strong>of</strong> native wood and suppress the negative properties.<br />

Laminating is a technological process based on gluing <strong>of</strong> thin slices <strong>of</strong> wood – usually<br />

veneers; by this means, the material properties are changed and various products can be made.<br />

The fiber direction in all layers is parallel, longitudinal directions according to wood grains.<br />

In furniture production, mainly shaped laminar parts are made (GÁBORÍK –DUDAS 2006).<br />

Our work has been focused on research on the influence <strong>of</strong> adhesive on chosen<br />

static properties and on the particular dynamic property – durability <strong>of</strong> laminated wood at<br />

cyclic work deformation at bending.<br />

MATERIAL AND METHODS<br />

In the experiments, we used material from the wood species Populus Euroamericana<br />

„Serotina“; it comes from south Slovakia, from the region Krá�ova lúka, the altitude 118 m<br />

above see level, the site located between Danube old channel and Gab�íkovo dam. Trees were<br />

37 years old and contained juvenile wood in proportion <strong>of</strong> about 30 %.<br />

We used peeled veneer with the thickness <strong>of</strong> 2 mm one-sided covered with adhesive.<br />

We used ureaformaldehyde adhesive in amount <strong>of</strong> 180 g.m -2 and polyurethane adhesive in<br />

amount <strong>of</strong> 250 g.m -2 . Laminated wood sampling was composed <strong>of</strong> 5 veneer layers positioned<br />

parallel in longitudinal direction (Fig.1). Lamellas were pressed at temperature <strong>of</strong> 100 °C<br />

182


during 14 or 20 minutes. After pressing the samples were stabilized cold under the pressure<br />

during 7 days and then were cut into test specimens. For test <strong>of</strong> static bending we used the<br />

specimens with dimensions <strong>of</strong> 260 x 45 x 10 mm; for testing <strong>of</strong> durability/fatigue the<br />

specimens 600 x 45 x 10 mm.<br />

Fig. 1 Arrangement <strong>of</strong> veneer layering in laminated wood<br />

Within the bending test, the power at maximal loading (Fmax) and the deflection (ymax)<br />

were monitored (Fig. 2). The bending strength (�o), modulus <strong>of</strong> elasticity (E), minimal<br />

bending radius (Rmin), coefficient <strong>of</strong> bendability (koh), and work deformation at bending (A)<br />

were calculated from measured data.<br />

Fig. 2 Method <strong>of</strong> loading <strong>of</strong> test specimen at bending test<br />

The dynamic performance was monitored as durability <strong>of</strong> laminated wood at cyclic<br />

bending to the value <strong>of</strong> 50 % from the maximal possible deflection found at static bending.<br />

Number <strong>of</strong> cycles until total breach <strong>of</strong> the specimen was recorded.<br />

RESULTS AND DISCUSION<br />

Based on our results and research <strong>of</strong> other authors (BENDTSEN -SENTF 1986), we can<br />

conclude that there are property differences between various kinds <strong>of</strong> laminated wood. Final<br />

properties <strong>of</strong> laminated wood show synergic effect <strong>of</strong> properties <strong>of</strong> wood and adhesive; it can<br />

be seen in the table 1. When PUR adhesive was used, better strength and elastic properties, as<br />

well as longer durability were reached, when compared with laminated wood glued with UF<br />

adhesive. The bending strength was higher by 37 %, bendability by 14 %, and durability by<br />

16 %.<br />

183


Table 1 Values <strong>of</strong> monitored properties <strong>of</strong> laminated wood <strong>of</strong> poplar<br />

Monitored property<br />

UF<br />

Adhesive<br />

PUR<br />

Power at maximal loading Fmax [N] 1 128 1 532<br />

Laminated wood reaches better strength properties than native wood used for its<br />

construction (GÁBORÍK –DUDAS 2006). In our experiments, the difference is marked; that can<br />

be seen in pictures 3 and 4. Laminated wood glued with PUR adhesive showed tw<strong>of</strong>old higher<br />

bending strength when compared with native wood. Similar tendency was recorded at<br />

modulus <strong>of</strong> elasticity at bending and others properties.<br />

Fig. 3 Bending strength <strong>of</strong> native wood and laminated<br />

wood <strong>of</strong> poplar – Populus „Serotina“<br />

CONCLUSION<br />

Max. deflection ymax [mm] 9,5 10,7<br />

Bending strength �max [MPa] 74 102<br />

Modulus <strong>of</strong> elasticity at bending<br />

E [MPa]<br />

8 547 13 515<br />

Work at bending A [J] 7,4 14,3<br />

Minimal bending radius Rmin [mm] 575 496<br />

Coefficient <strong>of</strong><br />

bendability koh -1 [-] 57 49<br />

koh [-] 0,0180 0,0205<br />

Durability [number <strong>of</strong> cycles] 14 083 16 344<br />

184<br />

Fig. 4 Modulus <strong>of</strong> elasticity at bending <strong>of</strong> native and<br />

laminated wood <strong>of</strong> poplar – Populus „Serotina“<br />

In our work, we researched on properties <strong>of</strong> laminated wood made from poplar –<br />

Populus Euroamericana „Serotina“; the species is rapid-growing, cultivated by plantation<br />

method.


The influence <strong>of</strong> used adhesive on static and dynamic properties (durability) <strong>of</strong><br />

laminated wood was examined.<br />

Based on our experimental work, we can conclude that used adhesive influenced all<br />

monitored properties <strong>of</strong> laminated wood. Better strength and elasticity properties <strong>of</strong> PUR<br />

adhesive, when compared with UF adhesive, gave rise to improved properties <strong>of</strong> laminated<br />

wood. The improvement ranged from 15 % to 100 %. When compared to native wood, the<br />

strength at bending was improved to the tw<strong>of</strong>old value.<br />

Good mechanical properties <strong>of</strong> laminated poplar wood glued with PUR adhesive are<br />

the requirement for the application in making <strong>of</strong> shaped and dynamic stressed furniture parts.<br />

We can see another possibility for improving the properties and extending application <strong>of</strong><br />

laminated poplar wood in combination with other wood species, e.g. beech, in combination <strong>of</strong><br />

various thicknesses, and so on.<br />

REFERENCES<br />

1. BENDTSEN B. A., SENTF J., 1986: Mechanical and anatomical properties in<br />

individual growth rings <strong>of</strong> plantation grown eastern cottonwood and loblolly pine.<br />

Wood Fiber Sci., 18, p. 23-38<br />

2. GÁBORÍK J., DUDAS J., 2006: Vlastnosti lamelového dreva. (The properties <strong>of</strong><br />

laminar wood ) In: Zborník prednášok. V. MVK – Trieskové a beztrieskové obrábanie<br />

dreva 2006. Starý Smokovec. Zvolen, TU, s. 129-134. ISBN 80-228-1674-4<br />

3. GAFF M., 2009: Analysis <strong>of</strong> the Behavior <strong>of</strong> Tension in Wood During Embossing In.:<br />

3rd International Scientific Conference Woodworking Technique. Faculty <strong>of</strong> Forestry,<br />

Zagreb, Croatia, p.159-168. ISBN 978-953-292-009-3<br />

4. JÁNOŠ M., 2009: Vplyv kombinácie drevín na vybrané vlastnosti lamelového dreva<br />

lepeného mo�ovin<strong>of</strong>ormaldehydovým lepidlom. Graduation theses. Technical<br />

<strong>University</strong>, Zvolen, 75 p.<br />

5. KÁ�EROVÁ K., 2007: Vybrané vlastnosti lamelového topo�ového dreva. Graduation<br />

theses. Technical <strong>University</strong>, Zvolen, 71 p.<br />

6. KMINIAK R., 2007: Vplyv vybraných technicko – technologických faktorov na<br />

energetické a kvalitatívne ukazovatele pri rovinnom frézovaní juvenilného topo�ového<br />

dreva. Graduation theses. Technical <strong>University</strong>, Zvolen, 110 p.<br />

7. LAPÍNOVÁ L., 2009: Vybrané vlastnosti lamelového topo�ového dreva lepeného<br />

polyuretánovým lepidlom. Graduation theses. Technical <strong>University</strong>, Zvolen, 66 p.<br />

8. ZEMIAR, J.: 1997 Kategorizácia a charakteristika procesov spracovania dreva.<br />

In: „Vedecké štúdie 13/1997/A“, TU Zvolen, 55 p.<br />

The paper was processed in the frame <strong>of</strong> the project VEGA – No. 1/0329/09.<br />

185


Streszczenie: Wybrane w�a�ciwo�ci topolowego drewna warstwowego. Szybko rosn�ce<br />

drzewa s� s�abo wykorzystywane w przemy�le. W S�owacji, ro�liny szybkorosn�ce s�<br />

uprawiane plantacyjnie na po�udniu kraju. Praca skupia si� na wytrzyma�o�ci na zginanie<br />

drewna warstwowego wykonanego z topoli. Rozpatrywano w�asno�ci statyczne oraz<br />

dynamiczne tworzywa spajanego dwoma rodzajami klejów: mocznikowo-formaldehydowym<br />

oraz poliuretanowym. Drewno warstwowe klejone poliuretanem wykazuje lepsze w�a�ciwo�ci<br />

mechaniczne.<br />

Corresponding authors:<br />

Jozef Gáborík, Juraj Dudas, Jozef Kulík<br />

Technical <strong>University</strong> in Zvolen<br />

Faculty <strong>of</strong> Wood Science and Technology<br />

Department <strong>of</strong> Furniture and Wood Products<br />

Masarykova 24<br />

960 53 Zvolen, Slovakia


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 187-193<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Model analysis <strong>of</strong> laminar materials stressed by bending<br />

GAFF MILAN, MACEK ŠTEFAN, ZEMIAR JÁN<br />

Abstract: Model analysis <strong>of</strong> laminar materials stressed by bending. This paper deals with model presentation <strong>of</strong><br />

deflection, power and tension by stress <strong>of</strong> laminar materials in bending. We simulated composition <strong>of</strong> laminar<br />

material created from different sorts <strong>of</strong> material components, different thickness, number and order.<br />

For the identification <strong>of</strong> monitored characteristics being used the program „SolidWorks“ by which we simulated<br />

bend and detected tensions, deflections and powers, to which is coming by bending <strong>of</strong> s<strong>of</strong>t (aspen), hard (beech)<br />

material and their combination in dependence on thickness.The result <strong>of</strong> this work is to verify a new method in<br />

area <strong>of</strong> focused research, to know the influence <strong>of</strong> thickness and different composition <strong>of</strong> material on monitored<br />

characteristics by bending <strong>of</strong> laminar materials and data base <strong>of</strong> model simulations, by which it is possible to<br />

model the influence <strong>of</strong> materials with different facilities on monitored characteristics. Following the obtained<br />

knowledge we can modify the searched factors so, that we can create by laminating <strong>of</strong> material components <strong>of</strong><br />

different facilities a material by specific facilities for asked purpose <strong>of</strong> use.<br />

Keywords: bending, laminar materials, modeling, simulation.<br />

INTRODUCTION<br />

By modification <strong>of</strong> wood facilities by mechanic, thermic and chemical modification<br />

or their combinations we can achieve materials <strong>of</strong> targeted facilities for their consequential<br />

use. The other possibility is a creation <strong>of</strong> composits compound from components <strong>of</strong> different<br />

facilities. These practices are usually based on investigation and detection <strong>of</strong> materials<br />

facilities in laboratory conditions.<br />

At the present time the development <strong>of</strong> informative technologies brings new<br />

opportunities for simplifications and speed up <strong>of</strong> creative activity. In this work we searched<br />

after opportunities for IT using in area <strong>of</strong> laminar material facilities knowledge.<br />

METHODIC OF WORK<br />

The basis <strong>of</strong> the work was a model analysis <strong>of</strong> surveyed factors influence on<br />

monitored characteristics by tractive stress and its experimental verification.<br />

In the first step we were detecting by simulation behavior <strong>of</strong> hard and s<strong>of</strong>t material<br />

individualy in dependence on thickness in the range <strong>of</strong> 2 – 20 mm with 2 mm scale. By<br />

definition <strong>of</strong> material characteristics <strong>of</strong> hard material we were starting from the facilities <strong>of</strong><br />

red beech. S<strong>of</strong>t material is characterized by facilities <strong>of</strong> aspen.<br />

Tab.1 Mechanical facilities <strong>of</strong> materials used for the simulation<br />

hard s<strong>of</strong>t<br />

Density [Kg/m 3 ] w=12% 650 420<br />

Module <strong>of</strong> elasticity in bend parallel with fibers [MPa] w=12% 12600 8550<br />

Poissons constant RT 0,394 0,386<br />

Tensile strength [MPa] w=12% 135 77<br />

Bending strength [MPa] w=12% 123 61,5<br />

Compression strength [MPa] w=12% 56,3 28<br />

Shearing strength[MPa] w=12% 14,5 12,7<br />

In the second step we created compositions from chosen material components, which<br />

we combine in two-ply sets, whereby we keep the rule, that one from the materials has a<br />

187


constant thickness and thickness <strong>of</strong> the other one is changing in scale <strong>of</strong> 2 mm. By the<br />

simulation we analyze two-ply combination <strong>of</strong> hard and s<strong>of</strong>t material, whereby the thickness<br />

<strong>of</strong> hard material was constant and thickness <strong>of</strong> s<strong>of</strong>t was scale in range 2-20 mm. In the first<br />

case the s<strong>of</strong>t material was placed from reverse and in second case from obverse <strong>of</strong> laminar<br />

material.<br />

On the test specimens with correspondent composition we simulated the bending load<br />

under the condition l0 = 18 x h, whereby l0 is distance <strong>of</strong> supports, h – thickness <strong>of</strong> entity by<br />

its constant width 20 mm. By the compositions we anticipated the creation <strong>of</strong> ideal weld<br />

between individual layers.<br />

The single process <strong>of</strong> simulation is possible to divide in following points:<br />

1. Finding <strong>of</strong> power-deflection curves by instrument datalogger.<br />

We were finding the curves in order to their import in simulation program, which on<br />

their basis calculate behavior <strong>of</strong> material by loading.<br />

2. Creating <strong>of</strong> individual models in program Solid Works and their connection into<br />

configurations.<br />

3. Designation <strong>of</strong> material facilities (tab. 1).<br />

4. Designation <strong>of</strong> load power and degrees <strong>of</strong> latitude.<br />

5. Creation <strong>of</strong> ultimate elements net.<br />

The net <strong>of</strong> configuration is totaled from volume elements. Program enables selection<br />

<strong>of</strong> one <strong>of</strong> following types <strong>of</strong> elements (fig. 1), whereby the linear tetrahedrit element<br />

provides a concept quality <strong>of</strong> net and parabolic a high quality.<br />

a) b)<br />

Fig. 1 The components <strong>of</strong> ultimate element net – tetrahedrit elements<br />

a) lineárny tetraedrický prvok, b) parabolický tetraedrický prvok<br />

Linear tetrahedric element if defined by four cusp nodes connected with six straight edges.<br />

Parabolic tetrahedric element is defined by four cusp nodes, six middle nodes and six edges.<br />

Generally by the same density <strong>of</strong> net (number <strong>of</strong> elements) we achieve by using <strong>of</strong> parabolic<br />

elements better results, than by linear, and that because:<br />

� they represent more precisely curved limits,<br />

� they <strong>of</strong>fer better mathematic approximations.<br />

For the simulation purpose we used a net composite from parabolic tetrahedric<br />

elements.<br />

6. Running <strong>of</strong> simulation.<br />

7. Evaluation <strong>of</strong> results.<br />

8. Results achieved by theoretical simulation we consequently compared with results<br />

obtained on the real test specimens.<br />

188


In the third step we analyze results on the base <strong>of</strong> power-deflection diagram obtained by<br />

simulation <strong>of</strong> stress <strong>of</strong> individual materials and their combinations. The character <strong>of</strong> powerdeflection<br />

curves shows the analysis <strong>of</strong> color spectrum <strong>of</strong> tension process.<br />

The forth step was an experimental verification <strong>of</strong> simulation results on real loaded test<br />

specimens.<br />

We evaluate the results:<br />

� graphically following the obtained labour diagram (power-deflection),<br />

� following the visual analysis <strong>of</strong> color spectrum representative the process <strong>of</strong><br />

tension and deformations.<br />

RESULTS AND DISCUSSION<br />

In the first step we compared on the ground <strong>of</strong> verification <strong>of</strong> modeled simulations<br />

configurations the simulated power-deflection curve obtained by measuring by instrument<br />

datalogger, by bending loading <strong>of</strong> hard material. From their comparison it follows, that the<br />

variance <strong>of</strong> real and simulated curve was minimal (fig. 2).<br />

Fig. 2 Graphic comparison <strong>of</strong> model and real measured power-deflection curve<br />

The results <strong>of</strong> behavior <strong>of</strong> individual materials obtained by simulation<br />

From the process <strong>of</strong> power and deflection in dependence on thickness <strong>of</strong> hard (fig. 3)<br />

and s<strong>of</strong>t material (fig. 4) we can observe, that with progressive thickness <strong>of</strong> material the<br />

values <strong>of</strong> deflection are decreasing and the limit <strong>of</strong> proportionality increase.<br />

From the comparison <strong>of</strong> individual materials results, that higher values <strong>of</strong> deflection<br />

achieved the hard material, but contrary the s<strong>of</strong>t material it is necessary to expend higher<br />

power for achieving <strong>of</strong> similar deflection.<br />

189


Fig. 3 The relation <strong>of</strong> power and deflection by bending loading <strong>of</strong> hard material in dependence on its thickness<br />

Fig. 4 The relation <strong>of</strong> power and deflection by bending loading <strong>of</strong> s<strong>of</strong>t material in dependence on its thickness<br />

In the next part <strong>of</strong> the work we chosed from all monitored files <strong>of</strong> test specimens two<br />

representative files, the results are visible on fig. 5-6.<br />

On the figure 5 are visible results <strong>of</strong> composition created by rule – hard material with<br />

constant thickness 10 mm and s<strong>of</strong>t material is placed reverse and its thickness grows graded<br />

by 2 mm. Analogous to former case, also here has shown that with growing thickness <strong>of</strong><br />

material the values <strong>of</strong> deflection decreasing. We can also see that as contrasted to loading <strong>of</strong><br />

individual material the dispersion <strong>of</strong> power values necessary for bending <strong>of</strong> laminar material<br />

declined.<br />

The results <strong>of</strong> modeling by counter oriented composition are visible on fig. 6. The<br />

composition <strong>of</strong> layer material was created by rule hard material has constant thickness 10<br />

mm and s<strong>of</strong>t material was placed on obverse and its thickness grows graded by 2 mm.<br />

From the comparison <strong>of</strong> different styles <strong>of</strong> placing results, that by placing <strong>of</strong> hard<br />

material on reverse has the layer material at average about 20% higher values <strong>of</strong> deflection.<br />

190


Fig. 5 The relation <strong>of</strong> power and deflection by bending loading <strong>of</strong> laminar material in dependence on its<br />

thickness and composition mentioned in text<br />

Fig. 6 The relation <strong>of</strong> power and deflection by bending loading <strong>of</strong> laminar material in dependence on its<br />

thickness and composition mentioned in text<br />

The program allows expanding <strong>of</strong> knowledge also by visual analysis <strong>of</strong> color<br />

spectrum representative the process <strong>of</strong> tensions. From the visible process <strong>of</strong> critical tensions<br />

on fig. 7 results:<br />

� s<strong>of</strong>t material tolerate the compression stress better – is malleable,<br />

� hard material behave like a band with fixation, take the tension stress – comes<br />

to major volume.<br />

The results visible on tension processes (fig. 7) certify, that by placing <strong>of</strong> hard material on<br />

reverse <strong>of</strong> laminar material has the deflection higher values (gif. 6).<br />

191


a) b)<br />

Fig. 7 Illustration <strong>of</strong> critical tensions caused by placing <strong>of</strong> hard material in reverse (a) and obverse (b) <strong>of</strong> laminar<br />

material<br />

Simulating <strong>of</strong> real wood species<br />

In the last step we simulated the behavior <strong>of</strong> laminar material composite from real<br />

wood species <strong>of</strong> beech and aspen. We were detecting the three-ply material. Its composition<br />

is visible on fig. 8. The curve obtained by simulation we compared with the curve obtained<br />

by real attempt by the same composition. From the process <strong>of</strong> these curves visible on fig. 8<br />

we can see a little different. This could be caused by variability <strong>of</strong> monitored facilities <strong>of</strong><br />

wood species and also film glue, whit which we didn´t count so far by the simulation.<br />

Fig. 8 Graphic comparison <strong>of</strong> modeling and real measured power-deflection curve <strong>of</strong> three-ply material<br />

CONCLUSION<br />

The results <strong>of</strong> work show on suitability <strong>of</strong> simulation methods use in area <strong>of</strong> research<br />

<strong>of</strong> material behavior by bending tension, but also by other ways <strong>of</strong> loading. By these<br />

innovation methods <strong>of</strong> search we are using the knowledge obtained by classic laboratory<br />

tests, which are consequently applied in virtual environs.<br />

Applied methods provide in comparison to classic methods substantially more<br />

informations, deepen knowledge about the influence <strong>of</strong> effecting factors and not last they<br />

allows following the measurements to create data basis <strong>of</strong> material facilities and simulate<br />

innumerable number <strong>of</strong> material combinations. Mentioned access to the solution <strong>of</strong> surveyed<br />

problem is contribution mainly from the view <strong>of</strong> precision, complexity, speed, reliability and<br />

number <strong>of</strong> obtained knowledge about solved problem.<br />

192


LITERATURE<br />

1. GAFF, M. 2009: Analysis <strong>of</strong> the Behavior <strong>of</strong> Tension in Wood During Embossing In.: 3rd<br />

International Scientific Conference Woodworking Technique. Faculty <strong>of</strong> Forestry, Zagreb,<br />

Croatia, 159-168. ISBN 978-953-292-009-3<br />

2. GÁBORÍK, J. – DUDAS, J. 2008: The bending properties <strong>of</strong> aspen wood. (Ohybové<br />

vlastnosti osikového dreva) In.: <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong>. Forestry and<br />

Wood Technology. No 65. <strong>Warsaw</strong>a, 2008, s. 55 – 60. ISSN 1898-5912<br />

3. DUDAS, J. – GÁBORÍK, J. 2008: Vybrané mechanické vlastnosti osikového dreva (Selected<br />

mechanical properties <strong>of</strong> aspen wood). In.: Acta Facultatis Xylologiae Zvolen, I.<br />

(2), 2008, Zvolen, DF TU 2008, s.65 – 75. ISSN 1336-3824.<br />

This examined problematic is part <strong>of</strong> research project No. 1/0329/09 from grant project <strong>of</strong><br />

VEGA.<br />

Streszczenie: Analiza modelowa materia�ów warstwowych przy zginaniu. Praca dotyczy<br />

modelu ugi�cia, si� oraz napr��e� materia�ów warstwowych przy zginaniu. Zasymulowano<br />

materia�y warstwowe z ró�nych materia�ów o ró�nej grubo�ci i kolejno�ci warstw. Do<br />

symulacji napr��e�, odkszta�ce� oraz si� u�ywano programu „SolidWorks“ w którym<br />

modelowano kompozyty z mi�kkiego drewna topoli i twardego drewna buka oraz ich<br />

kombinacji w zale�no�ci od grubo�ci.<br />

Corresponding authors:<br />

Gaff Milan, Macek Štefan, Zemiar Ján<br />

Technical <strong>University</strong><br />

Faculty <strong>of</strong> Wood Science and Technology<br />

Department <strong>of</strong> Furniture and Wood Products<br />

Masarykova 24<br />

960 53 Zvolen<br />

SLOVAKIA


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 194-198<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

����������� ����������� ������������� ��������� � ���������<br />

���������� � ���� �������<br />

�������� �������, ������ ��������<br />

������� ���������� ��������������� ������������� ������������ ����������� � ������������������<br />

������� – ����� �������<br />

Abstract: Methods are described and features <strong>of</strong> detection <strong>of</strong> metal inclusions in wood materials in a zone <strong>of</strong><br />

sawn.<br />

Keywords: wood, metal, saw-timbers, the microprocessor, system, measurements.<br />

�������� ������������� ��������� � ��������� ������ �������� ������<br />

�������� ����������� �� ������� � ����������, ��������� ��������� ���� ������<br />

���, ��������� ������� ������������, �������� �������� ���������.<br />

���������� ����� ������� ����������� ������������� ��������� � ���������<br />

����������, �� �� ������ �� ����� ��������� � ���������. ������� ����������<br />

������� ��������� ������������� ��������� � ��������� ���������� ����<br />

����������.<br />

���� �������� �������� ��������� ��� ��������������� ������ �����������<br />

������� ��������� � ��������� (1).<br />

�������������� �����. �������������� � ���������� ������������ �����<br />

�������� � �������-��������� ���������� �������� ���������, ������� �������� �<br />

����������� ����� �������� - �����������. ���� ����� ��������� ����������<br />

����������� ����� ��������� � ����������� ����������. ������������� ��������<br />

�������� � ����������� ������ ����������� �� ��������� ��������� ���� ����� �<br />

������������ ������������ �������. ����� ����� ����������� ��� ������<br />

����������� ������� ��������� � ��������� ������ ��������.<br />

������������������ �����. �������������� ������������ �� ���������<br />

������������� ���������� �������, ������� ������������ ����� �����������<br />

�����������. ����� ����� ����������� ������ ��� �������, ������� �����<br />

���������� ��������������: ��������� ������, �������, ���������.<br />

���������. ����� �������������, ������, ����� �������� � ���������.<br />

� ��������� ����� ��� ����������� ������������� ��������� ��������<br />

������ ����������� ���������������� �����. �������� ������ ������� � ���������<br />

��������� ������������� ���������� ������� ������������� ��� �������� � ��<br />

��������� ���� �������������� ��������.<br />

�� ���� ����� ������ ����������� � ���������� ��������������� ���������<br />

����������.<br />

���������� ��������� �������, ������� ����� �������� ������� ����������<br />

� ��������������:<br />

- ��������������� �� �������� "��������-�����". ������� �������� ����������<br />

����������� � ����������� ����������� ������� �� �������������� ��������.<br />

���������� �������� ��� �������: �������� � ����������.<br />

������� ��������� ����� �������, ����� � ��������� �� ���� ������� ���<br />

���������� �������.<br />

194


- ��������������� �� �������. ������� �������� ����������� � ����������� ��������<br />

������ �� ���� ������������� �����������. ���� �� ����������� ������������ �������<br />

���������� �� �������, � ������ �������� ������-������� ������������� � �������<br />

����������������� ����. ��� ���������� ������� ������������� ������� ��������<br />

������. ��� �������� � ���� ���������� ������� ������� ���������� �������� ������,<br />

������� ������������. ����������� ����� ���� ������: ��������, ��������, ��������.<br />

��������� ����������� ����� �������� ���������. ������� ����� ����������� ���<br />

��� ���������� ����������� �������, ��� � ��� ������� ������������. �������<br />

�������� ������� �� �������������� ���������� ���������� �������.<br />

- ��������������� �� �������� ������������ �����������. ������� ��������<br />

������� �� ����������, �� ����� ��� �����������: ����������� �������� ����<br />

�������, ������� ���������������� � ������������. ����� ������ ����� ����������� �<br />

��������������� ��� ������ �������� �������, � ����� ����� ���� ���������� �<br />

��������������� �����.<br />

- ���������� ���������������. � ������� �� �������� �� �������� "�������� -�����"<br />

� ���������� ���������������� ��������� ��������� ������ ������� ����������� �<br />

����������� ��������, ������� ��������� ������������ ���� �������. ����� ������<br />

�������� �� �������, ��������� ������������� �� ����� ������. ��������<br />

���������� ������� ����. � ����������� ���������� ���������������� �����<br />

������� ��������� ����������, ������� ������� ����������, ��� ����� ��������� �<br />

����� ������ ���������� ��� ��������� ��� ��������������� � ���������������<br />

������.<br />

- �������������. � ���� ����������� ��������� ���������� �����������<br />

���������������� ���, ������������ ��������� ���������� ��������.<br />

���������� ��������� ������������ ������ �� ������� �����������. ������ ��-��<br />

��������� � ������� ���������, ������������� ���� ��������� � ���������������<br />

���������������.<br />

�������� ��������� ������������ � ����������� ������� �����������<br />

������������� ��������� � ���� ������� ��� ������������ ������� ���������� �<br />

�������� �� ������������. �������� ������� �������������� ��������� ����<br />

���������<br />

������ ����� ���������� ����� � �������������� ��������� ����� ��������� �<br />

��������� ��������� ��� ���������� ������������� � ���� ���������.<br />

����������� ����� ������� ����������� ������������� ��������� � ����<br />

������� ���� ����������� �� ���� ����������� ������������ ���������� (2).<br />

�������������� � ������������ ������� ������� ���� ����������� �� ����<br />

����������� ���������������� ����� "Atmel" (3). ������ ������ ��������� ����<br />

�������� ������� ����� � ���������� ����������������� � ������������� ������.<br />

������� ��������: ��������������, ������ ����������� ������������� ���������,<br />

�����: ������������ ��������������� �� ������� ���������� ����������� �<br />

����������; �����: ������ �������, �������� � �������� ���������, ���������� �<br />

�������. �� ���.1 ��������� ����-����� �������.<br />

195


��������<br />

����������<br />

�����������<br />

���� ��������<br />

���������<br />

������ �����������<br />

������������� ���������<br />

����� ������������<br />

��������������<br />

����� ������������<br />

���� ��������<br />

���������<br />

���.1. ����-����� �������<br />

���������, ����������� ��������� ����������� ������������� ��������� �<br />

���������, ��������� ��������� �������� �������:<br />

- ����������� �������� �������� �� ������ ������� ����������� �������������<br />

��������� � ��������������� �������� ��� ������ � �������� �������<br />

���������������;<br />

- ��������� ������� �������� �������� �� ������������ ������� �������;<br />

- ��������� ��������� ������� �� ������ ������������� �����;<br />

- ���������� ������� �� ������ ������������� ����� � �������� ���������;<br />

- ������ ������ ��� ������ �������� ������������� ����� �� ������� ���������<br />

��������;<br />

- ��������� �������� �������� � �������� ���, ����������� ��� ������ ��<br />

�������� �����.<br />

�� ���. 2. �������� ���� - ����� ��������� ������ ��������� �������.<br />

196<br />

�����<br />

����������<br />

���� ������<br />

�������<br />

����������������<br />

+5� +15� -15�


���. 2. �������� ������ �������<br />

� ������� 1, ��������� ���������� ������ ������� �����������<br />

������������� ��������� � ���� �������, ���������� ��� ��������<br />

����������������� ������� � ���������������� ��������.<br />

��������������<br />

�������������<br />

��������<br />

����������<br />

�����������, ��<br />

��<br />

���������� �������� ��������<br />

����������� ���������<br />

�������� ������������ �������� ��������<br />

�������� �������� �� ������� �������<br />

���������� �������� ����������������� ������������� �������<br />

����<br />

�3<br />

�����<br />

�5<br />

�������������<br />

����������. ����<br />

�������.<br />

����� ���������� �������� � �������<br />

����������� ������������� ���������<br />

������ ����������� ���������.<br />

���������� ������������� � ������������<br />

�������� �������� ���������.<br />

��������� �������� �������� �������� �<br />

��������� ��������� ������� ����������<br />

������ � �������?<br />

�����<br />

�6,<br />

������<br />

197<br />

����<br />

���<br />

����� �� ������� �������� ����������� ���������,<br />

��� ����� �� ������� ��������� �������<br />

�6�30<br />

�����<br />

Ø 6��<br />

������<br />

1���<br />

������� 1<br />

������<br />

5���<br />

35 45 35 50 40 60 70


��� �������� ������������������ ���� ��������� ����������� ������<br />

�������������� ���������, ������� ����� ���������� ������� ��������������� ��<br />

������� ��������� �� ����� �������� �����.<br />

������� ����� ������ l= 1� �������� �� ��������� ���� ����� ������ �� t =<br />

5�.<br />

���������� n �������� ������� ��� �������� �������� ����� � �������������<br />

������� ti= 0,01� ���������:<br />

n<br />

t<br />

�<br />

t<br />

2<br />

�<br />

5<br />

0.<br />

01<br />

� 500<br />

����� ������� ������ ����������� �������������� ��������� ������� �������<br />

����� ���������� ��� ����� �������� ��������� 1/500=0,002 = 2 ��, ��� ����������<br />

��� ���������������� �������.<br />

����� �������, ������� ����� ���������� ����������� �� �������������<br />

���������, ������� ����� ������ � �������� ����������� ������.<br />

������ ���������� ���������� �������:<br />

- ���������������� � ������������� ���������� ������������� ������ �����������<br />

������������� ��������� ���������� ��� ���������������� �������;<br />

- ������������� ����������� ����� ����������, ��������� �� �����������<br />

���������������� ���������, ����� ����� ������� ����������������, ��������� ��<br />

�������;<br />

- ���������, ����� ������� ���������� ���������, ����� ������ ������������ �<br />

���������������� ��������;<br />

- ������������� ��������� ��� ������������� ����� �������� �������<br />

������������� � � ���������� ������ ����� ������������������.<br />

REFERENCES:<br />

1. �������� �.�. 2006. ��������������� �.: ��� �����. 96�.<br />

2. ������� �.�., �.�.�������, �.�.����� 1996. ���������� � ��������<br />

����������� �.: ����� � ����� 115c.<br />

3. �.�. ������ �.�., ������� 1999. ���������������� �.: ����, 235c.<br />

Streszczenie: Wykrywanie wtr�ce� metalowych w drewnie w procesie ci�cia Opisano metody<br />

i modele wykrywania wtr�ce� metalowych w materia�ach drzewnych w strefie procesu ci�cia.<br />

Corresponding authors:<br />

Valentin Golovach, Mikhail Biletskyi<br />

Department od Wood Processing<br />

National <strong>University</strong> <strong>of</strong> <strong>Life</strong> and Environmental <strong>Sciences</strong> <strong>of</strong> Ukraine,<br />

Kyiv,vul.Geroiv Oborony 15,03041, Ukraine<br />

OPinchewska@gmail.com


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 199-202<br />

(Ann. WULS - <strong>SGGW</strong>, For. and Wood Technol. 71, 2010)<br />

Wood-polyethylene composite with industrial wood particles<br />

CEZARY GOZDECKI 1) , MAREK KOCISZEWSKI 1) , ARNOLD WILCZY�SKI 1)<br />

1) Institute <strong>of</strong> Technology, Kazimierz Wielki <strong>University</strong> in Bydgoszcz<br />

Abstract: Composite wood/PE with industrial wood particles. The paper presents the investigations into the<br />

possibilities <strong>of</strong> using industrial wood particles to produce wood-polyethylene composites. For comparing the<br />

composites with traditional wood flour were prepared. The specimens were made by injection moulding.<br />

Mechanical properties in tension and in bending and impact strength were determined. It was found out that the<br />

industrial WPs applied to making the face and core layer <strong>of</strong> particleboard can be efficiently used for fabrication<br />

<strong>of</strong> wood-polyethylene composites by means <strong>of</strong> injection moulding.<br />

Keywords: wood-plastic composite, WPC, mechanical properties<br />

INTRODUCTION<br />

Typical wood-plastic composites (WPCs) are made using polymer and small wood<br />

particles (WPs) or short wood fibers. Owing to their unquestionable qualities they are a good<br />

alternative to solid wood, especially where resistance to changing weather conditions is<br />

important. However, much more frequent are attempts to use them for producing elements<br />

more responsible from the mechanical point <strong>of</strong> view as e.g. construction elements in buildings<br />

<strong>of</strong> light frame construction. One <strong>of</strong> the factors affecting the mechanical properties <strong>of</strong> WPC is<br />

the size <strong>of</strong> a wood particle. The effect <strong>of</strong> larger wood flour particles on the mechanical<br />

properties <strong>of</strong> WPC was also studied by STARK and BERGER (1997), STARK and<br />

ROWLANDS (2003), LIBER-KNE� et al. (2006), CHEN et al. (2006) and RENNER et al.<br />

(2008). Wood industry generates large quantities <strong>of</strong> WPs <strong>of</strong> a wide range <strong>of</strong> dimensions.<br />

Therefore, there is a possibility <strong>of</strong> choosing (using) suitable wood particles as fillers in<br />

polymers. The particles <strong>of</strong> definite sizes and shapes being generated in the largest quantities<br />

are wood particles used in fabrication <strong>of</strong> particleboards. The effect <strong>of</strong> used coarse wood<br />

particles as a filler in WPC on the mechanical properties <strong>of</strong> a composite was also studied by<br />

GOZDECKI et al. 2008. They proved that the coarse WPs used in producing a core layer <strong>of</strong><br />

particleboard can be employed for filling a polypropylene matrix, and that WPCs with coarse<br />

particles show good mechanical properties. There is no, however, data published on the<br />

possibilities <strong>of</strong> employing industrial wood particles used in producing face layers and core<br />

layer particleboards for filling a polyethylene matrix.<br />

The objective <strong>of</strong> this study were: to evaluate the usage <strong>of</strong> the WP used in making the<br />

core and face layer <strong>of</strong> particleboard as a component <strong>of</strong> wood-polyethylene composites by<br />

means <strong>of</strong> injection moulding, and to compare the mechanical properties <strong>of</strong> these composites.<br />

199


MATERIALS AND METHODS<br />

Two kinds <strong>of</strong> s<strong>of</strong>t WPs used for manufacturing three-layer particleboards, fine<br />

particles for face layers and coarse particles for a core layer, were supplied by Kronospan<br />

Szczecinek (Poland). The particles were screened by an analytical sieve shaker LAB-11-<br />

200/UP using the sieves <strong>of</strong> 60 and 18 mesh (fine particles) and 18 and 5 mesh (coarse<br />

particles) to obtain particle sizes: small, 0.25-1 mm, large, 1-4 mm. WPs smaller than 0.25<br />

and larger than 4mm were removed. For comparison the wood flour (WF) L9 obtained from J.<br />

Rettenmaier & Söhne GmbH+Co. (Germany) was also used. The polyethylene LDPE was a<br />

homopolymer Malen E FABS, 23-DO22 obtained from Basell Orlen Poliolefins (Poland). Its<br />

density was 0.92 g/cm3 and its melt flow index was 2 g/10 min (230°C/2.16 kg). The WPs <strong>of</strong><br />

the two groups (fine, coarse) and WF were compounded separately with polyethylene at 40%<br />

by weight. The specimens for determining mechanical properties <strong>of</strong> tested composites were<br />

injection moulded using the Wh-80 injection moulding machine. In order to minimize the<br />

mechanical degradation <strong>of</strong> wood particles during moulding, the diameter <strong>of</strong> the injection die<br />

was enlarged to 4.5 mm. The cross section <strong>of</strong> the sprue bush with radius were 6.5 and 8 mm,<br />

its length was 50 mm. The cross section <strong>of</strong> the runner and the gate was 10x10 mm and 6x6<br />

mm, respectively. The specimens were injection moulded using the standard temperature<br />

program for wood flour-polyethylene composites. It should be noticed that no problems<br />

occurred during the process <strong>of</strong> fabrication <strong>of</strong> the composites with coarse particles.<br />

The mechanical properties <strong>of</strong> the tested WPCs were evaluated in relation to tensile,<br />

flexural and impact properties. Tensile and flexural tests were performed according to EN<br />

ISO 527 and EN ISO 178, respectively, using an Instron 3367 machine. Unnotched Charpy<br />

impact strength tests were conducted according to EN ISO 179 with a PSd 50/15 impact test<br />

device. Ten replicates were run for each test. All tests were performed at room temperature<br />

(20 o C) and at constant relative humidity (50%).<br />

RESULTS<br />

Mean values <strong>of</strong> the tensile modulus and strength, the flexural modulus and strength,<br />

and the impact strength <strong>of</strong> the tested WPCs are given in Figure 1. Generally the highest<br />

mechanical proprieties were obtained for the composite containing coarse WPs. Only in the<br />

case <strong>of</strong> impact strength the highest properties were obtained for the composite filled with WF.<br />

Tensile properties increase with increasing the WPs size. Tensile modulus ranges from<br />

760 (WF) to 992 (coarse) MPa and tensile strength from 7.2 (WF) to 8.8 (coarse) MPa.<br />

Considering the composites with fine particles as well as the composites with coarse particles,<br />

and comparing the tensile properties <strong>of</strong> these composites, it can be concluded that the tensile<br />

modulus and tensile strength <strong>of</strong> the composites with fine particles are greater by 14 and 15%,<br />

respectively. The change <strong>of</strong> a filler from WF to coarse WPs causes the growth <strong>of</strong> the tensile<br />

modulus by about 23% and the tensile strength by 18%. Investigations revealed a lesser effect<br />

<strong>of</strong> the kind <strong>of</strong> filler on the mechanical properties in bending. Using WF and fine WPs as a<br />

filler results in gaining WPC characterized by very similar mechanical properties as those<br />

obtained in bending. Used as a filler coarse WPs result in increasing flexural modulus and<br />

strength on the average by 10 % in comparison with WPCs containing WF and fine WPs.<br />

The greatest force that is needed to destroy WPC in a dynamic test was noticed in the<br />

composite containing WF. In this case the WPC with fine WPs was characterized by the least<br />

strength, in comparison with WPC with WF on the average by 22 %.<br />

200


a)<br />

Tensile modulus (MPa)<br />

c)<br />

Tensile strength (MPa)<br />

e)<br />

Impact strength (kJ/m 2 )<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

12<br />

9<br />

6<br />

3<br />

0<br />

0<br />

7.2<br />

8.8<br />

760<br />

CONCLUSIONS<br />

856<br />

7.5<br />

7.2<br />

992<br />

WF Fine Coarse<br />

Kind <strong>of</strong> filler<br />

8.8<br />

WF Fine Coarse<br />

Kind <strong>of</strong> filler<br />

8.3<br />

WF Fine Coarse<br />

Kind <strong>of</strong> filler<br />

b)<br />

Flexural modulus (MPa)<br />

d)<br />

Flexural strength (MPa)<br />

1. The industrial WPs applied to making the face and core layer <strong>of</strong> particleboard can be<br />

efficiently used for fabrication <strong>of</strong> wood-polyethylene composites by means <strong>of</strong><br />

injection moulding.<br />

201<br />

1500<br />

1200<br />

900<br />

600<br />

300<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0<br />

952 935 1030<br />

WF Fine Coarse<br />

Kind <strong>of</strong> filler<br />

16.6<br />

17.3<br />

19.5<br />

WF Fine Coarse<br />

Kind <strong>of</strong> filler<br />

Fig. 1. Mechanical properties <strong>of</strong> tested<br />

WPCs:<br />

a) tensile modulus,<br />

b) tensile strength,<br />

c) flexural modulus,<br />

d) flexural strength,<br />

e) Charpy impact strength.


2. WPC with fine WPs has similar mechanical properties in tension and bending to WPC<br />

with WF.<br />

3. WPC with fine WPs shows smaller impact strength by about 18% than that with WF.<br />

4. In comparison with the composite with fine WPs the WPC with coarse WPs has<br />

higher properties on the average by about 17% in tension, by about 11% in bending<br />

and higher impact strength by about 15%.<br />

REFERENCES<br />

1. CHEN H.C., CHEN T.Y., HSU C.H., 2006: Effects <strong>of</strong> wood particle size and mixing<br />

ratios <strong>of</strong> HDPE on the properties <strong>of</strong> the composites. Holz als Roh- und Werkst<strong>of</strong>f 64:<br />

172-177.<br />

2. GOZDECKI C., KOCISZEWSKI M., WILCZY�SKI A., ZAJCHOWSKI S., 2008:<br />

Use <strong>of</strong> coarse wood chips for fabrication <strong>of</strong> wood-polypropylene composites by means<br />

<strong>of</strong> injection molding. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>,<br />

Forestry and Wood Technology 65: 80-83.<br />

3. LIBER-KNE� A., KUCIEL S., DZIADUR W., 2006: Estimation <strong>of</strong> mechanical (static<br />

and dynamic) properties <strong>of</strong> recycled polypropylene filled with wood flour. Polimery<br />

51, 7-8: 571-575.<br />

4. RENNER K., MOCZO J., PUKANSZKY B., 2008: Deformation and failure <strong>of</strong> natural<br />

fiber reinforced composites; effect <strong>of</strong> particle characteristics and adhesion. 7 th Global<br />

WPC and Natural Fibre Composites Congress and Exhibition, Kassel: B11.1-B11.9.<br />

5. STARK N.M., BERGER M.J., 1997: Effect <strong>of</strong> particle size on properties <strong>of</strong> woodflour<br />

reinforced polypropylene composites. 4 th International Conference <strong>of</strong> Wood<br />

Fiber-Plastic Composites, Madison: 134-143.<br />

6. STARK N.M., ROWLANDS R.E., 2003: Effects <strong>of</strong> wood fiber characteristics on<br />

mechanical properties <strong>of</strong> wood/polypropylene composites. Wood and Fiber Science<br />

35, 2:167-174.<br />

Streszczenie: Kompozyt drewno/PE z wiórami przemys�owymi. W pracy opisano badania nad<br />

mo�liwo�ci� zastosowania przemys�owych wiórów drzewnych stosowanych do produkcji p�yt<br />

wiórowych do wytwarzania kompozytów drzewno polimerowych na bazie polietylenu. W<br />

celach porównawczych wykonano kompozyty z tradycyjn� m�czk� drzewn�. Próbki<br />

wykonano metod� wtryskiwania. Wyznaczono w�a�ciwo�ci mechaniczne przy rozci�ganiu,<br />

zginaniu oraz udarno�� metod� Charpy. Stwierdzono, �e kompozyty zawieraj�ce wióry<br />

drzewne przeznaczone na zewn�trzn� i wewn�trzn� warstw� p�yty wiórowej posiadaj�<br />

porównywalne lub lepsze w�a�ciwo�ci mechaniczne, ni� kompozyty z m�czk� drzewn�.<br />

Acknowledgement: This research project has been supported by the Polish Ministry <strong>of</strong><br />

Science and Higher Education, grant number 508 011 32/0844<br />

Corresponding author:<br />

Institute <strong>of</strong> Technology,<br />

Kazimierz Wielki <strong>University</strong><br />

Chodkiewicza 30 str.<br />

85-064 Bydgoszcz, Poland<br />

e-mail: gozdecki@ukw.edu.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 203-206<br />

(Ann. WULS - <strong>SGGW</strong>, For. and Wood Technol. 71, 2010)<br />

Effect <strong>of</strong> wood bark content on mechanical properties <strong>of</strong> wood-polyethylene<br />

composite<br />

CEZARY GOZDECKI 1) , MAREK KOCISZEWSKI 1) , ARNOLD WILCZY�SKI 1) , JACEK<br />

MIROWSKI 2)<br />

1)<br />

Institute <strong>of</strong> Technology, Kazimierz Wielki <strong>University</strong> in Bydgoszcz<br />

2)<br />

Faculty <strong>of</strong> Chemical Technology and Engineering, Bydgoszcz <strong>University</strong> <strong>of</strong> Technology and <strong>Life</strong> <strong>Sciences</strong><br />

Abstract: Effect <strong>of</strong> wood bark on wood/PE composite mechanical properties. An object <strong>of</strong> investigations was<br />

wood-plastic composite containing pine bark. A degree <strong>of</strong> a bark content amounted to 0, 50 and 100 % <strong>of</strong> a<br />

filler. Basic mechanical properties <strong>of</strong> the composite produced by means <strong>of</strong> injection moulding were determined.<br />

It was found out that a bark content in wood-plastic composite considerably affects its mechanical properties.<br />

Key words: wood-plastic composite, WPC, bark, mechanical properties<br />

INTRODUCTION<br />

Typical wood-plastic composites (WPCs) are made using polymer and small wood<br />

particles (WPs) or short wood fibers. Such composites are an environmentally friendly<br />

material. Due to their content WPCs undergo total or partial biological degradation. They<br />

possess another important virtue, that is after they have been used the elements made <strong>of</strong> WPC<br />

can be subjected to multiple processing without a significant change <strong>of</strong> its properties.<br />

(Zajchowski et al. 2008). Boeglin et al. (1997), Stark (1999), and Gozdecki et al. (2007a)<br />

have proved that there is a possibility <strong>of</strong> using wood waste particles as a component <strong>of</strong> WPC.<br />

Gozdecki et al. (2005a,b) have demonstrated that the composites made by combing polymer<br />

with particle board meal and MDF are characterised by the same properties as those <strong>of</strong> WPC<br />

filled with “pure” wood flour. Such a procedure unites an idea to create new composites with<br />

recycling waste and after-use materials. One <strong>of</strong> the wood wastes occurring in large quantities<br />

during round timber processing is wood bark (WB). Bark is also reckoned among<br />

lignocellulosic materials. The investigations into possibilities <strong>of</strong> using pine bark for filling<br />

polypropylene were carried out by Gozdecki et al. (2007b). They have proved that WB can be<br />

efficiently used for fabrication <strong>of</strong> wood-polypropylene composites by means <strong>of</strong> injection<br />

moulding<br />

There are no however investigations into the effect <strong>of</strong> WB as a filler on the mechanical<br />

properties <strong>of</strong> wood-polyethylene composite. Therefore, it has been decided to examine<br />

possibilities <strong>of</strong> using WB to fill a polyethylene matrix.<br />

MATERIALS AND METHODS<br />

An investigation was made into the composite whose matrix was polyethylene LDPE<br />

Malen E FABS, 23-DO22 obtained from Basell Orlen Poliolefins (Poland). Its density was<br />

0.92 g/cm3 and its melt flow index was 2 g/10 min (230°C/2.16 kg). A filler was wood flour<br />

203


(WF) L9 produced by Rettenmaier & Sohne GmbH and pine WB grinded into 0.25 to 2.5 mm<br />

particles. Fraction analysis (WB) is shown in Fig.1.<br />

Fig. 1. Fraction analysis <strong>of</strong> WB used in investigations<br />

WB and WF were dried to reach about 1 % moisture, and then mixed with polyethylene with<br />

the filler/polyethylene weight ratio <strong>of</strong> 40/60. In order to define the influence <strong>of</strong> a bark content<br />

on the properties <strong>of</strong> the composite, three kinds <strong>of</strong> WPCs containing pure WF, WF mixed by<br />

halves with ground WB, and with pure ground WB, respectively, were prepared. Specimens<br />

were made by means <strong>of</strong> injection moulding, using the Wh-80 Ap injection moulding machine.<br />

The composites prepared so had the following densities: the composite only with WF – 1017<br />

kg/m 3 , the composite with WF and WB in a ratio <strong>of</strong> 50/50 - 999 kg/m 3 , and the composite<br />

only with WB – 989 kg/m 3 .<br />

The mechanical properties <strong>of</strong> the tested WPCs were evaluated in relation to tensile,<br />

flexural and impact properties. Tensile and flexural tests were performed according to EN<br />

ISO 527 and EN ISO 178, respectively, using an Instron 3367 machine. Unnotched Charpy<br />

impact strength tests were conducted according to EN ISO 179 with a PSd 50/15 impact test<br />

device. Ten replicates were run for each test. All tests were performed at room temperature<br />

(20 o C) and at constant relative humidity (50%).<br />

RESULTS<br />

Count %<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

< 0.25<br />

0,25 0.25 0,25 0.49 0,49 0,75 0.75<br />

Fraction<br />

1,5 1.5 22<br />

2.5 2,5<br />

The results <strong>of</strong> investigations into the effect <strong>of</strong> a bark content in a filer on the mechanical<br />

properties <strong>of</strong> the examined composite are presented in Fig. 2. Generally the composite<br />

containing bark has lower mechanical properties than that containing only WF. The strongest<br />

effect <strong>of</strong> a filling with bark is noticeable for both elastic moduli. Adding 50 % <strong>of</strong> WB causes<br />

decreasing tensile modulus by about 35 %, and flexural modulus by about 33 when compared<br />

to the WPC filled only with WF. Adding 100 % <strong>of</strong> WB as a filler causes further decreasing<br />

tensile modulus by about 60%, and flexural modulus by about 69 %. The effect <strong>of</strong> a WB<br />

content on the WPC strength is less noticeable in tension and bending. Polyethylene filled<br />

with WF mixed by halves with ground WB has lower tensile and flexural strength by about<br />

8% and 6%, respectively, and the composite with 100% WB as a filler has lower flexural<br />

strength by about 17% and 15%, respectively, than the composite filled only with WB.<br />

Increasing the degree <strong>of</strong> filling polyethylene with pine bark does not significantly affect the<br />

dynamic properties <strong>of</strong> the composite. Increasing the quantity <strong>of</strong> WB in a filler to 100 %<br />

204


causes the growth <strong>of</strong> impact strength by about 7 % in comparison to WPC filled only with<br />

WF.<br />

a) b)<br />

Tensile modulus (MPa)<br />

c)<br />

Tensile strength (MPa)<br />

e)<br />

Impact strength (kJ/m2)<br />

1000<br />

10<br />

18<br />

15<br />

12<br />

800<br />

600<br />

400<br />

200<br />

8<br />

6<br />

4<br />

2<br />

0<br />

9<br />

6<br />

3<br />

0<br />

0<br />

7.5<br />

12.7<br />

760<br />

CONCLUSIONS<br />

493<br />

12.9<br />

303<br />

0 50 100<br />

WB content (%)<br />

6.9<br />

6.2<br />

0 50 100<br />

WB content (%)<br />

13.6<br />

0 50 100<br />

WB content (%)<br />

Flexural modulus (MPa)<br />

d)<br />

Flexural strength (MPa)<br />

1. Generally the bark content in a filler results in the reduction <strong>of</strong> mechanical properties<br />

<strong>of</strong> WPC.<br />

205<br />

1200<br />

900<br />

600<br />

300<br />

20<br />

16<br />

12<br />

8<br />

4<br />

0<br />

0<br />

16.8<br />

952 639 292<br />

0 50 100<br />

WB content (%)<br />

15.8<br />

14.2<br />

0 50 100<br />

WB content (%)<br />

Fig. 2. Mechanical properties <strong>of</strong> WPC<br />

with different bark content in filler:<br />

a) modulus <strong>of</strong> elasticity in tension,<br />

b) modulus <strong>of</strong> elasticity in bending,<br />

c) tensile strength, d) bending strength,<br />

e) impact strength


2. Bark in a filler makes WPC’s elastic moduli to decrease markedly by about 34 % for<br />

the 50 % bark content and by about 64 % for the 100 % bark content.<br />

3. Bark in a filler makes WPC’s strength to decrease slightly by about 7 % for the 50 %<br />

bark content and by about 16 % for the 100 % bark content.<br />

4. Filling polyethylene with bark does not significantly affect the impact strength <strong>of</strong> the<br />

composite.<br />

REFERENCES<br />

1. BOEGLIN N., TRIBOULOT P., MASSON D. (1997): A feasibility study on boards<br />

from wood and plastic waste: Bending properties, dimensional stability, and recycling<br />

<strong>of</strong> the board. Holz als Roh- und Werkst<strong>of</strong>f, 55, 1, 13-16.<br />

2. GOZDECKI C., KOCISZEWSKI M., ZAJCHOWSKI S., (2007a): The usage <strong>of</strong> the<br />

wood waste as a filler in PP/wood composite. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural<br />

<strong>University</strong>-<strong>SGGW</strong>, Forestry and Wood Technology 61, 245-248.<br />

3. Gozdecki C., Kociszewski M., Zajchowski S. Patuszy�ski K.(2005a): Wood-based<br />

panels as a filler <strong>of</strong> wood-plastic composites. <strong>Warsaw</strong> Agricultural <strong>University</strong>.<br />

Forestry and Wood Technology Special Number 56, 255-258.<br />

4. Gozdecki C., Kociszewski M., Zajchowski S. (2005b): Kompozyt drzewnopolimerowy<br />

przemia�u p�yt wiórowych i pil�niowych z polipropylenem. In�ynieria i<br />

Aparatura Chemiczna nr 3, 28-29.<br />

5. GOZDECKI C., KOCISZEWSKI M., ZAJCHOWSKI S., MIROWSKI J.,(2007b):<br />

Zastosowanie kory sosnowej jako nape�niacza w kompozytach z polipropylenem.<br />

Recykling i Odzysk Materia�ów Polimerowych. Nauka - Przemys�. IChP, Warszawa,<br />

53-56.<br />

6. STARK N. M. (1999): Wood fibre derived from scrap pallets used in polypropylene<br />

composites. Forest Prod. J. 49,6, 39-46.<br />

7. ZAJCHOWSKI S., KOCISZEWSKI M., GOZDECKI C., MIROWSKI J. (2008):<br />

Recykling kompozytu polipropylenu z kor� sosnow�. In�ynieria i Aparatura<br />

Chemiczna nr 5, s. 64-65.<br />

Streszczenie: Wp�yw kory na w�a�ciwo�ci mechaniczne kompozytu drewno/PE. Przedmiotem<br />

bada� by� kompozyt drzewno-polimerowy zawieraj�cy kor� sosnow�. Stopie� dodatku kory<br />

wynosi� 0, 50 i 100 % nape�niacza. Oznaczono podstawowe w�a�ciwo�ci mechaniczne<br />

kompozytu otrzymanego metod� wtryskiwania. Stwierdzono, �e zawarto�� kory w<br />

kompozycie drzewno-polimerowym znacznie wp�ywa na w�a�ciwo�ci mechaniczne.<br />

Acknowledgement: This research project has been supported by the Polish Ministry <strong>of</strong><br />

Science and Higher Education, grant number 508 011 32/0844<br />

Corresponding author:<br />

Institute <strong>of</strong> Technology,<br />

Kazimierz Wielki <strong>University</strong><br />

Chodkiewicza 30 str.<br />

85-064 Bydgoszcz, Poland<br />

e-mail: gozdecki@ukw.edu.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 207-210<br />

(Ann. WULS - <strong>SGGW</strong>, For. and Wood Technol.,71, 2010)<br />

Perforation <strong>of</strong> blade as a way to increase the stiffness <strong>of</strong> frame saw<br />

TOMASZ GROBELNY 1 , DOROTA KARDA� 2 , TOMASZ GÓRALSKI 1<br />

1. Department <strong>of</strong> Wood Machining, 2. Department <strong>of</strong> Physics. <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong>.<br />

Abstract: Perforation <strong>of</strong> blade as a way to increase the stiffness <strong>of</strong> frame saw. This work was focused on the<br />

influence <strong>of</strong> perforation design <strong>of</strong> saw blade on rigidity <strong>of</strong> frame saws. In order to achieve reliable results,<br />

a method providing the best similarity to real saw blade loading was applied. Furthermore, the blades with<br />

different design <strong>of</strong> perforation and without any perforation were compared. It was proven that the perforation <strong>of</strong><br />

the blade can slightly increase the stiffness <strong>of</strong> a frame saw but still less than rolling.<br />

Keywords: frame saw blade, stiffness, deflection, buckling, perforation.<br />

INTRODUCTION<br />

In Polish timber industry frame sawing machines are still widely used. They are mostly<br />

exploited in the sawing <strong>of</strong> s<strong>of</strong>twoods with uniform quality (Buchholz, 1990). The stiffness <strong>of</strong><br />

saw blades has important influence on the yield <strong>of</strong> the process and quality <strong>of</strong> lumber. There<br />

are various ways to increase the rigidity <strong>of</strong> a frame saw blades (Duchnowski, 1989). In this<br />

experiment, the influence <strong>of</strong> blade perforation on the rigidity <strong>of</strong> saw blades was examined.<br />

The perforation <strong>of</strong> a saw blade changes the stress distribution in the tensioned saw, creating<br />

greater tensile strains, both in the vicinity <strong>of</strong> the tooth stripe and the saw’s back. This should<br />

result in a greater resistance <strong>of</strong> the blade to buckling. Initially, the perforation pattern was to<br />

be designed on the basis <strong>of</strong> FEM calculations but, due to shortage in computer hardware the<br />

range <strong>of</strong> the research was limited to the design proposals given by the leading Polish frame<br />

saw blades producer.<br />

MATERIALS AND METHODS<br />

Clamps<br />

Lateral<br />

force<br />

Clamps<br />

Tensioning<br />

force<br />

Fixing<br />

Buckling<br />

load<br />

Figure 1. The saw loading scheme.<br />

The experimental stand enables precise tensioning <strong>of</strong> a saw blade<br />

with assumed force.<br />

In the tests the 40 kN force was applied. Because saw blade was<br />

tightened by two sets <strong>of</strong> clamps its free length was reduced to 1000 mm.<br />

The buckling load was employed as a force <strong>of</strong> 1.5 kN in the working<br />

plane <strong>of</strong> saw (parallel to the blade and perpendicular to the teeth top<br />

line). The force was evenly distributed over the 250 mm segment. Its<br />

center corresponded to the center <strong>of</strong> saw’s free length. For the tests the<br />

modified Duchnowski’s method was applied (Duchnowski, 1989). This<br />

method is based upon the measurement <strong>of</strong> deflection in the point placed<br />

in the middle <strong>of</strong> free length <strong>of</strong> a saw and 5 mm away from the tooth<br />

space bottom line.<br />

The modification was the addition <strong>of</strong> a small (10 N) extra lateral<br />

force placed on the opposite, to the deflection gauge, side <strong>of</strong> the blade.<br />

The purpose <strong>of</strong> using this force was to make a saw buckle always in the<br />

same direction.<br />

The saw stiffness coefficient was calculated according to the following<br />

formula:<br />

207


Q<br />

k �<br />

f<br />

where: Q – buckling force [N],<br />

f – blade deflection [mm].<br />

The measurement <strong>of</strong> blade deflection was repeated 5 times for each saw. For calculation <strong>of</strong><br />

the stiffness coefficient the average value was used.<br />

Moreover, the deflection in additional 7 points distributed at the span <strong>of</strong> 20 mm along<br />

the line perpendicular to the tooth space bottom line was recorded. However, these results<br />

were not used for stiffness coefficient calculation but only to control the shape <strong>of</strong> buckling.<br />

The loading scheme is presented in figure 1.<br />

Six frame saws having the same dimensions (length = 1400 mm, width = 160 mm,<br />

thickness = 2.2 mm) and tooth geometry were used in the experiment. The difference among<br />

them was the shape <strong>of</strong> the blade. Two <strong>of</strong> them had the blade without perforation, but saw #1<br />

had the blade prestressed by rolling. The next four (#3, #4, #5 and #6) had various perforation<br />

patterns <strong>of</strong> the blade. All kinds <strong>of</strong> saws are shown in figure 2.<br />

A<br />

B C<br />

D E<br />

Figure 2. Overall dimensions <strong>of</strong> a saw blade (A) and various patterns <strong>of</strong> perforation.<br />

B – saw #3, C – saw #4, D – saw #5, E – saw #6.<br />

208


RESULTS AND DISCUSION<br />

The results <strong>of</strong> average deflection values resulting from the buckling load <strong>of</strong> 1.5 kN are given<br />

in table 1.<br />

Table 1. Average deflection <strong>of</strong> saws under buckling load 1,5 kN.<br />

Saw number 1 2 3 4 5 6<br />

Deflection f [mm] 0,454 0,602 0,600 0,580 0,574 0,586<br />

Standard deviation [mm] 0,017 0,019 0,007 0,022 0,015 0,015<br />

These values were further used to calculate the stiffness coefficient for each saw. The results<br />

<strong>of</strong> the estimation are graphically presented in figure 3.<br />

stiffness coefficient [kN/mm]<br />

3,50<br />

3,00<br />

2,50<br />

2,00<br />

1,50<br />

1,00<br />

0,50<br />

0,00<br />

Figure 3. Stiffness coefficient <strong>of</strong> tested saws.<br />

1 2 3 4 5 6<br />

209<br />

Saw number<br />

It is clearly visible that the rigidity <strong>of</strong> all perforated saws and not rolled solid blade is<br />

significantly lower than not perforated but rolled one. The difference between stiffness<br />

coefficient values for these two kinds <strong>of</strong> saws is about 30 %. For all not rolled saw blades the<br />

stiffness coefficient does not seem to be significantly different. However, the small increase<br />

in rigidity (3 – 5 %) for perforated saws #4, #5 and #6 is visible. The most rigid amongst all<br />

perforated blades was the saw #5 (figure 2d). It seems, that on rigidity <strong>of</strong> a saw, rolling has a<br />

more important impact than process <strong>of</strong> perforation. On the other hand, there should not be<br />

omitted that there are other benefits <strong>of</strong> blade perforation. Therefore, it is probable that the<br />

presence <strong>of</strong> holes in the blade enhances the process <strong>of</strong> shavings removal from the kerf slot.<br />

Thus, the friction in the machining zone is diminished. That contributes to improvement <strong>of</strong><br />

thermal conditions <strong>of</strong> the working tool. It is obvious that the lower temperature causes the<br />

smaller elongation <strong>of</strong> the blade. Consequently, the loss <strong>of</strong> rigidity <strong>of</strong> the working saw is<br />

slighter.<br />

Similar studies had been completed earlier by Paluch (2005). Unfortunately, the results<br />

<strong>of</strong> both experiments can not be compared directly due to different methodology.<br />

CONCLUSIONS<br />

1. The largest influence on the stiffness <strong>of</strong> frame saw blades has its rolling. The increase <strong>of</strong><br />

rigidity due the blade rolling amounts to 32.6 % in comparison with untreated blade.


2. It seems that the perforation <strong>of</strong> blade has a small positive influence on rigidity <strong>of</strong> frame<br />

saws. Dependently on the shape <strong>of</strong> the holes the stiffness <strong>of</strong> the perforated saws was higher<br />

up to 5 % than <strong>of</strong> not perforated one.<br />

3. Although perforating <strong>of</strong> the blade as a way <strong>of</strong> increasing rigidity can not compete with<br />

prestressing <strong>of</strong> the saw by rolling, it is supposed there are other benefits <strong>of</strong> the blade<br />

perforation.<br />

4. Some modifications could be made in the experimental stand to give rise to the precision<br />

<strong>of</strong> further measurements. Especially the unit dedicated to buckling forces application<br />

should be adjusted.<br />

REFERENCES<br />

1. BUCHHOLZ J., 1990: Technologia tartacznictwa. Pozna�<br />

2. DUCHNOWSKI K., 1989: Sposoby zwi�kszania sztywno�ci pi� trakowych. Przemys�<br />

Drzewny nr 11/12<br />

3. PALUCH M., 2005: Wp�yw budowy brzeszczotu i wst�pnych napr��e� na sztywno��<br />

pi� trakowych. Praca dyplomowa pod kierunkiem S. Miklaszewskiego. WTD <strong>SGGW</strong><br />

Warszawa.<br />

Streszczenie: Perforacja brzeszczotu jako sposób zwi�kszenia sztywno�ci pi� trakowych.<br />

Badania by�y ukierunkowane na ocen� wp�ywu kszta�tu perforacji brzeszczotu pi� trakowych<br />

na ich sztywno��. Aby wyniki bada� by�y wiarygodne, zastosowano metod�, która w<br />

najlepszy sposób odzwierciedla�a rzeczywiste obci��enia pi�y trakowej podczas pracy.<br />

Ponadto porównano sztywno�� pi� perforowanych z pi�ami bez perforacji, w tym z pi��<br />

napr��on� wst�pnie przez walcowanie. Udowodniono, �e perforacja brzeszczotu zwi�ksza<br />

nieco sztywno�� pi� trakowych ale nie w takim stopniu jak ich walcowanie.<br />

Corresponding author:<br />

Zak�ad Obrabiarek i Obróbki Drewna<br />

Katedra Mechanicznej Obróbki Drewna<br />

Wydzia� Technologii Drewna <strong>SGGW</strong><br />

Ul. Nowoursynowska 159<br />

02-787 Warszawa<br />

e-mail: tg62@wp.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 211-216<br />

(Ann. WULS - <strong>SGGW</strong>, For. and Wood Technol.,71, 2010)<br />

Influence <strong>of</strong> rake angle <strong>of</strong> scoring saw on cutting quality<br />

TOMASZ GROBELNY 1 , DOROTA KARDA� 2 , BARTOSZ JASI�SKI 1<br />

1. Department <strong>of</strong> Wood Machining, 2. Department <strong>of</strong> Physics. <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong>.<br />

Abstract: Influence <strong>of</strong> rake angle <strong>of</strong> scoring saw on cutting quality. The subject <strong>of</strong> this research was to<br />

investigate the influence <strong>of</strong> a rake angle on the quality <strong>of</strong> machined edge <strong>of</strong> the laminated particleboard.<br />

The tests were conducted on a bench saw with a scoring saw arbor. Scoring saw’s rake angle was modified in the<br />

range from -7º to +30º and sawn edge quality was examined. The best results were achieved for rake angles in<br />

the range between 0º and +5º. The effect <strong>of</strong> various saw tooth geometry on machining quality was examined.<br />

Keywords: scoring saw, rake angle, laminated panels, cutting quality.<br />

INTRODUCTION<br />

The economic crises <strong>of</strong> last years determines the preferences <strong>of</strong> customers. A large group<br />

<strong>of</strong> potential buyers, facing new reality, is ready to accept the purchase <strong>of</strong> pieces <strong>of</strong> furniture<br />

made <strong>of</strong> worse material, but still looking good. Nowadays, facing a continuous improvement<br />

in aesthetic values <strong>of</strong> laminated particleboards, quality <strong>of</strong> machining seems to be the most<br />

crucial factor affecting furniture attractiveness.<br />

Sawing is the most common way <strong>of</strong> wood based panels machining. Unfortunately, in this<br />

process some defects, such as laminate cavities occur. The result is uneven edge <strong>of</strong> a panel<br />

which is clearly visible and has negative influence on the perception <strong>of</strong> furniture quality.<br />

The problem is to achieve perfect quality <strong>of</strong> the lower border <strong>of</strong> sawn panel in the place where<br />

the main saw leaves the material. However, there are a few methods to reduce or even<br />

overcome these difficulties (Pa�ubicki, 2006). The most widely used technique is to apply a<br />

scoring saw. There are three types <strong>of</strong> scoring saws (Gawro�ski, Pilarczyk, 1998). Among<br />

them the saw with conical teeth is considered as the best one. The quality <strong>of</strong> machining<br />

depends on many factors such as: feed per tooth, stereometric parameters <strong>of</strong> blade, bevel<br />

angle, rake angle, processed material properties, angle between grains and cutting speed<br />

direction, as well as synergy <strong>of</strong> all above-mentioned factors (Porankiewicz, 2003 after Cyra,<br />

1997 and Stuhmeier, 1989).<br />

The main aim <strong>of</strong> this research was to investigate the influence <strong>of</strong> a rake angle on the<br />

quality <strong>of</strong> machined edge <strong>of</strong> the laminated particleboard. Moreover, the founding <strong>of</strong> optimal<br />

rake angle <strong>of</strong> scoring saw considering the sawn edge quality.<br />

Finally, the effect <strong>of</strong> various saw tooth geometry on quality was examined.<br />

MATERIALS AND METHODS<br />

The machining was performed with tools provided by Leuco Poland. Tungsten carbide<br />

tipped 300 mm diameter saw with straight/trapezoidal teeth was used as a main saw (96 teeth,<br />

kerf width 3,2 mm, rake angle 10º). As a scoring saws, two blades were tested. The following<br />

parameters were common for both <strong>of</strong> them: diameter 120 mm, kerf width 3,2-4,0 mm, 24<br />

teeth, nominal rake angle 5º. They differed only in the teeth shape (Figure1). The first saw<br />

had a cutting edge parallel to the rotation axis (conical flat “KO-F”), while the second<br />

beveled cutting edge (conical/alternate top bevel “KO-WS”). The first saw’s tooth geometry<br />

was modified during experiment while the second saw only for comparison was used.<br />

211


The cutting tests were conducted on laminated particleboard made by one <strong>of</strong> the leading<br />

Polish producers. All samples were cut to initial dimensions 900x65x10 mm.<br />

a) b)<br />

Figure 1. Scoring saws used in the experiment: a) conical flat “KO-F” b) conical/alternate top bevel “KO-WS”<br />

(Leuco)<br />

Since there is no standard describing similar tests, an original testing procedure<br />

consisting <strong>of</strong> three stages was elaborated. At the first stage tools were prepared and modified<br />

to gain the assumed geometry. That involved cleaning saws <strong>of</strong>f the deposits gathered in the<br />

previous run and then resharpening them on the sharpener set to the different rake angle. In<br />

the test the rake angle <strong>of</strong> each saw was modified by 5º in the range <strong>of</strong> -7º to +30º. This limits<br />

were caused by the abilities <strong>of</strong> sharpener OSW-5 used for the modifications. After<br />

resharpening, the geometry was checked with optical flatbed scanner and graphic application.<br />

The machining was conducted on bench saw equipped with scoring saw arbor (Jaroma<br />

DMMD-40/190). The rpms <strong>of</strong> both arbors were measured with tachometer and they were<br />

4065 rpm for main saw arbor and 8630 rpm for scoring saw. Because feed was manual it was<br />

difficult to keep it exactly at the same level. To assess the result <strong>of</strong> feed variability on the final<br />

effect <strong>of</strong> cutting quality, the cutting time <strong>of</strong> each sample was accurately measured.<br />

The feed rate varied from 7.81 to 9.11 m/min and in most trials was close to 8 m/min. That is<br />

why it was assumed to be 8 m/min. Thus, the feed per tooth <strong>of</strong> the scoring saw was equal<br />

to 0.04 mm.<br />

At the third stage the quality <strong>of</strong> machining <strong>of</strong> the edge processed by scoring saw was<br />

assessed. Optical method based on the digital analyze <strong>of</strong> photographs was chosen. For each<br />

sample 10 microscopic photographs (Nikon SMZ 1500 coupled with a digital camera) <strong>of</strong> the<br />

machined edge were taken. In aim to measure the maximal depth <strong>of</strong> the cavities<br />

(perpendicular to the edge), each picture was processed in computer GIMP application.<br />

It was assumed that the major impact on the visibility <strong>of</strong> defects has the depth <strong>of</strong> cavities.<br />

In figure 2 the way <strong>of</strong> the cavity depth measurement is explained.<br />

212


RESULTS AND DISCUSION<br />

Upper line Cavity<br />

depth<br />

Edge<br />

Figure 2. Scheme <strong>of</strong> the cavity depth measurement.<br />

The relationship between the average cavity width and the rake angle is presented in<br />

table 1 and figure 3.<br />

Table 1. Relationship between average cavity width and the rake angle. All results relate to saw with conical flat<br />

“KO-F” teeth saw except column 5* which corresponds to conical/alternate top bevel “KO-WS” teeth<br />

saw.<br />

Rake angle [ o ] -7 -5 0 5 5* 10 15 20 25 30<br />

Average cavity<br />

0,13<br />

depth [mm]<br />

0,10 0,04 0,03 0,03 0,09 0,12 0,30 0,46 0,49<br />

Standard<br />

deviation [mm]<br />

0,07 0,016 0,03 0,03 0,02 0,04 0,05 0,16 0,23 0,25<br />

To investigate the influence <strong>of</strong> the tooth geometry <strong>of</strong> saws applied in the experiments,<br />

two types <strong>of</strong> saws specified above were used. For this comparison the nominal rake angle<br />

<strong>of</strong>fered by the producer (5º) was chosen. The effects <strong>of</strong> machining with those two saws were<br />

compared. As one can see in table 1 there is no difference in the average cavity depth<br />

recorded for those two saws.<br />

213<br />

Scale<br />

Cavity in laminate


Average cavity depth [mm]<br />

0,50<br />

0,45<br />

0,40<br />

0,35<br />

0,30<br />

0,25<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

0,00<br />

-7 -5 0 5 10 15 20 25 30<br />

Rake angle [ o ]<br />

Figure 3. Average cavity width vs. rake angle (for conical flat “KO-F” teeth saw).<br />

As can be seen, the smallest cavities appeared when the machining was made with 5º<br />

rake angle saw, whereas the biggest ones were found for 30º rake angle saw.<br />

Additionally, some tendency in the relationship between the average cavity depth and the rake<br />

angle is visible. Namely, for the range <strong>of</strong> low rake angle values, i.e. -7º – +5º, there is<br />

decreasing trend <strong>of</strong> the average cavity depth, while in the upper range (+5º – +30º) the<br />

opposite tendency occurs.<br />

For the precise determination <strong>of</strong> the optimal rake angle (in these machining conditions),<br />

the curve fitting procedure performed in Excel gave the following equation<br />

(Figure 4):<br />

2<br />

D����0.<br />

0154�<br />

� � 0.<br />

1016�<br />

� � 0.<br />

2167<br />

where: D – average cavity depth, � – rake angle.<br />

The analysis <strong>of</strong> above-given expression gives the minimal value at rake angle about 3º.<br />

Average cavity depth [mm]<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

214<br />

y = 0,0154x 2 - 0,1016x + 0,2167<br />

R 2 = 0,9467<br />

-7 -5 0 5 10 15 20 25 30<br />

Rake angle [ o ]<br />

Figure 4. Relationship between average cavity width and the rake angle for the saw with conical flat<br />

“KO-F” teeth saw.


Basically, two main kinds <strong>of</strong> defects were observed in the experiment. The first type is a<br />

crack in the laminate layer. It is less visible because the material in the area <strong>of</strong> defect has the<br />

same color. The second type can be described as a removal <strong>of</strong> some area <strong>of</strong> laminate coating<br />

showing darker surface <strong>of</strong> particleboard. It is more visible and thus more severe from the<br />

technological point <strong>of</strong> view. For the rake angles in the range from -5º to +5º (and for �=15º)<br />

only the first type <strong>of</strong> defects was recorded. For the rest <strong>of</strong> the rake angle values, both types <strong>of</strong><br />

defects were observed.<br />

[%]<br />

100<br />

80<br />

60<br />

40<br />

20<br />

CONCLUSIONS<br />

0<br />

-7 -5 0 5 10 15 20 25 30<br />

cavities penetrating to particleboard surface layer<br />

cavities in laminate only<br />

Figure 4. Particular share <strong>of</strong> different forms <strong>of</strong> defects.<br />

215<br />

Rake angle [ o ]<br />

1. The best sawing quality at the feed per teeth close to 0.04 mm can be achieved by means <strong>of</strong><br />

the scoring saw with the rake angle about 3º.<br />

2. The removal <strong>of</strong> some area <strong>of</strong> laminate coating showing darker surface <strong>of</strong> particleboard is<br />

more visible than cavity in laminate layer, thus more severe from the technological point <strong>of</strong><br />

view. It seems that this form <strong>of</strong> defect does not occur if the scoring saw has a rake angle in<br />

the range from -5º to +5º.<br />

3. Independently on the tooth geometry <strong>of</strong> the investigated scoring saws for the rake angle 5º,<br />

and sharp tools, there was no difference in the average cavity depth observed.<br />

REFERENCES<br />

1. GAWRO�SKI J., PILARCZYK Z., 1998: Dobór narz�dzi skrawaj�cych w procesie<br />

pi�owania drewna i materia�ów drewnopochodnych oraz zalecenia ich eksploatacji.<br />

Przemys� Drzewny nr 7<br />

2. PA�UBICKI B., 2006: Badania nad obróbk� elementów meblowych p�yt laminowanych.<br />

Praca doktorska, Pozna�<br />

3. PORANKIEWICZ B., 2003: T�pienie si� ostrzy i jako�� przedmiotu obrabianego w<br />

skrawaniu p�yt wiórowych. Roczniki Akademii Rolniczej w Poznaniu, Rozprawy<br />

naukowe, Zeszyt 341, Pozna�


Streszczenie: Wp�yw k�ta natarcia pi�y podcinaj�cej na jako�� ci�cia. Tematem pracy by�o<br />

badanie wp�ywu k�ta natarcia pi�y podcinaj�cej na jako�� obrobionej kraw�dzi p�yty<br />

wiórowej laminowanej. Badania przeprowadzono na pilarce sto�owej wyposa�onej we<br />

wrzeciono pi�y podcinaj�cej. W trakcie eksperymentu zmieniano k�t natarcia w zakresie od -<br />

7º do +30º a nast�pnie badano jako�� obrobionej kraw�dzi. Najlepsze wyniki otrzymano dla<br />

k�tów natarcia w zakresie 0º do +5º. Ponadto zbadano wp�yw dwóch wariantów geometrii<br />

z�bów (przy k�cie natarcia 5º) na jako�� obróbki.<br />

Corresponding author:<br />

Zak�ad Obrabiarek i Obróbki Drewna<br />

Katedra Mechanicznej Obróbki Drewna<br />

Wydzia� Technologii Drewna <strong>SGGW</strong><br />

Ul. Nowoursynowska 159 02-787 Warszawa<br />

e-mail: tg62@wp.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 217-220<br />

(Ann. WULS - <strong>SGGW</strong>, For. and Wood Technol. 71, 2010)<br />

Comparative studies <strong>of</strong> varying characteristics <strong>of</strong> wood surfaces after<br />

exposure to natural climate and accelerated aging<br />

MAREK GRZE�KIEWICZ*, ANDRZEJ K�DZIERSKI*, IRENA SWACZYNA*, ANNA<br />

POLICI�SKA-SERWA**<br />

*Department <strong>of</strong> Construction and Technology <strong>of</strong> Final Wood Products, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> –<br />

<strong>SGGW</strong><br />

**Building Research Institute-ITB, <strong>Warsaw</strong><br />

Abstract: Comparative studies <strong>of</strong> varying characteristics <strong>of</strong> wood surfaces after exposure to natural climate and<br />

accelerated aging. Tests were conducted on predetermined elements <strong>of</strong> coated pinewood samples before and<br />

after accelerated aging and after 18, 54 and 78 months <strong>of</strong> exposure to natural climate. The samples were tested<br />

for changes in colour, development <strong>of</strong> blistering or flaking and changes in gloss. Development or increase in<br />

yellowish tinge was compared between those samples that were exposed to natural climate, and those that<br />

underwent accelerated aging. The gain in yellowish tinge was three times greater, after 18 months, than in those<br />

samples which underwent accelerated aging and 6 times greater after 78 months. The prolonged exposure to<br />

natural climate made the effect <strong>of</strong> the impregnation <strong>of</strong> the samples clear to see. It was seen that the gloss <strong>of</strong> the<br />

finish was lower after 18 months than originally, but then after 54 months the finish regained some <strong>of</strong> its<br />

glossiness which then again fell after 78 months. It was also observed that using an impregnate on the wood<br />

before finishing it had no clear effect on the change in gloss after either trial period.<br />

Key words: windows finishing, ageing <strong>of</strong> paint, colour changes, blistering, peeling, cracking, chalking, paint<br />

adhesion<br />

OBJECTIVES<br />

The purpose <strong>of</strong> this research is to analyze the influence <strong>of</strong> accelerated weathering<br />

(changes in temperature and relative air humidity) and the influence <strong>of</strong> long term weathering<br />

(18, 54 and 78 months) on paint coats. Paint coatings were tested for change in colour,<br />

blistering, flaking, cracking, chalking, peeling, mold resistance, adhesion, and gloss. An<br />

evaluation <strong>of</strong> the influence <strong>of</strong> pre-painting impregnation, or lack there<strong>of</strong>, was also conducted.<br />

METHODOLOGY<br />

The methods for testing the necessary qualities, was outlined in a previous publication<br />

(Kedzierski, 2008). This research was conducted in accordance with PN-EN 927-3:2002.<br />

Paints and varnishes – coating materials and coating systems for exterior wood – Part 3:<br />

Natural weathering tests.<br />

Accelerated aging (weathering) <strong>of</strong> paint coats was conducted according to standard<br />

ASTM D 3459-98 “Standard Test Method for Humid-Dry Cycling for Coatings on Wood and<br />

Wood Products”. Note however, that the time <strong>of</strong> the second stage was changed from 48 to 62<br />

hours.<br />

After the samples underwent accelerated aging in weather chamber they were tested<br />

for: blistering, flaking, gloss, and yellowing. Tests were performed in accordance with PN-EN<br />

927-3:2002. The standard PN-EN 927-3:2002 requires implementation <strong>of</strong> ISO/DIS 7724-<br />

1:1997 to ISO/DIS 7724-3:1997 in order to establish colour and colour changes <strong>of</strong> tested<br />

products. Above standards were not in existence at time <strong>of</strong> testing so samples were tested for<br />

yellowing <strong>of</strong> coatings in accordance to standard PN 72/C-81546. Yellowish tinge <strong>of</strong> paint coat<br />

was measured in the beginning (Wz1) before accelerated aging and after (Wz2), and on<br />

samples not exposed to accelerated aging, before and after the tests.<br />

�Wz = (Wz2 - Wz1) [%]<br />

217


The same tests <strong>of</strong> paint coats were carried out on the other group <strong>of</strong> wood samples<br />

before and after 18, 54 and 78 months <strong>of</strong> exposure to normal weathering.<br />

ANALYSIS<br />

The following is a series <strong>of</strong> tables which depict the information gathered throughout<br />

the experimentation process. Table 1 depicts the characteristics <strong>of</strong> the paint coats before aging<br />

and Table 2 depicts those characteristics after aging. Table 3 however, shows the<br />

characteristics <strong>of</strong> the paint coats after 18, 54 and 78 months <strong>of</strong> exposure to natural climate.<br />

Table 1: Characteristics <strong>of</strong> Coats before accelerated aging<br />

Tested<br />

Characteristic<br />

Aged Samples<br />

Variant<br />

A B C<br />

Comparative<br />

Samples<br />

Aged Samples<br />

Comparative<br />

Samples<br />

218<br />

Aged Samples<br />

Comparative<br />

Samples<br />

Applied Standard<br />

Gloss 23,73 25,41 22,60 23,89 23,83 24,77 PN-EN ISO<br />

2813:2001<br />

Yellowish Tinge<br />

Wz1 [%]<br />

4,89 5,12 4,51 4,58 4,99 4,92 PN-72/C-81546<br />

Table 2: Characteristics <strong>of</strong> Coats after accelerated aging<br />

Tested Characteristic<br />

Variant<br />

A B C<br />

Aged Samples<br />

Comparative<br />

Samples<br />

Aged Samples<br />

Comparative<br />

Samples<br />

Aged Samples<br />

Comparative<br />

Samples<br />

Applied Standard<br />

Gloss 20,31 23,21 20,85 22,43 21,98 23,05 PN-ISO 4628-5:<br />

1999<br />

Loss <strong>of</strong> Gloss 3,42 2,20 1,75 1,46 1,85 1,72 PN-EN 927-<br />

Yellowish Tinge<br />

Wz2 [%]<br />

Increase in Yellowish<br />

Tinge �Wz [%]<br />

5,73 5,25 5,37 4,81 5,84<br />

3:2002<br />

5,16 PN-72/C-81546<br />

0,84 0,13 0,86 0,23 0,85 0,24 PN-72/C-81546<br />

Table 3: Characteristics <strong>of</strong> coats exposed to 18, 54 and 78 months <strong>of</strong> natural climate<br />

Variant<br />

Measured<br />

Gloss<br />

according<br />

to<br />

Decrease<br />

in Gloss<br />

according<br />

to PN-EN<br />

Yellowish<br />

Tinge<br />

Wz [%]<br />

Increase in<br />

Yellowish<br />

Tinge �Wz<br />

[%]


Characteristcs before any<br />

exposure to natural climate<br />

Characteristcs after 18 months<br />

exposure to natural climate<br />

Characteristcs after 54 months<br />

exposure to natural climate<br />

Characteristics after 78 months<br />

exposure to natural climate<br />

According to PN-72/C-<br />

81546<br />

A 24,59 - 4,85 -<br />

B 23,68 - 4,69 -<br />

C 24,31 - 4,77 -<br />

A 22,29 2,30 7,41 2,56<br />

B 21,80 1,88 7,11 2,42<br />

C 22,35 1,96 7,12 2,35<br />

A 23,16 1,43 9,35 4,50<br />

B 22,11 1,57 8,89 4,20<br />

C 22,87 1,44 8,54 3,77<br />

A 23,02 1,57 9,88 5,03<br />

B 21,92 1,76 9,44 4,75<br />

C 22,62 1,69 9,14 4,37<br />

After analyzing the results one can conclude that the coatings <strong>of</strong> wood samples at the<br />

beginning <strong>of</strong> the tests and after accelerated aging, as well as the ones exposed to 18 and 54<br />

months <strong>of</strong> normal weathering, did not show any signs <strong>of</strong> flaking, mold grow or cracking.<br />

Blistering was 3 (S2). Only gloss and yellowish tinge were affected.<br />

Accelerated aging affected the change in increase <strong>of</strong> yellowish tinge �Wz. Increase in<br />

yellowish tinge was measured to be 0.84% to 0.86% and was similar for all the variants <strong>of</strong><br />

finishes. Increase in yellowish tinge in not aged coats was measured to be 0.13% to 0.24%,<br />

and as is clear, it shows greater deviation. Paint coats exposed to accelerated aging are<br />

showing three to six times higher increase in yellowish tinge as the ones which were not aged.<br />

The increase in yellowish tinge was similar for all the samples used in all variants <strong>of</strong> finishes<br />

under 18, 54 and 78 months <strong>of</strong> exposure to natural weathering tests. Increase in yellowish<br />

tinge after 18 months <strong>of</strong> exposure was measured to be 2.35% to 2.56% and was about 3 times<br />

higher than in accelerated aging samples. After 54 months <strong>of</strong> exposure to normal climate, the<br />

yellowing was 3.77% to 4.50%, about 5 times that <strong>of</strong> the samples that underwent the<br />

accelerated aging process, and about twice that <strong>of</strong> the yellowing at 18 months. After 78<br />

months the gain in yellowish tinge was six times that after six months, between 4.37% to<br />

5.03%. Already, after 18 months it was possible to see the result <strong>of</strong> the impregnates on the<br />

yellowing: those sample which were not impregnated yellowed the least, those impregnated<br />

for 10 minutes were about 3% higher in their change in yellowing, and those impregnated for<br />

two minutes showed a 9% higher gain in yellowing. The results after 54 and 78 months<br />

showed the same trend. After 78 months, those samples that were not impregnated showed the<br />

least yellowing, those that underwent 10 minutes <strong>of</strong> impregnating were 9% higher in<br />

yellowing, and those that underwent 2 minutes <strong>of</strong> impregnating were 15% higher in<br />

yellowing.<br />

After 18 months <strong>of</strong> exposure to natural climate, it was possible to see that the gloss <strong>of</strong><br />

the finish decreased by 7.7% to 14.4%. While, after 54 months, it was possible to see that the<br />

finishes regained 1.4% to 3.9% <strong>of</strong> their gloss, with respect to the gloss after 18 months. This<br />

could be due to the hardening <strong>of</strong> the coat <strong>of</strong> paint throughout the time between 18 and 54<br />

months <strong>of</strong> exposure. After 78 months the gloss fell back down to between 6.4% and 7.4%.<br />

The results showed no trends dependant on impregnation <strong>of</strong> the wood before painting.<br />

CONCLUSIONS<br />

1. Accelerated aging and 18, 54 and 78 months <strong>of</strong> exposure to natural climate causes<br />

increased yellowish tinge to paint coats. The gain in yellowish tinge after 18 months<br />

219


was three times that <strong>of</strong> accelerated aging, and the gain after 78 months was 6 times<br />

that <strong>of</strong> accelerated aging.<br />

2. The degree <strong>of</strong> yellowing was unaffected by the type <strong>of</strong> impregnate by only by the<br />

amount <strong>of</strong> time that the wood was exposed to it. After 78 months, those samples that<br />

were not impregnated showed the least yellowing, those that underwent 10 minutes <strong>of</strong><br />

impregnating were 9% higher in yellowing, and those that underwent 2 minutes <strong>of</strong><br />

impregnating were 15% higher in yellowing.<br />

3. Accelerated aging and 18 months <strong>of</strong> exposure to natural climate caused a 7.7% to<br />

14.4% loss in the gloss <strong>of</strong> the paint coat.<br />

4. After 54 months the samples regained about 1.4% to 3.3% gloss with respect to their<br />

level <strong>of</strong> gloss after 18 months <strong>of</strong> exposure to normal climate.<br />

5. Finally after 78 months, the gloss fell between 6.4% to 7.4% with regards to the gloss<br />

levels <strong>of</strong> the samples before the study began.<br />

6. It was found that the change in gloss is independent <strong>of</strong> the impregnates used or not<br />

used.<br />

REFERENCES:<br />

1. GRZE�KIEWICZ M., K�DZIERSKI A., SWACZYNA I., �WIETLICZNY M., 2006:<br />

Evaluation <strong>of</strong> degradation <strong>of</strong> paint coatings due to accelerated aging and long lasting<br />

exposure to natural climate. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> – <strong>SGGW</strong>.<br />

Forestry and Wood Technology No 58, 2006<br />

2. K�DZIERSKI A., 2008: A study <strong>of</strong> the change in characteristics <strong>of</strong> wood finishes due<br />

to accelerated aging and exposure to natural climate. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong><br />

<strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>. Forestry and Wood Technology No 63, 2008<br />

Streszczenie: Badania zmian w�a�ciwo�ci pow�ok malarskich pod wp�ywem przyspieszonego<br />

starzenia i d�ugotrwa�ego dzia�ania normalnego klimatu. Zbadano podstawowe w�a�ciwo�ci<br />

pow�ok malarskich na drewnie sosnowym przed i po przyspieszonym postarzaniu a tak�e po<br />

18 i 54 miesi�cznym oddzia�ywaniu normalnego klimatu. Okre�lone w�a�ciwo�ci pow�ok to:<br />

zmiana barwy, sp�cherzenie, z�uszczenie i po�ysk. W wyniku bada� stwierdzono, �e sztuczne<br />

starzenie jak i te� 18 i 54 miesi�czne oddzia�ywaniu normalnego klimatu powoduje wzrost<br />

za�ó�cenia pow�ok. Przyrost stopnia za�ó�cenia pow�ok po 18 miesi�cach oddzia�ywania<br />

normalnego klimatu na pow�oki by� oko�o trzykrotnie, a po 54 miesi�cach pi�ciokrotnie<br />

wi�kszy ni� wywo�any sztucznym starzeniem. Zaznaczy� si� wp�yw impregnowania drewna<br />

na przyrost stopnia za�ó�cenia pow�ok wywo�any oddzia�ywaniem normalnego klimatu.<br />

Sztuczne starzenie oraz 18 miesi�czne oddzia�ywanie normalnego klimatu spowodowa�o<br />

spadek po�ysku pow�ok natomiast po 54 miesi�cach zanotowano nieznaczny wzrost po�ysku<br />

pow�ok w stosunku do warto�ci jakie wykazywa�y po 18 miesi�cach. Nie stwierdzono<br />

wp�ywu impregnowania drewna przed malowaniem na utrat� po�ysku pow�ok.<br />

Corresponding authors:<br />

M. Grze�kiewicz, A. K�dzierski, I. Swaczyna<br />

Faculty <strong>of</strong> Wood Technology<br />

Department <strong>of</strong> Construction and Technology <strong>of</strong> Final Wood Products<br />

159 Nowoursynowska str., 02-776 <strong>Warsaw</strong>, Poland<br />

A. Polici�ska – Serwa<br />

Building Research Institute-ITB<br />

21 Ksawerów str., 02-656 <strong>Warsaw</strong>, Poland


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 221-224<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010<br />

Flammability <strong>of</strong> thermally modified wood originated from the industry –<br />

part I - mass losses.<br />

DR IN�. WOJCIECH �. GRZE�KOWIAK, DR IN�. MONIKA BARTKOWIAK<br />

Institute <strong>of</strong> Chemical Wood Technology, Faculty <strong>of</strong> Wood Technology,<br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Abstract: Flammability <strong>of</strong> thermally modified wood originated from the industry – part I - mass losses. The<br />

work allowed to state the basic combustible properties <strong>of</strong> thermal modified wood and steamed wood. Using<br />

Truax-Harrison device species like oak, ash, black locust and poplar were examined. Thermal modification <strong>of</strong><br />

wood was done in industrial way. During the measurements the mass loss <strong>of</strong> wood in a unit <strong>of</strong> time (part I) was<br />

stated and the temperatures in particular time intervals (part II) were estimated. Thermal modified wood had<br />

visibly shorter time <strong>of</strong> ignition and reached higher fumes temperatures.<br />

Keywords: wood modification, thermal modification, flammability, mass loss, temperature<br />

INTRODUCTION<br />

Methods <strong>of</strong> thermal modification <strong>of</strong> wood were available from years 20 <strong>of</strong> 20th century,<br />

between years 30 in Germany Stamm and Hansen began their research in connection with this<br />

issue. In years 40 are beginning studies in the USA. In the end <strong>of</strong> 20th century began studies<br />

in Finland, France and the Netherlands. Work most heavily evolved in Finland under the<br />

auspices <strong>of</strong> VTT. The main task <strong>of</strong> thermal modification is partial reduction <strong>of</strong> hydr<strong>of</strong>illed<br />

behavior <strong>of</strong> wood. This is possible by modifying the chemical structure <strong>of</strong> wood, as a result <strong>of</strong><br />

this process is to create environmentally friendly "thermo wood" not containing additional<br />

chemicals and processed by steam and temperature. As a result <strong>of</strong> chemical reactions is<br />

change <strong>of</strong> color <strong>of</strong> wood, the more intense the higher the applied temperature and a longer<br />

process. The color is not resistant to UV radiation. Therefore it is recommended to use the<br />

materials for finishing e.g.: colorless varnishes (Grze�kiewicz 2003).<br />

After modification, the wood has a characteristic flavor, which probably is caused by<br />

release <strong>of</strong> furfural, terpenes and acetic acid (Militz 2002; www.finnforest.com). Another<br />

feature <strong>of</strong> treated wood is humidity, which decreases by approximately 50% <strong>of</strong> not modified<br />

timber. Thanks to a reduction <strong>of</strong> moisture content, wood becomes more enduring, improves<br />

its resistance to biodegradation. Reduced shrinkage is the adsorption and decreases up to<br />

approximately 90%. Improves insulating properties and is also changed dimension stability.<br />

Change <strong>of</strong> hygroscopicity and improve the stability <strong>of</strong> dimension explains the fact that<br />

cellulosic micr<strong>of</strong>ibrils are surrounded by a solid and non elastic grid created by more lateral<br />

bindery in absorbent paper. Micr<strong>of</strong>ibrils <strong>of</strong> cellulose have limited capacity to expand, thereby<br />

reducing their vulnerability to expansion by penetrating water (Tjeerdsma, Boonstra, Pizzi,<br />

Tekeli, Militz 1998). In addition to reduction <strong>of</strong> humidity, the elimination <strong>of</strong> certain nutrients<br />

needed for development <strong>of</strong> fungi (Vernois 2000). Volume changes during operation depend<br />

(Huber 2006; Hill Calum, 2006):<br />

� maximum temperature and length <strong>of</strong> the process;<br />

� temperature gradient;<br />

� the atmosphere <strong>of</strong> the process;<br />

� pressure;<br />

� state <strong>of</strong> moisture in wood and wood species;<br />

221


� process and its properties;<br />

� sample dimensions;<br />

� application <strong>of</strong> catalysts.<br />

In the following, thermally modified wood have decreased mechanical strength.<br />

Unfavorable phenomenon is the increase <strong>of</strong> wood cleavage and decrease flexural strength <strong>of</strong><br />

10-20% and compressive strength. Wood becomes brittle. Therefore this type <strong>of</strong> wood should<br />

not be used in load-bearing structures nor should be in direct contact with the ground. The<br />

disadvantage is also slower absorption <strong>of</strong> glue and water-based varnish. Usually this time is<br />

from 3 to 6 times longer and increases with temperature modifications (Jab�o�ski 2005). A<br />

reduction <strong>of</strong> density is also indirectly related to the decrease in weight. Quantity <strong>of</strong> changes in<br />

physical and chemical wood construction requires knowledge <strong>of</strong> the chemical structure <strong>of</strong><br />

modified wood components. The main components <strong>of</strong> wood are degrading in varying degrees.<br />

Cellulose and lignin are degradable in higher temperatures than hemicelluloses. Also other<br />

components are readily degradable. During heating occur both changes in cellulose and<br />

hemicelluloses. High-temperature degrading connections <strong>of</strong> cellulose chains, is followed by<br />

decrease in the degree <strong>of</strong> polymerization and crystallization <strong>of</strong> cellulose. Heating air in the<br />

atmosphere contributes to the formation <strong>of</strong> carbonylic groups and carboxylic acid esters by<br />

oxidize groups hydroxyl ion cellulose. Heating for an extended period <strong>of</strong> time leads to an<br />

increase in the number <strong>of</strong> carbonylic groups at the expense <strong>of</strong> carboxylic acid esters, which<br />

deteriorating by yellowing <strong>of</strong> pulp material (Hill Calum, 2006). By heating an acetic acid, this<br />

in the process acts as a catalyst in hydrolysis <strong>of</strong> hemicelluloses soluble sugars. Degradation <strong>of</strong><br />

hemicelluloses occurs at a temperature <strong>of</strong> 200-260 o C and cellulose in 240-350 o C, washes<br />

during heating and occurring partial breakdown <strong>of</strong> phenyl propane frame. Binding ketone aryl<br />

are easier dispersion in syringillic parts than guaiacyl. Condensation products contain ketone<br />

and carboxylic group. Lignin has the highest thermal resistance. At high temperatures are<br />

followed decrease <strong>of</strong> quantity methyl groups and part <strong>of</strong> non condensed groups are changed<br />

for a diphenylmethane groups. This response has a significant effect on the characteristics <strong>of</strong><br />

lignin. Extracting substances containing terpenes, fats, waxes and phenols (Hill, Calum,<br />

2006).<br />

Wood is a material which is one <strong>of</strong> the downsides <strong>of</strong> its flammability properties. The<br />

radiant heat the wood increases the frequency <strong>of</strong> physical and chemical properties affecting<br />

the smoking process. In addition to knowledge flammability <strong>of</strong> wood have particular value to<br />

wood combustion rate during fire.<br />

MATERIALS<br />

Wood samples for flammability test have been provided by woodwork production plant. Tests<br />

were made on oak, ash, poplar and black locust thermally modified and pure wood. Wood<br />

species came from parquet elements, terrace boards and solid wood. Because <strong>of</strong> the smaller<br />

length elements <strong>of</strong> oak were made samples with a length <strong>of</strong> 420 mm in all other cases it was<br />

500 mm. To the burning test downloaded 10 samples <strong>of</strong> 10 x20 x500 mm with each variant <strong>of</strong><br />

modifications and control samples. An exception is an oak wood, in which both sample<br />

modified and control have length 420 mm.<br />

METHODS<br />

Tests were made on Truax and Harrison's apparatus with fire tube acc. to Metz. In tests used<br />

modified method carried out <strong>of</strong> reduced dimensions samples to ± 10 mm x 20 mm x 500mm<br />

and shrinking <strong>of</strong> flame sample for 3 minutes. Original method carried out on samples ± 10<br />

mm x 20 mm x 1000mm and time 4 minutes. During the measurements defined mass loss in<br />

222


time unit and temperature in specific time intervals (30 s). The results are average values.<br />

Truax -Harrison's method is a simple method and not enough accurate, but allows to define<br />

combustible properties <strong>of</strong> wood (Lutomski 2002). In order to obtain results with flammable<br />

properties <strong>of</strong> material required would be additional tests using e.g.: cone calorimeter.<br />

RESULTS<br />

During the test <strong>of</strong> control samples <strong>of</strong> oak reported mass losses ranging on average 76%.<br />

Modified oak wood slightly greater weight loss revealed <strong>of</strong> 77%, which is representing an<br />

increase <strong>of</strong> 1.3% mass loss compared with the control samples.<br />

In course <strong>of</strong> the examination <strong>of</strong> the control wood ash reported weight loss <strong>of</strong> 90%. Wood ash<br />

modified at 195 °C and 205 °C showed respectively 86 and 85% mass losses, change <strong>of</strong> 4,4%<br />

and 5.6% compared to the control samples.<br />

During tests on black locust wood control samples mass loss has been equal to 74%. For<br />

modified samples was to 82% mass loss. In the case <strong>of</strong> thermally modified wood increased<br />

mass loss <strong>of</strong> 10,8% in relation to the control samples. Steamed black locust wood shown mass<br />

loss <strong>of</strong> 84%. It is about 13.5% higher than in the case <strong>of</strong> control samples.<br />

For poplar wood, control samples showed constant mass equal to 83% and modified sample<br />

showed 90% weight loss. There was an increase in weight loss <strong>of</strong> 8.4% in relation to the<br />

control samples.<br />

Table 1.<br />

Mass losses <strong>of</strong> wood reported during test<br />

Wood Mass loss (%)<br />

Change in comparison with<br />

control sample (%)<br />

Control Oak 76 0<br />

thermo Oak 185�C 77 +1,3<br />

control Ash 90 0<br />

Thermo Ash195�C 86 -4,4<br />

thermo Ash 205�C 85 -5,6<br />

control black locust 74 0<br />

steamed black locust 105�C 84 +13,5<br />

thermo black locust 165�C 82 +10,8<br />

control poplar 83 0<br />

thermo poplar 165�C<br />

Legend: (+)increase (-)decrease<br />

90 +8,4<br />

Although thermally modified wood is less resistant to fire than not modified wood, these<br />

differences may be considered slight (Hill, Calum, 2006). These changes are probably<br />

associated with the release <strong>of</strong> volatile components <strong>of</strong> wood in the process <strong>of</strong> modification.<br />

Thermally modified wood is clearly shorter time to ignition and achieves higher exhaust<br />

temperatures. However, it can be concluded that thermally modified wood does not differ<br />

significantly from the normal wood for fire resistance (www.finnforest.com).<br />

REFERENCES<br />

1. GRZE�KIEWICZ M.(2003): „Kerto i Termo Wood” – nowe materia�y na rynku<br />

polskim”. Przemys� Drzewny, kwiecie� 2003: 14-16<br />

223


2. HILL A.S. CALUM (2006): „Wood Modification Chemical, Thermal and Other Process”.<br />

John Willey and Sons Ltd. West Sussex, England: 99-127<br />

3. HUBER H. (2006): „Thermally Modified Timber – The very dry end <strong>of</strong> drying”. EDG<br />

Drying Seminar 2006, Hamburg<br />

4. JAB�O�SKI D. (2005): „Thermowood – drewno modyfikowane termicznie”<br />

www.drewno.pl (19.03.2007)<br />

5. LUTOMSKI K. (2002): „Metody bada� chemicznych �rodków ochrony drewna i<br />

technologii ich stosowania”. Wydawnictwo Akademii Rolniczej w Poznaniu: 134-154<br />

6. MAYES D., OKSANEN O. (2002): „Thermo Wood Handbook”. Thermowood Finnforest,<br />

Stora<br />

7. MILITZ H. (2002): „Thermal treatment <strong>of</strong> wood: European Processes and their<br />

background. The International Resarch Group on Wood Preservation.<br />

8. Strona internetowa: www.finnforest.com (19.03.2007)<br />

9. TJEERDSMA B.F., BOONSTRA M., PIZZI A., TEKELY P., MILITZ H. (1998):<br />

„Characterisation <strong>of</strong> thermally modified wood: molecular reasons for wood performance<br />

improvement”. Holz als Roh – Werkst<strong>of</strong>f 56(3):149-153<br />

10. VERNOIS M. (2000): Heat treatment in France. Proceedings and Seminar, „Production<br />

and development <strong>of</strong> heat treated wood in Europe”. Nov. 2000 Helsinki. Stockholm. Oslo.<br />

Streszczenie: Palno�� drewna modyfikowanego termicznie pochodz�cego z przemys�u – cz���<br />

I - ubytki masy. Praca pozwoli�a na okre�lenie podstawowych w�a�ciwo�ci palnych drewna<br />

modyfikowanego termicznie oraz drewna parzonego. Za pomoc� aparatu Truaxa-Harrisona<br />

przebadano takie gatunki drewna jak: d�b, jesion, robinia i topola. Termiczn� modyfikacje<br />

drewna wykonano w sposób przemys�owy. W trakcie pomiarów okre�lono ubytek masy<br />

drewna w jednostce czasu ( cze�� I) oraz temperatury w poszczególnych przedzia�ach<br />

czasowych (cze�� II). Drewno modyfikowane termicznie mia�o wyra�nie krótszy czas<br />

zap�onu i osi�gn��o wy�sze temperatury spalin.<br />

Corresponding author:<br />

Wojciech �. Grze�kowiak<br />

Monika Bartkowiak<br />

Institute <strong>of</strong> Chemical Wood Technology<br />

Faculty <strong>of</strong> Wood Technology, Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

60-637 Poznan, 38/42 Wojska Polskiego Str.<br />

e-mail: wojblack@up.poznan.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 225-228<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010<br />

Flammability <strong>of</strong> thermally modified wood originated from the industry –<br />

part II -temperature distribution.<br />

DR IN�. WOJCIECH �. GRZE�KOWIAK, DR IN�. MONIKA BARTKOWIAK<br />

Instytut Chemicznej Technologii Drewna, Wydzia� Technologii Drewna, Uniwersytet Przyrodniczy w Poznaniu<br />

Abstract: Flammability <strong>of</strong> thermally modified wood originated from the industry – part II -temperature<br />

distribution. The work allowed to state the basic combustible properties <strong>of</strong> thermal modified wood and steamed<br />

wood. Using Truax-Harrison apparatus, species like oak, ash, robinia and poplar were examined. Thermal<br />

modification <strong>of</strong> wood was done in industrial way. During the measurements the mass loss <strong>of</strong> wood in a unit <strong>of</strong><br />

time (part I) was stated and the temperatures in particular time intervals (part II) were estimated. Thermal<br />

modified wood had visibly shorter time <strong>of</strong> ignition and reached higher fumes temperatures.<br />

Keywords: wood modification, thermal modification, flammability, mass loss, temperature<br />

INTRODUCTION<br />

In part I <strong>of</strong> the article are shown results <strong>of</strong> mass lose <strong>of</strong> thermally modified wood tested<br />

within the apparatus <strong>of</strong> Truax-Harrison 's. In this part II presented are the results for the<br />

distribution <strong>of</strong> exhaust temperature outlet pipe. Materials and methods were presented in part<br />

I <strong>of</strong> the article.<br />

RESULTS<br />

Maximum temperature <strong>of</strong> oak control samples was 393 ° C, and for thermal modified sample<br />

468 °c. Both temperature maxima were recorded in the third minute <strong>of</strong> measurement.<br />

Temperature <strong>of</strong> thermally modified samples was up about 19% higher compared with the<br />

control. Decrease temperature <strong>of</strong> control samples was more gentle, and in the case <strong>of</strong> oak,<br />

temperature decrease modified wood from its maximum was sharp (table 1, fig. 1).<br />

Maximum temperature <strong>of</strong> control ash samples was 543 ºc and was registered in 150 second<br />

measurement. Wood modified at 195 °C showed maximum temperature 489 °C recorded also<br />

in 150 second measurement, as control samples. Measured temperature is 10% lower in<br />

comparison with the control. Wood modified at 205 °C showed maximum temperature 545 ºc<br />

registered in 3 rd minute <strong>of</strong> measurement. The temperature was slightly because 0.4% higher<br />

than in the case <strong>of</strong> control samples (table 1, fig. 2).<br />

Maximum temperature <strong>of</strong> the black locust wood control samples was 476 °C and thermally<br />

modified samples 520 °C. occurred at 14,1%. By comparing samples <strong>of</strong> maximum<br />

temperature steamed wood 482 ° C noted the slight increase <strong>of</strong> 1.3% compared with the<br />

control. Like the previous sample modified thermal, after obtaining the maximum temperature<br />

showed a sharp decline in it. Course <strong>of</strong> temperature curves for controls and wood was similar<br />

to steamed (table 1, fig. 3).<br />

Maximum temperature <strong>of</strong> poplar control samples was 481 °c and thermally modified wood<br />

for 495 °c. In case <strong>of</strong> modified poplar there was an increase 2,9%. Maximum Of temperature<br />

drop has occurred rapidly (table 1, fig. 4).<br />

225


Table 1. Maximum exhaust temperature at the outlet tube obtained during testing<br />

Wood<br />

Max.<br />

temperatures<br />

(ºC)<br />

226<br />

Change in<br />

comparison with<br />

control sample (%)<br />

Control Oak 393 0 3<br />

thermo Oak 185�C 468 +19,1 3<br />

control Ash 543 0 2,5<br />

Thermo Ash195�C 489 -10 2,5<br />

thermo Ash 205�C 545 +0, 4 3<br />

control black locust 476 0 3<br />

steamed black locust<br />

105�C<br />

482 +1,3 3<br />

thermo black locust<br />

543 +14,1 3<br />

165�C<br />

control poplar 481 0 2<br />

thermo poplar 165�C 495 +2,9 2,5<br />

Legend: (+)increase (-)decrease<br />

temperature [C]<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0,51,01,52,02,53,03,54,04,55,05,56,06,5<br />

time [min]<br />

control oak<br />

thermo oak 185<br />

Time to max.<br />

temperature (min)<br />

Fig.1. Exhaust gas temperature at the outlet tube recorded during testing <strong>of</strong> oak wood


temperature [C]<br />

600,0<br />

500,0<br />

400,0<br />

300,0<br />

200,0<br />

100,0<br />

0,0<br />

0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5<br />

time [min]<br />

227<br />

control ash<br />

thermo ash 195<br />

thermo ash 205<br />

Fig.2. exhaust gas temperature at the outlet tube recorded during testing <strong>of</strong> ash wood<br />

temperature [C]<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5<br />

D<br />

control black locust<br />

steamed black locust 105<br />

thermo black locust 165<br />

time [min]<br />

Fig.3. exhaust gas temperature at the outlet tube recorded during testing <strong>of</strong> black locust wood


temperature [C]<br />

CONCLUSIONS<br />

1. Processes <strong>of</strong> thermal modification <strong>of</strong> wood increases its flammability. Thermal<br />

modification <strong>of</strong> wood oak, poplar and beans increases mass losses and exhaust<br />

gas temperature <strong>of</strong> wood treated by fire. Wood ash shows the reverse<br />

relationship.<br />

2. Steaming process <strong>of</strong> black locust wood increases its flammability. Increasing<br />

shortages are weight and exhaust gas temperature treated wood fire.<br />

3. Thermal modification processes significantly reduce wood humidity.<br />

Consequently, these amendments increase the burning <strong>of</strong> wood. An exception is<br />

here wood ash.<br />

4. Together with the increasing temperature modification process increases the<br />

temperature <strong>of</strong> the exhaust gas <strong>of</strong> samples wood ash.<br />

Streszczenie: Palno�� drewna modyfikowanego termicznie pochodz�cego z przemys�u – cz���<br />

II – rozk�ad temperatury. Praca pozwoli�a na okre�lenie podstawowych w�a�ciwo�ci palnych<br />

drewna modyfikowanego termicznie oraz drewna parzonego. Za pomoc� aparatu Truaxa-<br />

Harrisona przebadano takie gatunki drewna jak: d�b, jesion, robinia i topola. Termiczn�<br />

modyfikacje drewna wykonano w sposób przemys�owy. W trakcie pomiarów okre�lono<br />

ubytek masy drewna w jednostce czasu ( cze�� I) oraz temperatury w poszczególnych<br />

przedzia�ach czasowych (cze�� II). Drewno modyfikowane termicznie mia�o wyra�nie krótszy<br />

czas zap�onu i osi�gn��o wy�sze temperatury spalin.<br />

Corresponding authors:<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5<br />

Wojciech �. Grze�kowiak<br />

Monika Bartkowiak<br />

Institute <strong>of</strong> Chemical Wood Technology<br />

Faculty <strong>of</strong> Wood Technology, Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

60-637 Poznan, 38/42 Wojska Polskiego Str.<br />

e-mail: wojblack@up.poznan.pl<br />

control poplar<br />

thermo poplar 165<br />

time [min]<br />

Fig.4. exhaust gas temperature at the outlet tube recorded during testing <strong>of</strong> poplar wood


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 229-234<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010<br />

Fire safety <strong>of</strong> fireplaces – wood based products speed <strong>of</strong> charring<br />

DR IN�. WOJCIECH �. GRZE�KOWIAK 1 , ST. KPT. MGR IN�. TOMASZ WI�NIEWSKI<br />

2<br />

1) Institute <strong>of</strong> Chemical Wood Technology, Faculty <strong>of</strong> Wood Technology,<br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

2) Provincial Headquarters <strong>of</strong> State Fire Service in Poznan<br />

Abstract: Fire safety <strong>of</strong> fireplaces – wood based products speed <strong>of</strong> charring. This work was devoted to<br />

determine the thermal properties <strong>of</strong> wood derived products treated with thermal radiation. Research material<br />

were: particleboard, plywood, OSB and MDF measuring 200x200mm. Test method was to action on the heat<br />

generated by a electric heater with power 2,4kW, in distances <strong>of</strong> 10, 15, 20 cm from the heat source. Studies<br />

clearly define the relationship that increases as the distance from the source <strong>of</strong> heat determined thermal<br />

properties decreases. Diversification in the construction <strong>of</strong> structural materials cause that results obtained in the<br />

experience for each type <strong>of</strong> wood-derived product largely depend on the individual structure material and are<br />

characteristic for them<br />

Keywords: fireplace, charring speed, temperature, self-ignition,<br />

INTRODUCTION<br />

Closed fireplaces this is popular name <strong>of</strong> so-called input or fire place cartridge. Design <strong>of</strong><br />

fireplace inputs and cassettes is very similar. These are closed hearths, produced with<br />

materials resistant to high temperature, corrosion and well accumulated heat. Closed<br />

fireplaces give back heat partly through radiation by furnaces pane and hot cladding<br />

(Hawajski 2010). Convection phenomenon is also used, which consists on hover heated air<br />

upwards. During combustion cartridge or corps <strong>of</strong> input is heating. Cold air from the room<br />

flow in between the device corps and carcass and withdraw heat. Then already heated,<br />

escapes into the room by ventilating bars mounted in the chimney hood. The temperature<br />

inside the hood may be 300 o C. For security reasons within 40 cm from the ceiling, at the top<br />

<strong>of</strong> the grille outlet shall be mounted the baffle plate. Separated upper part is called the<br />

decompression chamber.<br />

The use <strong>of</strong> wood-derived products on building fireplaces is very frequent. Application within<br />

the chamber and chimney flue <strong>of</strong> combustible elements involves the danger <strong>of</strong> thermal<br />

decomposition those materials (fig. 6,7). It’s necessary to pay particular attention on tight<br />

installation <strong>of</strong> smoke drain <strong>of</strong>f and correct <strong>of</strong> lying on. This is achieved by suitable distance<br />

channels from other elements <strong>of</strong> the building and use <strong>of</strong> isolation and covers. A fireplace must<br />

be placed on the nonflammable ground at thickness at least 0,15 m, and the metal furnaces<br />

without feet on 0,3 m. Easily flammable floor in front <strong>of</strong> hearth doors should be secured by a<br />

non-combustible material with a width at least 0,3 m, up beyond the edges <strong>of</strong> the doors, at<br />

least after 0,3 m. Use elements <strong>of</strong> decoration and furnishing and <strong>of</strong> combustibles in a distance<br />

<strong>of</strong> less than 0,5 m from installations and the external surfaces may become to temperatures<br />

exceeding 100 o C, is prohibited. External surfaces back during exploitation exceed<br />

contribution 300 o C (Rozp. MSWiA 2006). Visible is therefore necessary to isolate the entire<br />

heating system and smoke drain from combustible components <strong>of</strong> the building. The cause <strong>of</strong><br />

many fires is to introduce in the space above the chimney input <strong>of</strong> no covered combustible<br />

materials. These are the most common wood structural elements <strong>of</strong> the walls and ceilings.<br />

Exhaust gases getting out by slots with a very high temperature can quickly launch a process<br />

<strong>of</strong> thermal decomposition. Occurring smoldering from material can be long at a lower<br />

229


temperature and be the origin <strong>of</strong> fire (Kotulek 2009). Fast pyrolysis <strong>of</strong> wood drawn at more<br />

than 280 o C is characterized by the association with a small mass <strong>of</strong> charcoal, which is app.<br />

20% <strong>of</strong> the initial wood mass. Produces large quantities <strong>of</strong> wood tar and highly flammable<br />

gases. Charring as a result <strong>of</strong> low temperature pyrolysis is highly reactive. Prolonged heating<br />

<strong>of</strong> wood, dried them, thus lowering the temperature at which the wood is catches fire.<br />

Protection <strong>of</strong> wood in the form <strong>of</strong> metal sheet or various kinds <strong>of</strong> plates, <strong>of</strong>ten with additional<br />

thermal insulation layer is not always sufficient to counteract the formation <strong>of</strong> charcoal.<br />

Isolation <strong>of</strong> one part, limits the amount <strong>of</strong> heat transmitted to material but on the other hand,<br />

helps heat accumulation. Even with a leak protection might smoldering occurs, which is<br />

already at a very low oxygen content. Sources <strong>of</strong> potential initiators for fireplaces are very<br />

dangerous and can appear in many places.<br />

METHODS<br />

Of experimental samples were measuring 200x200 mm ± 1 mm made <strong>of</strong> wood-derived<br />

products: - Particleboard (18 mm)<br />

- MDF (Medium Density Fiberboard) (8 mm)<br />

- OSB (Oriented Strand Board) (12 mm)<br />

-Alder tree plywood (10 mm)<br />

Samples before tests were conditioned in room <strong>of</strong> constant temperature t = 20 ± 2° C and<br />

relative humidity � = 60 ± 5%. Test sample were located in a chamber, in a frame with two<br />

screws for fastening <strong>of</strong> board element. In each <strong>of</strong> the samples on the surface not exposed to<br />

direct heat were bored aperture deep app. 3 mm, in which was affixed thermocouple enable to<br />

continuous recording <strong>of</strong> temperature. Source <strong>of</strong> radiant heat was electric heater with power<br />

2400 W, diameter <strong>of</strong> 170 mm, temp. 450 o C. Before tests chamber was warming up to a<br />

specific temperature, and then was cooling to make the tests in comparable conditions.<br />

Temperature was recorded every minute, after 20 minutes heater was turned <strong>of</strong>f, and<br />

temperature was reading until its reduction. Studies were conducted in distances from the<br />

source 10, 15, 20 cm. After cooling in the central part <strong>of</strong> the sample was carefully collected<br />

charring layer to specification <strong>of</strong> burning degree, which is the percentage ratio <strong>of</strong> depth to<br />

initial sample thickness. Was also determinate speed <strong>of</strong> charring, which is the thickness <strong>of</strong><br />

charring layer for the duration <strong>of</strong> the process (mm/min). Thickness <strong>of</strong> charring layer was<br />

measured by electronic vernier caliper to the nearest 0.01mm.<br />

RESULTS<br />

In a method that uses a permanent heat source weight loss, degree <strong>of</strong> burning and charring<br />

speed were defined. In this article demonstrates charring speed and temperature distribution<br />

on the surface <strong>of</strong> samples during the test. As the distance increase from the heat source<br />

carbonization speed decreases, what can be explained by the decrease in temperature on the<br />

surface directly exposed to heat, which is the most important factor affecting this variable.<br />

Fastest charring on distance <strong>of</strong> 10 cm reached for OSB and is it 0,7735 mm/min. Other<br />

materials reached respectively average speed: Particleboard 0,260 mm/min, MDF 0,457<br />

mm/min and plywood 0,2588 mm/min (Fig 1). Large value <strong>of</strong> charring speed for OSB is<br />

linked to a solid wood as broad chips <strong>of</strong> different dimensions. For distances 15 and 20 cm<br />

speed carbonization undergo significant deceleration and at a distance <strong>of</strong> 20 cm for boards are<br />

not noticeable, which can be translated by too low temperature on the surface <strong>of</strong> the sample<br />

during the study and the outer layer that boards have a density greater than internal layers,<br />

which are harder to charring.<br />

The maximum temperature on the surface samples depending on the distance from the source<br />

<strong>of</strong> radiation oscillated within 200-250 °C (fig. 2,3,4,5). The exception that is MDF in a<br />

distance 10 cm from the heater reached temperature 300 o C above. Lowest surface temperature<br />

230


<strong>of</strong> the samples showed particleboard with all types <strong>of</strong> distance from heater and exceeding<br />

200 o C only in distance 10 cm. It’s necessary to pay attention also to the phenomenon <strong>of</strong> selfignition<br />

affected by such factors as density and thickness <strong>of</strong> the material. Mazela and<br />

Synowiec (2003) concluded that with increased density and thickness, time to self-ignition<br />

shall be longer, what is confirmed in the performed tests. For sample boards, self-ignition<br />

phenomenon does not occur, what can explain at high density layers associated with a large<br />

number <strong>of</strong> binding and thickness <strong>of</strong> the boards. For plywood spontaneous self-ignition<br />

occurred in all variants, and probably is related to the layered construction <strong>of</strong> plywood, this<br />

material under the influence <strong>of</strong> high temperature is stratificated, causing overheating on<br />

thickness and faster achieving <strong>of</strong> self-ignition temperature.<br />

Fig. 1 Average charring speed <strong>of</strong> wood-derived products.<br />

Fig. 2. Distribution <strong>of</strong> average temperatures for MDF<br />

231


Fig.3. Distribution <strong>of</strong> average temperatures for OSB<br />

Fig.4. Distribution <strong>of</strong> average temperatures for plywood<br />

Fig.5. Distribution <strong>of</strong> average temperatures for particleboard<br />

232


Fig.6. ��������������������������������������������������������������(T. Wi�niewski)<br />

Fig. 7. Charring by pyrolysis .<strong>of</strong> fireplaces range made <strong>of</strong> boards with natural veneer (T. Wi�niewski)<br />

CONCLUSIONS<br />

1. In the case <strong>of</strong> wood based products, for example for the chimney covering its necessary<br />

to pay particular attention to conduct an appropriate distance between fireplace inputs<br />

and covering. On the elements <strong>of</strong> fireplace inputs are achieved very high temperatures,<br />

which significantly exceed the self-ignition temperature <strong>of</strong> wood derived products.<br />

2. Speed <strong>of</strong> charring decreases as the distance from the heat source increasing, the type <strong>of</strong><br />

material does not affect this value in the case <strong>of</strong> variable distance. In case <strong>of</strong> one<br />

distance it can be seen a clear impact on the type <strong>of</strong> material.<br />

REFERENCES<br />

1. HAWAJSKI W., 2010: Izolacje kominkowe.<br />

http//kominki.org/felieton/art4,izolacje-kominkowe-.html 18.08.2010.<br />

233


2. KOTULEK G. (2009): Zaczyna si� od iskry. Bezpiecze�stwo po�arowe przy<br />

stosowaniu<br />

3. wk�adów kominkowych. �wiat kominków nr1<br />

4. MAZELA B., SYNOWIEC G., (2003): Palno�� p�ytowych tworzyw<br />

drewnopochodnych stosowanych w budownictwie. Ochrona przed korozj�.<br />

Miesi�cznik Stowarzyszenia In�ynierów i Techników Przemys�u<br />

Chemicznego, pa�dziernik. Wydawnictwo Sigma.<br />

5. ROZPORZ�DZENIE MINISTRA SPRAW WEWN�TRZNYCH I<br />

ADMINISTRACJI z dnia 21 kwietnia 2006 roku w sprawie ochrony<br />

przeciwpo�arowej budynków, innych obiektów budowlanych i terenów (Dz.U.nr 80,<br />

poz.563)<br />

Streszczenie: Bezpiecze�stwo po�arowe kominków – szybko�� zw�glania materia�ów<br />

drewnopochodnych. Powy�sza praca po�wi�cona zosta�a okre�leniu w�a�ciwo�ci cieplnych<br />

materia�ów drewnopochodnych poddanych dzia�aniu promieniowania cieplnego. Materia�em<br />

badawczym by�y tworzywa drewnopochodne: sklejka, p�yta wiórowa, OSB oraz MDF o<br />

wymiarach 200x200mm. Metoda badania polega�a na dzia�aniu na formatk� strumieniem<br />

ciep�a wydzielanym przez grza�k� o mocy 2,4kW, w odleg�o�ciach 10, 15, 20 cm od �ród�a<br />

ciep�a. Przeprowadzone badania jednoznacznie okre�laj� zale�no��, �e wraz ze wzrostem<br />

odleg�o�ci od �ród�a ciep�a malej� warto�ci oznaczanych w�a�ciwo�ci cieplnych.<br />

Zró�nicowania w budowie strukturalnej materia�ów powoduj� i� wyniki uzyskane w<br />

do�wiadczeniu dla ka�dego rodzaju wyrobu drewnopochodnego w znacznej mierze zale�� od<br />

indywidualnej struktury materia�u i s� dla nich charakterystyczne<br />

Corresponding authors:<br />

Wojciech �. Grze�kowiak<br />

Institute <strong>of</strong> Chemical Wood Technology<br />

Faculty <strong>of</strong> Wood Technology, Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

60-637 Poznan, 38/42 Wojska Polskiego Str.<br />

e-mail: wojblack@up.poznan.pl<br />

st. kpt. mgr in�. Tomasz Wi�niewski<br />

Provincial Headquarters <strong>of</strong> State Fire Service in Poznan,<br />

61-767 Pozna�, ul. Masztalarska 3<br />

tel.: +48 61 8215291 ,fax: +48 61 8215500, MSWiA: tel.: 77 18291<br />

e-mail:twisniewski@poczta.psp.wlkp.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 235-239<br />

(Ann. WULS - <strong>SGGW</strong>, For. and Wood Technol.,71, 2010)<br />

Oil palm wood (Elaeis guineensis Jacq.) as an underutilized resource <strong>of</strong> raw<br />

materials<br />

P.S. H’NG a , L.Y. CHAI a , K.L. CHIN a , M. MAMI�SKI b,*<br />

a Faculty <strong>of</strong> Forestry, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia<br />

b Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

159 Nowoursynowska St. 02-776 <strong>Warsaw</strong>, Poland<br />

Abstract: Oil palm wood (Elaeis guineensis Jacq.) as an underutilized resource <strong>of</strong> raw materials.The nature <strong>of</strong><br />

oil palm widely planted in Malaysia, availability <strong>of</strong> its wood and derivatives, being a by-product, from palm oil<br />

production as well as possible approaches for utilization <strong>of</strong> that lignocellulosic renewable biomass were<br />

described.<br />

Keywords: biomass utilization, Elaeis guineensis, oil palm<br />

Malaysia is the biggest manufacturer <strong>of</strong> palm oil in the world. The annual production<br />

<strong>of</strong> crude palm oil exceeds 17 million tons and 4.1 million tons <strong>of</strong> palm kernel oil. As such,<br />

Malaysia has abundant oil palm wood plantations. Decades ago, fallen oil palm trunks, being<br />

a waste, used to be burned on the plantations. However, the approach was given up, due to<br />

“zero burning policies” and today huge quantity <strong>of</strong> trunks is a stock <strong>of</strong> biomass.<br />

Due to excellent productivity <strong>of</strong> Elaeis guineensis in the local habitat, oil palm is<br />

called “Golden Crop” and, in consequence, its planted area in Peninsular Malaysia exceeded 4<br />

million hectares in 2005 and it is estimated to exceed 4.5 million hectares in 2010.<br />

Fig. 1 Oil palm (A) and oil palm fruit bunch (B)<br />

235


Having in mind that 54 – 58 m 3 <strong>of</strong> palm wood can be produced from each hectare<br />

(Bakar et al. 2006), the amount <strong>of</strong> available oil palm wood is estimated on 10.8 – 11.6 million<br />

m 3 . Apart from the fallen trunk, other types <strong>of</strong> lignocellulosic biomass are: empty fruit<br />

bunches, oil palm shells and pruned palm fronds that are available in significant amounts<br />

(Table 1).<br />

Table 1. Oil palm biomass availability in Peninsular Malaysia<br />

Years<br />

2011-2013<br />

2014-2016<br />

2017-2020<br />

Source: Annonymous 2010<br />

Trunk<br />

(million tons/year)<br />

4.28<br />

3.58<br />

2.97<br />

236<br />

Pruned frond<br />

(million tons/year)<br />

6.80<br />

7.05<br />

7.14<br />

Empty fruit bunch<br />

(million tons/year)<br />

2.83<br />

2.91<br />

2.81<br />

Thus, it is a challenge for industry to utilize the resource in the best possible way and<br />

efficiently transform it into suitable and commercially viable materials.<br />

Although such abundance <strong>of</strong> wood raw material seems promising and tempting, its utilization<br />

is not easy and is still limited. The main reason for that is morphology and mechanical<br />

properties <strong>of</strong> the material. Since Elaeis guineensis Jacq. is monocotyledon in which no<br />

secondary thickening occurs and primary vascular bundles are embedded in parenchymatous<br />

tissue (Fig. 2).<br />

Fig. 2. Image <strong>of</strong> oil palm wood. A – tangential section, B – transversal section<br />

Killman and Choon (1985) report that since the species has no cambium layer, its<br />

growth is realized by expansion <strong>of</strong> parenchyma cells and fibers within the vascular bundles.<br />

Such a structure results in variable density throughout the trunk. In Fig. 3 wood density<br />

distribution was shown. As one can see densities vary from 140 to 600 kg/m 3 . Therefore,<br />

mechanical properties are also variable. Bakar et al. (2008) found that the modulus <strong>of</strong>


elasticity (MOE) and modulus <strong>of</strong> rupture (MOR) greatly decreased from the outer to center<br />

and slightly decreased from the bottom to the top <strong>of</strong> trunk.<br />

Fig. 3 Wood density distribution throughout oil palm trunk (kg/m 3 ). OZ – outer zone, CZ – central zone, IZ –<br />

inner zone (adapted from Erwinsyah 2008 and Chai 2010)<br />

As numerous studies demonstrated oil palm wood on drying was a subject <strong>of</strong><br />

shrinkage, checking, warping, twisting and collapse (Wong 1982, Lim and Gan 2005,<br />

Mokhtar et al. 2008). Moreover, the wood is generally weak, but when properly treated or<br />

engineered can possible be useful raw material. Thus, it is obvious that finding a proper<br />

methods and processing ways <strong>of</strong> utilization <strong>of</strong> oil palm wood is a challenge.<br />

So far, oil palm trunk had been recognized as resource <strong>of</strong> raw materials for MDF,<br />

blockboard, laminated veneer lumber (LVL) and particleboard, however, cannot be used as<br />

substitute for solid timber without treatments improving strength, durability, dimensional<br />

stability and machining characteristics. Attempts <strong>of</strong> palm wood application for plywood<br />

manufacturing were described by Abdul Khail et al. (2010).<br />

There are some approaches to modification explored and described in literature.<br />

Siburian et al. (2005) used natural rubber and polypropylene impregnation. Successful<br />

phenol-formaldehyde resin impregnation was also described by Bakar et al. (2008). Chai<br />

(2010) investigated three-layer engineered boards with oil palm wood impregnated with ureaformaldehyde<br />

resin as core <strong>of</strong> the sandwich-type composite.<br />

These investigations clearly show that impregnation can be an efficient way for<br />

improvement <strong>of</strong> mechanical properties <strong>of</strong> oil palm wood and can possibly give ways for new<br />

areas <strong>of</strong> its utilization.<br />

But not only impregnation modifications <strong>of</strong> palm wood are possible. Also fiber from<br />

empty fruit bunch and fronds can possible be utilized as fibrous raw material. Empty fruit<br />

237


unch fibers were examined as reinforcing material for composites (Rozman et al. 2004) and<br />

palm fronds were tested as raw material for pulping (Wanrosli et al. 2007).<br />

It must be stressed that chemical transformations are to be considered. Many groups report<br />

successful research on biotransformations <strong>of</strong> oil palm wood to sugars (e.g. xylose) (Rahman et<br />

al. 2006) or other building blocks useful in organic synthesis (e.g. ethanol, lactic acid)<br />

(Kosugi et al. 2010).<br />

And, last but not least, Elaeis guineensis and its derivatives is considered as<br />

lignocellulosic resource for energy generation. The papers by Sumathi et al. (2008) and<br />

Sumiani (2006) are focused on discussion <strong>of</strong> an opportunities <strong>of</strong> use <strong>of</strong> oil palm as renewable<br />

fuel being in accordance with sustainable development.<br />

In conlusion it may be stated that such abundant resource <strong>of</strong> biomass like oil palm and<br />

its derivatives is still a challenge that gives a lot <strong>of</strong> space for developing new ways and<br />

methods for its processing and new approaches are most welcome.<br />

REFERENCES<br />

1. ABDUL KHALIL H.P.S., NURUL FAZITA M.R., BHAT A.H., JAWAID M., NIK<br />

FUAD N.A. (2010) Development and material properties <strong>of</strong> new hybrid plywood from<br />

oil palm biomass. Materials & Design 31: 417-424<br />

2. ANONYMOUS (2010) www.asiabiomass.jp/bi<strong>of</strong>uelIDB/malaysia/index.htm<br />

3. BAKAR E.D., HAMAMI M.S. and H’NG P.S. (2008) Chapter 12: Anatomical<br />

characteristics and utilization <strong>of</strong> oil palm wood. In: The formation <strong>of</strong> wood in tropical<br />

forest trees: A challenge from the preservative <strong>of</strong> functional wood anatomy (pp.161-<br />

178) eds. M.S. Hamami and T. Nobuchi. Serdang: Universiti Putra Malaysia<br />

4. BAKAR E.S., FAUZI F., IMAN W. and ZAIDON A. (2006) Polygon sawing: an<br />

optimum sawing pattern for oil palm stems. Journal <strong>of</strong> Biological <strong>Sciences</strong> 64: 744-<br />

749<br />

5. CHAI L.Y. (2010) Master <strong>of</strong> science thesis: Development <strong>of</strong> three-layer engineered<br />

board from oil palm wood trunk. Universiti Putra Malaysia<br />

6. KILLMANN W. and CHOON L.S. (1985) Anatomy and properties <strong>of</strong> oil palm stem.<br />

Proceedings <strong>of</strong> the National Symposium <strong>of</strong> oil palm by-products for agro-based<br />

industries. Kuala Lumpur: Bulletin PORIM 11: 18-42<br />

7. KOSUGI A., TANAKA R., MAGARA K., MURATA Y., ARAI T., SULAIMAN O.,<br />

HASHIM R., ABDUL HAMID Z.A., AZRI YAHYA M.K., YUSOF M.N.M.,<br />

IBRAHIM W.A., MORI Y. (2010) Ethanol and lactic acid production using sap<br />

squeezed from old oil palm trunks felled for replanting. Journal <strong>of</strong> Bioscience and<br />

Bioengineering 110: 322-325<br />

LIM S.C. and GAN K.S. (2005) Characteristic and utilization <strong>of</strong> oil palm stem.<br />

Timber Technology Bulletin 35. Kuala Lumpur: Forest Research Institute Malaysia<br />

8. MOKHTAR A, HASSAN K, AZZIZ A.A. and WAHID M.B. (2008) Treatment <strong>of</strong> oil<br />

palm lumber. MPOB Information. Series 404. Kuala Lumpur: Malaysia Palm Oil<br />

Board.<br />

9. ERWINSYAH V. (2008) doctoral dissertation: Improvement <strong>of</strong> oil palm wood<br />

properties using bioresin. TUD, Dresden, Germany.<br />

10. RAHMAN S.H.A., CHOUDHURY J.P., AHMAD A.L. (2006) Production <strong>of</strong> xylose<br />

from oil palm empty fruit bunch fiber using sulfuric acid. Biochemical Engineering<br />

Journal 30: 97-103<br />

238


ROZMAN H. D., AHMADHILMI K. R., ABUBAKAR A. (2004) Polyurethane<br />

(PU)— oil palm empty fruit bunch (EFB) composites: the effect <strong>of</strong> EFBG<br />

reinforcement in mat form and isocyanate treatment on the mechanical properties.<br />

Polymer Testing 23: 559-565<br />

11. SIBURIAN R., SIANTURI H.L. and AHMAD F. (2005) Impregnasi kayu kalepa<br />

sawit dengan poliblen polipropilena / karet alam dan asam akrilat. Jurnal Natur<br />

Indonesia 8: 48-53<br />

12. SUMIANI Y. (2006) Renewable energy from oil palm – innovation on effective<br />

utilization <strong>of</strong> waste. Journal <strong>of</strong> Cleaner Production 14: 87-93<br />

13. SUMATHI S., CHAI S.P., MOHAMMED A.R. (2008) Utilization <strong>of</strong> oil palm as a<br />

source <strong>of</strong> renewable energy in Malaysia. Renewable and Sustainable Energy Reviews<br />

12: 2404-2421<br />

WANROSLI W.D., ZAINUDDIN Z., LAW K.N., ASRO R. (2007) Pulp from oil<br />

palm fronds by chemical processes. Industrial Crops and Products 25: 89-94<br />

14. WONG T.M. (1982) A dictionary <strong>of</strong> Malaysian Timbers. Revised by Lim S.C. and<br />

Chung R.C.K. Malayan Forest Records. No. 30. Kuala Lumpur: Forest Research<br />

Institute Malaysia.<br />

Abstrakt: Drewno palmy oleistej (Elaeis guineensis Jacq.) jako niewykorzystane �ród�o surowców. Opisana<br />

zosta�a palma oleista uprawiana na du�� skal� w Malezji, dost�pno�� jej drewna i innych produktów ubocznych<br />

powstaj�cych podczas produkcji oleju palmowego. Nakre�lono aktualne kierunki bada� nad wykorzystaniem<br />

owych zasobów biomasy.<br />

Corresponding authors:<br />

H’ng Paik San<br />

Faculty <strong>of</strong> Forestry,<br />

Universiti Putra Malaysia<br />

43400 UPM Serdang,<br />

Selangor, Malaysia<br />

e-mail: ngpaiksan@gmail.com<br />

Chai Lai Yee<br />

Faculty <strong>of</strong> Forestry,<br />

Universiti Putra Malaysia<br />

43400 UPM Serdang,<br />

Selangor, Malaysia<br />

Chin Kit Ling<br />

Faculty <strong>of</strong> Forestry,<br />

Universiti Putra Malaysia<br />

43400 UPM Serdang,<br />

Selangor, Malaysia<br />

Mariusz Mami�ski<br />

Faculty <strong>of</strong> Wood Technology<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> Science – <strong>SGGW</strong><br />

159 Nowoursynowska St.<br />

02-776 <strong>Warsaw</strong>, Poland<br />

e-mail: mariusz_maminski@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 240-244<br />

(Ann. WULS - <strong>SGGW</strong>, For. and Wood Technol.,71, 2010)<br />

Less popular application <strong>of</strong> trees and bushes growing in Poland and<br />

Slovakia<br />

MAREK JAB�O�SKI 1) , JÁN SEDLIA�IK 2) , EVA RUŽINSKÁ 3)<br />

1)<br />

Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

2)<br />

Faculty <strong>of</strong> Wood Technology, TU Zvolen,<br />

3)<br />

Department <strong>of</strong> Environmental Technology, Faculty <strong>of</strong> Environmental and Manufacturing Technology,<br />

Technical <strong>University</strong> in Zvolen, Slovakia<br />

Abstract: Less popular application <strong>of</strong> trees and bushes growing in Poland and Slovakia. Article presents less<br />

popular application <strong>of</strong> trees and bushes growing in Polan and Slovakia.<br />

Keywords: tree and wood application, bushes application.<br />

Wood, as a renewable material is irreplaceable in human and society life. It is present<br />

from the cradle to the grave, which we are not always aware <strong>of</strong>.<br />

Authors wanted to share knowledge about less popular application <strong>of</strong> trees and bushes<br />

growing in Poland and Slovakia, article is regarded as an supplement for widely used<br />

information <strong>of</strong> wood material applications.<br />

Spruce (Picea A. Dietr.) • Wood used in wheelwrighting and cooperage, making <strong>of</strong> shingles,<br />

wood wool, wood pulp and cellulose. Bark used in tannin production, used in tanning<br />

industry, as a paint, cosmetics and medicaments component. In gardening used for weed<br />

prevention. Branches are used for decorative plugs and buttons, younger sprouts for medical<br />

syrups. Stems are used for making <strong>of</strong> decorative products, equipment needed in mountain huts<br />

or cattle pasturage such as pails or steres.<br />

Fir (Abies Mil.) • Applications the same as spruce, but fir contains less resin. •Was used for<br />

building <strong>of</strong> grinding mills and water lines in the past.<br />

Pine (Pinus L.) • Production <strong>of</strong> windmill wings, pavement blocks, pumps, water lines and<br />

shingles. • Dry distillation, chip and root extraction, production <strong>of</strong> turpentine and wood rosin •<br />

wood resin used for production <strong>of</strong> ethereal oils and wood rosin, used for hot-melt glue<br />

production, soldering and violin bow treatment.<br />

Larch (Larix Mill.) • Material suitable for carpentry • Production <strong>of</strong> pumps, water lines and<br />

reservoirs, boats, barrels, vats, thicker bars in basketry. • Valuable and demanded shingles<br />

production material • Resin used for high quality turpentine production • Used for churches<br />

and other buildings in the past.<br />

Beech (Fagus L.) • Machining (production <strong>of</strong> buttons, tool, button and furniture handles,<br />

ladles and cutting boards, clips, hangers, riffle butts, clogs, brushes, shoe lasts). In coopery<br />

(barrels for oil, petroleum oil, fats, fish, in sculpting. • In dry wood distillation for production<br />

<strong>of</strong> alcohol, charcoal, wood vinegar or 2-furaldehyd. In hydrolysis for wood pulp and viscose<br />

cellulose production. • Thru beech wood tar distillation creosote oil is produced, used mainly<br />

in medicine and preparation <strong>of</strong> various disinfecting agents.<br />

240


Oak (Quercus L.) • Ship building, ladder rungs, window framing, sills, wine and spirits<br />

barrels, mining shores, household tools, wheels, beams, girders, railway cars, railway sleepers<br />

and pavement blocks • Bark is used for production <strong>of</strong> tanning agents, in pharmaceutical<br />

industry and in gardening for herbicides production. • Production <strong>of</strong> incense caskets.<br />

Ash (Fraxinus L.) • Wood most adequate for sporting goods (rails, climbing masts, skis,<br />

paddles, tennis rackets, hockey sticks) • It is used for hammer handles, railway car bodies,<br />

wheelwrighting and for furniture parts (straight and bent) • Leaves and young shoots serve as<br />

wild animal feed • Mountain ash is applicable for hand planes manufacturing.<br />

Great maple (Acer pseudoplatanus L.) • Production <strong>of</strong> smaller artistic and fancy goods,<br />

incense caskets, in the past airplane propellers and measuring equipment • Musical<br />

instruments box, upper board made usually <strong>of</strong> spruce, lower with resonant maple. From strong<br />

and hard hedge maple wind musical instruments are being made. • Wavy maple wood is one<br />

<strong>of</strong> the best materials for musical instruments (violin, guitars, double basses, mandolins) •<br />

Hedge maple wood is used for making <strong>of</strong> string musical instruments necks or bridges and<br />

wind musical instruments such as pipes or reeds • In Canada, maple juice is used for maple<br />

syrup production, used for sweets or sauces.<br />

Elm (Ulmus L.) • Due to its proprietary pattern used in the furniture industry, interior<br />

architecture (panels, flooring), wheelwrighting (hubs), sculpture (rifle stocks), railway cars,<br />

decorative veneers, garden furniture, household and sporting goods, thinner items in basketry.<br />

Hornbeam (Carpinus L.) • Production <strong>of</strong> water gear wheels, piano key mechanics, lasts,<br />

cigar molds, machinery and tooling (planes, handles, pulleys, dowels, bearings, wedges),<br />

farming utensils (beaters, hayrakes, harrows) • In turning for templates production, in<br />

carpentry, building and for smaller utensils manufacturing.<br />

Poplar (Populus L.) • In the furniture (drawer parts), flooring <strong>of</strong> railway cars for stone and<br />

coal, flooring <strong>of</strong> malt, tobacco and hops kilns, in turning (toys, barrel heads) • Making <strong>of</strong><br />

matches and matchboxes, clogs, troughs, cases, wood wool, cellulose and wood pulp • Flood<br />

embankment • Filling for blockboards and other bioboards.<br />

Birch (Betula L.) • Birch pulp is used in food industry (production <strong>of</strong> non-alcoholic<br />

beverages and juices – in Russia), in pharmaceutical and cosmetic industry, in combination<br />

with alcohol forms very food anti-dandruff treatment • Leaves and bark is used in pharmacy<br />

as diuretic, anti-rheumatic and sweat gaining. Bark is used in anti-dandruff specifics<br />

production, buds in making <strong>of</strong> skin diseases treating oils. • Brooms are fabricated out <strong>of</strong> birch<br />

shoots • Birch wood is suitable for sculpting (fancy goods and frames), i coopery barrels for<br />

storing <strong>of</strong> dry goods are made, multiple layer plywood, knife handles, torches and hockey<br />

sticks for children • In the past wood was used in basketry, in making <strong>of</strong> shuttles, tool handles,<br />

clogs, lasts, wooden nails, hoops, drawbars, wood out <strong>of</strong> root swelling was suitable for pipe<br />

bowls • Bark, outer bark and phloem are used for decorative flower pot wrappings.<br />

Acacia(Acacia Mill.) • Wood valuable in wheelwrighting (vineyard dibbles, drawbars,<br />

wheels) and for turning • Used as a building and mining wood, in making <strong>of</strong> poles, piles,<br />

fences, parquetry, sporting goods, handles, wooden nails, shoemaking nails and wine barrels •<br />

Used for forestation <strong>of</strong> barren land, because <strong>of</strong> the roots stabilizing soil • Perfect honey and<br />

pollen tree • Not used for veneer ant toy making • Dust made during machining has allergic<br />

influence and causes breathing problems • Used for stands for hunting trophies.<br />

Alder (Alnus mill.) • Veneer production, good for turning (fabric roller, wooden soles, clogs,<br />

toys, pipe bowls, pencils, cigar boxes), water constructions, charcoal, exotic wood imitations •<br />

Because <strong>of</strong> alder native environment, root system stabilizes soil, especially <strong>of</strong> riverbanks.<br />

241


Lime (Tilia) • Sculpting and turning • Production <strong>of</strong> matches, pencils, reinforcing elements in<br />

musical instruments, drawing boards, beehives, beekeeping utensils, clogs, wood wool,<br />

cellulose and charcoal (black powder production) • Bark used in shoemaking (insert between<br />

sole and liner) • Lime flower used in pharmacy for teas.<br />

Aspen (Populus tremula L. • Matches and matchboxes production, wood pulp, cellulose,<br />

wood wool, cellulose pulp, boxes, woven wrappings from wood strips.<br />

Willow (Salix L.) • Packages, shovel handles, boxes, barrel bottoms, clogs, boats, matches.<br />

Turned into wood pulp, cellulose mass, wood wool. Used mainly in the basketry and furniture<br />

production • Bark due to high contain <strong>of</strong> salicylates and tannins used for antipyretic<br />

medicines.<br />

Walnut (Juglans regia L.) • Walnut is popular in furniture production. It is also suitable for<br />

sculpting and turning • From walnut rifle stocks, picture frames, parquetry, artistic goods,<br />

smoking pipes and jewelry are produced. • Walnut leaves are used as a dye in cosmetics<br />

industry.<br />

Sweet cherry (Cerasus avium (L.) Moench.) • Production <strong>of</strong> veneers, parquetry, wall<br />

clock boxes, tables, fancy goods, wooden tea boxes. Used in wheelwrighting and for<br />

turning • Cherry wood is used as a mahogany imitation.<br />

Pear (Pyrus L.) • Production <strong>of</strong> veneers (wavy), bowls, mugs, buttons, umbrella handles,<br />

drawing utensils (meters, triangles, rulers, handles are made <strong>of</strong> digested pear wood), pianos,<br />

in the past also larger printing fonts.<br />

Chestnut (Castanea Mill.) • Production <strong>of</strong> bent furniture, parquetry, special barrels for spirits<br />

and wine, hoops, turned jewelry • Bark used for tannins production, used for leather<br />

preparation. Thicker chestnut shoots are used in basketry • Very good honey tree • Chestnut<br />

fruits are used in pharmaceutical industry, being base for medicaments applied wit blood<br />

circulation problems, varixes, inflammations and edemas • Fruits are also used in cosmetic<br />

industry for tanning creams and UV filters production.<br />

Plum (Prunus L.) • For turning and sculpting (barrel plugs, knife handles, wind musical<br />

instruments). In artistic carpentry for marquetry, toys and fancy goods • Stands for hunting<br />

trophies.<br />

Tree <strong>of</strong> Heaven (Ailanthus altissima (Mill.) Used in artistic and fancy goods carpentry.<br />

Plane (Platanus L.) • Wheelwrighting, turning, furniture and fancy goods carpentry.<br />

Yew (Taxus baccata) •In furniture and fancy goods carpentry, sculptures, turning (barrel<br />

plugs), wind musical instruments and measuring equipment • Stands for hunting trophies.<br />

European bird cherry (Padus racemosa) •For turning and wheelwrighting, for production<br />

<strong>of</strong> black gunpowder charcoal.<br />

Bladdernut (Staphylea pinnata) •For turning, smoking pipe bowls and fancy goods.<br />

Glossy buckthorn (Frangula alnus) •For production <strong>of</strong> black gunpowder charcoal.<br />

Checkertree (Sorbus torminalis) • In carpentry for sculpting and turning, production <strong>of</strong><br />

machinery parts, musical instruments, drawing boards, rulers and other drawing equipment.<br />

Cornelian cherry dogwood (Cornus mas) • For turning (tool handles). production <strong>of</strong><br />

machinery parts, fancy goods carpentry and basketry.<br />

Whitebeam (Sorbus aria) • For turning and sculpting, production <strong>of</strong> machinery parts,<br />

measuring equipment.<br />

242


Purple smoke bush (Cotinus coggygria) • In artistic and fancy goods carpentry, in dyeing.<br />

Elderberry and Red Elderberry (Sambucus nigra, Sambucus racemosa) • For turning and<br />

sculpting, mainly whistles and pipes.<br />

Common Juniper (Juniperus communis) • For turning (rods, pipe shanks), sculpting,<br />

artistic carpentry, flavor in spirits industry.<br />

Spindle (Euonymus europaeus, Euonymus verrucosus) • Smaller turned and sculpted<br />

carpentry, parts <strong>of</strong> musical instruments, shoemaking nails, toothpicks, box wood imitation.<br />

Common Box (Buxus sempervirens L.) • Artistic sculpting, turning, wind musical<br />

instruments, shuttles, woodcut and marquetry.<br />

Common broom (Cytisus) •Turning, wheelwrighting, fancy goods carpentry, machinery<br />

parts.<br />

European Barberry (Berberis vulgaris) •Turning, artistic carpentry (marquetry), in dying in<br />

the past.<br />

Common Hawthorn and Nothern European Hawthorn (Crataegus monogyna, Crataegus<br />

oxyacantha) • Wheelwrighting, machinery parts, rods.<br />

False Medlar (Sorbus chamaemespilus) •Wheelwrighting, sculpting, turning, coopery.<br />

Jasmine (Jasminum L.) • Basketry.<br />

Wayfaring Tree and Guelder Rose (Viburnum lantana, Viburnum opulus) • Pipe shanks<br />

turning.<br />

Bladdernut (Staphylea pinnata) • Pipe shanks and fancy goods.<br />

Common Hazel (Corylus avellana) • Tool handles, barrel hoops, boxes, woven products,<br />

beer makers chips, wood wool, charcoal for black gunpowder production.<br />

Lilac (Syringa vulgaris L.) • Turning and artistic carpentry.<br />

Sweet Mock-orange (Philadelphus coronarius L.) •Pipe stems, basketry.<br />

Common Broom (Sarothamnus scoparius Wimm.) • Basketry.<br />

Old Man’s Beard (Clematis vitalba L.) • Basketry.<br />

Buckthorn (Rhamnus saxatilis Jacq.) • Turning, artistic carpentry (especially the roots).<br />

Common Dogwood (Swida sanguinea) • Turning, machinery parts, basketry.<br />

Blackthotn (Prunus spinosa)•Turning and basketry.<br />

Perfoliate Honeysuckle, Fly Honeysuckle (Lonicera caprifolium L., Lonicera xylosteum<br />

L.) • Turning (pipe shanks), shoemaking nails, hayrake teeth.<br />

Wild Privet (Ligustrum vulgare L.) • In basketry for thicker rods.<br />

REFERENCES<br />

1. DUBOVSKÝ J., BABIAK M., �UNDERLÍK I., 2001: Textúra, štruktúra a úžitkové<br />

vlastnosti dreva. TU Zvolen, 106 s.<br />

2. GABRIEL S., GOYMER S., 2005: Košíká�ství. Computer Press, Brno, 176 s.<br />

3. http://www.drzewapolski.pl/Drzewa/atlas_drzew.html<br />

4. JÍR� P., 1960: D�evo, jeho vlastnosti a použití. SNTL Praha, 220 s.<br />

5. KOFRÁNEK V., 1952: Preh�ad našich driev. Štátne nakladate�stvo. Bratislava, 44 s.<br />

243


6. MAYER J., SCHWEGLER H-W., 2007: „Wielki atlas drzew i krzewów”.<br />

Wydawnictwo Delta WZ, s. 320.<br />

7. PAGAN J., RANDUŠKA D., 1987: Atlas drevín 1. Vydavate�stvo Obzor. Bratislava,<br />

360 s.<br />

8. PAGAN J., RANDUŠKA D., 1988: Atlas drevín 2. Vydavate�stvo Obzor. Bratislava,<br />

405 s.<br />

9. ŠÚRIKOVÁ A., 2003: Osobné údaje. TU Zvolen.<br />

Streszczenie: Mniej znane wykorzystanie drzew i krzewów wyst�puj�cych w Polsce i na<br />

S�owacji. W artykule przedstawiono mniej znane wykorzystanie gospodarcze drzew i<br />

krzewów rosn�cych w Polsce i na S�owacji.<br />

Corresponding authors:<br />

Marek Jab�o�ski,<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

02-776 <strong>Warsaw</strong>,<br />

159 Nowoursynowska st.,<br />

Poland<br />

e-mail: marek_jablonski@sggw.pl<br />

Ján Sedlia�ik,<br />

Technical <strong>University</strong>,<br />

T.G. Masaryka, 24,<br />

960 53 Zvolen,<br />

Slovakia,<br />

e-mail: janos@vsld.tuzvo.sk<br />

Eva Ružinská,<br />

Faculty <strong>of</strong> Environmental and Manufacturing Technology,<br />

Department <strong>of</strong> Environmental Technology<br />

Technical <strong>University</strong> in Zvolen, Slovakia<br />

e-mail: evaruzin@vsld.tuzvo.sk


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 245-249<br />

(Ann. WULS – <strong>SGGW</strong>, For. And Wood Technol. 71, 2010)<br />

Emission and power parameters <strong>of</strong> combined heat source on wood biomass<br />

combustion.<br />

JOZEF JANDA�KA, ANDREJ KAPJOR, ŠTEFAN PAPU�ÍK, RICHARD LENHARD<br />

<strong>University</strong> <strong>of</strong> Zilina, Univerzitna 8215/1, 010 26 Zilina, Slovakia<br />

Abstract: Emission and power parameters <strong>of</strong> combined heat source on wood biomass combustion. At present is<br />

effort to product combined small heat sources on combustion <strong>of</strong> biomass in different forms. These sources are<br />

characterized by the fact, that the boiler can combust not just the basic fuel, for example wood pellets, but also<br />

other fuels such as pieces <strong>of</strong> wood. In the article is analyzed heat source at its operation using wood pellets or<br />

piece <strong>of</strong> wood as fuel. The analysis is focused on the impact <strong>of</strong> this change from the view <strong>of</strong> the emissions<br />

production and the impact on the power parameters <strong>of</strong> the heat source.<br />

INTRODUCTION<br />

In present time is the effort to produce small combined heat sources on biomass or other solid<br />

fuels combustion. These sources are characterized by the fact that the boiler can combust just<br />

the basic fuel as wood pellets, but also other fuels such as coal, wood pieces and other types<br />

<strong>of</strong> biomass. Manufacturers adapt boiler by design or by a minimal adjustment. Some<br />

manufacturers have proposed the design <strong>of</strong> automatic boilers for wood pellets, which allow<br />

not only burn pellets, but also pieces <strong>of</strong> wood. Of course, in case, when we combust wood<br />

pieces <strong>of</strong> wood it turn <strong>of</strong>f the automatic regulation, we take out the retort from the combustion<br />

chamber, put the grate, use the manual control <strong>of</strong> the boiler and the outlet temperature is<br />

adjusted by the thermostat temperature control. Heat exchanger section remains the same.<br />

With this provision the automatic boiler with the lower fuel supply fireplace, figure 1,<br />

becomes to a boiler for wood pieces, figure 2.<br />

Fig. 1. Fireplace with lower fuel supply Fig. 2. Fireplace for pieces <strong>of</strong> wood<br />

Producers argue, that if the customer has no money to buy automatic boiler can only buy<br />

boiler without automatic burner and then it can buy or in case if the customer has available<br />

fuel in the form <strong>of</strong> pieces <strong>of</strong> wood so the customer can quite easily modify the boiler from the<br />

automatic boiler to boiler on pieces <strong>of</strong> wood combustion and vice versa. Change the type <strong>of</strong><br />

fuel for example from wood pellets to another type <strong>of</strong> solid fuel in the same design <strong>of</strong><br />

245


automatic boiler, respectively from wood pellets to wood pieces with a simple modification <strong>of</strong><br />

the boiler structure brings with it various problems, which is necessary to eliminate during the<br />

operation, respectively we have to know, that we go with quality <strong>of</strong> burning to the worse way<br />

<strong>of</strong> combustion, what it appear on power and emission parameters <strong>of</strong> heat source.<br />

The aim <strong>of</strong> this paper is to show precisely the problems, that are associated with these<br />

changes, which were verified by experimental measurements. Experimental measurements<br />

were made on the basis <strong>of</strong> STN EN 303-5 "Heating boilers for solid fuels with manual and<br />

automatical fuel supply, with a rated power to 300 kW. Based on that standard was at the<br />

automatic boilers realized measuring for six hours and at the boiler for burning <strong>of</strong> wood<br />

pieces three doses <strong>of</strong> fuel.<br />

EFFECT OF COMBUSTION WAY CHANGE ON POWER CHARACTERISTICS OF<br />

HEAT SOURCE<br />

In Fig. 3 respectively. Fig.4 are given the measured pr<strong>of</strong>iles <strong>of</strong> the outlet heating water<br />

temperature from the boiler (TV), inlet temperature to the boiler and heat output (Pkot) for<br />

boilers burning wood pellets respectively at simple change <strong>of</strong> the automatic heat source on<br />

wood pellets combustion to the boiler burning piece <strong>of</strong> wood in nominal operating mode. As<br />

pieces <strong>of</strong> wood were used dry spruce wood.<br />

Fig. 3. Measured parameters at automatic boiler on<br />

wood pellets combustion<br />

Fig. 5. Measured emission parameters at automatic<br />

boiler on wood pellets combustion<br />

246<br />

Fig. 4. Measured parameters at change <strong>of</strong> automatic<br />

boiler on wood pellets combustion to the boiler on<br />

wood pieces<br />

Fig. 6. Measured emission parameters at change <strong>of</strong><br />

automatic boiler on wood pellets combustion to the<br />

boiler on wood pieces


From the measured lapses is seen substantial change during the heat transfer medium<br />

outlet temperature <strong>of</strong> the boiler, as well as change during the heat power <strong>of</strong> the heat source,<br />

which is substantially reflected in the average efficiency <strong>of</strong> the heat source. The automatic<br />

boiler burning wood pellets achieves an average thermal power 25 kW at an average<br />

efficiency 90.1%. At combustion <strong>of</strong> wood pieces in the boiler, the average thermal power was<br />

21 kW at average combustion efficiency <strong>of</strong> 79.3%. Of course, the change <strong>of</strong> fuel type, as well<br />

as change the way the combustion is substantially reflected in the production <strong>of</strong> CO emission<br />

Fig.5 respectively. fig.6. The average CO emission <strong>of</strong> the automatic boiler burning wood<br />

pellets was 582 mg.m -3 and the burning piece <strong>of</strong> wood 6759 mg.m -3 . From these lapses and<br />

measured average values is seen substantial qualitative change in the operation <strong>of</strong> a heat<br />

source. At measuring in the minimum operation mode, these differences are even greater.<br />

EFFECT OF FUEL TYPE CHANGE ON EMISSION AND HEAT POWER<br />

CHARACTERISTICS OF HEAT SOURCE<br />

In many cases, manufacturers <strong>of</strong> automatic boilers for wood pellets combustion<br />

indicate that in addition to wood pellets in these boilers can burn a different type <strong>of</strong> solid fuel<br />

with the appropriate granularity. These small heat sources in most cases are produced with<br />

automatic regulation and regulation <strong>of</strong> fuel supply, respectively with start-stop control, i.e.<br />

setting the time <strong>of</strong> fuel supply by worm feeder and the time, when is feeder stopped.<br />

However, for each type <strong>of</strong> fuel is set up <strong>of</strong> these times for optimal combustion other, what is<br />

given by different energetic characteristics <strong>of</strong> fuel. It is also important to realize that by<br />

change <strong>of</strong> settings <strong>of</strong> this control on the lower operating performance (times below) may not<br />

automatically ensure the optimum setting <strong>of</strong> fuel combustion. In Fig. 7, Fig. 8 respectively.<br />

Fig. 9, Fig. 10 are listed courses <strong>of</strong> boiler performance parameters, respectively production <strong>of</strong><br />

emission in the measurement <strong>of</strong> nominal power for different fuels, but for optimized control<br />

settings fuel supply. The measured courses show that by the appropriate adjustment the<br />

combustion process can be optimized.<br />

Fig. 7.Measured power parameters on automatic boiler<br />

at wood pellets combustion<br />

CONCLUSION<br />

247<br />

Fig. 8. Measured power parameters on automatic<br />

boiler at black coal combustion<br />

The listed experimental measurements show that the universal use <strong>of</strong> the boiler<br />

construction, respectively its simple conversion for various types and forms <strong>of</strong> fuel<br />

combustion can cause suboptimal operation, what is reflected on its power and operating<br />

parameters, as well as emission production during the operation, and last but not least on the


efficiency <strong>of</strong> its operations. In case <strong>of</strong> automatic heat sources operation for different types <strong>of</strong><br />

fuel should give emphasis on optimal setting <strong>of</strong> boiler regulation and fuel supply.<br />

Fig. 9.Measured emission parameters on automatic<br />

boiler at wood pellets combustion<br />

This article was created within the project KEGA No. 3/7371/09.<br />

Literature<br />

Fig. 10. Measured emission parameters on automatic<br />

boiler at black coal combustion<br />

1. DZURENDA, L.: Spa�ovanie dreva a kôry, vydanie I.-2005, Vydavate�stvo TU vo<br />

Zvolene, ISBN 80-228-1555-1<br />

2. HORBAJ, P.; ROMAN, T.; TAUŠ, P.: Doterajšie skúsenosti zo spa�ovania drevnej<br />

štiepky a slamy za ú�elom vykurovania budov; Acta Mechanica Slovaca; Košice, 4-<br />

D/2007, ro�ník 11, str.417; ISSN 1335-2393<br />

3. HORBAJ, P.: Ekologické aspekty spa�ovania palív. Vydavate�stvo Neografia. Martin,<br />

2000. s. 71, ISBN 80-7099-405-3<br />

4. HORBAJ, P.: Porovnanie emisií NOx a CO vznikajúcich pri spa�ovaní pevného,<br />

kvapalného resp. plynného paliva. Vytáp�ní, v�trání, instalace. ro�. 5, �. 4 (1996), s.<br />

209 - 212, ISSN 1210–1389<br />

5. OCHODEK, T., NAJSER, J., HORÁK J.: Sply�ovanie biomasy. SLOVGAS, ro�. 18,<br />

2009, �.4, s.28-31, ISSN 1335-3853.<br />

6. HORÁK, J. Vytáp�ní tuhými palivy. In Sborník p�ísp�vk� seminá�e Zdroje energie<br />

pro vytáp�ní malých a st�edních objekt�, vol. 1, s. 10-14. ISBN 80-248-1009-3<br />

7. JANDA�KA, J.; MALCHO, M.; MIKULÍK, M.: Biomasa ako zdroj energie -<br />

Potenciál, druhy, bilancia a vlastnosti palív. Vydavate�stvo Juraj Štefun – GEORG,<br />

Žilina 2007; ISBN 978-80-969161-3-9<br />

8. JANDA�KA, J.; MALCHO, M.; MIKULÍK, M.: Technológie pre prípravu<br />

a energetické využitie biomasy. Vydavate�stvo Jozef Bulej�ík, Žilina 2007; ISBN<br />

978-80-969595-3-2<br />

9. JANDA�KA, J.; MALCHO, M: Biomasa ako zdroj energie. Vydavate�stvo Juraj<br />

Štefun GEORG, Žilina 2007; ISBN 978-80-969161-4-6<br />

10. JANDA�KA, J. - MALCHO, M. - FEDOROVÁ, I.: Enviromentálne aspekty<br />

malokapacitných zdrojov tepla na biopalivo. Topená�ství 8/2007, ISSN 1211-0906<br />

11. JANDA�KA, J.: Príklady správnej praxe pri vykurovaní. Vydavate�stvo Jozef<br />

Bulej�ík, Žilina 2009, ISBN 978-80-969595-8-7<br />

12. MIKULÍK,M.,JANDA�KA, J.: Postupy správneho vykurovania. Vydavate�stvo Jozef<br />

Bulej�ík, Žilina 2009, ISBN 978-80-969595-7-0<br />

248


13. HORÁK, J. Vytáp�ní tuhými palivy. In Sborník p�ísp�vk� seminá�e Zdroje energie<br />

pro vytáp�ní malých a st�edních objekt�, vol. 1, s. 10-14. ISBN 80-248-1009-3<br />

Streszczenie: Emisja i w�asno�ci paleniska do spalania drewna i biomasy. Ostatnio<br />

zauwa�alne s� wysi�ki zmierzaj�ce do skonstruowania paleniska do spalania biomasy w<br />

ró�nych postaciach. Paleniska takie mog� spala� nie tylko podstawowe paliwo takie jak<br />

pelety, ale tak�e inne materia�y takie jak drewno odpadowe. W artykule analizowano<br />

palenisko w trakcie pracy przy spalaniu peletów oraz drewna. Analiza skupia�a si� na emisji<br />

oraz w�asno�ciach energetycznych przy zmianie paliwa.


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 250-254<br />

(Ann. WULS – <strong>SGGW</strong>, For. And Wood Technol. 71, 2010)<br />

Project <strong>of</strong> micro co-generation unit on wood pellets combustion<br />

JOZEF JANDA�KA, JOZEF HUŽVÁR, ANDREJ KAPJOR<br />

<strong>University</strong> <strong>of</strong> Zilina, Univerzitna 8215/1, 010 26 Zilina, Slovakia<br />

Abstract: Project <strong>of</strong> micro co-generation unit on wood pellets combustion. In article is presented project <strong>of</strong><br />

micro co-generation unit on wood pellets combustion using Clausius-Rankin thermal circuit. Designed micro cogeneration<br />

unit utilize as heat source automatic boiler on wood pellets combustion. Thermal energy is<br />

transported into the steam piston engine by gravitational heat pipe using sodium as a working substance. Heat<br />

pipe is connected with a head <strong>of</strong> steam piston engine and creates a surface for evaporating <strong>of</strong> injected water.<br />

Generated steam by the action on the piston <strong>of</strong> steam engine make a torque on the shaft which is connected with<br />

generator <strong>of</strong> electricity.<br />

TARGET<br />

The main target is to design minimally one suitable Micro-cogenerational process incl.<br />

the conversion from chemical energy to electrical one using biomass and the low potential<br />

heat using analytic-experimental methods and determines the functional and material<br />

requirements <strong>of</strong> optimal conversion process based on the technical and economical<br />

optimization. Since the working device is an experimental equipment, there are several ways<br />

for its construction. This microcogeneration unit consists <strong>of</strong> the following parts: heat source,<br />

heat exchanger, transport device, evaporative surface <strong>of</strong> the steam engine, injection<br />

equipment, generator and control system (fig.1).<br />

INTRODUCTION<br />

Figure 1: The principal proposal <strong>of</strong> CHP unit<br />

This microcogeneration unit use thermal energy automatic burner for combustion <strong>of</strong><br />

wood pellets. Thermal energy is transferred into the steam piston engine by transport device<br />

250


either heat conduction or by gravitational heat pipe using sodium as a working substance.<br />

Transport device for heat transfer is connected with a head <strong>of</strong> steam engine and creates a<br />

surface for evaporating <strong>of</strong> injected water. Steam generated by the action <strong>of</strong> the piston engine<br />

produces torque on the shaft which is connected to a generator <strong>of</strong> electricity.<br />

The important part <strong>of</strong> the unit is the device for transporting heat between the<br />

workspace <strong>of</strong> double stroke steam engine and fireplace <strong>of</strong> boiler (fig. 2). This equipment is<br />

needed to ensure enough heat to vaporize the injected water to evaporative surface in the<br />

engine.<br />

Figure 2: Evaporative surface<br />

Construction <strong>of</strong> device for heat transport can be designed with the use <strong>of</strong> different<br />

basic modes <strong>of</strong> heat transfer. Thermal energy in the unit is transferred by conduction (fig. 3)<br />

or by gravitational heat pipe using sodium as a working substance (fig. 4). A lot <strong>of</strong> calculation<br />

have been used for modeling the heat transport in copper heat exchanger by using the<br />

commercial s<strong>of</strong>tware Fluent. In this work the standard k-� model and the RNG k-� model<br />

were used.<br />

Figure 3: Comparison <strong>of</strong> different kind <strong>of</strong> models<br />

Production <strong>of</strong> gravitational heat pipe with sodium for the microcogeneration unit<br />

requires sophisticated technology in comparison with the original heat pipe.<br />

251


Figure 4: Sodium heat pipe<br />

For proper function <strong>of</strong> the microcogeneration unit plays an important role the<br />

evaporating surface on the head <strong>of</strong> steam engine, which is either part <strong>of</strong> the heat pipe or in<br />

contact with it.<br />

The material <strong>of</strong> evaporating area is very important as well as forming. This area must<br />

provide the best and fastest heat transfer to the working substance, its warming and<br />

subsequent evaporation. For development <strong>of</strong> the microcogeneration unit were used ceramic<br />

and metallic materials (fig. 5).<br />

Figure 5: Evaporative testing <strong>of</strong> various materials<br />

The advantage <strong>of</strong> ceramic materials is their porosity, which increases the evaporating<br />

surface and have good accumulation capacity. Disadvantage is that the change <strong>of</strong> state inside<br />

the pores create the internal tension and its low thermal conductivity. Therefore, emphasis is<br />

placed on the strength <strong>of</strong> materials. In the case <strong>of</strong> metallic materials is great advantage the<br />

high thermal conductivity.<br />

252


To transform heat into electricity has been designed piston steam engine. The principle<br />

<strong>of</strong> transformation <strong>of</strong> thermal energy to electricity is based on injecting water through the<br />

nozzles to evaporative surface in the workspace <strong>of</strong> the engine. Using the heat supplied by heat<br />

transfer surface from the boiler, the injected water turns to steam. When water evaporates, its<br />

volume increases and expands. After the expansion steam leaves engine.<br />

Water injection was carried out through the nozzle, which were connected to a source<br />

<strong>of</strong> constant water pressure. Opening and closing <strong>of</strong> the nozzle was realized by the control<br />

system. When running a piston steam engine played a very important proposal from the<br />

control (fig. 6) system and control algorithm.<br />

Figure 6: Control system<br />

Different time injection interval were tested, what is directly in proportion to the amount<br />

<strong>of</strong> water.<br />

CONCLUSION<br />

The experimental work showed that the injection time has minor effect to the speed.<br />

The speed <strong>of</strong> the piston was gradually set up to the cycle, which was due to speed<br />

evaporation. The engine speed is in range from 90 to 130 revolutions per minute. During an<br />

experiment the injector nozzle becomes clogged and the engine used just with one cylinder,<br />

which was capable <strong>of</strong> movement. It follows that, in the form <strong>of</strong> evaporated water vapour has a<br />

large enough energy to grow and rotations <strong>of</strong> the crankshaft 360 °. The largest power<br />

expansion <strong>of</strong> engine was developed soon after the injection to copper evaporating surface. It<br />

follows that an increase in performance can be achieved if we reduce the amount <strong>of</strong> lift, which<br />

will use the most energy and the expansion <strong>of</strong> steam. The engine performance could be<br />

improved by increasing the diameter <strong>of</strong> the piston and thereby extend the area where steam<br />

generate pressure.<br />

Acknowledgements<br />

Proposal <strong>of</strong> solution <strong>of</strong> microcogenerational unit for biomass combustion is solved by<br />

APVV program in cooperation with GoldenSun Company.<br />

253


REFERENCES<br />

1. HEREC, I., ŽUPA, J.: Výskum solárnych a solárno-plynových termických<br />

energetických zdrojov. In: Electrical and Electronic Engeneering, Vol.2/2003, No.1,<br />

pp. 55-60, Zborník Elektrotechnickej fakulty Žilinskej univerzity, Žilina, 2003.<br />

2. KABÁT, E., HORÁK, M.: Prenos tepla a hmoty, STU Bratislava, 2000, ISBN 80-<br />

227-1409-7<br />

3. TOPPING, D.: The Power <strong>of</strong> Micro-CHP, Appliance Magazine, Canon<br />

Communications, LLC, Los Angeles, CA, March 2004.<br />

Steszczenie: Projekt urz�dzenia do produkcji skojarzonej ciep�a i energii elektrycznej<br />

zasilanego peletami drzewnymi. Artyku� prezentuje projekt urz�dzenia do produkcji<br />

skojarzonej opartego na obiegu Clausiusa-Rankina. Ciep�o jest transportowane do silnika<br />

t�okowego rur� grawitacyjn� przy u�ycu sodu jako substancji czynnej. Ciep�o powoduje<br />

odparowanie wody wstrzykni�tej do g�owicy silnika, który naprz�dza sprz��ony generator<br />

elektryczny.


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 255-260<br />

(Ann. WULS – <strong>SGGW</strong>, For. And Wood Technol. 71, 2010)<br />

The effect <strong>of</strong> additives for production <strong>of</strong> wood pellets<br />

JOZEF JANDA�KA, MICHAL HOLUB�ÍK, RADOVAN NOSEK, PETER PILÁT<br />

<strong>University</strong> <strong>of</strong> Zilina, Univerzitna 8215/1, 010 26 Zilina, Slovakia<br />

Abstract: The effect <strong>of</strong> additives for production <strong>of</strong> wood pellets. In this work are described the possibilities for<br />

improving efficiency <strong>of</strong> wood pellets production. The production <strong>of</strong> wood pellets and used pelleting machines<br />

was analyzed. The main task <strong>of</strong> this work is to introduce efficiency pelleting lines and cost reduction <strong>of</strong> the wood<br />

pellets production as fuel with a focus on the effects <strong>of</strong> adding additives. The results <strong>of</strong> experimental<br />

measurements and properties <strong>of</strong> wood pellets with different additives are presented in the final part.<br />

Keywords: Biomass, pellets, additives, pellet mill<br />

INTRODUCTION<br />

The aim <strong>of</strong> this work is to increase production efficiency and properties <strong>of</strong> wood pellets by<br />

addition <strong>of</strong> additives. This paper contains information about wood pellets properties, the<br />

process <strong>of</strong> manufacturing wood pellets, use <strong>of</strong> equipment with a focus on the principle <strong>of</strong> the<br />

individual species pellet mills. It is pointed out, what happens during the pelleting process and<br />

problems that may occur in this process. The main objective is to find out the influence <strong>of</strong><br />

additives to the efficiency <strong>of</strong> production and properties <strong>of</strong> wood pellets.<br />

Wood pellets are usually made only from wood. The quality <strong>of</strong> pellets strongly depends on<br />

the type <strong>of</strong> wood (coniferous, deciduous) or on the amount <strong>of</strong> used bark, which can be<br />

observed by their colours. The pellets with dark colour are usually regarded as inferior<br />

because they <strong>of</strong>ten contain high amount <strong>of</strong> bark.<br />

PRODUCTION OF WOOD PELLETS<br />

Wood pellets are made by pressing wood materials at high pressure and temperature, i.e.<br />

pelleting process. Production <strong>of</strong> wood pellets has following procedure:<br />

� Pretreatment <strong>of</strong> raw material (e.g. crushing, sieving, heavy particle separator)<br />

� drying<br />

� grinding<br />

� pelleting<br />

� cooling<br />

� storage and transport<br />

Pelleting is the most important operation, which takes place in the pellet mills. In this process<br />

is done the compaction <strong>of</strong> raw wood material itself. Wood is pushed through the holes and<br />

this increases the temperature in the facility for 90-110 °C. At this temperature will start to<br />

release binder contained in the wood (lignin), which holds pellet in due form.<br />

255


EXPERIMENTAL MEASUREMENTS<br />

Additives<br />

The fuels produced from biomass must meet certain energy, environmental and economic<br />

criteria. The forthcoming European Union standard would allow the content <strong>of</strong> additives up to<br />

5 percent.<br />

Manufacturers produce wood pellets without any additives according to established standards.<br />

Disuse <strong>of</strong> additives is mainly due to the fact that this area has not been adequately studied<br />

and it is therefore necessary to carry out such experiments. The effect <strong>of</strong> specific additives in<br />

the wood pellets before the experiment can only be assumed. Additives affect the pelleting<br />

process, the properties <strong>of</strong> pellets and combustion <strong>of</strong> wood pellets.<br />

The additives are added to a substance in order to improve some <strong>of</strong> its properties. Usually in<br />

practice happens that with the improving characteristics occurs new deficiencies. Because <strong>of</strong><br />

this is necessary to analyze effects <strong>of</strong> additives on pellets properties for each experiment.<br />

In the experiments were used following types <strong>of</strong> additives:<br />

Motor oil - is suitable for lubrication, sealing, protecting and sediment from corrosion, easy to<br />

mix with fuel, but especially given the high burn hydrogen production with the lowest<br />

emissions. It is expected that the use <strong>of</strong> oil will reduce friction when pushing material through<br />

the holes in the matrix, which would reduce the electric power <strong>of</strong> pellet mill and wear <strong>of</strong><br />

functional components. Reducing energy intensity pellet mill will increase the efficiency <strong>of</strong><br />

production <strong>of</strong> wood pellets.<br />

Vegetable oil - this oil should have the same effects as motor oil. Using vegetable oil is<br />

expected to increase the calorific value <strong>of</strong> pellets, as the low calorific value <strong>of</strong> the oil is higher<br />

(37.1 MJ.kg-1), compared to the value <strong>of</strong> clean wood pellets.<br />

Cornstarch- the use <strong>of</strong> this additives should increase resistance to abrasion <strong>of</strong> pellets, pellets<br />

should have a smoother surface, better hardness and thus the overall quality.<br />

Dolomite- the addition <strong>of</strong> dolomite to pelleting process should reduce the production <strong>of</strong> SO2<br />

during the combustion <strong>of</strong> wood pellets.<br />

Sodium carbonate- is used as a means <strong>of</strong> creating an alkaline environment.<br />

Urea- it is expected to reduce the low calorific value and an increase in density, marked<br />

change in moisture content and strength <strong>of</strong> wood pellets is not expected.<br />

In this work were produced wood pellets with varying amount <strong>of</strong> additives in comparison<br />

with pellets free <strong>of</strong> additive (see Table 1)<br />

Table 1. Amount <strong>of</strong> used additives for production <strong>of</strong> wood pellets<br />

Pellets with additives Amount <strong>of</strong> additives [%]<br />

Wood pellets - Reference sample Without additives<br />

Motor oil 0,5<br />

Vegetable oil 0,5<br />

Cornstarch 0,5<br />

Dolomite 0,5<br />

Sodium carbonate 0,5<br />

Urea 0,5<br />

256


Experimental production<br />

Each input material has different properties and characteristics (s<strong>of</strong>t wood, hard wood).<br />

Different moisture content, density and other characteristics affect manufacturing process in<br />

pelleting mill.<br />

When a material has proper properties to produce pellets, the manufacturing process would be<br />

as follows (Figure. 1):<br />

A. The material enters into the pellet mill and comes into contact with the pressing<br />

pulley.<br />

B. Part <strong>of</strong> the material is pushed through the holes in the matrix.<br />

C. The distance between the matrix and pressing pulley creates a layer <strong>of</strong> compressed<br />

material.<br />

D. Appropriate properties <strong>of</strong> material affect the formation <strong>of</strong> optimal heat and pressure<br />

formed by the friction material matrix in the hole.<br />

E. The pellet mill produces thick shiny pellets, which are ready for use after cooling<br />

down.<br />

Fig. 1 The pelleting process <strong>of</strong> input material in pellet mill<br />

PRODUCTION PROCEDURE<br />

Input material was dry wood shavings from pine wood, supplied by an external company. In<br />

tested material was found to be a low moisture content (8-9%). That moisture <strong>of</strong> input<br />

material is inadequate and needed to be increased to about 10-20%. Experiments revealed that<br />

the optimum moisture content <strong>of</strong> sawdust is 15-16%. To achieve optimum moisture content <strong>of</strong><br />

material was necessary to add the right amount <strong>of</strong> moisture. Therefore, for 1 kg <strong>of</strong> dry<br />

sawdust was added approximately 60 to 70 grams <strong>of</strong> water.<br />

Subsequently, the additive was mixed with sawdust, in order to achieve desired amount <strong>of</strong><br />

raw input material. Then the sawdust were mixed with additive to the nearest 0.1 g, in order<br />

to achieve desired amount <strong>of</strong> raw input material. Thus prepared a total <strong>of</strong> 7 samples with<br />

additive were further pressed to pellets in the pellet mill (see Figure 2).<br />

257


Fig. 2 Pellet mill<br />

ANALYSIS OF RESULTS<br />

Effect <strong>of</strong> additives on the input power <strong>of</strong> pellet mill<br />

The input power <strong>of</strong> engine is an important factor influencing the energy intensity pelletizing<br />

lines. The additives affect the friction generated in the matrix <strong>of</strong> pellet mill, thereby is<br />

changing the input power <strong>of</strong> engine. Effect <strong>of</strong> additives on the input power is shown in the<br />

table 2.<br />

Table 2. Effect <strong>of</strong> additives on the input power<br />

Sample Input power [W]<br />

Motor oil<br />

3792<br />

Vegetable oil<br />

3830<br />

Dolomite<br />

3830<br />

Cornstarch<br />

3868<br />

Reference sample<br />

3907<br />

Sodium carbonate<br />

4060<br />

Urea<br />

4098<br />

The lowest input power has been achieved in the case <strong>of</strong> pellets with motor oil. Significant<br />

increase <strong>of</strong> input power and friction in the matrix was found in the production <strong>of</strong> wood pellets<br />

with the addition <strong>of</strong> urea and sodium carbonate. Presumption <strong>of</strong> reducing input power by<br />

using cornstarch have not been found, this value is slightly increased.<br />

Effect <strong>of</strong> additives on the flow temperature<br />

Temperature at which ash melts or s<strong>of</strong>tens is very relevant for the operation <strong>of</strong> a combustion<br />

unit as this affects the required maintenance work. By designing the plant according to these<br />

melting temperatures <strong>of</strong> the fuel, slagging and fouling can be decreased. In the determination<br />

<strong>of</strong> ash melting were determined the flow temperatures (See Figure 3.).<br />

258


1600<br />

1550<br />

1500<br />

1450<br />

1400<br />

1350<br />

1300<br />

1250<br />

1200<br />

259<br />

Flow Temperature<br />

Fig. 3. Effect <strong>of</strong> additives on the flow temperature<br />

It is noticeable that in the case <strong>of</strong> wood pellets with dolomite was measured the highest flow<br />

temperature. The measured results indicate that pellets with sodium carbonate have higher<br />

flow temperature in comparison with reference sample. This can lead to reduction <strong>of</strong> slagging<br />

and fouling in the plant. In the rest <strong>of</strong> the samples was measured lower flow temperatures in<br />

comparison with reference sample.<br />

CONCLUSION<br />

More test and experiments are necessary in order to improve parameters <strong>of</strong> wood pellets. The<br />

measured results indicate that pellets with sodium carbonate have higher flow temperature in<br />

comparison with reference sample. This can lead to reduction <strong>of</strong> slagging and fouling in the<br />

plant. In the rest <strong>of</strong> the samples was measured lower flow temperatures in comparison with<br />

reference sample.<br />

Acknowledgment<br />

This work is supported by the financial assistance <strong>of</strong> the project APVV No. VMSP-P-0022-<br />

09. I acknowledge the financing with thanks.<br />

REFERENCES:<br />

1. DZURENDA L.: Combustion <strong>of</strong> wood and bark I.-2005, Editorship TU in Zvolen,<br />

Slovakia, ISBN 80-228-1555-1<br />

2. HORBAJ P.: Environmental aspects <strong>of</strong> fuel combustion. Editorship Neografia. Martin,<br />

Slovakia 2000. s. 71, ISBN 80-7099-405-3<br />

3. LINDAU J., RÖNNBÄCK M., SAMUELSSON J., THUNMAN, H. LECKNER, B.:<br />

An Estimation <strong>of</strong> the Spatial Resolution when Measuring Gas Concentrations Inside a<br />

Burning Fixed Bed’, Presented at the Nordic Seminar – Thermo Chemical Conversion<br />

<strong>of</strong> Bi<strong>of</strong>uels, Trondheim, Norway, (12 November) 2002.<br />

4. JANDACKA J.; MALCHO M.: Biomass as energy source. Editorship Juraj Stefun<br />

GEORG, Zilina 2007, Slovakia; ISBN 978-80-969161-4-6<br />

5. JANDACKA J.; MALCHO M., FEDOROVA I.: Environmental aspects <strong>of</strong> the small<br />

capacity <strong>of</strong> heat sources for bi<strong>of</strong>uel. Heating 8/2007, ISSN 1211-0906


6. SMITH B. and RANADE J.: Computational Fluid Dynamics for Designing Process<br />

Equipment: Expectations, Current Status, and Path Forward, Ind. Eng. Chem. Res.,<br />

vol.42, 1115-1128., 2003<br />

Streszczenie: Efekt dodatków na produkcj� peletów drzewnych. Praca prezentuje mo�liwo�ci<br />

zwi�kszenia wydajno�ci produkcji peletów drzewnych. Analizowano sam� produkcj� oraz<br />

peleciarki. G�ównym celem by�o zwi�kszenie wydajno�ci linii peletowania, zmniejszenie<br />

kosztów peletów jako paliwa ze szczególn� uwag� po�wi�con� dodatkom. Rezultaty<br />

eksperymentu oraz w�asno�ci peletów z ró�nymi dodatkami zaprezentowano w cz��ci<br />

ko�cowej.


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 261-264<br />

(Ann. WULS – <strong>SGGW</strong>, For. And Wood Technol. 71, 2010)<br />

The influence <strong>of</strong> boiler regulation to emission parameters and heat power<br />

JOZEF JANDA�KA, PETER PILÁT, RADOVAN NOSEK, ALEXANDER �AJA<br />

<strong>University</strong> <strong>of</strong> Zilina, Univerzitna 8215/1, 010 26 Zilina, Slovakia<br />

Abstract: The influence <strong>of</strong> boiler regulation to emission parameters and heat power. The aim <strong>of</strong> this paper is to<br />

present how the regulation <strong>of</strong> boiler can affect the heat power and formation <strong>of</strong> emissions. The investigated<br />

boiler is designed for operation in domestic heating system. It has heat power equal to 25 kW. The comparison is<br />

done based on the experimental measurements.<br />

INTRODUCTION<br />

The combustion process in a gasification boiler for lump wood can be divided into two<br />

phases, namely the gasification and subsequent combustion <strong>of</strong> flammable gases. Gasification<br />

<strong>of</strong> wood is in excess <strong>of</strong> combustion air, less than one (� < 1). This ensures the primary<br />

combustion air. The burning <strong>of</strong> volatiles take place in the combustion chamber at the<br />

presence <strong>of</strong> secondary air.<br />

Supply <strong>of</strong> combustion air in gasifying boilers is realized either by the natural chimney draft<br />

or by fans. Application <strong>of</strong> fans has the advantage that the combustion air, and thus the fuel<br />

combustion process is not dependent on the external weather conditions, which largely affect<br />

the chimney draft.<br />

A regulation <strong>of</strong> boiler heat power or combustion conditions can be done in gasifying boilers.<br />

The type <strong>of</strong> regulation affect the thermo parameters as well as formation <strong>of</strong> emissions, which<br />

has significant impact on the annual level <strong>of</strong> utilization <strong>of</strong> the boiler.<br />

The aim <strong>of</strong> this paper is to present the influence <strong>of</strong> regulation to heat power and emissions<br />

parameters in the gasifying boiler. This comparison is based on experimental measurements.<br />

TYPES OF REGULATION IN THE BOILER<br />

The regulation <strong>of</strong> heat power and combustion process in gasifying boilers cannot be done by<br />

supply <strong>of</strong> fuel. Therefore, in these types <strong>of</strong> boilers can be used the regulation by an amount <strong>of</strong><br />

primary and secondary combustion air. Presence <strong>of</strong> primary air affects the release <strong>of</strong> gas<br />

components in fuel. Secondary combustion air is affecting the combustible gases. In the<br />

practice there are the following types <strong>of</strong> boiler control with manually operated:<br />

� Boilers with mechanical control <strong>of</strong> the combustion air amount. In these types <strong>of</strong><br />

boilers is used natural chimney draft to provide a combustion air , the fan is not available.<br />

Generated power depends on the position <strong>of</strong> baffle which control flow <strong>of</strong> combustion air and<br />

it is regulated by the thermoregulatory valve.<br />

� Boilers with thermal regulation <strong>of</strong> heat power. These boilers are equipped with either<br />

a draft fan or overpressure fan which supplies the necessary amount <strong>of</strong> air to the required heat<br />

power. Regulation <strong>of</strong> heat power is carried out by adjustment <strong>of</strong> fan or baffle. The combustion<br />

air supply is controlled by baffle. The amount <strong>of</strong> combustion air is adjusted based on the<br />

difference between the desirable and the actual temperature <strong>of</strong> the thermal medium.<br />

� Boiler with thermal regulation <strong>of</strong> heat power and combustion process. This type <strong>of</strong><br />

boiler also has overpressure fan speed control or baffle. In addition, the quality control <strong>of</strong><br />

combustion can be done in this boiler. In the simplest case, the boiler can be realized on the<br />

basis <strong>of</strong> flue gas temperature. The amount <strong>of</strong> primary and secondary temperature is set by the<br />

261


flue gas temperature. Another option is to set proper value <strong>of</strong> air excess ratio which affect the<br />

combustion process.<br />

EXPERIMENTAL MEASUREMENTS<br />

The experimental measurements were carried out in the boiler with two different mode <strong>of</strong><br />

regulation. In the first case was used continuous regulation <strong>of</strong> the heat without combustion<br />

control (without lambda probe). In the second case was also used continuous regulation <strong>of</strong><br />

heat with applied control <strong>of</strong> combustion process by measuring air excess using a lambda<br />

probe. Regulation was made under continuous control speed <strong>of</strong> overpressure fan.<br />

Measurements were performed at the nominal and minimal heat power. In all experiments<br />

was used beech wood as a fuel.<br />

In the figures 1 and 3 are presented pr<strong>of</strong>iles <strong>of</strong> heat power (Pkot), inlet (tR) and outlet (tV)<br />

temperature in the boiler measured without lambda probe. The pr<strong>of</strong>iles <strong>of</strong> measured CO and<br />

NOx concentrations are shown in figures 2 and 4. Second series <strong>of</strong> measurements were<br />

carried out with lambda probe and results are indicated in figures 5 - 8.<br />

Fig.1. Measured pr<strong>of</strong>iles <strong>of</strong> heat power controlled<br />

without lambda probe - nominal power<br />

Fig.3. Measured pr<strong>of</strong>iles <strong>of</strong> heat power controlled<br />

without lambda probe - minimal power<br />

262<br />

Fig.2. Measured pr<strong>of</strong>iles <strong>of</strong> emissions controlled<br />

without lambda probe - nominal power<br />

Fig.4. Measured pr<strong>of</strong>iles <strong>of</strong> emissions controlled<br />

without lambda probe - minimal power


Fig.5. Measured pr<strong>of</strong>iles <strong>of</strong> heat power controlled<br />

with lambda probe - nominal power<br />

Fig.7. Measured pr<strong>of</strong>iles <strong>of</strong> heat power controlled<br />

with lambda probe - minimal power<br />

263<br />

Fig.6. Measured pr<strong>of</strong>iles <strong>of</strong> emissions controlled with<br />

lambda probe - nominal power<br />

Fig.8. Measured pr<strong>of</strong>iles <strong>of</strong> emissions controlled with<br />

lambda probe - minimal power<br />

ANALYSIS OF RESULTS<br />

In the table 1. are given average values <strong>of</strong> heat power, efficiency and emissions. From the<br />

experimental results and calculated data can be observed the effect <strong>of</strong> regulation to measured<br />

parameters in the boiler. The results show that using regulation <strong>of</strong> heat power and regulation<br />

<strong>of</strong> combustion process by lambda probe can be achieved much better efficiency <strong>of</strong> the boiler<br />

as well as the average emission parameters <strong>of</strong> CO and NOx. The measurements indicates that<br />

the best efficiency <strong>of</strong> the boiler is in nominal heating mode.<br />

Table 1.<br />

Measurement Type <strong>of</strong> regulation<br />

Heat power<br />

<strong>of</strong> boiler<br />

[kW]<br />

Averaged values<br />

Efficiency<br />

<strong>of</strong> boiler<br />

[kW]<br />

CO<br />

[mg.m -3 ]<br />

NOx<br />

[mg.m -3 ]<br />

without lambda probe 22,2 83,6 495 160<br />

Nominal power with lambda probe 26 88,5 246 220<br />

without lambda probe 11,3 75,2 1770 230<br />

Minimal power with lambda probe 11,2 83,5 726 188


CONCLUSION<br />

The type <strong>of</strong> regulation has significant impact technical and emissions parameters <strong>of</strong> the<br />

gasification boiler. These factors affect the operating costs <strong>of</strong> boiler as well as the<br />

environment.<br />

This work was supported by the financial assistance <strong>of</strong> project KEGA 3/7371/09<br />

REFERENCES<br />

1. DZURENDA L.: Combustion <strong>of</strong> wood and bark I.-2005, Editorship TU in Zvolen,<br />

Slovakia, ISBN 80-228-1555-1<br />

2. HORBAJ P.: Environmental aspects <strong>of</strong> fuel combustion. Editorship Neografia. Martin,<br />

Slovakia 2000. s. 71, ISBN 80-7099-405-3<br />

3. JANDACKA J.; MALCHO M.; MIKULIK M.: Biomass as a source <strong>of</strong> energy -<br />

potential, species balance and fuel properties. Editorship Juraj Stefun – GEORG,<br />

Zilina 2007, Slovakia ; ISBN 978-80-969161-3-9<br />

4. JANDACKA J.; MALCHO M.; MIKULIK M.: Technology for the preparation and<br />

use <strong>of</strong> biomass energy. Editorship Juzef Bulejcik, Zilina 2007, Slovakia; ISBN 978-<br />

80-969595-3-2<br />

5. JANDACKA J.; MALCHO M.: Biomass as energy source. Editorship Juraj Stefun<br />

GEORG, Zilina 2007, Slovakia; ISBN 978-80-969161-4-6<br />

6. JANDACKA J.; MALCHO M., FEDOROVA I.: Environmental aspects <strong>of</strong> the small<br />

capacity <strong>of</strong> heat sources for bi<strong>of</strong>uel. Heating 8/2007, ISSN 1211-0906<br />

7. JANDACKA J.: Examples <strong>of</strong> good practice for heating. Editorship Jozef Bulejcik,<br />

Zilina 2009, Slovakia, ISBN 978-80-969595-8-7<br />

Streszczenie: Wp�yw regulacji kot�a na emisj� i moc grzejn�. Celem pracy jest prezentacja<br />

wp�ywu regulacji kot�a na jego moc i typ emisji. Badany kocio� jest przeznaczony do pracy w<br />

domowej instalacji grzejnej. Jego moc to 25kW. Porównanie regulacji bazuje na wynikach<br />

eksperymentu.


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 265-269<br />

(Ann. WULS – <strong>SGGW</strong>, For. And Wood Technol. 71, 2010)<br />

The Influence <strong>of</strong> fuel supply to emissions parameters and heat power <strong>of</strong><br />

domestic boiler<br />

JOZEF JANDA�KA, RADOVAN NOSEK, ŠTEFAN PAPU�ÍK, JANA CHABADOVÁ<br />

<strong>University</strong> <strong>of</strong> Zilina, Univerzitna 8215/1, 010 26 Zilina, Slovakia<br />

Abstract: The Influence <strong>of</strong> fuel supply to emissions parameters and heat power <strong>of</strong> domestic boiler. The paper<br />

presents an analysis <strong>of</strong> the impact <strong>of</strong> fuel feed to power and emissions parameters <strong>of</strong> the automatic domestic<br />

boiler for combustion <strong>of</strong> wood pellets. For the analysis has been proposed an experimental methodology <strong>of</strong><br />

boiler measuring. The investigated boiler is designed for operation in domestic heating system. It has heat power<br />

equal to 18 kW. Concentrations <strong>of</strong> flue gas species were registered at the exit the boiler and based on the<br />

measured parameters was carried out evaluation <strong>of</strong> the impact <strong>of</strong> the fuel feed to heat power and production <strong>of</strong><br />

emissions.<br />

Keywords: boiler, biomass, emissions, measurements<br />

INTRODUCTION<br />

One <strong>of</strong> the main intention <strong>of</strong> European Union is to exploit the potential <strong>of</strong> energy<br />

savings and renewable sources. In Slovakia the most promising renewable energy source<br />

seems to be biomass . Its use has multiple importance. The most common form <strong>of</strong> biomass is<br />

wood, either in pieces or as wood waste. One form <strong>of</strong> cost effective use <strong>of</strong> wood waste is the<br />

production <strong>of</strong> wood pellets.<br />

Pellets are produced from waste materials such as (sawdust, wood shavings) and allow the<br />

automation <strong>of</strong> combustion processes. They have low ash content ( 0,5 to 1% ), low water<br />

content ( 10% ) and high calorific value ( to 18 MJ/kg ). One <strong>of</strong> the pellets advantage is CO2<br />

neutral production, which means that their combustion arises only so much CO2, how much<br />

plants can consume during the growth <strong>of</strong> the atmosphere during photosynthesis. Combustion<br />

<strong>of</strong> pellets is the ecological heating, since they does not contain chemical artificial binding<br />

materials, sulphur, halogens or heavy metals.<br />

Manufacturers <strong>of</strong> small heat sources state the extent <strong>of</strong> heat power and emission<br />

parameters <strong>of</strong> the boiler, which in addition to other factors also affect the way the fuel supply.<br />

The aim <strong>of</strong> this work is to identify the impact <strong>of</strong> fuel metering to heat power and emission<br />

parameters <strong>of</strong> the test boiler.<br />

EXPERIMENTAL SETUP<br />

There are several good reasons which suggest that it is very worthwhile to perform small<br />

laboratory-scale experiments. First, in most cases, the instrumentation needed to characterize<br />

the transient behaviour in a turbulent flame cannot be used in industrial scale furnaces, but<br />

can be used in a domestic boiler. Second, a wider range <strong>of</strong> test conditions and better control <strong>of</strong><br />

the operating conditions in the boiler are possible for a facility that is under the full control <strong>of</strong><br />

the group conducting the test program.<br />

The scheme <strong>of</strong> experimental setup is shown in Figure 1. The experimental device consists<br />

<strong>of</strong> heating and cooling circuit. Circuit are separated by a heat exchanger. The measurements<br />

are to set to the desired temperature difference �T = 12-25 ° C, which is set by the control<br />

valve. Whole process is automatically controlled by a control system <strong>of</strong> the experimental<br />

265


device. Heat output was measured using the direct method i.e. by measuring the flow <strong>of</strong><br />

heating water through the flow meter and by measuring the temperature difference t1 and t2.<br />

This temperature difference is measured by temperature sensors. The concentration <strong>of</strong> flue gas<br />

were measured in the sampling section <strong>of</strong> the chimney by gas analyzer.<br />

Fig.1. The measurement setup<br />

Experimental measurements has been performed in domestic boilers for combustion <strong>of</strong><br />

wood pellets with heat power equal to 18 kW. Measurements in the boiler has been done for<br />

90 minutes. The boiler is designed for heating houses and industrial buildings. Optimal<br />

conditions and power control are designed electronically controlled fuel supply and air supply<br />

with electronically controlled fan, depending on the user-defined parameters required by the<br />

heating and hot water. The boiler consists <strong>of</strong> a combustion chamber, heat exchanger and flue<br />

gas flow area to the top <strong>of</strong> the tank and a separate container <strong>of</strong> pellets. Picture <strong>of</strong> the boiler is<br />

in Figure 2.<br />

MEASUREMENT OF THE BOILER<br />

During the measurements were recorded the following parameters: heat power, the<br />

concentration <strong>of</strong> emissions in the flue gas and temperature <strong>of</strong> the flue gas. Measurements<br />

were carried out for different operating settings <strong>of</strong> the boiler, while the standing period was<br />

set to 25 seconds and the feeding period was variable. The feeding periods were set to the<br />

following values: 9s., 12s., 15s., 18s. The first measurement was made at the nominal power<br />

<strong>of</strong> boiler (setting 18/25). The ambient air temperature in the test room was between 15°C and<br />

25°C. The water temperature at the inlet and outlet <strong>of</strong> the boiler were measured during test.<br />

The concentrations <strong>of</strong> flue gas species were registered by analyser as well as particles matters.<br />

Boiler heat power was measured based on the amount <strong>of</strong> useful heat transferred to cooling<br />

medium (water). To calculate the heat <strong>of</strong> the boiler has been used the following parameters:<br />

volumetric flow rate <strong>of</strong> water flowing boiler inlet and outlet temperature <strong>of</strong> heating water.<br />

266


Fig.2. The experimental boiler<br />

RESULTS OF EXPERIMENTAL MEASUREMENTS<br />

The aim was to analyze the effect <strong>of</strong> fuel feed to the heat power and emission parameters<br />

<strong>of</strong> the experimental boiler. In the Figures 3-5 are presented measured heat powers and the<br />

concentrations <strong>of</strong> emissions at the outlet <strong>of</strong> the boiler.<br />

The highest heat power was achieved at the operating mode 18/25 seconds<br />

(feeding/standing). The progressive decreasing <strong>of</strong> the feeding period resulted in reduction <strong>of</strong><br />

the boiler power.<br />

Heat Power - Q [kW]<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

17,93<br />

15,758<br />

12,754<br />

10,096<br />

18 15 12 9<br />

Feeding period[s]<br />

Fig.3. Comparison <strong>of</strong> heat power for different operating<br />

modes<br />

267<br />

Fig. 4. Comparison <strong>of</strong> measured CO for different<br />

operating modes<br />

Pr<strong>of</strong>iles <strong>of</strong> carbon monoxide formation at various operating modes <strong>of</strong> the boiler are shown<br />

in Figure 4. The results indicate that the lowest concentration <strong>of</strong> CO was measured at the<br />

operating mode 12/25 seconds. The highest emissions <strong>of</strong> CO can be observed for the setting<br />

18/25.<br />

CO [mg/m3]<br />

1000<br />

0<br />

0 10 20 30 40<br />

Time[min]<br />

18 s. 15 s. 12 s. 9s.


CO2 [mg/m3]<br />

13<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

0 10 20 30 40<br />

Time[min]<br />

18 s. 15 s. 12 s. 9s.<br />

Fig.5. Comparison <strong>of</strong> measured CO for different operating modes<br />

Figure.5 presents pr<strong>of</strong>iles <strong>of</strong> CO2, depending on the duration <strong>of</strong> feeding time <strong>of</strong> the fuel.<br />

The highest concentrations <strong>of</strong> carbon dioxide were recorded for setting 18/25 and 15/25. The<br />

averaged concentrations <strong>of</strong> CO2 fluctuated around 11%. Formation <strong>of</strong> CO2 depends on the<br />

amount <strong>of</strong> oxygen and it affects the quality <strong>of</strong> the combustion process.<br />

CONCLUSION<br />

The experimental measurements for various operating modes were carried out in the<br />

boiler. The highest heat power <strong>of</strong> boiler was achieved at the operating mode 18/25, according<br />

to above presented results. The measured data indicate that decreasing <strong>of</strong> feeding period has<br />

significant effect to heat power <strong>of</strong> boiler. The same trends can be observed also in the case <strong>of</strong><br />

CO2 formation. The gradual reduction <strong>of</strong> the feeding period resulted in a decrease <strong>of</strong> CO<br />

except the operating mode 9/25. This could be caused by high amount <strong>of</strong> oxygen during the<br />

combustion process.<br />

More measurements are necessary in order to investigate the effect <strong>of</strong> variable standing<br />

period to heat power and emissions formation.<br />

Acknowledgment<br />

This work is supported by the financial assistance <strong>of</strong> the project KEGA No. 3/7371/09. I<br />

acknowledge the financing with thanks.<br />

REFERENCES:<br />

1. KOŠTIAL, I., SPIŠÁK, J., MIKULA, J. at. all Inovácie procesov termického<br />

zhodnocovania biomasy, 17. medzinárodná konferencia Vykurovanie 2009, 2-6.<br />

2. marec 2009, Tatranské Matliare, ISBN 978-80-89216-27-7, pp. 191-195.<br />

3. KOŠTIAL I., SPIŠÁK J., MIKULA J., GLO�EK J. : Metódy energetického<br />

zhodnocovania biomasy a odpadov, zborník z konferencie Moderné procesy<br />

spracovania odpadov, Košice, 2007, vydala Technická univerzita v Košiciach.<br />

4. Janda�ka J., Malcho M., Mikulík M. : Biomasa ako zdroj energie-potenciál, druhy,<br />

bilancia a vlastnosti palív, 2007 dostupný z WWW: [http://www.biomasainfo.sk]<br />

(2007-11-09).<br />

5. Lindau, J., Rönnbäck, M., Samuelsson, J., Thunman, H., Leckner, B., ‘An Estimation<br />

<strong>of</strong> the Spatial Resolution when Measuring Gas Concentrations Inside a Burning Fixed<br />

268


Bed’, Presented at the Nordic Seminar – Thermo Chemical Conversion <strong>of</strong> Bi<strong>of</strong>uels,<br />

Trondheim, Norway, (12 November) 2002.<br />

6. RYBÍN, M.: Studium vlivu spalování paliv v roštových kotlích na vznik tuhých<br />

a plynných exhalací. Zpráva úkolu 71 376, ÚPV B�chovicce, 1973.<br />

Streszczenie: Wp�yw zasilania paliwem na emisj� i moc grzejn� kot�a domowego. Artyku�<br />

prezentuje wp�yw typu zasilania paliwem na moc oraz emisj� domowego kot�a na pelety<br />

drzewne. Zaproponowano eksperymentaln� metodyk� pomiarów. Badany kocio� jest<br />

przeznaczony do pracy w domowej instalacji grzejnej. Jego moc to 18 kW. Badano st��enie<br />

gazów na wylocie spalin kot�a i przeprowadzono analiz� wp�ywu zasilania na moc i emisj�.<br />

Corresponding authors:<br />

<strong>University</strong> <strong>of</strong> Zilina, Univerzitna 1,<br />

010 26 Zilina, Slovakia,<br />

e-mail:<br />

radovan.nosek@fstroj.uniza.sk,<br />

jana.chabadova@fstroj.uniza.s,<br />

stefan.papucik@fstroj.uniza.sk,<br />

jozef.jandacka@fstroj.uniza.sk


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> Live Science – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 270-274<br />

(Ann. WULS-<strong>SGGW</strong>, For. And Wood Technol., 71, 2010)<br />

Discoloration <strong>of</strong> bilinga (Nauclea diderrichii (De Wild. & Th.Dur.) Merr.)<br />

and iroko (Milicia excelsa (Welw.) C.C.Berg.) wood, caused by coatings and<br />

light aging.<br />

AGNIESZKA JANKOWSKA, PAWE� KOZAKIEWICZ, MAGDALENA SZCZ�SNA<br />

Department <strong>of</strong> Wood Science and Wood Protection, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> Live Science – <strong>SGGW</strong><br />

Abstract: Discoloration <strong>of</strong> bilinga (Nauclea diderrichii (De Wild. & Th.Dur.) Merr.) and iroko (Milicia excelsa<br />

(Welw.) C.C.Berg.) wood, caused by coatings and light aging. Last years, interest <strong>of</strong> exotic wood species<br />

increases, caused by its specific properties. Aesthetics <strong>of</strong> the material is most important, especially color.<br />

Unfortunately, wood is prone to serious discoloration because <strong>of</strong> coating process or sunlight exposure.<br />

Following work describes influence <strong>of</strong> these factors on color stability <strong>of</strong> African bilinga and iroko wood, used<br />

mainly for flooring.<br />

Keywords: exotic wood, Nauclea diderrichii (De Wild. & Th.Dur.) Merr., Milicia excelsa (Welw.) C.C.Berg.,<br />

wood color, light aging, wood coatings<br />

INTRODUCTION<br />

Last years increasing popularity <strong>of</strong> exotic wood species is visible (over a dozen fold -<br />

Kozakiewicz 2006). Floors made <strong>of</strong> exotic wood species change its color over external factors<br />

(Kozakiewicz 2005) – especially UV. This creates serious problems especially in case where<br />

floor is partially covered or blinded.<br />

Color is a reaction <strong>of</strong> sight on 400-700 nm light inciding on eye retina (visible light).<br />

Wood color can be affected with suitable coatings, like lacquers or oils, which can totally<br />

cover natural wood color, but create protective film against external threats. Transparent<br />

lacquering increases natural color intensiveness, but emphasizes all pattern and color defects.<br />

Despite exotic wood color descriptions, pr<strong>of</strong>essional literature lacks unbiased color<br />

change data, not organoleptic but made with colorimeter. Aim <strong>of</strong> the following work was to<br />

determine coated bilinga and iroko wood discoloration under light aging process.<br />

MATERIALS AND METHODS<br />

Two popular in Poland African wood species were selected for the work<br />

(nomenclature in accordance to PN-EN 13556:2005) standard): bilinga (Nauclea diderrichii<br />

(De Wild. & Th.Dur.) Merr.) and iroko (Milicia excelsa (Welw.) C.C.Berg.), <strong>of</strong>ten used for<br />

flooring. Detailed description and characteristics are provided by Kozakiewicz and Szkar�at<br />

(2004, 2005). Before tests samples were planed and sanded. Radial section <strong>of</strong> more uniform<br />

pattern was selected, in opposite to coarser tangential section. Wood moisture content ranged<br />

from 8% up to 12 %. Boards were cut into test samples <strong>of</strong> 70x70x10 mm dimensions.<br />

Samples were sorted into groups, in every group surfaces were finished with various coatings<br />

produced by various manufacturers:<br />

� group A – one-component polyurethane lacquer<br />

� group B – two-component water-based polyurethane lacquer<br />

� group C – polyurethane lacquer<br />

� group D – nitrocellulose lacquer<br />

� group E - wax<br />

� group F – shellac lacquer.<br />

Materials were used in accordance to producers suggestions, Coated samples were exposed<br />

indoors to direct sunlight for one year.<br />

270


Discoloration analysis was based on international CIE L*a*b* model. Beginning from<br />

the samples preparation samples were isolated from sunlight in aim to preserve natural color.<br />

Color tests were made before coating, after coating and after sunlight exposition.<br />

X-Rite SP-60 spherical spectrophotometer was used for the test. Color indexes were<br />

calculated basing on the component values:<br />

total color difference:<br />

2<br />

2<br />

2 1/<br />

2<br />

� E * ab � [( �L*)<br />

� ( �a*)<br />

� ( �b*)<br />

] , where<br />

� L * - lightness difference<br />

� a * - red color difference (a>0)<br />

� b * - yellow color difference (b>0)<br />

� saturation from the formula:<br />

2 2 1/<br />

2<br />

C * ab � ( a * �b<br />

* )<br />

� hue from the formula:<br />

H* � arctg(<br />

b * / a*)<br />

From the obtained data (5 measurements on a single sample) averages were calculated.<br />

In consequence <strong>of</strong> the lacking standard on wood discoloration presented work bases on PN-<br />

ISO 7724-1:2003, PN-ISO 7724-2:2003, PN-ISO 7724-3:2003 standards, regarding lacquer<br />

discoloration.<br />

RESULTS<br />

Obtained results for Nauclea diderrichii (De Wild. & Th. Dur.) Merr.) and Milicia<br />

excelsa (Welw.) C.C.Berg., wood are presented in table 1. Basing on the detailed analysis <strong>of</strong><br />

the gathered data one may conclude that coated exotic wood changes its color over time,<br />

which is caused by exposure to sunlight. Lightness values drop in comparison to control<br />

samples, which means that wood becomes darker. Greatest luminance change <strong>of</strong> bilinga wood<br />

showed up in group C (polyurethane coated), lowest change was in the UV group, uncoated.<br />

In case <strong>of</strong> iroko wood greatest lightness change was in D group (nitrocellulose lacquered),<br />

smallest similarly like with bilinga wood in uncoated UV group.<br />

Analysis <strong>of</strong> the remaining two color parameters shows that saturation and hue <strong>of</strong><br />

exotic wood change under long sunlight exposition. Saturation <strong>of</strong> bilinga wood for A, B, E<br />

and F coatings groups decreased, in case <strong>of</strong> iroko wood saturation increased for all groups.<br />

Tests show that hue values dropped for both species, basin on this parameter one may<br />

determine that bilinga wood changes hue from yellowish-orange down to orange, greatest<br />

change is shown by C group (49,40). In case <strong>of</strong> iroko wood, samples from yellow turn into<br />

darker yellow hue, greatest change is shown by B group (61,35).<br />

271


���������������������������������������������������������������������������������������<br />

Wood<br />

species<br />

BILINGA<br />

(Nauclea diderrichii (De Wild. &<br />

Th. Dur.) Merr.)<br />

IROKO<br />

(Milicia excelsa (Welw.)<br />

C.C.Berg.)<br />

Group<br />

Color parameters<br />

Lightness (L*) Saturation (C*) Hue (H*)<br />

L*min L*�r L*max C*min C*�r C*max H*min H*�r H*max<br />

uncoated CS 52,23 54,09 57,35 33,74 35,20 36,75 60,82 61,95 63,56<br />

wood UV 53,06 53,37 53,80 33,80 34,22 34,93 61,64 62,15 62,40<br />

coated wood<br />

after UV<br />

exposure<br />

A 48,41 49,33 49,91 35,07 36,33 36,87 59,45 59,84 60,40<br />

B 46,96 48,29 49,18 36,35 37,09 38,16 58,36 59,84 60,91<br />

C 42,45 43,23 43,87 29,67 31,57 32,64 49,01 49,40 49,80<br />

D 44,66 45,19 46,10 33,37 34,80 35,71 55,55 55,69 55,84<br />

E 47,34 49,28 49,99 35,15 36,78 37,23 57,33 59,03 59,70<br />

F 43,77 45,11 47,40 35,23 36,61 38,81 54,02 55,07 57,45<br />

uncoated CS 55,35 58,68 63,10 26,41 27,87 30,51 68,66 73,14 77,42<br />

wood UV 51,44 52,76 53,82 26,73 27,21 27,69 65,75 66,70 67,24<br />

coated wood<br />

after UV<br />

exposure<br />

A 50,01 52,71 54,37 31,23 32,06 32,85 63,14 65,19 66,44<br />

B 46,73 48,55 50,84 31,42 32,50 33,08 59,80 61,35 63,03<br />

C 47,90 48,84 50,07 29,48 30,62 32,12 62,88 63,59 64,21<br />

D 46,29 47,43 48,84 29,98 31,42 33,30 63,08 63,84 64,24<br />

E 49,57 50,14 50,72 27,91 28,80 29,22 64,04 64,47 64,99<br />

F 47,06 48,73 50,74 32,83 35,83 38,37 63,01 63,86 65,31<br />

CS – control samples<br />

UV – samples after light exposure<br />

A – one component polyurethane lacquer<br />

B – two-component water-based lacquer<br />

C – polyurethane lacquer<br />

D – nitrocellulose lacquer<br />

E – wax<br />

F – shellac lacquer<br />

�<br />

For comparison <strong>of</strong> different coatings, total color difference criterion (fig. 1-2) and<br />

color stabilization was set. Color stability degrees were set on the basis <strong>of</strong> five step scale<br />

(Mielicki 1997) shown in table 2.<br />

Table 2. Color stability<br />

Color<br />

difference<br />

�E<br />

0±0,2 0,8±0,2 1,7±0,3 2,5±0,35 3,4±0,4 4,8±0,5 6,8±0,6 9,6±0,7 13,6±1,0<br />

Color<br />

stability<br />

5 4-5 4 3-4 3 2-3 2 1-2 1<br />

Basing on the presented results one may conclude that highest color stability was<br />

shown by A group, and lowest by C group, in both wood species tested. Change direction in<br />

both bilinga and iroko wood was the same.<br />

�<br />

272


Total color difference<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

2,71<br />

Uncoated<br />

wood<br />

3,38<br />

5,34<br />

12,81<br />

273<br />

8,94<br />

6,62<br />

A B C D E F<br />

Group<br />

�<br />

Fig. 1. Total color difference <strong>of</strong> Nauclea diderrichii (De Wild. & Th. Dur.) Merr.) wood, caused by coating and<br />

light aging.<br />

Total color difference<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

10,45<br />

Uncoated<br />

wood<br />

6,39<br />

9,05<br />

14,46<br />

10,95 11,14<br />

A B C D E F<br />

11,17<br />

14,39<br />

Group<br />

�<br />

Fig 2. Total color difference <strong>of</strong> Milicia excelsa (Welw.) C.C.Berg. wood, caused by coating and light aging.<br />

CONCLUSION<br />

Tests performed on two African wood species, bilinga and iroko, based on color<br />

change determination under coating and light aging influence, allow to conclude as follows:<br />

1. Wood coatings (lacquer, wax, shellac) and sunlight exposure cause wood discoloration.<br />

Color changes have same properties in both wood species tested, degree <strong>of</strong> the change is<br />

dependent on coating type. Bilinga wood from yellowish-orange turned closer to orange,<br />

Iroko from yellowish turned into darker shade <strong>of</strong> yellow.<br />

2. Coated wood shows more discoloration than uncoated one.<br />

3. After coating with lacquer, wax and shellac and light aging wood turned darker (lightness<br />

decreased)


4. Lacquering, waxing and shellac lacquering <strong>of</strong> wood does not protect it against<br />

discoloration, but causes color evening (wood color is more even on the whole surface).<br />

REFERENCES<br />

1. KOZAKIEWICZ P., SZKAR�AT D., 2004: Iroko [Milicia excelsa (Welw.) C.C.Berg]<br />

– drewno egzotyczne z Afryki. Przemys� Drzewny nr 7-8, s: 53-56.<br />

2. KOZAKIEWICZ P., SZKAR�AT D., 2005: Bilinga [Nauclea diderrichii De Wild.] –<br />

drewno egzotyczne z Afryki. Przemys� Drzewny nr 7-8, s: 43-46.<br />

3. KOZAKIEWICZ P., 2005: Drewno w budownictwie – pod�ogi. Przemys� Drzewny nr<br />

6, s.6-11.<br />

4. KOZAKIEWICZ P., 2006: W�a�ciwo�ci i zastosowania drewna egzotycznego w<br />

Polsce. Uszlachetnianie powierzchni drewna, cz. I (Dodatek specjalny do czasopisma<br />

Lakiernictwo), s. 10-17.<br />

5. MIELICKI J., 1997: Zarys wiadomo�ci o barwie. Wyd. Fundacja Rozwoju Polskiej<br />

Kolorystyki. �ód�.<br />

6. PN-EN 13556:2005 Drewno okr�g�e i tarcica. Terminologia stosowana w handlu<br />

drewnem w Europie.<br />

7. PN-ISO 7724-1:2003 Farby i lakiery – Kolorymetria – Cz��� 1: Podstawy.<br />

8. PN-ISO 7724-2:2003 Farby i lakiery – Kolorymetria – Cz��� 2: Pomiar barwy.<br />

9. PN-ISO 7724-3:2003 Farby i lakiery – Kolorymetria – Cz��� 3: Obliczanie ró�nic<br />

barwy.<br />

Streszczenie: Badanie zmian barwy drewna bilinga (Nauclea diderrichii (De Wild. &<br />

Th.Dur.) Merr.) i iroko (Milicia excelsa (Welw.) C.C.Berg.) pod wp�ywem dzia�ania lakierów<br />

i foto-starzenia. Na przestrzeni ostatnich lat obserwuje si� wzrastaj�ce zainteresowanie<br />

drewnem egzotycznym, ze wzgl�du na jego cenne w�a�ciwo�ci. O rosn�cej popularno�ci<br />

decyduj� walory estetyczne tego materia�u, a przede wszystkim barwa. Niestety, barwa<br />

drewna mo�e ulega� drastycznym zmianom pod wp�ywem lakierowania i nas�onecznienia<br />

(foto-starzenia). W niniejszej pracy zbadano wp�yw tych czynników na barw� popularnych w<br />

Polsce dwóch rodzajów drewna egzotycznego z Afryki (bilinga i iroko), stosowanego g�ównie<br />

na materia� pod�ogowy. Dowiedziono, �e surowe drewno istotnie ciemnieje pod wp�ywem<br />

dzia�ania �wiat�a i lakierowania. Lakierowanie drewna nie zabezpiecza go przed dalszymi<br />

zmianami barwy, jednak wyrównuje jego kolorystyk�.<br />

Corresponding authors:<br />

Agnieszka Jankowska<br />

Pawe� Kozakiewicz<br />

Magdalena Szcz�sna<br />

Department <strong>of</strong> Wood <strong>Sciences</strong> and Wood Protection,<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

Ul. Nowoursynowska 159,<br />

02-776 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: agnieszka_milewska@sggw.pl<br />

e-mail: pawe�_kozakiewicz@sggw.pl<br />

e-mail: magdalena_szczesna@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> Live Science – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 275-279<br />

(Ann. WULS-<strong>SGGW</strong>, For. And Wood Technol., 71, 2010)<br />

Comparative analysis <strong>of</strong> wood ageing methods<br />

AGNIESZKA JANKOWSKA<br />

Department <strong>of</strong> Wood Science and Wood Protection, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> Science - <strong>SGGW</strong><br />

Abstract: Comparative analysis <strong>of</strong> wood ageing methods The process <strong>of</strong> ageing is a long-term process and<br />

therefore testing the changes occurring in wood submitted to an ageing process proves to be extremely difficult.<br />

Therefore, some artificial ageing methods have been developed (defined as accelerated ageing), making it<br />

possible to achieve ageing effects in laboratory conditions in a much shorter time. Alternating influence <strong>of</strong> water,<br />

variable temperature and radiation imitating solar radiation is used in the ageing methods. The methods differ,<br />

among others, in the number <strong>of</strong> ageing cycles. The information on the relationship between ageing in laboratory<br />

conditions and in the natural environment is still insufficient. Research work in this field seems to be an obvious<br />

necessity.<br />

Keywords: accelerated ageing <strong>of</strong> wood, wood durability.<br />

INTRODUCTION<br />

In external conditions, wood is exposed to continuous influence <strong>of</strong> weather conditions:<br />

precipitation and changes in temperature and relative humidity <strong>of</strong> the air. Many researchers,<br />

studying processes taking place in wood caused by variable conditions <strong>of</strong> the environment,<br />

describe and recognize the process <strong>of</strong> irreversible changes in appearance and properties <strong>of</strong> the<br />

material, resulting from long-term influence <strong>of</strong> weather conditions (assuming no direct impact<br />

<strong>of</strong> biotic components) as natural ageing <strong>of</strong> wood (Holz 1981; Feist 1983; Feist and Hon 1984,<br />

Williams 2005).<br />

An ageing process defined in this way is a long-term process and thus testing the<br />

changes that occur proves to be extremely difficult. Therefore, some artificial ageing methods<br />

have been developed (defined as accelerated ageing), making it possible to achieve ageing<br />

effects in laboratory conditions in a much shorter time. The methods simulate the influence <strong>of</strong><br />

natural weather conditions. In order to achieve effects in a reasonably short time, the ageing<br />

factors should be highly intensive, cyclical, and their changes should occur rapidly (Heli�ska-<br />

Raczkowska and Raczkowski 1971). The comprehensive impact <strong>of</strong> all the factors influencing<br />

wood has not been fully analysed.<br />

A review <strong>of</strong> the literature indicates that the accelerated ageing research is conducted in<br />

two directions. The first one consisted in testing the impact <strong>of</strong> selected factors on changes in<br />

wood properties (influence <strong>of</strong> variable temperature and humidity, radiation, static load). The<br />

second direction <strong>of</strong> research in accelerated ageing focused on the impact <strong>of</strong> all cyclical factors<br />

on wood achieved by using the so-called accelerated ageing tests <strong>of</strong> material. The research<br />

into this subject has been carried out for many years. The accelerated ageing methods existing<br />

nowadays differ in terms <strong>of</strong> a sequence and intensiveness <strong>of</strong> the influence <strong>of</strong> relevant factors<br />

or only some <strong>of</strong> them, and their purpose is to address a question <strong>of</strong> how properties <strong>of</strong> wood<br />

change during its use over a period <strong>of</strong> a few dozen or even a few hundred years.<br />

WOOD AGEING METHODS<br />

Many methods have been developed in a form <strong>of</strong> standards and specialised<br />

publications to test durability <strong>of</strong> wood and other materials. The methods directly describing<br />

wood ageing are a minor group among the standard ageing methods. The most frequently<br />

used methods <strong>of</strong> wood ageing, simulating the influence <strong>of</strong> natural weather conditions, are<br />

presented in table 1. A review <strong>of</strong> the literature indicates that alternating influence <strong>of</strong> water,<br />

variable temperature and radiation imitating solar radiation is used in the ageing methods.<br />

275


Individual methods differ, among others, in terms <strong>of</strong> a number <strong>of</strong> ageing cycles. Many <strong>of</strong><br />

them are <strong>of</strong>ten a combination <strong>of</strong> the ageing methods <strong>of</strong> their predecessors. Initially, the newly<br />

developed methods were used to study accelerated ageing <strong>of</strong> chipboards. However, they<br />

proved to be useful also for research in solid wood.<br />

Tab. 1. Comparison <strong>of</strong> accelerated ageing methods<br />

Ageing method<br />

(name/ author, source data)<br />

Ageing stages<br />

Time<br />

h<br />

freezing in the temp. -25 °C 6<br />

frostbite under UV-IR action in the temp. 60 o C 6<br />

drying in the temp. 80 o Heli�ska-Raczkowska<br />

and Raczkowski (1971)<br />

C 12<br />

soaking in water in the temp. 20 o C 24<br />

soaking in water in the temp. 49 o C 1<br />

exhibition to the effect <strong>of</strong> steam about the<br />

temp. 93 °C<br />

3<br />

ASTM D 1037:1999<br />

freezing in the temp. -12 °C<br />

drying with dry air about the temp. 99 °C<br />

20<br />

3<br />

exhibition to the effect <strong>of</strong> steam about the<br />

temp. 93 °C<br />

3<br />

drying in the temp. 99 °C 18<br />

soaking in water in the temp. 20 o C 24<br />

freezing in the temp. –20 o on the basis <strong>of</strong><br />

recommendations specified in<br />

the PN-C-89038:1971<br />

C<br />

action <strong>of</strong> temp. 70<br />

12<br />

o C and simultaneous<br />

irradiating by 4 hours with lamp <strong>of</strong> radiating UV<br />

about intensity 40 x bigger than normally ruling<br />

in the Central-European climatic zone<br />

12<br />

soaking in water in the temp. 20 o Matejak, Popowska and<br />

C 16<br />

Szejka (1983) drying in the temp. 70 o C 8<br />

soaking in water in the temp. 20 o C 72<br />

freezing in the temp. -12 o CTB (Centre Technique de<br />

Bois 1965/66)<br />

C 24<br />

(Matejak i �wietliczny 1977) drying in the temp. 70 o C 168<br />

soaking in water in the temp. 20 o C<br />

freezing in the temp. -20<br />

48<br />

o C<br />

drying in the temp. 15<br />

9<br />

o WIAM<br />

(Matejak and �wietliczny<br />

1977)<br />

C<br />

drying in the temp. 70<br />

15<br />

o C 10<br />

soaking in water in the temp. 18-27 o WCAMA<br />

C 0,5<br />

(Matejak and �wietliczny boiling 2<br />

1977) drying in the temp. about 104 o C 20<br />

soaking in water in the temp. 20 o C 24<br />

freezing in the temp. -25 o C 12<br />

drying in the temp. 70 o Krzosek and Starecka (1996)<br />

C 6<br />

irradiating with UV rays 3<br />

drying in the temp. 100 o C 3<br />

soaking in water in the temp. 20 o C<br />

freezing in the temp. -10<br />

24<br />

o Buksalewicz, Gajdzi�ski<br />

and Lutomski (1987)<br />

C<br />

frostbite and drying wood in the temp. 60<br />

6<br />

o C 18<br />

276<br />

Number<br />

<strong>of</strong><br />

cycles<br />

Total<br />

exposure<br />

time<br />

h<br />

1 48<br />

6 288<br />

7,5 360<br />

11 264<br />

3 792<br />

8 656<br />

6 135<br />

24 1152<br />

10 480<br />

Taking into account the diversity <strong>of</strong> the ageing methods, it is advisable to compare and<br />

assess them. Practicality <strong>of</strong> a method may be adopted as a criterion, i.e. whether the<br />

application <strong>of</strong> accelerated ageing corresponds with the phenomena found in wood in the<br />

natural environment. According to Matejak et al. (1982, 1983, 1998), there is a relationship<br />

between an ageing method developed on the basis <strong>of</strong> the recommendations specified in the<br />

PN-C-89038:1971 standard and the ageing occurring in natural conditions – approximately 7<br />

process cycles correspond to a yearly response <strong>of</strong> wood in external conditions in moderate


climate (typical for the territory <strong>of</strong> Poland). The same period <strong>of</strong> ageing in external conditions<br />

corresponds to 11 ageing cycles implemented using a method developed by Matejak,<br />

Popowska and Szejka (1983). Osipiuk (2001) states that during a research on durability <strong>of</strong> fire<br />

protection means, an ageing programme was used which produced the same effects after a<br />

triple application as a three-year response <strong>of</strong> wood in variable weather conditions.<br />

Determination <strong>of</strong> a relationship between accelerated ageing and the ageing in natural<br />

conditions has become a subject <strong>of</strong> research work also in other countries, such as the United<br />

States (Hon, Clemson and Feist 1986). The research focused on comparison <strong>of</strong> effects <strong>of</strong><br />

accelerated and natural ageing processes. However, considering the fact that a different<br />

climate index is assigned to each latitude (various: amount <strong>of</strong> precipitation, average monthly<br />

temperatures, number <strong>of</strong> sunny days), the interrelations obtained are valid only for the zone<br />

where the field study was conducted. It should be also taken into account that wood in natural<br />

conditions may be located in different risk classes (the classes <strong>of</strong> use are specified in the PN-<br />

EN 335-1:2000 standard) and thus exposed to influence <strong>of</strong> external factors to a different<br />

extent.<br />

Different researchers used various ageing schedules. Additionally, considering the fact<br />

that sizes <strong>of</strong> samples used to determine properties <strong>of</strong> wood submitted to accelerated ageing are<br />

diversified, the research results published, although appropriate for the specific type <strong>of</strong> a<br />

sample and the accelerated ageing test used, can not be comparable in terms <strong>of</strong> their values<br />

with the results received in other ageing tests. Only the direction and nature <strong>of</strong> the changes<br />

may be comparable. The quality <strong>of</strong> wood resistance to accelerated atmospheric corrosion<br />

<strong>of</strong>ten depends on changes in properties such as wood density, sorption properties, its strength<br />

(e.g. compressive strength and bending strength), modulus <strong>of</strong> elasticity, change in colour, as<br />

well as dimension changes (Heli�ska-Raczkowska and Raczkowski 1971, Kami�ski, Matejak<br />

and Popowska 1982, Buksalewicz, Gajdzi�ski and Lutomski 1987, Arnold, Sell and Feist<br />

1991, Krzosek and Starecka 1996, Kozakiewicz K. and Matejak 1998, Matejak, Popowska<br />

and Szejka 1983, Górski and Matejak 1998, Jankowska, Kozakiewicz and Szcz�sna 2009).<br />

Few researchers attempted studies relating to changes in a chemical structure <strong>of</strong> wood<br />

resulting from accelerated ageing. Jarmutowska-Rokosz (1987) is one <strong>of</strong> them.<br />

Some <strong>of</strong> the ageing methods are distinguished by their sophisticated and timeconsuming<br />

approach, resulting in their lower practicality. An idea to test some <strong>of</strong> them in<br />

detail was implemented to simplify them, reduce their time-consuming operations and limit<br />

the necessity to use specialised equipment. An ageing method described in the ASTM D 1037<br />

– 56 T standard was analysed in detail by two American researchers McNatt and Link (1989).<br />

Matejak, Popowska and Szejka (1983) shortening an ageing schedule with a method<br />

developed on the basis <strong>of</strong> recommendations specified in the PN-C-89038:1971 standard by<br />

freezing and UV radiation, stated that the reduced stages unnecessarily complicated an<br />

accelerated ageing process and had no significant impact on the wood strength. The method<br />

developed by the researchers is relatively the least complex ageing method.<br />

SUMMARY<br />

An accelerated ageing is a complex phenomenon. A review <strong>of</strong> the literature indicates<br />

that it is a process where at least three processes occur simultaneously: influence <strong>of</strong> humidity,<br />

variable temperature and light. The results obtained in ageing research can not be comparable<br />

due the fact that different sizes <strong>of</strong> samples are used by different researchers. The wood<br />

accelerated ageing research methodology has not been standardised yet, resulting in the use <strong>of</strong><br />

accelerated ageing tests demonstrating various sequence <strong>of</strong> influence <strong>of</strong> relevant factors and<br />

their operation time.<br />

The majority <strong>of</strong> ageing methods can be implemented using a standard laboratory<br />

equipment. The information on the relationship between ageing in laboratory conditions and<br />

277


in the natural environment is still insufficient. Research work in this field seems to be an<br />

obvious necessity. The knowledge obtained in this area will make it possible to use various<br />

ageing schedules, facilitating the determination <strong>of</strong> wood durability in actual external<br />

conditions.<br />

REFERENCES:<br />

1. ARNOLD M., SELL J., FEIST W. C., 1991: Wood weathering in fluorescent<br />

ultraviolet and xenon arc chambers. Forest Products Journal, Vol. 41. No. 2: 40-44.<br />

2. ASTM D Designation D 1037-99 Standard Test Methods for Evaluating Properties <strong>of</strong><br />

Wood – Base Fiber and Particle Panel Materials. American Society for Testing<br />

Materials. Baltimore. U.S.A.<br />

3. BUKSALEWICZ P., GAJDZINSKI M., LUTOMSKI K., 1987: Wzmacnianie drewna<br />

zabytkowego przy u�yciu preparatów Petrifo i Paraloid. Zabytkowe drewno,<br />

konserwacja i badania. Instytut Wydawniczy PAX Warszawa: 108-117.<br />

4. FEIST W. C., 1983: Weathering and Protection <strong>of</strong> Wood. American Wood Preservers’<br />

Association: 195-205.<br />

5. FEIST W. C., HON D. N. S, 1984: Chemistry <strong>of</strong> weathering and protection. In:<br />

Rowell R. M.; Barbour R. J., eds.: The chemistry <strong>of</strong> solid wood. Advances in<br />

Chemistry Series 207. Washington, DC: American Chemical Society. Chapter 11: 401<br />

– 451.<br />

6. GÓRSKI J., MATEJAK M., 1998: Wp�yw starzenia desek stosowanych na podobrazia<br />

na ich odkszta�cenia. Mat. z XII Konferencji Naukowej Wydzia�u Technologii<br />

Drewna <strong>SGGW</strong> nt.: Innowacyjno�� bada� w przemy�le i nauce. Wyd. Fundacji<br />

Rozwój <strong>SGGW</strong> Warszawa: 183-190.<br />

7. HELI�SKA-RACZKOWSKA L., RACZKOWSKI J.,1971: Niektóre zagadnienia<br />

przyspieszonego starzenia drewna. Roczniki WSR w Poznaniu 6.<br />

8. HOLZ A., 1981: Zum Alterungsverhalten des Werkst<strong>of</strong>fes Holz - einige Ansichten,<br />

Untersuchungen, Ergebnisse. Holztechnologie 22/2: 80-85.<br />

9. HON D. N. S, CLEMSON S. C., FEIST W. C., 1986: Weathering characteristics <strong>of</strong><br />

hardwood surfaces. Wood Science and Technology 20: 169-183.<br />

10. JANKOWSKA A., KOZAKIEWICZ P., SZCZ�SNA M., 2009: Influence <strong>of</strong> the<br />

accelerated aging chosen species <strong>of</strong> wood from South America on compressive<br />

strength along the fibres. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> Live Science – <strong>SGGW</strong>,<br />

Forestry and Wood Technology No 67.<br />

11. JARMUTOWSKA-ROKOSZ A., 1986: Zmiany sk�adu chemicznego wybranych<br />

gatunków drewna powsta�e w procesach przyspieszonej korozji atmosferycznej. Mat.<br />

z II Konferencji naukowej Wydzia�u Technologii Drewna <strong>SGGW</strong>-AR. Wyd. <strong>SGGW</strong>-<br />

AR Warszawa: 95-104.<br />

12. KAMI�SKI M., MATEJAK M., POPOWSKA E., 1982: Einfluss des Alterns von<br />

Holz unter künstlichen Klimabedingungen auf seine Druckfestigkeit längs der Faser.<br />

Holzforschung und Holzvermertung, Heft 2: 21-24.<br />

13. KOZAKIEWICZ K., MATEJAK M., 1998: Wp�yw procesu sztucznego starzenia na<br />

wytrzyma�o�� drewna na �ciskanie wzd�u� w�ókien. Przemys� Drzewny 10: 26 - 28.<br />

14. KRZOSEK S., STERECKA D., 1996: Modu� spr��ysto�ci jako kryterium oceny<br />

zmian wytrzyma�o�ci drewna sztucznie starzonego. Mat. z X Konferencji Naukowej<br />

Wydzia�u Technologii Drewna <strong>SGGW</strong> nt.: Drewno – tworzywo in�ynierskie. Wyd.<br />

Fundacji Rozwój <strong>SGGW</strong> Warszawa 1996: s. 65-72.<br />

15. MATEJAK M., POPOWSKA E., SZEJKA E., 1983: Vergleichende Untersuchungen<br />

über Methoden des beschleunigten Alterns von Holz, Holzforschung und<br />

Holzvermertung, Heft 5: 117-119.<br />

278


16. MATEJAK M., �WIETLICZNY M., 1977: Odporno�� tworzyw drzewnych na<br />

dzia�anie czynników klimatycznych. Zeszyty naukowe <strong>SGGW</strong>-AR w Warszawie,<br />

Technologia Drewna, 8, Warszawa: 101-114.<br />

17. McNATT J. D., LINK C. L., 1989: Analysis <strong>of</strong> ASTM D 1037 accelerated-aging test.<br />

Forest Prod. Journal, Vol. 39. No. 10: 51 – 57.<br />

18. OSIPIUK J., 2001: Trwa�o�� zabezpieczenia drewna solnymi �rodkami<br />

ognioochronnymi. Rozprawa habilitacyjna. Wyd. <strong>SGGW</strong>, Warszawa.<br />

19. PN-EN 335-1:2007 Trwa�o�� drewna i materia�ów drewnopochodnych. Definicja klas<br />

u�ytkowania. Postanowienia ogólne.<br />

20. WILLIAMS R. S., 2005: Weathering <strong>of</strong> wood. Handbook <strong>of</strong> wood chemistry and<br />

wood composites. Boca Raton: CRC Press, 2005: 139-185.<br />

Streszczenie: Analiza porównawcza metod starzenia drewna Proces starzenia jest procesem<br />

d�ugotrwa�ym, a przez to zbadanie zmian zachodz�cych w drewnie podlegaj�cym procesowi<br />

starzenia staje si� niezwykle trudne. Dlatego opracowano szereg metod sztucznego starzenia<br />

drewna (okre�lanego jako starzenie przy�pieszone), które pozwalaj� na uzyskanie w<br />

warunkach laboratoryjnych efektów starzenia w znacznie krótszym czasie. W metodach<br />

starzeniowych wykorzystuje si� przemiennie dzia�anie wody, zmiennej temperatury i<br />

promieniowania maj�cego imitowa� promieniowanie s�oneczne. Poszczególne metody ró�ni�<br />

si� mi�dzy innymi liczb� cykli starzeniowych. Brakuje informacji na temat relacji starzenia<br />

realizowanego w warunkach laboratoryjnych i starzenia w �rodowisku naturalnym.<br />

Podejmowanie bada� na ten temat wydaje si� by� oczywist� konieczno�ci�.<br />

S�owa kluczowe: przyspieszone starzenie drewna, trwa�o�� drewna.<br />

Corresponding author:<br />

Agnieszka Jankowska<br />

Department <strong>of</strong> Wood <strong>Sciences</strong> and Wood Protection,<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> Science – <strong>SGGW</strong>,<br />

Ul. Nowoursynowska 159,<br />

02-776 Warszawa<br />

Poland<br />

E-mail: agnieszka_milewska@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> Live Science – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 280-284<br />

(Ann. WULS-<strong>SGGW</strong>, For. And Wood Technol., 71, 2010)<br />

Research on colour change <strong>of</strong> thermal modified birch wood caused by UV<br />

and accelerated ageing<br />

AGNIESZKA JANKOWSKA, SEBASTIAN ST�PNIEWSKI<br />

Department <strong>of</strong> Wood Science and Wood Protection, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> Live Science - <strong>SGGW</strong><br />

Abstract: Research on colour change <strong>of</strong> thermal modified birch wood caused by UV and accelerated ageing A<br />

more and more common use <strong>of</strong> thermally modified wood in interior design <strong>of</strong> buildings and in elements <strong>of</strong><br />

external architecture is connected with an issue <strong>of</strong> colour instability. For the purposes <strong>of</strong> this research, thermally<br />

modified birch wood has been used in various exposure times. It has been proved that UV radiation and<br />

accelerated ageing result in a colour change <strong>of</strong> birch wood exposed to thermal treatment. The modification time<br />

has an influence on the extent <strong>of</strong> the colour change.<br />

Keywords: termal modified birch wood, color <strong>of</strong> wood, photo-aging.<br />

INTRODUCTION<br />

The use <strong>of</strong> thermally treated wood in the furniture industry and in interior finishing, in<br />

particular in flooring materials is connected with an issue <strong>of</strong> colour stability. The issue <strong>of</strong><br />

colour stability <strong>of</strong> thermally modified wood appears also in outdoors applications. Wood<br />

colour changes are caused by weathering factors such as: solar radiation (ultraviolet),<br />

precipitation, the action <strong>of</strong> oxygen and ozone in the air. A colour change <strong>of</strong> wood during its<br />

use, both indoors and outdoors, is a process affecting the surface <strong>of</strong> the material. It results<br />

from a small depth <strong>of</strong> penetration <strong>of</strong> wood by light, which, according to Williams (2005), is<br />

the main reason for the colour change. Outdoors, additional factors include the action <strong>of</strong> water<br />

and changeable temperatures. In estimation <strong>of</strong> many users <strong>of</strong> wooden elements in outdoor<br />

exposure, the aesthetic values tend to decrease (Feist and Hon 1984).<br />

The research on thermally modified wood refers mainly to some species <strong>of</strong> deciduous<br />

wood, such as: oak, ash, beech, and some species <strong>of</strong> coniferous wood: pine, spruce. So far, the<br />

colour change <strong>of</strong> thermally modified wood in comparison to untreated wood has been<br />

confirmed in research among others by Grze�kiewicz and Krawiecki (2008), Ayadi et al.<br />

(2003). Despite extensive research, there is still very little knowledge on methods <strong>of</strong> finishing<br />

thermally modified wood, and especially, on reactions to stabilizers and sunlight. Research<br />

work in this field seems to be an obvious necessity.<br />

MATERIALS AND METHODS<br />

The purpose <strong>of</strong> the research is to determine the influence <strong>of</strong> UV radiation which is<br />

supposed to simulate natural sunlight and accelerated ageing simulating the action <strong>of</strong> the<br />

natural outdoor factors on colour change <strong>of</strong> thermally modified birch wood. For the purposes<br />

<strong>of</strong> this research, birch wood exposed to thermal treatment in various exposure times and<br />

temperatures has been used. Birch, which is not the most common thermally modified wood<br />

in use, has been selected for testing due to its regular structure and uniform colour. Its fast<br />

growth and common occurrence may increase an interest in this species in deeper research on<br />

properties <strong>of</strong> thermally modified birch wood in the context <strong>of</strong> thermal treatment. The<br />

modification was performed in overheated water vapour at the temperature <strong>of</strong> 190 o C in three<br />

exposure times: 2, 6 and 10 hours. Each <strong>of</strong> the modification processes was monitored using a<br />

device equipped with probes registering the temperature, among others, inside a section <strong>of</strong><br />

one <strong>of</strong> the specimens. The tested material had been dried to the moisture content <strong>of</strong><br />

approximately 0% before its thermal modification. The modification process rate in the<br />

280


temperature increase phase was 0.25 o C/min. The time <strong>of</strong> the relevant modification was<br />

calculated from the moment <strong>of</strong> reaching the required temperature <strong>of</strong> 190 o C by the monitored<br />

specimen.<br />

The specimens were divided into two groups within each <strong>of</strong> the exposures. The first<br />

group contained the specimens to be exposed to UV radiation. The second group <strong>of</strong> the<br />

specimens was to be exposed to accelerated ageing. The accelerated ageing consisted in<br />

alternating soaking <strong>of</strong> the wood in water at the temperature <strong>of</strong> 20 o C, drying at the<br />

temperature <strong>of</strong> 70 o C and UV radiation during 6 hours. The accelerated ageing method used is<br />

a method developed by Matejak, Popowska and Szejka (1983), supplemented with exposure<br />

to light as a factor which has a big influence on the wood colour change in outdoor exposure.<br />

There were 6 specimens in each <strong>of</strong> the groups for each variation <strong>of</strong> the thermal modification<br />

and control specimens. The purpose <strong>of</strong> the test was to eliminate other factors that may<br />

influence the colour change.<br />

The analysis <strong>of</strong> the colour change was conducted on the basis <strong>of</strong> a CIE L*a*b* colour<br />

space mathematical model. An SP-60 compact spherical spectrophotometer was used for<br />

colour measurement. The total colour difference was calculated on the basis <strong>of</strong> the<br />

components:<br />

2<br />

2<br />

2 1/<br />

2<br />

� E * ab � [( �L*)<br />

� ( �a*)<br />

� ( �b*)<br />

] , where<br />

� L * - lightness difference<br />

� a * - red color difference (a>0)<br />

� b * - yellow color difference (b>0).<br />

The modified specimens were isolated from sunlight up to the moment <strong>of</strong> the first test<br />

to retain the wood colour obtained during the thermal treatment process. The measurement<br />

was taken before the exposure to light and accelerated ageing, and subsequently at various<br />

stages <strong>of</strong> the exposure to light and ageing. Due to the fact that there is no standard<br />

determining a method <strong>of</strong> testing the wood colour changes, the provisions <strong>of</strong> the PN-ISO 7724-<br />

1:2003, PN-ISO 7724-2:2003, PN-ISO 7724-3:2003 standards concerning changes in colours<br />

<strong>of</strong> paints and varnishes have been applied in this research.<br />

RESULTS<br />

The results obtained from the colour tests conducted for the group <strong>of</strong> birch wood<br />

exposed to UV radiation and for the group <strong>of</strong> birch wood exposed to accelerated ageing are<br />

presented in table 1 and 2. Measurements <strong>of</strong> the (L*a*b*) colour coordinates taken before the<br />

exposure to UV radiation and accelerated ageing indicate that thermal modification has an<br />

influence on change <strong>of</strong> the wood colour. Analysing the values <strong>of</strong> luminance (L*), it can be<br />

observed that the wood colour gets darker along with extension <strong>of</strong> the modification time.<br />

Unmodified wood exposed to UV radiation (after 150 hours <strong>of</strong> exposure to light) and<br />

accelerated ageing (after 10 ageing cycles) gets darker. The accelerated ageing, where the<br />

tested material was exposed to the action <strong>of</strong> temperature and water in addition to UV<br />

radiation, indicates a higher value <strong>of</strong> the total difference in the unmodified wood colour after<br />

10 cycles (�E = 9.44) than in the case <strong>of</strong> exposure only to UV radiation (�E = 7.21). Thus, it<br />

should be assumed that, apart from ultraviolet radiation, the alternating action <strong>of</strong> temperature<br />

and water has a significant influence on the wood colour changes. It is confirmed by the<br />

results <strong>of</strong> exposure to light and accelerated ageing <strong>of</strong> thermally modified wood in various<br />

exposure times. However, unlike in the case <strong>of</strong> the thermally unmodified material, the<br />

specimens modified in exposure to the UV radiation during 6 and 10 hours get brighter, and<br />

the values <strong>of</strong> the total colour difference are lower (�E = 5.39, �E = 5.50, respectively). The<br />

colour change <strong>of</strong> the wood modified during 2 hours, exposed to UV radiation, where the<br />

wood gets darker is an exception (�E = 4.38). An analysis <strong>of</strong> the values <strong>of</strong> luminance (L*) for<br />

281


espective various modification exposures in the case <strong>of</strong> accelerated ageing after 10 cycles<br />

indicates that the colour gets darker – as in the case <strong>of</strong> thermally untreated wood. It is a<br />

reverse direction <strong>of</strong> changes in comparison to the action <strong>of</strong> exclusive UV radiation. The<br />

absolute values <strong>of</strong> the total colour difference for the modification time <strong>of</strong> 2 and 6 hours reach<br />

the level similar to the measurements <strong>of</strong> unmodified wood, while in the case <strong>of</strong> modification<br />

lasting for 10 hours they even exceeded it (for 2, 6, 10 hours: �E =7.85, �E = 8.91, �E = 9.98,<br />

respectively).<br />

Colour changes in the tested material can be still observed after subsequent 150 hours<br />

<strong>of</strong> exposure to UV radiation and subsequent 10 accelerated ageing cycles. The colour <strong>of</strong><br />

unmodified specimens gets darker, however, a wider scope <strong>of</strong> changes in the case <strong>of</strong><br />

accelerated ageing (�E = 5.65) was observed than in the case <strong>of</strong> exposure to light (�E =<br />

2,53). The values <strong>of</strong> the total colour change <strong>of</strong> the unmodified birch wood after subsequent<br />

hours <strong>of</strong> exposure to light and after subsequent cycles are much lower in comparison to the<br />

values obtained during the measurement after 150 hours and 10 cycles. The results <strong>of</strong><br />

measurements <strong>of</strong> the thermally modified birch wood in various time exposures indicate a<br />

similar direction <strong>of</strong> the changes. Therefore, it can be concluded that the colour changes that<br />

occurred as a result <strong>of</strong> UV radiation and accelerated ageing demonstrate the highest values in<br />

the initial hours <strong>of</strong> the exposure to light and in the initial ageing cycles. Comparing the values<br />

<strong>of</strong> the �E total colour difference <strong>of</strong> the thermally modified birch wood exposed to UV<br />

radiation with the material exposed to accelerated ageing, it can be observed that the UV<br />

radiation after 150 hours had a bigger influence on the colour changes than the subsequent 10<br />

cycles <strong>of</strong> accelerated ageing.<br />

Table 1. Color parameters <strong>of</strong> thermal modified birch wood during exposure on UV light<br />

Tested<br />

material<br />

Unmodified wood<br />

Thermal modified<br />

wood 190 0 C 2h<br />

Thermal modified<br />

wood 190 0 C 6h<br />

Thermal modified<br />

wood 190 0 C 10h<br />

Color <strong>of</strong> wood /<br />

Colour coordinates<br />

L*<br />

a* �r<br />

b* �r<br />

L*<br />

a* �r<br />

b* �r<br />

L*<br />

a* �r<br />

b* �r<br />

L*<br />

a* �r<br />

b* �r<br />

After 0 h <strong>of</strong><br />

exposure to light<br />

282<br />

�E<br />

After 150 h <strong>of</strong><br />

exposure to light<br />

�E<br />

After 300 h <strong>of</strong><br />

exposure to light<br />

Average 76,39 71,86 70,76<br />

Std. dev. 1,24 1,03 0,86<br />

Average<br />

Std. dev.<br />

3,82<br />

0,26<br />

7,21<br />

6,96<br />

0,33<br />

2,53<br />

7,57<br />

0,25<br />

Average 20,07 24,72 26,91<br />

Std. dev. 0,38<br />

1,32<br />

1,09<br />

Average 59,71 59,02 59,76<br />

Std. dev. 1,51 1,43 1,35<br />

Average<br />

Std. dev.<br />

5,76<br />

0,29<br />

4,38<br />

8,71<br />

0,38<br />

1,16<br />

8,33<br />

0,41<br />

Average 26,02 22,86 23,65<br />

Std. dev. 0,67<br />

0,71<br />

0,85<br />

Average 52,66 53,68 55,48<br />

Std. dev. 1,52 1,49 1,43<br />

Average<br />

Std. dev.<br />

6,67<br />

0,24<br />

5,39<br />

8,95<br />

0,47<br />

1,95<br />

8,44<br />

0,42<br />

Average 26,74 21,96 22,49<br />

Std. dev. 1,14<br />

0,85<br />

0,83<br />

Average 47,34 48,24 51,04<br />

Std. dev. 1,46 1,65 1,23<br />

Average<br />

Std. dev.<br />

6,99<br />

0,22<br />

5,50<br />

9,45<br />

0,88<br />

3,03<br />

8,37<br />

0,49<br />

Average 25,23 20,38 20,84<br />

Std. dev. 1,23<br />

0,99<br />

0,84


Table 2. Color parameters <strong>of</strong> thermal modified birch wood during accelerated ageing<br />

Tested<br />

material<br />

Unmodified wood<br />

Thermal modified<br />

wood 190 0 C 2h<br />

Thermal modified<br />

wood 190 0 C 6h<br />

Thermal modified<br />

wood 190 0 C 10h<br />

Color <strong>of</strong> wood /<br />

Colour coordinates<br />

L*<br />

a* �r<br />

b* �r<br />

L*<br />

a* �r<br />

b* �r<br />

L*<br />

a* �r<br />

b* �r<br />

L*<br />

a* �r<br />

b* �r<br />

After 0 ageing<br />

cycles<br />

283<br />

�E<br />

After 10 ageing<br />

cycles<br />

�E<br />

After 20 ageing<br />

cycles<br />

Average 75,58 67,08 62,91<br />

Std. dev. 0,64 1,07 0,83<br />

Average<br />

Std. dev.<br />

4,07<br />

0,15<br />

9,44<br />

6,81<br />

0,23<br />

5,65<br />

6,44<br />

0,28<br />

Average 20,39 17,31 21,10<br />

Std. dev. 1,02<br />

0,56<br />

0,69<br />

Average 61,29 55,47 55,27<br />

Std. dev. 1,73 1,79 1,66<br />

Average<br />

Std. dev.<br />

5,57<br />

0,18<br />

7,85<br />

7,35<br />

0,31<br />

0,93<br />

6,67<br />

0,33<br />

Average 25,25 20,31 20,91<br />

Std. dev. 0,76<br />

0,35<br />

0,67<br />

Average 49,54 43,68 44,95<br />

Std. dev. 2,24 1,55 2,00<br />

Average<br />

Std. dev.<br />

6,55<br />

0,13<br />

8,91<br />

8,68<br />

0,27<br />

1,59<br />

8,06<br />

0,19<br />

Average 26,29 19,92 20,66<br />

Std. dev. 1,39<br />

0,52<br />

0,41<br />

Average 48,70 41,54 42,97<br />

Std. dev. 1,96 1,43 1,20<br />

Average<br />

Std. dev.<br />

6,85<br />

0,12<br />

9,97<br />

9,01<br />

0,17<br />

1,75<br />

7,99<br />

0,30<br />

Average 27,17 19,68 19,68<br />

Std. dev. 1,40<br />

0,81<br />

0,85<br />

CONLUSIONS<br />

The research conducted on thermally modified birch wood concerning evaluation <strong>of</strong><br />

the colour changes caused by exposure to UV radiation and accelerated ageing, consisting in<br />

alternating soaking <strong>of</strong> the wood in water, drying, and UV radiation, allow to reach the<br />

following conclusions:<br />

1. Thermal modification causes a colour change <strong>of</strong> the birch wood. The wood colour gets<br />

darker along with extension <strong>of</strong> the modification time.<br />

2. The action <strong>of</strong> UV radiation and accelerated ageing <strong>of</strong> wood cause a colour change <strong>of</strong> the<br />

thermally untreated and treated wood. UV radiation results in a larger extent <strong>of</strong> the colour<br />

change in the thermally unmodified wood in comparison to the modified wood. The<br />

difference is smaller in the case <strong>of</strong> exposure to accelerated ageing.<br />

3. The longer the wood modification time, the wood colour tends to change more rapidly as a<br />

result <strong>of</strong> exposure to accelerated ageing and UV.<br />

4. Exposed to UV, the thermally modified birch wood gets brighter, while the thermally<br />

unmodified wood gets darker.<br />

REFERENCES<br />

1. AYADI N., LEJEUNE F., CHARRIER B., MERLIN A., 2003: Color stability <strong>of</strong> heat<br />

treated wood during artificial weathering. Holz als Roh- und Werkst<strong>of</strong>f 61: 221-226.


2. FEIST W. C., HON D. N. S, 1984: Chemistry <strong>of</strong> weathering and protection. In: Rowell<br />

R. M.; Barbour R. J., eds.: The chemistry <strong>of</strong> solid wood. Advances in Chemistry Series<br />

207. Washington, DC: American Chemical Society. Chapter 11: 401 – 451.<br />

3. GRZE�KIEWICZ M., KRAWIEC J., 2008: Thermally Mdified ash and oak wood as<br />

materials for parqets – mechanical properties <strong>of</strong> wood and ist UV resistance fir<br />

different kinds <strong>of</strong> wood finishing. Ann. WULS – <strong>SGGW</strong>, For. And Wood Technol., 65,<br />

2008: 93-97.<br />

4. MATEJAK M., POPOWSKA E., SZEJKA E., 1983: Vergleichende Untersuchungen<br />

über Methoden des beschleunigten Alterns von Holz, Holzforschung und<br />

Holzvermertung, Heft 5: 117-119.<br />

5. PN-ISO 7724-1:2003 Farby i lakiery – Kolorymetria – Cz��� 1: Podstawy.<br />

6. PN-ISO 7724-2:2003 Farby i lakiery – Kolorymetria – Cz��� 2: Pomiar barwy.<br />

7. PN-ISO 7724-3:2003 Farby i lakiery – Kolorymetria – Cz��� 3: Obliczanie ró�nic<br />

barwy.<br />

8. WILLIAMS R. S., 2005: Weathering <strong>of</strong> wood. Handbook <strong>of</strong> wood chemistry and<br />

wood composites. Boca Raton: CRC Press, 2005: 139-185.<br />

Streszczenie: Badanie zmian barwy drewna brzozy modyfikowanej termicznie<br />

spowodowanych promieniami UV i przy�pieszonym starzeniem Coraz szersze stosowanie<br />

drewna poddanego obróbce termicznej w aran�acji budynków jak i w postaci elementów<br />

architektury zewn�trznej wi��e si� z niesta�o�ci� barwy. Na potrzeby niniejszej pracy<br />

wykorzystano drewno brzozowe poddane obróbce termicznej w ró�nych wariantach<br />

czasowych. Dowiedziono, �e na�wietlanie promieniami UV i sztuczne starzenie powoduje<br />

zmian� barwy drewna brzozowego poddanego obróbce termicznej. Na wielko�� zmiany<br />

barwy wp�yw ma czas modyfikacji.<br />

S�owa kluczowe: drewno modyfikowane termicznie, barwa drewna, foto-starzenie.<br />

Corresponding authors:<br />

Agnieszka Jankowska<br />

Sebastian St�pniewski<br />

Department <strong>of</strong> Wood <strong>Sciences</strong> and Wood Protection,<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> Science – <strong>SGGW</strong>,<br />

Ul. Nowoursynowska 159,<br />

02-776 Warszawa<br />

Poland<br />

E-mail: agnieszka_milewska@sggw.pl<br />

E-mail: sebastian_stepniewski@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> Science – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 285-290<br />

(Ann. WULS – <strong>SGGW</strong>, For. And Wood Technol. 71, 2010)<br />

Emissions CO and CO2 from particleboard filled with mineral wool in fire<br />

conditions<br />

WALDEMAR JASKÓ�OWSKI 1) , MARIUSZ MAMI�SKI 2) ,<br />

1) The Main School <strong>of</strong> Fire Service (SGSP)<br />

2) Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Abstract: The objective <strong>of</strong> this study was to manufacture particleboards using mineral wool as filler. Three<br />

series <strong>of</strong> boards with various contents <strong>of</strong> mineral wool (10, 20, 30 wt%) were successfully manufactured using<br />

urea-formaldehyde resin as binder. The samples were tested using cone calorimeter at heat fluxes: 30, 50 and 70<br />

kW/m 2 . Specific emissions curves <strong>of</strong> all such composites show that are similar independently <strong>of</strong> content mineral<br />

in particleboards. All composites tested are characterized by similar values compared to control (traditional)<br />

particleboards.<br />

Key words: toxicity, particleboard, mineral wool, cone calorimeter<br />

INTRODUCTION<br />

Particleboards are most popular materials used in the building industry. Due to its use<br />

for furniture and insulating material, particleboards are the largest proportion <strong>of</strong> material used.<br />

Polystyrene, polyurethane and mineral particles for the production for insulating materials<br />

also are used. On the contrary to wood-based materials or synthetic foams, the main<br />

advantage <strong>of</strong> mineral wool, apart from excellent insulation properties, is its inflammability. Is<br />

it possible to combine particleboards with mineral products? The answer is yes. There are<br />

some reports on compounding wood material with mineral components—like vermiculite<br />

(Kozlowski et al. 1999) cement (Okino et al. 2005; Qi et al. 2006) or potassium<br />

aluminosilicate (Giancaspro et al. 2008). Production <strong>of</strong> this type composites is not a big<br />

problem. The use <strong>of</strong> such products is determined not only by technological capabilities, but<br />

also by the mechanical and fire properties. Materials used in buildings have to discharge<br />

suitable criteria <strong>of</strong> fire safety. These requirements relate to toxic, smoke and thermokinetic<br />

properties in fire conditions. In this paper specific emission [g/g] and rate <strong>of</strong> emission [g/g] <strong>of</strong><br />

thermal decomposition and combustion products <strong>of</strong> manufactured boards are presented. The<br />

toxicity <strong>of</strong> gaseous products <strong>of</strong> combustion <strong>of</strong> olefins and lignocellulosics is determined by<br />

emission <strong>of</strong> CO accompanied by CO2 (Borysiak et al.2006). These chemical compounds,<br />

including also HCN, HCL, SOx and NOx (PN-B-02855:1988) are taken into account when<br />

assessing the toxicity <strong>of</strong> building materials.<br />

MATERIALS AND METHODS<br />

One-layer particleboards <strong>of</strong> dimensions 330 × 330 ×12 mm (density 600 kg/m3) were<br />

made in three series: 10, 20 or 30 wt% <strong>of</strong> mineral wool. The boards were made <strong>of</strong> industrial<br />

pine flakes (6.0% moisture content) and commercial mineral wool (2.2% moisture content). A<br />

UF resin was used as adhesive hardened with 10% NH4Cl. UF 50 parts by weight, water 12<br />

parts by weight. Glue load was 10 wt%. Purely pine-flake boards were used as reference.<br />

Mat preparation was performed as described elsewhere (Mami�ski et al. 2010).<br />

Pressing conditions: platens temperature 180°C, maximum unit pressure 2.5 MPa, time 291 s.<br />

Prior to testing, the boards were conditioned at 20 ± 2°C and 65 ± 5% RH for 7 days.<br />

285


Testing was conducted in the Main School <strong>of</strong> Fire Service with the use <strong>of</strong> a cone<br />

calorimeter (Fig. 1). In the subject tests use was made <strong>of</strong> the measurement methodology<br />

described in the standard ISO 5660-1:2002.<br />

Fig.1. Cone calorimeter<br />

RESULTS<br />

The obtained results are shown in Figs. 3 – 8.<br />

.<br />

Fig. 3a. Specific emission CO for particleboard filled mineral wool; external heat <strong>of</strong> flux – 30 kW/m 2<br />

286


Fig. 3b. Specific emission CO2 for particleboard filled mineral wool; external heat <strong>of</strong> flux – 30 kW/m 2<br />

Fig. 4a. Specific emission CO for particleboard filled mineral wool; external heat <strong>of</strong> flux – 50 kW/m 2<br />

287


Fig. 4b. Specific emission CO2 for particleboard filled mineral wool; external heat <strong>of</strong> flux – 50 kW/m 2<br />

Fig. 5a. Specific emission CO for particleboard filled mineral wool; external heat <strong>of</strong> flux – 70 kW/m 2<br />

288


Fig. 5b. Specific emission CO2 for particleboard filled mineral wool; external heat <strong>of</strong> flux – 70 kW/m 2<br />

CONCLUSION<br />

In case <strong>of</strong> fire for safety <strong>of</strong> people are the most important first few minutes (in I stage<br />

<strong>of</strong> fire). Only then effective evacuation is possible. Based on the results <strong>of</strong> this study the<br />

following conclusions can be drawn:<br />

1. Addition <strong>of</strong> mineral wool does not change <strong>of</strong> shape curves <strong>of</strong> CO and CO2 independently<br />

<strong>of</strong> the percentage <strong>of</strong> wool and the level <strong>of</strong> intensity <strong>of</strong> thermal radiation<br />

REFERENCES<br />

1. BORYSIAK S., PAUKSZTA D., HELWIG M. 2006: Flammability <strong>of</strong> wood-polyropylene<br />

composites, Polymer Degradation and Stability 91, 3339-3343<br />

2. GIANCASPRO J, PAPAKONSTANTINOU C, BALAGURU P. 2008: Fire resistance <strong>of</strong><br />

inorganic sawdust biocomposite. Compos Sci Technol 68: 1895–1902<br />

3. ISO 5660-1:2002: Reaction to fire tests. Heat release, smoke production and mass loss rate.<br />

Part 1. Heat release rate (cone calorimeter method)<br />

4. KOZLOWSKI R, MIELENIAK B, HELWIG M, PRZEPIERA A. 1999: Flame resistant<br />

lignocellulosic-mineral composite particleboards. Polym Degrad Stabil 64: 523–528,<br />

5. MAMI�SKI M�, KRÓL ME, JASKÓ�OWSKI W, BORYSIUK P. 2010: Wood-mineral<br />

wool hybrid particleboards, Eur J Wood Prod, DOI 10.1007/s00107-010-0470-6<br />

6. OKINO EYA, DE SOUZA RM, SANTANA MAE, DA S. ALVES MV, DE SOUSA ME,<br />

TEIXEIRA DE. 2005: Physico-mechanical properties and decay resistance <strong>of</strong> Cupressus<br />

spp. cement-bonded particleboards. Cement Concrete Comp 27: 333–338<br />

7. QI H, COOPER PA, WAN H. 2006: Effect <strong>of</strong> carbon dioxide injection on production <strong>of</strong><br />

wood cement composites from waste medium density fiberboard (MDF). Waste Manage<br />

26: 509–515<br />

289


Streszczenie: Emisja CO i CO2 z p�yty wiórowej wype�nionej we�n� mineraln�. Dla potrzeb<br />

pracy wykonano trójwarstwowe p�yty wiórowe z dodatkiem we�ny mineralnej której udzia�<br />

stanowi� odpowiednio 10, 20 i 30 % wagowych warstwy wewn�trznej p�yt. G�sto��<br />

badanych p�yt wynosi�a ok. 580-600 kg/m3. Materia� badawczy poddano oddzia�ywaniu<br />

strumienia promieniowania cieplnego o nat��eniu 30, 50 i 70 kW/m2. Do bada�<br />

eksperymentalnych wykorzystano kalorymetr sto�kowy. Warunki badania oparto na normie<br />

ISO EN 5660-2: 2002. Podczas bada� rejestrowano emisj� w�a�ciw� CO i CO2. Otrzymane<br />

wyniki porównano z uzyskanymi dla p�yty kontrolnej (komercyjnej). Na podstawie bada�<br />

mo�na stwierdzi�, �e dodanie we�ny mineralnej do p�yty wiórowej zasadniczo nie zmienia<br />

emisji w�a�ciwej przedmiotowych gazów niezale�nie od poziomu nat��enia promieniowania<br />

cieplnego w porównaniu z p�yt� kontroln�.<br />

Corresponding authors:<br />

Waldemar Jaskó�owski,<br />

The Main School <strong>of</strong> Fire Service,<br />

Department <strong>of</strong> Combustion and Fire Theory,<br />

52/54 S�owackiego St.,<br />

01-629 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: wjaskolowski@sgsp.edu.pl<br />

Mariusz Mami�ski<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

159 Nowoursynowska St.,<br />

02-776 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: mariusz_maminski@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> Science – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 291-295<br />

(Ann. WULS – <strong>SGGW</strong>, For. And Wood Technol. 71, 2010)<br />

Emissions <strong>of</strong> CO and CO2 from particleboard filled with polystyrene in fire<br />

conditions<br />

WALDEMAR JASKÓ�OWSKI 1) , PIOTR BORYSIUK 2) ,<br />

1) The Main School <strong>of</strong> Fire Service (SGSP)<br />

2) Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Abstract: Emissions <strong>of</strong> CO and CO2 from particleboard filled with polystyrene in fire conditions . Three-layer<br />

particleboards filled with 5, 10, 20 wt % foamed polystyrene were prepared. Densities <strong>of</strong> particleboards were<br />

approximately 500 kg/m 3 . Selected fire properties <strong>of</strong> the boards were determined. Cone calorimeter was used as<br />

a basic tool. The examined material placed horizontally with reference to radiator was subject to thermal<br />

radiation flux with intensity <strong>of</strong> 30, 50 and 70 kW/m 2 . The combustion reaction was initiated by ignition.<br />

Key words: toxicity, particleboard, foamed polystyrene, cone calorimeter, emission<br />

INTRODUCTION<br />

Toxic gases produced at fires are responsible for the majority <strong>of</strong> deaths at building<br />

fires. These elements contribute to the death <strong>of</strong> over 70% fire victims. It is generally assumed<br />

that carbon monoxide (CO) and carbon dioxide (CO2) is the most important gases produced at<br />

fires. They are the main combustion products from cellulosic materials. Their primary action<br />

comprises disturbance <strong>of</strong> the process in which oxygen is supplied to cells in an organism,<br />

which frequently leads to death <strong>of</strong> the affected person. An additional hazard connected with<br />

the occurrence <strong>of</strong> CO and CO2 is the fact that those gases are odourless and cannot be<br />

detected using the smell sense. Emission rate [g/s] and specific emission [g/g] are parameters<br />

which determines the concentration <strong>of</strong> toxic gases in the first stage <strong>of</strong> fire development and<br />

consequently significantly affects evacuation conditions. These parameters are connected<br />

among others in a direct way with the type <strong>of</strong> materials and interior decoration elements used<br />

in the building. Specific emission <strong>of</strong> toxic gases is basic parameters used to calculate index <strong>of</strong><br />

toxicity [7]. The degree <strong>of</strong> toxicity depend on fire stage including: non flaming (self sustained<br />

smouldering, oxidative, external radiation, anaerobic external radiation) and well-ventilated<br />

flaming right through to under-ventilated flaming [4]. In recent years, there has been a<br />

dynamically increase in the application <strong>of</strong> chemicals to wood-based materials. In many<br />

research centres worldwide, including also in Poland, works are being carried out in the field<br />

<strong>of</strong> material engineering. The main objective is to achieve optimum values between the<br />

application safety and production economy. For production <strong>of</strong> building materials <strong>of</strong> great<br />

importance is also the ecological aspect. Utilization <strong>of</strong> polymeric materials to improve the<br />

properties <strong>of</strong> wood based panels has gained much attention worldwide [1, 2, 6]. The most<br />

popular additive in Europe is virgin polypropylene, whereas the global preference is for<br />

polyethylene [3, 8]. Review <strong>of</strong> literature indicates that there are no studies on wood based<br />

materials with polystyrene, in it also low-density panels, and there are few publications the<br />

aspect <strong>of</strong> toxicity in fire.<br />

MATERIALS AND METHODS<br />

Three layer particleboards with density <strong>of</strong> 500 kg/m 3 and thickness <strong>of</strong> 18 mm, filled<br />

with foamed polystyrene have been used for experiments. The boards have been made at<br />

Department <strong>of</strong> Wood Based Panels, Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong><br />

<strong>Sciences</strong> – <strong>SGGW</strong>. Foamed polystyrene in a form <strong>of</strong> granules in amount <strong>of</strong> 5%, 10% and 20%<br />

291


was added to core layer <strong>of</strong> the boards so that the assumed density <strong>of</strong> the board could be<br />

maintained. All variants <strong>of</strong> the boards were bonded with UF resin (glue rates: face layer – 8<br />

%, core layer – 12 %). Mixing <strong>of</strong> the components (polystyrene + wood chips) and formation<br />

<strong>of</strong> the boards was made manually with the use <strong>of</strong> a special mould. Pressing was carried out by<br />

one shelf press, maintaining the following parameters:<br />

� pressing time: 324 s.<br />

� pressing unit pressure: 2.5 MPa<br />

� pressing temperature: 180 degrees C<br />

Testing was conducted in the Main School <strong>of</strong> Fire Service with the use <strong>of</strong> a cone<br />

calorimeter (Fig. 1). In the subject tests use was made <strong>of</strong> the measurement methodology<br />

described in the standard ISO 5660-1:2002 [8].<br />

Fig.1. Cone calorimeter<br />

RESULTS<br />

The obtained results are shown in Figs. 2 – 7.<br />

Fig. 2. Specific emission CO for particleboard filled polystyrene; external heat <strong>of</strong> flux – 30 kW/m 2<br />

292


Fig. 3. Specific emission CO2 for particleboard filled polystyrene; external heat <strong>of</strong> flux – 30 kW/m 2<br />

Fig. 4. Specific emission CO for particleboard filled polystyrene; external heat <strong>of</strong> flux – 50 kW/m 2<br />

Fig. 5. Specific emission CO2 for particleboard filled polystyrene; external heat <strong>of</strong> flux – 50 kW/m 2<br />

293


Fig. 6. Specific emission CO for particleboard filled polystyrene; external heat <strong>of</strong> flux – 70 kW/m 2<br />

Fig. 7. Specific emission CO2 for particleboard filled polystyrene; external heat <strong>of</strong> flux – 70 kW/m 2<br />

CONCLUSIONS<br />

Emission toxic products <strong>of</strong> thermal decomposition and combustion different materials is<br />

very important in aspect <strong>of</strong> fire safety. These products in really, decide <strong>of</strong> the toxicity <strong>of</strong> the<br />

fire environment. Specific emission is appropriate parameter, which is used to define index<br />

toxicometric. Based on the results <strong>of</strong> this study the following conclusions can be drawn: the<br />

addition <strong>of</strong> the foamed polystyrene to core layer <strong>of</strong> low-density particleboards did not<br />

significantly influence on emission <strong>of</strong> CO and CO2. This thesis applies to all tested samples<br />

independently <strong>of</strong> the percentage <strong>of</strong> foamed polystyrene. After flameout the increased<br />

emissions <strong>of</strong> CO can be observed regardless <strong>of</strong> the intensity <strong>of</strong> external heat flux.<br />

294


REFERENCES<br />

1. BAYSAL E., YALINKILIC M.K., ALTINOK M., SONMEZ A., PEKER H.,<br />

COLAK M., 2007: Some physical, biological, mechanical, and fire properties <strong>of</strong> wood<br />

polymer composite (WPC) pretreated with boric acid and borax mixture, Construction<br />

and Building Materials, 21, 1879-1885<br />

2. CLEMONS C. 2002: Wood-plastic composites in the United States: the interfacing <strong>of</strong><br />

two industries, Forest Product Journal, 52(6) 8-10<br />

3. GARCIA M., HIDALGO J., GARMENDIA I., GARCIA-JACA J., 2009: Woodplastic<br />

composites with better fire retardancy and durability performance, Composites:<br />

Part A 40, 1772-1776<br />

4. ISO 19706:2007 Guidelines for assessing the fire threat people<br />

5. ISO 5660-1:2002 Reaction to fire tests. Heat release, smoke production and mass loss<br />

rate. Part 1. Heat release rate (cone calorimeter method)<br />

6. MCHENRY E., STACHURSKI Z.H. 2003: Composite materials based on wood nylon<br />

fibre, Composites Part A 34, 171-181<br />

7. PN-B-02855:1988 Ochrona przeciwpo�arowa budynków. Metoda badania<br />

wydzielania toksycznych produktów rozk�adu i spalania materia�ów<br />

8. RABERG U., HAFREN J.2008: Biodegradation and appearance <strong>of</strong> plastic treated<br />

solid wood, International Biodeterioration and Biodegradation 62, 210-213<br />

Streszczenie: Emisja CO i CO2 z p�yty wiórowej z dodatkiem polistyrenu w warunkach<br />

po�arowych. W ramach pracy wykonano trójwarstwowe p�yty wiórowe z dodatkiem spienionego<br />

polistyrenu (styropianu) którego udzia� stanowi� odpowiednio 5, 10 i 20 % warstwy wewn�trznej<br />

p�yt. G�sto�� badanych p�yt wynosi�a 500 kg/m 3 . Otrzymane materia�y poddano oddzia�ywaniu<br />

strumienia promieniowania cieplnego o nat��eniu 30, 50 i 70 kW/m 2 . Do bada� eksperymentalnych<br />

wykorzystano kalorymetr sto�kowy. Warunki badania oparto na normie ISO EN 5660-2. Podczas<br />

bada� rejestrowano emisj� w�a�ciw� CO i CO2. Otrzymane rezultaty porównano z wyniki uzyskanymi<br />

dla p�yty kontrolnej (komercyjnej). Na podstawie bada� mo�na stwierdzi�, �e dodatek polistyrenu<br />

spienionego do warstwy �rodkowej p�yty wiórowej zasadniczo nie zmienia emisji w�a�ciwej<br />

przedmiotowych gazów niezale�nie od poziomu nat��enia promieniowania cieplnego w porównaniu z<br />

p�yt� kontroln�.<br />

Corresponding authors:<br />

Waldemar Jaskó�owski,<br />

The Main School <strong>of</strong> Fire Service,<br />

Department <strong>of</strong> Combustion and Fire Theory,<br />

52/54 S�owackiego St.,<br />

01-629 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: wjaskolowski@sgsp.edu.pl<br />

Piotr Borysiuk<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

159 Nowoursynowska St.,<br />

02-776 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: piotr_borysiuk@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> Science – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 296-299<br />

(Ann. WULS – <strong>SGGW</strong>, For. And Wood Technol. 71, 2010)<br />

Thermogravimetric research on the influence <strong>of</strong> wood species on its thermal<br />

decomposition<br />

WALDEMAR JASKÓ�OWSKI 1) , PAWE� KOZAKIEWICZ 2) , MAREK SZWED 3)<br />

1)<br />

The Main School <strong>of</strong> Fire Service (SGSP)<br />

2)<br />

Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

3)<br />

Fire Brigade, Rybnik<br />

Abstract: Thermogravimetric research on the influence <strong>of</strong> wood species on its thermal decomposition. The<br />

purpose <strong>of</strong> this work is to gain the knowledge on thermal decomposition <strong>of</strong> exotic woods and comparing it to<br />

native species. This paper described experimental research with the use <strong>of</strong> thermogravimeter for thermal<br />

analysis. The experimental material was made from the following species <strong>of</strong> wood: opepe, iroko, merbau, oak.<br />

The measurements were made in polithermal conditions with heating rates: 2,5 o C/min, 10 o C/min and 20 o C/min,<br />

under air atmosphere. Obtained results show higher thermal resistance <strong>of</strong> exotic woods.<br />

Key words: exotic wood, wood, thermogravimetry, thermal decomposition,<br />

INTRODUCTION<br />

In fire conditions wood is under the influence <strong>of</strong> heat flux. The effect <strong>of</strong> hot gases on<br />

the surface <strong>of</strong> the wood and thermal radiation begin the process <strong>of</strong> thermal decomposition,<br />

which starts the flaming or smoldering combustion. The knowledge <strong>of</strong> thermal decomposition<br />

can be used for modeling building fires (Bryden et al 2002). The order <strong>of</strong> the process <strong>of</strong><br />

pyrolysis considerably influences the heat emission and in consequence the dynamics <strong>of</strong> fire<br />

development. This is why many scientists and research centers in Poland and all over the<br />

world are interested in this area <strong>of</strong> knowledge (Bilbao and Mastral 1996, Zawadzki et al.<br />

2007, Muller-Hagedorn 2002, Peters and Bruch 2001, Gao et al. 2005, Bilbao et al. 1992,<br />

Blaine and Hahn 1998). The main subject <strong>of</strong> research are European woods and knowledge<br />

from this area is vast. This cannot be related to exotic woods, which are more <strong>of</strong>ten used in<br />

construction. Thermal decomposition <strong>of</strong> wood is a very complicated process which proceeds<br />

in hetero phase configuration. For widening the knowledge about thermal decomposition<br />

thermogravimetric measurements can be used. From the analysis <strong>of</strong> obtained diagrams we can<br />

get temperatures <strong>of</strong> the beginning <strong>of</strong> thermal decomposition and kinetic parameters <strong>of</strong> this<br />

process. Mostly it is: the grade <strong>of</strong> reaction, activation energy and pre-exponential factor from<br />

the Arrhenius equation. The grade <strong>of</strong> reaction is determines the speed <strong>of</strong> mass decrease and<br />

the heat <strong>of</strong> combustion <strong>of</strong> gaseous products and it is very useful when describing the<br />

relativeness <strong>of</strong> mass decrease in function <strong>of</strong> temperature. Thanks to thermogravimetric research it<br />

is possible to, for example, determine temperatures in which decomposition reactions take place and<br />

connected with it sample mass changes.<br />

MATERIALS AND METHODS<br />

The apparatus used for thermal decomposition wood is shown in Fig. 1 (produced by<br />

TA Instruments, model Q 500). In the research samples from European oak (Quercus robur<br />

L.), opepe (Nauclea diderrichii De Wild), iroko (Milicia excelsa (Welw.) C.C.Berg) and<br />

merbau (Intsia bijunga Ktze) woods were used (the names <strong>of</strong> wood according to PN-EN<br />

13556:2005). Every kind <strong>of</strong> wood used for research was <strong>of</strong> natural origin. Prior to<br />

thermogravimetric experiments, samples were grounded to small chips (1 mm). Masses <strong>of</strong> the<br />

samples oscillated between 39,57 mg and 42,69 mg.� Such size <strong>of</strong> particles is preferable in<br />

chemical analysis <strong>of</strong> wood. It is also compatible with results obtained by Bilbao (Bilbao et al.<br />

1992), who stated that thermal decomposition <strong>of</strong> samples smaller than 20 mm eliminates the<br />

296


influence <strong>of</strong> thermal conduction in wood on the process <strong>of</strong> pyrolysis. The samples were<br />

exposed to thermal decomposition in polithermal conditions. The heating rates: 2,5 0 C/min,<br />

10 0 C/min and 20 0 C/min. The measurements were made under air atmosphere.<br />

Fig.1. Thermogravimeter for the thermal analysis<br />

RESULTS AND CONLUSSIONS<br />

Obtained results are summarized in table 1. The thermal process describes two main<br />

phases. The first most important phase started at 209,3 0 C (for oak, 2,5 0 C/min) to 248,7 0 C (for<br />

merbau, 20 0 C/min).<br />

Table 1. Selected results from thermal decomposition <strong>of</strong> wood samples<br />

Kind <strong>of</strong><br />

wood<br />

� (�C/min) TPap (�C) T50% (�C) T I maks (�C) T II maks. ( 0 C) mpoz. (%)<br />

oak<br />

2,5<br />

10<br />

209,3<br />

224,2<br />

315,4<br />

323,4<br />

297,1<br />

317,9<br />

414,6<br />

418,2<br />

0,9<br />

0,8<br />

20 241,2 336,4 330,9 411,9 0,6<br />

opepe<br />

2,5<br />

10<br />

220,3<br />

234,2<br />

303,3<br />

329,4<br />

301,6<br />

324,4<br />

426,6<br />

412,0<br />

0,9<br />

1,1<br />

20 242,4 341,9 339,8 402,1 0,7<br />

iroko<br />

2,5<br />

10<br />

217,7<br />

235,8<br />

313,7<br />

316,7<br />

284,4<br />

304,7<br />

384,0<br />

376,6<br />

1,2<br />

0,9<br />

20 248,5 321,9 315,1 347,3 0,8<br />

merbau<br />

2,5<br />

10<br />

225,3<br />

245,0<br />

314,1<br />

342,7<br />

293,1<br />

323,9<br />

424,9<br />

397,8<br />

0,6<br />

0,9<br />

20 248,7 342,7 332,2 378,6 0,6<br />

� – heating rate (�C/min),<br />

TI maks – pyrolysis temperature <strong>of</strong> the beginning <strong>of</strong> an active phase I (�C),<br />

TII maks – pyrolysis temperature <strong>of</strong> the beginning <strong>of</strong> an active phase II (�C),<br />

T50% - temperature <strong>of</strong> 50% mass loss (�C),<br />

mpoz. – mass <strong>of</strong> pyrolytic residue (%).<br />

Merbau wood in its composition contains a high content <strong>of</strong> substances non-structural<br />

(several percent - normally in the domestic wood structural components <strong>of</strong> a few%, ie 3-5%).<br />

Some <strong>of</strong> them are out <strong>of</strong> light cells merbau (the structure <strong>of</strong> the wood) - preventing heat<br />

transfer by lifting and extraction <strong>of</strong> volatile substances as a result <strong>of</strong> thermal decomposition<br />

(Monder Kozakiewicz 2010). During the studies <strong>of</strong> thermal decomposition was observed<br />

implications on this process. Exemplary thermogram for merbau wood is shown in Fig 2.<br />

297


Fig 2. Thermogram (TG i DTG) for merbau wood sample, with heating speed 2,5 o C/min.<br />

On the basis <strong>of</strong> made experiments and obtained results we can present following<br />

conclusions:<br />

1. Analyzing given curves we can define, that thermal degradation <strong>of</strong> a sample begins fastest<br />

at heating rate <strong>of</strong> 2,5 o C/min. Together with the growth <strong>of</strong> heating rate grows temperature <strong>of</strong><br />

the beginning <strong>of</strong> thermal decomposition – the highest at 20 o C/min.<br />

2. Obtained results show higher thermal resistance <strong>of</strong> exotic woods. The difference is clearly<br />

visible when the heating rate is low. However with higher heating rates this difference<br />

blurs. We can also observe that temperatures <strong>of</strong> partial mass decrease do not show the<br />

superiority <strong>of</strong> exotic woods over domestic wood.<br />

3. Density <strong>of</strong> the wood is one <strong>of</strong> the dominant parameters influencing thermal decomposition.<br />

We can observe that woods with higher densities thermally decompose later (in higher<br />

temperatures) than woods with lower densities. Moreover when we compare exotic woods<br />

and oak with similar densities (opepe and oak) we can observe better performance <strong>of</strong><br />

exotic wood.<br />

4. Temperature values <strong>of</strong> partial mass decrease <strong>of</strong> examined wood samples were decreasing<br />

with the decrease in heating speed. This shows that examined woods decomposed earlier<br />

while heated with lower rate. The higher the rate <strong>of</strong> heating the later the decomposition can<br />

be observed.<br />

REFERENCES<br />

1. BILBAO R., MASTRAL J. F., 1996: Modeling <strong>of</strong> the pyrolysis <strong>of</strong> wet wood, Journal<br />

<strong>of</strong> Analytical and Applied Pyrolysis, 36; 81-97<br />

2. BILBAO R., MURILLO M. B., MILLERA A., 1992: Angular and radial temperature<br />

pr<strong>of</strong>iles in the thermal decomposition <strong>of</strong> wood, Thermochimica Acta, 200; 401-411<br />

3. BLAINE R.L., HAHN B.K., 1998: Obtaining kinetic parameters by modulated<br />

thermogravietry, Journal <strong>of</strong> Analytical and Applied Pyrolysis, 54; 695-704.<br />

298


4. BRYDEN K.M., RAGLAND K.W., RUTLAND C.J., 2002: Modeling thermally<br />

thick pyrolysis <strong>of</strong> wood, Biomass and Bioenergy 22; 41-53<br />

5. GAO M., LING B., YANG S., ZHAO M.,2005: Flame retardancy <strong>of</strong> wood treated<br />

with guanidine compound characterized by thermal degradation behavior, Journal <strong>of</strong><br />

Analytical and Applied Pyrolysis, 73; 151-156.<br />

6. MONDER S., KOZAKIEWICZ P., 2010: Palno�� egzotyków. Przegl�d Po�arniczy nr<br />

6/2010: 25-27.<br />

7. MULLER-HAGEDORN M., BOCKHORN H., KREBS L., MULLER U., 2002: A<br />

comparative kinetic study on the pyrolysis <strong>of</strong> three different wood species, Journal <strong>of</strong><br />

Analytical and Applied Pyrolysis, 68; 231-249<br />

8. PETERS B., BRUCH C., 2001: A flexible and stable numerical method for<br />

simulating the thermal decomposition <strong>of</strong> wood particles, Chemosphere, 42; 481-490<br />

9. PN-EN 13556:2005 Drewno okr�g�e i tarcica. Terminologia stosowana w handlu<br />

drewnem w Europie.<br />

10. ZAWADZKI J., GRZE�KIEWICZ M., GAWRON J., ZIELENKIEWICZ T., 2007:<br />

Chemical behavior <strong>of</strong> pine wood (Pinus silvestris L.) modified by heat, <strong>Annals</strong> <strong>of</strong><br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>, Forestry and Wood Technology No 62.<br />

Streszczenie: Termograwimetryczne badanie wp�ywu rodzaju drewna na jego rozk�ad<br />

termiczny. Zakres pracy obj�� badania eksperymentalne z wykorzystaniem termo grawimetru<br />

do analizy termicznej. Materia� badawczy stanowi�y próbki krajowego drewna d�bu (Quercus<br />

robur L.) oraz nast�puj�cych gatunków drewna egzotycznego: badi (Nauclea diderrichii De<br />

Wild), iroko (Milicia excelsa (Welw.) C.C.Berg), merbau (Intsia bijunga Ktze) oraz<br />

krajowego d�bu. Pomiary zrealizowano w warunkach politermicznych z zastosowaniem<br />

szybko�ci ogrzewania: 2,5 0 C/min, 10 0 C/min i 20 0 C/min, w atmosferze powietrza. Wyniki<br />

bada� wskazuj�, �e temperatura pocz�tku rozk�adu termicznego drewna egzotycznego jest<br />

wy�sza. Zale�no�� ta jest szczególnie widoczna dla najni�szej szybko�ci ogrzewania<br />

(2,5 0 C/min).<br />

Corresponding authors:<br />

Waldemar Jaskó�owski,<br />

The Main School <strong>of</strong> Fire Service,<br />

Department <strong>of</strong> Combustion and Fire Theory,<br />

52/54 S�owackiego St.,<br />

01-629 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: wjaskolowski@sgsp.edu.pl<br />

Pawe� Kozakiewicz<br />

Faculty <strong>of</strong> Wood Technology,<br />

Department <strong>of</strong> Wood <strong>Sciences</strong> and Wood Protection,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

159 Nowoursynowska St.,<br />

02-776 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: pawe�_kozakiewicz@sggw.pl<br />

Marek Szwed<br />

Fire Unit Rybnik,<br />

4 �w. Józefa St.,<br />

44-200 Rybnik,<br />

Poland<br />

e-mail: azgeth@gmail.com


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> Science – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 300-303<br />

(Ann. WULS – <strong>SGGW</strong>, For. And Wood Technol. 71, 2010)<br />

Study on the influence <strong>of</strong> thickness <strong>of</strong> dust layer to ignition temperature in<br />

selected types <strong>of</strong> exotic woods<br />

WALDEMAR JASKÓ�OWSKI 1) , PAWE� KOZAKIEWICZ 2) , MAREK POP�AWSKI 3)<br />

1)<br />

The Main School <strong>of</strong> Fire Service (SGSP)<br />

2)<br />

Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

3)<br />

Fire Brigade, Choszczno<br />

Abstract: Study on the influence <strong>of</strong> thickness <strong>of</strong> dust layer to ignition temperature in selected types <strong>of</strong> exotic<br />

woods. Studies on the influence <strong>of</strong> thickness <strong>of</strong> dust layer to ignition temperature were carried out in this work.<br />

Dust layers <strong>of</strong> thickness 5, 10 and 15 cm were tested. The study involved five types dust <strong>of</strong> woods, exotic and<br />

domestic, namely jatoba, lapacho, teak, eucalyptus and European oak. Wood particle size was below 500 μm.<br />

Experimental studies conducted according to PN-EN 50281-2-1:2002 standard. In relation under the standard<br />

tests are performed for three thickness, ie, for 5, 10 and 15 mm, while according to the standard test is performed<br />

for a layer <strong>of</strong> 5 mm.<br />

Keywords: flameless combustion, dust, ignition, ignition temperature<br />

INTRODUCTION<br />

Up to recently in Poland only wood used for industry was wood which originated in<br />

polish or European woods. In the last few years we can observe a rising interest in exotic<br />

wood (Wesselik, Ravenshorst 2008). Esthetic values make them competitive to native wood.<br />

Wood made from exotic species, present on polish market for several years, gradually earns<br />

the trust <strong>of</strong> rising group <strong>of</strong> supporters. On a large scale in trade appeared floors, veneers and<br />

slabs made from exotic wood. They don’t only distinguish themselves with original looks but<br />

also with different than native physical possibility. During manufacturing wood, side products<br />

(waste) like dust are made. They make considerable danger for life and health (work safety)<br />

and fire-explosion danger. The condition <strong>of</strong> the dust which is in the work environment<br />

determines the character <strong>of</strong> the danger. The analysis <strong>of</strong> literature ( El-Sayed and Abdel-Latif<br />

2000, Lebecki et al. 2003, Dyduch and Majcher 2006) shows that most <strong>of</strong> it concerns mainly<br />

the danger made the airborne dust (aerosol). Moreover it concerns only the wood dust made<br />

when manufacturing native wood. The settled dust is as dangerous as the airborne dust. Static<br />

state is mainly the danger for smoldering but this process started in dust can cause an<br />

explosion. One <strong>of</strong> the main parameters characterising the danger <strong>of</strong> smoldering is the ignition<br />

temperature. It is determined experimentally in defined conditions, which can vary from real<br />

conditions. This is about i.a. thickness <strong>of</strong> layer. In this publication results <strong>of</strong> research <strong>of</strong> five<br />

species <strong>of</strong> wood with different thicknesses <strong>of</strong> layers will be shown.<br />

MATERIALS AND METHODS<br />

The study involved five dust <strong>of</strong> woods, namely jatoba (Hymenaea courbaril Linn.),<br />

lapacho (Tabebuia sp.), teak (Tectona grandis L.), eucalyptus (Eucalyptus grandis W. Hill.)<br />

and European oak (Quercus robur L.). Wide characteristic <strong>of</strong> researched kind <strong>of</strong> woods is<br />

presented in following publication: Kozakiewicz and Szkar�at 2004, Kozakiewicz 2005,<br />

Kozakiewicz 2008. The particle size <strong>of</strong> dusts up to 500 μm. Each series <strong>of</strong> tests are performed<br />

for three layer <strong>of</strong> dust i.e 5, 10 and 15 mm.<br />

300


In this study, experiments were carried according to PN-EN 50281-2-1:2002 standard<br />

(fig.1).It is recognized that there was a dust layer ignition if:<br />

1. the observed glowing or combustion, or<br />

2. the measured value <strong>of</strong> the temperature reached 450 ° C or,<br />

3. measured the temperature exceeded 250 K temperature <strong>of</strong> the hotplate.<br />

thermocouple<br />

measuring<br />

hotplate<br />

Fig.1. The test set to measuring temperature <strong>of</strong> smoldering <strong>of</strong> dust.<br />

RESULTS AND DISCUSSION<br />

A fire or explosion <strong>of</strong> dust <strong>of</strong>ten cause serious property damage and sometimes human<br />

objects timber industry. The direct risk <strong>of</strong> fire or explosion depends on the condition in which<br />

the dust exists. Examined in the present study dust is primarily the cause <strong>of</strong> ignition. In this<br />

case, relates to the ignition <strong>of</strong> dust layer, and means the risk <strong>of</strong> flameless combustion. For<br />

several years, you may experience increased interest in exotic wood and its reprocessing. In<br />

the literature, there is no sufficient scientific studies relating to fire safety in particular, dust<br />

generated during the machining process <strong>of</strong> exotic wood. Firing temperature in the layer <strong>of</strong><br />

dust is one <strong>of</strong> the parameters whose knowledge contributes significantly to raising the level <strong>of</strong><br />

fire safety. The studies went beyond the norm because the guidelines in addition to a layer<br />

thickness <strong>of</strong> 5 mm, which provides standard tests were performed for a thickness <strong>of</strong> 10 and 15<br />

mm. This is justified because the thickness <strong>of</strong> the actual conditions can vary.<br />

The obtained results are shown in fig.2. and table 1.<br />

a) b)<br />

Fig.2. Emission <strong>of</strong> smoke from wood dust during the measurement: a) initial phase, b) final phase<br />

301<br />

hotplate<br />

thermocouple<br />

measuring dust<br />

layer<br />

ring forming<br />

dust layer<br />

heater


Table 1. The results <strong>of</strong> the temperature <strong>of</strong> ignition in dust layer, depending on the thickness<br />

The name <strong>of</strong> wood (according PN-EN 13556:2005)<br />

Thickness <strong>of</strong><br />

dust layer<br />

[mm]<br />

jatoba<br />

(Hymenaea<br />

courbaril Linn.)<br />

ipe, lapacho<br />

(Tabebuia sp.)<br />

teak<br />

(Tectona<br />

grandis L.)<br />

saligna gum<br />

(Eucalyptus<br />

grandis W.<br />

Hill.)<br />

European oak<br />

(Quercus robur<br />

L.)<br />

The average temperature <strong>of</strong> ignition [ºC]<br />

5 310 320 340 320 320<br />

10 290 300 310 310 290<br />

15 270 270 280 270 280<br />

The study showed the impact <strong>of</strong> dust layer thickness to its minimum<br />

ignition temperature. The thicker layer <strong>of</strong> the lower ignition temperature.<br />

This is caused by the reduction <strong>of</strong> heat loss from the smoldering area. The energy is retained<br />

within the layer and heats the next dust grains. The lowest ignition temperature <strong>of</strong> 270 ºC are<br />

three types <strong>of</strong> wood dust: jatoba, lapacho, and eucalyptus for the layer <strong>of</strong> 15 mm. The typical<br />

ignition temperature <strong>of</strong> solid dry wood is usually given as about 275 °C . The wood dust layer<br />

<strong>of</strong> 15 mm have ignition temperature like solid wood. The highest minimum value ignition<br />

temperatures <strong>of</strong> dust has been shown for teak wood: 340, 310 and 280 °C. Probably it results<br />

from peculiar chemical composition <strong>of</strong> teak wood (Kozakiewicz and Szkar�at 2004).<br />

CONCLUSIONS<br />

On the basis <strong>of</strong> made experiments and obtained results we can present following<br />

conclusions:<br />

1. Wood species only slightly affects the ignition temperature derived from its wood dust.<br />

2. For the 15 mm thick layer <strong>of</strong> wood dust jatoba, lapacho, teak, eucalyptus, European oak<br />

fignition tempearture is similar and ranges from 270 - 280 o C.<br />

3. With the decreasing thickness <strong>of</strong> the wood dust layer ignition temperature increase.<br />

4. At 5 mm layer <strong>of</strong> dust that reaches the temperature from 310 to 340 o C.<br />

5. Thinner layer <strong>of</strong> dust between the studied species <strong>of</strong> wood slightly affected by the<br />

differences in the ignition temperature<br />

6. For the most studied species showed resistance to ignition <strong>of</strong> dust from teak wood.<br />

REFERENCES<br />

1. ABBASI T., ABBASI S.A., 2007: Dust explosions-cases, causes, consequences, and<br />

control, Journal <strong>of</strong> Hazardous Materials 140; 7-44<br />

2. DYDUCH Z., MAJCHER B., 2006: Ignition <strong>of</strong> a dust layer by a constant a heat fluxheat<br />

transport in the layer, Journal <strong>of</strong> Loss Prevention in the Process Industries 19;<br />

233-237<br />

3. EL-SAYED S.A., ABDEL-LATIF A.M., 2000: Smoldering combustion <strong>of</strong> dust layer<br />

on hot surface, Journal <strong>of</strong> Loss Prevention in the Process Industries 13; 509-517<br />

4. KOZAKIEWICZ P., SZKAR�AT D., 2004: Tik (Tectona grandis Linn.f.) – drewno<br />

egzotyczne z po�udniowo-wschodniej Azji, Przemys� Drzewny nr 2: 27-30.<br />

5. KOZAKIEWICZ P., 2005: Jatoba (Hymenaea courbaril Linn.) – drewno egzotyczne z<br />

Ameryki Po�udniowej. Przemys� Drzewny nr 9-10: 25-28.<br />

6. KOZAKIEWICZ P., 2008: Ipe (Tabebuia sp.) – drewno egzotyczne z Ameryki<br />

Po�udniowej i �rodkowej, Przemys� Drzewny nr 11: 41-44.<br />

302


7. LEBECKI K., DYDUCH Z., FIBICH A., �LI� J., 2003: Ignition <strong>of</strong> a dust layer by a<br />

constant a heat flux, Journal <strong>of</strong> Loss Prevention in the Process Industries 16; 243-<br />

248.<br />

8. PN-EN 13556:2005 Drewno okr�g�e i tarcica. Terminologia stosowana w handlu<br />

drewnem w Europie.<br />

9. PN-EN 50281-2-1:2002 Electrical apparatus for use in the presence <strong>of</strong> combustible<br />

dust - Part 2-1: Test methods - Methods for determining minimum ignition<br />

temperatures <strong>of</strong> dust (Urz�dzenia elektryczne do stosowania w obecno�ci py�ów<br />

palnych -- Cz��� 2-1: Metody badania -- Metody oznaczania minimalnej temperatury<br />

zap�onu py�u).<br />

10. WESSELINK A., RAVENSHORST G.J.P., 2008: Application and quality<br />

requirements for (tropical) hardwoods. Conference COST E53, 29-30 October, Delft,<br />

the Netherlands; 31-39.<br />

Streszczenie: Badanie wp�ywu grubo�ci warstwy py�u wybranych gatunków drewna<br />

egzotycznego na ich temperatur� zap�onu. W artykule przedstawiono wyniki bada�<br />

temperatury tlenia dla 5 py�ów otrzymanych z ró�nych gatunków drewna egzotycznego:<br />

jatoba (kurbial), lapacho (ipe), teak (tik), eukaliptus (eukaliptus saligna) oraz krajowego<br />

drewna d�bu. Do bada� eksperymentalnych wykorzystano metodyk� pomiarow� opisan� w<br />

normie PN-EN 50281:2002. W stosunku do za�o�e� normowych badania przeprowadzono dla<br />

trzech grubo�ci warstwy py�u, tj. dla 5, 10 i 15 mm, podczas gdy zgodnie z norm� badanie<br />

przeprowadza si� tylko dla warstwy 5 mm. Badania dowiod�y, �e nie wyst�puj� znacz�ce<br />

ró�nice w temperaturze zap�onu pomi�dzy py�ami badanymi gatunków drewna. Ponadto nie<br />

zale�nie od rodzaju drewna stwierdzono istotne obni�anie si� temperatury zap�onu wraz ze<br />

wzrostem grubo�ci warstwy py�u.<br />

Corresponding authors:<br />

Waldemar Jaskó�owski,<br />

The Main School <strong>of</strong> Fire Service,<br />

Department <strong>of</strong> Combustion and Fire Theory,<br />

52/54 S�owackiego St.,<br />

01-629 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: wjaskolowski@sgsp.edu.pl<br />

Pawe� Kozakiewicz<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

Department <strong>of</strong> Wood <strong>Sciences</strong> and Wood Protection,<br />

159 Nowoursynowska St.,<br />

02-776 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: pawel_kozakiewicz@sggw.pl<br />

Marek Pop�awski,<br />

Fire Brigade,<br />

6 Chrobrego St.,<br />

73-200 Choszczno,<br />

Poland<br />

e-mail: fire-man@o2.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 304-308<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010<br />

Die Eigenschaften der OSB–Platten modifiziert mit thermoplastischen<br />

Kunstst<strong>of</strong>fen in der Abhängigkeit von der Presstemperatur<br />

JOANNA JASTRZ�B<br />

Promotion, Fakultät für Holztechnologie, Naturwissenschaftliche Universität in Posen<br />

Abstract: Die Eigenschaften der OSB–Platten modifiziert mit thermoplastischen Kunstst<strong>of</strong>fen in der<br />

Abhängigkeit von der Presstemperatur. Die folgende Arbeit stellt eine Möglichkeit der Anwendung der<br />

thermoplastischen Kunstst<strong>of</strong>fe in der Produktion der OSB–Platten dar. Die Festigkeitsparameter und hydrophobe<br />

Eigenschaften der Platten hängen von der Art des verwendeten Kunstst<strong>of</strong>fes sowie von der Presstemperatur der<br />

Platten ab. Die Steigerung der Presstemperatur verursacht die Verminderung der hydrophoben Eigenschaften<br />

sowie die Steigerung der Festigkeitsparameter der modifizierten Platten für die Mehrheit verwendeten<br />

thermoplastischen Kunstst<strong>of</strong>fe.<br />

Schlüsselwörter: OSB, thermoplastische Kunstst<strong>of</strong>fe, WPC,<br />

EINLEITUNG<br />

Zusammenziehende Rohst<strong>of</strong>fbasis der Holzindustrie verursacht eine Führung von immer<br />

zahlreichenden Forschungen über den neuen Lösungen in der Produktion der Holzwerkst<strong>of</strong>fe.<br />

In der letzten Zeit widmet man auf diesem Gebiet die besondere Beachtung der Benutzung für<br />

dieses Ziel der Kunstst<strong>of</strong>fe, besonders thermoplastische Kunstst<strong>of</strong>fe. Die aus der Verbindung<br />

der thermoplastischen Kunstst<strong>of</strong>fe und Holzmaterials entstandene Werkst<strong>of</strong>fe sogenannte<br />

Wood – Plastik – Composites (WPC) bilden eine Alternative für zur Zeit hergestellte<br />

Holzwerkst<strong>of</strong>fe. Während in Amerika und Japan schon seit langem ihre Produktion breit<br />

verbreitet ist, erfreut sich erst in der letzten Zeit das WPC auf dem europäischen Markt ein<br />

großes Interesse (Clemons C. 2002). Am häufigsten verwendete Holzrohst<strong>of</strong>f in WPC ist der<br />

Holzstaub, Holzfasern oder Holzspäne, deren Teilnahme sich maximal auf 50% beläuft.<br />

Diese Verbundwerkst<strong>of</strong>fe charakterisieren sich vor allem mit hoher Wasserbeständigkeit,<br />

Wetterbständigkeit und Pilzbeständigkeit, also sind vollkommener St<strong>of</strong>f mit der Bestimmung<br />

für Elemente des Ausbaus von Gebäuden, Gartenbau, Fensterpr<strong>of</strong>ile und verschiedene<br />

Konstruktionen (z. B. Laube, Terrassenbrette) (Marutzky R. 2004). Man soll auch<br />

hervorheben, dass man in der WPC–Produktion thermoplastische Kunstst<strong>of</strong>fe aus Recycling<br />

nutzt. Jedes Jahr in der ganzen Welt beobachtet man eine Steigerung der Zahl von Abfälle der<br />

aus den verschiedenen Wirtschaft- und Industriezweigen stammenden Kunstst<strong>of</strong>fe. Eine<br />

Produktion der Kunstst<strong>of</strong>fe hat in der Welt von 1,5 Million Tonnen in 1950 Jahr bis 260<br />

Millionen Tonnen in 2007 Jahr zugenommen. Ein Viertel dieser Zahl entfällt auf Europa<br />

(Tworzywa sztuczne – Raport 2008). In der Mehrheit der Fälle geraten sie in die Müllhaufen.<br />

Wegen ihrer langen Degradierungszeit ist ihre Erhaltung auf den Lagerplätzen ungünstig, und<br />

ein Recycling der Kunstst<strong>of</strong>fabfälle kann wirtschaftliche und umweltfreundliche Vorteile<br />

bringen.<br />

In der Arbeit untersuchte man die Möglichkeit der Modifikation OSB Platten durch<br />

das Ersetzen der Strähnenholzspänanteiles in der Deckschicht der OSB–Platten mit<br />

thermoplastischen Kunstst<strong>of</strong>fen. Der Versuch wurde in der Zusammenarbeit mit dem<br />

Holzbetrieb durchgeführt, der OSB–Platten hergestellt.<br />

Die OSB–Platte ist der Holzwerkst<strong>of</strong>f, der besondere Anwendung im Bauwesen als<br />

das Material in den tragbaren Konstruktionen, Beschlagkonstruktionen sowie als Schalung<br />

hat. Den OSB–Platten werden große Anforderungen hinsichtlich Festigkeit und<br />

Wasserbeständigkeit gestellt. Die Forschungen über die Anwendungen der Holzspäne in der<br />

WPC–Produktion wiesen positive Effekte auf (Chen C. H. und in. 2006), und die Verwendung<br />

304


der thermoplastischen Kunstst<strong>of</strong>fe in der Produktion der OSB–Platten könnte eine<br />

Wasserbeständigkeit entstandenen Verbundwerkst<strong>of</strong>fe vergrößern.<br />

MATERIAL UND METHODE<br />

In der Bearbeitung wurden die Untersuchungsergebnisse der Eigenschaften von OSB–Platten<br />

mit der Anwendung der thermoplastischen Kunstst<strong>of</strong>fen dargestellt. Die OSB–Platte mit der<br />

Dicke von 12 mm wurde in Laborpresse in den drei Temperaturgebieten: 200, 220 und 240ºC<br />

hergestellt. Die Deckschichtstrands und Mittelschichtstrands wurden mit dem PMDI–Harz<br />

verklebt.<br />

In der Deckschicht wurden die 5% Holzspäne durch die thermoplastische Kunstst<strong>of</strong>fe ersetzt.<br />

Es wurden folgende thermoplastische Kunstst<strong>of</strong>fe verwendet:<br />

��Copolymer poly(ethylenoterephthalate-co-ethylenoisophthalate) (PET/PEI) in der Form<br />

des faserigen Garnes über Schmelztemperatur 113ºC,<br />

��Die aus zwei Komponenten bestehende Faser: Kern – Polyethylenterephthalat, Mantel –<br />

Polyethylen (PES/PE) auch in der Form des faseringen Garnes, 2 cm – Länge,<br />

Schmelztemperatur 127ºC,<br />

��Polypropylen in der Granulatform (PP Granulat) über Schmelztemperatur150 ºC,<br />

��Polypropylen aus Recycling (PP Recycling) in der Form der geschnittener, gebrauchter<br />

Verpackungen und Folie.<br />

In den hergestellten Platten bezeichnete man folgende Parameter: die Biegefestigkeit und<br />

Elastizitätsmodul nach PN-EN 310, Zugfestigkeit senkrecht zur Plattenebene nach PN-EN<br />

319, Zugfestigkeit senkrecht zur Plattenebene nach Kochtest nach PN - EN 300 Anlage A,<br />

und Quellung nach 24 h nach PN – EN 317.<br />

Die Untersuchungsergebnisse der Testplatten wurden mit Ergebnissen der Referenzplatte<br />

vergliechen.<br />

ERGEBNISSE<br />

Auf den Bildern 1-5 wurden die Untersuchungen der Eigenschaften von OSB–Platten<br />

modifiziert mit thermoplastischen Kunstst<strong>of</strong>fen in der Deckschicht in der Abhängigkeit von<br />

der Presstemperatur dargestellt.<br />

Bild 1. Querzugfestigkeit der OSB–Platte modifiziert mit thermoplastischen Kunstst<strong>of</strong>fen<br />

305


Bild 2. Querzugfestigkeit der OSB–Platte modifiziert mit thermoplastischen Kunstst<strong>of</strong>fen nach Kochtest<br />

Bild 3. Biegefestigkeit der OSB–Platte modifiziert mit thermoplastischen Kunstst<strong>of</strong>fen<br />

Bild 4. Elastizitätsmodul der OSB–Platte modifiziert mit thermoplastischen Kunstst<strong>of</strong>fen<br />

306


Bild 5. Quellung der OSB–Platte modifiziert mit thermoplastischen Kunstst<strong>of</strong>fen<br />

Aufgrund der vorgestellten auf dem Bild 1 Ergebnissen kann man feststellen, dass die<br />

Anwendung von Polypropylengranulat sowie Polypropylen aus Recycling in den OSB–<br />

Platten, die in Presstemperatur 220ºC hergestellt wurden, die Verminderung der<br />

Zugfestigkeit verursachte. Das kann man einerseits erklären, dass diese Kunstst<strong>of</strong>fe höhere als<br />

die sonstige Schmelztemperatur haben, andererseits, dass die Form in welcher sie angewandt<br />

werden, unmöglich die gleichmäßige Verteilung zwischen Strands gemacht haben. Dieser<br />

Faktoren nivellieren im erheblichen Grad die Erhöhung der Presstemperatur bis 240ºC. In<br />

dieser Presstemperatur wiesen aller Platten modifiziert mit thermoplastischen Kunstst<strong>of</strong>fen<br />

eine größere Zugfestigkeit in Vergleich zu Referenzplatte auf. Die besten Parameter sowohl in<br />

Temperatur 220ºC als auch 240ºC charakterisieren die Platten, in denen PES/PE verwandt<br />

wurden. Die Zugfestigkeitswerte nach Kochtest (Bild 2) für alle in den Platten verwendeten<br />

thermoplastischen Kunstst<strong>of</strong>fe in Temperatur 220ºC wurde unter dem Wert der Referenzplatte<br />

erreicht. In der Temperatur 240ºC wurde die erhebliche Erhöhung dieses Parameters im<br />

Vergleich zur unmodifizierten Platte erreicht. Die Anwendung von thermoplastischen<br />

Kunstst<strong>of</strong>fe in den OSB–Platten erlaubte auch die Erhöhung der Parameter, ohne Rücksicht<br />

auf die Art der Kunstst<strong>of</strong>fe, ohne Rücksicht auf Biegefestigkeit (Bild 3), unter der Bedingung,<br />

dass die Presstemperatur auf Niveau 240ºC erhalten wird. In der Temperatur 220ºC wiesen die<br />

Platten mit der Anwendung von PES/PE und PP Recycling die Steigerung der Biegefestigkeit<br />

auf. Das größte Elastizitätsmodul wies die OSB–Platte mit der Anwendung von PES/PE in<br />

Temperatur 240ºC auf. Die Quellung der modifizierten Platten (Bild 5) ist niedriger als der<br />

Quellung der Referenzplatte, außer der Platte, die PP aus Recycling enthält. Die OSB–Platten<br />

modifiziert mit PP Recycling (die Mischung der geschnittenen, gebrauchten Verpackungen<br />

und Folien) weisen die niedrigste Abhängigkeit der Parameter von der Presstemperatur auf.<br />

Das ergibt sich aus der großen Ungleichartigkeit dieser Kunstst<strong>of</strong>fe.<br />

ZUSAMMENFASSUNG<br />

Die vorgestellten Untersuchungsergebnisse weisen auf, dass auf die Festigkeitsparametern der<br />

OSB–Platte unmodifiziert mit thermoplastischen Kunstst<strong>of</strong>fen bedeutsam keine<br />

Presstemperatur beeinflusst. Die Eigenschaften der modifizierten mit thermoplastischen<br />

Kunstst<strong>of</strong>fen Platten weisen die Wertsteigerung der Festigkeitsparameter zusammen mit der<br />

Steigerung der Presstemperatur der Platten auf. Die Quellungswerte der modifizierten Platten<br />

unterliegen der Verminderung zusammen mit der Steigerung der Presstemperatur.<br />

307


LITERATURA<br />

1. Chen H.C., Chen T.Y., Hsu C.H.: Effects <strong>of</strong> Wood Particle Size and Mixing Ratios <strong>of</strong><br />

HDPE on the Properties <strong>of</strong> the Composites; Holz als Roh- und Werkst<strong>of</strong>f (2006) 64:<br />

172–177<br />

2. Clemons C.: Wood-Plastic Composites in the United States; Forest Products Journal<br />

(2002), vol.52 nr 6<br />

3. Marutzky R.: Wood – Plastic – Composites; Wilhelm Klauditz Forum, Ausgabe 5<br />

(2004)<br />

4. Fakty o tworzywach sztucznych 2007;Analiza produkcji, zapotrzebowania i<br />

odzyskiwania tworzyw sztucznych w roku 2007 w Europie; Tworzywa sztuczne<br />

(2008)<br />

Streszczenie: W�a�ciwo�ci p�yt OSB modyfikowanych tworzywami termoplastycznymi w<br />

zale�no�ci od temperatury prasowania. Niniejsza praca przedstawia mo�liwo�� zastosowania<br />

tworzyw termoplastycznych w produkcji p�yt OSB. Warto�ci wytrzyma�o�ciowe i w�asno�ci<br />

hydr<strong>of</strong>obowe p�yt zale�� od rodzaju zastosowanego tworzywa sztucznego oraz od<br />

temperatury prasowania p�yt. Wzrost temperatury prasowania powoduje obni�enie<br />

w�a�ciwo�ci hydr<strong>of</strong>obowych oraz wzrost parametrów wytrzyma�o�ciowych p�yt<br />

modyfikowanych dla wi�kszo�ci zastosowanych termoplastów.<br />

Corresponding author:<br />

Joanna Jastrz�b<br />

ul. Katowicka 6/2<br />

68 – 200 �ary


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010; 309-313<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010<br />

Der Einfluss des Aktivators auf die Eigenschaften der OSB–Platten<br />

modifiziert mit thermoplastischen Kunstst<strong>of</strong>fen<br />

JOANNA JASTRZ�B<br />

Studium Doktoranckie Wydzia�u Technologii Drewna, Uniwersytet Przyrodniczy Pozna�<br />

Abstrakt: Der Einfluss des Aktivators auf die Eigenschaften der OSB–Platten modifiziert mit thermoplastischen<br />

Kunstst<strong>of</strong>fen. Gegenwärtige Arbeit stellt eine Möglichkeit der Anwendung der thermoplastischen Kunstst<strong>of</strong>fe in<br />

der Produktion der OSB–Platten dar. Die Untersuchungen der modifizierten thermoplastischen Kunstst<strong>of</strong>fe in der<br />

Deckschicht OSB–Platten wiesen auf, dass die Anwendung des Aktivators in dem Produktionsprozess die<br />

Steigerung der Festigkeitsparameter sowie die Verminderung der Quellungsparameter der Platten im Vergleich<br />

zu den Parametern der Referenzplatte sowie Platten ohne Aktivator verursacht.<br />

Schlüsselwörter: OSB, thermoplastische Kunstst<strong>of</strong>fe, WPC, Haftvermittler<br />

EINLEITUNG<br />

In der Zeit der sich entwickelnden Kunstst<strong>of</strong>findustrie finden wir Erzeugnisse aus der<br />

Plastik in jedem Bereich unseren Lebens. Die weltliche Produktion der Kunstst<strong>of</strong>fe<br />

überschreitet 260 Millionen Tonnen jährlich, woraus 25% auf Europa entfällt. Die Analyse<br />

des Verbrauchs der Kunstst<strong>of</strong>fe weist in Europa ca. 100 Kg jährlich pro Person auf. Man<br />

schätzt, dass im Jahr 2015 Kunstst<strong>of</strong>fverbrauch bis 140 Kg pro Person steigen wird (Torzywa<br />

sztuczne – Raport 2008). Die Werkst<strong>of</strong>fherstellung auf der Basis Holz und thermoplastischen<br />

Kunstst<strong>of</strong>fe sogenannte WPC ist einerseits eine Alternative für die Erzeugnisse aus dem<br />

Holz anderseits eine Chance nochmaligen Gebrauch der Abfälle, deren Recycling<br />

Notwendigkeit wurde.<br />

Während in Amerika und Japan seit langem die WPC -Produktion verbreitet ist, fängt erst<br />

Europa an, die Vorteile dieser Werkst<strong>of</strong>fe richtig einzuschätzen. Wood – Plastik – Composites<br />

(WPC) sind aus den Holzpartikel, öftesten Holzfasern, und thermoplastischen Kunstst<strong>of</strong>fe wie<br />

Polypropylen, Polyethylen und Polyvinylchloride hergestellt. Sie charakterisieren sich mit<br />

hoher Wasserbeständigkeit und weisen auch gute Festigkeitsparameter auf (Clemons C. 2002,<br />

Marutzky R. 2004). Das Erreichen besserer Verbindung zwischen hydrophilen Holzmaterials<br />

und hydrophoben Kunstst<strong>of</strong>fe und dadurch besseren Parametern dieser Verbundplatte erfolgt<br />

durch die Einführung in das System des Aktivators (Haftvermittler). Am häufigsten<br />

angewandte Aktivator sind Verbunde auf der Basis Maleinsäureanhydrid verbunden mit<br />

entsprechenden thermoplastischen Kunstst<strong>of</strong>f (Bledzki A., Faruk 2003 O., Milhaud F. und an.<br />

2005). Die Forscher bewiesen, dass die Anwendung des Haftvermittler auf der Basis<br />

Maleinsäureanhydrid einerseits die Entstehung der chemischer Bindung mit der<br />

hydroksylierten Gruppen des Holzes und mechanische Verbindung der Kunstst<strong>of</strong>fskette<br />

durch das Schmelzen verursacht. Der Mechanismus der Reaktion stellt Bild 1. dar. Der<br />

Beispiel bezieht sich auf die Verbindung des Holzes mit Polypropylen. Ein ähnliches<br />

Mechanismus der Reaktion entsteht für anderen thermoplastischen Kunstst<strong>of</strong>fe.<br />

Die durch Chen C. H.(2006) durchgeführten Untersuchungen über den Einfluss der Größe<br />

der Holzpartikel anwandte in WPC–Produktion wiesen auf, dass man im Vergleich mit der<br />

Faser und Holzstaub die besseren Eigenschaften des Elements in dem Falle der Anwendung<br />

der Holzspäne aus der Spanplatte erreicht.<br />

OSB–Platte ist Holzwerkst<strong>of</strong>f, dem die großen Anforderungen hinsichtlich der Festigkeiten<br />

und der Wasserbeständigkeit gestellt werden Die Einführung der thermoplastischen<br />

309


Kunstst<strong>of</strong>fe in den Produktionsprozess der OSB–Platte kann die Steigerung der hydrophoben<br />

Eigenschaften des Werkst<strong>of</strong>fe verursachen. In der Arbeit wird die Probe der mit<br />

thermoplastischen Kunstst<strong>of</strong>fe modifizierten OSB–Plattenherstellung mit der Anwendung des<br />

Aktivators auf der Basis Maleinsäureanhydrid und Polyethylen vorgenommen.<br />

Bild 1. Mechanismus der Verbindung zwischen Holz und thermoplastischen Kunstst<strong>of</strong>fe durch Haftvermittler<br />

MATERIAL UND METHODE<br />

In der Bearbeitung wurden die Untersuchungsergebnisse der Eigenschaften von OSB–Platten<br />

mit der Anwendung den folgenden thermoplastischen Kunstst<strong>of</strong>fe dargestellt:<br />

� Copolymer poly(ethylenoterephthalate-co-ethylenoisophthalate) (PET / PEI) in der<br />

Form von dem faserigen Garn über Schmelztemperatur 113ºC,<br />

� aus zwei Komponenten bestehender Kunstst<strong>of</strong>f: Kern – Polyethylenterephthalat mit<br />

Schmelztemperatur 256ºC, Mantel – Polyethylen, Schmelztemperatur 127ºC (PES /<br />

PE), in der Form von dem kurzen, faserigen Garn,<br />

Es wurde auch der Haftvermittler Fussabond ® der DuPont Firma auf der Basis<br />

Maleinsäureanhydrid und Polyethylen (MAPE) angewandt, der in dem Handel in der Form<br />

von Granulat auftritt.<br />

In der Probe wurden die Parameter der OSB–Platten mit der Anwendung PET/PEI und<br />

PES/PE ohne und mit Haftvermittlerzugabe vergliechen.<br />

Die OSB–Platten mit der Dicke von 12 mm wurden in der Laborpresse hergestellt. Die<br />

Deckschichtspäne und Mittelschichtspäne wurden mit dem PMDI–Harz verklebt. In der<br />

Deckschicht der OSB–Platte wurde 5% Holzspäne mit dem thermoplastischen Kunstst<strong>of</strong>f<br />

substituiert. Die Haftvermittlerzugabe beträgt 1% im Verhältnis zum Plattegewicht. Die<br />

OSB–Platten wurden in Temperatur 220ºC gepresst.<br />

In den hergestellten Platten bestimmte man folgende Parameter: die Biegefestigkeit und<br />

Elastizitätsmodul nach PN-EN 310, Zugfestigkeit senkrecht zur Plattenebene nach PN-EN<br />

319, Zugfestigkeit senkrecht zur Plattenebene nach Kochtest nach PN - EN 300 Anlage A,<br />

und Quellung nach 24 h nach PN – EN 317.<br />

Die Untersuchungsergebnisse der Testplatten wurden mit den Ergebnissen der Referenzplatte<br />

vergliechen.<br />

ERGEBNISSE<br />

Auf den Zeichnungen (a - e) wurden die Untersuchungen der Eigenschaften der OSB–<br />

Platten modifiziert in der Deckschicht mit den thermoplastischen Kunstst<strong>of</strong>fen PES/PE und<br />

PET/PEI mit der Anwendung des Aktivators MAPE dargestellt.<br />

310


a) b)<br />

c) d)<br />

311


e)<br />

Bild 2. Eigenschaften der OSB–Platten modifiziert in der Deckschicht mit den thermoplastischen Kunstst<strong>of</strong>fen<br />

PES/PE und PET/PEI ohne und mit Haftvermittler MAPE: a) Querzugfestigkeit, b) Querzugfestigkeit nach<br />

Kochtest, c) Biegefestigkeit, d) Elastizitätsmodul, e) Quellung<br />

Aufgrund dargestellten Ergebnisse kann man feststellen, dass die Anwendung<br />

thermoplastischen Kunstst<strong>of</strong>fen in dem Produktionsprozess der OSB–Platten kein<br />

Verschlechtern der Festigkeitsparameter der OSB–Platten verursacht und die Besserung der<br />

hydrophoben Eigenschaften der Platten beeinflusst. Die Untersuchungsergebnisse der OSB–<br />

Platten, in denen Aktivator MAPE angewandt wurde, weisen größere Festigkeitsparameter<br />

auf als die Platten, in denen kein Aktivator angewandt wurde.<br />

ZUSAMMENFASSUNG<br />

Die Anwendung des Aktivators auf der Basis Maleinsäureanhydrid in der OSB–<br />

Plattenproduktion modifiziert mit den thermoplastischen Kunstst<strong>of</strong>fen verursachte eine<br />

Steigerung der Festigkeitsparameter der untersuchten Platten und vergrößerte<br />

Wasserbeständigkeit der Platten. Obige Untersuchungsergebnisse bestätigen in WPC–Gebiet<br />

erreichten Ergebnisse. Das öffnet die Verwendungsmöglichkeit der Kunstst<strong>of</strong>fe aus Recycling<br />

bei der gleichzeitigen Verminderung der Anwendung des Holzes und des Harzes in der<br />

Produktion der OSB–Platten.<br />

LITERATURA<br />

1. Bledzki A. Faruk O.: Wood fibre reinforced polypropylene composites: Effect <strong>of</strong> fibre<br />

geometry and coupling agent on physico-mechanical properties; Applied Composite<br />

Materials 10 (2003): 365–379<br />

2. Chen H.C., Chen T.Y., Hsu C.H.: Effects <strong>of</strong> Wood Particle Size and Mixing Ratios <strong>of</strong><br />

HDPE on the Properties <strong>of</strong> the Composites; Holz als Roh- und Werkst<strong>of</strong>f (2006) 64:<br />

172–177<br />

3. Clemons C.: Wood-Plastic Composites in the United States; Forest Products Journal<br />

(2002), vol.52 nr 6<br />

4. Michaud F., Riedl B., Castéra P.: Improving Wood/Polypropylene fiberboards<br />

properties with an original MAPP coating process; Holz als Roh- und Werkst<strong>of</strong>f<br />

312


(2005) 63: 380–387<br />

5. Marutzky R.: Wood – Plastic – Composites; Wilhelm Klauditz Forum, Ausgabe 5<br />

(2004)<br />

6. Fakty o tworzywach sztucznych 2007;Analiza produkcji, zapotrzebowania i<br />

odzyskiwania tworzyw sztucznych w roku 2007 w Europie; Tworzywa sztuczne –<br />

Raport (2008)<br />

Streszczenie: Wp�yw dodatku aktywatora na w�a�ciwo�ci p�yt OSB modyfikowanych<br />

tworzywami termoplastycznymi. Niniejsza praca przedstawia mo�liwo�� zastosowania<br />

tworzyw termoplastycznych w produkcji p�yt OSB. Badania p�yt OSB modyfikowanych<br />

tworzywem termoplastycznym w warstwie zewn�trznej wykaza�y, �e zastosowanie<br />

aktywatora w procesie produkcji powoduje wzrost parametrów wytrzyma�o�ciowych oraz<br />

obni�enie parametru p�cznienia p�yt w porównaniu z parametrami p�yty referencyjnej oraz<br />

p�yt bez zastosowanego aktywatora.<br />

Corresponding author:<br />

Joanna Jastrz�b<br />

ul. Katowicka 6/2<br />

68 – 200 �ary


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 314-318<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Strength properties and biodegradation <strong>of</strong> paper products manufactured<br />

from broad-leaved bleached kraft pulp supplemented with starch and resin<br />

glue additives.<br />

ANNA JASZCZUR, IZABELA MODZELEWSKA, AGNIESZKA KOKOSZKA, PAWE�<br />

�O�NOWSKI.<br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>, Institute <strong>of</strong> Chemical Wood Technology,<br />

ul. Wojska Polskiego 28/32, 60-637 Pozna�, Poland.<br />

Abstract: The article presents results <strong>of</strong> investigations concerning sensitivity <strong>of</strong> samples prepared from<br />

dicotyledonous bleached kraft pulp containing different percentage proportions <strong>of</strong> starch and resin glue subjected<br />

to the action <strong>of</strong> mould fungi. The examined paper articles exhibited a varied sensitivity to the infestation with<br />

micr<strong>of</strong>ungi and underwent very strong biodegradation. Addition <strong>of</strong> starch and resin glue altered the resistance <strong>of</strong><br />

samples to infestations with test mycelia in comparison with samples manufactured without supplementation<br />

with mass additives. Self-rupture <strong>of</strong> the examined paper products decreased with the time <strong>of</strong> exposure to the<br />

biodegradation process.<br />

keywords: paper, microorganisms, biodegradation, mass additives, auxiliary chemical agents.<br />

INTRODUCTION<br />

Investigations on the biodegradation <strong>of</strong> products manufactured from broad-leaved<br />

cellulose pulp show how resistant they are to attacks by mould fungi. Production <strong>of</strong> paper<br />

using various mass additives makes it possible to assess their impact on paper strength<br />

properties and resistance to biotic factors. The aim <strong>of</strong> the performed experiments was to study<br />

the effect <strong>of</strong> starch and resin glue additives on the rate <strong>of</strong> sample infestation with selected<br />

micr<strong>of</strong>ungi by determining self-disruption <strong>of</strong> the examined paper articles manufactured from<br />

broad-leaved kraft pulp.<br />

MATERIAL AND METHODS<br />

Paper samples were manufactured using the following materials: dicotyledonous<br />

bleached kraft pulp, resin glue and starch. Materials applied for mycological experiments<br />

included: agar medium with the addition <strong>of</strong> Czapek-Dox salt and Chaeotomium globosum,<br />

Aspergillus niger, Penicillium funiculosum, Trichoderma viride test fungi. The total <strong>of</strong> 16<br />

kinds <strong>of</strong> paper products was manufactured from paper stock supplemented with various<br />

percentage proportions <strong>of</strong> individual mass additives. Experimental paper sheets from the<br />

dicotyledonous bleached kraft pulp were manufactured in accordance with the Polish PN-<br />

76/P-50060 standard. Samples measuring 15x83 mm were cut from each <strong>of</strong> 16 series <strong>of</strong><br />

papers. Agar medium with Czapek-Dox salt was poured onto earlier prepared Petri dishes and<br />

sterilised in an autoclave. Next, paper samples were placed on each dish and inoculated with<br />

water suspension <strong>of</strong> test fungus spores. Samples infested in this way were placed in darkened,<br />

closed thermostat with optimal conditions for the development <strong>of</strong> micr<strong>of</strong>ungi inside.<br />

Observations <strong>of</strong> the degree <strong>of</strong> infestation <strong>of</strong> samples by microorganisms were carried out for<br />

14 days. The following four-grade scale was used to perform appropriate assessment <strong>of</strong> the<br />

sensitivity <strong>of</strong> paper to the infestation with the examined micr<strong>of</strong>ungi:<br />

Table 1. Scale <strong>of</strong> assessment <strong>of</strong> paper sensitivity to infestation with the examined micr<strong>of</strong>ungi.<br />

INDEX DEGREE OF SAMPLE COLONISATION<br />

3 No sign <strong>of</strong> mycelium growth on sample<br />

2 Less than 1/3 <strong>of</strong> the sample surface colonised by the test fungus mycelium<br />

1 Surface <strong>of</strong> sample between 1/3 colonised but 2/3 test fungus mycelium<br />

0 Surface <strong>of</strong> sample by test fungus mycelium entirely colonized<br />

314


Before placing the samples in the grips <strong>of</strong> the testing machine, paper sheets were<br />

removed from Petri dishes, cleaned and dried. Determination <strong>of</strong> the self-rupture <strong>of</strong> paper<br />

samples was conducted as described in Polish PN-74/P-50133 standard. This investigation<br />

also made it possible to assess the extent <strong>of</strong> degradation <strong>of</strong> the examined paper samples and<br />

estimate values <strong>of</strong> their self-breakage. Determination <strong>of</strong> pH was performed in accordance <strong>of</strong><br />

the PN-62/P-50109 standard.<br />

RESEARCH RESULTS<br />

It was found that the development <strong>of</strong> test mycelia was proportional to the passage <strong>of</strong><br />

time. In the case <strong>of</strong> Ch. globosum, its mycelium developed uniformly beginning with whiteyellow<br />

mould spots and single spores to black-dark brown spore zones. In the case <strong>of</strong> the<br />

fungal mixture, A. niger and T. viride turned out to be most active. The P. funiculosum fungus<br />

occurred only in individual Petri dishes in a form <strong>of</strong> reddish-orange spots on the bottom sides<br />

<strong>of</strong> samples and failed to become active directly on sample surfaces. The experimental samples<br />

became infected by mixtures <strong>of</strong> test fungi in different ways changing in consecutive days <strong>of</strong><br />

observation. On the 14 th day <strong>of</strong> the trial, majority <strong>of</strong> samples was completely damaged and<br />

could not be removed from the Petri dish without their destruction. The character <strong>of</strong> sample<br />

infestation by fungi as well as the extent <strong>of</strong> their discolouration depended on the species <strong>of</strong> the<br />

given fungal genus. Paper articles manufactured from dicotyledonous bleached kraft pulp<br />

exhibited varied sensitivity to the infestation by mould fungi which depended on the applied<br />

percentage proportion <strong>of</strong> mass additives. All the examined paper samples were more sensitive<br />

to the attack by the fungus from the Ch. globosum genus than to the employed mixture <strong>of</strong><br />

fungi from A. niger, P. funiculosum and T. viride genera. For all the applied fungi, a common<br />

conclusion can be drawn regarding all papers manufactured from the broad-leaved bleached<br />

kraft pulp with no supplementation using mass additives because they showed very high<br />

resistance to the attack by mould fungi.<br />

The evaluation <strong>of</strong> the extent <strong>of</strong> degradation was carried out using self-rupture tests <strong>of</strong><br />

the examined paper products. The determined values decreased with the amount <strong>of</strong> time the<br />

samples were exposed to the biodegradation process. This can be explained by the fact that<br />

paper strength decreased uniformly as a result <strong>of</strong> the loss <strong>of</strong> cellulose in consecutive days <strong>of</strong><br />

observations. Increased action intensity <strong>of</strong> the Ch. globosum fungus in comparison with the<br />

action <strong>of</strong> the applied fungal mixture was noticeable during strength tests, especially when test<br />

results from the 14 th day <strong>of</strong> observations were compared. There were individual cases when<br />

strongly infested samples exhibited strong resistance to breakage. This can be attributed to the<br />

fact that during its initial development, mycelium did cover the entire sample surface but it<br />

failed to penetrate it sufficiently deeply to damage its internal structure. Following the<br />

analysis <strong>of</strong> the performed investigations, it can be concluded that paper samples manufactured<br />

from the experimental dicotyledonous bleached kraft pulp without mass additives showed<br />

very strong resistance to the attack by all the applied mould fungi as evidenced by the<br />

obtained results regarding self-rupture in comparison with paper samples containing various<br />

percentage proportions <strong>of</strong> mass additives.<br />

315


Table. 2.<br />

Self-rupture <strong>of</strong> experimental paper samples subjected to the action <strong>of</strong> the<br />

Ch. globosum test fungus and fungal mixture (A. niger, P. funiculosum,<br />

T. viride) expressed in [km] on day 14 <strong>of</strong> observations.<br />

pH<br />

Type <strong>of</strong><br />

pulp<br />

Resistance to infestation <strong>of</strong> paper samples by the Ch. globosum test<br />

fungus and fungal mixture (A. niger, P. funiculosum, T. viride ).<br />

3 3 2,4 2,4 1,9 1,7 2 1,9 1,6 1,1 L1 7,03 14,60 15,57 4,28 4,89 4,06 4,19 3,03 3,98 1,74 2,33<br />

3 3 1,7 2,2 1,6 1,7 0,7 1 0,2 0,6 L2 6,54 8,52 8,79 5,33 5,83 4,16 4,49 3,81 1,28 0,09 1,10<br />

3 3 1,5 2 0,9 2,5 0,5 1,1 0 0,9 L3 6,15 8,19 8,59 5,07 5,30 4,57 5,25 2,58 2,26 0,00 2,00<br />

3 3 0,3 1,3 1,3 1,5 0,9 1 0,1 0,6 L4 6,39 7,86 8,39 3,44 4,62 3,28 3,46 1,36 1,59 0,70 1,23<br />

3 3 1,9 2,2 1,7 1,9 2,3 1,2 0,2 0,6 L5 5,61 8,46 9,19 4,39 4,53 3,30 4,00 3,07 2,62 0,86 0,91<br />

3 3 2 1,8 1,6 1,7 2,7 1,3 0,3 0,6 L6 6,66 8,59 9,26 3,89 3,46 2,68 3,62 2,57 2,41 0,85 1,54<br />

3 3 1,6 2,4 1,7 1,2 0,8 0,6 0,5 0,8 L7 6,46 8,92 9,92 3,48 3,66 1,60 2,82 0,98 2,17 0,28 1,51<br />

3 3 1,4 1,8 1,9 1,4 0,5 1,5 0,3 0,4 L8 6,21 7,99 8,79 4,24 3,00 4,06 2,84 2,15 1,60 0,79 1,20<br />

3 3 1,5 1,6 1,7 1,8 1,5 1,4 1 0,6 L9 6,56 7,93 8,32 4,24 3,51 3,40 3,17 2,40 2,36 1,31 1,13<br />

3 3 1,6 1,9 1,8 1,9 0,9 0,5 1,2 0,9 L10 6,76 7,46 7,99 4,28 3,40 2,19 2,36 2,19 2,18 0,65 0,76<br />

3 3 1,4 1,9 2 1,7 1,4 1,8 0,9 0,8 L11 6,83 7,26 7,79 4,22 3,98 2,97 3,77 2,65 3,30 0,66 2,61<br />

3 3 1,4 1,7 1,9 1,6 1,5 1 0,9 0,5 L12 6,81 14,53 12,94 3,44 3,27 3,06 3,17 2,17 1,67 0,47 1,49<br />

316<br />

3 3 1,6 1,5 1,9 1,1 2,1 0,8 0,4 0,9 L13 6,54 11,07 11,06 3,10 2,81 2,45 2,38 2,38 2,08 0,12 1,25<br />

3 3 1,8 1,9 1,1 1,5 1,7 1,8 0,2 1,1 L14 6,93 13,33 13,54 3,85 3,94 2,39 2,81 2.1 2,65 0,00 1,49<br />

3 3 1,8 1,3 1,8 0,9 0,5 0,8 0,3 0,9 L15 7,04 11,73 14,78 3,06 3,88 2,43 3,06 1,44 2,80 0,00 1,40<br />

3 3 1,4 2 1 0,6 1,3 1,1 0,6 0,8 L16 6,95 12,62 13,33 3,50 3,62 2,67 3,04 1,07 1,72 0,22 1,46<br />

Ch M Ch M Ch M Ch M Ch M Type <strong>of</strong> Ch M Ch M Ch M Ch M Ch M<br />

pH<br />

Day 2 Day 4 Day 7 Day 10 Day 14 pulp<br />

Day 2 Day 4 Day 7 Day 10 Day 14<br />

Ch – Ch. globosum,<br />

M – fungal mixture: A. niger, P. funiculosum, T. viride.<br />

Starch Starch Starch Starch Starch Starch Starch Starch Starch<br />

Contents<br />

Resin Resin Resin 2%+ 2%+ 2%+ 3%+ 3%+ 3%+ 5%+ 5%+ 5%+<br />

<strong>of</strong> addition Starch Starch Starch<br />

-<br />

glue glue glue Resin Resin Resin Resin Resin Resin Resin Resin Resin<br />

in waste<br />

2% 3% 5%<br />

2% 3% 5% glue glue glue glue glue glue glue glue glue<br />

paper<br />

2% 3% 5% 2% 3% 5% 2% 3% 5%<br />

Acronym L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16<br />

Types <strong>of</strong><br />

the<br />

exammined<br />

paper


Ryc.1 Resistance to infestation <strong>of</strong> paper samples by the<br />

Ch. globosum test fungus and fungal mixture (A. niger,<br />

P. funiculosum, T. viride).<br />

REFERENCES:<br />

317<br />

Ryc. 2. Self-rupture <strong>of</strong> experimental paper samples<br />

subjected to the action <strong>of</strong> the Ch. globosum test fungus and<br />

fungal mixture (A. niger, P. funiculosum, T. viride)<br />

expressed in [km] on day 14 <strong>of</strong> observations.<br />

1. Drzewi�ska E. (2008): Przysz�o�� mas papierniczych z w�ókien pierwotnych. Przegl�d<br />

Papierniczy 64(12): 720-724.<br />

2. Fassatiová O. (1983): Grzyby mikroskopowe w mikrobiologii technicznej.<br />

Wydawnictwa Naukowo Techniczne.<br />

3. Godlewska K. (2009): Papier wobec wyzwa� przysz�o�ci. Przegl�d Papierniczy 65<br />

(8): 472-473.<br />

4. Jarczy�ski M. (2008): Perspektywy rozwoju produkcji papieru i tektury w Polsce.<br />

Przegl�d Papierniczy 64 (10): 575-576.<br />

5. Jaszczur A. (2008): Wp�yw biocydu na szybko�� degradacji wytworów papierniczych<br />

z dodatkiem otr�bów zbo�owych przez mikrogrzyby. Praca magisterska. Uniwersytet<br />

Przyrodniczy Pozna�.<br />

6. Kozielec T. (2008): Niezwyk�e i wszechstronne wykorzystanie papieru w XIX w. Cz.<br />

I. Od ubiorów do medycyny. Przegl�d Papierniczy 64 (2): 85-88.<br />

7. Norma na oznaczanie zrywania: PN - 76/P – 50060, PN - 74/P - 500133. Formowanie<br />

arkusików papieru.<br />

8. Osi�g�owski J. (2003): Ochrona ksi��ki bibliotecznej. Pozna�.<br />

9. Osi�g�owski J. (1979): Magazynowanie i ochrona zbiorów informacyjnych w<br />

regionie. Oddzia� Informacji Naukowej PAN w Poznaniu.<br />

10. Potrzebnicka E. (2001): Charakterystyka typowych zagro�e� i zniszcze� w zbiorach<br />

bibliotecznych XIX i XX wiecznych. Kwa�ny papier.<br />

11. Przybysz K. (1997): Technologia celulozy i papieru. Tom 2.Technologia papieru.<br />

Wydawnictwa Szkolne i Pedagogiczne.<br />

12. Sobucki W., Rams D. (1999):Zagro�enia biologiczne i fizykochemiczne dla zbiorów<br />

bibliotecznych. Notes Konserwatorski nr 2.<br />

13. Strzelczyk A.B. (1998): Charakterystyka zniszcze� mikrobiologicznych w<br />

zabytkowych ksi��kach. Notes Konserwatorski nr 1.<br />

14. Strzelczyk A.B., Karbowska J. (1995): Specyficzne zniszczenia papieru – foxing i<br />

destrukcja puszysta. Ochrona zabytków nr 2.<br />

15. Szostak – Kotowa J. (2001): Mikrobiologiczne zagro�enia papieru. Kwa�ny papier.<br />

16. Wandelt P. (1996): Technologia celulozy i papieru. Tom 1. Technologia mas<br />

w�óknistych.<br />

17. Zerek B.F. (2007): Metody bada� mikrobiologicznych w Bibliotece Narodowej.<br />

Przegl�d papierniczy 63(11): 669-670.


18. Zyska B. (2000): Mikrobiologiczny rozk�ad i korozja materia�ów technicznych.<br />

Politechnika �ódzka.<br />

19. Zyska B. (1993): Ochrona ksi�gozbioru przed zniszczeniem t. 2. Czynniki niszcz�ce<br />

materia�y w zbiorach bibliotecznych: 124-132.<br />

Streszczenie: W�a�ciwo�ci wytrzyma�o�ciowe oraz biodegradacja wytworów papierniczych, wytworzonych z<br />

masy celulozowej siarczanowej bielonej li�ciastej z dodatkiem skrobi oraz kleju �ywicznego.<br />

W artykule przedstawiono wyniki bada� dotycz�ce podatno�ci próbek wykonanych z masy celulozowej<br />

siarczanowej bielonej li�ciastej z ró�n� procentow� zawarto�ci� skrobi oraz kleju �ywicznego, poddanych<br />

dzia�aniu grzybów ple�niowych. Wytwory papiernicze wykaza�y si� zró�nicowan� podatno�ci� na porastanie na<br />

mikrogrzyby, uleg�y one bardzo silnej biodegradacji. Dodatek skrobi oraz kleju �ywicznego spowodowa� zmian�<br />

odporno�ci próbek na porastanie przez grzybnie testowe w porównaniu do próbek wykonanych bez dodatków<br />

masowych. Samozerwalno�� badanych wytworów papieiczych zmniejsza�a si� w miar� up�ywu czasu, w jakim<br />

probki poddawane by�y procesowi biodegradacji .<br />

Corresponding author:<br />

Anna Jaszczur<br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>, Institute <strong>of</strong> Chemical Wood Technology,<br />

ul. Wojska Polskiego 28/32, 60-637 Pozna�, Polska.<br />

E-mail address: jaszczuranna@poczta.onet.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 319-322<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

The curved cutting edge wearing (back face) during greenwood turning<br />

L. JAVOREK 1 , J. HRIC 2<br />

1 Department <strong>of</strong> woodworking machines and equipments, Faculty <strong>of</strong> Environmental and Manufacturing<br />

Technology, Technical <strong>University</strong> in Zvolen, T.G. Masaryka 24, 960 53 Zvolen, Slovakia<br />

2 BOTO, Ltd., Považská 30, 940 01 Nové Zámky, Slovakia<br />

Abstract: The curved cutting edge wearing (back face) during greenwood turning. Turning with curved edge’s<br />

tools is used for roughing like operation before follows more clear-cut machining, for machining <strong>of</strong> very hard<br />

materials (steel and its alloys). This kind <strong>of</strong> tools is used in wood machining by reason <strong>of</strong> very good surface<br />

quality. It is used in modification with fixed, self-propeled) or powered cutting part. Tool wearing in this<br />

experiment depends on angle <strong>of</strong> inclination, depth <strong>of</strong> cut and sample <strong>of</strong> machining material.<br />

Keywords: wearing, curved edge’s tools, angle <strong>of</strong> inclination<br />

INTRODUCTION<br />

Tools with curved cutting edge are used very frequently for first machining –<br />

roughing. Axes <strong>of</strong> tool can be in vertical position (�s. =0 o ), or slanted under some angle (�s.<br />

�0 o ). Tool may rotate during machining around this ax or may be fixed. A lot <strong>of</strong> authors put<br />

one's mind to machining with self or forced rotate tool. In the focus <strong>of</strong> some them are forces<br />

needed for machining and its measuring [BANJAC, JAVOREK and HRIC], others present<br />

various design <strong>of</strong> tool in their papers, [WIELOCH and MOSTOWSKI], other are interested in<br />

surface quality. Plenty <strong>of</strong> experiments are focused to metal machining i.e. [ZASADA, PILC<br />

and MI�IETOVÁ], but this type <strong>of</strong> cutting is used in wood machining too [WIELOCH and<br />

MOSTOWSKI]. The economical aspects are mentioned in papers <strong>of</strong> i.e. [BANJAC].<br />

a) Detail <strong>of</strong> the process b) ... <strong>of</strong> the tool c) ... <strong>of</strong> cutting edge<br />

Fig.1 Curved cutting edge tool during beech machining<br />

EXPERIMENT<br />

Beech and spruce were used in experiment. In this article are published results from<br />

machining <strong>of</strong> beech. Next parameters were used in this test:<br />

– moisture content: 12 %,<br />

– cutting speed [mpm]: 257; 206; 172; 132,<br />

– feed speed [mmpr]: 0,05; 0,1; 0,2; 0,4,<br />

– angle <strong>of</strong> inclination [deg]: 5; 10; 20; 40,<br />

– depth <strong>of</strong> cut [mm]: 2; 3; 4; 5,<br />

– fixed tool.<br />

The wear <strong>of</strong> back face was realised by microscope MTM 350 (Fig.2a) with digital<br />

monochromatic CCD camera, plus s<strong>of</strong>twares CF Surface, Gipm R 2.0, s<strong>of</strong>tware Statistica R.<br />

6.0 © was used for mathematical analyzes. Detail <strong>of</strong> back face was, for measure, magnified<br />

319


100 times. The wearing phenomenon was measured in 3 points (Fig.2b) on back face (��);<br />

every measuring was repeated five times.<br />

Fig. 2a) Microscope MTM 350 Fig. 2b) The position <strong>of</strong> measure<br />

RESULTS AND DISCUSSION<br />

It is evident from Fig. 3a,b and from table 1, that back wearing significantly depends to angle<br />

<strong>of</strong> inclination �s. Wearing was different in all three measure points, however from point <strong>of</strong><br />

statistical aspect no meaningfully, because the confidence intervals are over lapsed. The<br />

minimum wearing <strong>of</strong> cutting edge was in case, if angle <strong>of</strong> inclination �s was 20°. Angle <strong>of</strong><br />

inclination �s due measure point’s combination is from point <strong>of</strong> statistical view substantial.<br />

The mathematic formulation <strong>of</strong> wearing process can be described for point A by formula (1):<br />

��= 49,085 – 22,955·��s + 3,694·��s 2 (1)<br />

Tab.1 Univariate Significance Tests for ��, (spruce machining). Sigma-restricted parameterisation, Effective<br />

hypothesis decomposition<br />

Variables<br />

Degree<br />

<strong>of</strong> freedom<br />

Sum <strong>of</strong><br />

squares<br />

Mean<br />

square<br />

F – test p- level<br />

Angle <strong>of</strong> inclination �s 888,65 4 222,16 44,322 0,000000<br />

Measure point 196,37 2 98,18 19,588 0,000000<br />

Angle <strong>of</strong> inclination �s +<br />

Measure point<br />

911,95 8 113,99 22,742 0,000000<br />

Error 300,75 60 5,01<br />

In next figures 3a, b are graphs that reflects wearing as function <strong>of</strong> angle <strong>of</strong> inclination and<br />

function <strong>of</strong> measure point for all feed speed vf, cutting speed vc and depth <strong>of</strong> cut ap<br />

combination in machining <strong>of</strong> spruce.<br />

D [�m]<br />

30<br />

28<br />

26<br />

24<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

Angle <strong>of</strong> inclination l s[ °]; Weighted Means<br />

Current effect: F(4, 60)=44,322, p=0,0000<br />

Effective hypothesis decomposition<br />

Vertical bars denote 0,95 confidence intervals<br />

5 10 20<br />

Angle <strong>of</strong> inclination l s [ °]<br />

30 40<br />

D [�m]<br />

26<br />

25<br />

24<br />

23<br />

22<br />

21<br />

20<br />

19<br />

18<br />

17<br />

16<br />

15<br />

14<br />

320<br />

Measure point; Weighted Means<br />

Current effect: F(2, 60)=19,588, p=,00000<br />

Effective hypothesis decomposition<br />

Vertical bars denote 0,95 confidence intervals<br />

A B C<br />

Measure point<br />

a) ..... in regard to angle <strong>of</strong> inclination �s b) .... in regard to measure point<br />

Fig. 3 Wearing functionality ���during spruce machining<br />

During beech machining were used as the same variables as during spruce machining. For<br />

back wearing has significantly influence angle <strong>of</strong> inclination �s only (see Fig. 4a and 4b). In<br />

interval angles <strong>of</strong> inclination (5° to 20°) and (30° to 50°) are not very significant changes in


wearing. In interval angles <strong>of</strong> inclination (20° to 30°) are significant differenced. The<br />

statistical values are in tab. 2.<br />

��[�m]<br />

18<br />

17<br />

16<br />

15<br />

14<br />

13<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

A ng le o f in cl ina tio n � s [°]; Weig hte d Me an s<br />

C u r r e n t e ffe c t: F(4 , 6 0 ) = 8 ,7 8 6 0 , p =,0 0 0 0 1<br />

Effectiv e hypothe sis dec om po sition<br />

Verticalbars<br />

denote 0,95 c o n f ide nc e i nte rv als<br />

5 10 20<br />

Angle <strong>of</strong> in c lina tion �s [°]<br />

30 40<br />

�� [�m]<br />

321<br />

14.5<br />

14.0<br />

13.5<br />

13.0<br />

12.5<br />

12.0<br />

11.5<br />

11.0<br />

10.5<br />

10.0<br />

9.5<br />

9.0<br />

Measure poin t; W e ighted Means<br />

Current effect: F(2, 60)=,51190, p=,60195<br />

Ef fec tive hy po the sis de co mp os itio n<br />

Vertical ba rs denote 0,95 confid ence inte rvals<br />

A B C<br />

Measure point<br />

a) .... in regard to angle <strong>of</strong> inclination �s<br />

b) .... in regard to measure point<br />

Fig. 4 Wearing functionality ���during beech machining<br />

Tab.2 Univariate Significance Tests for ��, (beech machining). Sigma-restricted parameterisation, Effective<br />

hypothesis decomposition<br />

Variables<br />

Degree<br />

<strong>of</strong> freedom<br />

Sum <strong>of</strong><br />

squares<br />

Mean<br />

square<br />

F – test p- level<br />

Angle <strong>of</strong> inclination �s 333,38 4 83,34 8,786 0,000012<br />

Measure point 9,71 2 4,86 0,512 0,601952<br />

Angle <strong>of</strong> inclination �s +<br />

Measure point<br />

122,62 8 15,33 1,616 0,139372<br />

Error 569,16 60 9,49<br />

From experiment comes across angle <strong>of</strong> inclination �s as optimal �s � 25° for spruce<br />

machining and �s � 10° for beech machining. This deduction is from point <strong>of</strong> tool life for<br />

experimental conditions. We can assume that this phenomena is connected with different<br />

anatomic structure both wood samples and their different mechanical properties. Spruce is<br />

very s<strong>of</strong>t wood (Brinell hardness is 3,2 and density is 460 kg.m -3 ), whilst beech is hard wood<br />

(Brinell hardness is 7,2 and density is 710 kg.m -3 ). During machining, mainly in point A was<br />

relatively high compression <strong>of</strong> wood joined with plastic deformation <strong>of</strong> wood and with<br />

increasing <strong>of</strong> contact area. In s<strong>of</strong>t wood are quite marked differences is hardness <strong>of</strong> springwood<br />

and summer-wood. Exist presumption, that spring properties <strong>of</strong> s<strong>of</strong>t wood, its<br />

expansion directly behind cutting edge are reason <strong>of</strong> higher wearing <strong>of</strong> the tool.<br />

References<br />

1. BANJAC, D., Sile rezanja pri struganju kruznim samoobrotnim nozevima.<br />

2. CHMIELEWSKI, K., CIELOSZYK, J., ZASADA, M.: Model kszta�towania stanu<br />

geometrycznego powierzchni w procesie toczenia narz�dziami z samoobracaj�c�cym<br />

si� ostrzem. Obróbka skrawaniem 2. Innowacje. Instytut Zaawansowanych<br />

Technologii Wytwarzania. Kraków. (2008). ISBN 978-83-912887-8-8. S. 352-359<br />

3. JAVOREK, �., HRIC, J. , Obróbka drewna narz�dziami z obracaj�c� si� kraw�dzi�<br />

skrawaj�c�. In: Obróbka skrawaniem 2. Innowacje. Kraków: Instytut<br />

Zaawansowanych Technologii Wytwarzania. ISBN 978-83-912887-8-8. (2008). S.<br />

402 – 407.<br />

4. JAVOREK, �., HRIC, J. , Non traditional turning technique - turning with selfpropelled<br />

rotary tool. In <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> university <strong>of</strong> life sciences. Forestry and<br />

Wood Technology. Warszawa: Warszaw <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> Press, 2008.<br />

ISSN 1898-5912. No. 65 (2008), p. 144-149.


JAVOREK, �., HRIC, J. ,Si�y skrawania podczas obróbki narz�dziami z<br />

samoobracaj�c� si� kraw�dzi� skrawaj�c�. In Obróbka skrawaniem. 3, Zaawansowana<br />

technika. Bydgoszcz: Wydawnictwa Uczelniane Uniwersytetu Technologiczno-<br />

Przyrodniczego. (2009). ISBN 978-83-61314-96-7. S. 307-313.<br />

5. MOSTAWSKI, R., WIELOCH, G., OSAJDA, M., Analiza penetracji ostrza no�a<br />

grzybkowego o ma�ej srednicy. Wood-Machine-Tool-Workpiece. Agricultural<br />

<strong>University</strong> <strong>of</strong> Pozna�. Pozna�-B�dlewo. (2007). ISBN 83–907754–5–X. S.49-90<br />

6. PILC, J., MI�IETOVÁ, A., Obrábanie kovov autorotujúcimi nástrojmi. EDIS Žilina.<br />

(2003). ISBN 80-8070-047-8. s.106<br />

The contribution was created during the solution <strong>of</strong> grant project VEGA 1/0751/08 as a result <strong>of</strong> scientific<br />

activity <strong>of</strong> authors with strong support <strong>of</strong> Grant scientific agency <strong>of</strong> Slovak rep.<br />

Streszczenie: Zu�ycie zakrzywionej kraw�dzi tn�cej przy toczeniu drewna �wie�ego. Toczenie<br />

krzywoliniow� kraw�dzi� tn�c� jest najcz��ciej toczeniem zgrubnym, poprzedzaj�cym<br />

dok�adniejsze operacje przy obrabianiu bardzo twardych materia�ów (stali i jej stopów). Z<br />

kolei przy obróbce drewna ten typ narz�dzi jest u�ywany ze wzgl�du na wysok� jako��<br />

obróbki. Jest u�ywany ze sta��, samobie�n� albo nap�dzan� cz��ci� tn�c�. Prezentowany<br />

eksperyment rozpatrywa� k�ty, g��boko�� toczenia oraz typ materia�u.<br />

Corresponding author:<br />

Assoc. pr<strong>of</strong>. �ubomír Javorek, PhD.<br />

Department <strong>of</strong> Woodworking Machines and Equipment, Technical <strong>University</strong> in Zvolen<br />

T. G. Masaryka 24, SK - 960 53 Zvolen, E-mail address: lubomir.javorek@vsld.tuzvo.sk


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 323-327<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

The influence <strong>of</strong> the tool design to cutting force<br />

L. JAVOREK 1 , D. PAULINY 1 , J. HRIC 2<br />

1 Department <strong>of</strong> woodworking machines and equipments, Faculty <strong>of</strong> Environmental and Manufacturing<br />

Technology, Technical <strong>University</strong> in Zvolen, T. G. Masaryka 24, 960 53 Zvolen, Slovakia<br />

2 BOTO, Ltd., Považská 30, 940 01 Nové Zámky, Slovakia<br />

Abstract: The influence <strong>of</strong> the tool design to cutting force. This paper presents the results <strong>of</strong><br />

cutting force measurement in machining <strong>of</strong> wood-based composites (such as chipboards,<br />

medium density fiberboard or some other types composites on this basis). For their good<br />

mechanical properties are these materials used in the furniture industry more and more. Two<br />

tools are compared: one with cutting edges with the helical angle without chip breakers –<br />

roughening cutter, the second with the helical angle <strong>of</strong> cutting edges with chip breakers, for<br />

different depths <strong>of</strong> cut and machined material.<br />

Keywords: routing, force components, design <strong>of</strong> cutting edge, chip breakers<br />

INTRODUCTION<br />

The routing is one from the most frequent technology wood machining. The importances <strong>of</strong><br />

this technology accrete together with more and more extensive using router machines. The<br />

routers are used in furniture production let us say in production its parts, or for technologies<br />

like moulding, pr<strong>of</strong>iling, trimming, grooving etc. (Fig.1). The critical value <strong>of</strong> cutting force<br />

[ISPAS et al] or some its component [JAVOREK, OSWALD, SCHELCHER], [JAVOREK<br />

and HRIC], torque moment [MARTHY and CISMARU]or some other parameter (amplitude,<br />

temperature, noise etc.) are used in CNC machines [OHUCHI and MURASE] for automatic<br />

scanning <strong>of</strong> correct working cycle.<br />

Fig.1. Routers possibility using<br />

EXPERIMENT<br />

The aim <strong>of</strong> this experiment was to compare influence <strong>of</strong> tool design to force components<br />

during wood machining. Next devices and tools were used in this experiment:<br />

MACHINE: milling machine MCV 1210 (chosen technical parameters)<br />

� max. feed speed: 20 mpm,<br />

� max. rotational speed: 18 000 rpm,<br />

� clamping taper: HSK-A63 ISO 40 HSK-A63,<br />

� power: 30/32 kW.<br />

Fig. 2 Helical cutters: (a) without chip breakers; (b) with chip breakers<br />

323


Two shanked helical cutters with three helical line were used; one with solid cutting edge, one<br />

with line interrupted by chip breakers. Cutters were with diameter 16 mm cutting circle, shank<br />

diameter was 16 mm too, length <strong>of</strong> cutting part was 45 mm. This type <strong>of</strong> cutter is very <strong>of</strong>ten<br />

used for cutting <strong>of</strong> slots or for mortising in green wood or in material based on the wood.<br />

EXPERIMENTAL CONDITIONS<br />

� machined material: chipboard and spruce,<br />

� moisture content: w = cca 9 %,<br />

� technological conditions:<br />

� axial depth <strong>of</strong> cut ap: 15 and 35 mm,<br />

� radial depth <strong>of</strong> cut ae: 16 mm,<br />

� rotational tool speed: 18 000 rpm,<br />

� feed speed: vf = 7200 mmpm, (fz = 0,13 mm),<br />

� scanning frequency: 6 kHz.<br />

EXPERIMENTAL CHAIN<br />

The measure chain consists from (Fig. 3a) milling machine MCV 1210, dynamometer Kistler<br />

9257B, amplifier Kistler 5070A11000, A/D modem and PC. Values were input to PC and<br />

elaborated by s<strong>of</strong>tware DynoWare (Kistler.)<br />

Fig. 3. (a) Measure chain; (b) Machining and coordinate system.<br />

RESULTS AND DISCUSION<br />

The aim <strong>of</strong> this experiment was to detect influence <strong>of</strong> chosen technological factors and<br />

influence <strong>of</strong> tool design to force components values which are needed for chip removal<br />

[HOLOPIREK and ROUSEK].<br />

All values were evaluated by s<strong>of</strong>tware Statistica Rel. 6, for data processing was used<br />

more factorial analyze, in graphs are results from all combinations and some results are<br />

present in next graphs.<br />

324


Fig. 4 Influence <strong>of</strong> wood sample’s to cutting force<br />

After analyze we may to say:<br />

- modification <strong>of</strong> cutting edge by chip breakers delivered positive result in values <strong>of</strong> force<br />

that was smaller at 68 N (i.e. 34 %) during spruce machining and at 42 N (i.e. 38 %) during<br />

chip board machining (Fig. 4).<br />

a) Sample <strong>of</strong> wood – chip board<br />

325


) Sample <strong>of</strong> wood - spruce<br />

Fig. 5 Influence <strong>of</strong> cutting edge design to cutting force and cutting force components during sample <strong>of</strong> wood<br />

machining (ap = 35 mm)<br />

Graphs in Fig. 5 reflects influence sample <strong>of</strong> wood to cutting force and cutting force<br />

components. Values from these graphs confirm the previous results, i.e. advantages <strong>of</strong> B-tool<br />

from point <strong>of</strong> view cutting forces.<br />

REFERENCES<br />

1. HOLOPÍREK, J., ROUSEK, M., Comparison <strong>of</strong> the theoretical calculation <strong>of</strong><br />

resistance in cutting particleboards with an experiment. Zborník prednášok “Trieskové<br />

a beztrieskové obrábanie dreva 04“, Starý Smokovec, (2004). ISBN 80-228-1385-0.<br />

pp. 99- 105.<br />

2. ISPAS, M. et al., Experimental researches on the workability <strong>of</strong> some wood-based<br />

composites by routing with diamonded tools. PRO LIGNO Journal 2 (4). (2006).<br />

ISSN 1841-4737. pp. 27-34.<br />

3. JAVOREK, �., OSWALD, J., SCHELCHER, CH., Feed force during milling. Wood<br />

Research 46 (2). (2001). ISSN 0012-6136. pp. 29-36<br />

4. JAVOREK, �., HRIC, J., Konštrukcia nástroja a výkon potrebný na rezanie. In. Acta<br />

Facultatis Technicae. Technická univerzita vo Zvolene. VIII (1). (2005). ISBN 80-<br />

228-1517-9. pp. 107-116.<br />

5. MARTHY, M., CISMARU, I., Experimental study concerning the power consumption<br />

at the milling <strong>of</strong> pear. PRO LIGNO Journal 5 (3). (2009). ISSN 1841-4737. pp. 47-53.<br />

6. OHUCHI, T., MURASE, Y., Milling <strong>of</strong> wood and wood-based materials with a<br />

computerized numerically controlled router IV: development <strong>of</strong> automatic<br />

measurement system for cutting edge pr<strong>of</strong>ile <strong>of</strong> throw-away type straight bit. The<br />

Japan Wood Research Society 51. (2005). pp. 278-281<br />

326


The contribution was created during the solution <strong>of</strong> grant project VEGA 1/0751/08 as a<br />

result <strong>of</strong> scientific activity <strong>of</strong> authors with strong support <strong>of</strong> Grant scientific agency <strong>of</strong><br />

Slovak rep.<br />

Streszczenie: Wp�yw konstrukcji narz�dzia na si�� skrawania. Praca dotyczy pomiaru si�<br />

skrawania przy obróbce materia�ów drewnopochodnych takich jak p�yty wiórowe, MDF oraz<br />

innych. W zwi�zku z dobrymi w�asno�ciami wytrzyma�o�ciowymi s� to materia�y cz�sto<br />

u�ywane w przemy�le meblarskim oraz innych. Testowano dwa frezy o ostrzach �rubowych,<br />

z �amaczem wiórów oraz bez niego, dla ró�nych g��boko�ci frezowania oraz ró�nych<br />

materia�ów.<br />

Corresponding author<br />

Assoc. pr<strong>of</strong>. �ubomír Javorek, PhD.<br />

Department <strong>of</strong> Woodworking Machines and Equipment, Technical <strong>University</strong> in Zvolen<br />

T. G. Masaryka 24, SK - 960 53 Zvolen, E-mail address: lubomir.javorek@vsld.tuzvo.sk


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 328-335<br />

(Ann. WULS - <strong>SGGW</strong>, For. and Wood Technol.,71, 2010)<br />

Biomechanics <strong>of</strong> Scots pine (Pinus sylvestris L.) trees coming from mature<br />

stands<br />

TOMASZ JELONEK, ARKADIUSZ TOMCZAK<br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>, Department <strong>of</strong> Forest Utilisation<br />

Wojska Polskiego St. 71A, 60-625 Pozna�, Poland<br />

Abstrakt. Biomechanika drzew piney zwyczajnej (Pinus sylvestris L.) pochodz�cej z drzewostanów r�bnych<br />

It was attempted in this study to determine the effect <strong>of</strong> former farmland soils and biosocial class on biomechanics<br />

and stability <strong>of</strong> trees by analyzing axial variation in basic density <strong>of</strong> wood, bending strength <strong>of</strong> absolutely dry wood<br />

and that <strong>of</strong> wood with moisture content above the fiber saturation point.<br />

The analyses were conducted on wood <strong>of</strong> Scots pines grown on four positions in northern Poland coming<br />

from mature stands aged from 97 to 102 years, growing on former farmland and on forest soils. Results showed<br />

significant differences in terms <strong>of</strong> wood properties analyzed in this study between compared groups <strong>of</strong> trees and at<br />

the same time indicated different stability <strong>of</strong> stands growing on former farmland soils in relation to trees growing on<br />

forest soils.<br />

Keywords: Scots pine, biomechanics <strong>of</strong> trees, former farmland, biosocial tree class<br />

INTRODUCTION<br />

Biomechanics <strong>of</strong> trees is directly connected with mechanical and hydraulic properties <strong>of</strong><br />

anatomical elements. During growth and development <strong>of</strong> trees, and thus the cyclical formation <strong>of</strong><br />

wood tissue, the structure <strong>of</strong> anatomical elements is optimized. Numerous modifications aim at<br />

achieving a compromise between mechanical and hydraulic properties <strong>of</strong> trees [Mencuccini et al.<br />

1997].<br />

Biomechanics <strong>of</strong> trees and the effect <strong>of</strong> different external factors on physical and mechanical<br />

properties <strong>of</strong> wood tissue have been investigated by many researchers [Peltola et al. 1999;<br />

Pazdrowski and Sp�awa�Neyman 1997; Peltola et al. 2007; Jelonek et al. 2008; 2009a; 2009b].<br />

In the initial stage studies on biomechanics <strong>of</strong> trees focused mainly on hydraulic functions<br />

modifying the mechanical stem skeleton [Zimmermann 1983; Tyree and Ewers 1991].<br />

A simple biomechanical model <strong>of</strong> trees as a narrowing pole was presented at the end <strong>of</strong><br />

the 19th century. Slightly later the tree model was modified, presenting it as a sum <strong>of</strong> two<br />

weights, i.e. the weight <strong>of</strong> the crown and the weight <strong>of</strong> the trunk being a homogenous column<br />

found in the state <strong>of</strong> weightlessness [Baker 1995].<br />

In Finland studies on biomechanics <strong>of</strong> Scots pine were conducted by Hassinen et al.<br />

[1998]. Due to the complexity <strong>of</strong> integration and the dynamics <strong>of</strong> the phenomenon, biomechanics<br />

<strong>of</strong> trees is presented in a highly simplified form. This is a consequence first <strong>of</strong> all <strong>of</strong> a<br />

considerable variation <strong>of</strong> trees within a single species, as well as a relatively little known<br />

dynamic reaction <strong>of</strong> trees to the action <strong>of</strong> a stress factor such as wind [Kenneth et al. 2006].<br />

A growing tree attempts to optimize its structure so that stresses are relatively uniformly<br />

distributed and there are no redundant (unstressed) areas.<br />

In terms <strong>of</strong> mechanics there are many force systems in a growing tree. Bending forces acting<br />

on the trunk (stem) are caused e.g. by wind and growth stresses, or static pressure resulting from<br />

the weight <strong>of</strong> the trunk and the crown [Hejnowicz 2002].<br />

From the point <strong>of</strong> view <strong>of</strong> mechanics the most effective anatomical structure <strong>of</strong> the organ<br />

has to be a compromise <strong>of</strong> the counteraction to individual deformations (stresses) separately. For<br />

328


a woody plant on which a symmetrical crown is embedded, the radially symmetrical section<br />

seems to be optimal.<br />

According to Mencuccini et al. [1997] allocation <strong>of</strong> biomass during tree growth is subjected<br />

to biophysical limitations. For example, the size <strong>of</strong> the assimilatory organ, which directly affects<br />

photosynthetic productivity, must have some mechanical support. Thus the crown responsible for<br />

the production <strong>of</strong> xylem may be connected with a relatively large cross-section <strong>of</strong> a stem with a<br />

low density, or a cross-section being much smaller, but characterized by wood <strong>of</strong> high density.<br />

Such a system will always be a compromise between the diameter <strong>of</strong> tracheidal elements and the<br />

thickness <strong>of</strong> cell walls. For this reason the hydraulic system <strong>of</strong> a plant will be closely related with<br />

biomechanical requirements consisting in an appropriate distribution <strong>of</strong> mass at an adequate<br />

scale <strong>of</strong> anatomical elements [Schniewind 1962].<br />

The slenderness factor, being a ratio <strong>of</strong> plant height to its diameter (in case <strong>of</strong> trees being<br />

determined at breast height), is a good indicator describing optimization <strong>of</strong> biomechanical<br />

systems in plants.<br />

The effect <strong>of</strong> former farmland soils on modifications <strong>of</strong> wood properties in Scots pine (Pinus<br />

sylvestris L.) and their effect on the biomechanical system <strong>of</strong> trees are relatively little known. In<br />

this study analyses were conducted on two basic properties, facilitating an evaluation <strong>of</strong> a<br />

relationship between axial variation <strong>of</strong> wood density and bending strength on the one hand and<br />

characteristics describing the distribution <strong>of</strong> biomass, affecting stability <strong>of</strong> trees.<br />

MATERIAL AND METHODS<br />

Analyses were conducted in mature pine stands <strong>of</strong> age classes V and VI, growing under<br />

conditions optimal for this forest-forming species at this latitude on former farmland and forest<br />

soils in northern Poland. Experimental plots were located in two neighbouring forest divisions,<br />

two in the Warcino Forest Division and two in the Trzebielino Forest Division.<br />

On each <strong>of</strong> the four experimental plots a 1 ha mean sample plot was established, on<br />

which breast height diameters <strong>of</strong> all trees were measured and heights were measured in<br />

proportion to their numbers in adopted (2 cm) diameter sub-classes. Based on the obtained<br />

diameter and height characteristics <strong>of</strong> trees twelve mean sample trees (three at each plot) were<br />

determined using the Urich II method [Grochowski 1973], representing the first three classes<br />

according to the classification presented by Kraft (1884).<br />

Crown projections were plotted for selected model trees in two geographical directions,<br />

i.e. N-S and E-W. Based on obtained projections crown diameter was determined accurate to 10<br />

cm.<br />

Next model trees were felled and first selected biometrical characteristics <strong>of</strong> trees were<br />

measured. On the basis <strong>of</strong> recorded biometric parameters <strong>of</strong> trees the slenderness ratio <strong>of</strong> trees<br />

was determined, being a ratio <strong>of</strong> their height to diameter at breast height.<br />

Next from felled trees material was collected for analyses <strong>of</strong> selected physical and<br />

mechanical wood properties, i.e. basic density (qu) and bending strength (Rg). Material for<br />

laboratory testing came from 50cm blocks collected from a distance <strong>of</strong> 1.30 m - 1.80 m from the<br />

kerf plane, next from the stem center (calculated from the stem base to the base <strong>of</strong> live crown)<br />

and the base <strong>of</strong> live crown.<br />

Wood density was determined using the stereometric method and it was referred to as basic<br />

density. Bending strength (Rg) was determined with the use <strong>of</strong> a Tira Test 2300 testing machine<br />

equipped with computer s<strong>of</strong>tware by Matest Service.<br />

All determinations were made accurate to 0.01 MPa.<br />

Bending strength was tested on absolutely dry samples (W0%) and wet samples (W>30%),<br />

which moisture content exceeded fibre saturation point (30%).<br />

Collected empirical material was analysed using methods <strong>of</strong> mathematical statistics with the<br />

application <strong>of</strong> a Statistica 8.0 PL statistical s<strong>of</strong>tware package.<br />

329


RESULTS<br />

It was attempted in this study to analyse the effect <strong>of</strong> external factors, in this case the type <strong>of</strong><br />

soil and biological class <strong>of</strong> tree position in the stand, on tree stability described by stem<br />

biomechanics. On average pines growing on former farmland soils were characterised by a lower<br />

basic density <strong>of</strong> their wood tissue, lower strength parameters both for absolutely dry wood and<br />

wood with maximum water saturation <strong>of</strong> cell membranes as well as lower desorption<br />

strengthening than pines growing under conditions typical <strong>of</strong> forest sites.<br />

Analyses <strong>of</strong> wood basic density<br />

conducted in this study showed that it is<br />

statistically significantly lower in wood<br />

from trees growing on former farmland<br />

soils (398 [kg/m 3 ]) in comparison to<br />

wood density <strong>of</strong> pines growing in forest<br />

sites (430 [kg/m 3 ]).<br />

In all analysed trees wood density<br />

decreased gradually with an increase in<br />

the height <strong>of</strong> the measurement point on<br />

the stem and the recorded values differed<br />

statistically. On all the analysed levels<br />

wood <strong>of</strong> trees grown on forest soils on<br />

average had a higher density in<br />

comparison to that recorded when<br />

analysing wood <strong>of</strong> pines coming from<br />

former farmland soils (Fig. 1). Analysis<br />

<strong>of</strong> wood density coming from trees<br />

occupying different social classes <strong>of</strong> tree<br />

position in the stand only in case <strong>of</strong> pines<br />

coming from forest soils showed an<br />

upward trend for this property with<br />

transition to lower Kraft's classes. In<br />

pines growing on former farmland soils<br />

the highest density was recorded in<br />

dominant trees, while the lowest in<br />

predominant trees. However, it needs to<br />

be stressed here that in this case density<br />

was similar in dominant and co-dominant<br />

trees, with the recorded difference being<br />

statistically non-significant (Fig. 2).<br />

Fig. 1 Axial variation <strong>of</strong> basic density<br />

Fig. 2 Basic density <strong>of</strong> wood depending on social class <strong>of</strong> tree<br />

position in the stand<br />

Next bending strength <strong>of</strong> wood was tested at its moisture content <strong>of</strong> over 30% and in<br />

absolutely dry wood, and desorption strengthening was also determined.<br />

Pines coming from former farmland and forest soils were characterised by a similar<br />

strength <strong>of</strong> wood at maximum swelling. In turn, absolutely dry wood <strong>of</strong> pines coming from<br />

former farmland soils has a statistically significantly lower bending strength and a lower<br />

desorption strengthening in comparison to wood <strong>of</strong> trees coming from forest soils.<br />

In stems <strong>of</strong> pines coming from former farmland soils a gradual decrease in values <strong>of</strong><br />

analysed mechanical properties was observed with an increase in the height <strong>of</strong> the measurement<br />

point on the stem. In turn, in stems <strong>of</strong> trees growing on forest soils the highest values <strong>of</strong> analysed<br />

330


strength were found at breast height (1.3 m), while at 1/2 tree height and at the base <strong>of</strong> live<br />

crown these values were similar (Fig. 3).<br />

Similarly as in case <strong>of</strong> bending strength, values describing desorption strengthening<br />

decreased gradually with an increase in the height <strong>of</strong> the measurement point. Only height<br />

referring to mid-height (1/2 h) and crown base (Cb) in pines coming from forest soils, where<br />

values <strong>of</strong> desorption strengthening were similar, was an exception in this respect.<br />

Fig. 3 Axial variation in mechanical properties <strong>of</strong> wood in Scots pine<br />

The distribution <strong>of</strong> strength in maximally saturated wood in view <strong>of</strong> the social class <strong>of</strong> tree<br />

position in the stand, both in pines coming from forest soils and from former farmland soils,<br />

showed its gradual increase with trees being transferred to lower social classes. A slightly<br />

different situation was observed in case <strong>of</strong> strength <strong>of</strong> absolutely dry wood and in desorption<br />

strengthening. In trees growing on former farmland soils the highest values <strong>of</strong> this property were<br />

recorded in dominant trees, in turn, in pines grown on forest soils in co-dominant trees (Fig. 4).<br />

Fig. 4 Axial variation in mechanical properties <strong>of</strong> wood in Scots pine<br />

331


Next analyses were conducted on biometric traits affecting statics <strong>of</strong> trees.<br />

Pines grown on former farmland<br />

soils were characterised by stems with a<br />

lower slenderness factor (from 53 to 64)<br />

than pines coming from forest soils, in<br />

which this coefficient was higher and<br />

ranged from 66 to 81 (Fig. 5). Slenderness<br />

factor in all the analysed trees fell within<br />

the range, in which trees may be classified<br />

to the group <strong>of</strong> stable trees [Burschel and<br />

Huss 1997]. In turn, trees grown on former<br />

farmland soils fell within the lower<br />

boundary <strong>of</strong> the interval, which would<br />

indicate their slightly higher stability in<br />

comparison to trees grown in stands<br />

coming from forest soils.<br />

It was also attempted in this study to<br />

Fig. 5. Slenderness factor <strong>of</strong> trees – stability <strong>of</strong> trees<br />

identify the dependence between observed properties <strong>of</strong> wood and properties determining tree<br />

stability. Statistical analyses showed that there is a statistical dependence between tree height<br />

and stability factor, and discussed wood properties. A particularly strong dependence was found<br />

between bending strength in wood with moisture content above fiber saturation point and tree<br />

height (r = 0.724) as well as its slenderness (stability) factor (r = 0.605).<br />

DISCUSSION<br />

Biomechanical theory <strong>of</strong> tree growth shows that the radial tree growth is a response to<br />

mechanical stress caused by the action <strong>of</strong> wind forces on trees [Baker 1995; Peltola 2006]. Other<br />

theories describe stem biomechanics as a response to tree growth and the transition <strong>of</strong> the centre<br />

<strong>of</strong> gravity subjected to gravity forces [Alméras and Fournier 2008].<br />

The primary objective <strong>of</strong> this study was to make an attempt at a comparison <strong>of</strong> the effect<br />

<strong>of</strong> former farmland soil and social class <strong>of</strong> tree position in the stand on stem biomechanics in<br />

Scots pine. It was also attempted in this study to determine the stability <strong>of</strong> trees described by the<br />

slenderness factor [Erteld and Hengst 1966] and to determine its relationship with tree<br />

biomechanics.<br />

Pines coming from forest soils in relation to pines coming from former farmland soils<br />

were characterised by a higher slenderness factor (up to 80) and a similar strength <strong>of</strong> the outer<br />

wood "coat" at maximum swelling, i.e. like that found in a living tree. However, when<br />

considering axial distribution <strong>of</strong> wood strength it may be observed that in stems <strong>of</strong> pines coming<br />

from forest soils a markedly higher wood strength was recorded at breast height, which most<br />

probably protects the cross-section <strong>of</strong> relatively slender trees against bending moment coming<br />

e.g. from wind pressure.<br />

A gradual decrease <strong>of</strong> properties analysed in this study, occurring with an increase in<br />

height along the stem, seems justified. This is confirmed by the frequently stressed [Coutts and<br />

Grace 1995; Mencuccini et al. 1997] multifunctional role <strong>of</strong> the stem, which while raising the<br />

crown upwards has to provide its adequate mechanical support. At the same time it has to serve a<br />

hydraulic function, due to which its structure is optimised in terms <strong>of</strong> served functions. Thus it<br />

may be assumed that slender stems, more susceptible to wind damage, will most probably have<br />

much more resistant wood in the butt end in relation to trees exhibiting high stability.<br />

Moreover, recorded results indicate that the biological class <strong>of</strong> a tree to a lesser extent<br />

determines density and strength <strong>of</strong> wood with moisture content above fibre saturation point,<br />

while it significantly affects strength <strong>of</strong> absolutely dry wood and desorption strengthening. It was<br />

332


also observed that the trend for wood density in view <strong>of</strong> the biological class <strong>of</strong> a tree does not<br />

coincide with the trend in bending strength <strong>of</strong> absolutely dry wood and desorption strengthening.<br />

Moreover, significant differences were found in the distribution <strong>of</strong> the discussed properties<br />

(particularly strength <strong>of</strong> absolutely dry wood and desorption strengthening) between pines grown<br />

on former farmland and forest soils. In case <strong>of</strong> the former the highest strength was found in<br />

dominant trees, while in case <strong>of</strong> pines coming from forest soils it was for co-dominant trees.<br />

It may be assumed that in wood <strong>of</strong> compared pines there were differences in the<br />

submicroscopic structure <strong>of</strong> wood, manifested in the proportion <strong>of</strong> the crystalline form <strong>of</strong><br />

cellulose in the wood tissue. The considerable number <strong>of</strong> secondary bonds, most probably found<br />

in wood with a lower proportion <strong>of</strong> crystalline cellulose, in this case significantly increased<br />

strength <strong>of</strong> absolutely dry wood in comparison to maximally swollen wood [Grzeczy�ski 1967,<br />

1975].<br />

It was also observed that the slenderness (stability) factor determined for trees in this<br />

study significantly affects strength first <strong>of</strong> all in maximally swollen wood. This strength<br />

increased with a reduction <strong>of</strong> tree stability, i.e. with a disproportionate increase in its height in<br />

relation to breast height diameter.<br />

Recorded results indicate that most probably natural modifications <strong>of</strong> the wood tissue<br />

occur in trees, resulting in increased resistance and stability <strong>of</strong> individual trees and entire stands.<br />

CONCLUSIONS<br />

Pines grown on forest soils in comparison to trees grown on former farmland soils are<br />

characterised by a bigger stem slenderness and higher wood density at a similar bending<br />

strength <strong>of</strong> maximally saturated wood and a bigger strength <strong>of</strong> absolutely dry wood.<br />

Wood properties analysed in this study in all tested trees were characterised by a gradual<br />

decrease in values with an increase in the height <strong>of</strong> the measurement point on the stem.<br />

A slight effect was observed <strong>of</strong> biosocial variation in the stand on wood density as well as a<br />

significant effect on strength in absolutely dry wood.<br />

Moreover, a strong relationship was found between bending strength <strong>of</strong> maximally saturated<br />

wood and tree height and its slenderness (stability) factor.<br />

Acknowledgements<br />

Acknowledgments: This work was supported by grant <strong>of</strong> Polish Ministry <strong>of</strong> Science and Higher Education: N N309<br />

426938.<br />

REFERENCES<br />

1. ALMÉRAS, T., FOURNIER M., 2008, Biomechanical design and long-term stability <strong>of</strong><br />

trees: Morphological and wood traits involved in the balance between weight increase and<br />

the gravitropic reaction, Journal <strong>of</strong> Theoretical Biology 256(3): 370-381.<br />

2. BAKER, C. J,. 1995, The development <strong>of</strong> a theoretical model for the wind throw <strong>of</strong> plants,<br />

Journal <strong>of</strong> Theoretical Biology 175: 355–372.<br />

3. BURSCHEL, P., HUSS, J., 1987, Grundriß des Waldbaus. Ein Leitfaden für Studium und<br />

Praxis. Verlag Paul Parey. Hamburg und Berlin, pp 352.<br />

4. COUTTS, M.P., GRACE, J., 1995, Wind and trees. Cambridge Univ. Press, Cambridge,<br />

UK, pp 528.<br />

5. ERTELD, W., HENGST, E., 1966, Waldertragslehre. Radebeul. Neumann Verlag.<br />

333


6. GROCHOWSKI, J., 1973, Dendrometria, [Dendrometry ] PWRiL Warszawa, pp 188.<br />

7. GRZECZY�SKI T. 1967, Z zagadnie� zwi�zanych z okre�leniem wytrzyma�o�ci drewna<br />

[On problems connected with the determination <strong>of</strong> wood strength]. Prace ITD. 4: 25-30.<br />

8. GRZECZY�SKI T. 1975, Badania nad zale�no�ci� wytrzyma�osci drewna od jego<br />

wilgotno�ci [Studies on a dependence between wood strength on its mositure content]. Prace<br />

ITD. 3/4: 15-55.<br />

9. HASSINEN, A., LEMETTINEN, M., et al., 1998, A prism-based system for monitoring the<br />

swaying <strong>of</strong> trees under wind loading, Agricultural & Forest Meteorology 90: 187–194.<br />

10. HEJNOWICZ, Z., 2002, Anatomia i histogeneza ro�lin naczyniowych [Anatomy and<br />

histogenesis <strong>of</strong> vascular plants]. PWN, Warszawa, pp 197-235.<br />

11. JELONEK, T., PAZDROWSKI, W., et al., 2008, Biometric traits <strong>of</strong> wood and quality <strong>of</strong><br />

timber produced in former farmland, Baltic Forestry 14/2(27): 138-148.<br />

12. JELONEK, T., PAZDROWSKI, W., et al., 2009a, The effect <strong>of</strong> biological class and age on<br />

physical and mechanical properties <strong>of</strong> European Larch (Larix deciduas Mill.) in Poland,<br />

Wood Research 54(1) 1-14.<br />

13. JELONEK, T., SZABAN, J., et al., 2009b, Selected wood quality indexes in Scots pines<br />

(Pinus sylvestris L.) growing on former farmland in northern Poland, <strong>Annals</strong> <strong>Warsaw</strong><br />

Agricultural <strong>University</strong> – <strong>SGGW</strong>, Forest and Wood Technology 68:327-333.<br />

14. KENNETH, R.J., NICHOLAS, H., et al., 2006, Mechanical stability <strong>of</strong> trees under dynamic<br />

loads, American Journal <strong>of</strong> Botany 93(10): 1522–1530.<br />

15. KRAFT, G., 1884, Durchforstungen, Schlagstellungen und Lichtunghieben. Klindworth's<br />

Verlag, Hannover.<br />

16. MENCUCCINI, M, GRACE, J, et al., 1997, Biomechanical and hydraulic determinants <strong>of</strong><br />

tree structure in Scots pine: anatomical characteristics, Tree Physiology 17(2):105-13).<br />

17. PAZDROWSKI, W., SP�AWA�NEYMAN, S., 1997, Interdependence between some<br />

growth parameters and wood features <strong>of</strong> Scots pine grown in fresh forest conditions, Folia<br />

Forestalia Polonica. Series B. 28: 47�56.<br />

18. PELTOLA, H., KELLOMÄKI, S., et al., 1999, A mechanistic model for assessing the risk<br />

<strong>of</strong> wind and snow damage to single trees and stands <strong>of</strong> Scots pine, Norway spruce, and<br />

birch, Canadian Journal <strong>of</strong> Forest Research 29(6): 647–661 (1999)|doi:10.1139/cjfr-29-6-<br />

647.<br />

19. PELTOLA, H., KILPELÄINEN, A., et al., 2007, Effects <strong>of</strong> early thinning regime and tree<br />

status on the radial growth and wood density <strong>of</strong> Scots pine, Silva Fennica 41 (3): 489�505.<br />

20. PELTOLA, H.M., 2006: Mechanical stability <strong>of</strong> trees under static loads, American Journal<br />

<strong>of</strong> Botany 93(10): 1501–1511.<br />

21. SCHNIEWIND, A.P., 1962, Horizontal specific gravity variation in tree stems in relation to<br />

their support function, Forest Science 8:111-118.<br />

22. TYREE, M.T., EWERS, F.W., 1991, The hydraulic architecture <strong>of</strong> trees and other woody<br />

plants, New Phytologist 119:345-360.<br />

23. ZIMMERMANN, M.H., 1983, Xylem structure and the ascent <strong>of</strong> sap. Springer-Verlag,<br />

Berlin.<br />

334


Streszczenie: Biomechanika drzew sosny zwyczajnej (Pinus sylvestris L.) pochodz�cej z<br />

drzewostanów r�bnych W pracy podj�to prób� okre�lenia wp�ywu gruntów porolnych oraz klasy<br />

biosocjalnej drzewa w drzewostanie na biomechanik� i stabilno�� drzew poprzez analiz�<br />

zmienno�ci g�sto�ci umownej drewna, wytrzyma�o�� na zginanie statyczne drewna absolutnie<br />

suchego oraz drewna o wilgotno�ci powy�ej punktu nasycenia w�ókien. Do bada� u�yto drewno<br />

sosny zwyczajnej wyros�ej w pó�nocnej Polsce pochodz�cej z drzewostanów r�bnych. Uzyskane<br />

wyniki wskazuj� na wyst�powanie istotnych ró�nic analizowanych w pracy w�a�ciwo�ci drewna<br />

pomi�dzy porównywanymi grupami drzew. Stwierdzono odmienn� stabilno�� biomechaniczn�<br />

drzew w zale�no�ci od klasy biologicznej drzewa w drzewostanie oraz warunków wzrostu i<br />

rozwoju.<br />

Corresponding author:<br />

Tomasz Jelonek, PhD<br />

E-mail address: tomasz.jelonek@up.poznan.pl<br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Department <strong>of</strong> Forest Utilisation<br />

Wojska Polskiego 71A St, 60-625 Pozna�, Poland<br />

Phone +48 61 8487754<br />

Fax +48 61 8487755


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 336-341<br />

(Ann. WULS - <strong>SGGW</strong>, For. and Wood Technol.,71, 2010)<br />

Dynamics <strong>of</strong> heartwood formation in European larch (Larix decidua Mill.)<br />

in terms <strong>of</strong> age and variation in social tree position in the stand<br />

TOMASZ JELONEK, WITOLD PAZDROWSKI, ARKADIUSZ TOMCZAK, MARCIN<br />

JAKUBOWSKI<br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>, Department <strong>of</strong> Forest Utilisation<br />

Wojska Polskiego 71A, 60-625 Pozna�, Poland<br />

Abstract. Dynamics <strong>of</strong> heartwood formation in European larch (Larix decidua Mill.) in terms <strong>of</strong> age and<br />

variation in social tree position in the stand It was attempted in this study to determine the effect <strong>of</strong> age and<br />

social class <strong>of</strong> tree position in the stand on the dynamics <strong>of</strong> heartwood formation and to determine the<br />

relationship between the area <strong>of</strong> sapwood and heartwood and biometric traits <strong>of</strong> the crown.<br />

The analyses were conducted on wood <strong>of</strong> European larch (Larix decidua Mill.) grown in western Poland and<br />

coming from stands <strong>of</strong> age classes I, II, III and IV. Recorded results indicate that both age and social class <strong>of</strong> tree<br />

position in the community play a significant role in the process <strong>of</strong> heartwood formation. It was found that the<br />

biggest dynamics <strong>of</strong> this process was recorded for trees after 50 years <strong>of</strong> age and they were dominant trees. A<br />

strong relationship was also found between the area <strong>of</strong> sapwood and heartwood in tree stems and biometric traits<br />

<strong>of</strong> crowns.<br />

Keywords: European larch, dynamics <strong>of</strong> heartwood formation, social class <strong>of</strong> tree position<br />

INTRODUCTION<br />

Wood structure is determined first <strong>of</strong> all by genotypic species-specific characteristics as<br />

well as individual traits, although at the same time several traits and properties <strong>of</strong> wood are<br />

determined by external factors, such as geographical location, climate or site [Jelonek 2006].<br />

Heartwood is a major element <strong>of</strong> wood macroscopic structure and its formation may be<br />

ascribed to the joint effect <strong>of</strong> ageing and growth rate <strong>of</strong> a tree. Most trees at the cross stem<br />

section have a regular heartwood, similar in shape to the stem circumference. In some species<br />

heartwood may be <strong>of</strong> an irregular shape, which does not correspond to the boundary <strong>of</strong> the<br />

annual ring [Hillis 1987].<br />

Bamber [1976] claimed that heartwood formation is a regulatory process aiming at the<br />

maintenance <strong>of</strong> sapwood area at an optimal level. In his opinion the initiation <strong>of</strong> heartwood<br />

formation is a result <strong>of</strong> activation <strong>of</strong> an unknown signal coming from the inside <strong>of</strong> the tree.<br />

Stoces and Berthier [2000] proposed several theories on the functioning <strong>of</strong> heartwood.<br />

The first hypothesis says that the proportion <strong>of</strong> heartwood has an effect on the maintenance <strong>of</strong><br />

stem rigidity. However, other studies showed that there is no difference between sapwood and<br />

heartwood in the mean modulus <strong>of</strong> elasticity in the longitudinal direction [Berthier et al.<br />

2001]. This indicates that heartwood does not serve a significant mechanical role in a tree,<br />

thus its irregular shape does not depend on stresses in the growing tree.<br />

Another hypothesis is based on the Pipe Model Theory, initiated by Shinozaki et al.<br />

[1964a, 1964b]. This theory proposes that there is a strong interdependence between<br />

hydraulically conductive area <strong>of</strong> the cross stem section (sapwood) and the size <strong>of</strong> the<br />

transpiring and assimilating organ, as it is indicated by a highly significant regression between<br />

the area <strong>of</strong> sapwood, and the crown coat area. This dependence was verified for different<br />

336


species, sites as well as age levels <strong>of</strong> trees. Thus we may propose a hypothesis that the area <strong>of</strong><br />

sapwood is maintained at the optimal level for the functioning <strong>of</strong> a tree, and the mechanism<br />

used for the preservation <strong>of</strong> this equilibrium is the internally controlled dynamics <strong>of</strong> sapwood<br />

transformation into heartwood [Jelonek et al. 2008].<br />

Identification <strong>of</strong> mechanisms regulating the process <strong>of</strong> heartwood formation and the<br />

determination <strong>of</strong> dynamics <strong>of</strong> this process in European larches (Larix decidua Mill.) is a<br />

relatively little known research area. In Poland the effect <strong>of</strong> age, social class <strong>of</strong> tree position in<br />

the stand and site conditions on heartwood formation in this species was investigated e.g. by<br />

Nawrot et al. ([008a; 2008b]. Due to the commonly valued advantages <strong>of</strong> larch wood, its<br />

durability resulting first <strong>of</strong> all from a large proportion <strong>of</strong> heartwood in the stem, it seems<br />

justified to conduct studies aiming at the determination <strong>of</strong> possibly many factors determining<br />

the rate <strong>of</strong> heartwood formation.<br />

The aim <strong>of</strong> the study was to determine the effect <strong>of</strong> age, social class <strong>of</strong> tree position in<br />

the community as well as biometric traits <strong>of</strong> trees on the dynamics <strong>of</strong> heartwood formation in<br />

European larch.<br />

MATERIAL AND METHODS<br />

Investigations were conducted in 2009 in the �migród Forest Division located within<br />

the administrative boundaries <strong>of</strong> the Regional Directorate <strong>of</strong> the State Forests in Wroc�aw.<br />

Experimental plots were located in pine–larch stands <strong>of</strong> age classes I, II, III and IV, where<br />

larch constituted an approx. 20% volume share <strong>of</strong> large timber and belonged to quality classes<br />

I or II. Selected stands grew in sites optimal for this species and they were fresh mixed<br />

coniferous forests and fresh mixed broad-leaved forests.<br />

In each <strong>of</strong> the eight selected stands a 1-ha representative mean sample plot was established,<br />

on which breast height diameters were<br />

measured on all trees and height was<br />

measured in proportion to the numbers in<br />

the adopted diameter subclasses. Based on<br />

the diameter and height characteristics<br />

(Fig. 1) and with the application <strong>of</strong> the<br />

dendrometric Urich I method<br />

[Grochowski 1973], three model trees<br />

representing classes I, II and III were<br />

selected according to the classification<br />

developed by Kraft (Kraft 1884).<br />

Next, on the basis <strong>of</strong> crown<br />

projections for model trees, their<br />

diameters were measured in the northsouth<br />

and east-west directions. Next<br />

Tree height [m]<br />

model trees were felled and biometric traits <strong>of</strong> their crowns were determined and their stems<br />

were divided into 2-metre sections, from the centre <strong>of</strong> which 2cm discs were cut for further<br />

laboratory analyses. The zones <strong>of</strong> heartwood and sapwood were measured on cut discs. On<br />

this basis the area <strong>of</strong> both wood types was calculated at individual measurement levels. In the<br />

determination <strong>of</strong> the dynamics <strong>of</strong> heartwood formation a coefficient was used, resulting from<br />

a ratio <strong>of</strong> the area <strong>of</strong> heartwood to the area <strong>of</strong> the sapwood zone referred in this study as the<br />

H/S index [Jelonek 2006].<br />

337<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

5 10 15 20 25 30 35 40 45 50<br />

DBH [cm]<br />

Fig. 1 Characteristics <strong>of</strong> model trees.


RESULTS<br />

It was attempted in this study to analyse the effect <strong>of</strong> age and biosocial class occupied<br />

by a tree on the dynamics <strong>of</strong> heartwood formation described by the H/S ratio. Depending on<br />

age, values <strong>of</strong> this coefficient<br />

ranged from 0.33 in the youngest<br />

stands to 1.97 in the oldest stands.<br />

In stands <strong>of</strong> the younger age<br />

classes, i.e. up to approx. 35 years<br />

<strong>of</strong> age, relatively limited dynamics<br />

<strong>of</strong> heartwood formation was<br />

observed. Only starting from<br />

approx. 40 years <strong>of</strong> age an<br />

acceleration <strong>of</strong> heartwood formation<br />

was found in larch trees. In the<br />

analysed age intervals two maxima<br />

were observed in the dynamics <strong>of</strong><br />

this process, the first in the stand<br />

aged 50 years, while the other at the<br />

age <strong>of</strong> 75 years (Fig. 2).<br />

This was followed by the<br />

analysis <strong>of</strong> social class <strong>of</strong> tree position in the stand on the rate <strong>of</strong> heartwood formation in<br />

stems <strong>of</strong> the compared trees.<br />

An increase was observed in<br />

the dynamics <strong>of</strong> heartwood formation<br />

with the transition to higher parts <strong>of</strong><br />

the stand. This means that the<br />

smallest dynamics <strong>of</strong> heartwood<br />

formation is found for co-dominant<br />

trees (H/S=0.35) and dominant trees<br />

(H/S=0.38), between which no<br />

significant differences were found in<br />

the fluctuations in the H/S index. In<br />

turn, dominant trees were<br />

characterised by the statistically<br />

significantly highest dynamics <strong>of</strong><br />

heartwood formation and the H/S<br />

index in this case was 0.46 (Fig. 3).<br />

In this study analyses were<br />

Coefficient H/S<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

-0,5<br />

Mean<br />

Mean/Error std<br />

Mean/Standart deviation<br />

also conducted on the dependence between investigated traits and crown length <strong>of</strong> trees as<br />

well as their age and height. In case <strong>of</strong> all the analysed traits statistically significant<br />

dependencies were found. The H/S index described in this study showed the strongest<br />

relationship with height (r=0.88) and age (r=0.87) <strong>of</strong> trees (Tab. 1). A very strong relationship<br />

was also found in stems <strong>of</strong> the examined trees between crown width and the area <strong>of</strong> sapwood<br />

and heartwood.<br />

338<br />

15 20 35 40 50 55 70 75<br />

Age [years]<br />

Fig. 2 Dynamics <strong>of</strong> heartwood formation in terms <strong>of</strong> age<br />

Coefficient H/S<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

Mean<br />

Mean/Error std<br />

Mean/Standard deviation<br />

I II III<br />

Kraft' class<br />

Fig. 3 Dynamics <strong>of</strong> heartwood formation in terms <strong>of</strong> social<br />

class <strong>of</strong> tree position in the stand


Table 1 Correlation coefficients for traits analysed in this study<br />

Determined correlation coefficients are significant at p<br />

< 0.05000<br />

Mean<br />

Standard<br />

deviation<br />

Age<br />

Crown<br />

length<br />

339<br />

Crown<br />

width<br />

Area <strong>of</strong><br />

heartwod<br />

Area <strong>of</strong><br />

sapwood<br />

Coefficient<br />

H/S<br />

Tree<br />

height<br />

Age 45 20.75 1.000000 0.570143 0.835994 0.820637 0.764542 0.869264 0.930458<br />

Crown length 8.59 2.01 0.570143 1.000000 0.700772 0.674042 0.641913 0.602487 0.643041<br />

Crown width 4.55 1.88 0.835994 0.700772 1.000000 0.956957 0.929963 0.852164 0.882381<br />

Area <strong>of</strong> heartwod 0.25 0.24 0.820637 0.674042 0.956957 1.000000 0.916298 0.856702 0.854095<br />

Area <strong>of</strong> sapwood 0.15 0.09 0.764542 0.641913 0.929963 0.916298 1.000000 0.706068 0.867227<br />

Coefficient H/S 1.36 0.78 0.869264 0.602487 0.852164 0.856702 0.706068 1.000000 0.880304<br />

Tree height 22.44 7.63 0.930458 0.643041 0.882381 0.854095 0.867227 0.880304 1.000000<br />

DISCUSSION<br />

Conducted investigations indicate a significant effect <strong>of</strong> age and social variation in the<br />

stand in the rate <strong>of</strong> heartwood formation in stems <strong>of</strong> European larches. In their studies on<br />

larch similar conclusions were reported by Nawrot et al. [2008a]. Those authors stated a<br />

gradual increase in the rate <strong>of</strong> heartwood formation with age, starting from age class II and<br />

ending with class IV. Recorded results seem justified, since in all species in which heartwood<br />

is found its formation is, among other things, a function <strong>of</strong> tree age. Moreover, the rate <strong>of</strong><br />

sapwood transformation into heartwood results primarily from the hydraulic architecture <strong>of</strong><br />

plants and a complicated system <strong>of</strong> dependencies between the hydraulically conductive zones<br />

and biometric traits <strong>of</strong> trees [Zwieniecki et al. 2001; Choat et al. 2003; Jelonek et al. 2008].<br />

This assumption for European larch was to a certain degree verified and confirmed by the<br />

conducted analyses. Based on the recorded results a strong relationship was found between<br />

both the conductive area and the heartwood zone excluded from water conduction, and the<br />

length and width <strong>of</strong> tree crowns.<br />

Growth in woody plants on height is to a considerable degree determined by<br />

competition for light. This competition is manifested in the social variation <strong>of</strong> trees in the<br />

community. In case <strong>of</strong> larches differences in the dynamics <strong>of</strong> heartwood formation between<br />

the layer <strong>of</strong> dominant trees and co-dominant trees may be connected with the fact that trees<br />

occupying inferior social classes are characterised by a lower proportion <strong>of</strong> the light crown<br />

than trees coming from higher biosocial classes, in which the intensity <strong>of</strong> assimilation and<br />

transpiration processes are slightly different [Assmann 1968]. Thus these differences may<br />

result in a different crown productivity, which will regulate - through respective mechanisms -<br />

the rate <strong>of</strong> sapwood transformation into heartwood, maintaining a hydraulically conductive<br />

zone at the optimal level.<br />

CONCLUSIONS<br />

The effect <strong>of</strong> both age and biosocial class <strong>of</strong> trees in the stand on the rate <strong>of</strong> heartwood<br />

formation was found in stems <strong>of</strong> European larches.<br />

In trees, after they have reached the age <strong>of</strong> approx. 50 years <strong>of</strong> age, a marked acceleration<br />

was observed in the dynamics <strong>of</strong> heartwood formation.<br />

The biggest dynamics <strong>of</strong> heartwood formation was found for dominant trees in the stand.<br />

A strong relationship was observed between the area <strong>of</strong> both sapwood and heartwood,<br />

and biometric traits <strong>of</strong> tree crowns.


REFERENCES<br />

1. ASSMANN E., 1968, Nauka o produkcyjno�ci lasu [Science on forest productivity].<br />

Warszawa, PWRiL.<br />

2. BAMBER R.K. 1976, Heartwood, its function and formation, Wood, Wood Science<br />

and Technology, vol. 10, pp. 1-8.<br />

3. CHOAT B., BALL M., LULY J., HOLTUM J., 2003, Pit membrane porosity and<br />

water stress-induced cavitation in four co-existing dry rainforest tree species. Plant<br />

Physiology, 131:41–48.<br />

4. GROCHOWSKI J., 1973, Dendrometria. [Dendrometry]. Warszawa, Poland.<br />

5. HILLIS WE. 1987, Heartwood and tree exudates, Springer series in wood science,<br />

Berlin, Heidelberg, New York.<br />

6. JELONEK T., PAZDROWSKI W., ARASIMOWICZ M., TOMCZAK A.,<br />

WALKOWIAK R., SZABAN J 2008, The applicability <strong>of</strong> the pipe model theory in<br />

trees <strong>of</strong> Scots pine (Pinus sylvestris L.) <strong>of</strong> Poland. Journal <strong>of</strong> Forest Science. 54(11):<br />

519-531.<br />

7. KRAFT, G., 1884, Durchforstungen, Schlagstellungen und Lichtunghieben.<br />

Klindworth's Verlag, Hannover.<br />

8. NAWROT N., PAZDROWSKI W., SZYMA�SKI M.2008, Dynamics <strong>of</strong> heartwood<br />

formation and axial and radial distribution <strong>of</strong> sapwood and heartwood in stems <strong>of</strong><br />

European larch (Larix decidua Mill.) Journal <strong>of</strong> Forest Science, 54(9): 409–417.<br />

9. NAWROT M., PAZDROWSKI W., SZYMANSKI M. 2008, Percentage share <strong>of</strong><br />

sapwood and heartwood in stems <strong>of</strong> European larch (Larix decidua Mill.) representing<br />

II and III class <strong>of</strong> age grown in different forest site types, representing main tree stand<br />

at Kraft biosocial classification. Acta Sci. Pol. Silv. Colendar. Rat. Ind. Lignar. 7(1):<br />

31-38.<br />

10. SHINOZAKI, K., YODA, K., HOZUMI, K., AND KIRA, T. 1964a, A quantitative<br />

analysis <strong>of</strong> plant from - the pipe model theory I. Basic analyses. Jap. J. Ecol. 14: 97-<br />

105.<br />

11. SHINOZAKI, K., YODA, K., HOZUMI, K., AND KIRA, T. 1964b, A quantitative<br />

analysis <strong>of</strong> plant form: the pipe model theory. II. Further evidence <strong>of</strong> the theory and its<br />

application in forest ecology. Jap. J. Ecol. 14: 133–139.<br />

12. STOCES A., BERTHIER S. 2000, Irregular heartwood formation in Pinus pilaster Ait.<br />

is related to eccentric, radial, stem growth, Forest Ecology and Management, France.<br />

13. ZWIENIECKI M.H., MELCHER P., HOLBROOK N., 2001, Hydraulic properties <strong>of</strong><br />

individual xylem vessels <strong>of</strong> Fraxinus americana. Journal <strong>of</strong> Experimental Botany,<br />

52:1– 8.<br />

340


Streszczenie: Dynamika procesu twardzielowania u modrzewia europejskiego (Larix<br />

decidua Mill.) na tle wieku oraz zró�nicowania socjalnego drzew w drzewostanie W pracy<br />

podj�to prób� okre�lenia wp�ywu wieku oraz klasy biosocjalnej drzewa w drzewostanie na<br />

dynamik� procesu twardzielowania oraz okre�lenie zwi�zku miedzy powierzchni� bielu i<br />

twardzieli a cechami biometrycznymi koron.<br />

Do bada� u�yto drewno modrzewia europejskiego (Larix decidua Mill.) wyros�ego w<br />

zachodniej Polsce pochodz�cej z drzewostanów I, II, III i IV klasy wieku. Uzyskane wyniki<br />

wskazuj�, i� zarówno wiek jak i pozycja biosocjalne drzewa w zbiorowisku odgrywa<br />

significant� rol� w procesie formowania si� twardzieli. Stwierdzono, �e najwi�ksz� dynamik�<br />

tego procesu charakteryzowa�y si� drzewa po przekroczeniu 50 roku �ycia i by�y to drzewa<br />

góruj�ce. Stwierdzono równie� silny zwi�zek pomi�dzy powierzchni� bielu i twardzieli w<br />

strza�ach drzew a cechami bimetrycznymi koron.<br />

Corresponding author:<br />

Tomasz Jelonek, PhD<br />

E-mail address: tomasz.jelonek@up.poznan.pl<br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Department <strong>of</strong> Forest Utilisation<br />

Wojska Polskiego 71A St, 60-625 Pozna�, Poland<br />

Phone +48 61 8487754<br />

Fax +48 61 8487755


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 342-346<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Studies on combustibility <strong>of</strong> treated wood with fire retardant<br />

and antiseptic solutions<br />

ZBIGNEV KARPOVI� 1) , WALDEMAR JASKÓ�OWSKI 2) ,<br />

ROMUALDAS MA�IULAITIS 3) , VLADAS PRANIAUSKAS 3)<br />

1) Vilnius Gediminas Technical <strong>University</strong>, 11 Saul�tekio st., LT-10223 Vilnius, Lithuania<br />

2) The Main School <strong>of</strong> Fire Service, 52/54 Slowackiego st., 01-629 <strong>Warsaw</strong>, Poland<br />

3) Vilnius Gediminas Technical <strong>University</strong>, 11 Saul�tekio st 11, LT-10223 Vilnius, Lithuania<br />

Abstract: Studies on combustibility <strong>of</strong> treated wood with fire retardant and antiseptic solutions Many countries<br />

widely use wood in construction. In order to protect wood from the impact <strong>of</strong> environmental factors and to<br />

reduce its combustibility the chemical means such as antiseptic and fire retardant solutions are used. Wood <strong>of</strong><br />

spruce and pine being the most popular in construction is investigated in this work while non-treated and treated<br />

with antiseptic solution Asepas 2 and fire retardants solutions Flamasepas-2 and Bak-1. The research is<br />

performed according to the requirements <strong>of</strong> the standards LST EN ISO 1716:2002 and LST EN ISO 5657:1999.<br />

Keywords: wood, antiseptic, fire retardant, solution, heat flux, ageing<br />

INTRODUCTION<br />

Wood and wood products are widely used for construction and finishing <strong>of</strong> buildings<br />

(Stevens et al., 2006, Grexa, 2000). On purpose to increase wood durability and to reduce its<br />

combustibility, antiseptic and fire retardant solutions are used. In some cases for reducing<br />

wood combustibility antiseptic solutions are used instead <strong>of</strong> fire retardant solutions<br />

(Praniauskas et al., 2010). During the tests <strong>of</strong> wood treated with fire retardant solutions<br />

(Karpovi�, 2009, Šukys and Karpovi�, 2010) it was observed that process <strong>of</strong> ageing may<br />

affect the time to ignition <strong>of</strong> such wood.<br />

Purpose <strong>of</strong> work: to explore the calorific value <strong>of</strong> wood treated with antiseptic and fire<br />

retardant solutions and the dependence <strong>of</strong> ignition on process <strong>of</strong> ageing <strong>of</strong> wood treated with<br />

fire retardant solutions.<br />

RESEARCH METHODOLOGY<br />

The research on calorific value <strong>of</strong> wood was performed using the test equipment,<br />

correspondent to the requirements <strong>of</strong> standard LST EN ISO 1716:2002 . This research method<br />

was chosen for the reason that taking samples this way, structures <strong>of</strong> a building are harmed at<br />

the least. Only 0.5 – 1.0 g <strong>of</strong> wood dust are used to perform one test. Tests <strong>of</strong> calorific value<br />

<strong>of</strong> wood were performed on samples <strong>of</strong> pine and spruce wood treated with antiseptic solution<br />

Asepas 2 and fire retardant solution Bak-1 and also on untreated samples <strong>of</strong> pine and spruce<br />

timber. Nine tests were performed in every series <strong>of</strong> research.<br />

The research on dependence <strong>of</strong> ignition on process <strong>of</strong> ageing <strong>of</strong> wood treated with fire<br />

retardant solutions was performed using the test equipment, correspondent to the requirements<br />

<strong>of</strong> standard LST EN ISO 5657:1999. Test was terminated if sample did not ignite after 900 s<br />

from the start <strong>of</strong> test. During the tests samples were subjected to heat fluxes <strong>of</strong> 30, 35, 40, 45,<br />

50 kW/m 2 . Dependence <strong>of</strong> ignition on process <strong>of</strong> ageing <strong>of</strong> wood was estimated by the time to<br />

ignition <strong>of</strong> the sample. Pine and spruce wood samples used in these tests were treated with<br />

fire retardant solutions Flamasepas-2 and Bak-1. Five tests were performed in every series <strong>of</strong><br />

research. Samples during ageing were kept in the temperature <strong>of</strong> 20°–25° C and at 40–80<br />

percent relative humidity; the humidity <strong>of</strong> samples did not exceed 15 percent.<br />

342


RESEARCH RESULTS AND DISCUSSION<br />

The calorific value <strong>of</strong> wood treated with fire retardant solutions is lower compared to the<br />

calorific value <strong>of</strong> the same kind untreated wood and the calorific value <strong>of</strong> wood treated with<br />

antiseptic solutions is higher compared to the calorific value <strong>of</strong> the same kind untreated wood.<br />

The calorific values <strong>of</strong> pine and spruce wood samples treated with fire retardant solution Bak-<br />

1 and antiseptic solution Asepas 2 and the calorific values <strong>of</strong> untreated samples are shown in<br />

Fig.1.<br />

a) b)<br />

Fig. 1. Calorific values <strong>of</strong> pine (a) and spruce (b) timber samples treated with fire retardant solution Bak-1 and<br />

antiseptic solution Asepas 2 and the calorific values <strong>of</strong> untreated samples.<br />

Dependence <strong>of</strong> ignition on process <strong>of</strong> ageing <strong>of</strong> wood treated with fire retardant solutions<br />

when samples were subjected to heat fluxes <strong>of</strong> 30, 35 kW/m 2 is not shown here because in the<br />

first, second and third years time to ignition <strong>of</strong> the samples was more than 900 s. Average<br />

times to ignition <strong>of</strong> the treated pine and spruce wood samples, subjected to heat fluxes <strong>of</strong> 40,<br />

45, 50 kW/m 2 , correspondent to the years, are shown in Fig. 2, 3, 4 and 5.<br />

When pine wood samples, treated with fire retardant solution Flamasepas-2, were<br />

subjected to heat fluxes <strong>of</strong> 40, 45 kW/m 2 , it was estimated that time to ignition <strong>of</strong> the second<br />

year (2009) samples was shorter when compared to the time to ignition <strong>of</strong> the first year (2008)<br />

samples: 40 kW/m 2 – 1.25 times, 45 kW/m 2 – 1.22 times on the average; time to ignition <strong>of</strong><br />

the third year (2010) samples was shorter when compared to the time to ignition <strong>of</strong> the first<br />

year (2008) samples: 40 kW/m 2 – 1.33 times, 45 kW/m 2 – 1.66 times on the average (Fig. 2).<br />

Time [s]<br />

Qs [MJ/kg].<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

16,079<br />

Spruce coated<br />

BAK-1<br />

19,101<br />

2008<br />

2009<br />

2010<br />

19,614<br />

Spruce Spruce coated<br />

Asepas 2<br />

40 45 50<br />

Heat flux [kW/m 2 ]<br />

Fig. 2. Average times to ignition <strong>of</strong> the pine wood samples treated with fire retardant solution Flamasepas-2,<br />

subjected to heat fluxes <strong>of</strong> 40, 45, 50 kW/m 2 , correspondent to the years.<br />

When spruce wood samples, treated with fire retardant solution Flamasepas-2, were<br />

subjected to heat fluxes <strong>of</strong> 40, 45 kW/m 2 , it was estimated that time to ignition <strong>of</strong> the second<br />

year (2009) samples was shorter when compared to the time to ignition <strong>of</strong> the first year (2008)<br />

343<br />

Qs [MJ/kg].<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

16,464<br />

Pine coated<br />

BAK-1<br />

19,804<br />

20,948<br />

Pine Pine coated<br />

Asepas2


samples: 40 kW/m 2 – 3.31 times, 45 kW/m 2 –3.33 times on the average; time to ignition <strong>of</strong> the<br />

third year (2010) samples was shorter when compared to the time to ignition <strong>of</strong> the first year<br />

(2008) samples: 40 kW/m 2 –3.65 times, 45 kW/m 2 – 4.07 times on the average (Fig. 3).<br />

Fig. 3. Average times to ignition <strong>of</strong> the spruce wood samples treated with fire retardant solution Flamasepas-2,<br />

subjected to heat fluxes <strong>of</strong> 40, 45, 50 kW/m 2 , correspondent to the years.<br />

When pine wood samples, treated with fire retardant solution BAK-1, were subjected to<br />

heat fluxes <strong>of</strong> 40, 45 kW/m 2 , it was estimated that time to ignition <strong>of</strong> the second year (2009)<br />

samples was shorter when compared to the time to ignition <strong>of</strong> the first year (2008) samples:<br />

40 kW/m 2 – 1.58 times, 45 kW/m 2 – 2.93 times on the average; time to ignition <strong>of</strong> the third<br />

year (2010) samples was shorter when compared to the time to ignition <strong>of</strong> the first year (2008)<br />

samples: 40 kW/m 2 – 1.82 times, 45 kW/m 2 – 3.57 times on the average (Fig. 4).<br />

Time [s]<br />

Time [s]<br />

280<br />

260<br />

240<br />

220<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

650<br />

600<br />

550<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

2008<br />

2009<br />

2010<br />

40 45 50<br />

2008<br />

2009<br />

2010<br />

Heat flux [kW/m 2 ]<br />

40 45 50<br />

Heat flux [kW/m 2 ]<br />

Fig. 4. Average times to ignition <strong>of</strong> the pine wood samples treated with fire retardant solution BAK-1, subjected<br />

to heat fluxes <strong>of</strong> 40, 45, 50 kW/m 2 , correspondent to the years.<br />

When spruce wood samples, treated with fire retardant solution BAK-1, were subjected to<br />

heat fluxes <strong>of</strong> 40, 45 kW/m 2 , it was estimated that time to ignition <strong>of</strong> the second year (2009)<br />

samples was shorter when compared to the time to ignition <strong>of</strong> the first year (2008) samples:<br />

40 kW/m 2 – 3.84 times, 45 kW/m 2 – 1.11 times on the average; time to ignition <strong>of</strong> the third<br />

year (2010) samples was shorter when compared to the time to ignition <strong>of</strong> the first year (2008)<br />

samples: 40 kW/m 2 – 6.11 times, 45 kW/m 2 – 1.79 times on the average (Fig. 5).<br />

When all samples <strong>of</strong> the second (2009) and third (2010) year were subjected to heat flux<br />

<strong>of</strong> 50 kW/m 2 , it was estimated that time to ignition when compared to the time to ignition <strong>of</strong><br />

all the first year (2008) samples was similar.<br />

344


Time [s]<br />

360<br />

320<br />

280<br />

240<br />

200<br />

160<br />

120<br />

80<br />

40<br />

0<br />

2008<br />

2009<br />

2010<br />

40 45 50<br />

Heat flux [kW/m 2 ]<br />

Fig. 5. Average times to ignition <strong>of</strong> the spruce wood samples treated with fire retardant solution BAK-1, affected<br />

by 40, 45, 50 kW/m 2 heat fluxes, correspondent to the years.<br />

CONCLUSIONS<br />

The calorific value <strong>of</strong> timber treated with fire retardant solution is lower when compared<br />

to the calorific value <strong>of</strong> the same kind untreated timber and the calorific value <strong>of</strong> timber<br />

treated with antiseptic solution is higher when compared to the calorific value <strong>of</strong> the same<br />

kind untreated timber.<br />

Process <strong>of</strong> ageing influences the combustibility <strong>of</strong> wood treated with fire retardant<br />

solutions when the heat flux varies from 40 to 45 kW/m 2<br />

It is not possible to estimate the influence <strong>of</strong> ageing on combustibility <strong>of</strong> timber treated<br />

with fire retardant solutions when heat flux is lower than 40 kW/m 2 (time to ignition is longer<br />

than 900 s) by the used research methodology. The influence <strong>of</strong> ageing on combustibility <strong>of</strong><br />

wood treated with fire retardant solutions when heat flux is 50 kW/m 2 , is not substantial.<br />

REFERENCES<br />

1. STEVENS, R., DAAN, S., BEZEMER R., KRANENABARG A., 2006: The structure<br />

– activity relationship <strong>of</strong> fire retardant phosphorus compounds in wood. Polymer<br />

Degradation and Stability 91; 832–841.<br />

2. GREXA O., 2000: Flame retardant treated wood products. The proceedings <strong>of</strong> wood<br />

and fire safety (part one). Zvolen; 101–110.<br />

3. PRANIAUSKAS V., MA�IULAITIS R., LIPINSKAS D., 2010: Research <strong>of</strong> variuos<br />

fire-retardant treated wood species. The 10 th international conference ,,Modern<br />

buildings materials, structures and techniques“ May 19-21, 2010 Lithuania. Selected<br />

papers, vol. 2; 1286-1291.<br />

4. KARPOVI� Z., 2009: Antipireniniais tirpalais impregnuotos medienos<br />

užsiliepsnojimo priklausomyb� nuo medienos tankio [The influence <strong>of</strong> flame retardant<br />

treated timber density on the combustibility]. Mokslas – Lietuvos ateitis [Science –<br />

future <strong>of</strong> Lithuania], 1(5); 30–33.<br />

5. ŠUKYS R., KARPOVI� Z., 2010: Research on toxicity <strong>of</strong> pine timber treated and<br />

non-treated with fire retardants. The 10 th international conference ,,Modern buildings<br />

materials, structures and techniques“ May 19-21, 2010 Lithuania. Selected papers, vol.<br />

2, 1306-1313.<br />

6. LST EN ISO 1716:2002: Reaction to fire tests for building products - Determination<br />

<strong>of</strong> the heat <strong>of</strong> combustion (Badania palno�ci wyrobów budowlanych – oznaczanie<br />

ciepla spalania).<br />

345


7. LST EN ISO 5657:1999: Reaction to fire test. Ignibility <strong>of</strong> building products using a<br />

radiant heat source (Badania reakcji na ogie�. Zapalene si� wyrobów budowlanych<br />

poddanych bezpo�redniemu dzia�aniu promieniowania cieplnego).<br />

Streszczenie: Badania drewna impregnowanego ognioochronnymi i antyseptycznymi<br />

�rodkami chemicznymi. W wielu krajach szeroko wykorzystuje si� drewno w budownictwie.<br />

W celu ochrony drewna przed wp�ywem czynników �rodowiskowych oraz w celu<br />

zmniejszenia palno�ci s� u�ywane antyseptyczne i ognioochronne �rodki chemiczne. W pracy<br />

przedstawiono wyniki bada� dla drewna �wierkowego i sosnowego impregnowanych<br />

�rodkiem antyseptycznym Asepas 2 i �rodkami ognioochronnymi Flamasepas-2 i Bak-1.<br />

Badania przeprowadzone zgodnie z wymaganiami norm LST EN ISO 1716:2002 i LST EN<br />

ISO 5657:1999.<br />

Corresponding authors:<br />

Zbignev Karpovi�, Vladas Praniauskas, Romualdas Ma�iulaitis<br />

Vilnius Gediminas Technical <strong>University</strong>,<br />

11 Saul�tekio st. ,<br />

LT-10223 Vilnius,<br />

Lithuania<br />

e-mail: zbignev.karpoovic@vgtu.lt<br />

email: romualdas.maciulaitis@vgtu.lt<br />

email: vladas.praniauskas@vgtu.lt<br />

Waldemar Jaskó�owski,<br />

The Main School <strong>of</strong> Fire Service,<br />

Department <strong>of</strong> Combustion and Fire Theory,<br />

52/54 S�owackiego St.,<br />

01-629 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: wjaskolowski@sgsp.edu.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 347-350<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

The effect <strong>of</strong> ageing in natural conditions on the basic properties <strong>of</strong> waterbased<br />

paint coatings<br />

ANDRZEJ K�DZIERSKI, 1) ANNA POLICI�SKA – SERWA 2)<br />

1) Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

2) Building Research Institute – ITB<br />

Abstract: The effect <strong>of</strong> ageing on selected properties <strong>of</strong> paint coatings made with water-based paints. The<br />

analysis concerned the aesthetic and decorative properties – important to users <strong>of</strong> fenestration joinery.<br />

Observations were conducted before and during the ageing test performed in natural conditions according to PN-<br />

EN 927-3. It was determined that water-based coatings, opaque and transparent, applied on samples <strong>of</strong> wood<br />

from oak, pine, spruce, and larch, did not undergo significant changes in appearance, sheen, colour, and<br />

adhesiveness after 3, 6, and 12 months <strong>of</strong> ageing.<br />

Key words: exterior fenestration joinery, paint coatings on wood, ageing <strong>of</strong> paint coatings, change <strong>of</strong> colour,<br />

change <strong>of</strong> appearance, adhesiveness.<br />

INTRODUCTION<br />

Natural environments in which buildings are exploited differ in specific characteristics<br />

resulting from the degree <strong>of</strong> urbanisation and saturation with industrial facilities. The air and<br />

precipitation containing region-specific quantities <strong>of</strong> pollutants have different effects on<br />

surfaces, such as the wooden fenestration joinery.<br />

Experience proves the importance <strong>of</strong> good-quality paint coating on the durability and<br />

usability <strong>of</strong> the joinery. Meanwhile, the quality <strong>of</strong> the joinery is strictly related to the coating<br />

system applied, and the user's care exercised. What is also an interesting research subject is<br />

the relationship between new-generation, environmentally-friendly water-based coatings and<br />

the environment affecting them, as well as the duration <strong>of</strong> such effect.<br />

Coatings made with chemically cured, oil- and polyurethane-based varnishes and<br />

paints whose advantages were discovered in earlier research projects [Paprzycki, Proszyk,<br />

etc.] are currently replaced with water-bases paints. These coatings are also increasingly<br />

popular as study subjects [Proszyk, No�ewnik-Mate�ko, etc.].<br />

The aim <strong>of</strong> this study was to determine the effect <strong>of</strong> ageing – occurring in natural<br />

conditions <strong>of</strong> two essentially different environments: urban and industrial one – on basic<br />

properties <strong>of</strong> water-based coatings, opaque, applied on four types <strong>of</strong> wood, most commonly<br />

used in the manufacture <strong>of</strong> windows in Poland – pinewood, oak, and less frequently<br />

(regionally) – spruce and larch.<br />

The scope <strong>of</strong> research included the assessment <strong>of</strong> appearance and properties <strong>of</strong> the<br />

coating before ageing, and after 3 and 6 months. Ageing research is continued.<br />

EXPERIMENTS<br />

The research programme was developed on the basis <strong>of</strong> the recommendations <strong>of</strong> the<br />

PN-EN 927-3:2002 standard. Paints and varnishes. Varnish products and coating systems<br />

were applied on exterior surfaces. Part 3: Study in normal weather conditions.<br />

Two exposures were performed: in <strong>Warsaw</strong> and in Katowice.<br />

Studied samples were <strong>of</strong> the same shape and size, i.e. 20x78x375 mm. The pinewood<br />

and spruce samples selected for the study were sapwood-free. All four wood types had ring<br />

orientation <strong>of</strong> 5 to 45%.<br />

347


Paint coatings were applied on samples at a window-production plant, using an<br />

industrial method recommended by the coating system producer.<br />

The coatings were applied on weathered wood with a humidity recommended by the<br />

system producer.<br />

The coating system applied on samples <strong>of</strong> pinewood, spruce, and larch consisted <strong>of</strong> the<br />

following:<br />

- impregnation, by immersion;<br />

- priming coat, by immersion;<br />

- intermediate coat, sprayed (180-200 μm, wet)<br />

- protective treatment <strong>of</strong> cross-section surfaces;<br />

- top coat (150-175 μm, wet)<br />

The coating system applied on samples <strong>of</strong> oak wood consisted <strong>of</strong> the following:<br />

- impregnation by immersion;<br />

- base coat, by immersion;<br />

- base coat, sprayed;<br />

- top layer, sprayed (150-175 μm, wet),<br />

- second top layer, sprayed (150-175 μm, wet).<br />

After the coating was cured in laboratory conditions, the first stage <strong>of</strong> so-called<br />

opening tests was conducted. These were made with research methods described in PN-EN or<br />

PN-EN ISO standards. They included the assessments most important to window users, i.e.<br />

the appearance – through the assessment <strong>of</strong> the degree <strong>of</strong> blistering, peeling, cracking, colour,<br />

sheen, and adhesiveness to the ground surface. The post-curing thickness <strong>of</strong> coatings and<br />

wood humidity were also measured.<br />

In each <strong>of</strong> the exposure locations 25 samples <strong>of</strong> each variant were exposed to outdoor<br />

conditions. 2 samples <strong>of</strong> each solution were kept in the laboratory for comparison purposes.<br />

The effect <strong>of</strong> the environment on the condition <strong>of</strong> the coatings was assessed after 3 and<br />

6 months from the start <strong>of</strong> the research project.<br />

In the assessment <strong>of</strong> the appearance/condition <strong>of</strong> sample surfaces procedures described<br />

in PN-EN or PN-EN ISO standards were applied.<br />

The same properties will be determined after longer periods <strong>of</strong> outdoor exposure in natural<br />

conditions.<br />

RESULTS<br />

Properties <strong>of</strong> coatings before and after ageing on exposures in <strong>Warsaw</strong> and Katowice<br />

were presented in Tables 1 and 2.<br />

348


Table 1. Results <strong>of</strong> coating assessments before and after ageing on exposure in <strong>Warsaw</strong><br />

Results <strong>of</strong> assessments on different wood types, period <strong>of</strong> exposure (months), average<br />

Property<br />

pine oak<br />

values<br />

larch spruce<br />

Research<br />

standard<br />

0 3 6 0 3 6 0 3 6 0 3 6<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14<br />

Sheen<br />

Initial<br />

appearance<br />

35.2 34.6 32.3 34.1 34.2 33.2 34.9 32,7 32,2 36,1 32.6 33,4<br />

PN-EN<br />

ISO 2813<br />

- blistering (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 PN-ISO<br />

- peeling (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 4628-1;<br />

- cracking (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)1 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 -2; -4; -5<br />

- chalking 0 0 0 0 0 0 0 0 0 0 0 0<br />

- moulds 0 0 0 0 0 0 0 0 0 0 0 0<br />

Adhesiveness<br />

to ground<br />

surface<br />

1 1 1 1 1 1 1 1 1 1 1 1<br />

PN-EN<br />

ISO 2409<br />

Table 2. Results <strong>of</strong> coating assessments before and after ageing on exposure in Katowice<br />

Results <strong>of</strong> assessments on different wood types, period <strong>of</strong> exposure (months),<br />

Property<br />

pine oak<br />

average values<br />

larch spruce<br />

Research<br />

standard<br />

0 3 6 0 3 6 0 3 6 0 3 6<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14<br />

Sheen<br />

Initial<br />

appearance<br />

35.2 34.5 32.1 34.1 34.1 30.8 34.9 33,5 31,3 36,1 32.0 31.2<br />

PN-EN<br />

ISO 2813<br />

- blistering (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 PN-ISO<br />

- peeling (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 4628-1;<br />

- cracking (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)1 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 (S0)0 -2; -4; -5<br />

- chalking 0 0 0 0 0 0 0 0 0 0 0 0<br />

- moulds 0 0 0 0 0 0 0 0 0 0 0 0<br />

Adhesiveness<br />

to ground<br />

surface<br />

1 1 1 1 1 1/2 1 1 1 1 1 1/2<br />

PN-EN<br />

ISO 2409<br />

Having analysed the results given in the tables, it may be determined that ageing in<br />

natural conditions for the period <strong>of</strong> 3 and 6 months had little effect on the condition <strong>of</strong> the<br />

coatings, with greater changes being observed at the Katowice exposure.<br />

The only change noted was the reduction <strong>of</strong> coating adhesiveness to oak and spruce by<br />

one degree.<br />

Other parameters such as blistering, peeling, cracking, chalking, and mould development did<br />

not change or occur at all in the 3 or 6 months <strong>of</strong> exposure.<br />

CONCLUSION<br />

1. 3- and 6-month natural ageing <strong>of</strong> studied coatings results in minor loss <strong>of</strong> sheen, with<br />

the loss being a little greater in Katowice.<br />

2. No significant negative changes in the appearance <strong>of</strong> coatings were noted after 3 and 6<br />

months in neither Warszawa nor Katowice.<br />

3. It is reasonable to continue the study <strong>of</strong> properties <strong>of</strong> paint coatings on samples<br />

subjected to natural ageing.<br />

4. Research conducted in accordance with the above-mentioned standards are simple to<br />

be carried out, but as the samples are small and do not fully reflect the actual usage<br />

349


conditions, observations are also conducted <strong>of</strong> finished products made <strong>of</strong> the same<br />

types <strong>of</strong> wood and finished in analogical coating systems.<br />

REFERENCES<br />

1. PAPRZYCKI O., PROSZYK S., PRZYBYLAK A. 1985, Wyd. AR Pozna�. Materia�y<br />

do �wicze� z technologii wyka�czania powierzchni drewna i tworzyw sztucznych;<br />

2. PECINA H., PAPRZYCKI O.; Pokrycia lakierowe na drewnie PWR i L 1997;<br />

3. MATE�KO - NO�EWNIK M., PROSZYK S., 2004 „Influence the thermal aging<br />

exposition upon the prosperities <strong>of</strong> lacquer coating for Windows joinery, Part I<br />

Aesthetic – decorative features”; <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong>, Forest<br />

and Wood technology, (55): 346-349.<br />

4. GRZE�KIEWICZ M., K�DZIERSKI A., SWACZYNA I., �WIETLICZNY M., 2005,<br />

Evaluation <strong>of</strong> degradation <strong>of</strong> paint coatings due to exposure to natural climate. <strong>Annals</strong><br />

<strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong>, Forest and Wood technology, (56): 272-274.<br />

Streszczenie: Powietrze i opady atmosferyczne, zawieraj�ce charakterystyczne dla<br />

okre�lonego regionu ilo�ci zanieczyszcze� mog� inaczej w zale�no�ci od regionu<br />

oddzia�ywa� na powierzchnie drewnianej stolarki otworowej. Celem pracy jest zbadanie<br />

wp�ywu starzenia - odbywaj�cego si� w warunkach naturalnych, w dwu zasadniczo ró�nych<br />

�rodowiskach: miejskim i przemys�owym, na podstawowe w�a�ciwo�ci pow�oki<br />

wodorozcie�czalnych, kryj�cej, wykonanej na czterech gatunkach drewna, najcz��ciej w<br />

Polsce stosowanych do produkcji okien - so�nie, d�bie, i rzadziej - regionalnie, modrzewiu i<br />

�wierku. Zakres pracy obejmuje ocen� podstawowych cech wygl�du i przyczepno�ci pow�oki<br />

do pod�o�a po up�ywnie 3 i 6 miesi�cy ekspozycji. Badania s� kontynuowane.<br />

Corresponding authors:<br />

Andrzej K�dzierski,<br />

Faculty <strong>of</strong> Wood Technology<br />

159 nowoursynowska str., 02-776 Warszawa<br />

e-mail Andrzej_Kedzierski@sggw.pl;<br />

Anna Polici�ska – Serwa,<br />

Building Research Institute<br />

21, Ksawerów str, 02-656 Warszawa<br />

e-mail a.serwa@itb.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 351-354<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

������������ ��������, �������� �� ������� ������������� ��<br />

������<br />

N.A. KHODOSOVA, JAN SEDLIACIK*, V.A. VARIVODIN, �.�. ANISIMOV<br />

Faculty <strong>of</strong> wood processing technology <strong>of</strong> Voronezh State Academy <strong>of</strong> forestry Engineering<br />

*���������� ����������� �����������, ��������, �. ������<br />

Abstract: � ������ ��������������� ��������� �������, �������� �� ������� ������������� ��<br />

������: ����� �����������, ����������� � ��������� ���������� �����. ������������ �������<br />

���������� ��� ������������ ������ �������� ��������� ������� ��������������. ���������� 2 %<br />

�������������� ����������������� ��������������� ��������� � 2 ���� ������� �������<br />

������������� �� ������. ������� ������������ ������ � ������� �� ��� ���������� �� �������<br />

��������� �������������: ����������� ����������� ���������� ����� � 20 �� 50 � � ������������<br />

��������� ��������� ������������� �� 21 %. ������ ������ ���������������� �������� ��������<br />

���������, ����������� ������� � 30 % �� 50 % �������� � ���������� ��������� ������������� �� 20<br />

%, � ��� ������������ ��������� (100 %) – �� 84 %.<br />

Keywords: ��������������, ���������, ������������, ���������, ������<br />

INTRODUCTION<br />

��� ������������ ��������� ����� ����� ��������� ���������� ����� 50<br />

������������ ���������� ���������� [1]. ����� ������������ � ������ �������<br />

���������� �������� ��� �������� ������������ – 96,1%, ������ ��� ������������<br />

����� � 100 % ������� ��������� ��������� ���������� ������� � 5 – 6 ���, ��<br />

���������� � ������� ������������� ����������� ����������� – �� 10 ���.<br />

����������� ��������� � ���������� ����� ����� ������������� �������� –<br />

������, ������������� �������� �������, ������������ � ���������� ����������<br />

���������, ������������� ��������, ����������, ����������� ���������. ��������<br />

���������� ������������� �� ���� ���� �������� �������� ���������� ������������ �<br />

�����, �������������� ��� ���������� ���������� ��� � ���������� ���������� ���<br />

������� � ���������� ��� ������������ ������ �����. ������� ����� �����������<br />

��������� ��������� ������������������������ ����� �, �������������, �������<br />

������� ����� ���������� ��� ��������� ����������� � ��������� �������.<br />

����������� �������������� ��������� � ������ �������� ��������� �<br />

������������� ����������� �������. �������������� �������� �������������<br />

��������� � ������������ � �������� ��������� �������� ��� [2]. ��<br />

��������������� �������� ��������������, ��������������� � �������������<br />

����������, ��� ����������� ������������� ��� ���������������� �������� [3].<br />

�������� ��������������� � ������� ���������� ��������� ������� �������<br />

�������������. �����������, ��� ���������� �������������� ����������<br />

������������� (����� � � ���������� ��������� ����) ���������������<br />

������������ ������������ ��������� ������������� � �������� ����������<br />

��������� � �����������.<br />

351


���� ������ �������� � ������������ ������� ��������� � ����������� ��<br />

������� ������������� �� ������, ���������� � ����������� ������� ����������,<br />

���������� ��������������.<br />

MATERIALS AND METHODS<br />

�������������� ������� �� ����������� �������, � ������� ���� ����� Al 3+ -<br />

Fe 3+ - Mg 2+ - ��������� ����������� � ����� ������� ������������������ ����������,<br />

�� ���� ��������� 2:1 – ����� ����� ������� ���������� ��������� ���� �����<br />

���������. � �������� ��������� �������� ������� ������� ���������������<br />

����������� �� 0,03 – 0,12 ��, � � ����������� ������������ ����������<br />

������������ ���� �������������� ��������. ��� ���������� ����������<br />

����������� ������� �� �������������� �������������� ���������� ��������������<br />

���������� ��������� ����� � ���������� ��������� �������� 0,011 �� � ����� 48<br />

����� ������� ���������� ������������ ��� 453 � [4,5].<br />

������������ �������������, ����������� �� ������, ����������<br />

���������������� ������� [6].<br />

RESULTS AND DISCUTION<br />

����� �� ����� �������� ����������� ���������� ��������� ����������<br />

�������� � ������� ����������. ���������� ���������� ����������<br />

��������������� ��� ������������ ���������� �������������, � ����� ��<br />

����������� ����������� �������������� ������� ����������. ���������� ��������<br />

� ��������� ���� ����������� � �������� 1 - 4 % �� ����� ����. ���������� ������<br />

������������ � ������� 1.<br />

������� 1. ������� ���������� ��������� ��������������� �� �������<br />

�������������<br />

���������� ����������� �<br />

������� �������������, ��/�<br />

������� ����������, %<br />

3<br />

��� ����������� 0,141<br />

1 0,138<br />

2 0,134<br />

3 0,133<br />

4 0,134<br />

����� �������, �������� 2 % ��������������� �������� � ��������<br />

��������� �������������.<br />

�������� �� ��������� ���������� � ������������������������ ������<br />

���������� ������������� � �������� �������� ���� � ��� ������������� ��� �<br />

�������� ���������� � ������� ����������� � ��� ������������ ������ � ���������<br />

���������� ���� ������������� � �����������, ����������� ���������� �������<br />

���������� ������������� � ����� � ������������������ ���������� [1].<br />

������������������������ ��������� ���������� � �������������� �����������,<br />

�������� ����������������� ������� �� ���������������, ����������������� �<br />

������������������, � ����� �������� ����������� ������, ������� � ��������<br />

���������� ����������� ������������� [7].<br />

� �������� ��������������� ��������, ������� ��������� ������� ��<br />

��������� ������������� �� ����� � �������� �� ����������� ��� �����������<br />

352


������, ���������: �����������, ����������������� ����������� � ����� ����������<br />

[8].<br />

� ������ ���������� ������� ����������� � ��������� ���������� ����� ��<br />

��������� ������������� �� ������, ���������� � �������������� �������<br />

����������, � ������ ������� ������ ��������������, �������������� ������������<br />

� ���������� ��������� ����, � ����� 48 ����� ������������ ���������� �� 453 �.<br />

������ ������������ � �������� 2 � 3.<br />

������� 2. – ������� ����������� �� ��������� ������������� �� ������<br />

��������� ������������� �� ������, ��/� 3<br />

��� ���������� �������� � ���� ������� 2 % ��������������� (�/� + ���)<br />

t = 20 o C<br />

(t = 20 o C) (t = 30 o C) (t = 40 o C) (t = 50 o C)<br />

0,124 0,056 0,059 0,063 0,068<br />

�/� – �������������� (453 �), ��� – ���������� ��������� ����<br />

�������� �������� ������� ��������� ������������� �� ������ �� 55 %. ����<br />

����������� �� 20 �� 30 � � ��������� ����������� �������� �� 5,3 %, ��� �����������<br />

����������� �� 20 �������� (�� 20 �� 40 � �) ��������� ������������� �������������<br />

�� 12 %. ��� 50 � � ������� ������������� ����������� (�� 21 %). �����������<br />

��������� ������������� �� ������ ����� �������� ��������.<br />

������� 3. – ������� ��������� (W) �� ��������� ������������� �� ������<br />

��� ���������� ��������<br />

W = 30 %<br />

��������� ������������� �� ������, ��/� 3<br />

� ���� ������� 2 % ��������������� (�/� + ���)<br />

(W = 30 %), (W = 50 %) (W = 100 %)<br />

0,124 0,056 0,067 0,103<br />

���������� ����������� � ������� ���������� ��� ������������ ������ �<br />

���������� ���������� ����� 30% ������������� �������� ��������� �� 55 %.<br />

��������� ��������� � 30 �� 50 % ��������������� ������� ���������<br />

������������� �� 20 %. ��� ������������ ��������� 100 % ������� �������������<br />

���������� �� 84 %. ������ ���� ��� ����� ������� ���������, ����������<br />

����������� ������������� �� ������, ������������� ��� ������������� �������<br />

����������, ���������� ��������������, ����������� ���� �� 20 % � ��������� �<br />

����������� ��������, �� ���������� ��������������.<br />

CONCLUSION<br />

�����������, ��� ����������� ����������� ���������� ����� � 20 ��<br />

50 � � ������������ ��������� ��������� ������������� �� 21 %, ����������<br />

��������� �������� � ������������� ����� ������� �������������, ���<br />

���������� 84 %. ����, � ���������� ������������ ���������� ����������<br />

������������� � ���������� ����� ���������� 0,056 ��/� 3 , ��� � 2 ���� ������<br />

����������� ������ ���������� ������������� � ����� ����������. �����<br />

�������, ���������� ������������� ���������� � ���������������� � �����<br />

���������� � ���������� ����� � �����.<br />

353


LITERATURE<br />

1. ����������, �.�. ����������������� �������� ���������������� ��������<br />

�������� ���������� ������������� ������� ����� ��������� – ������,<br />

������� � ������������� / ��� ����� � ������������ ������� ��. �.�.<br />

������ // www.health.gov.ua.<br />

2. ���������, �.�. ��������� �� ��������� ��������� / �.�. ���������, �.�.<br />

��������� – ����.: ������� �����, 1975.– 350 �.<br />

3. ������������, �. �. �������� ������������� � ��������� ���������./ �.�.<br />

������������ – �.: �����, 1979. – 231 �.<br />

4. �����������, �. �. ��������� ������������� �� ����������� ������������<br />

���������, ������������ ���������� ��������� ����� / ����������� �. �.,<br />

�������� �.�., �������� �.�. // ����������� ����������� � ������<br />

����������. – 2009. – �.45. �2. – �.218-221.<br />

5. Khodosova, N.A. Adsorption <strong>of</strong> Formaldehyde from Gaseous Phase by Thermally<br />

Activated Nanoporous Celite / N.A. Khodosova, L.I. Belchinskaya, G.A. Petuchova ,<br />

O.V Voisheva // Protection <strong>of</strong> Metals and Physical Chemistry <strong>of</strong> Surfaces. – 2009.<br />

Vol. 45, � 6, �p. 722 – 727.<br />

6. ��������, �.�. ����������� ����������� �� ������������������ ����<br />

������������� ��������������������� ������� � ��������������<br />

�������������: ��������-������. / �.�. �������� �. �. ��������, �.�.<br />

��������. – �.: ��������������, 1987. – �. 16-19. – (����� � ������; ���.<br />

12).<br />

7. Weigel, H.I. The effects <strong>of</strong> air pollutats on forest free from a plant physiological<br />

View/ H. I.Weigel, G. Halbwacha, H.I. Tager // Z. Pflanzenkzukh, 1989. Bd. 96.H.2.<br />

S. 203-217.<br />

8. �������, �. �. ������������� ����� � ��������������� : ����. / �. �.<br />

�������, �. �. ������������, �. �. ��������. – 2-� ���., �������. ����. – �.:<br />

����. ����-��, 1987. – 224 �.<br />

Streszczenie: Badania czynników wp�ywaj�cych na emisj� formaldehydu ze sklejki Pod<br />

uwag� brane s� nast�puj�ce czynniki wp�ywaj� na emisj� formaldehydu ze sklejki: masa<br />

wype�niaczy, temperatura i wilgotno�ci otoczenia. Warunki korzystania ze sklejki i jej<br />

produktów by�y rozpatrywane na stopie� emisji formaldehydu. I tak: wzrost temperatury<br />

otoczenia od 20 do 50 ° C zwi�ksza emisj� formaldehydu o 21%. Innym wa�nym czynnikiem<br />

jest wilgotno��. Wzrost jej od 30% do 50% prowadzi do wzrostu emisji formaldehydu o 20%.


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 355-359<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Application <strong>of</strong> acoustic signals in preventing <strong>of</strong> animal damages in farming<br />

and forest cultivations<br />

SYLWESTER KOWALCZYK<br />

Forestry Inspectorate Wali�y<br />

Abstract: Article presents working principle and application possibilities <strong>of</strong> prototype acoustic chaser to repel<br />

animals from faming and forest cultivations. Reaction testing <strong>of</strong> wild animals was assessed, in their home areas<br />

and at the bait stations. This enables <strong>of</strong> testing accustomization <strong>of</strong> animals to specific acoustic signals. Chaser<br />

emits signals consisting <strong>of</strong> natural alarming-informative sounds.<br />

Keywords: UOZ-1, animal damages, forest and farming crop protection<br />

INTRODUCTION<br />

Last years increased density <strong>of</strong> wild ho<strong>of</strong>ed mammals is being observed, such as: roedeers,<br />

(Capreolus capreolus) , wild boars (Sus str<strong>of</strong>a), deers (Cervus elaphus) (GUS 2009).<br />

Dynamic increase <strong>of</strong> deer density is supported by the lack <strong>of</strong> predators such as: wolfs (Canis<br />

lapus),lynxes (Lynx lynx), bears (Ursus arctos). Considering lack <strong>of</strong> natural enemies deers<br />

create larger swarms, influencing damage’s size (Zaborowski, 1977; K�osi�ska, Kowalczyk,<br />

2005). What is more, winter emergency feeding, artificially enriching natural diet mainly in<br />

non-existing in natural biotope highly caloric hydrocarbons, has its influence in deer density<br />

as well. Winter emergency feeding limits death rate and increases fertility (Drozd, Florek,<br />

1977). Occuring in high densities hermivores cause damages in the forests and surrounding<br />

farms. Most frequent damages are tapping trees in the young stands, shoot baiting and<br />

trampling down <strong>of</strong> forest and farming crops ( K�osi�ska, Bobi�ska, 2006) (Fig. 1 and 2).<br />

Fig. 1. Tapped pine<br />

355


Fig. 2. Pine shoot baiting<br />

Wild animals increasingly penetrate urban areas. This phenomena is visible in the<br />

holiday resorts, such as Krynica Morska, Sopot, but also in the large cities like <strong>Warsaw</strong>,<br />

noticing two times increase in the wild boar density. (data <strong>of</strong> Lasy Miejskie-<strong>Warsaw</strong>) (Fig. 3).<br />

Fig. 3. Wild boars (Sus scr<strong>of</strong>a) in the city<br />

356


Despite methods <strong>of</strong> forest an farming crops protection applied yet (biological, mechanical and<br />

chemical), damages are not substantially lowered. According to Polish Hunting Association<br />

insurance compensations for 2007/2008 season increased by half in comparison to 2006/2007<br />

and equal 33 millions <strong>of</strong> PLN. This proves lack <strong>of</strong> effectiveness fo far applied methods <strong>of</strong><br />

animal damages prevention.<br />

Working principle <strong>of</strong> UOZ-1 device<br />

Fencing and chemical treatment are presently used as an forest and agricultural<br />

cultivations protective means. They do not however fulfill expectations <strong>of</strong> farmers and<br />

foresters. Crops fencing is expensive, and protects only small part <strong>of</strong> agrocenosis and forest<br />

cultivations. Animals are getting used to most <strong>of</strong> the preventive chemicals as well (Szukiel<br />

2001).<br />

Idea <strong>of</strong> utilization <strong>of</strong> natural acoustic signals for animal repelling arised during research<br />

on the topic <strong>of</strong> wild animal preservation in the railway areas. Device UOZ-1 utilized in this<br />

application is presently tested in Puszcza Knyszy�ska at Wali�y Forest Inspectorate (Fig. 4).<br />

Aims <strong>of</strong> the tests are:<br />

Fig. 4. UOZ-1 device during field test.<br />

1. Development <strong>of</strong> natural sounds sequence having response from the animals.<br />

Warning signal consisting <strong>of</strong> natural sounds will have alarming-informative<br />

character.<br />

357


2. Testing <strong>of</strong> animals accustomization level to natural warning signals.<br />

3. Development <strong>of</strong> innovative device based on acoustic signals for repelling animals<br />

away from farming areas and other places where their presence is undesirable.<br />

During the device tests direct observation <strong>of</strong> animal behavior should be applied. Method<br />

bases on analysis <strong>of</strong> animal reaction on natural sounds, being dummy stimulus, which means<br />

set <strong>of</strong> factors <strong>of</strong> highest priority triggering animal’s fear mechanisms.<br />

Yearlong animal observations are performed in two variants:<br />

1. Animals at open farming cultivations.<br />

2. Animals at bait site.<br />

In the first variant observations are made at open agricultural cultivations, where<br />

following individual sounds are being tested: jay sounds, barking dogs, roe-buck, howling<br />

wolfs etc.<br />

These sounds are emitted to individual animal species appearing at open cultivations,<br />

causing highest damages such as wild boars, roe-deers, or deers. Individual animals and<br />

animal groups are observed. Various cultivations are tested, considering aerial placement in<br />

the forest neighborhood as an animal shelter. Observations are videotaped or photographed<br />

automatically.<br />

This observation manner allows determination <strong>of</strong> type and time <strong>of</strong> reaction, from sound<br />

to animal escape. Analysis <strong>of</strong> various sounds will enable acoustic sequent determination with<br />

best animal reaction properties<br />

Second variant incorporates bait site tests. Test area placed in standard farming-meadow<br />

cultivations, with feed placed in aim to obtain high number <strong>of</strong> animals in one place. Nearby<br />

bait site, at 6 meter pole, recording system is placed. System is based on high quality high<br />

definition camera with infrared lighting, connected with computer stand placed at 500 meter<br />

distance. At the moment <strong>of</strong> animal appearance at the bait site automatic chasing sound<br />

emission occurs.<br />

Analysis <strong>of</strong> collected material enables <strong>of</strong> individual animals recognition. This<br />

determines time <strong>of</strong> second appearance at the bait site after repelling, and reaction time after<br />

signal emission. At the same time reaction times after the first and following emissions are<br />

determined. This procedure gives basis to conclusion if animals are getting accustomed to<br />

repelling natural sounds.<br />

Tests made with UOZ-1 enable determination <strong>of</strong> sound sequences causing animal<br />

repelling and degree <strong>of</strong> accustomization to them. Obtained data should result in creation <strong>of</strong><br />

functional device for forest and farming cultivation protection.<br />

Device for wild animal chasing will have use mainly for:<br />

- Crops protection against animal damages both at large area and small farming cultivations<br />

(cereals, root crops, meadows, pastures) or gardening cultivations like hazelnut orchard.<br />

- Preventing <strong>of</strong> wild animals intrusion into urban areas.<br />

- Creation <strong>of</strong> safety barrier against animals on motoring lanes.<br />

Device will be technologically innovative, portable, and competitive in comparison to<br />

present technologies <strong>of</strong> animal damage prevention. What is more important, unit will conform<br />

to European Union standards <strong>of</strong> limited chemical treatment <strong>of</strong> wild animals.<br />

358


REFERENCES<br />

1. Drozd L., Florek M., 1997: Le�nictwo, WAR, Lublin<br />

2. K�osi�ska T., Kowalczyk S., 2005: Forest stands protection against Animals In the<br />

Rogów for estry inspectorate, Ann. <strong>Warsaw</strong> Agricult. Univ. – <strong>SGGW</strong>, For. and Wood<br />

Technol. 56: 336-340<br />

3. K�osi�ska T., Bobi�ska R., 2006: The animals-caused damages impact on trees<br />

condition in pine forest stands, Ann. <strong>Warsaw</strong> Agricult. Univ. – <strong>SGGW</strong>, For. and Wood<br />

Technol. 58: 409-412<br />

4. Szukiel E., 2001: Ochrona drzewostanów przed ro�lino�ernymi ssakami, CILP,<br />

Warszawa<br />

5. Zaborowski S., 1977: Ochrona Lasu, PWRiL, Warszawa<br />

Streszczenie. Wykorzystanie sygna�ów akustycznych do zapobiegania szkodom �owieckim w<br />

uprawach rolnych oraz le�nych. W artykule przedstawiono zasad� dzia�ania oraz mo�liwo�ci<br />

wykorzystania prototypowego urz�dzenia do odstraszania dzikich zwierz�t z upraw rolnych<br />

oraz le�nych. Zwrócono uwag� na mo�liwo�� przebadania reakcji zwierz�t na sygna�y<br />

akustyczne zarówno w obr�bie ich area�ów jak i na obszarach n�cisk. Pozwala to sprawdzi�<br />

przyzwyczajanie si� zwierz�t do okre�lonych sygna�ów akustycznych. Emitowane przez<br />

urz�dzenie ostrze�enie sk�ada si� z ci�gu naturalnych alarmuj�co-informacyjnych sygna�ów<br />

d�wi�kowych zaczerpni�tych ze �wiata przyrody. Urz�dzenie UOZ-1 jest konkurencyjne<br />

cenowo w stosunku do dotychczas stosowanych sposobów ograniczaj�cych szkody w<br />

uprawach rolnych i le�nych. Jednoczenie, co najwa�niejsze jest to produkt zgodny z<br />

zaleceniami przepisów Unii Europejskiej ograniczaj�cych stosowanie �rodków chemicznych<br />

w przypadku dziko �yj�cych zwierz�t.<br />

Corresponding author:<br />

Sylwester Kowalczyk, Nadle�nictwo Wali�y, ul. Bia�ostocka 3, 16-040 Gródek; e-mail:<br />

sylwester.kowalczyk@bialystok.lasy.gov.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 360-366<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

The noise level <strong>of</strong> circular sawblades with the irregular tooth pitch<br />

ZDEN�K KOPECKÝ, MIROSLAV ROUSEK, P�EMYSL VESELÝ<br />

Faculty <strong>of</strong> Forestry and Wood Technology, Mendel <strong>University</strong> in Brno, Czech Republic<br />

Abstract: The noise level <strong>of</strong> circular sawblades with the irregular tooth pitch.<br />

The paper describes effects <strong>of</strong> the irregular tooth pitch and dilatation and noise-elimination grooves on the level<br />

<strong>of</strong> noise. The measurement <strong>of</strong> noisiness was carried out by standard operational methods at idle run and at<br />

sawing on prototype circular sawblades <strong>of</strong> Stelit and Pilana companies. The sawblades <strong>of</strong> the same diameter <strong>of</strong><br />

350 mm were equipped with 36 sintered carbide teeth. Positive effects have been proved <strong>of</strong> the irregular pitch <strong>of</strong><br />

teeth and dilatation and noise-elimination grooves on the noise level <strong>of</strong> a circular sawblade.<br />

Keywords: circular sawblade, vibration, resonance, noise level<br />

INTRODUCTION<br />

Emissions <strong>of</strong> circular sawblades are affected by two factors. The first factor consists in<br />

the air compression and turbulence due to circulating teeth at the disk rotation. This factor can<br />

be affected by the suitable design <strong>of</strong> teeth, tooth gaps or reducing the circumferential speed <strong>of</strong><br />

the disk. The second factor consists in vibrations <strong>of</strong> the sawblade body and rim. These<br />

vibrations are affected particularly by the circular sawblade construction, the sawblade grip,<br />

cut material and the cutting force size. In some cases, particularly at reaching resonance rpm,<br />

the sawblades emit sometimes higher noise levels at idle run than at sawing. This noise is<br />

intense resonance noise known also as “whistling circular sawblades”.<br />

In present furniture and timber industries, asymmetric circular sawblades are <strong>of</strong>ten used.<br />

In the sawblade body, compensation and noise-elimination grooves are created by laser.<br />

Effects <strong>of</strong> the number <strong>of</strong> grooves, their length and shape were examined in many research<br />

papers, eg NISHIO S. – MARUI E. (1996), SIKLIENKA M. – SVORE� J. (1997), STACHIEV Y.M.<br />

(1989), ORLOWSKI, K.A. (2005), SVORE� J. (2006).<br />

a) Faba b) Pilana c) Freud<br />

Fig. 1. Noise-elimination grooves<br />

360


Noise-elimination grooves demonstrate rather important effects on reducing the noise<br />

level at circular sawblades equipped with sintered carbide teeth (according to literature data,<br />

the reduction reaches 3 to 5 dB). At least three and more grooves are used. The circular<br />

sawblade manufacturers created their own specific shapes in the course <strong>of</strong> time. Thus, the<br />

majority <strong>of</strong> companies (Freud, Pilana, Schmidt etc.) consider these groove shapes to be their<br />

“know-how” (see Fig. 1). Other modifications consist in the use <strong>of</strong> copper rivets at the end <strong>of</strong><br />

dilatation grooves, using dampening plates, teflon coatings etc. Using the circular sawblade<br />

rims with the irregular tooth pitch appears to be a rather new adjustment.<br />

MATERIAL AND METHODS<br />

The research focal point was aimed at the experimental part <strong>of</strong> the noise level<br />

evaluation. The experiment was realized on trial machinery intended for research into sawing<br />

by circular sawblades (see Fig. 2.). Measured data were transferred using the Spider 8 logger<br />

and subsequently processed in tables and diagrams by the Conmes Spider program.<br />

12<br />

7 8<br />

11<br />

5<br />

M<br />

9<br />

10<br />

4<br />

F<br />

vf f<br />

1 – spindle, 2 – electric motor with rpm regulation LS, 3 - cutting force Fc and speed vc sensor,<br />

4 – contactless sensor <strong>of</strong> vibrations A, 5 - grate table, 6 - noise meter, 7 – feeding carriage, 8 –electric motor for<br />

the carriage feed, 9 - ball screw, 10 – nut, 11 – feeding force sensor Ff, 12 – frequency converter for the feeding<br />

speed change vf<br />

Fig. 2. The experimental stand scheme<br />

Three similar circular sawblades (marked K8, K9 and K10) intended for sawing<br />

massive wood were the subject <strong>of</strong> our research. It refers to prototype disks, which were<br />

manufactured by Pilana and Stelit companies. All three disks are <strong>of</strong> the same thickness s=2.4<br />

mm and the same number <strong>of</strong> teeth z=36, the geometry <strong>of</strong> teeth �=15�, �=65�, �=10� and the<br />

same bevel angle �=10�. However, substantial differences occur at the K8 disk, which shows<br />

the irregular tooth pitch (supposed objective – reduction <strong>of</strong> the level <strong>of</strong> noise). The size <strong>of</strong><br />

particular pitches and their placing along the circular sawblade circumference are<br />

demonstrated in Fig. 3. In the disk body, noise-elimination grooves in the form <strong>of</strong> a<br />

harmonica are created. These grooves are terminated by bores <strong>of</strong> a diameter <strong>of</strong> 6 mm. In 60°<br />

361<br />

Spider 8<br />

A<br />

PC<br />

Fc<br />

Fc<br />

vc vc L<br />

1 3 2 6<br />

M LS


spacing, radial grooves are created in the disk body to compensate tangential stress. Also<br />

these grooves are terminated by 6 mm bores. No compensation rolling was carried out on the<br />

disk. The K9 disk shows the uniform tooth pitch standard modifications being carried out on<br />

the disk body including compensation rolling, which is usual at standard circular sawblades.<br />

The K10 disk was manufactured without noise-elimination and dilatation grooves.<br />

Obr. 5 Konstrukce pilové kotou�e K9 Pilana<br />

a) A disk with the irregular tooth pitch b) A disk with the uniform tooth pitch<br />

Fig. 3. K8 Stelit and K9 Pilana disks<br />

The circular sawblade noise was measured by means <strong>of</strong> a Chauvin Arnoux CA834<br />

noise meter with the digital record <strong>of</strong> the noise level accurate to ±1.5%. The noise meter was<br />

placed 100 cm from the measured disk and 150 cm above the ground in the place <strong>of</strong> the saw<br />

operator working zone.<br />

Fig. 4. Chauvin Arnoux noise meter and its placing at the experimental stand<br />

Increasing the noise level is closely connected with a vibrating circular sawblade and<br />

resonance frequencies. At present, allowable noise levels are dealt with by the decree <strong>of</strong> the<br />

CR government No. 148/2006 Gaz., which is related to “Acoustics – noise in the working<br />

environment”. Thus, a duty results from this statutory order, namely preferably not to exceed<br />

362


the noise level <strong>of</strong> 85 dB. Already at these levels, it is recommended to use protective aids. At<br />

exceeding the acoustic pressure level by 10 dB, using the aids for the protection <strong>of</strong> ear from<br />

damage is required (ear protectors inserted into the operator auditory canal). At noise<br />

expositions over 95 dB, head-phone protectors have to be used.<br />

The level <strong>of</strong> acoustic pressure Lp [dB] related to the reference acoustic pressure p0 = 20<br />

μPa, which corresponds to audibility threshold at the frequency <strong>of</strong> 1000 Hz, is a basic<br />

descriptor to characterize the noise level in the working environment.<br />

An expression <strong>of</strong> the noise level in decibels [dB] partly describes the physiology <strong>of</strong><br />

hearing when the linear increment <strong>of</strong> the acoustic perception corresponds to the stimulation<br />

relative change (Fechner-Weber law) and partly makes possible to classify noise data because<br />

a dynamic range from the audibility threshold p = 20 μPa to the threshold <strong>of</strong> pain p = 200 Pa,<br />

ie 7 orders, is covered by the range <strong>of</strong> 140 dB.<br />

The acoustic pressure level (dB) is then determined from a relation<br />

where<br />

L 20 log�<br />

p<br />

p � [dB] ( 1 )<br />

po<br />

p – acoustic pressure<br />

p0 = 2.10 –5 Pa – the lowest value <strong>of</strong> acoustic pressure – audibility threshold<br />

From the dynamic range aspect the audibility zone extends from the audibility<br />

threshold (the level <strong>of</strong> acoustic pressure 0 dB) to the pain threshold, ie more than 130 dB. The<br />

threshold <strong>of</strong> inadmissibility, where irrecoverable damage to hearing occurs (loss <strong>of</strong> hearing),<br />

happens at the level <strong>of</strong> acoustic pressure 140 dB (p = 200 Pa).<br />

RESULTS<br />

Static fst and dynamic frequencies fd <strong>of</strong> characteristic vibrations <strong>of</strong> circular sawblades<br />

and coefficients <strong>of</strong> a centrifugal force � were determined in cooperation with TU Zvolen on a<br />

special trial machinery (VESELÝ-KOPECKÝ-SVORE�, 2010). Calculated resonance and critical<br />

rpm <strong>of</strong> tested disks are given in Tab. 1.<br />

Tab. 1. Resonance and critical rpm <strong>of</strong> tested circular sawblades<br />

Disk<br />

type<br />

K8<br />

K9<br />

K10<br />

Nodal<br />

diameters<br />

k<br />

The first<br />

resonance<br />

rpm<br />

nr1<br />

(min -1 )<br />

363<br />

The second<br />

resonance rpm<br />

nr2<br />

(min -1 )<br />

Critical<br />

rpm<br />

nk<br />

(min -1 )<br />

1 3 801 2 252 -<br />

2 2 973 2 085 5 807<br />

3 3 036 2 347 4 398<br />

1 3 479 2 111 -<br />

2 3 206 2 223 6 713<br />

3 3 762 2 881 5 600<br />

1 4 414 2 416 -<br />

2 4 075 2 743 11 007<br />

3 4 912 3 721 7 557


At assessing the effect <strong>of</strong> construction modifications on the noise level <strong>of</strong> tested<br />

circular sawblades the zone <strong>of</strong> minimum vibrations with n = 4200 min -1 was selected. Cutting<br />

conditions were set in the zone <strong>of</strong> commonly used parameters for circular sawblades <strong>of</strong> this<br />

type, viz. vc = 77 m.s -1 and vf = 10 m.min -1 . The noise level test was carried out at idle run and<br />

at sawing s<strong>of</strong>twood (spruce) and hardwood (beech).<br />

Scantlings 32 mm thick and 700 mm long with the moisture content <strong>of</strong> 11% were cut.<br />

Results <strong>of</strong> the noise level measurement at the idle run and at sawing beech scantlings are<br />

given in Fig. 5.<br />

Fig. 5. Comparison <strong>of</strong> the noise level <strong>of</strong> tested disks at idle run and at cutting<br />

DISCUSSION AND CONCLUSION<br />

Construction adjustments, particularly noise-elimination grooves, show positive effects<br />

on decreasing the noise level mainly at sawing when differences between the unaltered disk<br />

K10 and the modified disk K9 were 3 dB, ie the reduction <strong>of</strong> acoustic pressure up to 50% (see<br />

Fig. 5). Even better results were achieved at a disk with the irregular tooth pitch (K8). Here,<br />

decline by 4 dB was noted as against the noise level <strong>of</strong> a disk without adjustments (K10).<br />

Another favourable effect <strong>of</strong> the disk consisted in the change <strong>of</strong> the noise character from<br />

periodically repeated uniform noise frequencies to irregularly repeated noise waves, which are<br />

(at the same acoustic pressure) more acceptable for man.<br />

At idle run, insignificant differences in the noise level occurred between the disks (see<br />

Fig. 5). It is given by a fact that in this case, only aerodynamic noise is dominant and, thus,<br />

the effect <strong>of</strong> dilatation and noise-elimination grooves is not exerted. Similar results were also<br />

obtained in research carried out abroad where the noise level reduction was noted at similarly<br />

modified circular sawblades with irregular tooth pitch, namely by 2 to 4 dB (Svore�, 2006).<br />

364


These findings correspond well with data mentioned in brochures <strong>of</strong> some manufactures <strong>of</strong><br />

circular sawblades (Leitz, Freud).<br />

A certain paradox <strong>of</strong> dilatation and noise-elimination grooves consists in the decrease<br />

<strong>of</strong> the disk stiffness and the shift <strong>of</strong> resonance and critical rpm to lower speed levels (see Tab.<br />

1). For example, the difference <strong>of</strong> critical rpm between the K10 plain disk (without noiseelimination<br />

and dilatation grooves, nk3 = 7557 min -1 ) and the disk with the irregular tooth<br />

pitch K8 (nk3 = 4398 min -1 ) was 3159 min -1 . However, it is necessary to take into account that<br />

the plain disk <strong>of</strong> the circular sawblade is excessively liable to increased temperatures and at<br />

higher temperatures, considerable deformations <strong>of</strong> the disk and the disk rim occur. Thus, the<br />

critical condition <strong>of</strong> instability can happen even at lower rpm.<br />

REFERENCES<br />

1. JAVOREK L´. – SOKOLOWSKI W. (2000): Drgania pil tarczowych plaskich. In:<br />

Proceedings 14 th Scientific Conference „Drewno – material wszech czasów“.<br />

<strong>Warsaw</strong>, 2000, pp. 118 – 121.<br />

2. FENDELEUR D. – AUBRY E. – KAISER E.– RENNER M. (1999): Dynamical<br />

measurements and evaluation <strong>of</strong> the tension <strong>of</strong> circular saw blades. In: Proceedings<br />

14 th International Wood Machining Seminar. Paris, 1999.<br />

3. GOGLIA V. – LUCIC R.B. (1999): Some possibilities <strong>of</strong> reducing circular saw idling<br />

noise. In: Proceedings 14 th International Wood Machining Seminar. Paris, 1999.<br />

4. KOPECKÝ Z. – SVORE� J. – HRIC J.- PERŠIN M. (2007): Comparison <strong>of</strong> the circular-saw<br />

blade vibrations. In: Wood-Machine-Tool-Workpiece. Bedlewo-Pozna�, 2007.<br />

5. NISHIO S. – MARUI E. (1996): Effects <strong>of</strong> slots on the lateral vibration <strong>of</strong> circular saw<br />

blade. In: Proccedings <strong>of</strong> the tenth Wood Machining Seminar, 1996, pp. 159 –164.<br />

6. SIKLIENKA M. – SVORE� J. (1997): Frekvencie vlastných tvarov kmitov pílových<br />

kotú�ov p�i statickom kmitaní. TU Zvolen. [Scientific studies].<br />

7. STACHIEV Y.M. (1989): Rabotosposobnos� ploskich kruglych pil. Moskva: Lesnaja<br />

promyšlenost, 1989, 384 pp.<br />

8. SVORE� J. (2006): Vplyv kompenza�ních drážok, medených nitov a nerovnom�rného<br />

rozstupu zubov pílového kotú�a na hladinu hluku v procese rezania. In: Sborník V.<br />

mezinárodní v�decké konference “Trieskové a beztrieskové obrábanie dreva”, 2006,<br />

pp. 271–276.<br />

9. VESELÝ P. – KOPECKÝ Z. - SVORE� J. (2010): Vliv konstrukce t�la pilového kotou�e<br />

na jeho kritické otá�ky a vibrace v pásmu použitelných otá�ek. In: Sborník VII.<br />

mezinárodní v�decké konference “Chip and Chipless Woodworking Procesess”, 2010.<br />

Acknowledgement: This paper was prepared in connection with a partial project within the CR MSM<br />

6215648902 Research Plan. The author thanks for a financial support to deal with the project.<br />

365


Streszczenie: Ha�as pi� tarczowych z niejednorodnym rozstawem z�bów. Praca dotyczy<br />

wp�ywu niejednorodnego uz�bienia i naci�� przeciwrezonansowych na poziom szumu pi�.<br />

Testy by�y przeprowadzane na biegu luzem oraz standardowym pi�owaniu przy u�yciu pi�<br />

prototypowych firm Stelit i Pilana. Pi�y o �rednicy 350 mm by�y wyposa�one w 36 nak�adek<br />

z w�glików spiekanych. Udowodniono pozytywny wp�yw niejednorodnego uz�bienia oraz<br />

naci�� na zmniejszenie ha�asu.<br />

Corresponding authors:<br />

Doc. Ing. Zden�k Kopecký, CSc., Pr<strong>of</strong>. Ing. Miroslav Rousek, CSc., Ing. P�emysl Veselý<br />

Mendel <strong>University</strong> <strong>of</strong> Agriculture and Forestry, Faculty <strong>of</strong> Forestry and Wood Technology<br />

Zem�d�lská 3, 613 00 Brno, Czech Republic<br />

tel: +420 545134527 e-mail: kopecky@mendelu.cz


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> Science – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 367-370<br />

(Ann. WULS – <strong>SGGW</strong>, For. And Wood Technol. 71, 2010)<br />

Thermal characteristic <strong>of</strong> the particleboards produced from fibrous chips<br />

GRZEGORZ KOWALUK 1 , PIOTR BORUSZEWSKI 2 , PIOTR BORYSIUK 2 , MARCIN<br />

ZBIE� 2<br />

1 Certification Centre <strong>of</strong> Wood Industry Products, Wood Technology Institute<br />

2 Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Abstract: Thermal characteristic <strong>of</strong> the particleboards produced from fibrous chips. In the present paper the<br />

investigation <strong>of</strong> the thermal conductivity coefficient, thermal capacity and temperature conductivity coefficient<br />

<strong>of</strong> the laminated particleboards produced from fibrous chips from willow Salix Viminalis L. and robinia Robinia<br />

Pseudoacacia L. are described. The above mentioned parameters are connected to the panels’ density. There is<br />

no significant dependence between the particles’ raw material and the thermal parameters <strong>of</strong> investigated panels.<br />

Key words: particleboard, fibrous chip, thermal capacity, thermal conductivity, temperature conductivity<br />

INTRODUCTION<br />

Development <strong>of</strong> wood based panels results in intensified demand for raw materials. In<br />

last five years production <strong>of</strong> particleboard in Poland increased about 25 %<br />

(www.faostat.fao.org). Thus, it seems obvious that search for new resources is reasonable<br />

and justified. In literature there are many reports on utilizing <strong>of</strong> fast-growing species like<br />

willow and poplar (Czechowska et al. 2010, Fr�ckowiak et al. 2008, Kowaluk et al. 2010,<br />

Kuzovkina and Volk 2009) It must be stressed that using alternative raw materials usually<br />

results in a change <strong>of</strong> mechanical and physical properties when compared to the standard<br />

boards (Niemz 1993).<br />

The aim <strong>of</strong> this work was to measure the thermal parameters <strong>of</strong> the laminated panels<br />

produced from fibrous chips from different raw materials.<br />

MATERIALS AND METHODS<br />

The investigated 3-layer panels were produced in laboratory scale from fibrous chips<br />

from willow Salix Viminalis L. and robinia Robinia Pseudoacacia L, as well as from<br />

industrial particles. The main production parameters were: density (assumed) 600 and 660<br />

kg/m3 respectively, thickness 16 mm, face layers share 32 %, urea-formaldehyde resin<br />

Silekol W-1C, resination 12 % core, 8 % face layers, pressing time coef. 10 s/mm. The test<br />

<strong>of</strong> the produced panels show that the density variations between the assumed and real values<br />

were less than 5 %. The panels were sanded on the industrial grinding machine to achieve the<br />

equal panel thickness, as well as the better surface roughness before laminating. The panels<br />

were both-face covered by commercial short-cycle laminate film.<br />

The measurement <strong>of</strong> the thermal parameters <strong>of</strong> the panels was conducted with use heat<br />

transfer analyzer Isomet 2104.<br />

RESULTS AND DISCUSSION<br />

The most significant parameter, describing the thermal features <strong>of</strong> the materials, is the<br />

thermal conductivity coefficient �. With this parameter the ability to heat conductance can be<br />

characterized. In case <strong>of</strong> isolating materials, the better is, when the � is low. For the<br />

investigated panels, the � is in the range <strong>of</strong> 0.132 – 0.136 W/mK for the panels with the<br />

density <strong>of</strong> 600 kg/m 3 and 0.141 – 0.143 W/mK for the panels with the density <strong>of</strong> 660 kg/m 3<br />

367


(fig. 1). It can be pointed that the type <strong>of</strong> the raw material <strong>of</strong> the panels do not influence on<br />

the thermal conductivity coefficient <strong>of</strong> the investigated panels. To compare the parameters <strong>of</strong><br />

the investigated panels with the � <strong>of</strong> other materials: pine wood with the density 550 kg/m 3<br />

have thermal conductivity coefficient � = 0.160 W/mK, and for isolating porous panel from<br />

wood fibres, with the density 300 kg/m3 the � = 0.060 W/mK (according to PN-EN ISO<br />

6946: 2008).<br />

thermal conductivity coef. [W/mK]<br />

0.16<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

willow 660 willow 600 robinia 660 robinia 600 ind. part. 660 ind. part. 600<br />

Fig. 1. Thermal conductivity coefficient <strong>of</strong> the investigated panels with the different density<br />

The thermal capacity <strong>of</strong> the investigated panels depends on the density <strong>of</strong> them (fig. 2).<br />

For the panels with the density <strong>of</strong> 600 kg/m 3 the thermal capacity was about 0.973 – 1.005 x<br />

10 6 J/m 3 K, and for the panels with the density <strong>of</strong> 660 kg/m 3 the thermal capacity was in the<br />

range <strong>of</strong> 1.066 – 1.115 x 10 6 J/m 3 K. Generally, the thermal capacity is the amount <strong>of</strong> heat to<br />

change the temperature <strong>of</strong> the (volume <strong>of</strong> the) body. The increase <strong>of</strong> the thermal capacity<br />

connected to the density <strong>of</strong> the panels can be due to the decrease <strong>of</strong> the empty spaces between<br />

the particles inside panel. The change <strong>of</strong> the temperature <strong>of</strong> the empty space (which is in fact<br />

filled by air) needs less heat than the change <strong>of</strong> the temperature <strong>of</strong> the space filled by wood<br />

particle, because <strong>of</strong> the differences between the specific heat <strong>of</strong> the air and wood. The panel<br />

with the higher density needs more heat to change the temperature.<br />

thermal capacity x10 6 [J/m 3 K]<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

willow 660 willow 600 robinia 660 robinia 600 ind. part. 660 ind. part. 600<br />

Fig. 2. Thermal capacity <strong>of</strong> the investigated panels with the different density<br />

368


The temperature conductivity coefficient has an opposite dependence than the thermal<br />

conductivity coefficient. For the investigated panels the temperature conductivity coefficient<br />

values were in the range <strong>of</strong> 0.133 – 0.138 x 10 -6 m 2 /s for the panels with the density <strong>of</strong> 600<br />

kg/m 3 and 0.127 – 0.134 x 10 -6 m 2 /s for the panels with the density <strong>of</strong> 660 kg/m 3 (fig. 3). The<br />

temperature conductivity can be important in case <strong>of</strong> panels for furniture production, because<br />

the materials with the low value <strong>of</strong> the temperature conductivity makes impression <strong>of</strong> “warm”<br />

bodies. For wood with the density between 450 and 700 kg/m 3 the temperature conductivity<br />

coefficient is about 0.153 x10 -6 – 0.111 x 10 -6 m 2 /s. The temperature conductivity coefficient<br />

for investigated panels was in the range <strong>of</strong> above mentioned values for wood.<br />

temperature conductivity coef. x10 -6 [m 2 /s]<br />

0.16<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

willow 660 willow 600 robinia 660 robinia 600 ind. part. 660 ind. part. 600<br />

Fig. 3. Temperature conductivity coefficient <strong>of</strong> the investigated panels with the different density<br />

CONCLUSIONS<br />

According to the above mentioned investigation it can be concluded that there is<br />

dependence between the density <strong>of</strong> the panels and values <strong>of</strong> the thermal conductivity<br />

coefficient, thermal capacity and temperature conductivity coefficient <strong>of</strong> the investigated<br />

panels. The research also shows that there is no significant dependence between the particles’<br />

raw material and the thermal parameters <strong>of</strong> the panels.<br />

ACKNOWLEDGEMENTS<br />

This paper was financially supported by the Polish Ministry <strong>of</strong> Science and Higher Education<br />

within grant number N309 1068 33.<br />

REFERENCES<br />

1. PN-EN ISO 6946: 2008, Building components and building elements - Thermal resistance<br />

and thermal transmittance - Calculation method.<br />

2. CZECHOWSKA J., BORYSIUK P., MAMI�SKI M., 2010: Low-density particleboards<br />

made <strong>of</strong> populus species (Populus L.), Ann. <strong>Warsaw</strong> Agricult. Univ.– <strong>SGGW</strong>, For. and<br />

Wood Technol. 70, 44-47.<br />

3. FR�CKOWIAK I., IDZIAK A., BENDOWSKA R., FUCZEK D., 2008: The<br />

characteristic <strong>of</strong> lightweight panels made from fast growing willow tree Salix viminalis.<br />

In: Proceedins <strong>of</strong> the International Symposium Cost E49 Lightweight wood-based<br />

composites Production, properties and usage, Slovenia, 81-95.<br />

369


4. KOWALUK G., PA�UBICKI B., FR�CKOWIAK I., MARCHAL R., BEER P., 2010:<br />

Influence <strong>of</strong> ligno-cellulosic particles on tribological properties <strong>of</strong> boards. Eur. J. Wood<br />

Prod. 68, 95-98.<br />

5. KUZOVKINA Y. A., VOLK T. A., 2009: The characterization <strong>of</strong> willow (Salix L.)<br />

varieties for use in ecological engineering applications: Co-ordination <strong>of</strong> structure,<br />

function and autecology. Ecol. Eng. 35, 1178-1189.<br />

6. NIEMZ P., 1993: Physik des Holzes und der Holzwerkst<strong>of</strong>fe. DRW-Verlag, Stuttgart.<br />

7. www.faostat.fao.org<br />

Streszczenie: Charakterystyka cieplna p�yt wiórowych z wiórów w�óknistych. W niniejszym<br />

artykule opisano wyniki bada� wspó�czynnika przewodnictwa cieplnego, pojemno�ci cieplnej<br />

oraz wspó�czynnika przewodzenia temperatury p�yt wiórowych laminowanych wytworzonych<br />

z wiórów w�óknistych z wierzby Salix Viminalis L. oraz robinii Robinia Pseudoacacia L.<br />

Badania wykaza�y zale�no�� wymienionych parametrów od g�sto�ci p�yt. Nie stwierdzono<br />

istotnej zale�no�ci pomi�dzy rodzajem surowca na wióry w�ókniste a parametrami cieplnymi<br />

badanych p�yt wiórowych.<br />

Corresponding authors:<br />

Grzegorz Kowaluk (corresponding author)<br />

Certification Centre <strong>of</strong> Wood Industry Products, Wood Technology Institute,<br />

Winiarska Str. 1, 60-654 Pozna�, Poland,<br />

e-mail: g_kowaluk@itd.poznan.pl<br />

Piotr Boruszewski, Piotr Borysiuk, Marcin Zbie�,<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

Nowoursynowska 159, 02 – 776 <strong>Warsaw</strong>, Poland<br />

e-mail: piotr_boruszewski@sggw.pl, piotr_borysiuk@sggw.pl, marcin_zbiec@sggw.pl,


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 371-373<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

The quality <strong>of</strong> milling <strong>of</strong> the particleboards produced from fibrous chips<br />

GRZEGORZ KOWALUK 1 , MARCIN ZBIE� 2 , PIOTR BEER 3<br />

1<br />

Certification Centre <strong>of</strong> Wood Industry Products, Wood Technology Institute, Winiarska Str. 1, 60-654<br />

Pozna�, Poland<br />

2<br />

Department <strong>of</strong> Mechanical Processing <strong>of</strong> Wood, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> Science, Nowoursynowska 159, 02-<br />

776 <strong>Warsaw</strong>, Poland<br />

3<br />

Department <strong>of</strong> Construction and Technology <strong>of</strong> Final Wood Products, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> Science,<br />

Nowoursynowska 159, 02-776 <strong>Warsaw</strong>, Poland<br />

Abstract: The quality <strong>of</strong> milling <strong>of</strong> the particleboards produced from fibrous chips. In the present paper the<br />

investigation <strong>of</strong> the quality <strong>of</strong> milling <strong>of</strong> the laminated particleboards produced from fibrous chips from willow<br />

Salix Viminalis L. and robinia Robinia Pseudoacacia L. are described. With the cutting edge bluntness the<br />

average laminate damage depth increases. The investigation shows also the better machining quality <strong>of</strong> the<br />

panels with higher density.<br />

Keywords: particleboard, fibrous chip, milling, quality, machining, laminate<br />

INTRODUCTION<br />

As it was investigated and confirmed by 0, the cutting edge stage is the main factor<br />

influencing the quality and accuracy <strong>of</strong> particleboard’s milling. According to 2, the<br />

production parameters <strong>of</strong> the panels, which influences on the mechanical features <strong>of</strong> the<br />

panels, also can be the solution to change the final quality <strong>of</strong> the laminated particleboards<br />

milling. Above mentioned investigations were conducted on the commercial or produced in<br />

laboratory conditions panels from industrial particles. There is no research on the quality <strong>of</strong><br />

the laminated particleboards produced from fibrous chips.<br />

The aim <strong>of</strong> this work was to investigate the influence <strong>of</strong> the cutting edge’s wear on the<br />

quality <strong>of</strong> milling <strong>of</strong> the laminated panels produced from fibrous chips from different raw<br />

materials.<br />

MATERIALS AND METHODS<br />

The investigated 3-layer panels were produced in laboratory scale from fibrous chips from<br />

willow Salix Viminalis L. and robinia Robinia Pseudoacacia L, as well as from industrial<br />

particles. The main production parameters were: density (assumed) 600 and 660 kg/m 3<br />

respectively, thickness 16 mm, face layers share 32 %, urea-formaldehyde resin Silekol W-<br />

1C, resination 12 % core, 8 % face layers, pressing time coef. 10 s/mm. The test <strong>of</strong> the<br />

produced panels show that the density variations between the assumed and real values were<br />

less than 5 %. The panels were sanded on the industrial grinding machine to achieve the equal<br />

panel thickness, as well as the better surface roughness before laminating. The panels were<br />

covered by commercial short-cycle laminate film.<br />

The milling was conducted on industrial down-spindle milling machine GOMAD with the<br />

tool rotation speed 3000 min -1 , feed speed 3 m/min, cutting diameter 160 mm, thickness <strong>of</strong><br />

cutting layer 2 mm, number <strong>of</strong> knives 1, knife material: HSS. The bluntness <strong>of</strong> the tool was<br />

measured as the edge loss in the edge rake face.<br />

371


RESULTS AND DISCUSSION<br />

The average laminate damage depth, depending on the edge bluntness for the investigated<br />

panels with the density <strong>of</strong> 600 kg/m 3 is shown on fig. 1, and for panels with the density <strong>of</strong> 660<br />

kg/m 3 on fig. 2. The linear regression equations are collected in table 1. As it is shown, in all<br />

presented cases the average laminate damage depth increases with the raising edge bluntness.<br />

This conclusion confirms the remark <strong>of</strong> previous research 3. The high square regression<br />

coefficient R 2 (table 1 – from 0.78 to 0.94) show that in this range <strong>of</strong> edge wear (under 240<br />

�m) the average laminate damage depth changes linearly. There is also strong dependence<br />

between the density <strong>of</strong> the panels and the intensity <strong>of</strong> damage depth increase: according to the<br />

slope coef. <strong>of</strong> the linear regressions, the all investigated panels with higher density had the<br />

smaller average laminate damage depth intensity. The most significant changes <strong>of</strong> the<br />

laminate damage depth increase with the panel density change were found for panels<br />

produced from willow fibrous chips, and the smallest – for panels from industrial particles.<br />

avg. laminate damage depth [�m]<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 50 100 150 200<br />

edge loss [�m]<br />

372<br />

ip<br />

w<br />

r<br />

linear (ind.part.)<br />

linear (willow)<br />

linear (robinia)<br />

Fig. 1. Average laminate damage depth after milling <strong>of</strong> the panels with the density 600 kg/m 3 ; panel from<br />

industrial particles (ip), willow (w) and robinia (r)<br />

avg. laminate damage depth [�m]<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

ip<br />

w<br />

r<br />

linear (ind.part.)<br />

linear (willow)<br />

linear (robinia)<br />

0<br />

0 50 100 150 200<br />

edge loss [�m]<br />

Fig. 2. Average laminate damage depth after milling <strong>of</strong> the panels with the density 660 kg/m 3 ; panel from<br />

industrial particles (ip), willow (w) and robinia (r)


Table 1. The linear regression equations <strong>of</strong> the dependence <strong>of</strong> the laminate damage depth on the<br />

edge bluntness<br />

Panel’s raw material Density [kg/m 3 ] Linear regression equation R 2<br />

industrial particles<br />

willow<br />

robinia<br />

CONCLUSIONS<br />

600 y = 0.4251x + 12.288 0.93<br />

660 y = 0.4086x + 6.418 0.78<br />

600 y = 0.5448x – 5.271 0.94<br />

660 y = 0.3236x + 1.5126 0.92<br />

600 y = 0.5014x + 5.8935 0.92<br />

660 y = 0.3779x + 5.0652 0.87<br />

The average laminate damage depth <strong>of</strong> the particleboards produced from fibrous chips<br />

during milling is strongly connected to the edge loss. In these investigation in the above<br />

mentioned edge loss range, this dependence could be the most precisely described by linear<br />

regression.<br />

The increase <strong>of</strong> the density <strong>of</strong> the panels causes the improvement <strong>of</strong> the quality <strong>of</strong> the<br />

particleboards milling.<br />

ACKNOWLEDGEMENTS<br />

This paper was financially supported by the Polish Ministry <strong>of</strong> Science and Higher Education<br />

within grant number N309 1068 33.<br />

REFERENCES<br />

1. B. PORANKIEWICZ, Tool wear and the quality <strong>of</strong> machined material when<br />

cutting <strong>of</strong> Particleboard [in polish], Rozprawy Naukowe. Roczniki Akademii<br />

Rolniczej w Poznaniu, Zeszyt 341, 2003<br />

2. P. BEER, G. SINN, M. GINDL, S. E. STANZL-TSCHEGG, Work <strong>of</strong> fracture and<br />

<strong>of</strong> chips formation during linear cutting <strong>of</strong> particle-board. Journal <strong>of</strong> Materials<br />

Processing Technology 159, 2005<br />

3. G. KOWALUK, Work <strong>of</strong> cutting in the aspect <strong>of</strong> the quality <strong>of</strong> selected laminated<br />

particleboards machining, Ph.D. thesis, typescript in Faculty <strong>of</strong> Wood Technology,<br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>, Poznan, 2006<br />

Streszczenie: Jako�� obróbki frezowaniem p�yt wiórowych z wiórów w�óknistych. W<br />

niniejszym artykule opisano wyniki bada� jako�ci obróbki frezowaniem p�yt wiórowych<br />

laminowanych wytworzonych z wiórów w�óknistych z wierzby Salix Viminalis L. oraz robinii<br />

Robinia Pseudoacacia L. Wraz ze wzrostem st�pienia ostrza ros�a �rednia g��boko��<br />

uszkodzenia laminatu. Badania wykaza�y równie� lepsz� jako�� obróbki p�yt o wy�szej<br />

g�sto�ci.<br />

Corresponding author:<br />

Certification Centre <strong>of</strong> Wood Industry Products, Wood Technology Institute, Winiarska Str. 1,<br />

60-654 Pozna�, Poland,<br />

E-mail address: g_kowaluk@itd.poznan.pl (Grzegorz Kowaluk)


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 374-377<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Shrinkage and swell in pine wood coming from XIX-th century<br />

constructional wood<br />

PAWE� KOZAKIEWICZ, MAGDALENA SZCZ�SNA, MA�GORZATA TOMCZAK<br />

Department <strong>of</strong> Wood Science and Wood Protection, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> Live Science - <strong>SGGW</strong><br />

Abstract: Shrinkage and swell in pine wood coming from XIXth century constructional wood. Many valuable<br />

monumental objects are made <strong>of</strong> regular pine wood (Pinus sylvestris L.). Approaching conservational work on<br />

the mentioned objects requires some knowledge <strong>of</strong> their physical properties such as shrinkage and swell.<br />

Pr<strong>of</strong>essional literature does not have consistent opinion on his topic, showing sometimes even opposite<br />

statements. Considering various theories dealing with long-time wood aging effect in closed compartments, it is<br />

necessary to undertake research timing At precise descriptions <strong>of</strong> monumental wood.<br />

Keywords: shrinkage, swell, pine wood, natural wood aging<br />

INTRODUCTION<br />

Despite progress in analysis <strong>of</strong> aging impact on physical properties <strong>of</strong> wood, there is a<br />

lack <strong>of</strong> reliable information on wood used in closed compartments <strong>of</strong> buildings. Wood<br />

gradually degrades with time, under biotic and abiotic influence. Result <strong>of</strong> these is<br />

degradation <strong>of</strong> initial properties. In the conditions <strong>of</strong> negligible impact <strong>of</strong> biotic factors,<br />

natural wood aging process can be stated. Research results <strong>of</strong> the shrinking and swelling <strong>of</strong><br />

the naturally aged wood were published by many authors: Moll (1930), Buck (1952), Kohara<br />

i Okamoto (1955), Burmester (1970), Holz (1981). Last <strong>of</strong> the mentioned authors described<br />

swell and shrinkage <strong>of</strong> 180-year old spruce wood, with comparison with 2-4 years<br />

conditioned wood. It was concluded that mentioned physical parameters are not dependent on<br />

time, usage or storage <strong>of</strong> wood. Holz observed lower shrink caused by lowered internal wood<br />

stress. Burmester (1970) testing wood doming from Berlin buildings concluded that time<br />

causes lowering <strong>of</strong> swell and shrinkage in radial and tangential directions in coniferous<br />

species, in broadleaved species swell coefficient drops in radial direction, but in tangential<br />

Romains unchanged and stays the same like in fleshly cut wood. There results are neglected<br />

by Buck (1952). Basing on the ancient wood tests (from around 400 up to 3700 years old),<br />

author concluded that in the oldest samples swell and shrinkage coefficients actually increase.<br />

Aim <strong>of</strong> this work is to determine changes (swell and shrinkage) occurring during<br />

natural aging in regular pine wood in closed compartments.<br />

MATERIAL AND METHODS<br />

Ancient and contemporary pine wood were used for tests. Aged elements come from<br />

five monumental buildings from <strong>Warsaw</strong>, dating on crossing <strong>of</strong> XIX and XX century. These<br />

were parts like rail fragments, door frames, wainscots and altar. Each element was cut into 6<br />

rectangular prism samples with anatomical directions without any visible faults. One omission<br />

from the PN-82/D-04111 standard was application <strong>of</strong> slightly smaller samples (35x15x10<br />

mm). Contemporary pine wood was also tested for comparison reasons. Test samples were<br />

made <strong>of</strong> seasoned wood with similar annual ring width as ancient samples..<br />

Six sets <strong>of</strong> samples were conditioned after conditioning in 75% moisture content air<br />

with 20�C temperature). All samples were tested in the following manner:<br />

b) conditioning over saturated KCl solution (air relative moisture content <strong>of</strong> 85%),<br />

374


c) conditioning over saturated MgCl2 × 6H2O solution (air relative moisture content <strong>of</strong> 35%),<br />

d) drying at 60�C,<br />

e) kiln drying at 105�C,<br />

f) soaking in water.<br />

After each step samples were measured and weighted.<br />

Work consisted <strong>of</strong> linear dimensions change determination in radial and tangential<br />

directions, described by specific shrinkage, specific swell, shrinkage and swell coefficients in<br />

preset moisture content values.<br />

RESULTS<br />

Specific shrinkage in tangential direction is almost two times higher than radial one.<br />

Similar ratio showed with specific swell <strong>of</strong> tested samples (table 1). Considering average<br />

specific swell <strong>of</strong> Kot=9,5% and average specific shrinkage <strong>of</strong> Kwt=8,7% <strong>of</strong> contemporary<br />

wood in tangential direction it was concluded that the closest results were reached by the<br />

series A <strong>of</strong> tested monumental wood. Considering average specific swell <strong>of</strong> Kot=3,7% and<br />

average specific shrinkage <strong>of</strong> Kwt=3,6% <strong>of</strong> contemporary wood in radial direction it was<br />

concluded that the closest results were reached by the series B <strong>of</strong> tested monumental wood.<br />

Table 1. Specific linear swell and shrinkage <strong>of</strong> pine wood in radial and tangential directions.<br />

Series<br />

Specific swell<br />

in tangential<br />

direction Kot<br />

[%]<br />

375<br />

Specific swell<br />

in radial<br />

direction Kor<br />

[%]<br />

Specific<br />

shrinkage in<br />

tangential<br />

direction Kwt<br />

[%]<br />

Specific<br />

shrinkage in<br />

radial direction<br />

A – rail, wide ring sapwood 9,8 4,5 8,9 4,3<br />

B – internal frame, wide ring sapwood 10,9 4,1 9,8 3,9<br />

C – wainscot, wide ring sapwood 8,4 3,1 7,7 3,0<br />

D – altar, wide ring heartwood 6,1 3,3 5,7 3,2<br />

E – internal frame, wide ring<br />

heartwood<br />

10,6 4,6 9,6 4,4<br />

Average 9,2 3,9 8,3 3,8<br />

AN – contemporary wood 9,5 3,7 8,7 3,6<br />

Performed tests confirm Kozakiewicz and Matejak (2003) results, showing that in first<br />

desorption wood is exposed to highest capillary forces and that shrinkage and swell ale higher<br />

in radial than in tangential direction. During the next drying and wetting cycles shrinkage and<br />

swell become more stabilized, anisotropy diminishes. Above results fit into Kot=6,1-9,8% and<br />

Kor=2,6-5,1% ranges (Kozakiewicz 2003), confirm conclusion (Matejak 1986), that<br />

hygroscopic properties <strong>of</strong> monumental wood are the same as contemporary wood and<br />

Wanin’s opinion (1953), that samples dimension after wetting and drying do not match.<br />

Kwr<br />

[%]


Table 2. Swell and shrinkage coefficients in tangential and radial directions for selected moisture content ranges,<br />

connected with relative air moisture content.<br />

swell (at, ar) and shrinkage (�t, �r) coefficients for climates<br />

Series<br />

0-100 0-35 35-85 85-100<br />

�t �r �t �r �t �r �t �r �t �r �t �r �t �r �t �r<br />

A 0,34 0,15 0,31 0,15 0,35 0,19 0,32 0,18 0,44 0,23 0,39 0,22 0,28 0,10 0,26 0,10<br />

B 0,38 0,14 0,34 0,14 0,32 0,19 0,30 0,18 0,39 0,15 0,35 0,14 0,40 0,11 0,36 0,11<br />

C 0,29 0,11 0,27 0,10 0,34 0,15 0,31 0,14 0,37 0,19 0,34 0,19 0,24 0,06 0,22 0,06<br />

D 0,21 0,11 0,20 0,11 0,18 0,14 0,19 0,14 0,34 0,17 0,30 0,16 0,16 0,08 0,15 0,07<br />

E 0,36 0,16 0,33 0,15 0,32 0,18 0,29 0,18 0,37 0,19 0,34 0,18 0,39 0,13 0,35 0,12<br />

Average 0,32 0,13 0,29 0,13 0,30 0,17 0,28 0,16 0,38 0,18 0,34 0,18 0,29 0,10 0,27 0,09<br />

AN 0,33 0,13 0,30 0,12 0,32 0,22 0,29 0,21 0,40 0,14 0,36 0,13 0,29 0,08 0,27 0,08<br />

Considering averaged swell and shrinkage coefficients for contemporary pine wood<br />

(table 2) it was determined, that closest results were obtained for series B wood.<br />

D series wood had average swell coefficient lower by 0,12 in tangential direction and<br />

0,02 in radial direction than contemporary wood (AN series). A an B series had swell<br />

coefficient higher by 0,05 in tangential direction and by 0,03 in radial direction than<br />

contemporary wood (AN series). According to Keylwerth (1962) swell coefficient for pine<br />

wood in tangential direction ranges from 0,28 to 0,35. Lowest obtained swell coefficient in<br />

tangential direction is 0,10 lower from the lowest reference range, highest obtained swell<br />

coefficient is 0,03 higher than reference value. Keylwerth’a (1962) determined also radial<br />

swell coefficient for pine wood, ranking from 0,17 to 0,22. Obtained lowest radial swell<br />

coefficient is 0,07 lower, and highest obtained radial swell is 0,04 higher than presented<br />

values.<br />

Obtained results gave good basis on application <strong>of</strong> contemporary wood in patching <strong>of</strong><br />

ancient structures during conservation work. It is necessary however to take precaution about<br />

proper seasoning, relevant moisture content for assumed usage conditions and selection<br />

against anatomical properties, grain and annual ring width.<br />

CONCLUSION<br />

Performed shrinkage and swell tests <strong>of</strong> pine wood coming from XIX-century<br />

constructional wood allow to conclude as follows:<br />

1. Average specific swell in tangential and radial direction <strong>of</strong> 100/150-year old pine wood do<br />

not show any significant differences when compared to contemporary wood parameters.<br />

2. Average shrinkage and swell coefficients in radial and tangential directions in monumental<br />

wood are similar to corresponding values in contemporary wood.<br />

REFERENCES:<br />

1. BUCK R.D., 1952: A Noto on the effect ot Age on the Hydroscopic Behaviour <strong>of</strong><br />

Wood. “Studies in Conservation”, s. 39-44.<br />

2. BURMESTER A., 1970: Veränderung des Sorptions – und Quellungsvermögens<br />

verschiedener Holzarten durch Alterung. Materialprüfung 12/4, s. 132-134.<br />

3. HOLZ D., 1981: Zum Alterungsverhalten des Werkst<strong>of</strong>fes Holzeinige Ansichten.<br />

Untersuchungen, Ergebnisse, „Holztechnologie“ nr 2.<br />

4. KEYLWERTH R., 1962: Untersuchungen über freie und behinderte Quellung von<br />

Holz. - Erste Mitteilung: Freie Quellung. Holz als Roh- und Werkst<strong>of</strong>f. Berlin 7, 252-<br />

259.<br />

376


5. KOHARA J., OKAMOTO H., 1955: Studies <strong>of</strong> Japanese old Timbers Science Repts.<br />

Saikyo Univ. Kyoto nr 7, s. 9-20.<br />

6. KOZAKIEWICZ P., 2003: Fizyka drewna w teorii i zadaniach. Wydawnictwo<br />

<strong>SGGW</strong>. Warszawa<br />

7. KOZAKIEWICZ P., MATEJAK M., 2003: Über die Schwindungsanitropie des<br />

Holzes. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong>, Forestry and Wood Technology.<br />

No. 53: 109-114.<br />

8. MATEJAK M. 1986: Untersuchungen über die Variabilität der<br />

Sorptionseigenschaften und der Schwindung von Holz. Berlin. Promotionsarbeit.<br />

9. MOLL F., 1930: Künstliche Holztrocknung. Springer Verlag.<br />

10. WANIN S., 1953: Nauka o drewnie. PWRiL, Warszawa.<br />

Streszczenie: Badania skurczu i p�cznienia drewna sosnowego pochodz�cego z XIX-wiecznej<br />

stolarki budowlanej. W niniejszej pracy zbadano wielko�� skurczu i sp�cznienia starego<br />

drewna sosnowego pozyskanego z dziewi�tnastowiecznej stolarki budowlanej w Warszawie i<br />

porównano z analogicznymi wynikami uzyskanymi dla drewna o zbli�onej g�sto�ci,<br />

pozyskanego wspó�cze�nie. Uzyskane wyniki wskazuj�, �e w warunkach pomieszcze�<br />

zamkni�tych (w warunkach naturalnego starzenia) drewno sosnowe praktycznie nie zmienia<br />

swoich w�a�ciwo�ci. Wspó�czynniki skurczu i sp�cznienia starego i wspó�czesnego drewna s�<br />

takie same.<br />

Corresponding authors:<br />

Pawe� Kozakiewicz<br />

Magdalena Szcz�sna<br />

Department <strong>of</strong> Wood <strong>Sciences</strong> and Wood Protection,<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

Ul. Nowoursynowska 159,<br />

02-776 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: pawel_kozakiewicz@sggw.pl<br />

e-mail: magdalena_szczesna@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 378-382<br />

(Ann. WULS – <strong>SGGW</strong>, For. And Wood Technol. 71, 2010)<br />

Kreissägen<br />

PAWE� KOZAKIEWICZ, MIECZYS�AW MATEJAK<br />

Fakultät für Holztechnologie der Warschauer Naturwissenschaftlichen Universität – <strong>SGGW</strong><br />

Abstrakt: Kreissägen. In der Arbeit wurden fünf Kreissägen mit Hand- oder Fußbetrieb besprochen, zwei<br />

französische, eine russische und zwei englische. Eine der englischen Kreissägen von Shuttleworth hat ihren<br />

Platz in der Literatur wegen Unbrauchbarkeit gefunden. Alle diese Konstruktionen gehören zur Geschichte der<br />

Holzbearbeitungsmaschinen, darum auch sind sie einer Erinnerung würdig.<br />

Schlüsselwörter: Holzbearbeitung, Maschinen, Kreissäge, Antrieb, Geschichte.<br />

Die Kreissäge wurde 1793 in England erfunden, erst um 1860 hat sich die Kreissäge<br />

in amerikanischen Sägewerken durchgesetzt [Radkau ,Schäfer 1987].<br />

Die Kreissägen dienen zu allerlei Arbeiten in Tischlerwerkstätten, einmal für<br />

Querschnitt, einmal zum Längsschnitt, zum Zuschneiden kleiner Holzblöcke und werden vom<br />

Arbeiter im Falle des Bedarf selbst angetrieben. Es ist kein Zweifel, dass bei solchen<br />

Werkzeugmaschinen, die durch Fußtritt in Bewegung versetzt werden, die erfahrungsgemäß<br />

notwendige Geschwindigkeit des Kreissägeblattes nicht erreicht wird. Eine solche Maschine<br />

sollte also eigentlich eine Maschine von schlechter Qualität darstellen und doch wird sie im<br />

Vergleiche zur Leistungsfähigkeit eines Handwerkzeuges vorzügliche Dienste liefern. Ist ein<br />

Motor in der Werkstätte nicht vorhanden oder nicht notwendig, so kann eine solche<br />

Werkzeugmaschine angezeigt erschienen, schrieb 1878 Exner.<br />

Folgende Abbildungen nach Exner 1878, zeigen zwei Kreissägen: eine Kreissäge mit<br />

Fußbetrieb von Arbey in Paris ,und eine Kreissäge für Handbetrieb auch von Arbey in Paris.<br />

Bild. 1. Eine Kreissäge mit Fußbetrieb von Arbey in Paris. Nach Exner [1878]<br />

378


Bild. 2. Eine Kreissäge mit Handbetrieb von Arbey in Paris. Nach Exner [1878]<br />

Bild. 3. Eine Kreissäge mit Fußbetrieb von Gromeyer und Trautschold aus St. Petersburg.<br />

Nach ���������� [1885]<br />

Im Jahre 1826 erschien im Mechanics´ Magazine N. 128. 4. Febr: S. 248. ein Artikel<br />

unter dem Titel: Hrn, Shuttleworth’s Handsäge-Mühle, im gleichen Jahr auch in dem<br />

Polytechnischen Journal dessen Verfasser beschrieb folgenderweise seine Erfindung der<br />

Handsäge- Mühle:<br />

„Ich habe <strong>of</strong>t gedacht, daß der Grundsatz des Mechanismus der Sägemühlen mit<br />

Vorteil auf Handsäge-Mühlen für solche Individuen angewendet werden kann, welch nicht<br />

Vermögen genug zu einer Dampfmaschine besitzen; aus diesen Ideen ging die Maschine<br />

hervor, welche die Zeichnung hier darstellt. Sie kann in beliebiger Größe erríchtet werden;<br />

eine Maschine dieser Art, für eine große Sägegrube gebaut, kann leicht von zwei Männern<br />

getrieben werden, welche, bei weit geringerer Anstrengung, und in der Hälfte der Zeit,<br />

doppelt so viel Arbeit liefern werden, als auf die gegenwärtig gewöhnliche Weise. Kleinere<br />

Maschinen dieser Art fordern kaum so viel Raum, als eine Hobelbank, und irgend ein Mann,<br />

oder selbst ein Junge, kann alle kleinere Säge-Arbeit mit einer Genauigkeit und Feinheit auf<br />

dieser Maschine liefern, wie sie der beste Arbeiter mit den bisher gebräuchlichen<br />

Instrumenten nicht zu verfertigen vermag, Kunst Tischler können damit ihre Furnituren zur<br />

eingelegten Arbeit ohne alle Mühe und wohlfeiler schneiden, als auf den bisherigen<br />

Sägemühlen.<br />

379


Bild 4. Hrn, Shuttleworth’s Handsäge-Mühle [1826]<br />

A, die kreisförmige Säge.<br />

BBB, drei Räder, die mittelst der Kurbel, E, gedreht werden, und die Säge, A, im Umtrieb<br />

bringen.<br />

C, das eiserne, oder eichene Gestell der Maschine.<br />

D, das Leitbrett zum Leiten des Holzes.<br />

Dieselben Buchstaben bezeichnen dieselben Gegenstände in allen drei Figuren, wovon<br />

Fig. 12. diese Maschine vom Ende her gesehen, Fig. 13. im Seiten- Aufrisse, Fig. 14. im<br />

Grundrisse zeigt.“<br />

Im Mechanics´ Magazine, N. 129, 11ten Febr. 1826, S. 267, auch Polytechnisches<br />

Journal Band. XXI. H.1. fragt Jemand „was durch diese 3 Zahnräder an Kraft oder<br />

Geschwindigkeit gewonnen ist, da die 2 kleineren von gleicher Größe zu sein scheinen, und<br />

eben so viel Zähne führen ? Mir scheint dadurch kein Gewinn, sondern bloß Verlust, und<br />

zwar ein bedeutender Verlust zu entstehen, (sowohl an Kraft, als an Geschwindigkeit), durch<br />

die große Reibung, welche durch Räder entsteht, die unter so nachteiligen Umständen<br />

arbeiten.<br />

Im gleichen Jahr schreibt das Mechanics Magazine folgendes: Hrn. Shuttlework´s<br />

Handsäge- Mühle, von welcher wir im polyt. Journ. B. XX. S. 155 Abbildungen und<br />

Nachricht erteilen, wird im Mechanics´ Magazine N. 136.S. 379. für gänzlich unbrauchbar<br />

erklärt.(Polytech. Journal Band. XXI. H. 1. 1826)<br />

380


Bild 5. Eine kleine Maschine zum schneiden des Holzes so wie sie man in England hat. [1824]<br />

LITERATURVERZEICHNIS<br />

1. ANONYMUS 1824: Beschreibung einer kleinen Maschine zum Schneiden des Holzes<br />

und der Metalle so wie sie man in England hat. Aus Bulletin de la Societé<br />

d´Enciuragement, Nr. 230 S. 269. Polytechnisches Journal Band. XIII. H.1. Stuttgart.<br />

In der J. G. Cotta´schen Buchhandlung.<br />

2. ANONYMUS 1826: Hrn. Shuttleworth´s Handsäge- Mühle. Mechanics´ Magazine N.<br />

128. 4. Febr: 1826, S. 248. Polytechnisches Journal Band. XX. H.2. Stuttgart. In der<br />

J. G. Cotta´schen Buchhandlung.<br />

3. ANONYMUS 1826: Hrn. Shuttlework´s Handsäge- Mühle. Polytechnisches Journal<br />

Band. XXI. H.1. Stuttgart. In der J. G. Cotta´schen Buchhandlung.<br />

4. EXNER W.F. 1878: Die Handsägen und Sägemaschinen. Leipzig, Verlag von Bernh.<br />

Friedr. Voigt.<br />

5. ����������, K.A. 1885: ��xa������ ��������� ������. ������<br />

6. RADKAU J., SCHÄFER I. 1987: Holz, ein Naturst<strong>of</strong>f in der Technikgeschichte.<br />

Rohwolt Taschenbuch Verlag GmbH.<br />

381


Streszczenie: Pilarki tarczowe. Pilarki tarczowe zosta�y wynalezione w Anglii w pod koniec<br />

XVIII wieku, jednak w Europie kontynentalnej i w Ameryce sta�y si� popularne dopiero w<br />

kolejnym stuleciu. W artykule przedstawiono pi�� typów dziewi�tnastowiecznych pilarek<br />

tarczowych z nap�dem r�cznym lub no�nym. Dwie z nich to tarczówki produkcji s�awnego<br />

francuskiego wytwórcy obrabiarek firmy Arbey w Pary�u (rys.1 i 2), jedna z nap�dem<br />

no�nym (rys.3) wyprodukowana przez firm� Gromeyer & Trautschold z St. Petersburga,<br />

kolejna (rys.5) równie� z nap�dem no�nym stosowana ok. 1824 roku w Anglii do obróbki<br />

drewna i metalu oraz pilarka Shuttleworth (rys.4) z roku 1826, która o czym donosi�a<br />

angielska prasa techniczna z tego samego roku, nie mog�a sprawnie dzia�a� ze wzgl�du na<br />

b��dy konstrukcyjne. Pilarki te by�y rekomendowane do pracy w niewielkich stolarniach oraz<br />

jako obrabiarki pomocnicze w tartakach. Obecnie stanowi� istotne �wiadectwo historii<br />

rozwoju technik obróbki drewna.<br />

Corresponding authors:<br />

Pawe� Kozakiewicz, Mieczys�aw Matejak<br />

Department <strong>of</strong> Wood <strong>Sciences</strong> and Wood Protection,<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

Ul. Nowoursynowska 159,<br />

02-776 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: pawel_kozakiewicz@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 383-389<br />

(Ann. WULS – <strong>SGGW</strong>, For. And Wood Technol. 71, 2010)<br />

Die Sägegatter in der deutschen Literatur des 18. Jh.<br />

Nach Florin und Leupold<br />

PAWE� KOZAKIEWICZ, EWA DOBROWOLSKA<br />

Fakultät für Holztechnologie der Warschauer Naturwissenschaftlichen Universität – <strong>SGGW</strong><br />

Abstrakt: Die Sägegatter in der Literatur des 18. Jh. Nach Florin und Leupold. In der Arbeit wurden zwei<br />

wichtige Literaturquellen über die Konstruktion von Gattersägen und Sägemühlen des 17. und 18 Jh.<br />

ausführlich zitiert. Beide Autoren beschrieben die Konstruktion eines Sägegatters und einer Sägemühle. Ihre<br />

Arbeiten gehören zu den wichtigsten Quellen des Wissens über die damalige Technik und Technologie.<br />

Schlüsselwörter: Holz, Gattersäge, Geschichte<br />

Florinus, eigentlich Pfalzgraf Florinus Philipp von Sulzbach, geb. 1630, gest. 1699. Seine<br />

praktische Erfahrung als Landwirt in Verbindung mit jener eines herzoglichen Bibliothekars<br />

qualifizierte ihn als Herausgeber und teilweise auch Autor des mit seinem Namen<br />

verbundenen Werkes der Hausväterliteratur, eben „des Florinus“. Er selbst hat dabei „das<br />

wenigste elaborieret“, sondern weitere Mitverfasser herangezogen.<br />

Nach Florin [1721]<br />

Statt eines Inhalts, der hier unnöthig, beliebe der Leser sich dieses Göttlichen Spruchs zu<br />

bedienen: Halt im Gedächtnis JESUM Christum, der auferstanden ist von den Todten. 2. Tim.<br />

2/8<br />

§ 1. Immassen leicht erachtlich daß manchem Hauß-Vatter mit Fürstellung dieses Wercks<br />

nicht nur zur Belustigung durch Anschauen und lesen; sondern auch zum grossen Nutzen<br />

durch würckliche Anrichtung gedienet wird, als haben wir auch solches nicht unterlassen<br />

wollen.<br />

1. Ist der Sägschrot, so an der Säge lieget.<br />

2. Eine Spann oder Grappen Winde, womit der Sägschrot auf dem Säg Wagen angezogen<br />

wird.<br />

3. Der Säg=Wagen, auf welchem der Sägschrot liegt.<br />

4. Der Falz, in welchem der Säg=Wagen gehet.<br />

5. Das Gestelle, hat einen Falz, in welchem die Säg=Leiter gehet.<br />

6. Die Leiter oder das Gestelle, in welchem das Sägblat eingespannet wird.<br />

7. Das Säg=Blat, ist in einem Kloben eingespannet, wie eine Klon=Säge, und mit einem<br />

Keil, aber besser mit einer Schrauben, Hülzen und Schlüssel angezogen.<br />

8. Der Zenk=Ring welcher durch die Gabel geschoben wird...<br />

9. Die Gabel, welche der Zenk=Ring schiebt wie gesagt...<br />

10. Ist die Stange die der Säg=Leiter eingestecket ist....<br />

11. Die Bewegung, in welcher die Schieb=Gabel eingerichtet ist.<br />

12. Das Rad am Wagen...<br />

13. Der Kumpf mit 6. Tribeln, welcher das Wagen=Rad treibt...<br />

14. Das Schwung=Rad, das die Säg-Leiter ziehet ist mit einem schweren Viertel gemachet,<br />

auch ist die Korbel in das Rad gerichtet, daß wann das schwere Viertheil fällt, die Korbel<br />

die Säge desto leichter ziehet....<br />

15. Die Korbel ist 1-2 Schuh=weit im Bug, und ziehet die Säg 1. Schuh...<br />

16. Die Zug=Stange von Eisen ist an der Säg=Leiter und Korbel angerichtet.<br />

17. Das Lager, worauf das Schwung=Rad laufft.<br />

383


18. Das Kammrad, welches das Schwung=rad treibt...<br />

19. Der Geiß=Fuß, womit der Schnitt zusamm gehalten wird.<br />

20. Der eingehenckte Schutz=Baum<br />

21. Ein Nagel, der den Schutz=Baum am Wagen ausschiebet, welcher Nagel hier unsichtbar,<br />

aber in der andern Figur num 12. sich zeiget.<br />

22. Ein Sperr=Haggen, so den Zenck=Rinck hält, daß er steht, wenn sich die Gabe zurück<br />

ziehet.<br />

§ 2. Etliche sonderes angezeigte Sücke.<br />

1. Die Winde, womit der Sägschrit vest auf dem Säg=Wagen angezogen wird.<br />

2. Die Säg=Leiter, wird weiter gemacht als der dickeste Sägschrot, den man auflegt, damit<br />

der Schnit in seine Schnitt kan gerücket werden.<br />

3. Der Wagen samt dem Stock, worauf der Geiß=Fuß zu sehen, zwischen welchen die Säge<br />

den Schnitt anfanget. Der Geiß=Fuß aber wird in den Baum geschlagen, damit er den<br />

Schnitt zusamm halte. Wann man einen Baum von 18. Schuhen schneidet, so ist von A in<br />

B 18 Schuh. An A. liegt der Baum an dem Stock, und bey B. wird er mit der Winden auf<br />

den Wagen vest verspannet.<br />

4. Der Geiß-Fuß<br />

5. Das Schwung-Rad, ist 4. oder 5. Schuh-hoch, hat einen hohen Kumpf von 12. Tribeln. Hat<br />

aber das Wasser eine starcke Krafft, so kan der Kumpf 8. Tribel haben, so geht die Säg<br />

geschwinder.<br />

6. Die Platten und Schliessung, welche vor die Zug-Stangen an der Korpel vorgemacht wird,<br />

damit die Zug=Stange nicht herab gehe.<br />

7 . Die Zug-Stange, welche bey 9. in der Säg-Leiter angemacht wird. Der Nagel und die<br />

Schließ-Feder, welcher bey 9. durch die Zug-Stangen und Säg-Kloben gesteckt wird.<br />

8. Das Loch am Säg-Kloben<br />

9. Da wird die Säg mit einer Hültzen vest mit dem Schlüssel angezogen.<br />

10. Eine Kette, welche an den Schutz-Baum angemacht. Wann nun der Nagel 12. der im<br />

Wagen eingemachet ist, hinruckt biß an den Ring, der im Haggen bey 13. eingehenckt zu<br />

sehen ist, so schiebet der Nagel den Ring vom Haggen, so fällt die Schütz vor den<br />

Einfluß des Wassers, und hält das Wasser auf, und das Rad stehet still, und die Säg höret<br />

auf zu schneiden. Daher muß der Nagel 12. die Schutz-Kette etwas eher ausschieben, als<br />

die Säge den Schnitt vollendet, damit, wann das Rad ausgel<strong>of</strong>fen ist, zugleich der Schnitt<br />

sein End erreichet habe.<br />

384


11. Der Ausschieb-Nagel, ist im Wagen eingemacht.<br />

12. Der Haggen, in welchem der Ring an der Schutz-Ketten eingehencket ist.<br />

13. Die Kämme an dem Säg-Wagen, deren bey 60. eingerichtet werden, wann der Kamm<br />

zwey- zöllig ist, und ein Schnitt 18. Schuh-lang schneidet.<br />

Leupold, Jacob, geb. 1674, gest. den 12. Jan. 1727 Er studierte in der Schule zu Zwickau,<br />

und zog hernach nach Jena, den berühmten Weigel zu hören, muste aber wegen des<br />

damahligen wüsten Lebens der Studierenden, und den Mangel nöthigen Unterhalts nach<br />

Wittenberg gehen. 1701 wurde er ein Oeconomicus in dem Lazareth zu Leipzig, 1714 gab er<br />

die Oeconomie in dem Lazareth auf, setzte sich in der Stadt und richtete ein <strong>of</strong>fenes Gewölbe<br />

auf. Er wurde von der königlichen Societät der Wissenschaften zu Berlin, ingleichen zu<br />

einem Mitgliede der Academie del’ Onore letterario zu Forli und erhielt den Titel als<br />

königlicher preußischer Commercienrath. An. 1725 wurde er von seiner königlichen Majestät<br />

in Pohlen zu dero wircklichen Berg=Commisario ernennet, und mit dem Titel eines<br />

königlichen Raths begnadiget. [AGL 1750]<br />

Nach Leupold [1735]<br />

Die Säge- oder Schneide-Mühlen, welche auch einer Orten Bret- Mühlen genannt<br />

werden, sind ein sehr nutzbares Stück der Hauß-Wirtschaft, wo man neulich viel haubares<br />

Gehölze in der nahe haben kann, sonderlich wann große Städte und Märkte w nicht weit<br />

entfernt , wo es gemeiniglich viel Tischler, Zimmerle4ute und dergleichen Handwerker gibt,<br />

welche Pfosten, Bretter und Latten zu ihrer Notdurft bedürfen.<br />

Es haben sich einige seit vielen Jahren her (aber umsonst) bemühet, die Säge- Mühlen<br />

mir so viel neben einander gestellten Sägen anzulegen, dass dadurch ein ganzer Block in so<br />

viel Bretter, als seine Stärke austraget, auf einmal geschnitten werden könne. Weil es nun<br />

unsers Wissens noch keinen gelungen, so wollen wir kürzlich, wie nämlich die Sache<br />

anzufangen, einige Vorschläge tun. Erstlich muss man der Maschine mehr Kraft geben: d.i.<br />

das Wasser-Rad muss doppelt weit, und auch zwei mal so viel Wasser, ale eine einfache<br />

Säge-Mühle haben. Vors andere muss man die Säge-Blätter schwacher machen lassen, damit<br />

sie nicht einen allzu großen Schnitt verursachen. Drittens müssen die Sägen bei einem<br />

Umlauf des Wasser-Rades, nicht so viel mahl, als bei einer gemeinen Säge-Mühle geschieht,<br />

auf und nieder gehen. Das erste belangend: So wird wohl niemand leugnen können, dass die<br />

holländischen Säge-Mühlen , in welchen eigentlich viel Sägen befindlich, von der in Holland<br />

beständigen See –Luft weit mehr Kraft bekommen, als unsere gemeinen Säge-Mühlen von<br />

dem Wasser haben. Das andere betreffend: so ist bekannt und <strong>of</strong>fenbar, dass wenn man zwei<br />

Säge-Blätter nur so stark machte, als sonsten eines ist, beide hernach auch zwei Schnitte<br />

machen würden, welche zusammen genommen, nur so stark sind, als außer dem eíner ist.<br />

Und drittens: so betrachte man doch eine holländische Säge-Mühle, mit viel Sägen, wie man<br />

denn zu Berlin eine dergleichen gesehen zu haben sich erinnert, so wird man wahrnehmen,<br />

dass die Sägen weit langsamer, als bei unsern gemeinen Säge-Mühlen gehen, und hält man<br />

davor, aß mit dergleichen Art, wie wir hier im Risse vorgestellt haben, einer würde viel mal<br />

durchschneiden können, bevor besagte Holländische es einmal verrichtete. Weswegen dann<br />

auch unsere Säge-Mühlen vor andern dieses voraus haben, dass sie weit geschwinder gehen,<br />

ob selbige gleich nur einen Schnitt auf einmal machen. Hier wollen wir noch mit wenigem zur<br />

Bestätigung des dritten Satzes beifügen, was bei einer Säge-Mühle mit zwei Sägen<br />

observieret worden: Vor wenig Jahren wurde von einen gewissen Baumeister eine Säge-<br />

Mühle mit zwei Sägen erbauet, dieser legte nun das Radewerk also an, dass die Sägen bei<br />

einen Umlauf des Wasser-Rades eben so viel mahl auf und nieder ginge , als wenn es eine<br />

gemeine Säge-Mühle gewesen wäre; Ob nun wohl das Wasser-Rad doppelte Krafft hatte, so<br />

erfolgte doch der Effekt nicht also, wie man den vornehmen Bau-Herrn, der das Werk<br />

385


erbauen ließ, persuadiret hatte. Und hielte man dieses vor den größten Fehler, so dabei<br />

begangen worden: dass gedachter Baumeister die Bewegung derer Sägen allzu schnelle haben<br />

wollte; daher es denn geschahe, weil das Wasser-Rad sehr langsam gehen musste, dass das<br />

Wasser über die Schaufeln wegsprunge, und die neue Maschine nicht allzu gute Dienste<br />

verrichtete. Dieses wären nun kürzlich die Haupt-Requisita , worauf es bei Säge-Mühlen mit<br />

viel Sägen, wann man anders den vorgesetzten Zweck glücklich erhalten will, größten teils<br />

ankömmt, welche man so dann den Kunst-verständigen Leser zu fernern Nachsinnen<br />

überlassen will, maßen vor dieses mahl deutlicher zu explizieren, und des ersten Autoris Text<br />

mit allzu langen Anmerkungen, aus eigener Erfahrung zu vermehren nicht nötig ist.<br />

386


LITERATURVERZEICHNIS<br />

GOTTLIEB JÖCHER CHRISTIAN, 1750-1751: Allgemeines Gelehrten Lexicon, darinnen die<br />

Gelehrten aller Stände sowohl männ= als weiblichen Geschlechts, welche vom Anfange der Welt bis<br />

auf ietzige Zeit gelebt, und sich der gelehrten Welt bekannt gemacht, Nach ihrer Geburt, Leben<br />

merckwürdigen Geschichten, Absterben und Schrifften aus den glaubwürdigsten Scribenten in<br />

alphabetischer Ordung beschrieben werden. Erster Theil A-C , Zweyter Theil D-L Dritter Theil M-R.<br />

Vierter Theil; S-Z, herausgegeben von Christian Gottlieb Jöcher, der H. Schrift Doctore, und der<br />

Geschichte öffentlichem Lehrer auf der hohen Schule zu Leipzig. Leipzig in Johann Friedrich<br />

Gleidischens Buchandlung.<br />

FLORINUS FRANCISKUS PHILIPPUS, 1721: Francisci Philippi Florini Serenissimi ad Rhenum<br />

Comitis Palatini Principis Solibacensis P. in Edelsfelden & Kirmreuth, Oecnomus Prudens et Legalis<br />

Oder Allgemeiner Kluger und Rechts =verständiger Haus-Vatter bestehend in Neun Büchern,<br />

Deren Erstes handelt von dem allgemeinen Grund, worinnen die Haushaltung bestehen soll: Nemlich<br />

von des Haus=Vatters und der Haus=Mutter Pflicht, von der Ehe, der Sorge für die Kinder beyderley<br />

Geschlechts, auch des Gesindes, Gebühr gegen der Nachbarschaft, Guttärtigkeit gegen die Armen,<br />

Erkenntis des Rechts, der Aerzney, des Gestirns, und der Bau=Kunst.<br />

Das II Buch von dem Bau=Wesen und denen darzu gehörigen Materialien, als Holz, Steinen, Ziegeln,<br />

Sand und Kalch, von denen zum Bau erforderten Metallen, Bestellung der Handwerckleute, Starck=<br />

und Festigkeit, Bequem= und Zierlichkeit des Gebäues, von Grundgraben und Unterbau, von denen<br />

Mauren, Verding= und Eröffnung derselben, von Dach und Feuer=Mauren, etlichen Vorbildern der<br />

Gebäude, völliger Fürstellung eines unmangelhaften Meyer=H<strong>of</strong>s, Bräu=Hause, Malz=Tennen und<br />

Dörr Stuben, von Wein= Obst= und Oel=Pressen, Cisternen, Quell und Brunn- Stuben,<br />

Wasserleitungen,Wasserfang, Schöpf=Brunnen, grossen Pump=Werck, von Hand= Roß= Mahl=<br />

387


Zain= Schleiff= und Säg= Mühlen, Feuer=Sprützen, Feldmessen, Marck= und<br />

Gräntz=Scheidungen,Visieren und Sonnen=Uhren, item was bey Erkauff= und Verpachtung eines<br />

Guts zu beobachten, von Witterung der vier Jahrs=Zeiten, denen Winden, Sternen= und Cometen,<br />

samt einem Haus=Calender, was in jedem Monat das ganze Jahr zu verrichten.<br />

Das III. Buch von der Wirthschaft in denen Städten, Dörffern und Höfen, vom Acker=Bau, Verzäun=<br />

und Versicherung der Felder, Gärten und Wiesen, von Aeckern auch darzu gehörigen Werkzeug, von<br />

Dung= und Bauung der Felder, Besaamung allerhand Früchte, und wie man den Saamen fruchtbar<br />

machen könne, Erkenntnis der Erden, Verbesserung derselben, von Hanf, Flachs, Taback, deren<br />

Zubereitung, auch Wässer= und Wartung der Wiesen.<br />

Das IV. Buch vom Garten=Leben, Gärten, dem Gärtner und dessen Zeug, vom Grund und des Gartens<br />

Eintheilung, Umgraben, Mistbeeten und Saamen=Bewahrung, dessen Aussähung, Umsetzen und<br />

Begiessen, von der Baum=Schul, derselben Ordnung, unterschiedlichen Arten des Peltzens, Versetz=<br />

und Wartung der grossen Bäume, von Wildlingen, Stein= Kern= und Stauden=Obst, wie solches<br />

abzunehmen und zu bewahren, auch die Bäume vor bösen Zufällen zu beschirmen, vom Weinbau, wie<br />

ein Weinberg anzulegen, von Fechsern, unterschiedliche Art dieselben künstlich zu peltzen,<br />

ingleichen vom Hacken= Pfählstecken, Anleiten und Entblätterung der Reben, Abnehmung der<br />

Trauben, Keltern des Mosts und Bewahrung desselben, wie nach der Leese der Weinberg zu<br />

tractieren, Abbindung des Geschirs und wie mit dem Wein im Keller umzugehen, unterschiedlichen<br />

raren Wein=Künsten, von der Waldung und Holtz=Wachs, wie solches mit Nutzen abzugeben, vom<br />

Bechhauen, Kohlen= und Rus=Brennen, und was sonst bey dem Wald zu beobachten.<br />

Das V. Buch wie eine Stutterey anzulegen, Stutten und Füllen zu warten und zu erkennen, von<br />

Belegung und Eigenschaften der Pferde, Zäumen und Beschlag derselben, deren Artzney, von der<br />

Viehzucht, des schmalen und Fasel=Viehs, und Hünern, Enten, Gänsen, u.d.gl.<br />

Das VI. Buch von Seiden=Würmmern, und völliger Abhandlung der Seiden, biß zu deren<br />

Verkauffung, von Bienen, derselben Wartung, vom Honig und Wachs, wie solches zu bleichen, von<br />

Weihern, wie selbe anzulegen und zu besetzen, von Fischen, deren Unterschied, Art und<br />

Eigenschaften.<br />

Das VII. Buch vom Brodbacken, Mulzen, Bierbrauen, unterschiedliche Künsten, das Bier gut zu<br />

erhalten, Pichung der Fässer, vom Schlachten, Fleich dörren, Saltzen, Bleichen, Zubereitung allerhand<br />

Getrancks, Thee, Caffee und Choccolata, auch denen Handwerckern, die zur Wirthschaft nöthig sind.<br />

Das VIII. Buch von der Anatomia, Erkänntnüs der Kranckheiten, und dargegen dienlichen Arzneyen,<br />

bey allerhand sich ereigneten Zufällen, samt einem Anhang bewährter Haus=Mittel.<br />

Das IX. Buch bestehet in einem kurtz=gefassten Koch=Buch. Ferner sind alle obige Bücher und<br />

Capitel mit Rechtlichen Anmerckungen auf allerhand vorfallende Begebenheiten, versehen, Durch<br />

Herrn Johann Christoph Donauern, J.V.D. Hoch=Fürstl. Nassauischen Rath, des Heil. Röm.<br />

Reichs=Stadt Nördlingen Consulenten.<br />

Welches nicht nur allen Menschen insgemein, sondern auch allen Amtleuten, Pflegern, Kastnern,<br />

Cent=Grafen, Verwaltern, Schöffern, Voigten, Richtern, Kellern, etc. nützlich und nötig ist. Durchaus<br />

mit schönen und netten hierzu dienlichen, sowol eingedruckten, als Folio Kupffern versehen. Mit<br />

Röm. Keiserl. Majest. und ihro Churfürstl. Gnaden zu Mainz allergnädigsten PRIVILEGIS. Nürnberg,<br />

Franckfurt und Leipzig, In Verlegung Christoph Riegels. Gedruckt bey Johann Ernst Adelburnern.<br />

A.1721<br />

LEUPOLD JACOB, 1735: Theatrum Machinarum Molarium, oder Schau=Platz der<br />

Mühlen=Bau=Kunst, Welcher allerhand Sorten von solchen Machinen, die man Mühlen nennet, so<br />

wohl historisch als practisch, nebst ihren Grund= und Auf=Rissen vorstellet, und zwar wird in<br />

selbigen gehandelt: Von Untersuchung des Gefälles, der Quantität des Wassers, so ein Fluß in<br />

gewisser Zeit schüttet, Wassertheilungen und Wägen, Wehr= und andern nöthigen Wasser=Bau, von<br />

Grund=Werck und dem Unterschied, so zwischen Staber= Strauber= und Panster=Zeug ist, von<br />

Oberschlächtigen und Schiff=Mühlen, samt ihren Vorgelegen und sämtlich gangbaren Zeuge,<br />

Räderwerck und Mühlgerüste;Ingleichen auch von Wind= Hand= Roß= und Feldmühlen, über dem<br />

auch von allerhand improprie so genannten Mühlen, als: Oehl= Graupen= Hierse= Gewürtz= Loh=<br />

und Pulver= Mühlen, ferner von Papier= Walck= Glaß= und Eisen= Schleif= Polier= Bohr= Säge=<br />

und Steinschneide= Dresch= und Heckerlings= Mühlen, u.a.m. auch was insonderheit mit jeglicher<br />

besonders vor Vortheil geschaffet werden kan. Welchem am Ende beygefüget: Ein Real=Register aller<br />

388


und jeder bey gesagten Machinen vorkommender Terminorum technicorum oder Kunst=Wörter. In<br />

dem Andern Theile dieses Wercks sind allerley in= und ausländische Mühlen= und dahin gehörige<br />

Ordnungen und Befehlige, nebst dem Kern des Mühlen= Rechts, welches mit auserlesenen Responsis<br />

erläutert ist, ingleichen allerhand Berichte und Gutachten in streitigen Wasser=Bau=Sachen, sammt<br />

nochmahligen Register darüber, enthalten. Ein Buch, welches im gemeinen Wesen mit gar besondern<br />

guten Nutzen, und als Der Neundte Theil von des seel. Herrn Jacob Leupolds Theatro Machinarum<br />

sehr wohl wird können gebrauchet werden. Ausgefertiget und zusammen getragen von Johann<br />

Matthias Beyern und Consorten. Leipzig, verlegts Wolfgang Deer, 1735<br />

Streszczenie: Traki w niemieckiej literaturze 18 wieku, na podstawie prac Florin´a i<br />

Leupold´a. W niniejszym artykule zacytowano obszerne opisy dotycz�ce budowy i<br />

eksploatacji osiemnastowiecznych traków o konstrukcji drewnianej. Informacje te pochodz� z<br />

dwóch ksi��ek: autorem jednej jest Franciskus Philippus Florinus, a drugiej Leupold Jacob -<br />

krótkie biogramy tych postaci do��czono do opracowania. Cytowane prace zaliczane s� do<br />

najwa�niejszych �ród�owych tekstów o ówczesnych konstrukcjach traków i budowie<br />

tartaków.<br />

Sk�adamy serdeczne podzi�kowania Pracownikom Dzia�u Starych Druków Biblioteki<br />

Uniwersytetu Warszawskiego za udost�pnienie cytowanych prac oraz ilustracji.<br />

Corresponding authors:<br />

Pawe� Kozakiewicz<br />

Department <strong>of</strong> Wood <strong>Sciences</strong> and Wood Protection,<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

Ul. Nowoursynowska 159,<br />

02-776 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: pawel_kozakiewicz@sggw.pl<br />

Ewa Dobrowolska<br />

Department <strong>of</strong> Wood <strong>Sciences</strong> and Wood Protection,<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

Ul. Nowoursynowska 159,<br />

02-776 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: ewa_dobrowolska@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 390-394<br />

(Ann. WULS-<strong>SGGW</strong>, For. and Wood Technol. 71 , 2010)<br />

Holzspielzeuge damals und Heute in der Slowakei<br />

KRAJ�OVI�OVÁ MÁRIA<br />

Technische <strong>University</strong> Zvolen, Die Fakultät der environmentale und Erzeugungstechnick,<br />

Lehrstuhl Holzmaschinen und Mechanismen.<br />

Abstract: In jede Familie gibt es wenigstens etwas aus Holz, und wenigstens ein Spielzeug, das aus Holz<br />

erzeugt war. Holz ist sehr haptische feine Material mit vielen sehr guten Eigenschaften, der vorbestimmt für die<br />

Erzeugung der Holzspielzeuge ist. Wir sollten kennen die Geschichte den Spielzeugen, damit wir besser unsere<br />

Vorväter verstehen, und damit wir unsere Kultur besser kennen lernen.<br />

Schlüsselwörter: Holz, Spielzeug, Geschichte, Handwerker, Volksspielzeug,<br />

HOLZSPIELZEUGE IN DER SLOWAKEI IN VERGANGENHEIT<br />

In Vergangenheit kamen die Spielzeugerzeuger dazu, dass sehr interessantes und sehr<br />

komfortables Material Holz ist.<br />

Holzspielzeuge stammen aus verschiedenen Holzarten. In der Slowakei war Holz immer sehr<br />

gut greifbares Rohmaterial, worüber spricht auch große Menge der Handwerker, die mit dem<br />

Holz gearbeitet haben. Unsere Kultur hat ihre spezifische Charakteristik, und die kann man<br />

sehen auch bei den Holzspielzeugen, die wir heute Volksspielzeuge nennen. Diese haben<br />

sehr große Aussagewert, die über der Niveau und Reifer des Lebens unseren Vorvätern<br />

aussagen. Volksspielzeuge haben auch heute ihren Platz in unseren Leben. Unwiederholbaren<br />

Zaubers befinden wir gerade bei den Bewegungsspielzeugen, die technisch an sehr einfachem<br />

Prinzip funktionieren. Es gibt verschiedene Tiere, Männer oder Frauen Figürchen. Zu den<br />

Holz-spielzeuge die auch heutige Gene-rationen noch erinnern, kann man Holz Würfel,<br />

Baukasten oder den Holz Pferd Orden.<br />

Bild 1. Geschichte der Tischler<br />

Untergrund der heutigen Form des Designs hat in diesen Bereich Václav Kautman, der<br />

Pädagoge an der Hochschule der darstellende Kunst in Bratislava gründet hat. Er schaffte es<br />

die Liebe zu dem Holz mit der Liebe zum Volkskunst verbinden.<br />

390


Der nächste Künstler, der seine liebe verband, war Vladimir Kopánek. Zu seinem lieben<br />

gehörten Malerkunst, Bildkunst und Holz. I den 20.ten Jahrhundert suchten schon die<br />

genannten Künstler die Möglichkeit Skulpturen oder auch Spielzeugen eine neue Dimension<br />

zu geben, so mit sie die Tradition mit heutige Aussah des Spielzeug verbinden könnten.<br />

Bild 2. Holzrassel<br />

In diesen Zeitraum ist das Holzspielzeug ein spezielles Objekt geworden, bei denen wurde die<br />

künstlerische und förmige Lösung vor der Funktion.<br />

HOLZSPIELZEUGE IN DER SLOWAKEI HEUTE<br />

In der Zeit wenn die Spielzeuge aus Metall, Plastik und anderen Materialen erzeugt sind,<br />

verliert das Holzspielzeug nicht seine Bedeutung und Wunder. In Vergleich mit dem<br />

Spielzeug, der Industrial erzeugt ist, der sehr <strong>of</strong>t zu kompliziert ist und viel elektronick<br />

umfasst, ist der Holzspielzeug viel emotiver, was mit dem Handwerk betont ist auch heute<br />

viele Künstler oder Handwerker die uralte Technik nutzen. Heutige Holzspielzeuge in sich die<br />

traditionelle Technik mit dem gegenwärtigen Design verbinden. So beriechendes Spielzeug<br />

kann mit sehr markanter Form die Motorik des Kindes entwickeln.<br />

Bei detaillier Analyse, so erzeugenden Spielzeug ist es möglich in der Zukunft solche<br />

Spielzeug entwickeln, die sehr spezifische Charakter und sehr eigene Identität.<br />

In der Slowakei dank der reiche Geschichte, langfristige Tradition und vielerlei Inspirationen<br />

hat der Holzspielzeug spezifische Bereich für sein entwickeln. In Vergleich mit den andreren<br />

Spielzeugen so wie aus Plastik, oder Textil, oder Metall, haben Holzspielzeuge bessere Vision<br />

in Zukunft.<br />

In letzten Jahrzenten war es ein Paar Versuchen, eine Art von den Holzspielzeugen<br />

durchzusetzen. Produktion der Baukasten GRINGO, deren Autor Tibor Uhrín ist, begann so<br />

auch endete in Kremnické Bane. Gestaltern und auch die Erzeuger schaften nicht GRINGO<br />

zwischen anderen klassischen Erzeuger mit langer Tradition durchzusetzen<br />

Letzte Versuche erzeugen, so wie auch verkaufen die Holzspielzeuge haben<br />

zusammenzerbricht gerade wegen dem Verkauf. Da bietet sich die Frage, wie kann Man<br />

Holzspielzeug erzeugen, denn es nicht nur einzigartig aber auch für den usuelle Verbraucher<br />

Preiswert war.<br />

Für bessere Spezifikation und Erkennung der Holzspielzeuge wäre es nötig diese Spielzeuge<br />

zu kategorisieren. Heute können wir sagen, dass die Holzspielzeuge kann man in ein paar<br />

Kategorien verteilen, nach den Benutzung.<br />

391<br />

Bild 3. Kindlich wagen


Es gibt Spielzeuge die Koordination oder Kreativität des Kindes ausbauen, die letzte<br />

Kategorie bilden die Spielzeuge die wir auch als Nutzspielzeuge nennen, gerade die die<br />

Fantasie ausbauen.<br />

Zu den die, die Koordination ausbauen, können wir zum Beispiel verschiedene<br />

Zusammensetzspielzeuge einteilen.<br />

Für die größeren Kinder gibt es viel komplizierte Zusammensetzspiele, wie zum Beispiel das<br />

Puzzle und 3D Puzzle:<br />

Bild 4. Holz Puzzle<br />

Bild 3. Zusammensetzspiel aus Holz<br />

392<br />

Bild 5. Holz 3D Puzzle


Weiter gibt es Kopfzerbrechen und Labyrinth Spiele:<br />

Bild 6. Holz Kopfzerbrechen<br />

Die nächste Gruppe bilden die Holzspielzeuge, die die Kreativität ausbauen, so wie die<br />

Baukasten:<br />

Bild 7. Holz Baukasten<br />

393


Die letzte große Gruppe, dass sind die Nutzspielzeuge:<br />

ZUSAMMENFASSUNG<br />

In der Slowakei gibt es also ein paar Producern der Holspielzeugen, verschiedenen Arten.<br />

Man muss nur die richtige Konzeption finden, die dem Produzenten hilft sich gut durchsetzen.<br />

Die Möglichkeit wird ist hier, aber nötig ist die Verbraucher zu überzeugen, das unsere<br />

Spielzeuge anders und sehr original sind, und dass, sie den anderen konkurrieren können.<br />

LITERATUR<br />

1. BANSKY M.: 2007: Development and production <strong>of</strong> machines for the production <strong>of</strong><br />

wooden toys and construction block“. in „Obróbka drewna“ Pozna�, AR KOiPKM<br />

2. PAN�UHOVÁ E. 1988: Drevené l udové hra�ky v slovenských múzeách. Martin Osveta<br />

S.l. Etnograf. ústav SNM v Martine [vyd.] ,.<br />

3. SLOVENSKÝ NÁRODOPIS: �asopis Slovenskej akadémie vied, Zväzok 29, Veda, 1981<br />

4. http://www.adler.sk/za-slovnicek-pojmov<br />

5. http://www.BEST.sk<br />

6. http://sk.wikipedia.org<br />

7. http://www.moraviantoys.com<br />

8. http://www.woodentoys.cz<br />

Streszczenie: Zabawki z drewna dawniej i obecnie na S�owacji W ka�dej rodzinie jest<br />

przynajmniej co� z drewna, i co najmniej jedna zabawka, która jest wykonana z drewna.<br />

Drewno jest materia�em bardzo dobrze obrabialnym i znanym z wielu doskona�ych<br />

w�a�ciwo�ci, jest tak�e przeznaczony do produkcji zabawek. Powinni�my pozna� histori�<br />

zabawek, tak aby lepiej zrozumie� naszych przodków, i tak nasz� kultur�.<br />

Corresponding author:<br />

Technische <strong>University</strong> Zvolen,<br />

Die Fakultät der environmentale und Erzeugungstechnick,<br />

Lehrstuhl Holzmaschinen und Mechanismen.<br />

T.G. Masaryka 25, 96001, Zvolen<br />

Bild 8. Buch aus Holz


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> if <strong>Life</strong> Science – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 395-399<br />

(Ann. WULS – <strong>SGGW</strong>, For. and Wood Technol. 71, 2010)<br />

Exotic species <strong>of</strong> wood borers in investigations <strong>of</strong> Wood Protection Division<br />

<strong>SGGW</strong> in <strong>Warsaw</strong> in years 1997 – 2009<br />

ADAM KRAJEWSKI, ANDRZEJ MAZUREK<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> Science – <strong>SGGW</strong>, Department <strong>of</strong> Wood Science and Wood Protection<br />

Abstract: Exotic species <strong>of</strong> wood borers in investigations <strong>of</strong> Wood Protection Division <strong>SGGW</strong> in <strong>Warsaw</strong> in<br />

years 1997 – 2009. In last ten days rise importans <strong>of</strong> exotic wood comerce. The exotic wood sometimes includes<br />

damages by animals. Signification <strong>of</strong> animal species, which wood damages made, is sometimes difficult. In the<br />

paper are published taxonomic signification results <strong>of</strong> insects and shellfishes, which exotic wood damages made.<br />

The exotic wood samples <strong>of</strong> Tieghemella heckelii, Triplochiton scleroxylon, Guibourtia ehie, Terminalia<br />

superba, Millettia laurentii, Microberlinia brazzavillensis, Entandrophragma cylindricum, Nesogordonia<br />

papaverina from West Afrika and Shorea negrosensis, Tectona grandis from South Est Asia and miocenic wood<br />

<strong>of</strong> Taxodioxylin taxodii from Poland ware send in yares 1997 – 2009 to Faculty <strong>of</strong> Wood Protection in <strong>SGGW</strong> in<br />

<strong>Warsaw</strong>. Most dangerous <strong>of</strong> all insects, which are in Poland bring Lyctus brunneus and Sinoxylon anale ware.<br />

Damages <strong>of</strong> exotic wood samples by ambrosia beetles ware not significated to species. Some cases <strong>of</strong> Attagenus<br />

smirnovi presence, new species in Poland, ware state. Attagenus smirnovi doesn't destroy the wood. Wood<br />

damage <strong>of</strong> Taxodioxylon taxodii from miocen in Poland was by marine borers made.<br />

Keywords: exotic wood damages, Taxodioksylon taxodii, Lyctus brunneus, Sinoxylon anale, Attagenus smirnovi,<br />

shipworm<br />

INTRODUCTION<br />

Last two decades have enabled the trade development <strong>of</strong> exotic species timber in Poland.<br />

Insects and other organisms are occasionally brought to Poland with wood, which cause (or<br />

caused) the destruction <strong>of</strong> wood. In such cases the questions came out, about the pest species<br />

and the circumstances, which conditioned the creation <strong>of</strong> damage. Especially, mass<br />

appearance <strong>of</strong> pests imagines causes concerns regarding the possibility <strong>of</strong> further damage to<br />

wood and spread <strong>of</strong> pests, although (as it appears in the course <strong>of</strong> identification) do not<br />

always have to deal with wood borers. Samples from collections <strong>of</strong> exotic or fossil wood<br />

provide interesting observations as well.<br />

MATERIAL AND METHODS<br />

The paper contains insect species identification and taxonomic classification <strong>of</strong> other animals,<br />

which have damaged wood samples, received in the years 1997 - 2009 by the Wood<br />

Protection Division, Department <strong>of</strong> Wood Science Wood and Wood Protection, <strong>Warsaw</strong><br />

<strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>. Only the species non-included to Polish entom<strong>of</strong>auna were taken<br />

into account, or at least freshly included ones. Determinations were based on the relevant keys<br />

[Dominik 1957, Dominik and Starzyk 2004]. A well-developed electronic media were also<br />

used (in the case <strong>of</strong> powder-post beetles, Bostrichidae).<br />

For most insects identifications were made on the basis <strong>of</strong> beetles residues seen in<br />

magnification under a binocular microscope. In some cases, however, indications were<br />

limited to the traces <strong>of</strong> feeding in the timber (ambrosia beetles and molluscs) or damaged<br />

remains <strong>of</strong> larvae (longhorn beetles, Cerambycidae). In such cases, identification <strong>of</strong> the<br />

damage perpetrator to species level failed and more general classifications were pointed only.<br />

The destructions <strong>of</strong> contemporary timber were recognised on the base <strong>of</strong> tunnel features,<br />

including the presence <strong>of</strong> layers <strong>of</strong> calcium carbonate. In the case <strong>of</strong> petrified wood,<br />

diagnosis, if the damages were caused by insects or by the mussels, was based on the relief <strong>of</strong><br />

395


the tunnel surface, using preparations from the collections held in the Division <strong>of</strong> Wood<br />

Protection.<br />

Designation <strong>of</strong> Attagenus smirnovi Zhantiev, the beetle alien to Polish entom<strong>of</strong>auna at the end<br />

<strong>of</strong> the twentieth century (as it appears in the literature), would not be possible without the<br />

judgement <strong>of</strong> Pr<strong>of</strong>essor Mieczys�aw Mroczkowski, whom the authors would like to thank for<br />

his valuable assistance.<br />

Taxonomic classification <strong>of</strong> exotic wood species was determined using the atlas [Wagenführ<br />

and Scheibler 1989]. The authors would like to thank Dr. Pawe� Kozakiewicz for verification<br />

<strong>of</strong> the identification results.<br />

RESULTS<br />

Results <strong>of</strong> determinations <strong>of</strong> tree species <strong>of</strong> damaged timber, together with insect species and<br />

taxonomic classification <strong>of</strong> molluscs, which left the damages, are shown in Table 1.<br />

Table 1. Alien species <strong>of</strong> invertebrates found in recent years in the timber <strong>of</strong> exotic and native trees or buildings<br />

used for wood storage<br />

Time <strong>of</strong> Invertebrate species Wood species Damage size Notes<br />

specification<br />

1997 – 1999 Attagenus smirnovi Insects were found No damage to the Places <strong>of</strong> numerous<br />

(Zhantiev),<br />

outside the timber wood, very beetles occurrence:<br />

Dermestidae,<br />

numerous conservator studio in<br />

Coleoptera<br />

appearance <strong>of</strong> museum, exhibition<br />

imagines<br />

spaces <strong>of</strong> another<br />

museum and two flats<br />

(all in <strong>Warsaw</strong>)<br />

March, 1999 unspecified species <strong>of</strong> Makore - Very numerous, Timber samples from<br />

shipworm (Teredinidae), Tieghemella heckelii densely bored the didactic collection<br />

clams (Molusca, (A.Chev) Pierre ex tunnels with well- <strong>of</strong> <strong>University</strong><br />

Bivalvia,<br />

Dubard<br />

preserved layer <strong>of</strong><br />

Lamellibranchiata)<br />

calcium carbonate<br />

on the walls <strong>of</strong><br />

feeding ground in<br />

the timber<br />

September,<br />

Persian walnut, Few feeding Pieces <strong>of</strong> furniture<br />

2001 Lyctus<br />

(Steph.),<br />

Coleoptera<br />

brunneus<br />

Lyctidae,<br />

Juglans regia (L.) grounds, and imago<br />

outlets, few dead<br />

beetles in feeding<br />

areas in timber<br />

made in Italy,<br />

delivered to a company<br />

in Poland<br />

November, unspecified species <strong>of</strong> Fossilised fossil A single tunnel with Specimen <strong>of</strong> petrified<br />

2007 shipworm (Teredinidae), species Taxodioksylon excellent preserved wood from the private<br />

clams (Molusca, taxodii Gothan from surface texture collection<br />

Bivalvia,<br />

Siedliska locality near<br />

Lamellibranchiata) Hrebenne, Tomaszów<br />

Lubelski district<br />

November,<br />

samba -Triplochiton Large Timber delivered to a<br />

2008 Lyctus<br />

(Steph.),<br />

Coleoptera<br />

brunneus<br />

Lyctidae,<br />

scleroxylon<br />

Schum.)<br />

(K.<br />

company in Poland<br />

December,<br />

Unspecified species, Very large Furniture imported<br />

2008 Sinoxylon anale<br />

(Lesne), Bostrychidae,<br />

Coleoptera<br />

in trade as "rose<br />

wood"<br />

from India<br />

June, 2009<br />

samba -Triplochiton Very large constructional<br />

Lyctus brunneus scleroxylon K. Schum<br />

woodwork<br />

(Steph.),<br />

Coleoptera<br />

Lyctidae,<br />

396


DISCUSSION<br />

Attention is paid to relatively high number <strong>of</strong> occurrences in <strong>Warsaw</strong>, which reported the<br />

presence <strong>of</strong> Attagenus smirnovi, species accidentally brought to Poland, being a scavenger in<br />

natural environment. Although the larvae <strong>of</strong> some species <strong>of</strong> Dermestidae can cause damage<br />

[Dominik 1970] biting into the timber to hide during the pupation, but it was not proved yet<br />

for this species. The presence <strong>of</strong> numerous beetles <strong>of</strong> this species may <strong>of</strong>ten cause great<br />

anxiety, especially in conservation and museum facilities.<br />

Most emerging among the beetle species identified was cosmopolitan Lyctus brunneus,<br />

species scattered in the area <strong>of</strong> the warm and temperate climates, probably originating from<br />

the region <strong>of</strong> Indo-Malays [Cymorek 1961, Dominik and Starzyk 2004]. It is believed that he<br />

could have been acclimatised in Poland, due to the repeated assertion <strong>of</strong> his presence in wood<br />

storages (Dominik and Starzyk 2004). All the cases described here were related to wood<br />

brought with larvae from outside Poland territory. Twice the timber <strong>of</strong> numerous beetle<br />

emergence was samba Triplochiton scleroxylon K. Schum., a species also known by other<br />

names (Wagenführ and Scheibler 1989): obeche (Nigeria, France and Belgium), abachi<br />

(Germany, Ivory Coast and Netherlands), wawa (Ghana, UK and Germany), <strong>of</strong>a, sam (Ivory<br />

Coast), ayous (Gabon, Cameroon, Central African Republic and France), arere, sam (Nigeria).<br />

Representative <strong>of</strong> Bostrychidae family, Sinoxylon anale Lesne species was found only once in<br />

the wood furniture imported from India. Damage caused by this beetle is a dense maze <strong>of</strong><br />

tunnels <strong>of</strong> circular cross-section (about 3 mm in diameter), filled with fine, loose wood flour.<br />

Although destruction was related to only one piece <strong>of</strong> furniture, but it was heavy. A<br />

possibility <strong>of</strong> very heavy damage during shipping timber was also emphasized by Dominic<br />

and Starzyk (2004). Numerous dead beetles were found on furniture, and near them, with a<br />

characteristic relief <strong>of</strong> elytra ridge. Dominik (1970) also demonstrated bringing this species<br />

together with timber, imported to Poland, and indicated that this is one <strong>of</strong> the most dangerous<br />

pests <strong>of</strong> wood in the Indian subcontinent. Additionally, he noted the cases <strong>of</strong> the arrival <strong>of</strong><br />

other species <strong>of</strong> Bostrychidae: Dinoderus minutus Fabr. and Trogoxylon impressum Comolli,<br />

which are not stated by the authors in the last decade among the reported cases <strong>of</strong> wood<br />

damage.<br />

Recognised feeding grounds <strong>of</strong> the representatives <strong>of</strong> shipworms (Teredinidae) are connected<br />

with makore wood - Tieghemella heckelii Pierre and fossil species Taxodioksylon taxodii<br />

Gothan from the Miocene period (K�usek 2006). The closest living relative <strong>of</strong> Taxodioksylon<br />

taxodii is bald cypress (Taxodium distichum Rich). It occurs in lowland areas in the southeast<br />

United States <strong>of</strong> America along the Atlantic coast. It grows in marshes and flood plains,<br />

where it forms a monospecific stands with few associated species (Seneta 1973). It is believed<br />

that Taxodioksylon taxodii lived in similar conditions, which might favour taking wood by<br />

floods to seawater, where the molluscs inhabited it.<br />

In some specimens <strong>of</strong> petrified wood from the Roztocze region, well-preserved tunnels are<br />

found, assigned to insects [Laurów and Narojek 2005, K�usek 2006]. Undoubtedly, they bore<br />

traces <strong>of</strong> living shipworms, not the larvae <strong>of</strong> insects. These molluscs leave quite distinctive<br />

marks by scraping the wood with the front side <strong>of</strong> vary small shell [Bieda 1966, Krajewski<br />

1987, Krajewski and Witomski 2005]. This behaviour leads to a characteristic texture <strong>of</strong> the<br />

tunnel surface, resulted from the capitate abrasive surface treatment by dimensionally reduced<br />

shell, which was clearly visible on fossil described here. We know that Teredinidae are a<br />

group <strong>of</strong> invertebrates existed for a very long time, as it is shown by fossilized fragments <strong>of</strong><br />

tree trunks from the Jurassic and Cretaceous period, containing traces <strong>of</strong> existence <strong>of</strong> these<br />

molluscs [Bieda 1966].<br />

In the years 1999 - 2009 several samples <strong>of</strong> wood were brought to the Division <strong>of</strong><br />

Wood Protection that bore the traces <strong>of</strong> feeding insects, whose taxonomic affiliation failed to<br />

397


e determined. It can be generally stated, that the damages were caused mainly by ambrosia<br />

beetles and representatives <strong>of</strong> longhorn beetles (Cerambycidae). Feeding grounds <strong>of</strong> ambrosia<br />

beetles were found in wood <strong>of</strong> six species <strong>of</strong> trees known by many names, brought from West<br />

Africa: Guibourtia ehie J. Léonard (known most commonly as ovangkol), Terminalia superba<br />

Engl & Diels (known commercially as limba), Millettia laurentii De Wild. (known most<br />

commonly as wenge), Microberlinia brazzavillensis A. Chev. (known most commonly as<br />

zebrano or zinga), Entandrophragma cylindricum Sprague (usually known as sapelli, sapeli or<br />

sapele) and Nesogordonia papaverina Capuron (known commercially as kotibé). No<br />

identification to species level is due to availability feeding ground features only, which cannot<br />

be the sufficient base for reliable identification, consideration multiplicity <strong>of</strong> insect species<br />

growing in the wood. It is known from the literature that species <strong>of</strong> ambrosia beetles growing<br />

in the wood (at least some <strong>of</strong> those listed trees) belong both to Scolytinae and Platypodinae<br />

families [Wagenführ and Scheibler 1989].<br />

Representatives <strong>of</strong> longhorn beetles left feeding traces in the mentioned sapeli and wenge<br />

wood from West Africa, in wood <strong>of</strong> Shorea negrosensis Foxb. (known commercially as<br />

meranti, usually with the adjective specifying the color in different languages) and in wood <strong>of</strong><br />

Tectona grandis L, known commonly as teak. In the latter case, the damage came from the<br />

under-bark longhorn beetles. In the case <strong>of</strong> meranti wood, brought in 2005, the sample<br />

contained a pupa cradle at the end <strong>of</strong> single oval tunnel, width <strong>of</strong> about 15-20 mm, with a<br />

strongly dried, partly decayed larva with a length <strong>of</strong> 55 mm.<br />

CONCLUSIONS<br />

The investigations conducted lead us to the following conclusions.<br />

� Powder-post beetles (Lyctidae) and false powder-post beetles (Bostrychidae) are still<br />

the most dangerous xylophagous pests brought with imported exotic timber, just as it<br />

did in past decades.<br />

� Wood with traces <strong>of</strong> existence <strong>of</strong> shipworms (Teredinidae) occurs rarely in Poland,<br />

apart from fossil Taxodioksylon taxodii Gothan from Roztocze region, in which the<br />

tunnels <strong>of</strong> the molluscs are confused with feeding grounds <strong>of</strong> insects.<br />

� False alarms <strong>of</strong> threats to wood are <strong>of</strong>ten induced by the mass emergence <strong>of</strong> Attagenus<br />

smirnovi Zhantiev, a non-xylophagous beetle species new to Polish entom<strong>of</strong>auna.<br />

Spreading <strong>of</strong> this species in our country can be expected.<br />

� The amount <strong>of</strong> exotic timber imported to Poland with damages caused by insects in<br />

the forest or in storages appears to will be increasing. Taxonomic classification <strong>of</strong> the<br />

destructive species will <strong>of</strong>ten be difficult to determine unequivocally if the<br />

identification will be made on the base <strong>of</strong> wood damage features only.<br />

Streszczenie: Ksyl<strong>of</strong>agi obcego pochodzenia w badaniach Zak�adu Ochrony Drewna <strong>SGGW</strong><br />

w Warszawie w latach 1997 – 2009. W ostatniej dekadzie w Polsce wzrasta znaczenie handlu<br />

egzotycznym drewnem. Drewno to niekiedy zawiera uszkodzenia spowodowane przez<br />

zwierz�ta. Przynale�no�� tych zwierz�t czasem jest trudno ustali� ze wzgl�du na ogromn�<br />

liczb� ksyl<strong>of</strong>agoicznych gatunków owadów. W publikacji podano wyniki oznacze�<br />

przynale�no�ci taksonomicznej owadów i ma��ów, które uszkodzi�y drewno egzotycznych<br />

gatunków drzew. Próbki egzotycznego drewna Tieghemella heckelii, Triplochiton<br />

scleroxylon, Guibourtia ehie, Terminalia superba, Millettia laurentii, Microberlinia<br />

brazzavillensis, Entandrophragma cylindricum, Nesogordonia papaverina z Afryki<br />

Zachodniej, Shorea negrosensis i Tectona grandis z Po�udniowo - wschodniej Azji oraz<br />

mice�skiego Taxodioxylin taxodii z terenu Polski zosta�y nades�ane do Zak�adu Ochrony<br />

Drewna w latach 1997 – 2009. Najgro�niejszymi gatunkami owadów przywo�onych wraz z<br />

398


egzotycznym drewnem do polski s� Lyctus brunneus Steph. i Sinoxylon anale Lesne.<br />

Uszkodze� próbek egzotycznego drewna przez chrz�szcze ambrozyjne nie uda�o si� przypisa�<br />

konkretnym gatunkom. Stwierdzono kilka przypadków obecno�ci w Polsce nieszkodliwego<br />

dla drewna szubaka Smirnowa (Attagenus smirnovi), gatunku nowego dla Polski.<br />

Uszkodzenie drewna Taxodioxylon taxodii z miocenu spowodowa�y ma��e z rodziny<br />

�widrakowatych (Teredinidae).<br />

Scientific work granted from government funds for science in the years 2008 - 2011 as a<br />

research project No. N309 N 297834th<br />

REFERENCES<br />

1. F. BIEDA, Paleozoologia, Vol. 1 Cz��� ogólna, Zwierz�ta bezkr�gowe, Wydawnictwa<br />

Geologiczne, Warszawa, 1966,<br />

2. S. CYMOREK, Die in Mitteleuropa einheimischen und eingeschleppten<br />

Splintholzkäfer aus der Familie Lyctidae, Entomologische Blätter für Biologie und<br />

Systematik der Käfer, 57 (1961), 76 – 102,<br />

3. J. DOMINIK, Klucze do oznaczania owadów Polski, Part XIX, 43 – 44, Miazgowce<br />

– Lyctidae, Drwionki – Lymexylonidae, PWN, Warszawa, 1957,<br />

4. J. DOMINIK, Z obserwacji nad niektórymi gatunkami owadów obcego pochodzenia<br />

przywo�onych do Polski wraz z wyrobami z drewna, Sylwan, 1(1970), 35 – 39,<br />

5. J. DOMINIK, J.R. STARZYK: Owady uszkadzaj�ce drewno, PWRiL, Warszawa,<br />

2004,<br />

6. M. K�USEK, Fossil wood from the Roztocze region (Miocene SE Poland) – a tool for<br />

paleoenvironmental reconstruction, Geological Quarterly, 50 (4), 2006, 465 – 474,<br />

A. KRAJEWSKI, Zwierz�ta morskie jako szkodniki drewna, Przemys� Drzewny,<br />

7 (1987) , 28 – 32,<br />

A. KRAJEWSKI, P. WITOMSKI, Ochrona drewna – surowca i materia�u, Wydawnictwo<br />

<strong>SGGW</strong>, Warszawa, 2005,<br />

7. Z. LAURÓW, K. NAROJEK, Wspó�czesna technika w badaniach skamienia�o�ci<br />

drewna: tomografia komputerowa (part 2), Przemys� Drzewny, 3 (2005), 6 – 20,<br />

8. U. SENETA: Dendrologia, PWN, Warszawa, 1973,<br />

9. [R. WAGENF�HR, CHR. SCHEIBLER R., Holzatlas, 3. Auflage mit 890 zum Teil<br />

mehrfahrbigen Bildern, VEB Fachbuchverlag Leipzig, 1989.<br />

Corresponding author:<br />

Adam Krajewski<br />

Department <strong>of</strong> Wood Science and Wood Protection<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> Science – <strong>SGGW</strong><br />

02-776 Warszawa<br />

Poland<br />

e-mail:adam_krajewski@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> if <strong>Life</strong> Science – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 400-403<br />

(Ann. WULS – <strong>SGGW</strong>, For. and Wood Technol. 71, 2010)<br />

The species <strong>of</strong> wood construction in historic churches in Mazovia region -<br />

Part 2<br />

ADAM KRAJEWSKI<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> Science – <strong>SGGW</strong>, Department <strong>of</strong> Wood Science and Wood Protection<br />

Abstract: The species <strong>of</strong> wood construction in historic churches in Mazovia region - part 2.<br />

The wood building species in 12 historic churches on Mazovia region were determined. From the XVII c. were<br />

the 2 objects (both very rebuilt at a later time), the 4 objects were from XVIII c., 3 objects were from XIX c.<br />

century and 3 objects were from XX c. These studies are a continuation <strong>of</strong> the earlier, the other 25 historic<br />

wooden churches from the Mazovia region. Only 1 (from 12) was affirmed oak wood as building material in the<br />

timbered walls (Go�czyce - walls <strong>of</strong> the XIX or XX c.) and in foundations (Kucice - XVIII c.) and in 1 (Nowy<br />

Secemin - XX c.) white poplar as a inner layer <strong>of</strong> wall boards. In other churches found in the walls only timber<br />

<strong>of</strong> Scots pine. The building material <strong>of</strong> large-size structural elements <strong>of</strong> ro<strong>of</strong> constructions were all Scots pine.<br />

The results obtained here confirm previous observation that, contrary to the findings <strong>of</strong> ordinary, building<br />

material components <strong>of</strong> large-size wooden construction in the Mazovia region was Scots pine (except here<br />

identified 2 exceptions from the XIX - XX c.). Change the oak wood for Scots pine wood in liaison elements<br />

(dowels and pins <strong>of</strong> ro<strong>of</strong> constructions) occurred in the XVIII c.<br />

Keywords: wood material <strong>of</strong> historical churches, old buildings, Pinus sylvestris<br />

INTRODUCTION<br />

In previous publications, there is no information on the use <strong>of</strong> certain species <strong>of</strong> wood for the<br />

construction <strong>of</strong> historic churches in Mazovia [Sza�ygin and Wi�niewski 1994, Wi�niewski<br />

1998, Ruszczyk 2001]. Previously published results <strong>of</strong> investigations performed in the years<br />

1994 - 2001 the species composition <strong>of</strong> wood 25 historic churches in Mazovia region<br />

[Krajewski, 2005]. By 2009, studied at the Department <strong>of</strong> Wood Protection species<br />

composition <strong>of</strong> structural timber further 12 historic wooden churches from the region. This<br />

work contains the results.<br />

MATERIAL AND METHODS<br />

Wood samples were collected from 12 wooden churches in the years 2001-2009. Not all parts<br />

<strong>of</strong> buildings are fully accessible for sampling. Membership <strong>of</strong> the species <strong>of</strong> wood samples<br />

identified under the microscope, using an atlas [Wagenführ and Scheibler 1989]. Objects<br />

dating from the information contained in the literature [Sza�ygin and Wisniewski 1994,<br />

Ruszczyk 2001].<br />

RESULTS AND DISCUSSION<br />

Sometimes there was no information on the exact time <strong>of</strong> construction, especially the<br />

reconstruction and rehabilitation <strong>of</strong> some churches in the existing publications. Much <strong>of</strong> the<br />

objects are not saved before the changes in mass and interference in the construction <strong>of</strong> ro<strong>of</strong><br />

structure. Often it blurs the clarity <strong>of</strong> wood materials in the past centuries. The original<br />

construction <strong>of</strong> large-size timber in the churches from the XVII to the XIX c. was handled<br />

solely chipping technique. Churches were built <strong>of</strong> wood obtained in the area - only in one<br />

case (the church in Troszyn from 1636) found evidence for the presence <strong>of</strong> supply <strong>of</strong> timber<br />

for construction through the flotation.<br />

The results <strong>of</strong> the species composition <strong>of</strong> wood historic wooden churches in the Mazovia<br />

region are presented in Table 1.<br />

400


Table 1. The species <strong>of</strong> wood construction in a historic wooden churches in Mazovia<br />

The<br />

foundations<br />

<strong>of</strong> walls<br />

Beams <strong>of</strong><br />

walls<br />

Dowels in<br />

walls<br />

large-size<br />

structural elements<br />

<strong>of</strong> ro<strong>of</strong><br />

constructions<br />

1. Troszyn - rebuilt church from 1636, the ro<strong>of</strong> construction from 1982<br />

- 6 x Scots pine 10 x Scots<br />

pine<br />

1 x oak<br />

401<br />

Pins <strong>of</strong> ro<strong>of</strong><br />

constructions<br />

4 x Scots pine metal elements <strong>of</strong> the<br />

liaison<br />

2. Sarbiewo - the church <strong>of</strong> the XVII - XVIII c., the ro<strong>of</strong> construction <strong>of</strong> the XX c.<br />

- 7 x Scots pine - 2 x Scots pine<br />

(original)<br />

6 x Scots pine<br />

(new)<br />

7 x Scots pine (new)<br />

1 x oak (original<br />

3. Kucice – the church from 1783, the original ro<strong>of</strong> construction<br />

2 x oak 4 x Scots pine 5 x Scots pine 13 x Scots pine 11 x Scots pine<br />

(original)<br />

1 x scots<br />

pine (new)<br />

4. Barcice - the church from 1758, the original ro<strong>of</strong> construction<br />

- - - 3 x Scots pine 3 x oak<br />

5. Go�czyce - the church from 1740, much rebuilt in the XIX and XX c., the ro<strong>of</strong> construction is only<br />

partly original<br />

-<br />

nave: 15 x<br />

oak (XIX -<br />

XX c.),<br />

-<br />

-<br />

nave:<br />

6 x oak,<br />

(XIX - XX c.),<br />

sanctuary:<br />

3 x scots pine<br />

(XIX - XX c.)<br />

-<br />

-<br />

-<br />

old original part<br />

over nave:<br />

9 x Scots pine,<br />

new part <strong>of</strong> ro<strong>of</strong><br />

construction <strong>of</strong> XX<br />

c.:<br />

5 x Scots pine,<br />

subsequent parts.<br />

modeled on the<br />

orig.: 9 x Scots<br />

pine<br />

sanctuary:<br />

9 x Scots pine<br />

6. Leoncin - the church from 1789, moved in 1879, renovated in 1970<br />

5 x scots<br />

pine (not<br />

orig.)<br />

- - - -<br />

the old, original part<br />

over nave:<br />

10 x oak,<br />

new part <strong>of</strong> ro<strong>of</strong><br />

construction <strong>of</strong> XX c.:<br />

2 x Scots pine,<br />

the later part. over the<br />

nave, modeled on the<br />

orig.: 9 x oak,<br />

sanctuary:<br />

part the original<br />

construction:<br />

3 x oak,<br />

part <strong>of</strong> the latest:<br />

4 x scots pine<br />

7. Brwinów - the church around the XIX c., the original ro<strong>of</strong> construction<br />

- 4 x Scots pine - 7 x Scots pine 3 x Scots pine


8. Boguty Pianki - church from 1865, the original ro<strong>of</strong> construction<br />

1 x scots<br />

pine<br />

4 x Scots pine - 6 x Scots pine 2 x Scots pine<br />

9. Lipce Reymontowskie - the church <strong>of</strong> the first half XIX c., the ro<strong>of</strong> construction from 1985 - 1989<br />

- 4 x Scots pine - 12 x Scots pine metal elements <strong>of</strong> the<br />

liaison<br />

10. Nowy Secemin - the church from 1923, the original ro<strong>of</strong> construction<br />

-<br />

not samples <strong>of</strong><br />

construction,<br />

-<br />

2 x Scots pine,<br />

1 x white poplar<br />

-<br />

inner layer <strong>of</strong><br />

wall boards:<br />

white poplar<br />

(cradling)<br />

11. Radachówka – the church from 1935 - 1937, the original ro<strong>of</strong> construction<br />

- - - 5 x Scots pine metal elements <strong>of</strong> the<br />

liaison<br />

12. Warszawa, ul. G��bocka – church badly dated (probably XIX - XX c.), the ro<strong>of</strong> construction from 1950<br />

- - - 5 x Scots pine 3 x Scots pine<br />

Not all places in certain buildings give the possibility <strong>of</strong> sampling for the determination <strong>of</strong><br />

wood. Based on the results obtained and previous results [Krajewski, 2005] found two general<br />

trends. Large-size items <strong>of</strong> historical, no rebuilt structures were made <strong>of</strong> wood <strong>of</strong> Scots pine<br />

(Pinus sylvestris L.), which agrees with the comments about using the historical building <strong>of</strong><br />

indigenous churches in Ma�opolska region in the XIV - XV c. [Brykowski 1981]. Except in<br />

Mazovia region are few instances <strong>of</strong> the use <strong>of</strong> oak (Quercus sp) to do the groundwork<br />

[Krajewski, 2005]. Only 1 church (Go�czyce) has walls made in the XIX and XX c. in oak,<br />

instead <strong>of</strong> the original from 1740. In the church from 1923 in Nowy Secemin were boards in<br />

white poplar wood (Populus alba L.) in interior layer <strong>of</strong> skeletal walls.<br />

Based on the residue found liaison elements can be stated, that oak was originally material <strong>of</strong><br />

dowels and pins <strong>of</strong> ro<strong>of</strong> constructions framing 2 objects from the XVII c. and 2 objects from<br />

the XVIII c. Other churches: 1 object from the XVIII c. and 2 objects from the XIX c. had<br />

pine liaison elements, 3 ro<strong>of</strong> structures <strong>of</strong> the XX century had a liaison metal parts. There<br />

were no oak in pins <strong>of</strong> walls and pins <strong>of</strong> ro<strong>of</strong> constructions from the XIX and XX c.<br />

CONCLUSIONS<br />

The investigations conducted lead us to the following conclusions.<br />

• The presence <strong>of</strong> larch, ash or yew churches in Mazovia region is a myth, yet sustained even<br />

in some (fortunately rare) studies. In general, large-size structural components were made<br />

from wood <strong>of</strong> Scots pine.<br />

• Gives a previously placed a proposal to maintain the presence <strong>of</strong> oak fittings (dowels and<br />

pins in the ro<strong>of</strong> constructions) only in the older constructions, namely the XVIII c., inclusive.<br />

Streszczenie: Gatunki drewna budowlanego w zabytkowych ko�cio�ach na Mazowszu – cz���<br />

2. Oznaczono przynale�no�� gatunkow� drewna budowlanego w 12 zabytkowych,<br />

drewnianych ko�cio�ach na Mazowszu. Z XVII w. by�y 2 obiekty (oba bardzo przebudowane<br />

w pó�niejszym czasie), z XVIII w. 4 obiekty, z XIX w. 3 obiekty i z XX w. 3 obiekty.<br />

Badania te s� kontynuacj� wcze�niejszych , dotycz�cych innych 25 zabytkowych,<br />

drewnianych ko�cio�ów z tego regionu. Jedynie w 1 (spo�ród 12) stwierdzono drewno<br />

d�bowe jako materia� budowlany �cian w konstrukcji zr�bowej (Go�czyce - �ciany z XIX lub<br />

XX w.) i podwalin (Kucice – XVIII w.) oraz w 1 ko�ciele (Nowy Secemin - XX w.) topol�<br />

402


ia�� jako deski wewn�trznej warstwy �cian. W pozosta�ych ko�cio�ach znaleziono w<br />

�cianach wy��cznie drewno sosny pospolitej. Materia�em konstrukcyjnym<br />

wielkowymiarowych elementów wi��b dachów wszystkich obiektów by�a sosna pospolita.<br />

Uzyskane tu wyniki potwierdzaj� wcze�niejsze spostrze�enie, �e wbrew potocznym<br />

stwierdzeniom materia�em budowlanym wielkowymiarowych elementów konstrukcji<br />

drewnianych na Mazowszu by�a sosna (poza stwierdzonymi tu 2 wyj�tkami od regu�y z XIX -<br />

XX w.). Zmiana drewna d�bowego na sosnowe w elementach ��cznikowych (ko�ków wi��b<br />

dachowych i tybli) zasz�a w XVIII w.<br />

Scientific work granted from government funds for science in the years 2008 - 2011 as a<br />

research project No. N309 N 297834th<br />

REFERENCES<br />

1. R. BRYKOWSKI, Drewniana architektura ko�cielna w Ma�opolsce XV w., Studia z<br />

historii sztuki, tom 31, Zak�ad Narodowy im. Ossoli�skich, Wydawnictwo PAN,<br />

Wroc�aw – Warszawa – Kraków – Gda�sk – �ód�, 1981,<br />

2. KRAJEWSKI, Drewno jako materia� budowlany w zabytkowych ko�cio�ach na<br />

Mazowszu, [in:] Renowacja i modernizacja budynków obszarów zabudowanych,<br />

Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, Zielona Góra, 2005, 291 –<br />

300,<br />

3. G. RUSZCZYK, Drewniane ko�cio�y w Polsce 1918 – 1939. Tradycja i<br />

Nowoczesno��, Instytut Sztuki PAN, Warszawa, 2001,<br />

4. J. SZA�YGIN, J.A. WI�NIEWSKI, Materia�y do katalogu drewnianego budownictwa<br />

sakralnego na Mazowszu, Mazowsze, nr 3 (1994), 3 – 104,<br />

5. R. WAGENF�HR, CHR. SCHEIBLER, Holzatlas, 3. Auflage mit 890 zum Teil<br />

mehrfahrbigen Bildern, VEB Fachbuchverlag, Leipzig, 1989,<br />

6. [J.A. Wi�niewski, Ko�cio�y drewniane Mazowsza. Cz��� 1: Dawne województwo<br />

mazowieckie, Oficyna Wydawnicza „Rewasz“, Pruszków, 1998.<br />

Corresponding author:<br />

Adam Krajewski<br />

Department <strong>of</strong> Wood Science and Wood Protection<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> Science – <strong>SGGW</strong><br />

02-776 Warszawa<br />

Poland<br />

e-mail:adam_krajewski@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>-<strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 404-409<br />

(Ann. WULS-<strong>SGGW</strong>, For. And Wood Technol. 71, 2010)<br />

The radial variability <strong>of</strong> the modulus <strong>of</strong> elasticity along the grain <strong>of</strong> Scots<br />

pine wood<br />

ANDRZEJ KRAUSS, WALDEMAR SZYMA�SKI, GRZEGORZ PINKOWSKI<br />

Department <strong>of</strong> Woodworking Machinery and Basis <strong>of</strong> Machine Construction,<br />

Pozna� <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Abstract: The radial variability <strong>of</strong> the modulus <strong>of</strong> elasticity along the grain <strong>of</strong> Scots pine wood. Radial variation<br />

<strong>of</strong> the elasticity modulus in Scots pine wood (Pinus sylvestris L.) and the micr<strong>of</strong>ibril angle (MFA) in the<br />

tangential cell walls were analysed. According to the results, in a narrow range <strong>of</strong> wood density changes,<br />

micr<strong>of</strong>ibril angle is the main determinant <strong>of</strong> variation <strong>of</strong> the elasticity modulus <strong>of</strong> cell walls in longitudinal<br />

direction.<br />

Keywords: Scots pine, micr<strong>of</strong>ibril angle, density, cell wall, ultrasound velocity, modulus <strong>of</strong> elasticity along the<br />

grain<br />

INTRODUCTION<br />

In the light <strong>of</strong> recent research results, density <strong>of</strong> wood is not sufficient for explanation <strong>of</strong><br />

great variation <strong>of</strong> its mechanical properties (Moli�ski & Raczkowski 1993, Krauss 2009).<br />

Should wood density be the only parameter determining the mechanical properties <strong>of</strong> wood,<br />

the relation between these should be linear but according to the present state <strong>of</strong> knowledge it<br />

is not so. At the same wood density the elasticity modulus and wood strength can be much<br />

different (Zhang 1997). The differences stem from diversity <strong>of</strong> the ultrastructure <strong>of</strong> cell walls<br />

and first <strong>of</strong> all from different angles made by cellulose micr<strong>of</strong>ibrils and the longitudinal axis<br />

<strong>of</strong> the cells (Yamashita et al. 2000, Yang & Evans 2003).<br />

Physical, rheological and mechanical properties <strong>of</strong> bulk wood and individual wood fibres<br />

are closely related with orientation <strong>of</strong> micr<strong>of</strong>ibrils (Cave 1972, Kojima & Yamamoto 2004).<br />

Relations between the micr<strong>of</strong>ibril angle (MFA) in cell walls and the mechanical parameters<br />

have been mainly studied by testing tensile strength along the grain. It has been shown that<br />

the mechanical strength <strong>of</strong> wood and cell walls and elasticity modulus are the higher the<br />

lower the MFA, but this relation is not linear (Cave & Walker 1994; Reiterer et al 1999).<br />

Much less attention has been paid to analysis <strong>of</strong> relations between MFA and mechanical<br />

parameters <strong>of</strong> wood upon compression along the grains. So far mainly the relation has been<br />

studied between mechanical strength and MFA (Polusen et al. 1997, Gindl & Teischinger<br />

2002) as determination <strong>of</strong> Young modulus from compressive force and strain <strong>of</strong> the sample is<br />

unreliable. When the modulus is high the strain can be too small to be measured accurately<br />

and when other phenomena contribute to produce strain (e.g. creep or deformation <strong>of</strong> nearsurface<br />

layers) then the value <strong>of</strong> the modulus can be falsified. In material engineering the best<br />

method for Young modulus determination is based on ultrasound velocity measurements as<br />

the velocity <strong>of</strong> longitudinal vibrations is directly related to Young modulus and material<br />

density (Ashby & Jones 1995).<br />

The aim <strong>of</strong> the study reported is to establish the influence <strong>of</strong> MFA in cell walls on the<br />

radial variation <strong>of</strong> the wood elasticity modulus determined on the basis <strong>of</strong> measurements <strong>of</strong><br />

velocity <strong>of</strong> longitudinal ultrasound waves in wood along the grains.<br />

MATERIAL AND METHODS<br />

Measurements were performed on samples <strong>of</strong> the size 20(T)x20(R)x30(L) mm cut out <strong>of</strong><br />

the small beams that were cut out along the northern ray <strong>of</strong> the pith board from the tree trunk<br />

404


at a distance <strong>of</strong> about 2m from the root neck. The tree was a 60-year old pine (Pinus sylvestris<br />

L.) <strong>of</strong> dominant position in the stand. Prior to the measurements a 30 mm thick lath was cut<br />

<strong>of</strong>f this board in which the width <strong>of</strong> annual rings, the contribution <strong>of</strong> latewood in the rings and<br />

MFA in the tangential walls <strong>of</strong> tracheids were determined. The samples were conditioned in<br />

the laboratory at T=20-22ºC and RH = 35-41%, until reaching the equilibrium moisture<br />

content. Densities <strong>of</strong> all samples were determined by the stereometric method, while the<br />

moisture contents <strong>of</strong> three samples from each beam were measured by the gravimetric<br />

method. The linear sizes <strong>of</strong> the samples were measured to the accuracy <strong>of</strong> 0.01 mm, while<br />

their mass to the accuracy <strong>of</strong> 0.001g. The samples were dried to oven dry state at 103�2°C.<br />

The time <strong>of</strong> the ultrasound wave passage through wood along the grain was measured to the<br />

accuracy <strong>of</strong> 0.02 �s using an ultrasound probe ”Unipan 543”, with the measuring heads<br />

operating at the frequency 0.5 MHz. The moisture content in wood at the moment <strong>of</strong><br />

measurement varied from 7.6 to 8.2%.<br />

The ultrasound wave velocity was calculated from the formula:<br />

LL [m/s],<br />

CL = t<br />

where: LL – the path covered by the wave equal to the size <strong>of</strong> the sample in the longitudinal direction [m],<br />

t – time <strong>of</strong> the wave passage through the sample [s].<br />

The elasticity modulus <strong>of</strong> wood was calculated from the fundamental relation between the<br />

ultrasound wave velocity and density and elastic modulus <strong>of</strong> the material studied:<br />

CL=<br />

( �<br />

9<br />

E L / �)<br />

10 [m/s],<br />

where: CL-velocity <strong>of</strong> propagation <strong>of</strong> a longitudinal ultrasound wave [m/s],<br />

EL-elasticity modulus <strong>of</strong> wood along the grain [GPa],<br />

� – density <strong>of</strong> wood [kg/m 3 ],<br />

10 9 - a factor needed to match the units.<br />

The above formula is valid for isotropic materials. For anisotropic materials it is necessary<br />

to introduce a correction (p) taking into account the reduced Poisson coefficient (k) (Dzbe�ski<br />

1984, Ma�kowski & Gierlik 2001). The value <strong>of</strong> k was calculated for pine wood assuming the<br />

material constants after Aszkenazi (1978). Taking into regard the correction, the elasticity<br />

modulus <strong>of</strong> wood along the grain was calculated from the formula:<br />

EL =<br />

2<br />

CL � � � 0,83 � 10 -9 [GPa]<br />

The elasticity modulus <strong>of</strong> cell walls (E c.w.) was found from the relation:<br />

E c.w.= EL<br />

where:<br />

1500 – density <strong>of</strong> wood [kg/m 3 ],<br />

EL – elasticity modulus <strong>of</strong> wood [GPa],<br />

� - density <strong>of</strong> wood [kg/m 3 ].<br />

1500<br />

[GPa],<br />

�<br />

405


MFA in individual tracheids were measured by the direct method described by Fabisiak &<br />

Moli�ski (2007), the mean value <strong>of</strong> MFA was calculated according to the procedure proposed<br />

by Krauss et al. (2009).<br />

RESULTS<br />

Analysis <strong>of</strong> changes in the elasticity modulus <strong>of</strong> wood determined from the measurements<br />

<strong>of</strong> velocity <strong>of</strong> longitudinal ultrasound wave propagation, Fig.1, indicates its increase with<br />

growing maturity <strong>of</strong> wood tissue. Over the juvenile zone the mean value <strong>of</strong> the modulus<br />

increases from about 10 to 14 GPa and remains at this level through the mature zone. The<br />

mean value <strong>of</strong> elasticity modulus for all zones <strong>of</strong> the stem cross-section is 12.3 GPa, which is<br />

the same as the mean value for pine wood (Pinus sylvestris L.) reported by Krzysik (1974)<br />

and Wagenführ (2007).<br />

Modulus <strong>of</strong> elasticity,<br />

EL (GPa)<br />

16<br />

14<br />

12<br />

10<br />

8<br />

0 10 20 30 40 50<br />

Cambial age <strong>of</strong> annual rings (years)<br />

Fig.1. The radial variability <strong>of</strong> the modulus <strong>of</strong> elasticity<br />

The radial variations in the elasticity modulus and density <strong>of</strong> wood suggest that the<br />

correlation between these parameters for a given tree is not clear. The mean wood density<br />

against the mean elasticity modulus <strong>of</strong> wood from different zones <strong>of</strong> the stem cross-section is<br />

plotted in Fig. 2. Analysis <strong>of</strong> the data does not confirm the earlier reported and generally<br />

accepted positive correlation between the mechanical properties <strong>of</strong> wood and its density. The<br />

reasons for this difference can be a narrow range <strong>of</strong> the wood density changes and relatively<br />

low density <strong>of</strong> near-circumferential wood characterised by high elasticity modulus.<br />

Modulus <strong>of</strong> elasticity, EL (GPa)<br />

16<br />

14<br />

12<br />

10<br />

8<br />

420 440 460 480 500 520<br />

Density (kg/m3)<br />

406


Fig.2. The modulus <strong>of</strong> elasticity vs. density<br />

As follows from the data in Fig. 3, the elasticity modulus <strong>of</strong> cell walls is not constant but<br />

increases with the cambial age <strong>of</strong> annual rings. This observation means that its value is not<br />

determined exclusively by the density <strong>of</strong> wood because if it was it should take a constant<br />

value irrespective <strong>of</strong> the position <strong>of</strong> a given zone along the radius. The elasticity modulus <strong>of</strong><br />

cell walls changes in the range from 32.1 GPa (rings 2–7) to 49.4 GPa (rings 37–49). The so<br />

significant change in its value is attributed to changes in the micr<strong>of</strong>ibril angle, as follows from<br />

Fig. 3. The trends <strong>of</strong> changes in the elasticity modulus <strong>of</strong> cell walls and MFA are practically<br />

the mirror reflections; the Young modulus <strong>of</strong> cell walls increases when MFA decreases.<br />

Modulus <strong>of</strong> elasticity,<br />

E(c.w.) (GPa)<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

y = 23,248x 0,1957<br />

R 2 = 0,9715<br />

407<br />

y = 24,405x -0,1376<br />

R 2 = 0,9739<br />

0 10 20 30 40 50<br />

Cambial age <strong>of</strong> annual rings (years)<br />

Fig. 3. Radial variation in the modulus <strong>of</strong> elasticity <strong>of</strong> tracheid cell walls and the micr<strong>of</strong>ibril angle<br />

The elasticity modulus <strong>of</strong> cell walls versus MFA is shown in Fig. 4. Their relation can be<br />

approximated by an exponential function <strong>of</strong> the type y=ae -bx . As indicated by the high value<br />

<strong>of</strong> the correlation coefficient <strong>of</strong> this relation (0.96), in the narrow range <strong>of</strong> changes in wood<br />

density <strong>of</strong> 440-500kg/m 3 , the elasticity modulus <strong>of</strong> cell walls is almost totally determined by<br />

MFA. Yang & Evans (2003), who investigated the tensile strength <strong>of</strong> wood, have reported<br />

that the variation in the elasticity modulus depends more on MFA than on wood density.<br />

Similarly, Yamashita et al. (2000) have proved that the variation in the elasticity modulus<br />

cannot be fully explained by changes in wood density and suggested a significant role <strong>of</strong><br />

MFA as determinant <strong>of</strong> the elasticity modulus.<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

Micr<strong>of</strong>ibril angle (deg)


Modulus <strong>of</strong> elasticity,<br />

E (c.w.) (GPa)<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

y = 156,47e -0,0814x<br />

R 2 = 0,9588<br />

25<br />

12 14 16 18 20 22<br />

Micr<strong>of</strong>ibril angle (deg)<br />

Fig.4. Empirical relation between the modulus <strong>of</strong> elasticity <strong>of</strong> tracheid cell walls and the micr<strong>of</strong>ibril angle<br />

CONCLUSIONS<br />

1. The elasticity modulus <strong>of</strong> Scots pine wood increases with maturation <strong>of</strong> wood tissue, its<br />

changes are dynamic in the juvenile zone and much smaller in the mature zone.<br />

2. Increase in MFA leads to reduction in the elasticity modulus <strong>of</strong> cell walls.<br />

3. The relation between the elasticity modulus <strong>of</strong> cell walls and MFA is well approximated<br />

by the exponential function y=ae -bx <strong>of</strong> a high coefficient <strong>of</strong> determination (R 2 =0.96).<br />

4. In the narrow range <strong>of</strong> wood density variation the elasticity modulus <strong>of</strong> cell walls is<br />

almost totally determined by MFA.<br />

REFERENCES<br />

1. ASHBY M.F., JONES D.R.H. (1995): Materia�y in�ynierskie I. Wyd. polskie pod red.<br />

Stefana M. Wojciechowskiego. WN-T Warszawa<br />

2. ASZKENAZI E.K.(1978): Anizotropia dreviesiny i dreviesnych materia�ow.<br />

Izd.Lesnaja Prom., Moskwa.<br />

3. CAVE I. D.,1972: A theory <strong>of</strong> the shrinkage <strong>of</strong> wood. Wood Sci.Technol. 6: 284-292.<br />

4. CAVE I. D., WALKER J. C. F., 1994: Stiffness <strong>of</strong> wood in fast-grown plantation<br />

s<strong>of</strong>twoods: The influence <strong>of</strong> micr<strong>of</strong>ibril angle. For. Prod. J. 44(5): 43-48.<br />

5. DZBE�SKI W. (1984): Nieniszcz�ce badania mechanicznych w�a�ciwo�ci iglastej<br />

tarcicy konstrukcyjnej wybranymi metodami statycznymi i dynamicznymi. Wyd.<br />

<strong>SGGW</strong>-AR W-wa.<br />

6. FABISIAK E., MOLI�SKI W., 2007: Variation in the micr<strong>of</strong>ibril angle in the<br />

tangential walls <strong>of</strong> larch wood tracheids (Larix decidua Mill.) from plantation culture.<br />

Folia Forest. Polon. B 38:41-53<br />

7. GINDL W., TEISCHINGER A., 2002: Axial compression strength <strong>of</strong> Norway spruce<br />

related to structural variability and lignin content. Composites Part A: Applied<br />

Sci.Manufact. 33(12):1623-1628<br />

8. KOJIMA Y., YAMAMOTO H.,2004: Effect <strong>of</strong> micr<strong>of</strong>ibril angle on the longitudinal<br />

tensile creep behavior <strong>of</strong> wood. J. Wood Sci. 50: 301-306<br />

9. KRAUSS A., 2009: On some aspects <strong>of</strong> a relation between density and mechanical<br />

properties <strong>of</strong> wood in longitudinal direction. Acta Sci.Pol.,<br />

Silv.Colendar.Rat.Ind.Lignar. 8(1): 55-65<br />

408


10. KRAUSS A., FABISIAK E., SZYM�SKI W. (2009): The ultrastructural determinant<br />

<strong>of</strong> the radial variability <strong>of</strong> the compressive strength along the grain <strong>of</strong> Scots pine<br />

wood. Ann. WULS-<strong>SGGW</strong>, For. Wood Technol., 68:431-435<br />

11. KRZYSIK F.(1974): Nauka o drewnie. PWN Warszawa.<br />

12. MA�KOWSKI P., GIERLIK E.(2001): Nowa metoda pomiaru lokalnej warto�ci<br />

modu�u spr��ysto�ci drewna. Przemys� drzewny: 1: 22-23<br />

13. MOLI�SKI W., RACZKOWSKI J., 1993: Wybrane w�a�ciwo�ci drewna jod�y<br />

olbrzymiej (Abies grandis Lindl.) krajowego pochodzenia. Sylwan 11: 69-79<br />

14. POLUSEN J.S., MORAN P.M., SHIH C.F., BYSKOV E., 1997: Kink band initiation<br />

and band broadening in clear wood under compressive loading. Mech.Mater. 25:67-77<br />

15. REITERER A., LICHTENEGGER H., TSCHEGG S. E., FRATZL P., 1999:<br />

Experimental evidence for a mechanical function <strong>of</strong> the cellulose spiral angle in wood<br />

cellulose walls. Philos. Mag. A 79: 2173-2186<br />

16. WAGENFÜHR R. (2007): Holzatlas Fachbuchverlag Leipzig<br />

17. YAMASHITA K., HIRIKAWA Y., FUJISAWA Y., NAKADA R., 2000: Effects <strong>of</strong><br />

micr<strong>of</strong>ibril angle and density on variation <strong>of</strong> modulus <strong>of</strong> elasticity <strong>of</strong> sugi<br />

(Cryptomeria japonica ) logs among eighteen cultivars. Mokuzai Gakkaishi 46, 6:<br />

510-522<br />

18. YANG J.L., EVANS R., 2003: Prediction <strong>of</strong> MOE <strong>of</strong> eucalypt wood from micr<strong>of</strong>ibril<br />

angle and density. Holz a.Roh-u.Werkst<strong>of</strong>f 61:449-452<br />

19. ZHANG S.Y.,1997: Wood specific gravity-mechanical property relationship at<br />

species level. Wood Sci. Technol. 34:181-191<br />

Streszczenie: Promieniowa zmienno�� modu�u spr��ysto�ci wzd�u� w�ókien drewna sosny<br />

zwyczajnej. W pracy przedstawiono wyniki pomiarów promieniowej zmienno�ci modu�u<br />

spr��ysto�ci liniowej drewna sosny (Pinus sylvestris L) oznaczonego na podstawie pomiaru<br />

pr�dko�ci propagacji pod�u�nej fali ultrad�wi�kowej w drewnie w kierunku wzd�u� w�ókien.<br />

Wykazano, �e modu� spr��ysto�ci wzrasta w miar� dojrzewania tkanki drzewnej,<br />

dynamicznie w strefie drewna m�odocianego i nieznacznie w strefie drewna dojrza�ego<br />

Stwierdzono tak�e, �e w w�skim przedziale zmienno�ci g�sto�ci drewna, orientacja<br />

mikr<strong>of</strong>ibryl w �cianach komórkowych jest g�ównym determinantem modu�u spr��ysto�ci<br />

�cian komórkowych, a zwi�zek tych wielko�ci dobrze aproksymuje funkcja wyk�adnicza<br />

y=ae -bx (R 2 =0,96).<br />

Corresponding authors:<br />

Andrzej Krauss<br />

Waldemar Szyma�ski<br />

Grzegorz Pinkowski<br />

Faculty <strong>of</strong> Wood Technology,<br />

Pozna� <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>,<br />

60-627 Pozna�, Poland,<br />

38/42 Wojska Polskiego st.,<br />

e-mail: akrauss@up.poznan.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 410-416<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Influence <strong>of</strong> urban environment originated heavy metals pollution on the<br />

content <strong>of</strong> extractives, cellulose and lignin in the oak wood<br />

DONATA KRUTUL, TOMASZ ZIELENKIEWICZ, ANDRZEJ RADOMSKI, JANUSZ<br />

ZAWADZKI, MICHA� DRO�D�EK, ANDRZEJ ANTCZAK<br />

Department <strong>of</strong> Wood Science and Wood Protection, Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong><br />

Science – <strong>SGGW</strong><br />

Abstract: Influence <strong>of</strong> urban environment originated heavy metals pollution on the content <strong>of</strong> extractives,<br />

cellulose and lignin in the oak wood. Contents <strong>of</strong> extractives, cellulose and lignin on the cross- and longitudinalsection<br />

<strong>of</strong> oak stem (Quercus robur L.) were examined. Samples were gained from Jab�onna upper forest<br />

district, Zegrze forest district. Dusts (few tons a year) falling on this area originate mainly from �era� heat and<br />

power station and from Arcelor Warszawa steel plant. Analysis <strong>of</strong> oak stem gained from unpolluted environment<br />

was also made. Results show that envoronmental pollution causes the increase extractives content, particularly in<br />

sapwood adjacent heartwood, but also in heartwood and pith adjacent heartwood. The environmental pollution<br />

does not influence spacing and content <strong>of</strong> cellulose and lignin in analysed oak sections.<br />

Key words: oak wood, sapwood, heartwood, extractives, cellulose, lignin.<br />

INTRODUCTION<br />

Substances harmfully interacting with animals and plants because <strong>of</strong> the presence in<br />

the atmosphere are acknowledged as air pollutants. These substances are divided into: solids<br />

(dusts and soots), liquids (vapours) and gas. Harmfulness <strong>of</strong> dusts is determined by fall size,<br />

refinement degree, chemical composition and water solubility. Dusts and soots deposit on<br />

plants assimilative apparatus, plug the stomate and make the sunshine penetration to<br />

chloroplasts difficult. The sediment <strong>of</strong> much amount <strong>of</strong> dusts on the soil surface may cause its<br />

reaction change, which makes the nutrients (especially phosphorus, potassium, nitrogen and<br />

micronutrients) colletion harder for a tree (multi-author work 1998). Most harmful (for plants)<br />

air pollutants are sulphur dioxide, nitrogen oxide, ozone, hydrohalogenes. Gas get at<br />

assimilation organs interior mainly across stomate. It can be damaged by high concentration<br />

<strong>of</strong> gas pollutants (multi-author work 1998).<br />

Occurance <strong>of</strong> heavy metals, particularly lead (Gulson et al. 1981), is the measure <strong>of</strong><br />

industrial environmental pollution. Heavy metals pollution is caused by human activity, what<br />

mainly means fuels combustion in industry, transport and households. Heavy metals contents<br />

are raised in the upper soil layer in forests growing in urban area (in relation to nonindustrialized<br />

areas), according to Pouyat et al. (1991). Studies on the influence <strong>of</strong> heavy<br />

metals on living organisms were carried out on the areas neighbouring to punctual source <strong>of</strong><br />

metals (Freedman & Hutchinson 1980) and in urban environment (Getz et al. 1977, Ash &<br />

Markkoke 1995).<br />

Environmental pollution significantly influences on the content <strong>of</strong> elements<br />

acknowledged as macronutrients and heavy metals in wood on the cross- and longitudinalsection<br />

as well as in the bark, roots, branches and conifer needles (Krutul & Makowski 2004,<br />

2004; Krutul et al. 2006, 2006b). According to Krutul et al. (2006), heat and power station<br />

(Kozienice) originated pollution does not influence the content and spacing <strong>of</strong> extractives and<br />

structural substances in pine stems sampled in the range <strong>of</strong> 1km and 21km from emitter.<br />

The aim <strong>of</strong> this work was to examine the influence <strong>of</strong> environmental pollution on the<br />

content <strong>of</strong> extractives, cellulose and lignin on the cross- and longitudinal-section <strong>of</strong> oak stem<br />

(Quercus robur L.) Pollution originated from power and heat and power station and steel<br />

plant, which had been emiting amount <strong>of</strong> dusts exceeding obligatory standards.<br />

410


MATERIALS AND METHODS<br />

Samples were obtained from three circa 100 years old oak stems (Quercus robur L.),<br />

which were grown in Mazovia-Podlasie region, Jab�onna (near <strong>Warsaw</strong>) upper forest district,<br />

Zegrze forest district. Examined trees were growing in fresh mixed forest, on the fertile,<br />

dusty-loamy soil. Amount <strong>of</strong> dusts falling on this area significantly exceed obligatory<br />

standards.<br />

Analysed wood discs with the height <strong>of</strong> 200 mm were obtained from three stems (butt<br />

end, half stem height and top part).<br />

Oak wood from non-polluted area was also analysed. There were examined three circa<br />

100 years old stems which was grown in Mazuria-Podlasie II region (on the frontier with<br />

Baltic I region), St�pniewo forest district. Trees <strong>of</strong> II stand quality classification were<br />

analysed, from forest stand with intermittent fault, growing on podsol. Analogical discs were<br />

cut from stems for analysis.<br />

Samples were gained from following zones on the cross-sections: pith adjacent<br />

heartwood, heartwood, sapwood adjacent heartwood and sapwood. Wood in the range <strong>of</strong> 5<br />

mm from the line between heartwood and sapwood was acknowledged as sapwood adjacent<br />

heartwood. Other samples were obtained from the middle <strong>of</strong> each zone. Samples were<br />

comminuted and fractioned using sieves. The undersize 0,6-mm and oversize 0,49-mm mesh<br />

sawdust fraction was taken for the study.<br />

Extractives content designation was performed in the Soxhlet apparatus using ethanolbenzene<br />

(1:1) mixture, cellulose content was analysed with Kürschner-H<strong>of</strong>fer method,<br />

according to Krutul (2002). Lignin content was determined according to PN-74/P 50092<br />

standard.<br />

RESULTS<br />

Fig. 1a and 1b present extractives content in different zones <strong>of</strong> polluted and unpolluted<br />

oak wood. Collected data shows that the extractives content in sapwood adjacent heartwood,<br />

pith adjacent heartwood (butt end) is higher in oak wood from polluted area, correspondingly<br />

<strong>of</strong> 13,4% and 27,2%. In the wood from upper mentioned zones from half stem height this<br />

difference is equal to about 21,5%. In the stem top part content <strong>of</strong> extractives in sapwood<br />

adjacent heartwood is 26,2% higher in polluted wood. This difference in heartwood and pith<br />

adjacent heartwood equals correspondingly 24,3% and 26,7%. Extractives content on the<br />

cross-sections <strong>of</strong> polluted wood increases in the direction from perimeter to pith but these<br />

changes are much more irregular in relation to cross-sections <strong>of</strong> unpolluted wood.<br />

Apart from the forest site <strong>of</strong> trees growth, wood from the stem top part contains more<br />

extractives than wood from half height and butt end.<br />

Krutul & Buzak (1986) stated that oak wood (Quercus petraea Liebl.) contains more<br />

extractives in pith adjacent heartwood than in sapwood. Extractives content is higher in the<br />

stem cross-section from 14 m height in relation to cross-sections from 2 m, 6 m and 10 m<br />

height. This data confirm results presented in current paper.<br />

Fig. 2a and 2b shows values <strong>of</strong> cellulose content in analysed oak wood<br />

(correspondingly polluted and unpolluted) in the cross- and longitudinal- section. Values are<br />

similar for both kind <strong>of</strong> oak wood. The highest cellulose content was measured for sapwood<br />

in half-height and butt end. It equals 49,8% for polluted wood and 49,2% for unpolluted. This<br />

data is similar to former results presented by Krutul (1986, 1988) and Krutul et al. (2009).<br />

Apart from the forest site <strong>of</strong> trees growth, cellulose content increases in the direction from<br />

pith to perimeter. Such a character <strong>of</strong> cellulose content changes is compatible to results<br />

presented by Krutul (1986, 1988) and Krutul et al. (2009), as well as Uprichard (1971) and<br />

Harwood (1971) who stated that in the cross-section <strong>of</strong> Pinus radiata wood the cellulose<br />

411


content increases in the same direction.<br />

Values <strong>of</strong> lignin content in polluted and unpolluted oak wood are presented<br />

correspondingly in fig. 3a and 3b. Lignin content decreases in the direction from pith to<br />

perimeter in both kinds <strong>of</strong> oak wood. Data shows that environmental pollution does not<br />

influence content and spacing <strong>of</strong> lignin in any section. Lignin content is the highest in pith<br />

adjacent heartwood from stem top part and equals to 23,3-23,5%. Presented results are not<br />

compatible to data concerning pine wood (Pinus sylvestris L.) which was obtained from area<br />

polluted by heat and power station “Kocienice”. Content <strong>of</strong> lignin in the polluted pine wood<br />

was higher in relation to unpolluted samples.<br />

a - polluted<br />

sapwood heartwood adjacent sapwood<br />

extractives content/ %<br />

extractives content/ %<br />

9<br />

7,5<br />

6<br />

4,5<br />

3<br />

4,5<br />

4<br />

3,5<br />

3<br />

3,7<br />

heartwood heartwood adjacent pith<br />

5,2<br />

4,6<br />

6,6<br />

3,8<br />

6,6<br />

412<br />

5,3<br />

6,9<br />

4,4<br />

7,6<br />

butt-end middle<br />

cross section<br />

top<br />

7,0<br />

b - unpolluted<br />

sapwood sapwood adjacent heartwood<br />

heartwood pith adjacent heartwood<br />

3,1<br />

3,8<br />

3,7<br />

4,2<br />

3,5<br />

3,9<br />

3,6<br />

4,1<br />

3,4<br />

3,6<br />

butt-end middle<br />

cross section<br />

top<br />

Fig. 1 Extractives content in the oak wood sampled from a – polluted, b – unpolluted environment.<br />

3,8<br />

7,9<br />

4,0


cellulose content/ %<br />

cellulose content/ %<br />

51<br />

50<br />

49<br />

48<br />

47<br />

46<br />

51<br />

50<br />

49<br />

48<br />

47<br />

46<br />

49,8<br />

49,2<br />

a - polluted<br />

sapwood heartwood adjacent sapwood<br />

heartwood heartwood adjacent pith<br />

49,3<br />

48,3<br />

47,4<br />

49,7<br />

48,8<br />

413<br />

48,3<br />

46,5<br />

49,1<br />

48,1<br />

butt-end middle top<br />

cross section<br />

47,6<br />

b - unpolluted<br />

sapwood sapwood adjacent heartwood<br />

heartwood pith adjacent heartwood<br />

48,8<br />

48,1<br />

46,3<br />

49,1<br />

49,0<br />

48,8<br />

47,4<br />

48,9<br />

48,4<br />

butt-end middle top<br />

cross section<br />

Fig. 2 Cellulose content in the oak wood sampled from a – polluted, b – unpolluted environment.<br />

48,2<br />

46,3<br />

47,5


lignin content/ %<br />

lignin content/ %<br />

24<br />

23<br />

22<br />

21<br />

20<br />

24<br />

23<br />

22<br />

21<br />

20<br />

22,0<br />

21,8<br />

a - polluted<br />

sapwood heartwood adjacent sapwood<br />

heartwood heartwood adjacent pith<br />

22,5<br />

22,5<br />

22,8<br />

22,0<br />

22,6<br />

414<br />

23,1<br />

23,0<br />

22,4<br />

22,9<br />

butt-end middle top<br />

cross section<br />

22,9<br />

b - unpolluted<br />

sapwood sapwood adjacent heartwood<br />

heartwood pith adjacent heartwood<br />

22,6<br />

22,9<br />

23,1<br />

22,1<br />

22,7<br />

23,1<br />

23,4<br />

22,0<br />

23,0<br />

butt-end middle top<br />

cross section<br />

Fig. 3 Lignin content in the oak wood sampled from a – polluted, b – unpolluted environment<br />

CONCLUSIONS<br />

Obtained results lead to following conclusions:<br />

1. Environmental pollution causes the increase <strong>of</strong> extractives content. Extractives content<br />

raises in the direction from perimeter to pith both in polluted and unpolluted wood, but<br />

in polluted samples these changes are much more irregular.<br />

2. Environmental pollution does not influence content and spacing <strong>of</strong> cellulose and lignin<br />

in the cross-sections as well as in longitudinal-sections.<br />

23,1<br />

23,3<br />

23,5


REFERENCES<br />

1. ASH C. P. J., LEE D. L. 1980: Lead, cadmium, copper and iron in earthworms from<br />

roadside sities. Environmental Pollution 22, 59-67.<br />

2. FREEDMAN B., HUTCHINSON T. C. 1980: Long-term effects <strong>of</strong> smelter pollution<br />

at Sudbury, Ontario, on forest community composition. Canadian Journal <strong>of</strong> Botany<br />

58, 2123-2140.<br />

3. GETZ L. L., BEST L. B., PRATHER M. 1997: Lead in urban and rural songbirds.<br />

Environmental Pollution 12, 235-238.<br />

4. GULSON B. L., TILLER K. G., MIZON K. J., MERRY R. H. 1981: Use <strong>of</strong> lead<br />

isotopes to identify the source <strong>of</strong> lead contamination near Adelaide, south Australia.<br />

Environmental Science and Technology 15, 691-696.<br />

5. HARWOOD V. D. 1971: Variation in carbohydrate anlyses in relation to wood age in<br />

Pinus radiata. Holzforshung 25, 3, 73-77.<br />

6. KRUTUL D. 1986: Charakterystyka celulozy w drewnie d�bowym wzd�u� osi i<br />

promienia pnia. <strong>SGGW</strong> – AR Warszawa.<br />

7. KRUTUL D. 1988: Udzia� celulozy i niektóre jej w�a�ciwo�ci badane na przekroju<br />

poprzecznym i pod�u�nym pnia d�bowego. Folia Rorestalia Polonica s. B., 18, 41-56.<br />

8. KRUTUL D. 2002: �wiczenia z chemii drewna oraz wybranych zagadnie� z chemii<br />

organicznej. <strong>SGGW</strong>, Warszawa.<br />

9. KRUTUL D., BUZAK J. 1986: Rozmieszczenie substancji ekstrakcyjnych w drewnie<br />

pnia drzewa d�bowego i sosnowego. Sylvan 8, 130, 65-77.<br />

10. KRUTUL D., MAKOWSKI T. 2004: Content <strong>of</strong> the mineral substances in the oak<br />

wood (Quercus petraea Liebl.) <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> – <strong>SGGW</strong>,<br />

Forestry and Wood Technol. 55, 315-320.<br />

11. KRUTUL D., MAKOWSKI T. 2005: Influence <strong>of</strong> agglomeration environment on<br />

content <strong>of</strong> some mineral substances in bark, roots and wood <strong>of</strong> Norway maple (Acer<br />

platanoides L.). <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> <strong>SGGW</strong>, Forestry and Wood<br />

Technol. 56, 369-376.<br />

12. KRUTUL D., MAKOWSKI T., HROLS J. 2006: Influence <strong>of</strong> heating power station on<br />

the chemical composition <strong>of</strong> wood, bark, brances and main roots <strong>of</strong> scotch pine (Pinus<br />

sylvestris L.). <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> <strong>SGGW</strong>, Forestry and Wood<br />

Technol. 59, 16-23.<br />

13. KRUTUL D., MAKOWSKI T., ZAWADZKI J. 2006: Influence <strong>of</strong> environmental<br />

pollution on the chemical composition <strong>of</strong> bark and wood <strong>of</strong> scotch pine (Pinus<br />

sylvestris L.). Wood Structure and Properties'06. Zvolen – Slovakia, 67-70.<br />

14. MARKKOLA A. M, OHTONEN R., TARRAINEN O., AHONEN-JONNARTH U.<br />

1995: Estimates <strong>of</strong> fungal biomass in scots pine stands on an urban pollution gradient.<br />

New Phytologist 131, 139-147.<br />

15. Multi-author work 1998: Podstawy fizjologii ro�lin. PWN Warszawa.<br />

16. POUYAT R. V., MCDONELL M. J. 1991: Heavy metal accumulation in forest soils<br />

along an urban-rural gradient in southeastern New Youk, USA. Water Air and Soil<br />

Pollution 57-58, 797-807.<br />

17. UPRICHARD J. M. 1971: Cellulose and lignin content in Pinus radiata D. Don<br />

within tree variation in chemical composition, density and tracheid length.<br />

Holzforshung 25, 4, 97-105.<br />

Streszczenie: Wp�yw �rodowiska ska�onego metalami ci��kimi na zawarto�� substancji<br />

ekstrakcyjnych, celulozy i ligniny w drewnie d�bu szypu�kowego Quercus robur L. Zawarto��<br />

substancji ekstrakcyjnych, celulozy i ligniny okre�lono w drewnie pni d�bowych ok. 100letnich,<br />

pozyskanych z le�nictwa Zegrze k/ Warszawy. Py�y opadaj�ce na teren pochodz� z<br />

415


Elektrociep�owni �era� oraz z Huty Arcelor Warszawa, a ich ilo�� wynosi kilka ton rocznie i<br />

przekracza dopuszczalne normy. Wykonano równie� oznaczenie w drewnie pni d�bowych<br />

(ok. 100-letnich) pozyskanych ze �rodowiska nieska�onego z krainy Mazursko-Podlaskiej.<br />

Próbki do bada� pobrano w postaci kr��ków o wysoko�ci ok. 200 mm z cz��ci odziomkowej,<br />

po�owy wysoko�ci pnia i z cz��ci wierzcho�kowej. W ka�dym kr��ku na przekroju<br />

poprzecznym wyró�niono stref� drewna przyrdzeniowego, twardzieli, stref� twardzieli<br />

granicz�cej z biel� i stref� bielu.<br />

Z przeprowadzonych bada� wynika, �e ska�enie �rodowiska wp�ywa na zwi�kszenie<br />

zawarto�ci substancji ekstrakcyjnych w badanym drewnie d�bowym, szczególnie w drewnie<br />

strefy twardzieli granic�cej ze stref� bielu a tak�e w drewnie strefy twardzieli i strefy<br />

twardzieli przyrdzeniowej w stosunku do drewna d�bowego pozyskanego ze �rodowiska<br />

nieska�onego. W przekrojach poprzecznych w drewnie d�bowym pozyskanym ze �rodowiska<br />

ska�onego równie� wyst�puje zwi�kszanie si� zawarto�ci substancji ekstrakcyjnych w<br />

kierunku od obwodu do rdzenia, ale przebieg jest bardziej nieregularny w stosunku do<br />

przekrojów poprzecznych drewna d�bowego pozyskanego ze �rodowiska nieska�onego.<br />

Ska�enie �rodowiska nie wp�yn�lo na zawarto�� i rozmieszczenie celulozy i ligniny w<br />

drewnie na przekrojach poprzecznych i pod�u�nych pni.<br />

Corresponding authors:<br />

Donata Krutul<br />

Tomasz Zielenkiewicz<br />

Andrzej Radomski<br />

Janusz Zawadzki<br />

Micha� Dro�d�ek<br />

Andrzej Antczak<br />

Department <strong>of</strong> Wood <strong>Sciences</strong> and Wood Protection,<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

Ul. Nowoursynowska 159,<br />

02-776 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: tomasz_zielenkiewicz@sggw.pl<br />

e-mail: andrzej_radomski@sggw.pl<br />

e-mail: janusz_zawadzki@sggw.pl<br />

e-mail: michal_drozdzek@sggw.pl<br />

e-mail: andrzej_antczak@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 417-420<br />

(Ann. WULS – <strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Effect <strong>of</strong> thermal aging on properties <strong>of</strong> HDF boards finished in lacquer<br />

analogue printing technology. Part I. Coatings resistance upon thermal<br />

factors<br />

TOMASZ KRYSTOFIAK, STANIS�AW PROSZYK, BARBARA LIS, ANNA JURGA<br />

Department <strong>of</strong> Gluing and Finishing <strong>of</strong> Wood, Pozna� <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Abstract: Effect <strong>of</strong> thermal aging on properties <strong>of</strong> HDF boards finished in lacquer analogue printing<br />

technology. Part II. Coatings resistance upon thermal factors. In the article chosen results in the range <strong>of</strong><br />

investigations <strong>of</strong> resistance upon thermal factors (temperature in „dry heat” version and steam action) <strong>of</strong> coatings<br />

prepared in lacquer analogue printing technology and the course these parameters after the thermal aging in the<br />

procedure <strong>of</strong> cycles changing temperatures were presented. Boards furniture elements were finished in industry<br />

conditions in analogue printing technology with imitation <strong>of</strong> selected wood species in pattern versions: „birch”<br />

(Betula verrucosa), „white oak” (Quercus alba), and „black oak” (Quercus nigra). It was stated among others,<br />

that the coating imitative „birch” showed the highest resistance on the steam action. In this case cycles <strong>of</strong><br />

changing temperatures conduced to the slight decrease <strong>of</strong> this parameter, instead on remaining lacquer coatings<br />

had no that influence. The „birch” finishing characterized with the best resistance on the high temperature, which<br />

was shaped on the nearing level in the function <strong>of</strong> cycles <strong>of</strong> changing temperatures. Only in the case <strong>of</strong> „white<br />

oak” cycles made worse this parameter.<br />

Keywords: HDF board, analogue printing technology, lacquer coating, thermal aging, resistance, high<br />

temperature, dry heat, steam action<br />

INTRODUCTION<br />

In the analogue printing technology are imitated noble wood species on surfaces <strong>of</strong><br />

MDF and HDF boards. Practical are multi-layers system embracing both lacquer products<br />

hardened UV radiation which assures basic functional properties and resistance <strong>of</strong> obtained<br />

coatings and special paints (inks) deciding about aesthetical-decorative features. Generally<br />

finishing processes consists <strong>of</strong> three stages. First from them embraces the preparation <strong>of</strong> the<br />

surface and applying <strong>of</strong> the putty. In the second stage follows the application <strong>of</strong> products <strong>of</strong><br />

ground (sealer) and printing the imitative drawing <strong>of</strong> wood, and final process <strong>of</strong> spreading<br />

layer <strong>of</strong> top lacquer. Into the composition <strong>of</strong> extremely automatized technological lines they<br />

enter in order <strong>of</strong>: devices to preparation <strong>of</strong> the substrate, rollers to applying ground products<br />

<strong>of</strong> substrate, printing <strong>of</strong> decorative layers imitative the drawing <strong>of</strong> wood, tunnel dryers<br />

equipped into nozzle air-jet systems and IR and UV radiators (Proszyk 2007, Schreck 2007,<br />

Kryst<strong>of</strong>iak, Lis and Proszyk in press).<br />

To advantages <strong>of</strong> the analogue printing system belongs to count considerable<br />

possibilities within the pattern-designing range at relatively small quantity <strong>of</strong> applied lacquer<br />

products, which is formed on level 30÷35 g/m 2 , usually at 5÷7 layers. Thanks to the use <strong>of</strong><br />

modern technological lines the process happens at conveyor velocity exceeding 100 m/min<br />

(Ketzer, Steinrücken and Oechler 2008).<br />

Kitchen furniture or equipments <strong>of</strong> baths are subject on the elevated temperature<br />

action. The warmth activity, particularly local, can call out the different kind negative results<br />

within the range <strong>of</strong> utylity properties <strong>of</strong> coatings, which most <strong>of</strong>ten appear in the form <strong>of</strong><br />

permanent traces in superficial influences for example in contact with the glass with tea,<br />

c<strong>of</strong>fee or with table- equipments („ring effect”). In turn the steam action can make for<br />

beginnings <strong>of</strong> the different kind <strong>of</strong> discoloration and decrease <strong>of</strong> the adherence <strong>of</strong> coatings.<br />

In paper Kryst<strong>of</strong>iak et al. 2009, results <strong>of</strong> investigations in scope <strong>of</strong> the influence <strong>of</strong><br />

thermal aging in version <strong>of</strong> changing temperature on the course <strong>of</strong> aesthetic-decorative<br />

417


features <strong>of</strong> finishing’s prepared in analogue printing technology was presented. The aim <strong>of</strong><br />

investigations was determination <strong>of</strong> resistance <strong>of</strong> lacquer coatings upon selected thermal<br />

factors.<br />

EXPERIMENTS<br />

Furniture board elements in the industrial scale in SWEDWOOD company (division<br />

in Babimost town), in lacquer analogue printing technology (Anonymous 2005, 2009a,b)<br />

with the pattern <strong>of</strong> following wood species in versions: „birch” (Betula verrucosa), „white<br />

oak" (Quercus alba) and the „black oak” (Quercus nigra) were prepared. The preparation <strong>of</strong><br />

lacquer coatings for experiments in the article <strong>of</strong> Kryst<strong>of</strong>iak et al. (2009) was described.<br />

Investigations on the resistance to high temperature at „dry heat” test were done acc. to PN-<br />

EN 12722 standard, during time 20 min. After that time the block was removed and samples<br />

were conditioned during 24 h and then the evaluation <strong>of</strong> surface coatings quality were made,<br />

using 5-degree number scale. Tests were conducted until the constant temperature was set, at<br />

which a visible defects or colour-<strong>of</strong>f appeared. The test <strong>of</strong> resistance to steam action was<br />

made acc. to PN-88/F-06100/06 standard. Investigations <strong>of</strong> resistance <strong>of</strong> coatings upon steam<br />

action and temperature in “dry heat” version were carried out in artificial conditions <strong>of</strong><br />

thermal aging acc. to PN-88/F-06100/07 standard in version <strong>of</strong> changes temperatures at<br />

normal loading (method A) in function <strong>of</strong> number appropriate 3, 6 and 9 cycles.<br />

RESULTS<br />

Results <strong>of</strong> investigations <strong>of</strong> lacquer coatings resistance upon high temperature in<br />

version „dry heat” in Table 1 were presented.<br />

Table 1. Results <strong>of</strong> investigations <strong>of</strong> lacquer coatings with various pattern printing<br />

upon resistance to high temperature at „dry heat” vs. <strong>of</strong> number <strong>of</strong> thermal aging cycles<br />

Number<br />

<strong>of</strong> cycles<br />

60<br />

Note<br />

Temperature [°C]<br />

70<br />

Note<br />

„Birch”<br />

85<br />

Note<br />

0 - *) - 5 ; 5 5 4 ; 4 4<br />

3 - - 5 ; 5 5 3 ; 3 3<br />

6 - - 5 ; 5 5 4 ; 4 4<br />

9 - - 5 ; 5 5 4 ; 4 4<br />

„Black oak”<br />

0 5 ; 5 5 4 ; 4 4 - -<br />

3 5 ; 5 5 4 ; 4 4 - -<br />

6 5 ; 5 5 3 ; 3 3 - -<br />

9 5 ; 5 5 3 ; 3 3 - -<br />

„White oak"<br />

0 - - 5 ; 5 5 3 ; 3 3<br />

3 5 ; 5 5 4 ; 4 4 - -<br />

6 5 ; 5 5 4 ; 4 4 - -<br />

9<br />

*)<br />

lack <strong>of</strong> measure<br />

5 ; 5 5 4 ; 4 4 - -<br />

Analysing obtained data it was stated, that the temperature 60°C had not caused visible<br />

changes in the appearance and the structure <strong>of</strong> tested lacquer coatings, and in the case <strong>of</strong> the<br />

imitation <strong>of</strong> the birch either at 70°C. For this finishing the thermal aging did not make the<br />

influence on the formation <strong>of</strong> the resistance on high temperature. In the case whereas designs<br />

imitative „the white oak” and the black „oak” was noted down a little lower resistance on the<br />

418


high temperature. This parameter lowered in the function <strong>of</strong> number <strong>of</strong> aging cycles within<br />

the range from 1 to 2 degrees.<br />

Results <strong>of</strong> investigations <strong>of</strong> lacquer coatings resistance on the steam action in function<br />

<strong>of</strong> thermal aging cycles in Table 2 were presented. Making estimations obtained results on<br />

surfaces <strong>of</strong> particular finishes, it was stated enough differential changes both within the range<br />

colours, as and structures, which were dependent from the printing pattern and influence time<br />

<strong>of</strong> the steam action. The highest resistance showed lacquer coatings imitative „birch”. Aging<br />

tests did not exert the significant influence on the course <strong>of</strong> this property.<br />

Coatings<br />

(pattern)<br />

„Birch”<br />

„White<br />

oak”<br />

„Black<br />

oak”<br />

Table 2. Results <strong>of</strong> investigations <strong>of</strong> lacquer coatings with various pattern printing<br />

upon resistance to steam action in different time vs. <strong>of</strong> number <strong>of</strong> thermal aging cycles<br />

Number<br />

<strong>of</strong><br />

cycles<br />

0<br />

3<br />

6<br />

9<br />

0<br />

3<br />

6<br />

9<br />

0<br />

3<br />

6<br />

9<br />

Number<br />

Action time [min]<br />

Final<br />

<strong>of</strong> 15 30 45 60 note Description <strong>of</strong> changes<br />

samples<br />

Note (acc. to PN-88/F-06100/06)<br />

1 3 3 3 3 3 -<br />

2 2 2 2 2 2 3<br />

-<br />

3 2 5 5 5 4 30' crackings <strong>of</strong> the surface<br />

1 2 2 3 3 3 -<br />

2 2 2 3/4 3/4 3 3 45' slightly changes <strong>of</strong> the structure<br />

3<br />

1<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

3<br />

3/4<br />

2<br />

2<br />

60' slightly changes <strong>of</strong> the structure<br />

2<br />

3<br />

2<br />

2<br />

2<br />

2<br />

3<br />

2<br />

3<br />

3<br />

3<br />

2<br />

2<br />

15' slightly changes <strong>of</strong> the structure<br />

1 2 2 2 2 2 -<br />

2 1 2 2 2/3 2 2 60' changes <strong>of</strong> the structure<br />

3 1 1 2 3 2<br />

-<br />

1<br />

2<br />

3<br />

3<br />

3<br />

3<br />

4 4<br />

3/4 3/4<br />

4<br />

3 4<br />

45' changes <strong>of</strong> the structure<br />

3 3 4 4 4 4 yellowing <strong>of</strong> the coatings<br />

1 3 3 4 4 4 30' changes <strong>of</strong> the structure<br />

2 3 3 4 4 4 4<br />

3 3 4 4 4 4 yellowing <strong>of</strong> the coatings<br />

1 3 4 4 4 4<br />

2 3 3/4 4 4 4 4 30' changes <strong>of</strong> the structure<br />

3 3 3 3 4 3 yellowing <strong>of</strong> the coatings<br />

1 3/4 4 4 4 4<br />

2 3/4 4 4 4 4 4 15' minimal changes <strong>of</strong> the structure<br />

3 3/4 4 4 4 4<br />

1 2 2 2 3 2<br />

2 2 2 3 3 3 3<br />

3 3 3 3 3 3<br />

1 2 3 3 3 3<br />

2 2 2 3 3 3 3<br />

3 2 2 2 3 2 fading <strong>of</strong> the surface<br />

1 2 2 3 3 3<br />

2 2 3 3 3 3 3<br />

3 2 5 5 5 4<br />

1 3 3 3 3 3<br />

2 3 3 3 3 3 3<br />

3 2 3 3 3 3<br />

419


RECAPITULATION<br />

Among tested finishing’s, the lacquer coatings imitative „birch” showed the highest<br />

resistance on the steam action. In this case <strong>of</strong> thermal aging, it was stated, that cycles <strong>of</strong><br />

changing temperatures conduced to the slight decrease <strong>of</strong> this parameter, instead on remaining<br />

lacquer coatings had no influence. The „birch” finishing characterized with the best resistance<br />

on the high temperature, which was shaped on the nearing level in the function <strong>of</strong> cycles <strong>of</strong><br />

changing temperatures. Only in the case <strong>of</strong> „white oak” cycles made worse this parameter.<br />

REFERENCES<br />

1. ANONYMOUS, 2005: Materia�y informacyjne firmy Bürkle; 1-28.<br />

2. ANONYMOUS, 2009a: http://www.buerkle-gmbh.de/<br />

3. ANONYMOUS, 2009b: Materia�y informacyjne firmy Swedwood; 1-3.<br />

4. KETZER M., STEINRÜCKEN R., OECHLER H., 2008: Innovatives<br />

Direktbedrucken von Möbel-Dekorplatten. 7. Internationale Möbeltage (29-<br />

31.05.2008). IHD Dresden; 121-129.<br />

5. KRYSTOFIAK T., JURGA A., PROSZYK S., LIS B., 2009: Influence <strong>of</strong> thermal<br />

aging upon the aesthetic-decorative features <strong>of</strong> HDF boards finished in lacquer<br />

printing technology. VIII th International Symposium “Selected processes at the wood<br />

processing” (09-11.09.2009 Šturovo). TU in Zvolen, CD version - ISBN 978-80-228-<br />

2005-9; 1-8.<br />

6. KRYSTOFIAK T., PROSZYK S., LIS B., in press: Economic-technological aspects<br />

<strong>of</strong> finishing <strong>of</strong> wood based materials surfaces in printing technologies. Intercathedra.<br />

Annual Scientific Bulletin <strong>of</strong> Plant Economic Department 26.<br />

7. PROSZYK S., 2007: Post�p w dziedzinie wyrobów lakierowych i technologii ich<br />

stosowania w drzewnictwie. Studia i szkice na Jubileusz Pr<strong>of</strong>esora Ryszarda<br />

Babickiego. ITD Pozna�; 115-123.<br />

8. SCHRECK T., 2007: Vergleich verschiedener Oberflächentechnologien für die<br />

Herstellung von Laminatfußböden. Bürkle Symposium. Freudenstadt 09.11.2007; 1- 8.<br />

Streszczenie: Wp�yw starzenia termicznego na w�a�ciwo�ci p�yt HDF uszlachetnionych w<br />

technologii lakierowego nadruku analogowego. Cz. I. Odporno�� pow�ok na czynniki<br />

termiczne. Dla pow�ok lakierowych przygotowanych w uwarunkowaniach przemys�owych<br />

(firma SWEDWOOD), imituj�cych odpowiednio „brzoz�”, „d�b bia�y” i „d�b czarny”,<br />

okre�lono odporno�� na wybrane czynniki termiczne (kontaktowe dzia�anie temperatury w<br />

wersji „suche ciep�o” wg PN-EN 12722 i pary wodnej wg PN-88/F-06100/06 przy ró�nych<br />

czasach oddzia�ywania). Badania prowadzono po starzeniu termicznym próbek w funkcji<br />

liczby cykli zmiennych temperatur wg PN-88/F-06100/07 (metoda A). Stwierdzono, �e na<br />

odporno�� termiczn� wyko�cze� wywiera� wp�yw rodzaj imitowanego wzoru w technologii<br />

nadruku. Spo�ród testowanych wyko�cze� najwy�sz� odporno�� na dzia�anie pary wodnej<br />

wykaza�o pokrycie imituj�ce „brzoz�”. Wyko�czenia wykazywa�y w miar� stabiln�<br />

odporno�� na czynniki termiczne w warunkach prowadzonego testu.<br />

Corresponding authors:<br />

Tomasz Kryst<strong>of</strong>iak, Stanis�aw Proszyk, Barbara Lis, Anna Jurga<br />

Katedra Klejenia i Uszlachetniania Drewna<br />

Uniwersytet Przyrodniczy w Poznaniu<br />

ul. Wojska Polskiego 38/42, 60-627 Pozna�, Poland<br />

e-mail: tomkrys@up.poznan.pl, sproszyk@up.poznan.pl, blis@up.poznan.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 421-424<br />

(Ann. WULS – <strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Effect <strong>of</strong> thermal aging on properties <strong>of</strong> HDF boards finished in lacquer<br />

analogue printing technology. Part II. Coatings resistance upon mechanical<br />

factors<br />

TOMASZ KRYSTOFIAK, BARBARA LIS, STANIS�AW PROSZYK, ANNA JURGA<br />

Department <strong>of</strong> Gluing and Finishing <strong>of</strong> Wood, Pozna� <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Abstract: Effect <strong>of</strong> thermal aging on properties <strong>of</strong> HDF boards finished in lacquer analogue printing<br />

technology. Part II. Coatings resistance upon mechanical factors. In article chosen results in the scope <strong>of</strong><br />

investigations <strong>of</strong> resistance upon mechanical factors (abrasion resistance acc. to PN-ISO 7784-1, impact acc. to<br />

PN-93/F-06001/03, and scratch acc. to PN-65/C-81527) <strong>of</strong> lacguer coatings prepared in analogue printing<br />

technology and the course upon these parameters after the thermal aging in the procedure <strong>of</strong> cycles changing<br />

temperatures were presented. It was stated among others, that lacquer coatings imitative „white oak” was<br />

characterized with the highest abrasion resistance. Thermal aging caused as result <strong>of</strong> curing, the height <strong>of</strong> the<br />

resistance <strong>of</strong> coatings with the „birch” imitation. „White oak” finishing was characterized with the lowest impact<br />

resistance.<br />

Keywords: HDF board, analogue printing, lacquers coating, thermal aging, resistance, abrasion, impact, scratch<br />

INTRODUCTION<br />

In the production <strong>of</strong> the various kind <strong>of</strong> furniture are practical more and more <strong>of</strong>ten<br />

materials so called light or ultra-light about the considerably lower density with relation to<br />

conventional solutions. To these materials is accepted first <strong>of</strong> all composites, and especially<br />

frame on board, whose facing-layers with HDF or MDF surfaces finished in lacquer printing<br />

technology (Anonymous 2004,2005).<br />

In previous part <strong>of</strong> these article results <strong>of</strong> investigations in the scope <strong>of</strong> influence <strong>of</strong><br />

the thermal aging on the course <strong>of</strong> resistances on thermal factors <strong>of</strong> finishing’s prepared in<br />

printing technology were presented (Kryst<strong>of</strong>iak et al. 2010). Continuing work researches<br />

who’s an aim was determination <strong>of</strong> resistance <strong>of</strong> lacquer coatings on selected mechanical<br />

factors action.<br />

The aim <strong>of</strong> this paper were investigations <strong>of</strong> resistance upon selected mechanical<br />

factors (containing abrasion, impact and scratch) <strong>of</strong> lacquer coatings with three printing<br />

various pattern and the course <strong>of</strong> these parameters in condition <strong>of</strong> thermal aging.<br />

EXPERIMENTS<br />

Furniture board elements for experiments described in previous papers (Kryst<strong>of</strong>iak et al.<br />

2009). Investigation <strong>of</strong> abrasion resistance <strong>of</strong> lacquer coatings was conducted with apparatus<br />

Taber Abraser 5130 model 352, acc. to PN-ISO 7784-1 standard, with the use abrasive paper<br />

S-33 type, within the range 200 rot., and registering decreases masses (0.0001 g) at every 50<br />

rots.<br />

Determination <strong>of</strong> the impact resistance <strong>of</strong> coatings was done acc. to PN-93/F-06001/03,<br />

using the prototype apparatus PUD-1 (DOZAFIL Polifarb Wroc�aw). Five attempts for every<br />

height was from which removed weight: 10, 25, 50, 100, 200, 400 mm were performed, then<br />

one made estimations destructions and diameters <strong>of</strong> resultant impacts and cracks with<br />

magnifying glass with scale were measured.<br />

Investigation <strong>of</strong> scratch resistance was performed by Clemen’s methods acc. to PN-<br />

65/C-81527, consisting in to the qualification <strong>of</strong> the peak load <strong>of</strong> the graver at which does not<br />

follow the exposure <strong>of</strong> the surfaces. Measurements were carried on using loads <strong>of</strong> graver<br />

within the range 600 ÷ 1800 g, at elementary step 200 g. Additionally one faced with the<br />

421


microscope at the elementary plot 1.65 μm, the maximum width assurgent scratches.<br />

Thermal aging procedure in paper <strong>of</strong> Kryst<strong>of</strong>iak et al. (2009) was described.<br />

RESULTS<br />

In Table 1 was taken down results <strong>of</strong> the abrasion resistance (at the different number<br />

<strong>of</strong> rotations <strong>of</strong> the disc) <strong>of</strong> lacquer coatings with various pattern printing and the course <strong>of</strong> this<br />

parameter in the procedure <strong>of</strong> thermal aging.<br />

Table 1. The course <strong>of</strong> abrasion resistance <strong>of</strong> tested coatings with various printing pattern<br />

in function <strong>of</strong> number <strong>of</strong> thermal aging cycles<br />

Coatings<br />

(pattern)<br />

Number <strong>of</strong><br />

cycles<br />

50<br />

Number <strong>of</strong> rotations<br />

100 150<br />

Mass loss [g/50 rot.]<br />

200<br />

0 0.0075 0.0066 0.0062 0.0058<br />

„Birch”<br />

3<br />

6<br />

0.0068<br />

0.0066<br />

0.0064<br />

0.0054<br />

0.0057<br />

0.0060<br />

0.0049<br />

0.0041<br />

9 0.0052 0.0053 0.0047 0.0051<br />

0 0.0055 0.0053 0.0040 0.0047<br />

„Black oak”<br />

3<br />

6<br />

0.0091<br />

0.0055<br />

0.0051<br />

0.0043<br />

0.0045<br />

0.0045<br />

0.0047<br />

0.0049<br />

9 0.0091 0.0058 0.0043 0.0048<br />

0 0.0081 0.0042 0.0045 0.0041<br />

„White oak”<br />

3<br />

6<br />

0.0064<br />

0.0045<br />

0.0051<br />

0.0040<br />

0.0044<br />

0.0049<br />

0.0045<br />

0.0004<br />

9 0.0066 0.0053 0.0048 0.0055<br />

The general analysis data from Table 1, shows that optimum in the comparative<br />

arrangement with parameters finishes imitative the „black oak” were characterized. Thermal<br />

aging with reference to each finishing’s caused enough differential changes <strong>of</strong> tested surfaces.<br />

It was stated their pr<strong>of</strong>itable influence on the considered parameter for the surface in the<br />

„birch” and „white oak” versions. The elevated abrasion resistance could be due progressive<br />

curing processes <strong>of</strong> coatings, where upon could influence components contracted in practical<br />

paints (inks) to the obtainment <strong>of</strong> each examples in printing processes. Instead in the case <strong>of</strong><br />

„black oak” finishing’s was noted down the slightly decrease on the abrasion (after 3 and 9<br />

cycles). Registered dependences can show, that for the talked decorative pattern, dominant<br />

degradative processes connected with thermal stresses <strong>of</strong> coatings in thermal aging<br />

conditions.<br />

Table 2. The course <strong>of</strong> impact resistance <strong>of</strong> coatings upon depending<br />

on the height <strong>of</strong> fall weight in function <strong>of</strong> number <strong>of</strong> thermal aging cycles<br />

Coatings<br />

(pattern)<br />

Number<br />

<strong>of</strong> cycles<br />

10<br />

Height <strong>of</strong> impact [mm]<br />

25 50 100 200<br />

Note (scale acc. to PN-93/F-06001/03)<br />

400<br />

0 5 4 3 2 1 1<br />

„Birch”<br />

3<br />

6<br />

5<br />

5<br />

4<br />

4<br />

3<br />

4<br />

2<br />

3<br />

2<br />

2<br />

1<br />

2<br />

9 5 4 3 3 3 2<br />

0 5 4 3 3 2 2<br />

„Black oak”<br />

3<br />

6<br />

5<br />

4<br />

3<br />

3<br />

3<br />

3<br />

3<br />

2<br />

2<br />

2<br />

1<br />

2<br />

9 4 3 3 3 2 2<br />

0 5 3 3 2 1 1<br />

„White oak”<br />

3<br />

6<br />

5<br />

4<br />

3<br />

3<br />

3<br />

3<br />

2<br />

2<br />

2<br />

2<br />

1<br />

1<br />

9 4 3 3 2 2 1<br />

422


Results <strong>of</strong> investigations <strong>of</strong> the resistance <strong>of</strong> lacquer coatings upon impact in function<br />

<strong>of</strong> number <strong>of</strong> cycles <strong>of</strong> changing temperatures was placed in Table 2, giving data obtained in<br />

measurement <strong>of</strong> the diameter <strong>of</strong> the sign in Table 3 was presented.<br />

Table 3. The course <strong>of</strong> diameters <strong>of</strong> indents <strong>of</strong> tested coatings depending on the height<br />

<strong>of</strong> fall weight in function <strong>of</strong> number <strong>of</strong> thermal aging cycles<br />

Coatings<br />

(pattern)<br />

Number<br />

<strong>of</strong> cycles<br />

10 25<br />

Height <strong>of</strong> impact [mm]<br />

50 100<br />

Diameter [mm]<br />

200 400<br />

0 - *) 2.9 4.2 4.9 5.7 6.6<br />

„Birch”<br />

3<br />

6<br />

-<br />

-<br />

3.2<br />

2.2<br />

3.9<br />

3.4<br />

4.9<br />

4.5<br />

5.8<br />

5.4<br />

6.7<br />

6.2<br />

9 - 3.2 4.2 4.7 5.4 6.3<br />

0 - 3.8 4.2 4.8 5.7 6.6<br />

„Black oak”<br />

3<br />

6<br />

-<br />

-<br />

3.7<br />

3.7<br />

4.1<br />

4.0<br />

4.7<br />

5.0<br />

5.5<br />

5.5<br />

5.8<br />

5.5<br />

9 - 3.5 3.8 4.5 5.5 5.4<br />

0 - 3.9 4.7 5.4 6.4 7.4<br />

„White oak”<br />

3<br />

6<br />

-<br />

-<br />

3.9<br />

4.0<br />

4.4<br />

4.4<br />

5.3<br />

5.1<br />

6.1<br />

5.9<br />

7.1<br />

6.8<br />

*)<br />

lack <strong>of</strong> measure<br />

9 - 3.7 4.2 4.7 5.5 6.4<br />

Analysing data took placed in Tables 2 and 3 it were stated, that highest estimations<br />

within the range resistances on mechanical failures <strong>of</strong> the percussive type for coatings, which<br />

were not surrendered to aging cycles, reached finishing’s imitative the „black oak”, lowest<br />

while the „white oak”. It is proper to underline the fact, that the resistance <strong>of</strong> coatings on<br />

impact was conditioned considerably properties <strong>of</strong> the basis about the relatively high<br />

hardness. Aging cycles action did not influence into the significant manner on the course <strong>of</strong><br />

this parameter.<br />

In Table 4 were taken down results <strong>of</strong> measurement <strong>of</strong> the maximum width <strong>of</strong> the split<br />

for lacquer coatings at the various weight <strong>of</strong> the needle.<br />

Table 4. The course <strong>of</strong> measurements <strong>of</strong> maximal width <strong>of</strong> rise <strong>of</strong> lacquer coatings<br />

in function <strong>of</strong> number <strong>of</strong> thermal aging cycles at various weight <strong>of</strong> needle<br />

Coatings<br />

(pattern)<br />

Number<br />

<strong>of</strong> cycles<br />

600 800<br />

Needle weight [g]<br />

1000 1200 1400<br />

Maximum width <strong>of</strong> the split [mm]<br />

1600 1800<br />

0 0.91 0.99 1.05 1.08 1.15 1.20 > 1.32<br />

3 - *) „Birch”<br />

6 0.92<br />

-<br />

0.97<br />

0.98<br />

1.03<br />

1.09<br />

1.07<br />

1.13<br />

1.15<br />

1.20<br />

1.22<br />

> 1.32<br />

> 1.32<br />

9 1.02 1.04 1.04 1.05 1.20 1.24 > 1.32<br />

0 1.06 1.08 1.12 1.19 1.28 1.28<br />

„Black 3 - - - - 1.02 1.08 1.23<br />

oak” 6 - 1.05 1.17 1.18 1.21 1.29 > 1.32<br />

9 - - - - 1.08 1.19 > 1.32<br />

0 - - - 1.01 1.05 1.13 > 1.32<br />

„White 3 - - - 1.05 1.10 1.17 > 1.32<br />

oak” 6 - - - 1.07 1.09 1.16 > 1.32<br />

9 - - - 1.10 1.12 1.15 1.20<br />

*)<br />

lack <strong>of</strong> measure<br />

423


The general analysis data from this Table shows, that with the highest resistance were<br />

characterized finishes imitative the „white oak” and „black oak”. In turn for the decorative<br />

pattern „birch” was registered in the relative system ca. 50% lower resistance with reference<br />

to the „white oak””. Practically the thing taking in the case <strong>of</strong> „birch” and „white oak” were<br />

did not register the dependence between the number <strong>of</strong> aging cycles, and with the course<br />

consider parameters, which were stable in conditioning <strong>of</strong> the thermal aging.<br />

CONCLUSIONS<br />

1. Lacquer coatings imitative pattern „white oak” was characterized with the highest<br />

abrasion resistance. In conditions <strong>of</strong> thermal aging, it was stated the height <strong>of</strong> the<br />

resistance <strong>of</strong> coatings with the „birch” imitation.<br />

2. „White oak” finishing was characterized with the lowest impact resistance. It did not<br />

stated the distinctly dependence between the number <strong>of</strong> cycles <strong>of</strong> changing<br />

temperatures, and with analyzed parameter.<br />

3. With the highest resistance on the scratch were characterized finishing’s imitative the<br />

„white oak” and the „black oak”. In the case <strong>of</strong> the „black oak” aging cycles maked<br />

the favourable influence on the course <strong>of</strong> this parameter, instead on remaining<br />

finishing’s did not have this influence.<br />

REFERENCES<br />

1. ANONYMOUS, 2004: Uszlachetniane powierzchniowo p�yty drewnopochodne wobec<br />

przepisów UE. Meblarstwo 11; 35-36.<br />

2. ANONYMOUS, 2005: P�yta prawie jak drewno. Meblarstwo 11; 42-43.<br />

3. KRYSTOFIAK T., PROSZYK S., LIS B., JURGA A., 2010: Effect <strong>of</strong> thermal aging on<br />

properties <strong>of</strong> HDF boards finished in lacquer analogue printing technology. Part I. Resistance<br />

upon thermal factors. Ann. WULS – <strong>SGGW</strong>, For and Wood Technol. 71; 417-420.<br />

Streszczenie: Wp�yw przyspieszonego starzenia na w�a�ciwo�ci p�yt HDF uszlachetnionych w<br />

technologii nadruku analogowego. Cz. II. Odporno�� pow�ok na czynniki mechaniczne. W<br />

ramach kontynuacji bada� w�a�ciwo�ci pow�ok lakierowych okre�lono ich odporno�� na<br />

wybrane czynniki mechaniczne (�cieranie, uderzenie i zarysowanie) po testach starzenia<br />

termicznego. Odporno�� pow�ok na �cieranie oznaczano wg procedury PN-ISO 7784-1, na<br />

uderzenie wg PN-93/F-06001/03, za� na zarysowanie wg PN-65/C-81527. Stwierdzono, �e<br />

farby u�yte do nadruku poszczególnych wzorów imitacji wp�ywa�y na kszta�towanie si�<br />

odporno�ci pow�ok na czynniki mechaniczne w warunkach starzenia termicznego. I tak<br />

przyk�adowo, pow�oki z nadrukiem wzoru „d�b bia�y”, cechowa�y si� najwy�sz� odporno�ci�<br />

na �cieranie. W warunkach starzenia termicznego odnotowano zwi�kszenie tej odporno�ci dla<br />

pow�ok z imitacj� „brzozy”. Z kolei wyko�czenie „d�b bia�y” charakteryzowa�o si� najni�sz�<br />

odporno�ci� na uderzenie. Nie stwierdzono wyra�nej zale�no�ci mi�dzy liczb� cykli<br />

zmiennych temperatur, a analizowanym parametrem. Natomiast najwy�sz� odporno�ci� na<br />

zarysowanie charakteryzowa�y si� wyko�czenia imituj�ce „d�b bia�y” oraz „d�b czarny”. W<br />

przypadku „d�bu czarnego” cykle starzeniowe wywar�y pozytywny wp�yw na kszta�towanie<br />

si� tego parametru, natomiast na pozosta�e wyko�czenia nie mia�y wp�ywu.<br />

Corresponding authors:<br />

Tomasz Kryst<strong>of</strong>iak, Barbara Lis, Stanis�aw Proszyk, Anna Jurga<br />

Katedra Klejenia i Uszlachetniania Drewna<br />

Uniwersytet Przyrodniczy w Poznaniu<br />

ul. Wojska Polskiego 38/42, 60-627 Pozna�, Poland<br />

e-mail: tomkrys@up.poznan.pl, blis@up.poznan.pl, sproszyk@up.poznan.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 425-428<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Qualität von polnischem festigkeitssortierten Kieferschnittholz aus<br />

verschiedenen Wuchsgebieten<br />

S�AWOMIR KRZOSEK<br />

Fakultät für Holztechnologie, der Warschauer Naturwissenschaftlichen Universität - <strong>SGGW</strong><br />

Abstrakt: Qualität von polnischem festigkeitssortierten Kieferschnittholz aus verschiedenen Wuchsgebieten. In<br />

diesem Referat wurden die gewählten Eigenschaften (Elastizitätsmodul, Biegefestigkeit und Rohdichte) von<br />

visuell nach Festigkeit sortiertem Kieferschnittholz aus verschiedenen Wuchsgebieten in Polen dargestellt. Das<br />

Schnittholz (766 Stück) war zuerst visuell nach PN-82/D-94021 Tarcica iglasta konstrukcyjna sortowana<br />

metodami wytrzyma�o�ciowymi sortiert und anschließend, mit Einsatz von einer Biegemaschine im Labor<br />

geprüft. Es wurde nachgewiesen, dass das Schnittholz in derselben Sortierklasse, aber von verschiedenen<br />

Wuchsgebieten, durch verschiedene untersuchte Eigenschaften charakterisiert ist.<br />

Schlüsselwörter: Festigkeitssortierung, Nadelschnittholz, Konstruktionsschnittholz, Bauholz<br />

EINFÜHRUNG<br />

Bei der Fertigung von Holzkonstruktionen darf man nur nach Festigkeit sortiertes<br />

Konstruktionsschnittholz verwenden. Es gibt 2 Sortiermethoden der Festigkeitssortierung:<br />

visuelle und maschinelle. In Polen verwendet man zur Zeit in der Praxis nur die visuelle<br />

Methode. Man sortiert visuell nach PN 82/D 94021. Derzeit ist in Polen keine Maschine für<br />

Festigkeitssortierung im Einsatz. Einzige Ausnahme ist GoldenEye 706 von Microtec, bei der<br />

Firma STEICO in Czarnków. Die Anlage wird bei der I-Trägerproduktion verwendet. Vor<br />

einigen Jahren wurden Untersuchungen im Bereich von Festigkeitssortierung an der Fakultät<br />

für Holztechnologie vorgenommen. In Rahmen des Forschungsprojekts wurde<br />

Kiefernkonstruktionsschnittholz von verschiedenen Wuchsgebieten Polens untersucht. Das<br />

gewählte Schnittholz wurde nach Festigkeit sortiert mit Verwendung sowohl visueller als<br />

auch maschineller Verfahren. Anschließend wurde das Versuchsmaterial im Labor mit<br />

Einsatz von der Biegemaschine TiraTest 2300 untersucht. Eine Anregung für die<br />

Untersuchungen waren auch Die EU Vorschriften, die ab 01. 09. 2011 eine CE-Markierung<br />

von Konstruktionsschnittholz in allen EU Ländern verlangen. In diesem Referat wurde ein<br />

Teil der Ergebnisse dargestellt.<br />

ZIEL UND UMFANG DES FORSCHUNGSVORHABENS<br />

Als Ziel des Vorhabens wurde ein Vergleich von bestimmten Eigenschaften der<br />

polnischen visuell festigkeitssortiertes Kiefernschnittholz von verschiedenen Wuchsgebieten<br />

vorgenommen. Als Vergleichseigenschaften waren: Elastizitätsmodul (MOE), Biegefestigkeit<br />

(MOR) und Rohdichte genannt. Nach Polnischer Norm für visuelle Festigkeitssortierung PN<br />

82/D 94021 „Tarcica iglasta konstrukcyjna sortowana metodami wytrzyma�o�ciowymi“ gibt<br />

es gibt 3 Sortierklassen: KW, KS, KG und Abfall. In Polen gibt es 8 verschiedene<br />

Wuchsgebiete. Kiefer ist die wichtigste Holzart im polnischen Wald. Auf 69% der gesamten<br />

Waldflache in Polen in allen Wuchsgebieten wächst Kiefer und Lärche. Kiefernholz ist<br />

natürlich industriell die wichtigste Holzart Polens. Es scheint interessant zu sein ein Vergleich<br />

der gewählten Eigenschaften von Schnittholz welche in dieselbe Sortierklasse eingestuft<br />

wurde, welches aber von verschiedenen Wuchsgebieten in Polen stammt.<br />

425


Es wurde eine Partie von 5 Sagewerken, die in 5 verschiedenen Wuchsgebieten in Polen<br />

liegen, Kiefernschnittholz gekauft. Die genaue Informationen darüber sind in anderen<br />

Publikationen beschrieben [Krzosek, Grze�kiewicz, Bacher, 2008, Krzosek, Bacher,<br />

Grze�kiewicz, 2009]. In Tabelle 1 wurden die Masse und Zahl der Bretter eingeführt.<br />

Tabelle 1. Versuchsmaterial. Querschnitte und Zahl der Bretter von gewählte Wuchsgebiete<br />

Querschnitt<br />

Wuchsgebiet Zusammen<br />

[mm] A B C D E<br />

Zahl der Bretter<br />

38x200 50 50<br />

50x120 50 50 50 50 53 253<br />

50x140 50 50 50 50 52 252<br />

50x225 50 50<br />

63x160 50 50<br />

75x175 50 50<br />

100x100 61 61<br />

Insgesamt 150 150 150 150 166 766<br />

METHODIK DER ARBEIT<br />

Alle Bretter wurden visuell nach Festigkeit, gemäß PN 82/D – 94021, sortiert. Die<br />

Methodik war schon in früheren Publikationen des Autors dargestellt [Krzosek 2009,<br />

Rohanova, Jab�o�ski, Krzosek 2009]. Nach der Sortierung wurden alle Bretter im Labor mit<br />

Hilfe von einer Biegemaschine TiraTest 2300 untersucht. Es wurden Elastizitätsmodul,<br />

Biegefestigkeit und Rohdichte gemäß PN EN 408 bestimmt. Alle diese Eigenschaften waren<br />

gemäß PN EN 384 umgerechnet. Danach wurden die Mittelwerte für die untersuchten<br />

Eigenschaften für die Sortierklassen KW, KS, KG und Abfall berechnet mit Berücksichtigung<br />

des Wuchsgebietes. Anschließend wurden auch die Mittelwerte für die Sortierklassen ohne<br />

Berücksichtigung des Wuchsgebietes berechnet. Die obigen Berechnungen wurden nur für<br />

659 Stück durchgeführt. Es wurden nur die Bretter berücksichtigt, bei welchen die Äste in der<br />

Mitte des Biegebereiches (Länge des Biegebereichs: 5h wo bei, h bedeutet Breite des Brettes)<br />

waren, oder mindestens innerhalb des Biegebereichs.<br />

ERGEBNISSE UND DISKUSSION<br />

Für jedes Wuchsgebiet haben alle drei geprüfte Eigenschaften: Elastizitatsmodul<br />

(Tabelle 2), Biegefestigkeit (Tabelle 3) und Rohdichte (Tabelle 4) hatten die größte<br />

Mittelwerte für die Sortierklasse KW und niedrigste Mittelwerte für Abfall. Die Mittelwerte<br />

für Sortierklasse KS waren niedriger als für die Sortierklasse KW, aber höher als Mittelwerte<br />

für die Sortierlasse KG. Innerhalb einer Sortierklasse sind leicht wesentliche Unterschiede<br />

von geprüften Eigenschaften zu sehen. Diese Unterschiede kann man nur unter<br />

Berücksichtigung des Herkunftes des Schnittholz klären. Die Ergebnisse zeigen deutlich, dass<br />

das beste untersuchte Schnittholz stammt vom Wuchsgebiet A (Ba�tycka Kraina<br />

Przyrodniczo-Le�na) und vom Wuchsgebiet D (Wielkopolsko-Pomorska Kraina<br />

Przyrodniczo-Le�na). Das schlechteste untersuchte Schnittholz stammt vom Wuchsgebiet B<br />

(Karpacka Kraina Przyrodniczo-Le�na) und Wuchsgebiet C (Ma�opolska Kraina<br />

Przyrodniczo-Le�na).<br />

426


Tabelle 2. Mittelwerte vom Elastizitätsmodul [N/mm 2 ] (korrigiert nach EN 384) für geprüfte<br />

Schnittholz<br />

Wuchsgebiet<br />

Sortierklasse nach PN – 82/D 94021<br />

KW KS KG Abfall<br />

Kraina Ba�tycka (A) 13700 11900 9900 8700<br />

Kraina Karpacka (B) 11200 9100 7500 6500<br />

Kraina Ma�opolska (C) 10300 10200 9300 8300<br />

K. Wielkopolsko-Pomorska (D) 13100 11800 10100 8900<br />

K. Mazursko-Podlaska (E) 12500 10700 9000 7300<br />

Ganze Schnittholz 12500 11100 9100 7500<br />

Tabelle 3. Mittelwerte von Biegefestigkeit N/mm 2 ] (korrigiert nach EN 384) für geprüfte<br />

Schnittholz<br />

Wuchsgebiet<br />

Sortierklasse nach PN – 82/D 94021<br />

KW KS KG Abfall<br />

Kraina Ba�tycka (A) 54 46 34 28<br />

Kraina Karpacka (B) 43 37 25 20<br />

Kraina Ma�opolska (C) 42 39 34 28<br />

K. Wielkopolsko-Pomorska (D) 54 43 37 32<br />

K. Mazursko-Podlaska (E) 47 39 33 24<br />

Ganze Schnittholz 51 42 32 24<br />

Tabelle 4. Mittelwerte von Rohdichte (korrigiert nach EN 384) für geprüfte Schnittholz<br />

Wuchsgebiet<br />

Sortierklasse nach PN – 82/D 94021<br />

KW KS KG Abfall<br />

Kraina Ba�tycka (A) 580 535 494 483<br />

Kraina Karpacka (B) 497 478 445 426<br />

Kraina Ma�opolska (C) 495 486 468 463<br />

K. Wielkopolsko-Pomorska (D) 559 526 488 473<br />

K. Mazursko-Podlaska (E) 534 489 464 444<br />

Ganze Schnittholz 546 511 468 448<br />

SCHLUSSFOLGERUNGEN<br />

1. Die mittleren Werte vom Elastizitätsmodul (korrigiert nach PN EN 384:2004) für die<br />

Sortierklasse KW liegen zwischen 10300 N/mm 2 und 13700 N/mm 2 , für die<br />

Sortierklasse KS liegen diese zwischen 9100 N/mm 2 und 11900 N/mm 2 , für die<br />

Sortierklasse KG liegen zwischen 7500 N/mm 2 und 10100 N/mm 2 .<br />

2. Die mittleren Werte der Biegefestigkeit (korrigiert nach PN EN 384:2004) für die<br />

Sortierklasse KW liegt zwischen 42 N/mm 2 und 54 N/mm 2 , für die Sortierklasse KS<br />

liegt diese zwischen 37 N/mm 2 und 46 N/mm 2 , für die Sortierklasse KG liegt sie<br />

zwischen 25 N/mm 2 und 37 N/mm 2 .<br />

3. Die mittleren Werte der Rohdichte (korrigiert nach PN EN 384:2004) für die<br />

Sortierklasse KW liegen zwischen 495 kg/m 3 und 580 kg/m 3 , für die Sortierklasse KS<br />

liegen zwischen 478 kg/m 3 und 535 kg/m 3 , für die Sortierklasse KG liegen zwischen<br />

445 kg/m 3 und 494 kg/m 3 .<br />

427


LITERATURVERZEICHNISS<br />

1. KRZOSEK S., GRZE�KIEWICZ M., BACHER M., 2008: Mechanical properties <strong>of</strong><br />

Polish-grown Pinus silvestris L. structural sawn timber. COST E53 Conference<br />

proceedings, 29-30 <strong>of</strong> October, Delft, Netherlands. p. 253-260.<br />

2. KRZOSEK S., DZBE�SKI W., 2009: Wytrzyma�o�ciowe sortowanie tarcicy<br />

budowlano-konstrukcyjnej metod� maszynow�. VIII Konferencja naukowa: Drewno<br />

i Materia�y Drewnopochodne w Konstrukcjach Budowlanych, Szczecin, 5-6 czerwca,<br />

s. 115-120.<br />

3. KRZOSEK S., 2009: Vergleich der Sortierergebnisse bei visuelle<br />

Festigkeitssortierung von polnischen Kieferkonstruktionsschnittholz nach PN-82/D-<br />

94021 und nach DIN 4074-1:2003. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> -<br />

<strong>SGGW</strong>, Forestry and Wood Technology No 68, p. 448-452.<br />

4. KRZOSEK S., BACHER M., GRZE�KIEWICZ M., 2009: Comparison <strong>of</strong> strength<br />

grading machine settings for different grade Combinations for Polish-grovn Pinus<br />

sylvestris L. structural sawn timber. COST Action E53 Conference 22 – 23 October,<br />

in Lisbon, Portugal.<br />

5. ROHANOVÁ A., JAB�O�SKI M., KRZOSEK S., 2009: Strength grading <strong>of</strong><br />

constructional lumber in regard to European, German, Slovak and Polish standards.<br />

<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong>, Forestry and Wood<br />

Technology No 69, p. 227-233.<br />

6. PN–82/D–94021: Tarcica iglasta konstrukcyjna sortowana metodami<br />

wytrzyma�o�ciowymi.<br />

7. PN EN 384:2004 Drewno konstrukcyjne. Oznaczanie warto�ci charakterystycznych<br />

w�a�ciwo�ci mechanicznych i g�sto�ci.<br />

8. PN EN 408:2004 Konstrukcje drewniane – Drewno konstrukcyjne lite i klejone<br />

warstwowo – Oznaczanie niektórych w�a�ciwo�ci fizycznych i mechanicznych.<br />

9. PGL LP Raport o stanie lasów w Polsce 2008. www.lasy.gov.pl<br />

Streszczenie: Jako�� polskiej tarcicy sosnowej sortowanej wytrzyma�o�ciowo, pochodz�cej z<br />

róznych Krain Przyrodniczo-Le�nych. W referacie zosta�y zaprezentowane wyniki badania<br />

tarcicy sosnowej pochodz�cej z pi�ciu wybranych krain przyrodniczo-le�nych Polski. Badanie<br />

polega�o na wytrzyma�o�ciowym sortowaniu partii tarcicy o liczebno�ci 766 sztuk metod�<br />

wizualn�, wed�ug PN 82/D 94021 Tarcica iglasta konstrukcyjna sortowana metodami<br />

wytrzyma�o�ciowymi. W efekcie badania tarcic� zakwalifikowano do klas sortowniczych KW,<br />

KS, KG i do odrzutów. Nast�pnie tarcic� badano w laboratorium przy u�yciu maszyny<br />

wytrzyma�o�ciowej, wyznaczaj�c dla ka�dej sztuki modu� spr��ysto�ci i wytrzyma�o�� na<br />

zginanie. Badania wykaza�y, �e tarcia pochodz�ca z ró�nych krain przyrodniczo-le�nych,<br />

mimo jej zakwalifikowania do tej samej klasy sortowniczej, charakteryzowa�a si� znacznymi<br />

ró�nicami badanych w�a�ciwo�ci.<br />

Corresponding author:<br />

S�awomir Krzosek<br />

Katedra Nauki o Drewnie<br />

i Ochrony Drewna,<br />

Wydzia� Technologii Drewna <strong>SGGW</strong><br />

ul. Nowoursynowska 159,<br />

02-776 Warszawa<br />

e-mail: S�awomir_krzosek@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 429-434<br />

(Ann. WULS – <strong>SGGW</strong>, For. And Wood Technol. 71, 2010)<br />

Density and shear strength as solid wood and glued laminated timber<br />

suitability criterion for window woodwork manufacturing<br />

AGNIESZKA KUROWSKA*, PAWE� KOZAKIEWICZ**<br />

* Department <strong>of</strong> Technology, Organization and Management in Wood Industry<br />

**Department <strong>of</strong> Wood Science and Wood Protection<br />

Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> Live Science - <strong>SGGW</strong><br />

Abstract: Significance <strong>of</strong> window woodwork has been increasing in value lately (production distinct increase)<br />

thus generating demand for raw material complemented by import <strong>of</strong> exotic wood, <strong>of</strong> most frequently new not<br />

very well known species. Suitability <strong>of</strong> glued laminated timber from selected species and types <strong>of</strong> tropical wood<br />

for manufacturing <strong>of</strong> window woodwork, on the basis <strong>of</strong> the determined density and shear strength in air-dry<br />

and wet condition has been defined in the present study. Taking the entire results into consideration it should be<br />

stated that density and moisture <strong>of</strong> wood used for manufacturing <strong>of</strong> glued laminated timber is the crucial factor<br />

<strong>of</strong> shear strength. The greater the wood density (with given moisture) the better shear strength. Presence <strong>of</strong> glue<br />

lines will not have negative impact upon noted shear strength along the grain (these are D4 class water resistant<br />

glue lines).<br />

Keywords: density, shear strength, solid wood, glued laminated timber, glulam, glue line, window woodwork<br />

INTRODUCTION<br />

Solid wood and glued laminated timber (also called glulam) provided for opening<br />

woodwork must comply with several requirements as presented in several standards: EN<br />

942:2008, EN 13307-1:2007 and EN 14220:2007 or EN 14221:2007. The requirements<br />

concern, among others, basic characteristic <strong>of</strong> the applied wood (appearance, admissible<br />

faults, natural durability, density and strength) dimension tolerance, wood surface quality,<br />

moisture, applied glues and characteristic <strong>of</strong> glue lines. The documents contain basic<br />

terminology and definitions <strong>of</strong> notions applied with this kind <strong>of</strong> products also.<br />

Glued laminated timber used for manufacturing <strong>of</strong> window woodwork is, most<br />

frequently, the so-called “scantling” obtained by gluing <strong>of</strong> three planks thickness. The planks,<br />

after elimination <strong>of</strong> faults, are then joined along with mini dovetails. These are rather short<br />

elements in a ready product thus their shear strength is essential (element with slenderness<br />

ratio below 6 is most <strong>of</strong>ten destroyed by tangential stresses – causing longitudinal<br />

delamination and cracking).<br />

As far as examination <strong>of</strong> wood and glue lines shear strength is concerned, there are<br />

several, not synchronized so far, standards (e.g. PN-D-04105:1979, PN-B-03156:1997, EN<br />

408:2004). Different examination procedures recommended by the said standards (various<br />

quantities and shapes <strong>of</strong> specimen and ways <strong>of</strong> their loading) causing significantly different<br />

results. Unfortunately it is <strong>of</strong>ten the case that the choice <strong>of</strong> given procedure (standard) is not<br />

described or there is no such information in glued laminated timber characteristic.<br />

MATERIALS AND METHODS<br />

Glued, three layer laminated timber with section <strong>of</strong> 72x86 mm and length <strong>of</strong> 2100 mm,<br />

made <strong>of</strong> the following wood kinds and species: bintangor (Calophyllum spp.), durian (Durio<br />

spp.), eucalyptus (Eucalyptus grandis W. Hill ex. Maid.), kembang semangkok (Scapium<br />

spp.), dark red meranti (Shorea spp.), light red meranti (Shorea spp.) and pine (Pinus<br />

sylvestris L.) has been used for examination as a reference point – naming as per EN<br />

13556:2005. The used glue (polyvinyl acetate, in short PVA or PVAc) gave D4 class water<br />

429


esistant joints. From each <strong>of</strong> the three layer laminated timber, made <strong>of</strong> given wood kind or<br />

species, specimens comprising solid wood with respectively situated glue lines (in the plane<br />

<strong>of</strong> the future cutting) have been obtained. The following physical and mechanical properties<br />

<strong>of</strong> wood have been determined:<br />

- moisture as per PN-77/D-04100,<br />

- density as per PN-77/D-04101,<br />

- shear strength <strong>of</strong> solid wood along the grains (from which glued laminated timber has<br />

been made) and strength <strong>of</strong> glue lines in air-dry condition (after 7 days <strong>of</strong> seasoning in<br />

normal climate, 20±2 ºC and 65±5% relative humidity) and in wet condition (after 4<br />

days <strong>of</strong> soaking in water) as indicated by PN-79/D-04105 standard. This method has<br />

been selected for examinations with regard to possibility <strong>of</strong> comparing the results<br />

(glue line strength - solid wood strength).<br />

RESULTS<br />

The wood applied in (window) opening woodwork should be sorted by density.<br />

Minimal density <strong>of</strong> deciduous wood in air-dry condition (moisture <strong>of</strong> 12%) should be 450<br />

kg/m 3 at least and 350 kg/m 3 for coniferous wood respectively (EN-942:2008). For coniferous<br />

wood, the so called late wood is crucial as far as strength is concerned and therefore it s<br />

average density can be lower. Deciduous wood has more “balanced” structure <strong>of</strong> annual rings<br />

(“does not appear” on the so-called late wood zone) and thus higher minimal density is<br />

required.<br />

Figure 1 shows examination results, i.e. determination <strong>of</strong> solid and glued laminated<br />

timber density with moisture showing 12±2%. It has been found that with reference to wood<br />

applied for glued laminated timber, bintangor (745 kg/m 3 ) and dark red meranti (741 kg/m 3 )<br />

show the most average density, while light red meranti (435 kg/m 3 ) shows the least average<br />

density.<br />

Density [kg/m 3 ]<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

bintangor durian eucalyptus kembang<br />

semangkok<br />

Fig. 1 Solid wood and glued laminated timber density<br />

430<br />

dark red<br />

meranti<br />

Wood species<br />

light red<br />

meranti<br />

solid wood glued laminated timber<br />

Apart from the a/m it has been found that in most cases (except glued bintangor and<br />

light red meranti wood) the density <strong>of</strong> glued wood is greater than the solid wood density. This<br />

is first <strong>of</strong> all because <strong>of</strong> significant dispersion <strong>of</strong> wood density within the glued element<br />

(glued laminated timber). It can be seen from the above data that the examined light red<br />

pine


meranti will not comply with the minimal density condition and the glued laminated timber<br />

made <strong>of</strong> it should not be applied in window woodwork.<br />

As per data presented in literature, pine wood in air-dry condition, shows density in<br />

range <strong>of</strong> 330-520-890 kg/m 3 (Krzysik 1974), bintangor wood: 450-650-720 kg/m 3<br />

(Wagenführ 2007), durian wood: 470-640-830 kg/m 3 (Dahms 1995), eucalyptus wood: 550-<br />

650-720 kg/m 3 (Wagenführ 2007), kembang semangkok: 470-520-670 kg/m 3 (Dahms 1995),<br />

light red meranti: 380-500-580 kg/m 3 (Kozakiewicz 2008).<br />

Light red meranti is considered the material <strong>of</strong> bright red color and density not<br />

exceeding 580 kg/m 3 in air-dry condition. For example, heavier wood, although obtained<br />

partly from same wood species, appears on the market as approved name <strong>of</strong> dark red meranti.<br />

The examined wood species, except bintangor and eucalyptus, showed density as per the data<br />

expressed in tables (literature). Bintangor had a little higher density (745 kg/m 3 ) and<br />

eucalyptus wood – slightly lower density (447 kg/m 3 ) as compared with the data presented in<br />

literature.<br />

Tab. 1. Specification <strong>of</strong> results: determination <strong>of</strong> solid wood and glued laminated timber shear strength<br />

Shear strength [MPa]<br />

basic statistic<br />

measures bintangor durian eucalyptus<br />

431<br />

wood species<br />

kembang<br />

semangkok<br />

dark red<br />

meranti<br />

light red<br />

meranti<br />

solid wood<br />

after 7 days <strong>of</strong> seasoning in normal climate<br />

mean 10,82 7,70 5,63 6,50 6,75 6,87 7,84<br />

SD 0,72 1,18 0,19 0,45 0,28 0,37 0,54<br />

wood moisture 12 ± 2%<br />

after 7 days <strong>of</strong> seasoning in normal climate and 4 days <strong>of</strong> soaking in water<br />

mean 7,49 6,41 4,33 4,65 5,05 4,86 4,54<br />

SD 0,23 0,80 0,13 0,25 0,11 0,11 0,24<br />

wood moisture 12 ± 2%<br />

- 38 90 55 90 42 75 70<br />

glued laminated timber<br />

after 7 days <strong>of</strong> seasoning in normal climate<br />

mean 12,57 8,09 10,04 11,13 11,32 4,91 8,51<br />

SD 1,00 0,63 1,09 1,18 0,60 0,51 0,70<br />

WFP 100 100 100 100 100 100 100<br />

wood moisture 12 ± 2%<br />

after 7 days <strong>of</strong> seasoning in normal climate and 4 days <strong>of</strong> soaking in water<br />

mean 7,55 7,31 5,08 6,06 7,49 3,52 3,31<br />

SD 0,65 0,67 0,74 0,59 0,36 0,52 0,30<br />

WFP 100 100 100 100 100 100<br />

wood moisture 12 ± 2%<br />

- 38 90 55 90 42 75 70<br />

Table 1 shows solid and glued laminated timber strength examination results, obtained<br />

in particular tests together with their basic statistic measures (SD – standard deviation),<br />

including WFP – mean apparent cohesive wood failure. The value <strong>of</strong> this coefficient has been<br />

determined by visual method with accuracy <strong>of</strong> 10%. As far as solid wood specimens in air-dry<br />

condition are concerned, the highest shear strength in dry condition, about 10.42 MPa was<br />

shown by bintangor wood, while the least value <strong>of</strong> 5.63 MPa was shown by eucalyptus wood.<br />

The remaining wood species showed approximate values <strong>of</strong> the feature noted for pine wood<br />

pine


(7.84 MPa). The shear strength in air dry condition measurement results obtained for<br />

particular solid wood species confirm the data as presented in literature. As per the data<br />

presented in literature, the shear strength <strong>of</strong> pine wood in air dry condition is 9.0-10.0 MPa<br />

(Krzysik 1957), for bintangor: 9.0-11.5-16.0 MPa (Kozakiewicz, Milewska 2009a), durian<br />

wood: 7.2-8.0 MPa (Kozakiewicz, Milewska 2009b), eucalyptus wood 5.3-7.8-9.6 MPa<br />

(Wagenführ 2007), kembang semangkok wood: 6.5-10.1-12.2 MPa (Kozakiewicz 2010), light<br />

red meranti: 6.3-6.9-7.3 MPa (Kozakiewicz 2008).<br />

With reference to solid wood in wet condition (after 4 days soaking in cold water) the<br />

greatest strength in wet condition <strong>of</strong> 7.49 MPa was noted for bintangor, while the least value<br />

<strong>of</strong> 4.33 MPa was obtained for eucalyptus. The remaining species <strong>of</strong> wood showed the strength<br />

values close to pine wood strength, namely 4.54 MPa.<br />

For specimens containing glue lines, the greatest shear strength - 12.57 MPa was noted<br />

for glued bintangor wood and the least value - 4.91 MPa was obtained for light red meranti.<br />

The remaining wood species (except durian) showed greater shear strength than glued pine<br />

wood (8.51 MPa). Similar dependence (with respect to exotic wood) was obtained for glued<br />

wood specimens, additionally subject to 4 days soaking in cold water. The above results<br />

confirm the dependence (fig. 1, tab. 1) that wood strength grows along with increase in<br />

density. The strength should be considered fully sufficient, remembering that the strength <strong>of</strong><br />

sawn wood sorted by strength is required to be at the level <strong>of</strong> about 3 MPa.<br />

It should be emphasized that for glued laminated timber - both in dry and wet test - the<br />

glue lines destruction at breaking loads occurred in solid wood layers. The percentage share<br />

<strong>of</strong> cutting in wood after dry test was included in range <strong>of</strong> 80-100%. Thus wood, not glue<br />

line, was found to be the weakest element <strong>of</strong> the tested joints. For wet test, the percentage<br />

share <strong>of</strong> cutting in wood was included in range <strong>of</strong> 0-20% for glued bintangor, eucalyptus, dark<br />

red meranti, light red meranti and pine; 0-50% for kembang semangkok and 50-100% for<br />

glued durian.<br />

Satisfactory (correct) final effect in a form <strong>of</strong> durable, decorative and functional<br />

window is obtained by keeping up with the requirements, at each <strong>of</strong> the production stages:<br />

from selection <strong>of</strong> wood, throughout its processing into glued laminated timber, to end with<br />

appropriate use in ready product construction. The records <strong>of</strong> European standards, i.e. EN<br />

14220:2007 in connection with EN 350-2:2000, EN 460: 1997 and EN 335-1: 2007 show that<br />

wood with higher natural durability, i.e. class 1, 2 and 3 is to be used for window (opening)<br />

woodwork with regard to biological hazard class 3.<br />

According to EN 350-2 and L’Associacion Technique des Bois Tropiceaux CIRAD<br />

(http://tropix.cirad.fr) natural durability <strong>of</strong> pine heart wood is 3-4 (in a 5 degree scale, where 1<br />

means very durable wood). The examined types and species <strong>of</strong> exotic wood show durability<br />

comparable with that <strong>of</strong> pine wood: eucalyptus and red light meranti: 3-4, kembang<br />

semangkok and bintangor: 3 and dark red meranti: 2-4. With regard to the above, wood<br />

protection should be applied when the wood is used for window woodwork. Regardless the<br />

species, the white wood zone (especially wide in pine wood) has lowest natural durability <strong>of</strong><br />

class 5.<br />

SUMMARY<br />

Apart from light red meranti, all remaining species (eucalyptus – Eucalyptus grandis<br />

W. Hill ex Maid, dark red meranti – Shorea spp, durian – Durio spp., bintangor –<br />

Calophyllum spp, kembang semangkok – Scapium spp,) comply with the requirement <strong>of</strong><br />

minimal density for deciduous wood applied in opening woodwork, i.e. 450 kg/m 3 , like pine<br />

wood (Pinus sylvestris L.) complies with the requirement for coniferous wood (350 kg/m 3 ).<br />

All the examined semi finished products (solid wood and glued laminated timber)<br />

showed respective high shear strength in both air-dry and wet condition. The crucial factor <strong>of</strong><br />

432


shear strength is density and moisture <strong>of</strong> wood used for manufacturing <strong>of</strong> glued laminated<br />

timber. The greater density <strong>of</strong> wood (for given moisture) the higher shear strength. Presence<br />

<strong>of</strong> glue lines does not have negative impact upon noted shear strength along the grain,<br />

provided that they are D4 water resistant class glue lines.<br />

REFERENCES<br />

1. DAHMS K.,G., 1995: Tropical Timber Atlas (Includes timbers exported from Japan).<br />

Part II – Asia, Australia. L’Association Technique Internationale des Bois Tropicaux<br />

(Commission VI).<br />

2. EN 460:1997 Durability <strong>of</strong> wood and wood-based products. Natural durability <strong>of</strong> solid<br />

wood. Guide to the durability requirement<br />

3. EN 350-2:2000 Durability <strong>of</strong> wood and wood-based products - Natural durability <strong>of</strong><br />

solid wood - Part 2: Guide to natural durability and treatability <strong>of</strong> selected wood<br />

species <strong>of</strong> importance in Europe<br />

4. EN 408:2004 Timber structures – Structural timber and glued laminated timber –<br />

Determination <strong>of</strong> some physical and mechanical properties<br />

5. EN 13556:2005 Round and sawn timber. Terminology in the timber trade in Europe<br />

6. EN 335-1:2007 Durability <strong>of</strong> wood and wood- based products - Definition <strong>of</strong> use<br />

classes - Part 1: General<br />

7. EN 13307-1:2007 Timber blanks and semi-finished pr<strong>of</strong>iles for non-structural uses -<br />

Part 1: Requirements<br />

8. EN 14220:2007 Timber and wood-based materials in external windows, external door<br />

leaves and external doorframes - Requirements and specifications<br />

9. EN 14221:2007 Timber and wood-based materials in internal windows, internal door<br />

leaves and internal doorframes - Requirements and specifications<br />

10. EN 942:2008 Timber in joinery - General requirements<br />

11. KOZAKIEWICZ P., 2008: Meranti ró�owe (Shorea sp.) – drewno egzotyczne z<br />

po�udniowo-wschodniej Azji. Przemys� Drzewny nr 1 2008, s.33-36. Wydawnictwo<br />

�wiat.<br />

12. KOZAKIEWICZ P., MILEWSKA A., 2009a: Gumiak (Calophyllum sp.) – drewno<br />

egzotyczne z po�udniowo-wschodniej Azji. Przemys� Drzewny nr 1, s.27-30.<br />

Wydawnictwo �wiat.<br />

13. KOZAKIEWICZ P., MILEWSKA A., 2009b: Durian (Durio sp.) – drewno<br />

egzotyczne z po�udniowo-wschodniej Azji. Przemys� Drzewny nr 6, s.23-26.<br />

Wydawnictwo �wiat.<br />

14. KOZAKIEWICZ P., 2010: Kembang semangkok (Scaphium sp.) - drewno egzotyczne<br />

z po�udniowo-wschodniej Azji. Przemys� Drzewny nr 3 2010 Rok LXI, s.11-14.<br />

Wydawnictwo �wiat.<br />

15. KRZYSIK F., 1957: Nauka o drewnie. Pa�stwowe Wydawnictwo Rolnicze i Le�ne.<br />

Warszawa.<br />

16. PN-77/D-04100 Drewno. Oznaczanie wilgotno�ci<br />

17. PN-77/D-04101 Drewno. Oznaczanie g�sto�ci<br />

18. PN-79/D-04105 Drewno - Oznaczanie wytrzyma�o�ci na �cinanie wzd�u� w�ókien<br />

19. PN-B-03156:1997 Konstrukcje drewniane - Metody bada� - No�no�� z��czy<br />

klejonych<br />

20. PN-D-04105:1979 Drewno. Oznaczanie wytrzyma�o�ci na �cinanie wzd�u� w�ókien<br />

21. WAGENFÜHR R., 2007: Holzatlas.6., neu bearbeitete und erweitere Auflage. Mit<br />

zahlreichen Abbildungen. Fachbuchverlag Leipzig im Carl Hanser Verlag.<br />

22. http://tropix.cirad.fr<br />

433


Streszczenie: G�sto�� i wytrzyma�o�� na �cinanie jako kryterium przydatno�ci drewna litego i<br />

pó�fabrykatów klejonych do produkcji stolarki okiennej. W ostatnich latach stolarka<br />

drewniana znów zyskuje na znaczeniu (wyra�ny wzrost produkcji), co generuje<br />

zapotrzebowanie na surowiec uzupe�niany importem drewna egzotycznego, cz�sto nowych,<br />

nie w pe�ni poznanych gatunków. W niniejszej pracy okre�lono przydatno�� pó�fabrykatów z<br />

wybranych gatunków i rodzajów drewna tropikalnego do produkcji stolarki okiennej na<br />

podstawie oznaczonej g�sto�ci i wytrzyma�o�ci na �cinanie w stanie powietrzno-suchym i w<br />

stanie mokrym. Bior�c pod uwag� ca�o�� wyników nale�y stwierdzi�, �e czynnikiem<br />

decyduj�cym o wytrzyma�o�ci na �cinanie jest g�sto�� i wilgotno�� drewna u�ytego do<br />

wykonania pó�fabrykatów klejonych. Im wi�ksza g�sto�� drewna (przy danej wilgotno�ci)<br />

tym wy�sza wytrzyma�o�� na �cinanie. Obecno�� spoin nie wp�ywa negatywnie na notowan�<br />

wytrzyma�o�� na �cinanie wzd�u� w�ókien (s� to spoiny wodoodporne klasy D4).<br />

Corresponding authors:<br />

Agnieszka Kurowska<br />

Department <strong>of</strong> Technology, Organization and Management in Wood Industry<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

ul. Nowoursynowska 159,<br />

02-776 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail:agnieszka_kurowska@sggw.pl<br />

Pawe� Kozakiewicz<br />

Department <strong>of</strong> Wood <strong>Sciences</strong> and Wood Protection,<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

ul. Nowoursynowska 159,<br />

02-776 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: pawel_kozakiewicz@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 435-439<br />

(Ann. WULS – <strong>SGGW</strong>, For. And Wood Technol. 71, 2010)<br />

An attempt at the use <strong>of</strong> laboratory density analyzer for determination <strong>of</strong><br />

solid wood cross section density distribution<br />

AGNIESZKA KUROWSKA*, PAWE� KOZAKIEWICZ**, PIOTR BORYSIUK*<br />

* Department <strong>of</strong> Technology, Organization and Management in Wood Industry<br />

**Department <strong>of</strong> Wood Science and Wood Protection<br />

Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> Live Science - <strong>SGGW</strong><br />

Abstract: An attempt at the use <strong>of</strong> laboratory density analyzer for determination <strong>of</strong> solid wood cross section<br />

density distribution. Density pr<strong>of</strong>ile has an essential role in evaluation <strong>of</strong> both, physical and mechanical,<br />

properties <strong>of</strong> solid wood and wood based materials. Usefulness <strong>of</strong> x-ray laboratory density analyzer for<br />

evaluation <strong>of</strong> density distribution in solid wood, at cross section in radial direction has been determined within<br />

the present study. The laboratory density analyzer permits continuous measuring <strong>of</strong> solid wood density within<br />

entire specimen thickness. The specimen thickness is <strong>of</strong> essential importance during examination <strong>of</strong> solid wood<br />

density pr<strong>of</strong>ile – the thicker the specimen, the greater scope <strong>of</strong> examined material measurement, and this means<br />

more correct and easiness <strong>of</strong> the analyzed data in consequence. The main vice <strong>of</strong> the applied instrument is that it<br />

can be used for examination <strong>of</strong> parallel grain wood density pr<strong>of</strong>ile first <strong>of</strong> all.<br />

Keywords: solid wood density, density pr<strong>of</strong>ile, laboratory density analyzer<br />

INTRODUCTION<br />

Solid wood examinations, based on x-ray methods, were carried out as early as in the<br />

first half <strong>of</strong> the last century (Worschitz 1932, Fischer and Tasker 1940). At the beginning, the<br />

examinations referred to qualitative evaluation <strong>of</strong> wood (flaw detection). In the course <strong>of</strong><br />

time, application <strong>of</strong> x-ray methods was extended and their use for quantitative evaluation <strong>of</strong><br />

various sorts <strong>of</strong> solid wood was begun (densitometry), e.g. in wood saw milling (Bajkowski<br />

2000, Ma�kowski and Krzosek 2001). The x-ray methods are used especially for determining<br />

the degree <strong>of</strong> wood biodegradation by biotic factors, e.g. evaluation <strong>of</strong> the general condition<br />

<strong>of</strong> trees (Schwartz et al. 1989) and verification <strong>of</strong> the impact <strong>of</strong> certain forestry activities upon<br />

wood properties (Tomazello 2008) and diagnosing <strong>of</strong> historical objects (Paciorek 1993,<br />

Kozakiewicz and Gawarecki 2003).<br />

Fig. 1. Diagram <strong>of</strong> density distribution measurement with the use <strong>of</strong> x-ray density analyzer (1 – X-ray tube, 2 –<br />

Shutter: above – closed, below – open, 3 – diaphragm, 4 – sample, 5 – semiconductor detector)<br />

435


Laboratory Density Pr<strong>of</strong>ile Measuring System from GreCon, shortly called laboratory<br />

density analyzer, is widely used in both industrial and laboratory conditions, for examining <strong>of</strong><br />

density distribution at cross section <strong>of</strong> wood based materials. The instrument measures the<br />

volumetric density pr<strong>of</strong>ile <strong>of</strong> board specimen with the use <strong>of</strong> x-rays (fig. 1).<br />

The laboratory density analyzer permits quick and precise determination <strong>of</strong> density<br />

distribution at the thickness <strong>of</strong> the examined wood based material. The specimen dimensions<br />

are: height and width 50 mm, thickness max. 150 mm respectively. The instrument can<br />

operate at measurement speed from 0.05 to 5 mm/s. The measurement <strong>of</strong> subsequent density<br />

values is carried out every 0.02 mm <strong>of</strong> examined material thickness. The examination results<br />

are generated by computer program operating the analyzer in a form <strong>of</strong> diagrams or digital<br />

data specifications (Excel format).<br />

Type and structure <strong>of</strong> the board (plywood, particleboards, fiberboards, WPC etc.),<br />

density, thickness, size <strong>of</strong> wood particles used for their manufacturing, type <strong>of</strong> adhesive<br />

(resins, thermoplastics), way <strong>of</strong> board surface protection (foil, laminate, varnish), exert<br />

influence upon density distribution at cross section <strong>of</strong> wood based materials. Press closing<br />

time, i.e. the time span between starting <strong>of</strong> pressing until the assumed thickness is obtained is<br />

essential as far as density pr<strong>of</strong>ile is concerned. The greatest differences in density distribution<br />

are obtained at short time <strong>of</strong> press closing and high pressure (Wong et al. 1998, Wong et al.<br />

1999, Wong et al. 2000). The density pr<strong>of</strong>iles at cross section <strong>of</strong> the selected wood based<br />

materials are presented in figure 2.<br />

a) b) c)<br />

Density [kg/m 3 ]<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20<br />

Thickness [mm]<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

d) e)<br />

Density [kg/m 3 ]<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Density [kg/m 3 ]<br />

0 2 4 6 8 10 12 14<br />

Thickness [mm]<br />

0<br />

0 2 4 6 8 101214161820<br />

Thickness [mm]<br />

436<br />

Density [kg/m 3 ]<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Density [kg/m 3 ]<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 2 4 6 8 1012141618202224<br />

Thickness [mm]<br />

0 1 2 3 4 5<br />

Thickness [mm]<br />

Fig. 2. Density pr<strong>of</strong>iles <strong>of</strong> selected wood based materials: a) 3-layer particleboard – density 697 kg/m 3 , b) MDF<br />

– density 768 kg/m 3 , c) OSB – density 605 kg/m 3 , d) 9-layer birch plywood –density 680 kg/m 3 , e) hardboard –<br />

density 1060 kg/ 3<br />

MATERIALS AND METHODS<br />

Examinations aiming at adaptation <strong>of</strong> x-ray laboratory density analyzer for analysis <strong>of</strong><br />

density distribution in solid wood cross section (in radial direction) have been carried out in<br />

the framework <strong>of</strong> the present study.<br />

Density distribution at cross section <strong>of</strong> pine (Pinus sylvestris L.) poplar (Populus alba<br />

L.) and ash (Fraxinus excelsior L.) wood has been examined. Wood specimen with nominal<br />

dimensions (height x width x thickness) <strong>of</strong> 50x50x50 mm and 12 ± 2% MC have been used<br />

for examinations. It is worth mentioning that the weight <strong>of</strong> the specimen should not exceed 90


g, so with given dimensions <strong>of</strong> height and width <strong>of</strong> the specimen (50 x 50 mm) and solid<br />

wood density, the thickness <strong>of</strong> the specimen should be selected on the basis <strong>of</strong> adequate<br />

calculation. The examination has been carried out with measuring speed <strong>of</strong> 0.05 mm/s. The<br />

examined cross sections <strong>of</strong> the particular wood species have been presented in figure 3.<br />

RESULTS<br />

The results <strong>of</strong> pr<strong>of</strong>ile density determination at cross sections <strong>of</strong> particular wood<br />

species have been presented in figure 3 and 4.<br />

a) b) c)<br />

Fig. 3. Solid wood cross section density pr<strong>of</strong>iles: a) pine (Pinus sylvestris L.), b) poplar (Populus alba L.), c) ash<br />

(Fraxinus excelsior L.)<br />

Density [kg/m 3 ]<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Pine<br />

Poplar<br />

0<br />

Ash<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Thickness [mm]<br />

Fig. 4. Specification <strong>of</strong> density pr<strong>of</strong>iles for examined solid wood species: pine (Pinus sylvestris L.), poplar<br />

(Populus alba L.), ash (Fraxinus excelsior L.)<br />

Laboratory density analyzer permits continuous measuring <strong>of</strong> solid wood density for<br />

entire specimen thickness. Apart from density, width <strong>of</strong> particular annual rings can be<br />

determined on the basis <strong>of</strong> the accumulated data.<br />

On the basis <strong>of</strong> the performed examinations it has been found that the average density<br />

<strong>of</strong> the examined solid wood species: pine (Pinus sylvestris L.), poplar (Populus alba L.) and<br />

ash (Fraxinus excelsior L.) is 411, 449 and 656 kg/m 3 respectively. Kollmann (1951) presents<br />

437


limit values <strong>of</strong> wood density variability in absolutely dry condition: pine - from 300 to 860<br />

kg/m 3 (average value being 490 kg/m 3 ), poplar - from 320 to 710 kg/m 3 (average value being<br />

410 kg/m 3 and ash - from 410 to 820 kg/m 3 (average value being 650 kg/m 3 ). The data<br />

coming from determinations confirm the data presented in literature.<br />

The presented diagrams (fig. 3 and 4), within the given wood species, show density<br />

differences between early and late wood. As a result <strong>of</strong> the performed examinations it has<br />

been found that the density <strong>of</strong> early pine wood ranges from 306 to 372 kg/m 3 and from 430 to<br />

519 kg/m 3 for late pine wood respectively. In accordance with the data as presented in<br />

literature, for pine wood in absolutely dry condition, the density <strong>of</strong> early wood ranges from<br />

300 to 370 kg/m 3 and for late wood from 760 to 900 kg/m 3 respectively (Kollmann and Côte<br />

1968). The ratio <strong>of</strong> late and early wood density is average 2.5 for pine wood, like for<br />

remaining coniferous species. It has been found that for poplar wood the density <strong>of</strong> early<br />

wood ranges from 368 to 441 kg/m 3 and for late wood from 450 to 489 kg/m 3 respectively.<br />

The ratio <strong>of</strong> late and early wood density in deciduous wood with dispersed vascular system is<br />

about 1.3 ( Kollmann and Côte 1968). As a result <strong>of</strong> the performed examinations it has been<br />

found that early ash wood density ranges from 510 to 650 kg/m 3 and from 660 to 785 kg/m 3<br />

for late wood respectively. According to the data as presented in literature, the ratio <strong>of</strong> late<br />

and early wood density in deciduous wood <strong>of</strong> ring vascular system is about 2.0 (for ash wood<br />

the early wood density ranges from 385 to 500 kg/m 3 and for late wood from 720 to 800<br />

kg/m 3 respectively).<br />

The data coming from the determinations confirm the data as in literature partly. This<br />

is because wood, as anisotropic material, shows much variability within given species.<br />

Moreover, the instrument can measure the volumetric density <strong>of</strong> specimen and the results,<br />

especially for non parallel grain wood, can make an average value, e.g. <strong>of</strong> early and late wood<br />

density measurement.<br />

SUMMARY<br />

On the basis <strong>of</strong> the performed examinations it has been found that it is possible to use<br />

x-ray laboratory density analyzer for evaluation <strong>of</strong> density distribution in solid wood cross<br />

section in radial direction. First <strong>of</strong> all it should be applied for parallel grain wood density<br />

pr<strong>of</strong>ile examination.<br />

REFERENCES<br />

1. BAJKOWSKI B., 2000: Uk�ady tomografii komputerowej do skanowania k�ód. XIV<br />

Konferencja Naukowa wydzia�u technologii drewna <strong>SGGW</strong> „Drewno - materia�<br />

wszechczasów” Rogów 13-15 listopada: 7-10.<br />

2. FISCHER R.C., TASKER H.S., 1940. The detection <strong>of</strong> wood boring insects by means<br />

<strong>of</strong> X-rays. <strong>Annals</strong> Applied Biology 27 (1): 92-100.<br />

3. KOLLMANN F., 1951: Technologie des Holzes und der Holzwerkst<strong>of</strong>fe, Vol. I, 2nd<br />

ed., Springer-Verlag, Berlin-Göttingen-Heidelberg. J.F. Bergmann, München.<br />

4. KOLLMANN F., CÔTE W.A., 1968: Principles <strong>of</strong> wood science and wood<br />

technology. Solid wood – part I. Berlin-Heidelberg-N.York.<br />

5. KOZAKIEWICZ P., GAWARECKI K., 2003: Examination <strong>of</strong> Historical Wood<br />

Internal Structure Using Roentgen-Ray Computed Tomography. <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong><br />

Agricultural <strong>University</strong>. Forestry and Wood Technology No 53, s.223-227. Warszawa.<br />

6. MA�KOWSKI P., KRZOSEK S., 2001: Zastosowanie promieniowania RTG w<br />

nieniszcz�cych badaniach drewna. Przemys� Drzewny nr 6 : 19-24.<br />

7. PACIOREK M., 1993: Badania wybranych tworzyw termoplastycznych stosowanych<br />

do impregnacji drewna. Studia i materia�y Wydzia�u Konserwacji i Restauracji Dzie�<br />

438


Sztuki Akademii Sztuk Pi�knych w Krakowie. Tom III. Wydawnictwo Literackie<br />

Kraków.<br />

8. SCHWARTZ V., HABERMEHL A., RIDDER H.W., 1989: Zerstorugsfreier<br />

Nachweis von Kern- und Wandfaulen im Stamm stehender Baume mit der Computer<br />

– Tomographie. Forstarchiv 60: 239-245.<br />

9. TOMAZELLO M., BRAZOLIN S., CHAGAS M. P., OLIVEIRA J. T. S.,<br />

BALLARIN A. W., BENJAMIN C. A., 2008: Application <strong>of</strong> x-ray technique in<br />

nondestructive evaluation <strong>of</strong> eucalypt wood. Maderas: Ciencia y tecnología 10 (2):<br />

139-149.<br />

10. WONG E.-D., ZHANG M., WANG Q., KAWAI S., 1998: Effects <strong>of</strong> mat moisture<br />

content and press closing speed on the formation <strong>of</strong> density pr<strong>of</strong>ile and properties <strong>of</strong><br />

particleboard. Journal <strong>of</strong> Wood Science. Volume 44 (4) 1998: 287-295.<br />

11. WONG E., ZHANG M., WANG Q., KAWAI S., 1999: Formation <strong>of</strong> the density<br />

pr<strong>of</strong>ile and its effects on the properties <strong>of</strong> particleboard. Wood Science and<br />

Technology. Volume 33 (4): 327-340.<br />

12. WONG E.-D., ZHANG M., HAN G., KAWAI S., WANG Q., 2000: Formation <strong>of</strong> the<br />

density pr<strong>of</strong>ile and its effects on the properties <strong>of</strong> fiberboard. Journal <strong>of</strong> Wood<br />

Science. Volume 46 (3): 202-209.<br />

13. WORSCHITZ F., 1932. L’utilization des rayos X en vue de l’etude de la qualité du<br />

bois. In. Congrès IUFRO. 459-489. Paris. France.<br />

Streszczenie: Próba wykorzystania pr<strong>of</strong>ilomierza g�sto�ci do oznaczania rozk�adu g�sto�ci w<br />

drewnie litym na przekroju poprzecznym. Pr<strong>of</strong>il g�sto�ci odgrywa istotn� rol� przy ocenie<br />

w�a�ciwo�ci, zarówno fizycznych jak i mechanicznych drewna litego oraz tworzyw<br />

drzewnych. W ramach niniejszej pracy okre�lono przydatno�� rentgenowskiego pr<strong>of</strong>ilomierza<br />

g�sto�ci do oceny rozk�adu g�sto�ci w drewnie litym na przekroju poprzecznym w kierunku<br />

promieniowym. Pr<strong>of</strong>ilomierz g�sto�ci, umo�liwia ci�g�y pomiar g�sto�ci drewna litego na<br />

ca�ej grubo�ci próbki. W trakcie badania pr<strong>of</strong>ilu g�sto�ci drewna litego istotn� rol� odgrywa<br />

grubo�� próbki - im grubsza próbka, tym wi�kszy zakres pomiarowy materia�u badawczego,<br />

co w konsekwencji przek�ada si� na wi�ksz� poprawno�� i �atwo�� analizowanych danych.<br />

Zasadnicz� wad� przyrz�du jest to, i� mo�e by� stosowany przede wszystkim do badania<br />

pr<strong>of</strong>ilu g�sto�ci drewna równoleg�ow�óknistego.<br />

Corresponding authors:<br />

Agnieszka Kurowska, Piotr Borysiuk<br />

Department <strong>of</strong> Technology, Organization and Management in Wood Industry<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

ul. Nowoursynowska 159,<br />

02-776 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail:agnieszka_kurowska@sggw.pl<br />

e-mail:piotr_borysiuk@sggw.pl<br />

Pawe� Kozakiewicz<br />

Department <strong>of</strong> Wood <strong>Sciences</strong> and Wood Protection,<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

ul. Nowoursynowska 159,<br />

02-776 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: pawel_kozakiewicz@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Unversity <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>-<strong>SGGW</strong><br />

Foresty and Wood Technology No 71, 2010: 440-443<br />

(Ann. WULS-<strong>SGGW</strong>, For. and Wood Technol, 71, 2010)<br />

���� ������� ��� ������������ ����� MDF ��������<br />

������������� ������<br />

�������� �������, ������� ������<br />

��������� ���������� ���������, ���������� ����������� ������������ ���� - <strong>SGGW</strong><br />

���������: ���� ������� ��� ������������ ����� MDF �������� ������������� ������. �����<br />

��������� ������ �������� ���������� � ���������������� ������� ������� �������: ������ �� ��� �<br />

������ �����������, �� ���� ������� ��� ������������ ������ ����� MDF. ��������� ���� ���������<br />

��� ������ ��������������� ������ CNC. ��� ��������� �������� ��� ��������� ����������������<br />

����� LabVIEW. ������ ������������ ����������, ��� ��� �������� ������ �� ���, ��� � �����<br />

����������� ��������� ������������ ������� �� ����.<br />

�������� �����: ���� �������, ������������, �������������� ����� CNC, MDF, �����, ������<br />

�������, ������ �� ���, ����� �����������, LabVIEW, ����������<br />

��������<br />

������������ �������� ����� �� ����� ���������������� �<br />

���������������������� �������� ������������ ��������� �������� [Górski 2005].<br />

�� ��������� ������������ ����������� ������� �� ��������� � ����������<br />

���������� ��������� ����� � �������� � ������� ���������.<br />

� ����������� ��������� �������������� ����� ���������� �������� �������<br />

������������, �������������� ����� ������� ��������� � ��������� �������� ������<br />

�������� ��� ���������� �����, ����� ��� ����. ������, ����� �������� �������<br />

�������� ��������, ��������������� ������������, ���������� ������ �������<br />

���������� � ������� �������, � ����� ����������� �������������� ���. �� ���<br />

������� � ���� �������, ����������� ������� ������� �� �������� ���������.<br />

������� ��� ����������� �������� ��������, ������������������ � ������<br />

������������� ��� ������������ ��������� � ���������� ���������� ����������<br />

������ � ��������� ������� ������� ������� � ������� ��������� �� ����. ������<br />

������� ����������� ����� �������, ��� ������ � ������� ����� (������� ������� �<br />

������), �������� ��������������� ���������, ����� ����������� � �� [Palmqvist 2003;<br />

Palmqvist, Lenner, Gustafaaon 2005].<br />

������� ����� ��������� ������ �������� ������ ��� ������� ���<br />

������������ ����� MDF �������� ������������� ������.<br />

��������<br />

��������� ���� ��������� ��� ������ ��������������� ������ CNC<br />

(BUSELLATO JET 130). � ������������ ���� ��������� ����������� �������� ����� �<br />

����� �������� (DIMAR 107 055 9-HM Dynamic), ��������� � 12 �� ��������������<br />

����� � 51 ��. ������� ������ ����� ���������� 0,2 ��. �������������� �������� -<br />

��� ��������� �������� 260 x 260 ��, ������������� �� ����� ����� MDF �������� �<br />

18 �� (���. 1).<br />

440


���. 1. ������� ����� ���������.<br />

� ������������ ���� ��������� ��� �������� ������ �� ���: 0,2 ��, 0,4 �� �<br />

0,6 ��. ������� �������� �������� ���������� 10000 ��.����. ��������� ����<br />

���������� ��� ������ ������� ���������� ������. ������� ������ �����������<br />

(VB) ��� ������� ��������� ����������� ���������� 0 �� � 0,38 ��<br />

�� ����� ������������ ���� �������������� ������������ ���� �������,<br />

������������ ��������� Fx � Fy. ��� ��������� ��� ��������� �������������<br />

���������� KISTLER. ��� ����������� �������� ������������ ���������������<br />

����� LabVIEW.<br />

���������� ������������<br />

���������� ������������ ������������������ � ����������� ����� ���<br />

������ ���� �������� (���. 2-5).<br />

���.2. ���������� ��������� ������������ ���� ������� Fx ��� ������ ��������� ������ ��� ����<br />

������� ������ �����������.<br />

441


���.3. ���������� ��������� ������������ ���� ������� Fy ��� ������ ��������� ������ ��� ����<br />

������� ������ �����������.<br />

���.4. ������� ������ �� ��� �� ���� Fx ��� ���� ������� ������ �����������.<br />

���.5. ������� ������ �� ��� �� ���� Fy ��� ���� ������� ������ �����������.<br />

442


����������<br />

�� ��������� ���������� ����������� ����� ������������ ��������� ������:<br />

1. ��������, ��� ���� ������� ������ ����� �������� ������������ ���� ���<br />

������� ��� ��������� c���� ����� MDF.<br />

2. �������� ������ �� ��� ������ ����������� �� �������� ��� ������� �� �����<br />

������������. � ������ ������������ ���� Fx, ����������� ���������� ���<br />

VB=0�� ����� 1. ��� ������ ����������� VB=0,38�� ����������� �� �� ������<br />

0,99. ��� ���� Fy ����������� ���������� ��������� �������� 0,83 � 0,99.<br />

���������<br />

1. �������� �. �., ��������� �. �. 2000: ������ ������� ������� ���<br />

������������, ���������� ��������������� �������������� �����������<br />

����� �. �. ���������<br />

2. Górski J., 2005: Projektowanie procesów technologicznych obróbki skrawaniem<br />

drewna i tworzyw drewnopochodnych-zagadnienia ogólne, Wyd. <strong>SGGW</strong><br />

3. Jemielniak K., 2004: Obróbka skrawaniem, Wyd. Politechniki Warszawskiej<br />

4. Orlicz T. 1988: Obróbka drewna narz�dziami tn�cymi. Wyd. <strong>SGGW</strong><br />

5. Palmqvist J., Lenner M., Gustafaon S. 2005: Cutting-forces when up-milling in beech,<br />

Wood Science Technology, 39 (2005), s. 674-684<br />

6. Palmqvist J. 2003: Parallel and normal cutting forces in peripheral milling <strong>of</strong> wood,<br />

European Journal <strong>of</strong> Wood and Wood Products, 61 (2003), s. 409-415<br />

Poznaniu<br />

Streszczenie: Si�y skrawania podczas frezowania p�yty MDF frezem trzpieniowym<br />

dwuostrzowym. W artykule okre�lono eksperymentalnie i przeanalizowano wp�yw takich czynników<br />

jak posuw na z�b i zu�ycie narz�dzia na si�y skrawania podczas frezowania surowej p�yty MDF.<br />

Proces obróbki by� realizowany przy zastosowaniu trzech warto�ciach posuwu, odpowiednio<br />

0,2, 0,4 i 0,6 mm. W eksperymencie wykorzystano standardowy frez trzpieniowy<br />

dwuostrzowy. Analiza sygna�ów si� by�a przeprowadzona dla dwóch stopni zu�ycia<br />

narz�dzia: 0,2 i 0,4 mm. Stwierdzono istotny wp�yw zarówno zu�ycia narz�dzia jak i warto�ci<br />

posuwu na warto�ci sygna�ów si� zarejestrowanych podczas frezowania surowej p�yty MDF.<br />

Corresponding authors:<br />

Katarzyna Laszewicz, Jaros�aw Górski,<br />

Faculty <strong>of</strong> Wood Technology <strong>SGGW</strong>,<br />

Department <strong>of</strong> Mechanical Woodworking,<br />

ul. Nowoursynowska 159,<br />

02-776 <strong>Warsaw</strong>, Poland,<br />

e-mail: katarzyna_kl@o2.pl<br />

e-mail: jaroslaw_gorski@wa.home.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Unversity <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>-<strong>SGGW</strong><br />

Foresty and Wood Technology No 71, 2010: 444-449<br />

(Ann. WULS-<strong>SGGW</strong>, For. and Wood Technol, 71, 2010)<br />

������� ������-������������ ������� ����� MDF � ��������<br />

������ �� �������� ��������� � �������� ������������<br />

�������� �������, ������� ������<br />

��������� ���������� ���������, ���������� ����������� ������������ ���� - <strong>SGGW</strong><br />

���������: ������� ������-������������ ������� ����� MDF � �������� ������ �� ��������<br />

��������� � �������� ������������. ����� ��������� ������ �������� ����������� ������� ��������<br />

������ � ������� ����� MDF �� �������� ������������. ���������� ����������������� ������������<br />

����������, ��� �������� ������ �� ��� � ������-������������ �������� ��������� �� ���������<br />

������� �� �������� ���������. ������, ����������� ������������ ������� ����� ���������������<br />

�������� � ��������� �������� �� �������� ������� ��������.<br />

�������� �����: �������� �������, �������������� ����� CNC, ������������, ����� MDF, ������-<br />

������������ �������� ���������, �������� ������.<br />

��������<br />

����� MDF – ���� �� ����� ���������������� � ������ ������������<br />

��������������� ������ �������� [Davim, Clemente, Silva 2009]. �� ������������<br />

��������������� ��� ����������� ����������� ������, ��� ��� ��������� ��, ��<br />

��������� � ����������, ����. ��������� ������� ������������ � ������������<br />

�������� MDF ������ ������������� ��� ������������� ������������ ���������<br />

�������, �������� �������, ��������, ��������� � ���������, ���.<br />

MDF ����� ������������ ������������ ���������, ��� �������� ����� ��<br />

��������� � ������������� ����������� ����� ���������. ���������� ������, ��� �<br />

�������� ����� ����� ������ ��������� ���������� � ����������� ���������<br />

�������� �������, �������������� ��� ������������ ����������� �������� �����<br />

������ [Zakrzewski, Staniszewska 2002]. � ����� � ���� ������� ����� �����������<br />

�������������� ������ �������� ����������� ������������ �������� ������� ������<br />

��� ������������ ����� MDF. ��� ����� ����� ������ – ������ ������� ������� �<br />

������� ������� �� �������� [Laszewicz, Górski 2009].<br />

�������, � ��������� ������ ���������������� ������� ������-������������<br />

������� ����� MDF � �������� ������ �� �������� ��������� � ��������<br />

������������.<br />

��������<br />

��������� ���� ������������ ��� ������ ������ CNC (BUSELLATO JET 130).<br />

� ������������ ����������� ����������� �������� ����� � ����� �������� (DIMAR<br />

107 055 9-HM Dynamic), ��������� � 12 �� � ������ ������� ����� � 51 ��.<br />

�������������� �������� - ��� ��������� �������� 260 x 260 ��, ������������� ��<br />

����� ����� MDF �������� 18 ��. � ������������ ���� ��������� ��� ���� �����<br />

MDF (���������� � ������ MDF1 � MDF2), ������������ ������-�������������<br />

���������� (���. 1).<br />

444


���. 1. ������-������������ �������� ����� MDF.<br />

�� ����� ������������ � ������ ��������� ���� ����������� ��� ����������<br />

���� ����������� �������� � 6 �� � ������� � 15,5 �� � 12 ��. ������� ��� ���<br />

������ � ��� �������� �����. � ���������� ���������� �������� ��� ������� �������<br />

����������� ������� � 10 ��, ������������ � ������ ��������� A � C. ����������<br />

��� �������� ����� ��������� ������� �� ���. 2.<br />

���.2. ������ ����� ���������.<br />

�� ����� ������������ �������������� ������ ��������. ���� ���������<br />

����������� �� ���.3.<br />

���.2. ���� ���������.<br />

445


������� �������� �������� ���������� 10000 ��.����. �� ������ ������������<br />

���� ��������� ��� �������� ������ �� ���: 0,2 ��, 0,4 �� � 0,6 ��. �����������<br />

��� �������� ��� ���� ������� ������ ����������� �� ������ ����������� VB : 0/ 0,09/<br />

0,2/ 0,3/ 0,4 ��. ��������� � ������� ����������� ����� ����������� ��� ������<br />

������ ������������ �������.<br />

���������� ������������<br />

�� ����� ������������ ���� ��������� ������ �������� A � C. ����������<br />

������������ ������������������ � ����������� ����� ��� ������ �������� (���.<br />

3-8).<br />

���.3. ���������� ��������� ������� � ��� ������ �� ��� fz=0,02 �� ��� ������ ������� ������ ����� �<br />

���� ����� MDF.<br />

���.4. ���������� ��������� ������� � ��� ������ �� ��� fz=0,04 �� ��� ������ ������� ������ ����� �<br />

���� ����� MDF.<br />

446


���.5. ���������� ��������� ������� � ��� ������ �� ��� fz=0,06 �� ��� ������ ������� ������ ����� �<br />

���� ����� MDF.<br />

���.6. ���������� ��������� ������� � ��� ������ �� ��� fz=0,02 �� ��� ������ ������� ������ ����� �<br />

���� ����� MDF.<br />

���.7. ���������� ��������� ������� � ��� ������ �� ��� fz=0,04 �� ��� ������ ������� ������ ����� �<br />

���� ����� MDF.<br />

447


���.8. ���������� ��������� ������� � ��� ������ �� ��� fz=0,06 �� ��� ������ ������� ������ ����� �<br />

���� ����� MDF.<br />

����������<br />

�� ��������� ���������� ����������� ����� ������� ��������� ������:<br />

1. �������� ������ �� ��� � ������-������������ �������� ��������������<br />

����� MDF ��������� ������������� ���������, ���������� �� ������� ������<br />

�����������.<br />

2. ����� ��������������� �������� � ��������� �������� ��������� ������<br />

������� �� ������ ��� ������������ ����� MDF. ������ �, ���������� �<br />

���������� ���������� ����� ��������� ������� ������� �� ������� ������<br />

�����������, ��� ������ �, ���������� � ���������� ������������ ���� �����.<br />

����������<br />

1. Davim P., Clemente V. C., Silva S. 2009: Surface roughness aspects in milling MDF<br />

(medium density fibreboard), The International Journal <strong>of</strong> Advanced Manufacturing<br />

Technology �40<br />

2. Laszewicz K., Górski J., 2009: ������� ��������� ������� ������� �� ������ �<br />

�������� ������������ ����� ����� MDF<br />

3. Zakrzewski W., Staniszewska A. 2002: Dok�adno�� obróbki drewna cieciem. Wyd.<br />

AR w Poznaniu<br />

448


Streszczenie: Wp�yw w�a�ciwo�ci p�yty MDF oraz pr�dko�ci posuwu na dok�adno��<br />

wymiarow� podczas frezowania. W niniejszym artykule okre�lono eksperymentalnie i<br />

przeanalizowano wp�yw warto�ci posuwu oraz fizycznych i mechanicznych w�a�ciwo�ci p�yty<br />

MDF na wymiary zewn�trzne uzyskane w procesie frezowania. Obróbka realizowana by�a z<br />

wykorzystaniem frezarskiego centrum obróbkowego CNC. W badaniach zastosowano trzy<br />

warto�ci posuwu, odpowiednio 0,2, 0,4 i 0,6 mm. W badaniach wykorzystywano narz�dzia o<br />

ró�nym, �ci�le okre�lonym, stopniu zu�ycia obserwowanego na powierzchni przyda freza.<br />

Analiza uzyskanych wyników pozwoli�a stwierdzi� brak istotnego wp�ywu warto�ci posuwu<br />

oraz w�a�ciwo�ci p�yty MDF na dok�adno�� wymiarow� podczas frezowania.<br />

Zaobserwowano natomiast znaczne ró�nice we wra�liwo�ci rozpatrywanych wymiarów na<br />

zu�ycie freza. Kszta�t obrabianego przedmiotu oraz specyfika zabiegu realizowanego podczas<br />

operacji technologicznej ma zasadniczy wp�yw na dok�adno�� obróbki. Wymiar A, który<br />

powsta� poprzez poszerzenie rowka, znacznie silniej reaguje na zu�ycie narz�dzia ni� wymiar<br />

C, uzyskany w wyniku wykonania dwóch rowków.<br />

Corresponding authors:<br />

Katarzyna Laszewicz, Jaros�aw Górski,<br />

Faculty <strong>of</strong> Wood Technology <strong>SGGW</strong>,<br />

Department <strong>of</strong> Mechanical Woodworking,<br />

ul. Nowoursynowska 159,<br />

02-776 <strong>Warsaw</strong>, Poland,<br />

e-mail: katarzyna_kl@o2.pl<br />

e-mail: jaroslaw_gorski@wa.home.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 450-453<br />

(Ann. WULS – <strong>SGGW</strong>, For. and Wood Technol. 71, 2010)<br />

Studies <strong>of</strong> the resistance upon some factors <strong>of</strong> UV acrylic lacquer coatings<br />

on MDF boards. Part I. Resistance <strong>of</strong> heat and cold liquid action<br />

BARBARA LIS, TOMASZ KRYSTOFIAK, STANIS�AW PROSZYK<br />

Department <strong>of</strong> Gluing and Finishing <strong>of</strong> Wood, Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Abstract: Studies <strong>of</strong> the resistance upon some factors <strong>of</strong> UV acrylic lacquer coatings on MDF boards. Part I.<br />

Resistance <strong>of</strong> heat and cold liquid action. Determined resistance <strong>of</strong> selected thermal (high temperature in version<br />

„dry heat” test acc. to PN-EN 12722) and chemical factors (cold liquid action acc. to PN-EN 12720) <strong>of</strong> lacquer<br />

coatings from new solutions <strong>of</strong> two products type UV acrylic lacquers (with different compositions <strong>of</strong> coating<br />

substances), applied in spraying pneumatic technic, in hot system painting (60°C). It was stated, that tested UV<br />

acrylic lacquers without respects <strong>of</strong> used component in form tris (2-hydroxyethyl) isocyanurate-triacrylate were<br />

given comparable properties <strong>of</strong> obtain coatings. Coatings showed good thermo resistance in „dry heat” test,<br />

placing on the level 85°C. Lacquer finishing’s was characterized with the high resistance on the chosen cold<br />

liquids action, behind exception the ethanol.<br />

Key words: MDF board, UV acrylic lacquer, composition, hot spray, coating, heat resistance, resistance <strong>of</strong> cold<br />

liquid action<br />

INTRODUCTION<br />

Lacquer products designed to the hardening with the UV radiation, basing itself<br />

especially on acrylic copolymers and the different kind <strong>of</strong> hybrid solutions perform the<br />

leading part in woodworking industry, dominating in technologies <strong>of</strong> the production <strong>of</strong><br />

furniture, equipments <strong>of</strong> interiors and wooden flooring materials (Chrystian 2006, Proszyk<br />

2007). The application <strong>of</strong> these products reached now, best level <strong>of</strong> technical solution, so<br />

within the range high- as and eco-technology, making possible the obtainment <strong>of</strong> coatings<br />

about the differential scale <strong>of</strong> the aesthetic-decorative features and utylity properties (Van den<br />

Branden 2002, Lis, Kryst<strong>of</strong>iak i Proszyk 2009, Wnuk 2010). Its own kind a innovation within<br />

the range possibilities <strong>of</strong> their application are UV lacquer products designed to correcting <strong>of</strong><br />

the working viscosity, through their heating, what is raised by consequently wide possibilities<br />

<strong>of</strong> spreading among other things with spraying technics in hot system painting (temp. to<br />

60°C), to these also by means <strong>of</strong> automatic equipment and lacquer robots. Together with the<br />

widening range <strong>of</strong> application <strong>of</strong> these products are carried out investigations on new lacquer<br />

compositions, what in turn demands their verification in respect <strong>of</strong> the quality <strong>of</strong> obtained<br />

coatings (Nebioglu and Soucek 2006). Bearing in mind preceding reason were undertaken the<br />

investigations, whose an aim was the evaluation <strong>of</strong> chosen parameters <strong>of</strong> coatings designed<br />

for furniture production, which was prepared in conditioning <strong>of</strong> the producer (Lankwitzer<br />

Lackfabrik GmbH in Osterwieck) on the basis <strong>of</strong> two acrylic UV lacquer with various<br />

coatings compositions. In both lacquers a basic common coating substances was<br />

dipropylenoglycol diacrylate and hybrid polyol-acrylate system, and the fotoinitiator<br />

(diphenylketone and benzylbenzol on the level 7.5±2.5%) and a little amount <strong>of</strong> auxiliary<br />

agents (ca. 2.5%) on the basis <strong>of</strong> siloxane and silicone (lacquer 85/15). As addition curing<br />

systems was applied in one <strong>of</strong> lacquers compound in form tris (2-hydroxyethyl)isocyanurate<br />

triacrylate (marking 85/14). In this part <strong>of</strong> work were performed resistances <strong>of</strong> obtained<br />

coatings on the action <strong>of</strong> chosen thermal (high temperatures in version „dry” heat) and<br />

chemical (cold liquids action) factors.<br />

450


EXPERIMENTS<br />

Preparation <strong>of</strong> the substrate, spreading and hardening <strong>of</strong> coatings in technical conditions<br />

<strong>of</strong> the producer <strong>of</strong> lacquer products - LANKWITZER company was carried out. In the<br />

character <strong>of</strong> the substrate MDF (850 kg/m 3 , MC 8±1%) was used, which was grinded with<br />

papers properly no. 120 and 180, then was precoated with waterborne UV acrylic ground<br />

lacquer with LW UP 2661 mark. As top layers were applied 2 acrylic UV lacquers about<br />

marking properly 85/14 and 85/15, which were applied in two layers with interoperating<br />

grinded with the paper no. 240. Products were applied with the conventional pneumatic (up<br />

cup gun) spraying at parameters given in Table 1. Samples before investigations <strong>of</strong> properties<br />

<strong>of</strong> coatings were conditioned (23±2°C, RH 50±5%) during 168 h.<br />

Table 1. Parameters <strong>of</strong> pnematic spraying <strong>of</strong> lacquers on MDF surface<br />

Marking <strong>of</strong> lacquers<br />

Specification Precoating Top<br />

LW UP 2661 85/14 and 85/15<br />

Lacquer temperature [°C] 20 60<br />

Nozzle diameter [mm] 1.0 1.2<br />

Unit pressure [MPa] 0.5<br />

Total amount <strong>of</strong> TC (2X)<br />

spreading [g/m 2 ]<br />

25÷30<br />

Drying in temp [°C] 60 -<br />

Drying time [min] 10 -<br />

Velocity <strong>of</strong> conveyor [m/min] 8<br />

Power <strong>of</strong> UV radiator [W/cm] 120<br />

Investigation on the resistance <strong>of</strong> lacquer coatings upon high temperature at „dry heat”<br />

test was done acc. to PN-EN 12722 during 20 min time. After that time the thermal block was<br />

removed and sample was conditioned (23/50) in time 24 h, and then the evaluation quality <strong>of</strong><br />

surface coatings was made, using 5-degree number scale (5 - no visible changes <strong>of</strong> surface, 1<br />

– distinctly changes surface structure).<br />

Determination on the resistance on cold liquid action <strong>of</strong> lacquer coatings was<br />

performed acc. to PN-EN 12720. Selected agents are specified below together with the time<br />

<strong>of</strong> their action after 1 and 24 h: ethyl alcohol (40%), tee, c<strong>of</strong>fee, acetic acid, citric acid,<br />

blackcurrant juice, sodium carbonate and water. Places <strong>of</strong> the test were cleaned with a cloth<br />

soaked with a cleaning agent and distillate water. An evaluation <strong>of</strong> results was made using<br />

descriptive 5-degree number scale acc. to PN-EN 12720.<br />

RESULTS<br />

Results <strong>of</strong> investigations <strong>of</strong> the resistance <strong>of</strong> lacquer coatings on high temperature<br />

action in „dry heat” test were contained in Table 2.<br />

Table 2. Results <strong>of</strong> investigations <strong>of</strong> lacquer coatings resistance on the high temperature action in „dry heat” test<br />

Marking <strong>of</strong><br />

lacquer<br />

Note<br />

65<br />

Temperature <strong>of</strong> measurements [°C]<br />

85<br />

Note Note<br />

100<br />

85/14 5 ; 5 5 5 ; 5 5 4 ; 4 4<br />

85/15 5 ; 5 5 5 ; 5 5 4 ; 4 4<br />

Analysing results <strong>of</strong> investigations, it was stated lack <strong>of</strong> changes on tested surface <strong>of</strong><br />

coatings both in temperature 65 and 85°C. Instead in temp. 100°C was observed enough<br />

451


distinctly changes <strong>of</strong> the surface resistance, at estimations for the level 1 degree lower.<br />

Results <strong>of</strong> the resistance <strong>of</strong> lacquer coatings on the cold liquids action were took down<br />

in Table 3. Analysing results the resistance <strong>of</strong> surface on the liquids action, it was stated, that<br />

7 from chosen agents had caused no changes on coatings even after 24 h. Only the ethyl<br />

alcohol showed negative impact on evaluated surfaces, causing slight changes, being qualified<br />

to the estimation note 4 after elapsion time 1h.<br />

Marking <strong>of</strong><br />

lacquer<br />

85/14<br />

85/15<br />

*) - lack measure<br />

Table 3. Results <strong>of</strong> lacquer coatings resistance on the cold liquids action<br />

452<br />

Time <strong>of</strong> liquid action [h]<br />

Kind <strong>of</strong> liquid<br />

1 24<br />

Note (acc. to PN-EN 12720)<br />

Partially Total Partially Total<br />

Ethyl alcohol (40%) 5 ; 5 5 - *)<br />

-<br />

Tea - - 5 ; 5 5<br />

C<strong>of</strong>fee - - 5 ; 5 5<br />

Acetic acid - - 5 ; 5 5<br />

Citric acid - - 5 ; 5 5<br />

Blackcurrant juice - - 5 ; 5 5<br />

Sodium carbonate - - 5 ; 5 5<br />

Water - - 5 ; 5 5<br />

Ethyl alcohol (40%) 4 ; 5 5 - -<br />

Tea - - 5 ; 5 5<br />

C<strong>of</strong>fee - - 5 ; 5 5<br />

Acetic acid - - 5 ; 5 5<br />

Citric acid - - 5 ; 5 5<br />

Blackcurrant juice - - 5 ; 5 5<br />

Sodium carbonate - - 5 ; 5 5<br />

Water - - 5 ; 5 5<br />

RECAPITULATION<br />

Finishing’s from UV acrylic lacquers with the differential compositions <strong>of</strong> the<br />

coatings substances, sprayed with the technique <strong>of</strong> the pneumatic spraying in the hot version<br />

(60°C), was characterized with high aesthetic-decorative features. It wasn't stated positive<br />

effect <strong>of</strong> amount <strong>of</strong> curing monomer in compound form tris (2-hydroxyethyl) isocyanuratetriacrylate<br />

in acrylic lacquer upon properties <strong>of</strong> obtain lacquer coatings. Coatings showed<br />

good thermo resistance in „dry heat” test, placing on the level 85°C. Lacquer finishing’s was<br />

characterized with the high resistance on the chosen cold liquids action, behind exception the<br />

ethyl alcohol.<br />

REFERENCES<br />

1. CHRYSTIAN H-D., 2006: Controlling glos. How silica types and formulation variables<br />

affect the matting <strong>of</strong> 100% UV coatings. Europ. Coatings J. 4; 26-30.<br />

2. LIS B,. PROSZYK S., KRYSTOFIAK T., 2009: Low energy consuming <strong>of</strong> hardening <strong>of</strong><br />

lacquer coatings by means <strong>of</strong> UV – LED radiators. Inthercathedra. Annual Biull. <strong>of</strong> Plannt<br />

<strong>of</strong> the European Wood Technology. <strong>University</strong> Studies. Pozna� no. 25.; 75-79.


3. NEBIOGLU A., SOUCEK M.D., 2006: Optimization <strong>of</strong> UV curable acrylated polyesterpolyurethane/polysiloxane<br />

coatings using a response surface methodology. JCT Research<br />

3 (1); 61-68.<br />

4. PROSZYK S.; 2007: Post�p w dziedzinie wyrobów lakierowych i technologii ich<br />

stosowania w drzewnictwie. Technologia drewna, wczoraj, dzi�, jutro. Studia i szkice na<br />

Jubileusz Pr<strong>of</strong>esora Ryszarda Babickiego. ITD. Pozna�;115-124.<br />

5. WNUK R., 2010: Wodne materia�y utwardzane promieniowaniem UV. Przysz�o�� w<br />

lakierowaniu drewna., dodatek specjalny do czasopisma Lakiernictwo Przemys�owe.<br />

Uszlachetnianie powierzchni drewna cz.2, Wydawnictwo GOLDMAN Tczew; 16-18.<br />

6. VAN DEN BRANDEN S.; 2002: Survey <strong>of</strong> radiation-curable systems for wood coatings.<br />

Surface Coatings International Part A. 85; 189-191.<br />

Streszczenie: Badania odporno�ci na wybrane czynniki pow�ok z akrylowych lakierów UV<br />

na p�ytach MDF. Cz. 1. Odporno�� na ciep�o i zimne p�yny. Badano w�a�ciwo�ci<br />

odporno�ciowe pow�ok na bazie 2 nawierzchniowych akrylowych lakierów UV,<br />

przeznaczonych dla meblarstwa, <strong>of</strong>erowanych do nak�adania natryskiem pneumatycznym, w<br />

wersji na gor�co (60°C), o zró�nicowanym sk�adzie w zakresie substancji b�onotwórczych i<br />

identycznym rodzaju zastosowanych fotoinicjatorów oraz �rodków pomocniczych. Dla<br />

pow�ok lakierowych okre�lono odporno�� na wysok� temperatur� w próbie „suche ciep�o” wg<br />

PN-EN 12722 oraz na dzia�anie zimnych p�ynów wg PN-EN 12720. Stwierdzono, �e<br />

testowane wyko�czenia bez wzgl�du na zastosowanie modyfikatora lakieru w postaci tris (2hydroksyetylo)<br />

izocyjanuranu-triakrylowego, charakteryzowa�y si� wysokim walorami<br />

estetyczno-dekoracyjnymi. Pow�oki lakierowe wykaza�y dobr� termoodporno�� w próbie<br />

„suche ciep�o”, plasuj�c� si� na poziomie 85°C. Wyko�czenia lakierowe charakteryzowa�y<br />

si� wysok� odporno�ci� na dzia�anie wybranych zimnych p�ynów, za wyj�tkiem alkoholu<br />

etylowego.<br />

Corresponding authors:<br />

Barbara Lis, Tomasz Kryst<strong>of</strong>iak Stanis�aw Proszyk<br />

Katedra Klejenia i Uszlachetniania Drewna<br />

Uniwersytet Przyrodniczy w Poznaniu<br />

ul. Wojska Polskiego 38/42, 60-627 Pozna�, Poland<br />

e-mail: blis@up.poznan.pl, tomkrys@up.poznan.pl, sproszyk@up.poznan.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 454-457<br />

(Ann. WULS – <strong>SGGW</strong>, For. and Wood Technol. 71, 2010)<br />

Studies <strong>of</strong> the resistance upon some factors <strong>of</strong> UV acrylic lacquer<br />

coatings on MDF boards. Part II. Mechanical factors<br />

BARBARA LIS, TOMASZ KRYSTOFIAK, STANIS�AW PROSZYK<br />

Department <strong>of</strong> Gluing and Finishing <strong>of</strong> Wood, Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Abstract: Studies <strong>of</strong> the resistance upon some factors <strong>of</strong> UV acrylic lacquer coatings on MDF boards. Part II.<br />

Mechanical factors. Studied resistance <strong>of</strong> coatings with two product type UV acrylic lacquers upon some<br />

mechanical factors. Determined adherence <strong>of</strong> coating to substrate with pull-<strong>of</strong>f method's (acc. to PN-EN ISO<br />

4624 and PN-EN 24624 standards), exerting the failure loading with the hydraulic manner, with use <strong>of</strong> the<br />

PostiTest® equipment. Impact resistance (acc. to PN-93/F-060001/03) and scratch resistance (acc. to PN-<br />

65/81527) <strong>of</strong> lacquer coatings were investigated. It was stated among others that tested coatings regardless <strong>of</strong><br />

UV acrylic lacquer with different composition were characterized comparable value parameters, within the range<br />

both <strong>of</strong> adherence to the substrate and impact resistance. Coatings from lacquer containing additionally in their<br />

composition, chemical compound in form tris (2-hydroxyethyl)isocyanurate-triacrylate showed the higher<br />

scratch resistance.<br />

Key words: MDF board, UV acrylic lacquer, composition, hot spray, coating, adherence, impact resistance,<br />

scratch resistance<br />

INTRODUCTION<br />

In the first part <strong>of</strong> this article (Lis, Kryst<strong>of</strong>iak and Proszyk 2010), were presented results<br />

<strong>of</strong> the resistance upon <strong>of</strong> the warm- and cold liquids action. <strong>of</strong> coatings from acrylic UV<br />

lacquers, with different composition within the range <strong>of</strong> coatings substances. About the<br />

usability <strong>of</strong> lacquer coatings under certain conditions uses, in the essential degree decides their<br />

adherence to the substrate and resistance on mechanical factors, first <strong>of</strong> all impact and scratch<br />

resistance (Brewis and Critchlow 2002, Budzi�ski 2006, Anonymous 2008a, b, Lis and<br />

Kryst<strong>of</strong>iak 2010, Syka and Paradowska 2010). Within the framework <strong>of</strong> the continuation <strong>of</strong><br />

above subject were carried out further investigations upon <strong>of</strong> the mechanical properties <strong>of</strong><br />

coatings, determining their adherence to substrate and the impact and scratch resistance.<br />

EXPERIMENTS<br />

Preparation <strong>of</strong> lacquer coatings for experiments in first part <strong>of</strong> this article was described<br />

(Lis, Kryst<strong>of</strong>iak and Proszyk 2010). Estimation <strong>of</strong> the adherence <strong>of</strong> lacquer coatings to the<br />

substrate with the pull-<strong>of</strong>f method was carried out, exerting the failure loading with the<br />

hydraulic method acc. to the procedure described in PN-EN ISO 4624 and PN-EN 24624, with<br />

the use <strong>of</strong> the PostiTest® tester. Before the accession to the investigation on tested surfaces<br />

were glued measuring-stamps (diameter 20 mm), using two-component, monosilane - epoxy<br />

adhesive with trade name JOWAT 690.00. After 24 h <strong>of</strong> conditioning time were made round<br />

them incisions by means <strong>of</strong> the circular cutter, then were placed it in the measuring-head <strong>of</strong> the<br />

apparatus, subjecting <strong>of</strong> loading. Delaminating images at failure loadings were evaluated with<br />

the visual manner consider the scale <strong>of</strong> estimations contracted in cited above standards.<br />

Investigations <strong>of</strong> the impact resistance <strong>of</strong> lacquer coatings was carried out acc. to the procedure<br />

described in PN-93/F-06001/03, using the prototype apparatus PUD-1 (DOZAFIL Polifarb<br />

Wroc�aw). 5 attempts for every height was from which removed weight: 10, 25, 50, 100, 200,<br />

400 mm were performed. Researches <strong>of</strong> scratch resistance was performed with Clemens<br />

apparatus acc. to PN-65/C-81527, consisting in to the qualification <strong>of</strong> the peak load <strong>of</strong> the<br />

graver at which does not follow the exposure <strong>of</strong> the surfaces.<br />

454


RESULTS<br />

Results <strong>of</strong> the adherence <strong>of</strong> lacquer coatings to the substrate, together with the<br />

interpretation <strong>of</strong> disconnections mechanisms at failure loadings were took down in Table 1.<br />

Table 1. Results <strong>of</strong> the adherence <strong>of</strong> lacquer coatings to MDF boards together with kinds <strong>of</strong> disconnections<br />

mechanisms<br />

Marking <strong>of</strong><br />

lacquers<br />

Number <strong>of</strong><br />

samples<br />

Adherence<br />

[MPa]<br />

Xav<br />

Kind <strong>of</strong> disconnection<br />

(scale acc. to PN-EN<br />

ISO 4624)<br />

1 1.50 100A<br />

2 0.58 100A<br />

3 1.91 95A,5-/Y<br />

4 1.82 100A<br />

85/14<br />

5<br />

6<br />

1.73<br />

2.06<br />

1.41<br />

95A,5-/Y<br />

100A<br />

7 1.77 80A,20-/Y<br />

8 0.65 100A80A,20-/Y<br />

9 0.60 100A<br />

10 1.47<br />

90A,10-/Y<br />

1 0.62 90A,10-/Y<br />

2 0.51 100A<br />

3 1.71 100A<br />

4 1.58 100A<br />

85/15<br />

5<br />

6<br />

1.81<br />

0.66<br />

1.36<br />

100A<br />

100A<br />

7 2.14 50A,50-/Y<br />

8 2.10 90A,10-/Y<br />

9 0.83 100A<br />

10 1.66<br />

100A<br />

Average values <strong>of</strong> the adherence parameter <strong>of</strong> coatings from tested lacquers placed her<br />

on the level <strong>of</strong> the values fully comparable. However analysed data were characterized with<br />

the enough significant scattering, which was due delaminating itself the MDF board at failure<br />

loadings. Means that, the adherence <strong>of</strong> coatings to the substrate was fully satisfying, exceed<br />

<strong>of</strong> the cohesion forces <strong>of</strong> MDF and a most weak places <strong>of</strong> the analysed arrangement was the<br />

substrate. Results <strong>of</strong> the impact resistance <strong>of</strong> lacquer coatings were presented in Table 2.<br />

Table 2. Results <strong>of</strong> investigations <strong>of</strong> impact resistance <strong>of</strong> lacquer coatings<br />

High <strong>of</strong> impact<br />

Marking <strong>of</strong> lacquers<br />

[mm]<br />

Estimation (scale acc. to PN-EN ISO 4624)<br />

Partially Final<br />

10 4,4,4,4,4 4,4,4,4,4 4,4,4,4,4 4<br />

25 4,4,4,4,4 4,4,4,4,4 4,4,4,4,4 4<br />

85/14<br />

50<br />

100<br />

3,3,4,3,3 3,3,3,3,3 3,3,3,3,4<br />

3,4,3,3,3 3,3,3,3,3 3,2,3,3,2<br />

3<br />

3<br />

200 2,3,2,2,2 2,2,2,2,2 2,2,3,2,2 2<br />

400 1,1,1,1,1 1,1,1,1,1 1,1,1,1,1 1<br />

10 4,4,4,4,4 4,4,4,4,4 4,4,4,4,4 4<br />

25 4,4,4,4,4 4,4,4,4,4 4,4,4,4,4 4<br />

85/15<br />

50<br />

100<br />

4,4,4,4,4 3,4,3,3,3 4,3,4,4,4<br />

2,3,3,3,3 3,3,3,3,3 3,3,3,3,3<br />

4<br />

3<br />

200 2,2,2,3,3 3,3,3,2,2 2,2,2,2,2 2<br />

400 1,1,1,1,1 1,1,1,1,1 1,1,1,1,1 1<br />

455


The general <strong>of</strong> analysis data proves, that coatings from tested lacquers, regardless <strong>of</strong><br />

their composition, were characterized with the very low resistance on impact stresses. Very<br />

unfavorably tooked coatings after the impact <strong>of</strong> the ball from the highest height 400 mm, for<br />

which practically the thing taking, it was stated the lack resistance on this stresses. The<br />

relatively low resistance on level <strong>of</strong> the estimation 2 was noted down for coatings at the<br />

height <strong>of</strong> the impact 200 mm. In the equality circuit tested lacquer coatings formed on the<br />

MDF surfaces, showed very low, but fully comparable impact resistance.<br />

Results <strong>of</strong> investigations <strong>of</strong> the scratch resistance <strong>of</strong> lacquer coatings were took down in<br />

Table 3.<br />

Table 3. Results <strong>of</strong> investigations <strong>of</strong> scratch resistance <strong>of</strong> lacquer coatings<br />

Marking <strong>of</strong> Number <strong>of</strong><br />

Scratch resistance [g]<br />

lacquers samples Partially Final<br />

1 1400<br />

85/14<br />

2 1550<br />

1500<br />

3 1550<br />

1 1000<br />

85/15<br />

2 1250<br />

1150<br />

3 1200<br />

Evaluating the scratch resistance <strong>of</strong> finishing’s it was stated, that a little better<br />

properties in this regard were characterized coatings from 85/14 lacquer, for which the<br />

average value <strong>of</strong> loading <strong>of</strong> the graver not causing the exposure <strong>of</strong> the substrate was shaped<br />

on the level 1500 g, however for 85/15 product amounted 1150 g.<br />

CONCLUSIONS<br />

1. Coatings regardless <strong>of</strong> the top UV acrylic lacquer with different composition were<br />

characterized comparable value parameters, within the range both <strong>of</strong> adherence to the<br />

substrate and impact resistance.<br />

2. Coatings from lacquer containing additionally in their composition, chemical<br />

compound in form tris (2-hydroxyethyl)isocyanurate-triacrylate showed the higher<br />

scratch resistance.<br />

3. Tested both UV acrylic lacquers can find the application in hot spraying technic in<br />

furniture industry for finishing <strong>of</strong> surfaces <strong>of</strong> boards fulfilling not working functions,<br />

so subject on the reasonable influence <strong>of</strong> mechanical factors.<br />

REFERENCES<br />

1. ANONYMOUS, 2008a: Technologia w zgodzie z natur�.<br />

http://www.plantag.pl/dokumenty/PLANTAG.pdf.<br />

2. ANONYMOUS, 2008b: Techniki radiacyjne intensywnego utwardzania lakierów, farb<br />

w ultrafiolecie oraz w podczerwieni - maszyny drukarskie, sitodruk, opakowania.<br />

http://www.mikon.waw.pl/pol/tr.htm<br />

3. BREWIS D. M., CRITCHLOW G. W., 2002: The use <strong>of</strong> surface analytical techniques to<br />

understanding adhesion performance. JOCCA Part B 85 (1); 39-47.<br />

4. BUDZI�SKI A. 2006: UV dla praktyków. Kilka wybranych zagadnie� zwi�zanych z<br />

lakierowaniem drewna. (dodatek specjalny do czasopisma) Lakiernictwo Przemys�owe.<br />

Uszlachetnianie powierzchni drewna cz.1, Wydawnictwo GOLDMAN Tczew; 58-59.<br />

5. LIS B., KRYSTOFIAK T., 2010: Badania adhezji pow�ok lakierowych do drewna.<br />

Maksymalna przyczepno��. (dodatek specjalny do czasopisma) Lakiernictwo<br />

456


Przemys�owe. Uszlachetnianie powierzchni drewna cz.2, Wydawnictwo GOLDMAN<br />

Tczew; 44-46.<br />

6. LIS B., KRYSTOFIAK T., PROSZYK S., 2010: Studies <strong>of</strong> the resistance upon some<br />

factors <strong>of</strong> UV acrylic lacquer coatings on MDF boards. Part I. Resistance <strong>of</strong> heat and<br />

cold liquid action. Ann. WULS.-<strong>SGGW</strong>. For. and Wood Technol., 71; 450-453.<br />

7. SYKA A., PARADOWSKA M.; 2010: Ekologiczne lakiery niskoemisyjne. Trwa�a<br />

pow�oka. dodatek specjalny do czasopisma Lakiernictwo Przemys�owe. Uszlachetnianie<br />

powierzchni drewna cz.2, Wydawnictwo GOLDMAN Tczew; 46-49.<br />

Streszczenie: Badania odporno�ci na wybrane czynniki pow�ok z akrylowych lakierów UV na<br />

p�ytach MDF. Cz.2. Czynniki mechaniczne. Badano w�a�ciwo�ci odporno�ciowe pow�ok na<br />

bazie 2 nawierzchniowych akrylowych lakierów UV, przeznaczonych dla meblarstwa, do<br />

konwencjonalnego nak�adania walcami oraz natryskowymi metodami w wersji na gor�co<br />

(60°C), o zró�nicowanym sk�adzie w zakresie substancji pow�okotwórczych i identycznym<br />

rodzaju zastosowanych fotoinicjatorów oraz �rodków pomocniczych. Ocen� przyczepno�ci<br />

pow�ok lakierowych do pod�o�a przeprowadzono metod� odrywow�, wywieraj�c obci��enie<br />

niszcz�ce sposobem hydraulicznym zgodnie z procedur� opisan� w PN-EN ISO 4624 oraz<br />

PN-EN 24624, przy u�yciu testera PostiTest®. Odporno�� pow�ok na uderzenie okre�lano<br />

wg PN 93/F06001/03, za� na zarysowanie metod� Clemena wg z PN-65/C-81527.<br />

Stwierdzono, �e testowane wyko�czenia bez wzgl�du na sk�ad substancji pow�okotwórczej<br />

charakteryzowa�y si� porównywaln� przyczepno�ci� do pod�o�a, która determinowana by�a<br />

odporno�ci� p�yt MDF na rozwarstwianie. Wyko�czenia lakierowe wykaza�y tak�e zbli�on�<br />

odporno�� na uderzenie. Pow�oki z lakieru w sk�adzie którego oprócz diakrylanu glikolu<br />

dipropylenowego i systemu hybrydowego poliol - polimer akrylowy, dodatkowo<br />

zastosowano �rodek sieciuj�cy na bazie zwi�zku chemicznego w postaci tris (2hydroksyetylo)<br />

izocyjanuranu-triakrylowego wykaza�y wyra�nie wy�sz� odporno�� na<br />

zarysowanie.<br />

Corresponding authors:<br />

Barbara Lis, Tomasz Kryst<strong>of</strong>iak Stanis�aw Proszyk<br />

Katedra Klejenia i Uszlachetniania Drewna<br />

Uniwersytet Przyrodniczy w Poznaniu<br />

ul. Wojska Polskiego 38/42, 60-627 Pozna�, Poland<br />

e-mail: blis@up.poznan.pl, tomkrys@up.poznan.pl, sproszyk@up.poznan.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 458-461<br />

(Ann. WULS – <strong>SGGW</strong>, For. and Wood Technol. 71, 2010)<br />

Influence <strong>of</strong> thermal aging <strong>of</strong> veneering boards finished PUR lacquers in<br />

HC technology upon coatings properties. Part III. Resistance to thermal<br />

and chemical factors<br />

BARBARA LIS, TOMASZ KRYSTOFIAK, STANIS�AW PROSZYK, AGNIESZKA<br />

WO�NIAK<br />

Department <strong>of</strong> Gluing and Finishing <strong>of</strong> Wood, Pozna� <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Abstract: Influence <strong>of</strong> thermal aging <strong>of</strong> veneering boards finished PUR lacquers in HC technology upon<br />

coatings properties. Part II. Resistance to thermal and chemical factors. Determined resistance <strong>of</strong> thermal<br />

(steam action acc. to PN-88/F-06100/06) and chemical factors (cold liquid action acc. to PN-EN 12720) <strong>of</strong><br />

lacquer coatings from PUR lacquers applied in HC technology and then protected with layers <strong>of</strong> top UV acrylic<br />

lacquers with various gloss degree. Investigations were done after 3, 6, and 9 cycles <strong>of</strong> thermal aging in version<br />

<strong>of</strong> changes temperatures acc. to PN-88/F-06100/07 (method A). It was stated among others, that tested PUR HC<br />

lacquer coatings without respects both on the kind <strong>of</strong> the substrate, as and top layer, comparable and at this<br />

stabile in conditions <strong>of</strong> the thermal aging with the were characterized.<br />

Key words: particleboard, wood veneer, PUR HC lacquer, top acrylic lacquer, coating, property, thermal aging,<br />

resistance, thermal factor, chemical factor<br />

INTRODUCTION<br />

In previous parts <strong>of</strong> this article were presented results <strong>of</strong> aesthetic-decorative features<br />

and resistance upon some mechanical factors <strong>of</strong> coatings with PUR lacquers applied in HC<br />

technology. The course <strong>of</strong> these parameters <strong>of</strong> lacquer coatings vs. number <strong>of</strong> thermal aging<br />

cycle were determined (Lis et al. 2009a,b). To basic abiotic factors causing the decrease <strong>of</strong><br />

values <strong>of</strong> functionality lacquer coatings is utility properties. From among them favor one can<br />

essentially connected factors is resistance <strong>of</strong> lacquer coatings upon thermal and chemicals<br />

factors abrasion, impact and scratch (Krzoska-Adamczak and Nowaczyk-Organista 2006).<br />

Continuing the initiated studies was prepared article, whose an aim was estimation <strong>of</strong><br />

resistance <strong>of</strong> PUR HC lacquer coatings with UV acrylic TC layers at various gloss degree on<br />

selected thermal (steam action) and chemical (cold liquids action) factors with determination<br />

<strong>of</strong> the course <strong>of</strong> these parameters in condition <strong>of</strong> thermal aging.<br />

EXPERIMENTS<br />

Preparation <strong>of</strong> the substrate and lacquer coatings was described in the first part <strong>of</strong> this<br />

paper (Lis et al. 2009a). The test <strong>of</strong> resistance to steam action was made acc. to PN-88/F-<br />

06100/06 on samples with dimensions 70x70 mm, which were put on the holes <strong>of</strong> the cover a<br />

tank filled with boiled water. Samples were subjected to steam action during 1 h. Then<br />

surfaces were dried with a blotter and conditioned during 24 h and then evaluation was made<br />

with estimation 5-degree scale. Resistance <strong>of</strong> surface to liquids action was determined with<br />

chemical test described in PN-EN 12720 standard and result expressed in 5 degree scale (5no<br />

visible changes <strong>of</strong> surface, 1- structure changes). Selected agents are specified in Table 1.<br />

458


Table 1. Kind <strong>of</strong> cold liquids used to experiments with their adopted marking<br />

Marking <strong>of</strong> liquid Kind <strong>of</strong> liquid<br />

Al. Ethyl alcohol 48%<br />

Ac. Acetone<br />

Sp. Black currant juice (from Herbapol company)<br />

Kr. Instant c<strong>of</strong>fee (trade name Jacobs )<br />

Kc. Citric acid 10%<br />

Liquids were applied with the use <strong>of</strong> blotting paper <strong>of</strong> mass weight 400-500 g/m 2 and<br />

diameter 25 mm. Pieces <strong>of</strong> blotting paper were dipped for 30 s in particular liquids and then<br />

were put on tested surfaces and covered with vessel for weighing tightened with paraffin.<br />

After specified time both utensils and pieces <strong>of</strong> blotting paper were removed and then samples<br />

were conditioned for 12-24 h. Then the place <strong>of</strong> the test was cleaned with a cloth soaked with<br />

a cleaning agent and distillated water. An evaluation <strong>of</strong> results was made using descriptivenumerical<br />

grade scale acc. to PN-EN 12720.<br />

Investigations were done after 3, 6, 9 cycles <strong>of</strong> thermal aging in the version <strong>of</strong><br />

changing temperatures acc. to PN-88/F-06100/07 (method A).<br />

RESULTS<br />

Results <strong>of</strong> investigations on the steam action <strong>of</strong> HC PUR coatings in Table 2 were presented.<br />

Table 2. Results <strong>of</strong> investigations <strong>of</strong> resistance <strong>of</strong> steam action <strong>of</strong> HC PUR coatings with TC 817.2 and 817.5 top<br />

lacquers on various substrates in the function <strong>of</strong> number <strong>of</strong> cycles <strong>of</strong> changing temperature<br />

Kind <strong>of</strong> top lacquers<br />

Kind <strong>of</strong><br />

veneers<br />

Beech<br />

Number<br />

<strong>of</strong> cycles<br />

817.2 817.5<br />

Number <strong>of</strong> samples<br />

1 2 3 Total 1 2 3 Total<br />

Note (scale acc. to PN-88/F-06100/06)<br />

0 3 3 3 3 3 3 3 3<br />

3 3 3 3 3 3 3 3 3<br />

6 3 3 3 3 3 3 3 3<br />

9 3 3 3 3 3 3 3 3<br />

Oak 0 3 3 4 3 4 4 4 4<br />

3 3 3 3 3 5 4 4 4<br />

6 4 4 3 4 4 4 4 4<br />

9 5 5 5 5 5 5 5 5<br />

Birch<br />

Nut<br />

0<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

Generally it can be stated, that tested coatings were characterized low (estimation 3-4),<br />

and at this with the comparable resistance on the steam action accepting according to the<br />

scale contracted in standard. On coatings formed on the beech wood veneer was observed<br />

apparently clearly darkening, on <strong>of</strong> nut - and birch wood lighting up, instead on <strong>of</strong> oak large<br />

cracks and knots. These changes could get out <strong>of</strong> the kind <strong>of</strong> the substrate, his composities,<br />

porosities etc. Besides during variable temperatures action, as result <strong>of</strong> thermal stresses in<br />

coatings, could come into being microcracks making possible diffusions <strong>of</strong> the steam inside<br />

substrate. It can observed, that in function <strong>of</strong> the number <strong>of</strong> aging cycles, the coatings<br />

showed the large stability. Only in some cases followed the height <strong>of</strong> the resistance for 1<br />

degree with relation to the control samples.<br />

459


In Table 3 were placed results <strong>of</strong> investigations <strong>of</strong> the resistance <strong>of</strong> lacquer coatings on<br />

the cold liquids action and the course <strong>of</strong> these parameter in function <strong>of</strong> the number <strong>of</strong> cycles<br />

<strong>of</strong> changing temperatures.<br />

Table 3. Results <strong>of</strong> the resistance on the cold liquids action at the different influence time<br />

<strong>of</strong> HC coatings with TC 817.1 lacquer on various substrates<br />

Action<br />

time [h]<br />

Marking <strong>of</strong><br />

liquid (acc. to<br />

Table 1)<br />

Kind <strong>of</strong> veneers<br />

beech oak birch nut<br />

Note (scale acc. to PN EN 12720)<br />

24 Ac. 4 5 5 4<br />

Ac. 5 - *) - 4<br />

16<br />

Sp. 4 4 4 4<br />

Kr. 4 4 4 4<br />

Al. 4 4 4 4<br />

6<br />

Ac.<br />

Sp.<br />

-<br />

4<br />

-<br />

4<br />

-<br />

4<br />

5<br />

5<br />

Kr. 4 4 4 5<br />

Al. 5 5 5 5<br />

1<br />

Sp.<br />

Kr.<br />

5<br />

5<br />

5<br />

5<br />

5<br />

5<br />

-<br />

-<br />

Kc. 5 5 5 5<br />

*) lack <strong>of</strong> measures<br />

Table 4. Results <strong>of</strong> the resistance on the cold liquids action at the different time <strong>of</strong> HC coatings with<br />

top lacquers on various substrates in the function <strong>of</strong> the number <strong>of</strong> cycles <strong>of</strong> changing temperature<br />

Marking<br />

Kind <strong>of</strong> top lacguers<br />

Time<br />

[h]<br />

Number<br />

<strong>of</strong><br />

cycles<br />

<strong>of</strong><br />

liquids<br />

(acc. to<br />

Table 1) beech<br />

817.2 817.5<br />

Kind <strong>of</strong> veneers<br />

oak birch nut beech oak birch<br />

Note (acc. to PN EN 12720)<br />

nut<br />

0 Ac. 4 5 5 4 4 5 5 4<br />

24<br />

3<br />

6<br />

Ac.<br />

Ac.<br />

5<br />

5<br />

5<br />

5<br />

5<br />

5<br />

5<br />

5<br />

5<br />

5<br />

5<br />

5<br />

5<br />

5<br />

5<br />

5<br />

9 Ac. 5 5 5 5 5 5 5 5<br />

Ac. 5 - - 5 5 - - 5<br />

16 0 Sp. 4 4 4 4 4 4 4 4<br />

Kr. 4 4 4 4 4 4 4 4<br />

Al. 4 4 4 4 4 4 4 4<br />

0 Sp. 5 5 5 5 5 5 5 5<br />

Kr. 5 5 5 5 5 5 5 5<br />

3 Sp. 5 5 5 5 5 5 5 5<br />

6<br />

Kr. 5 5 5 5 5 5 5 5<br />

6 Sp. 5 5 5 5 5 5 5 5<br />

Kr. 5 5 5 5 5 5 5 5<br />

9 Sp. 5 5 5 5 5 5 5 5<br />

Kc. 5 5 5 5 5 5 5 5<br />

0 Al. 5 5 5 5 5 5 5 5<br />

Sp. 5 5 5 5 5 5 5 5<br />

1 3 Al. 5 5 5 5 5 5 5 5<br />

6 Al. 5 5 5 5 5 5 5 5<br />

9 Al. 5 5 5 5 5 5 5 5<br />

3 Sp. 5 5 5 5 5 5 5 5<br />

20 min 6 Sp. 5 5 5 5 5 5 5 5<br />

9 Sp. 5 5 5 5 5 5 5 5<br />

460


It was stated, that on obtained results the most essential influence had maked the kind<br />

and the influence time <strong>of</strong> testing liquid, smaller while the meaning had growing old <strong>of</strong><br />

coatings. Analysing results it were stated that only acetone, from taken into account on the<br />

work liquids, had not caused changes on coatings formed on the veneer <strong>of</strong> the oak and the<br />

birch even after 24 h the contact. Remaining instead resources showed negative impact on<br />

evaluated surfaces, causing slight changes, being qualified to the estimation 4. However the<br />

shortening <strong>of</strong> the time <strong>of</strong> their influence to 16 h, in most cases caused the rise <strong>of</strong> the note for 1<br />

degree. With the strong activity lowering values aesthetical-decorative <strong>of</strong> coatings was<br />

characterized 10% lemon-acid whose testing one finished after 20 min influence.<br />

RECAPITULATION<br />

Tested PUR HC lacquer coatings protected with layers <strong>of</strong> top UV acrylic lacquers with<br />

various gloss without respects both on the kind <strong>of</strong> the substrate, as and top layers, were<br />

characterized comparable and stabile properties in the range <strong>of</strong> steam- and cold liquid actions<br />

in conditions <strong>of</strong> the thermal aging.<br />

REFERENCES<br />

1. KRZOSKA-ADAMCZAK Z., NOWACZYK-ORGANISTA M., 2006: Badania<br />

powierzchni mebli metody i wymagania, dodatek specjalny do czasopisma<br />

Lakiernictwo Przemys�owe, Uszlachetnianie powierzchni drewna cz. 1, Wydawnictwo<br />

GOLDMAN Tczew; 59-62.<br />

2. LIS B., KRYSTOFIAK T., PROSZYK S., WO�NIAK A., 2009a: Influence <strong>of</strong><br />

thermal aging <strong>of</strong> veneering boards finished with PUR lacquers in HC technology upon<br />

coatings properties. Part I. Aesthetic-decorative features, Ann. WULS.-<strong>SGGW</strong>. For.<br />

and Wood Technol., 68; 476--480.<br />

3. LIS B., KRYSTOFIAK T., PROSZYK S., WO�NIAK A., 2009b: Influence <strong>of</strong><br />

thermal aging <strong>of</strong> veneering boards finished with PUR lacquers in HC technology upon<br />

coatings properties. Part II. Resistance to mechanical factors, Ann. WULS.-<strong>SGGW</strong>.<br />

For. and Wood Technol., 68; 481--484.<br />

Streszczenie: Wp�yw termicznego starzenia p�yt okleinowanych wyko�czonych lakierami<br />

PUR w technologii HC na w�a�ciwo�ci pow�ok. Cz. II. Odporno�� na czynniki termiczne<br />

oraz chemiczne. Dla pow�ok przygotowanych na elementach p�ytowych oklejonych<br />

naturalnymi okleinami (brzoza, buk, d�b i orzech), a nast�pnie wyko�czonych w technologii<br />

PUR HC z dodatkow� zabezpieczaj�c� warstewk� nawierzchniowego lakieru akrylowego UV<br />

o zró�nicowanym stopniu po�ysku, okre�lono odporno�� na par� wodn� oraz zimne p�yny.<br />

Próbki poddawano termicznemu starzeniu w funkcji liczby cykli zmiennych temperatur wg<br />

PN-88/F-06100/07 (metoda A). Odporno�� pow�ok na dzia�anie pary wodnej wykonano wg<br />

PN-88/F-06100/06, natomiast na zimne p�yny wg PN-EN 12720. W podsumowaniu<br />

stwierdzono, �e testowane wyko�czenia bez wzgl�du na rodzaj pod�o�a oraz zastosowanej<br />

warstwy nawierzchniowej, charakteryzowa�y si� w warunkach cykli termicznego starzenia<br />

porównywaln� i stabiln� odporno�ci� na dzia�anie pary wodnej oraz zimnych p�ynów.<br />

Corresponding authors:<br />

Barbara Lis, Tomasz Kryst<strong>of</strong>iak, Stanis�aw Proszyk, Agnieszka Wo�niak<br />

Katedra Klejenia i Uszlachetniania Drewna<br />

Uniwersytet Przyrodniczy w Poznaniu<br />

ul. Wojska Polskiego 38/42, 60-627 Pozna�, Poland<br />

e-mail: blis@up.poznan.pl, tomkrys@up.poznan.pl, sproszyk@up.poznan.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 462-466<br />

(Ann. WULS – <strong>SGGW</strong>, For. and Wood Technol. 71, 2010)<br />

Influence <strong>of</strong> thermal aging <strong>of</strong> veneering boards finished <strong>of</strong> PUR lacquers in<br />

HC technology upon coating properties. Part IV. Wettability and adherence<br />

BARBARA LIS, TOMASZ KRYSTOFIAK, STANIS�AW PROSZYK, AGNIESZKA<br />

WO�NIAK<br />

Department <strong>of</strong> Gluing and Finishing <strong>of</strong> Wood, Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Abstract: Influence <strong>of</strong> thermal aging <strong>of</strong> veneering boards finished <strong>of</strong> PUR lacquers in HC technology upon<br />

coating properties. Part IV. Wettability and adherence. An experimental studies were to determine the effect <strong>of</strong><br />

thermal aging <strong>of</strong> veneering boards finished with PUR lacquers applied in HOT COATING (HC) technology and<br />

then protected with top UV acrylic lacquers (TC) at various gloss degree upon adherence to substrates and<br />

wettability <strong>of</strong> obtain finishing’s. Measurement <strong>of</strong> contact angle (�) and on the basis <strong>of</strong> this values were<br />

calculated the following parametres: surface free energy (�s), work <strong>of</strong> adhesion (Wa) and surface tension on the<br />

interface (�SL). Investigations were done appropriate after 3, 6, and 9 cycles <strong>of</strong> thermal aging in version <strong>of</strong><br />

changes temperatures acc. to PN-88/F-06100/07 (method A). On the basis <strong>of</strong> the obtained results it was stated,<br />

among others, that tested tested lacquer coatings depending on the kind <strong>of</strong> the substrate and the top layer were<br />

characterized with proper relations within the range <strong>of</strong> values <strong>of</strong> the surface free energy (45÷48 mJ/m²), with the<br />

distinct domination <strong>of</strong> the dispersion share (31÷33 mJ/m²) and with pr<strong>of</strong>itable parameters with reference to the<br />

work <strong>of</strong> adhesion (90÷110 mJ/m²), not fulfilling however the criterion <strong>of</strong> the minimization <strong>of</strong> energy on the<br />

interface <strong>of</strong> phases. The adherence <strong>of</strong> lacquer coatings to the substrate placed herself within the range values<br />

0.5÷1.6 MPa, being exclusively qualified with the delamination resistance <strong>of</strong> particleboard.<br />

Key words: particleboard, natural veneer, PUR HC lacquer, top UV layer, coating, thermal aging, adherence,<br />

contact angle, free surface energy, work <strong>of</strong> adhesion, surface tension on the interface<br />

INTRODUCTION<br />

In previous parts <strong>of</strong> this article were presented results <strong>of</strong> aesthetic-decorative features<br />

and resistance upon some mechanical-, thermal- and chemical factors <strong>of</strong> coatings with PUR<br />

lacquers applied in HC technology. The course <strong>of</strong> these parameters <strong>of</strong> lacquer coatings vs.<br />

number <strong>of</strong> thermal aging cycle were determined (Lis et al. 2009a,b, 2010). About very<br />

important utylity-functional properties, and also resistance <strong>of</strong> lacquer coatings are decided by<br />

their adhesion to the substrate (Lis and Kryst<strong>of</strong>iak 2010). This parameter can be consider in<br />

relations within the range <strong>of</strong> surface forces being in contact materials according with<br />

assumption <strong>of</strong> the adsorption theory <strong>of</strong> adhesion. On the basis <strong>of</strong> this theory is possible the<br />

qualification <strong>of</strong> the theoretically maximum adhesion at the foundation that all influences <strong>of</strong><br />

surface forces will become put-upon. Values <strong>of</strong> the contact angle (�) <strong>of</strong> the surface <strong>of</strong><br />

coatings, effecting upon <strong>of</strong> the surface free energy (�s), work <strong>of</strong> adhesion (Wa) and the<br />

surface tension on the interface (�SL) with separating <strong>of</strong> dispersion and polar shares.<br />

In the article was presented chosen results from the scope <strong>of</strong> investigations <strong>of</strong> the<br />

adherence <strong>of</strong> lacquer coatings to the substrate with <strong>of</strong> pull-<strong>of</strong>f methods and foundations <strong>of</strong><br />

adsorption theory <strong>of</strong> surface phenomena occured in wood-lacquer coatings system with the<br />

calculation on the basis <strong>of</strong> measurement values <strong>of</strong> angle �, such parameters, how: �S, Wa and<br />

�SL, together with their dispersion and polar shares during the thermal aging <strong>of</strong> lacquer<br />

coatings in the procedure <strong>of</strong> cycles <strong>of</strong> changing temperature.<br />

EXPERIMENTS<br />

Preparation <strong>of</strong> lacquer coatings to investigations was given in study Lis et al. 2009a.<br />

Measurement <strong>of</strong> the contact angle � the surface <strong>of</strong> lacquer coatings was passed for the<br />

distilled water as wetting liquid, acc. to the procedure PN-EN 828. Water was applied with<br />

462


the chromatographic syringe in the form <strong>of</strong> drops about the volume 3.5 �l (10 repeats) and<br />

was made after the outflow <strong>of</strong> 5 s measurements the contact angle, with the specialist<br />

microscope with the goniometric equipment. On the basis <strong>of</strong> measurement values <strong>of</strong> the<br />

angle �, at the regard well known from the literature theoretical formulas (Potente and Kr�ger<br />

1978) was marked in turn values �S, Wa, �SL together with dispersion and polar shares (. In<br />

turn investigations <strong>of</strong> the adherence was performed acc. to EN 4624 procedure. For gluing <strong>of</strong><br />

aluminum-measuring stamps was used 2K hybride version <strong>of</strong> silane-epoxy adhesive. After 7<br />

day <strong>of</strong> conditioning time <strong>of</strong> samples (20/50), was qualified the adherence in the SCHOPPER<br />

testing-machine (ZDM 2.5/91 type), disposed on the range 500 daN (5 mm/min).<br />

Investigations were performed for lacquer coatings thermally aged in artificial conditions, in<br />

function <strong>of</strong> number <strong>of</strong> cycles <strong>of</strong> changing temperatures acc. to PN-88/F-06100/07 (method A),<br />

properly 3, 6 and 9.<br />

RESULTS<br />

On the basis <strong>of</strong> measurement angle � was calculated parameters: �S, Wa and �SL<br />

together with their dispersion and polar shares. On Fig. 1÷2 in the form <strong>of</strong> examplepresentations<br />

were pictured the course <strong>of</strong> particular adhesion parameters for PUR HC coatings<br />

with the layer from acrylic TC lacquer formed on beech wood veener.<br />

Surface free energy [mJ/m 2 ]<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Surface free energy with shares:<br />

�S d<br />

�S p �S TC 817.2 TC 817.5<br />

0 3 6 9 . 0 3 6 9<br />

Number <strong>of</strong> aging cycles<br />

Fig.1. The course <strong>of</strong> values <strong>of</strong> surface free energy and its dyspersion and polar shares <strong>of</strong> PUR HC coatings with<br />

TC (817.2 and 817.5) lacquers on the beech wood veneer vs. number <strong>of</strong> cycles <strong>of</strong> changing temperatures<br />

The general estimation <strong>of</strong> results <strong>of</strong> �s (45÷48 mJ/m 2 ) parameter showed that values for<br />

each finishing’s were nearing, containing themselves within the range 30,90÷32,80 mJ/m².<br />

Instead the component �S p had considerably lower values which in the function <strong>of</strong> the number<br />

<strong>of</strong> carried out aging tests lowered, showing consequently on the progressive hydrophobic<br />

phenomena <strong>of</strong> the coatings. It was stated, that tested coatings had been characterized with<br />

high <strong>of</strong> Wa values within the range 90÷110 mJ/m², what in the light <strong>of</strong> literature data can be<br />

acknowledged too much pr<strong>of</strong>itable relations. In the function <strong>of</strong> the number <strong>of</strong> aging cycles<br />

followed the reduction <strong>of</strong> this parameter. In turn values �SL, for considered systems contained<br />

within the range 7÷16 mJ/m2, running away consequently from criteria foundations<br />

concerning <strong>of</strong> the minimum-energy on the interface <strong>of</strong> phases (�SL� 0) according. to which<br />

the interrelationship between lacquers and substrate is this more effective, to them is higher<br />

the value Wa and lower �SL (Liptáková and Kudela 1994). Results <strong>of</strong> the adherence <strong>of</strong><br />

463


coatings to chosen wood veneers and their course in the function <strong>of</strong> number <strong>of</strong> aging cycles<br />

were illustrated on the Fig. 3.<br />

Work <strong>of</strong> adhesion [mJ/m 2 ]<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Work <strong>of</strong> adhesion with shares:<br />

Wa<br />

Wad Wap TC 817.2<br />

0 3 6 9 . 0 3 6 9<br />

Number <strong>of</strong> aging cycles<br />

464<br />

TC 817.5<br />

Fig.2. The course <strong>of</strong> values <strong>of</strong> work <strong>of</strong> adhesion and its dyspersion and polar shares<br />

<strong>of</strong> PUR HC coatings with TC (817.2 and 817.5) lacquers on the beech wood<br />

veneers vs. number <strong>of</strong> cycles <strong>of</strong> changing temperatures<br />

Adherence [MPa]<br />

1,8<br />

1,6<br />

1,4<br />

1,2<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

Number <strong>of</strong> aging cycles:<br />

0<br />

3<br />

6<br />

TC 817.2 TC 817.5<br />

9<br />

oak beech . oak beech<br />

Kind <strong>of</strong> wood<br />

Fig.3. The course <strong>of</strong> adherence <strong>of</strong> PUR HC coatings with the layer <strong>of</strong> TC lacquer (817.2 and 817.5)<br />

to chosen wood veneers vs. <strong>of</strong> the number <strong>of</strong> cycles <strong>of</strong> changing temperatures<br />

The adherence <strong>of</strong> tested lacquer systems was shaped within the range <strong>of</strong> 0.5÷1.6 MPa<br />

values. Experimental data were characterized with the enough significant scattering, which<br />

was main due delamination <strong>of</strong> the particleboard, occurrent in the test <strong>of</strong> disconnection <strong>of</strong> the<br />

stamp, at failure stresses, both in presurface layers, as and central. Means this, that a most<br />

weak places in the considered arrangement systems was veneered board. On obtained values<br />

did not exert the influence also such parameters as the kind <strong>of</strong> the veneer, top TC lacquer,<br />

whether the number <strong>of</strong> cycles <strong>of</strong> the thermal aging.


CONCLUSIONS<br />

1. On the basis <strong>of</strong> criteria assumptions <strong>of</strong> the adsorption theory <strong>of</strong> adhesion <strong>of</strong> polymers<br />

to wood it can be stated, that tested lacquer coatings depending on the kind <strong>of</strong> the<br />

substrate and the top layer were characterized with proper relations within the range<br />

<strong>of</strong> values <strong>of</strong> the surface free energy (45÷48 mJ/m²), with the distinct domination <strong>of</strong> the<br />

dispersion share (31÷33 mJ/m²) and with pr<strong>of</strong>itable parameters with reference to the<br />

work <strong>of</strong> adhesion (90÷110 mJ/m²), not fulfilling however the criterion <strong>of</strong> the<br />

minimization <strong>of</strong> energy on the interface <strong>of</strong> phases.<br />

2. The adherence <strong>of</strong> tested lacquer coatings to the substrate placed herself within the<br />

range values 0.5÷1.6 MPa, being exclusively qualified with the delamination<br />

resistance <strong>of</strong> particleboard.<br />

REFERENCES<br />

1. LIS B., KRYSTOFIAK T., 2010: Badania adhezji pow�ok lakierowych do drewna.<br />

Maksymalna przyczepno��, dodatek specjalny do czasopisma Lakiernictwo<br />

Przemys�owe, Uszlachetnianie powierzchni drewna cz. 2, Wydawnictwo GOLDMAN<br />

Tczew; 44-46.<br />

2. LIS B., KRYSTOFIAK T., PROSZYK S., WO�NIAK A., 2009a: Influence <strong>of</strong> thermal<br />

aging <strong>of</strong> veneering boards finished with PUR lacquers in HC technology upon<br />

coatings properties. Part I. Aesthetic-decorative features, Ann. WULS.-<strong>SGGW</strong>. For.<br />

and Wood Technol., 68; 476-480.<br />

3. LIS B., KRYSTOFIAK T., PROSZYK S., WO�NIAK A., 2009b: Influence <strong>of</strong><br />

thermal aging <strong>of</strong> veneering boards finished with PUR lacquers in HC technology upon<br />

coatings properties. Part II. Resistance to mechanical factors, Ann. WULS.-<strong>SGGW</strong>.<br />

For. and Wood Technol., 68; 481-484.<br />

4. LIS B., KRYSTOFIAK T., PROSZYK S., WO�NIAK A., 2010: Influence <strong>of</strong> thermal<br />

aging <strong>of</strong> veneering boards finished with PUR lacquers in HC technology upon<br />

coatings properties. Part III. Resistance to thermal and chemical factors, Ann. WULS.-<br />

<strong>SGGW</strong>. For. and Wood Technol., 71; 458-461.<br />

5. POTENTE I., KRÜGER R., 1978: Bedeutung polarer disperser<br />

Oberflächenspannungsanteile von Plastomeren und Beschichtungsst<strong>of</strong>fen für die<br />

Haftfestigkeit. Farbe u. Lack 84 (2); 72-75.<br />

465


Streszczenie: Wp�yw termicznego starzenia p�yt okleinowanych wyko�czonych lakierami<br />

PUR w technologii HC na w�a�ciwo�ci pow�ok. Cz. IV. Zwil�alno�� i adhezja. Dla pow�ok<br />

przygotowanych w technologii PUR HC i dodatkowo zabezpieczonych lakierem akrylowym<br />

UV o ró�nym stopniu po�ysku, przeprowadzono badania przyczepno�ci metod� odrywow� wg<br />

EN 4624 oraz wykonano pomiary k�ta zwil�ania metod� mikroskopow� w warunkach<br />

statycznych. Na podstawie za�o�e� adsorpcyjnej teorii adhezji polimerów do drewna<br />

wyznaczono wybrane parametry (swobodna energia powierzchniowa, praca adhezji oraz<br />

napi�cie powierzchniowe na granicy faz wraz z ich sk�adowymi dyspersyjn� i polarn�).<br />

Stwierdzono, �e testowane pow�oki lakierowe w zale�no�ci od rodzaju pod�o�a oraz warstwy<br />

nawierzchniowej, charakteryzowa�y si� w�a�ciwymi relacjami w zakresie kszta�towania si�<br />

warto�ci swobodnej energii powierzchniowej (45÷48 mJ/m²), z wyra�n� dominacj� sk�adowej<br />

dyspersyjnej (31÷33 mJ/m²) oraz korzystnymi parametrami w odniesieniu do pracy adhezji<br />

(90÷110 mJ/m²), nie spe�niaj�c jednak�e kryterium minimalizacji energii na granicy faz.<br />

Przyczepno�� testowanych pow�ok lakierowych do pod�o�a plasowa�a si� w zakresie warto�ci<br />

0.5÷1.6 MPa, b�d�c wy��cznie uwarunkowana odporno�ci� na rozwarstwianie si� p�yt<br />

wiórowych.<br />

Corresponding authors:<br />

Barbara Lis, Tomasz Kryst<strong>of</strong>iak Stanis�aw Proszyk, Agnieszka Wo�niak<br />

Katedra Klejenia i Uszlachetniania Drewna<br />

Uniwersytet Przyrodniczy w Poznaniu<br />

ul. Wojska Polskiego 38/42, 60-627 Pozna�, Poland<br />

e-mail: blis@up.poznan.pl, tomkrys@up.poznan.pl, sproszyk@up.poznan.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 467-472<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71,2010)<br />

Strength analysis <strong>of</strong> layered wood composite<br />

ANDRZEJ MAKOWSKI<br />

Department <strong>of</strong> Engineering Mechanics and Thermal Techniques, Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Abstract: Strength analysis <strong>of</strong> layered wood composite. The article the discusses theoretical analysis and<br />

numerical verification <strong>of</strong> problems associated with calculations <strong>of</strong> strength parameters <strong>of</strong> a multi-layer wood<br />

laminate. The object <strong>of</strong> studies was a laminate subjected to under in-plane loading. Analytical calculations were<br />

carried out with the assistance <strong>of</strong> the method <strong>of</strong> classical lamination theory – assumptions typical for the theory<br />

<strong>of</strong> thin plates. Values <strong>of</strong> transformed stiffness and compliance matrices in on-axis and <strong>of</strong>f-axis configuration<br />

were determined for individual orthotropic layers. Results <strong>of</strong> the performed investigations were presented in the<br />

form <strong>of</strong> tables, diagrams and bitmaps <strong>of</strong> displacements and strains.<br />

Key words: finite elements method (FEM), wood composite, plywood, lamination theory.<br />

INTRODUCTION<br />

Wood, as a building material, has been used by man for centuries to execute a wide<br />

range <strong>of</strong> various constructions. It is a completely renewable material and, at the present time,<br />

due to rapidly shrinking resources <strong>of</strong> good raw materials, enjoys a growing demand. That is<br />

why, for a number <strong>of</strong> years now engineers and scientists alike have been looking for new<br />

materials based on wood <strong>of</strong> high strength parameters which could successfully compete with<br />

other building materials. Plywood can easily be considered in this group <strong>of</strong> materials.<br />

Plywood can be manufactured from different wood species <strong>of</strong> varying strength properties<br />

developed in the course <strong>of</strong> the production process [2]. Made <strong>of</strong> permanently combined layers,<br />

it can be included in the group <strong>of</strong> materials called composites <strong>of</strong> layered structure described as<br />

laminates. In practice, they can be found as flat boards with arbitrarily formed construction<br />

elements in layers taking into account directions <strong>of</strong> possible loads. Elastic properties <strong>of</strong><br />

laminates are affected by two factors: the kind <strong>of</strong> the applied material and the sequence <strong>of</strong><br />

individual layers [. Classical lamination theory utilising assumptions from the theory <strong>of</strong> thin<br />

plates is employed to analyse strength properties <strong>of</strong> a given composite.<br />

GENERAL PRINCIPLES AND ANALYTIC ASSUMPTIONS<br />

It is generally assumed that in a multilayer laminate, individual laminate layers are in a<br />

flat state <strong>of</strong> strains and Kirchh<strong>of</strong>f-Lovee hypothesis is adopted referring to the theory <strong>of</strong> thin<br />

plates and small displacements [1]. This means that shear strains in the plane perpendicular to<br />

the middle surface are omitted. Once we decide to confine ourselves to consider linear-elastic<br />

behaviour <strong>of</strong> plates within boundaries <strong>of</strong> Hooke’s law, it is necessary to adopt certain<br />

essential assumptions. We assume that, in the adopted model <strong>of</strong> layered plate, the connection<br />

between layers is ideal, strains perpendicular to mid-surface are negligible, out-<strong>of</strong>-plane shear<br />

strains are zero. There is continuity <strong>of</strong> displacements between layers, in other words there is<br />

no glide between them. Each layer possesses property <strong>of</strong> an orthotropic medium. Analysing<br />

interrelationships between displacements and strains in very thin orthotropic layers, we<br />

assume flat state <strong>of</strong> strains. In such case, constitutive relations are reduced to the following<br />

form:<br />

467


� 1<br />

�<br />

��<br />

� � 11<br />

11<br />

� � ���<br />

12<br />

��<br />

22 � �<br />

�<br />

� � E11<br />

��<br />

12 � �<br />

� 0<br />

��<br />

��<br />

21<br />

E22<br />

1<br />

E<br />

22<br />

0<br />

�<br />

0 �<br />

���<br />

11 �<br />

� �<br />

0<br />

�<br />

���<br />

22 �<br />

��<br />

�<br />

1 ��<br />

12 �<br />

�<br />

G12<br />

��<br />

E , and<br />

� E11<br />

� 21E22<br />

�<br />

�<br />

0 �<br />

��<br />

� 1��<br />

12�<br />

21 1��<br />

12�<br />

21<br />

11 �<br />

���<br />

11 �<br />

� � � �12E11<br />

E22<br />

��<br />

�<br />

��<br />

22 � �<br />

0 ��<br />

22 �<br />

� �<br />

�1��<br />

� �<br />

12�<br />

21 1 �12�<br />

21<br />

�<br />

�<br />

� �<br />

��12<br />

� 0 0 G ��<br />

12 �<br />

12<br />

�<br />

�<br />

�<br />

�<br />

(1)<br />

In both cases, we have symmetrical matrices in the function <strong>of</strong> engineer constants in<br />

which the first is known as the compliance matrix and the second as the stiffness matrix. By<br />

introducing the m=(1-�12�21) -1 dependence, the reduced stiffness matrix assumes the<br />

following form:<br />

� mE11<br />

m�<br />

12E22<br />

0 � �Q11<br />

Q12<br />

0 �<br />

�<br />

m E mE<br />

�<br />

�<br />

�<br />

Q Q<br />

�<br />

�<br />

� 21 11<br />

22 0<br />

� � 21 22 0<br />

�<br />

� �Q� ��<br />

0 0 G ��<br />

��<br />

Q �<br />

12 0 0 66 �<br />

(2)<br />

In short, constitutive relations can be written down as follows: {�} = [Q] -1 {�} or {�} =<br />

[Q]{�}. The compliance or stiffness matrix is determined by the following four independent<br />

material constants: E11, E22, �12, G12. These constants are associated with the main orthotropic<br />

directions <strong>of</strong> a given layer. Frequently, in many composites, main layer directions do not<br />

coincide with the directions <strong>of</strong> the global system <strong>of</strong> coordinates. The Cartesian global system<br />

<strong>of</strong> coordinates typically depends on the shape <strong>of</strong> the considered element or load directions.<br />

Seeking forms combining strains and deformations in both Cartesian coordinate systems<br />

turned against each other round one axis by any � angle, transformation matrices are<br />

employed. The transformation matrix for strains or deformations from one system to the other<br />

adopts the following form:<br />

� mE11<br />

m�<br />

12E22<br />

0 � �Q11<br />

Q12<br />

0 �<br />

�<br />

m E mE<br />

�<br />

�<br />

�<br />

Q Q<br />

�<br />

�<br />

� 21 11<br />

22 0<br />

� � 21 22 0<br />

�<br />

� �Q� ��<br />

0 0 G ��<br />

��<br />

Q �<br />

12 0 0 66 �<br />

(3)<br />

In the shortened form, a positive or negative transformation takes the following form:<br />

��<br />

11 � ��<br />

xx �<br />

� � � �<br />

��<br />

22 � � �T��, � ��<br />

yy �<br />

� � � �<br />

��<br />

12 � ��<br />

xy �<br />

(4)<br />

z 3<br />

2<br />

y<br />

1<br />

�+ x<br />

Figure 1. A coordinate system <strong>of</strong> and applied load<br />

F<br />

Transformation dependence between components <strong>of</strong> a deformation <strong>of</strong> strain state for an<br />

orthotropic layer in any coordinate system determined by angle �, assumes the form:<br />

468<br />

b<br />

L<br />

y<br />

x<br />

F


* * *<br />

��<br />

�<br />

�<br />

xx � Q11<br />

Q12<br />

Q16<br />

��<br />

xx �<br />

� � � * * * ��<br />

�<br />

��<br />

yy � � �Q12<br />

Q22<br />

Q26���<br />

yy �<br />

� � � * * * ��<br />

�<br />

��<br />

xy � �Q16<br />

Q26<br />

Q66���<br />

xy �<br />

(5)<br />

Q * ij coefficients are determined by the following formulas:<br />

Q * 11=Q11c 4 +2(Q12+2Q66)s 2 c 2 +Q22s 4 ; Q * 12=Q12c 4 +(Q11+Q22-4Q66)s 2 c 2 +Q12s 4 ,<br />

Q * 22=Q22c 4 +2(Q12+2Q66)s 2 c 2 +Q11s 4 , Q * 66=Q66c 4 +(Q11+Q22-2Q12-Q66)s 2 c 2 +Q66s 4 ,<br />

Q * 16=(Q11-Q12-2Q12-2Q66)sc 3 +(Q12-Q22+2Q66)s 3 c,<br />

Q * 26=(Q12-Q22-2Q12+2Q66)sc 3 +(Q11-Q12-2Q66)s 3 c, where: s = sin�, c = cos�<br />

ANALYTICAL AND NUMERICAL CALCULATIONS<br />

The following data were adopted for theoretical and numerical analyses: wood-derived<br />

laminate with material properties corresponding to literature parameters <strong>of</strong> beech <strong>of</strong> 690kg/m 3<br />

density and 12% moisture content [1]. The remaining adopted data were as follows [2]: EL=<br />

E11 = 14000 MPa, ET= E22=1160 MPa, �12=0.52, �21=0.043, G12=1080 MPa; board<br />

dimensions: hxb = 40 mm x 200 mm and thickness tk=1 mm. The laminate consisted <strong>of</strong> eight<br />

layer distributed symmetrically in relation to the central board <strong>of</strong> [0/45/-45/90]s code loaded<br />

by the force F = 5 kN. The matrix stiffness in the material system calculated on the basis <strong>of</strong><br />

the assumed material constants amounted to:<br />

* * *<br />

��<br />

�<br />

�<br />

xx � Q11<br />

Q12<br />

Q16<br />

��<br />

xx �<br />

� � � * * * ��<br />

�<br />

��<br />

yy � � �Q12<br />

Q22<br />

Q26���<br />

yy �<br />

� � � * * * ��<br />

�<br />

��<br />

xy � �Q16<br />

Q26<br />

Q66���<br />

xy �<br />

(6)<br />

Calculated elements <strong>of</strong> the stiffness matrix for individual layers <strong>of</strong> the laminate Q * ij are<br />

collated in Table 1.<br />

Table 1. Results <strong>of</strong> calculations <strong>of</strong> the laminate stiffness matrix.<br />

Q * 11 Q * 22 Q * 12 Q * 66 Q * 16 Q * Layers<br />

26<br />

1 0 o<br />

2 45 o<br />

3 -45 o<br />

4 90 o<br />

14,32 1,19 0,62<br />

[GPa]<br />

1,16 0 0<br />

5,35 5,35 3,02 3,57 3,28 3,28<br />

5,35 5,35 3,02 3,57 -3,28 -3,28<br />

1,19 14,32 0,62 1,16 0 0<br />

The stiffness matrix <strong>of</strong> the entire laminate [0/45/-45/90]s was calculated on the basis <strong>of</strong><br />

summation <strong>of</strong> appropriate matrix elements according to the formula: k<br />

Aij Qij<br />

�tk<br />

�A11<br />

A12<br />

A16<br />

� �52,<br />

39 14,<br />

56 0 �<br />

Aij=<br />

�<br />

�<br />

�<br />

A12<br />

A22<br />

A26<br />

�<br />

=<br />

�<br />

�<br />

�<br />

14,<br />

56 52,<br />

39 0<br />

�<br />

[GPa mm]<br />

��<br />

A<br />

�<br />

16 A26<br />

A66<br />

� ��<br />

0 0 18,<br />

91��<br />

The compliance matrix can be calculated from the stiffness matrix Cij = [Aij] -1 which was as<br />

follows:<br />

� 2,<br />

068 � 0,<br />

576 0 �<br />

3<br />

Cij=<br />

�<br />

0,<br />

576 2,<br />

068 0<br />

� �<br />

�<br />

�<br />

�<br />

�10<br />

[mm/kN]<br />

��<br />

0 0 5,<br />

28��<br />

At under in-plane loading, it was assumed that deformations were identical in each layer<br />

and then strains in the laminate could be described as an averaged value <strong>of</strong> strains in cross<br />

469<br />

r<br />

� �<br />

i�1


section. A load calculated for a layer amounted to: Nx = F/h = 5 kN/40 mm= 0.125 kN/mm.<br />

Therefore, the value <strong>of</strong> relative deformation calculated on the basis <strong>of</strong> the compliance matrix<br />

in main laminate directions as well as its total elongation � amounted to:<br />

��<br />

x � � 2,<br />

068 � 0,<br />

576 0 � �N<br />

� �x = +2.585 10<br />

x<br />

� �<br />

� �<br />

��<br />

y � �<br />

�<br />

� �3<br />

�<br />

� 0,<br />

576 2,<br />

068 0<br />

�<br />

�10<br />

� 0 �<br />

� �<br />

��<br />

� �<br />

xy �<br />

��<br />

0 0 5,<br />

28��<br />

� 0 �<br />

-3 , �y=-0.72 10 -3 , �xy= 0<br />

The elongation � is computed from �=L �x<br />

=0.517 mm, �MES= 0.54 mm.<br />

DISTRIBUTION OF STRAINS IN LAMINATES<br />

The stresses for each layer are determined from eq(6)and are presented in table 2.<br />

Table 2. The stresses for each layer<br />

Layers<br />

and<br />

orientation<br />

1 0 o<br />

2 45 o<br />

3 -45 o<br />

4 90 o<br />

5 90 o<br />

6 -45 o<br />

7 45 o<br />

8 0 o<br />

Analyti<br />

c<br />

�x �y �xy<br />

FEM<br />

Analyti<br />

c<br />

[MPa]<br />

FEM<br />

Analyti<br />

c<br />

FEM<br />

36,5 37,1 -073 -072 0 0<br />

10,0 13,9 5,8 1,7 6,1 3,6<br />

10,0 13,9 5,8 1,7 -6,1 -3,6<br />

7,2 2,62 -8,7 -9,0 0 0<br />

7,2 2,62 -8,7 -9,0 0 0<br />

10,0 13,9 5,8 1,7 -6,1 -3,6<br />

10,0 13,9 5,8 1,7 6,1 3,6<br />

36,5 37,1 -073 -072 0 0<br />

The distributions <strong>of</strong> the longitudinal, transverse and shear stresses for the laminate are<br />

presented in Figure 2<br />

o<br />

0<br />

o<br />

45<br />

o<br />

-45<br />

o<br />

90<br />

0 o<br />

-45 o<br />

45 o<br />

90 o<br />

7,2<br />

10,0<br />

36,3<br />

8,7<br />

0,72<br />

5,9<br />

6,12<br />

6,12<br />

6,12<br />

3,62<br />

3,62<br />

6,12<br />

�xx �yy �xy<br />

Figure 2. Stress distribution along the laminate thickness. Dashed line refers to values calculated with the<br />

assistance <strong>of</strong> the finite element method (FEM).<br />

470


Figure 3. Laminate deformations and stresses distribution in a selected composite layer (layer No. 4).<br />

CONCLUSIONS<br />

On the basis <strong>of</strong> the performed theoretical and numerical analyses from investigations<br />

on the behaviour <strong>of</strong> a multilayer wood-derived composite subjected to under in-plane loading,<br />

the following conclusions can be drawn:<br />

� At immediate load, sample elongation was similar,<br />

� In the case <strong>of</strong> both methods, results <strong>of</strong> strain distribution in individual layers were<br />

close and distribution – similar,<br />

� Small differences in some values resulted from the omission in the performed<br />

calculations <strong>of</strong> the so called Lechnicki’s coefficients – coefficients <strong>of</strong> mutual impact <strong>of</strong><br />

I and II kinds,<br />

� Due to different configuration <strong>of</strong> individual laminate layers, apart from normal<br />

deformations, tangent deformations <strong>of</strong> layers: 2, 3, 6 and 7 also occurred, hence<br />

tangent feed-back took place in non-axial configuration <strong>of</strong> orthotropic layers,<br />

� The adopted solutions in modelling and in simulation computer studies were<br />

satisfactorily corroborated in theoretical analyses,<br />

� At the set loads, none <strong>of</strong> the strains exceeded limiting values for the adopted material.<br />

REFERENCES:<br />

1. German J., 1996: Podstawy mechaniki kompozytów w�óknistych. Kraków, Wyd. Pol.<br />

Krakowskiej.<br />

2. Keylwerth R.: Die anisotrope Elastizität das Holzes und der Lagerhölzer. VDI-<br />

Forschungesheft 430, Ausgabe 13,Band 17, 1951.<br />

3. Parczewski A., Sadowski M., Wierzbicki A., 1969: Technologia produkcji sklejek,<br />

PWRiL, Warszawa.<br />

4. Spyrakos C.C., 1994: Finite Element Analysis in Engineering Practice. Algor Inc.<br />

Publishing Division Pittsburgh. PA USA.<br />

471


Streszczenie: Analiza wytrzyma�o�ciowa kompozytu drewnopochodnego. W pracy omówiono<br />

analiz� teoretyczn� z weryfikacj� numeryczn� zagadnie� dotycz�cych obliczania parametrów<br />

wytrzyma�o�ciowych wielowarstwowego laminatu drewnopochodnego. Przedmiotem<br />

opracowania by� laminat poddany obci��eniu tarczowemu. Do oblicze� analitycznych<br />

wykorzystano metod� klasycznej teorii laminacji - za�o�e� typowych dla teorii p�yt cienkich.<br />

Wyznaczono dla indywidualnych warstw ortotropowych warto�ci transformowanych<br />

macierzy sztywno�ci i podatno�ci w konfiguracji osiowej i nieosiowej. Rezultaty<br />

przeprowadzonych bada� przedstawiono w formie tabel, wykresów i map bitowych<br />

przemieszcze� i napr��e�.<br />

Corresponding author:<br />

Dr in�. Andrzej Makowski,<br />

Department <strong>of</strong> Engineering Mechanics and Thermal Techniques,<br />

Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>,<br />

60-627 Poznan,<br />

ul. Wojska Polskiego38/42,<br />

Poland<br />

e-mail: makowski@au.poznan.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 473-478<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Strength and modulus <strong>of</strong> elasticity in bending <strong>of</strong> pine structural timber with<br />

square and round cross-section<br />

A. MAKOWSKI 1 , A. NOSKOWIAK 2 , G. PAJCHROWSKI 2 , G. SZUMI�SKI 2<br />

1 Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>, Wojska Polskiego 28, 60-637 Poznan , Poland<br />

2 Wood Technology Institute, Winiarska 1, 60-654 Poznan, Poland<br />

Abstract: Strength and modulus <strong>of</strong> elasticity in bending <strong>of</strong> pine structural timber with square and round crosssection.<br />

Because <strong>of</strong> growing interest in the use <strong>of</strong> round wood in various structures research work was<br />

undertaken to identify issues <strong>of</strong> strength grading for such wood. Experimental verification <strong>of</strong> numerical models<br />

<strong>of</strong> pine structural timber with square and round cross-section was carried out. Strength and modulus <strong>of</strong> elasticity<br />

<strong>of</strong> each beam were tested. Experimental results indicate that load bearing capacity is higher for pine beams <strong>of</strong><br />

round cross-section. A similar conclusion may be drawn from the numerical analysis carried out. However, in<br />

relation to the empirical analysis, the numerical results underestimate that difference.<br />

Keywords: Pine, Round wood, Bending strength, Structural timber, Numerical analysis.<br />

INTRODUCTION<br />

Before people mastered wood sawing they had built their homes, bridges and entire<br />

strongholds using round wood. With the development <strong>of</strong> mechanical treatments, timber<br />

constructions with rectangular timber were improved. Easiness <strong>of</strong> performing precise<br />

connections was undoubtedly one <strong>of</strong> the key factors <strong>of</strong> moving from the use <strong>of</strong> round wood to<br />

the use <strong>of</strong> sawn timber with rectangular cross-section. For several years, you may experience<br />

a renewed interest in the use <strong>of</strong> round wood in various structures, particularly in structures<br />

which can generally be described as recreational facilities.<br />

In 2003 the standard EN 14251 Structural round timber - Test methods was included to the<br />

European standards for structural timber. The CEN/TC 124 is still developing the standard<br />

EN 14544 Timber structures - Strength graded structural timber with round cross-section -<br />

Requirements. In this standard a set <strong>of</strong> attributes which should be taken into consideration<br />

when defining the rules for visual strength grading <strong>of</strong> round wood is given. As for the<br />

rectangular timber (according to the EN 14081-1), the characteristics to be considered in<br />

grading <strong>of</strong> round wood include: size and location <strong>of</strong> knots, slope <strong>of</strong> grain, density, width <strong>of</strong><br />

annual rings, cracks, damage from insects and fungi, reaction wood and other characteristics<br />

that may adversely affect the strength and stiffness (bark pockets, resin pockets, included<br />

sapwood). A specific feature to be defined in the rules for round wood grading is sweep.<br />

Currently in Poland, the level <strong>of</strong> knowledge <strong>of</strong> the strength properties <strong>of</strong> structural timber<br />

with round cross-section is relatively low. Therefore, research work within the statutory<br />

measures <strong>of</strong> Wood Technology Institute was undertaken to identify issues <strong>of</strong> strength grading<br />

for such wood. Experimental verification <strong>of</strong> numerical models <strong>of</strong> structural timber with square<br />

and round cross-section <strong>of</strong> the same section modulus was carried out.<br />

MATERIALS AND METHODS<br />

Both, beams with square cross-section with dimensions <strong>of</strong> 100 mm ×100 mm and beams with<br />

round cross-section with diameter <strong>of</strong> 120 mm, were 4 m long. They were obtained from pine<br />

473


(Pinus sylvestris L.) wood <strong>of</strong> III and IV age class from Pniewy Forest District (Greater<br />

Poland-Pomeranian natural-forest region).<br />

Timber was visual graded first using appropriately modified rules specified in PN-D-<br />

94021:1982. Subsequently, tests in four-point bending scheme for strength and modulus <strong>of</strong><br />

elasticity in bending were performed according to the standards EN-408 and EN 14251.<br />

Square beams were loaded with span 600-600-600 mm while round beams with span 720-<br />

720-720 mm (Fig. 1).<br />

F/2 F/2<br />

600 (720) 600 (720)<br />

500 (600)<br />

1800 (2160)<br />

Fig. 1. Loading scheme for square (round) beams<br />

For the numerical calculations a program based on finite element method was used.<br />

TEST RESULTS<br />

The results <strong>of</strong> strength and stiffness <strong>of</strong> pine wood beams with square and round crosssection<br />

are summarized in Tab. 1.<br />

Results shown in Tab. 1 indicate, among other things, that for similar values <strong>of</strong> section<br />

modulus:<br />

a) destructive load for beams with square cross-section is about 10% lower than<br />

destructive load for beams with round cross-section,<br />

b) bending strength for beams with square cross-section is about 23% lower than<br />

bending strength for beams with round cross-section,<br />

c) modulus <strong>of</strong> elasticity for beams with square cross-section is about 19% lower than<br />

modulus <strong>of</strong> elasticity for beams with round cross-section.<br />

Tab. 1. Experimental results<br />

Crosssection<br />

Section<br />

modulus<br />

mm 3<br />

Moment <strong>of</strong><br />

inertia<br />

mm 4<br />

square 166,667 8,333,333<br />

round 169,646 10,178,760<br />

Comments: Sample size – 50 pieces<br />

Statistical<br />

parameter<br />

474<br />

Maximum<br />

load<br />

Static<br />

bending<br />

strength<br />

N N/mm 2<br />

Modulus <strong>of</strong><br />

elasticity<br />

N/mm 2<br />

mean 18,881 34.0 8,621<br />

min 7,935 14.3 2,621<br />

max 36,564 65.8 14,290<br />

std. dev. 6,767 12.2 2,297<br />

COV % 36 36 27<br />

mean 20,840 44.2 10,674<br />

min 14,670 31.1 7,676<br />

max 30,141 64.0 14,036<br />

std. dev. 3,710 7.9 1,464<br />

COV % 18 18 14


RESULTS OF NUMERICAL ANALYSIS<br />

For the numerical calculations orthotropic spatial model (3-D) and elastic characteristics<br />

for pine wood similar to those <strong>of</strong> the strength class C24 according to<br />

EN 338 were assumed. Simulations were performed in the range <strong>of</strong> linear static stress.<br />

Material characteristics for both, square and round pine wood were: EL = 11,000 N/mm 2 , ER =<br />

1,000 N/mm 2 , ET = 500 N/mm 2 , GLT = 680 N/mm 2 , GRT = 70 N/mm 2 , �LR = 0.297, �LT =<br />

0.301 �RT = 0.540. Load causing deflection <strong>of</strong> l/300 (6 mm in 1800 mm span) were calculated<br />

for four-point bending scheme with span 600-600-600 mm. Results <strong>of</strong> numerical calculations,<br />

in the form <strong>of</strong> maps <strong>of</strong> deflections and stresses are presented in Tab. 2.1 and 2.2.<br />

Assuming the same material parameters and similar section modulus <strong>of</strong> the beams, the<br />

results <strong>of</strong> numerical analysis show that the load causing the comparable deflection (e.g. 6<br />

mm) for square beams is smaller <strong>of</strong> about 12% than in the case <strong>of</strong> round beams.<br />

SUMMARY<br />

For the four-point bending scheme the following formula can be written:<br />

48EIu<br />

F � 2 2<br />

a(<br />

3l<br />

� 4a<br />

)<br />

where:<br />

F – load,<br />

E – modulus <strong>of</strong> elasticity in bending,<br />

u – deflection,<br />

I – moment <strong>of</strong> inertia,<br />

a – distance between nearest load and support point,<br />

l – span.<br />

Assuming determined empirical values <strong>of</strong> elastic modules for beam span <strong>of</strong> 1,800 mm<br />

and deflection limit <strong>of</strong> l/300 (6 mm) load limit equals to 6.413 kN for round beam and 4.304<br />

kN for square beam (about 33% less).<br />

475


Tab. 2.1. Results <strong>of</strong> numerical analysis for the beam with square cross-section (100mm×100mm)<br />

Deflection u = 6.001 mm, Load F = 4.992 kN<br />

Normal stresses �xx [N/mm 2 ]<br />

Shear stresses �xz [N/mm 2 ]<br />

Experimental results indicate that load bearing capacity is higher for pine beams <strong>of</strong><br />

round cross-section when round and square beams characterized by similar values <strong>of</strong> section<br />

modulus are taken into consideration. A similar conclusion may be drawn from the numerical<br />

analysis carried out. However, in relation to the empirical analysis, the numerical results<br />

underestimate that difference.<br />

476


Tab. 2.2. Results <strong>of</strong> numerical analysis for the beam with round cross-section (d=120mm)<br />

Deflection u = 6.02 mm, Load F = 5.653 kN<br />

Normal stresses �xx [N/mm 2 ]<br />

Shear stresses �xz [N/mm 2 ]<br />

REFERENCES<br />

1. H. NUEHAUS, Budownictwo drewniane, PWT Rzeszów, 2004.<br />

2. EN 14251 Structural round timber - Test methods”<br />

3. EN 14544 Timber structures - Strength graded structural timber with round crosssection<br />

- Requirements.<br />

477


Streszczenie: Wytrzyma�o�� i modu� spr��ysto�ci przy zginaniu sosnowego drewna<br />

konstrukcyjnego o przekroju kwadratowym i okr�g�ym. Z powodu wzrastaj�cego<br />

zainteresowania stosowaniem drewna o przekroju okr�g�ym w ró�nego rodzaju<br />

konstrukcjach, podj�te zosta�y badania maj�ce na celu rozpoznanie problematyki sortowania<br />

wytrzyma�o�ciowego takiego drewna. Zosta�a przeprowadzona empiryczna weryfikacja<br />

modeli numerycznych sosnowego drewna konstrukcyjnego o przekroju kwadratowym i<br />

okr�g�ym. Wyznaczono wytrzyma�o�� i modu� spr��ysto�ci badanych belek. Wyniki bada�<br />

eksperymentalnych wskazuj� na to, i� belki o przekroju okr�g�ym maj� wi�ksz� no�no��.<br />

Podobny wniosek wynika z przeprowadzonych analiz numerycznych. Jednak�e, w<br />

odniesieniu do eksperymentu, analizy numeryczne zani�aj� t� ró�nic�.<br />

Corresponding author:<br />

Grzegorz Pajchrowski, Wood Technology Institute, Winiarska 1, 60-654 Poznan, Poland<br />

E-mail address: g_pajchrowski@itd.poznan.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 479-483<br />

(Ann. WULS - <strong>SGGW</strong>, For. and Wood Technol., 71, 2010)<br />

Use <strong>of</strong> pinene as component <strong>of</strong> special paints<br />

PAWE� MAKSIMOWSKI 1 , JANUSZ ZAWADZKI 2 , ANDRZEJ RADOMSKI 2<br />

1 Faculty <strong>of</strong> Chemistry, Technical <strong>University</strong> <strong>of</strong> Warsow<br />

2 Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> Scieces – <strong>SGGW</strong> (WULS-<strong>SGGW</strong>)<br />

Abstract: Use <strong>of</strong> pinene as component <strong>of</strong> special paints. Bicyclic monoterpenes, mainly pinene isomers are<br />

used, among the others, in the manufacture <strong>of</strong> paints for the ceramics coating applied by oven burning. The<br />

composition <strong>of</strong> the paints can be based on pinene-derived mercaptides <strong>of</strong> gold. They may contain different<br />

amounts <strong>of</strong> pinene isomers. Differences in the composition <strong>of</strong> the paint can lower its usefulness, so technological<br />

control <strong>of</strong> composition and synthesis process using analytical techniques is necessary. Chromatographic<br />

methods, like GCMS and HPLC, or spectrophotometry FTIR are demonstrated to be efficient. Time and<br />

temperature <strong>of</strong> synthesis has a direct impact on the purity and composition <strong>of</strong> gold mercaptides obtained.<br />

Keywords: pinene isomers, paints, chromatography, spectrophotometry<br />

INTRODUCTION<br />

Low-molecular compounds present in wood belong to various groups <strong>of</strong> substances.<br />

They are generally described as the extractives (Fengel and Wegener 2003), which content<br />

can vary. In the stem pine (Pinus sylvestris L.) it amounts to about 1-4,5% (Gref et al. 2000;<br />

Strömvall and Petersson 2000). Important part <strong>of</strong> coniferous wood extractives is resin,<br />

consisting <strong>of</strong> resin acids and liquid fraction called turpentine, which are mainly terpenes.<br />

Terpenes are widely occurring group <strong>of</strong> natural compounds built from isoprene (2-methyl-1<br />

,3-butadiene) segments. There are over 4000 terpenes identified. Bicyclic monoterpenes <strong>of</strong><br />

C10H16 formula are the most common: �-pinene, �-pinene and �-³ karen together constitute<br />

88% <strong>of</strong> turpentine. This is about 0.55% <strong>of</strong> the whole extractives quantity in the stem <strong>of</strong> Scots<br />

pine (Pinus sylvestris L.) (Strömvall and Petersson 2000). They are used as cosmetics<br />

components and as a raw material for other fragrances (�-terpinol, limonene, bergaptol) and<br />

in the manufacture <strong>of</strong> insecticides as well. Camphor is also obtained from �-pinene. Pinenes<br />

are used in the manufacture <strong>of</strong> paints and varnishes (Prosi�ski 1969). Pinene mercaptans are<br />

intermediates for paints and gold blends used in the decoration <strong>of</strong> glass and ceramics, and in<br />

electronics. One way <strong>of</strong> obtaining them is action <strong>of</strong> thiourea salts with hydrohalogene on<br />

pinene, or mixtures containing pinene, like gum turpentine. Thiourea salt joins pinene, then<br />

the complex formed is purified from residual terpenes by steam evaporation. Next the<br />

complex is decomposed with sodium hydroxide and liberated mercaptan is distilled <strong>of</strong>f with<br />

steam. (Kiciak 1980)<br />

Properties <strong>of</strong> obtained pinene mercaptans and further synthesized pinene mercaptides<br />

<strong>of</strong> gold have a huge impact on the quality <strong>of</strong> the painted porcelain pottery. Poor quality paint<br />

can cause defects on the surface <strong>of</strong> the ceramics after firing, like blisters, crackings and pop<strong>of</strong>f<br />

and therefore controlling <strong>of</strong> dye technology and product quality is very important.<br />

The aim <strong>of</strong> the study is attempt to the chemical analysis <strong>of</strong> the “golden” paint with<br />

instrumental methods. Moreover the causes <strong>of</strong> its various behaviour during the firing on<br />

ceramic are investigated.<br />

479


MATERIALS AND METHODS<br />

The paint made in Italy, designed for high temperature method <strong>of</strong> ceramic covering was<br />

chosen for investigation.<br />

The following methods were selected for chemical analysis:<br />

FTIR spectrophotometry – Bio-Rad FTS165 spectrum obtained as average <strong>of</strong> 32 scans with<br />

selectivity 4cm –1 .<br />

GCMS chromatography – HP5890 MS Engine, coupled with HP5989 mass spectrometer with<br />

electron impact ionization (EI) at 70V.<br />

HPLC chromatography – Shimadzu LC10-AD with SPD-10A UV spectrophotometer;<br />

Nucleosil 300-5C18 was used and the eluent was 68% methanol at pH adjusted to 4.5.<br />

Chloroauric acid (analytical grade) and pinene mercaptan (practical grade) were used in gold<br />

mercaptide synthesis.<br />

RESULTS AND DISCUSSION<br />

IR spectrophotometry<br />

At the beginning, FTIR spectrophotometric analysis <strong>of</strong> the paint tested was performed.<br />

Fig. 1 IR spectrum <strong>of</strong> gold mercaptide<br />

IR spectra obtained indicates that the test compound is aliphatic, as contains no<br />

unsaturated carbon atoms. The absence <strong>of</strong> aromatic carbon atoms, or rather hydrogen atoms<br />

bonded to them is confirmed by the absence <strong>of</strong> bands corresponding to the stretching<br />

vibrations <strong>of</strong> C–H bonds in the range above 3000cm –1 . There are only bands in the range<br />

2800-3000cm –1 , corresponding to the stretching vibrations <strong>of</strong> C–H in aliphatic compounds.<br />

Furthermore, no bands are observed in the ranges 1690-1620cm –1 and 2260-2100cm –1 , which<br />

excludes the presence <strong>of</strong> unsaturated carbon atoms. Characteristic signals occurring in the<br />

spectrum at 1480-1460cm –1 and 1370-1360cm –1 correspond to deforming vibrations <strong>of</strong> bonds<br />

S–CH, asymmetric and symmetric, respectively. This excludes in the molecule the presence<br />

<strong>of</strong> sulphur atoms bonded to secondary and tertiary carbon atoms. In the case <strong>of</strong> sulphur atom<br />

bonded to secondary carbon atom, the band should not be observed in these regions, and the<br />

band <strong>of</strong> symmetric vibrations should occur at about 1420cm –1 . In the case <strong>of</strong> sulphur atom<br />

bonded to tertiary carbon atom the only visible should be stretching vibrations band, which<br />

typically occurs at 2860cm –1 and in the spectrum described overlaps with the C–H vibrations<br />

bands. Other bands observed correspond to vibrations <strong>of</strong> carbon skeleton <strong>of</strong> the molecule and<br />

the C–H bonds.<br />

480


Mass spectrum<br />

Fig.2 Mass spectrum <strong>of</strong> gold mercaptide<br />

The obtained mass spectrum contains a main peak at 169 m/z. Molecular peak (M) is<br />

observed at 366 m/z. Above this value there are isotope peaks at 367 m/z (M +1) and 368 m/z<br />

(M +2). Due to lack <strong>of</strong> sufficient data on the detailed analysis <strong>of</strong> mass spectra <strong>of</strong> heavy metal<br />

compounds, its formula can not be determined from the isotope peaks ratio.<br />

The first signal from the fragmentation ion can be observed at 169 m/z. This corresponds<br />

exactly to the difference from the molecular peak equal to 197, which is mass number <strong>of</strong> gold.<br />

This means that it is a signal from the basic mercaptan, with one atom <strong>of</strong> hydrogen split.<br />

Signal occurring at 137 m/z arises as a result <strong>of</strong> further splitting <strong>of</strong> sulphur atom from the<br />

defragmenting ion. It follows that the ion <strong>of</strong> mass 137 is derived from the hydrocarbon chain<br />

<strong>of</strong> mercaptan.<br />

The IR analysis showed that the molecule does not contain unsaturated carbon atoms and,<br />

hence, it has to contain 10 carbon atoms. In the case <strong>of</strong> 9 carbon atoms with sp 3 hybridisation,<br />

the maximum number <strong>of</strong> hydrogen atoms would be equal to 19, which would give the mass <strong>of</strong><br />

the 127. In the case <strong>of</strong> 11 carbon atoms there would be only five hydrogen atoms, which<br />

excludes saturated character <strong>of</strong> aliphatic compound. Chain molecule containing 10 carbon<br />

atoms should contain also 21 hydrogen atoms. The analysis <strong>of</strong> mass spectrum showed that the<br />

compound contains 17 hydrogen atoms, which means a deficiency <strong>of</strong> four atoms. This can be<br />

explained by double ring occurrence in the structure <strong>of</strong> the compound. High signal intensity at<br />

15 m/z indicates also a significant number <strong>of</strong> terminal methyl groups (–CH3). As the result,<br />

C10H17SAu formula can be concluded for the investigated mercaptide, and its base is bicyclic<br />

mercaptan <strong>of</strong> formula C10H18S. The only compounds matching to that description are pinene<br />

mercaptans, derived from the well-known �- or �-pinene (Fig. 3).<br />

481


�-pinene �-pinene<br />

Fig. 3 Molecular structures <strong>of</strong> �- and �-pinene<br />

The obtained results <strong>of</strong> instrumental analysis and identification <strong>of</strong> Italian paint allowed<br />

attempt to pigment synthesis <strong>of</strong> pinene mercaptide <strong>of</strong> gold. The reaction between chloroauric<br />

acid and pinene mercaptan was conducted and the product was obtained with the yield over<br />

83%.<br />

High performance liquid chromatography (HPLC) was chosen for the purity determination <strong>of</strong><br />

investigated mercaptides. The results <strong>of</strong> instrumental analysis are shown in Fig. 4.<br />

Fig. 4 Chromatograms <strong>of</strong> pinene mercaptides <strong>of</strong> gold<br />

HPLC analysis <strong>of</strong> the Italian paint confirmed the purity >99%.<br />

HPLC analysis <strong>of</strong> the synthesized pinene mecaptide <strong>of</strong> gold indicated lower purity. The<br />

difference in the results obtained is generally due to the conditions <strong>of</strong> the synthesis, reaction<br />

time and temperature.<br />

CONCLUSIONS<br />

Instrumental analysis <strong>of</strong> the investigated paint showed that it was made on the basis <strong>of</strong><br />

bicyclic monoterpenes, or more precisely, mixture <strong>of</strong> pinene isomers. Mercaptans derived<br />

from it allow obtaining pinene mercaptides <strong>of</strong> gold, which show the best functional properties<br />

i.e. fired porcelain ceramics have the best appearance and color.<br />

482


Attempts to laboratory synthesis <strong>of</strong> pinene mercaptides <strong>of</strong> gold showed that the<br />

synthesis time and temperature significantly affect the composition <strong>of</strong> the isomers mixture.<br />

This composition influence the quality <strong>of</strong> obtained blend and improper conditions during the<br />

synthesis can decrease paint usefulness.<br />

REFERENCES<br />

1. Fengel, D., Wegener, G. (2003). Structure and Ultrastructure, In Wood Chemistry<br />

Ultrastructure Reactions, Walter de Gruyter, Berlin, Germany.<br />

2. Gref, R., Håkansson, C., Henningssson, B., Hemming, J. (2000). Influence <strong>of</strong> Wood<br />

Extractives on Brown and White Rot Decay in Scots Pine Heart-, Light- and<br />

Sapwood, Mater. Organismen, 33, 119-128.<br />

3. Strömvall, A. M., Petersson, G. (2000). Volatile Terpenes Emitted to Air, In Pitch<br />

Control Wood Resin and Deresination, Eds. Back, E. L, Allen, L. H., Tappi Press, 77-<br />

99.<br />

4. Prosinski, S. (1969). Chemia drewna. PWRiL Warszawa<br />

5. Patent P.228504 16.12.1980. Sposób wytwarzania merkaptanów z Pininu lub<br />

uk�adów zawieraj�cych pinen O�rodek Badawczo-Rozwojowy Przerobu Metali<br />

Szlachetnych, Warszawa. Polska, Kiciak.K<br />

Streszczenie: Wykorzystanie pinenu jako sk�adnika farb specjalnych. Dwupier�cieniowe<br />

monoterpeny g�ownie izomery pinenu znajduj� zastosowanie mi�dzy innymi do produkcji<br />

farb wykorzystywanych do pokrywania ceramiki metod� wypalania. Sk�ad takich farb mo�e<br />

by� oparty na pinenowych merkaptydach z�ota. Mog� one posiada� ró�n� ilo�� izomerów<br />

pinenu. Ró�nice w sk�adzie farby powoduj� pogorszenie jej warto�ci u�ytkowych, dlatego<br />

potrzebna jest kontrola technologiczna sk�adu i procesu syntezy za pomoc� technik<br />

analitycznych. Wykazano, �e mog� to by� chromatografia GCMS i HPLC oraz<br />

spektr<strong>of</strong>otometria FTIR. Czas i temperatura syntezy ma bezpo�redni wp�yw na czysto�� i<br />

sk�ad uzyskanego pinenowego merkaptydu z�ota.<br />

Corresponding authors:<br />

Janusz Zawadzki, Andrzej Radomski,<br />

Department <strong>of</strong> Wood Science and Wood Protection,<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong> (WULS-<strong>SGGW</strong>),<br />

ul.Nowoursynowska 159,<br />

02-776 Warszawa<br />

e-mail: andrzej_radomski@sggw.pl<br />

e-mail: janusz_zawadzki@sggw.pl<br />

Pawe� Maksimowski<br />

Faculty <strong>of</strong> Chemistry, Technical <strong>University</strong> <strong>of</strong> <strong>Warsaw</strong><br />

ul. Noakowskiego3<br />

00-664 Warszawa


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 484-489<br />

(Ann. WULS - <strong>SGGW</strong>, For. and Wood Technol., 71, 2010)<br />

Thermal and photolytic ageing <strong>of</strong> Winacet RA<br />

MA�KOWSKI PIOTR, RADOMSKI ANDRZEJ<br />

Department <strong>of</strong> Wood Science and Wood Protection, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – WULS (<strong>SGGW</strong>)<br />

Abstract Thermal and Photolytic Ageing <strong>of</strong> Winacet RA. In this study aging <strong>of</strong> Winacet RA coatings were aged.<br />

Molar mass changes were studied during prolonged heating at 100°C and during the exposure to UV radiation.<br />

In the case <strong>of</strong> photolytic ageing, rapid formation <strong>of</strong> cross-linked insoluble fraction was found. In the case <strong>of</strong><br />

thermal ageing, increase in molar mass was recorded at first, until the gelling point was reached after 4 weeks.<br />

Then insoluble fraction appeared and molar mass <strong>of</strong> the soluble fraction decreased. Due to the occurring process<br />

<strong>of</strong> deacetylation and further cross-linking, the use <strong>of</strong> poly(vinyl acetate) in wood conservation should be limited.<br />

The coating obtained after Winacet RA application cannot be later removed using solvents.<br />

Keywords Winacet RA, ageing, thermal, photolytic, size exclusion chromatography, molar mass distribution<br />

INTRODUCTION<br />

Winacet® is the trade name <strong>of</strong> a range <strong>of</strong> products manufactured on the basis <strong>of</strong><br />

polyvinyl acetate (PVAc). Winacet R is a polyvinyl acetate solution obtained by a solventbased<br />

polymerisation process (Synthos 2009). There is a wide range <strong>of</strong> organic solvents used,<br />

while the most popular are methanol (Winacet RA), its mixture with methyl acetate (Winacet<br />

RB), anhydrous ethanol (Winacet RET) and ethyl acetate (Winacet RO). It is also soluble in<br />

aromatic hydrocarbons, like toluene.<br />

When wood treating, Winacet forms colourless, consolidating layer (Ciabach 2001). It<br />

causes relatively the lowest increase in mechanical strength among wood consolidants used<br />

and shows significant water absorptivity. It is used in wood conservation due to low price,<br />

good elasticity, dimensional stability and low toxicity <strong>of</strong> its solvents. Paciorek (1993) found<br />

that wood treated with 5% solution <strong>of</strong> Winacet show strength increase by 10%, while 30%<br />

solution treating causes 30% increase. Moreover, during investigation on wood swelling in<br />

tangential direction, samples treated with 20% solution <strong>of</strong> Winacet showed half <strong>of</strong> the<br />

swelling <strong>of</strong> untreated samples.<br />

Degradation <strong>of</strong> vinyl acetate and its copolymers were investigated. Giurginca et al.<br />

(2003) found that when the thermo-oxidative degradation <strong>of</strong> ethylene-vinyl acetate elastomers<br />

(EVA) at three temperatures (150, 175 and 200°C) occurs, a clear fading <strong>of</strong> the IR signals<br />

from acetyl groups follow, while signals corresponding to carbon-carbon double bonds<br />

appear. In addition, new signals can be observed, indicating the formation <strong>of</strong> hydroxyl or<br />

hydroperoxyl groups and carbonyl groups in anhydrides. Holland and Hay (2002) found that<br />

thermal deacetylation <strong>of</strong> poly(vinyl acetate) takes place, with transient formation <strong>of</strong> sixmembered<br />

ring, as shown in the Figure 1. Further reaction with released acetic acid is also<br />

possible, leading to the formation <strong>of</strong> hydroxyl groups (Figure 2). At temperatures above<br />

300°C rapid, autocatalytic elimination <strong>of</strong> acetic acid occurs, leaving a highly unsaturated<br />

polyene (Rimez et al. 2008a,b). Vaidergorina et al. (1987) studied photodegradation <strong>of</strong><br />

poly(vinyl acetate) films with different molar masses. The IR spectra <strong>of</strong> all the samples<br />

suggest a steady loss <strong>of</strong> acetate side groups during irradiation. The UV spectra showed the<br />

occurrence <strong>of</strong> polyene sequences in the polymer chains. In the low molar mass samples there<br />

was negligible amount <strong>of</strong> insoluble fraction formed, while in the high polymer molar mass<br />

there was already a 50% insoluble fraction after 5h exposure. This indicates a high degree <strong>of</strong><br />

crosslinking, although the average viscometric molar mass <strong>of</strong> the soluble fraction decreased to<br />

about one sixth <strong>of</strong> the initial value.<br />

484


O<br />

*<br />

O<br />

O<br />

*<br />

H<br />

O O O<br />

O<br />

*<br />

O<br />

O<br />

*<br />

+<br />

O O<br />

Fig. 1 Deacetylation <strong>of</strong> poly(vinyl acetate) according to Holland and Hay (2002)<br />

+<br />

O<br />

O<br />

* *<br />

O<br />

O<br />

O<br />

OH<br />

485<br />

+<br />

*<br />

HO<br />

*<br />

O<br />

O<br />

Fig. 2 Hydroxyl group forming in PVAc chain according to Holland and Hay (2002)<br />

MATERIALS AND METHODS<br />

A sample <strong>of</strong> Winacet RA was obtained from Synthos Dwory Sp. z o.o.<br />

All solvents used were <strong>of</strong> analytically grade.<br />

The exposure <strong>of</strong> Winacet RA samples was realised on a filter paper base. Such<br />

conditions are more similar to the treated wood than the common transparent film testing.<br />

Prior to impregnation the filter paper discs <strong>of</strong> 70 mm diameter were extracted with diethyl<br />

ether in Soxhlet apparatus for 3 hours and dried. Winacet RA was diluted with toluene in 1:4<br />

ratio by volume, to obtain 10% solution <strong>of</strong> poly(vinyl acetate). Then the papers were coated<br />

with prepared solution <strong>of</strong> Winacet. The amount <strong>of</strong> resin was 4.0±0.1 mg per cm 2 <strong>of</strong> the paper.<br />

The coated papers were air-dried and conditioned for 7 days.<br />

The papers were exposed to UV radiation under the 400W Philips lamp <strong>of</strong> the<br />

following characteristics: exposure 250-600 nm, dominant bands: 250-260; 290-320 and<br />

above 360 nm. The distance form the lamp centre to the sample was about 15 cm, which<br />

corresponds to 560 W/m 2 . Total time <strong>of</strong> exposure was 40 hours. The first sample was<br />

collected before the exposure, while the next samples were collected every 5 hours. Sampling<br />

was realised by cutting 1×1 cm piece <strong>of</strong> coated paper.<br />

Thermal ageing was realised by placing parallel samples <strong>of</strong> coated papers in oven<br />

chamber (KC 100/200, Elkon company) at (100±2)°C. Total time <strong>of</strong> ageing was 42 days. The<br />

first sample was collected before the exposure, while the next samples were collected every 7<br />

days. Sampling was made as above.<br />

All the samples collected were placed in closed vessels and the resin was dissolved<br />

with 5 cm 3 <strong>of</strong> tetrahydr<strong>of</strong>uran (THF). The solutions were filtered through 0.45�m membrane<br />

before the molar mass distribution (MMD) analysis.�<br />

Chromatographic analyses in size exclusion mode were conducted using SHIMADZU<br />

LC-20AD two pump chromatograph equipped with Nucleogel M-10 (300×7.7mm) column<br />

(Macherey-Nagel), placed in CTO-20 oven. RID-10A differential refractometer was applied<br />

for eluate detection. Dissolved samples were introduces to chromatographic system using<br />

RHEODYNE 7751 manual injector valve with 20 �L loop. Eluent was THF, flow 2.0 cm 3 /min.,<br />

temperature 35°C. LC Solution v.1.21 SP1 (Shimadzu) and WinGPC scientific 2.74 (Polymer<br />

Standards Service) s<strong>of</strong>tware was used to elaborate chromatograms. The polystyrene standards<br />

(Polymer Laboatories) with molar mass between 580 g/mol and 6850 kg/mol were used for<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

OH<br />

O


system calibration. The universal Mark-Houwink calibration was used to determine MMD <strong>of</strong><br />

Winacet RA, using the following values:.<br />

KPS = 1.363×10 –2 cm 3 /g, �PS = 0.714, for polystyrene (s<strong>of</strong>tware database),<br />

KPVAc = 1.62×10 –2 cm 3 /g, �PMMA = 0.698, for linear PVAc (Zhu et al. 1983).<br />

RESULTS AND DISCUSSION<br />

Molar mass changes <strong>of</strong> Winacet RA during aging are presented in the Figure 3. In the<br />

case <strong>of</strong> photolytic degradation, sharp decrease in molar mass is observed at the beginning <strong>of</strong><br />

the process and then a further slow but steady decline throughout the exposure period.<br />

Accurate values <strong>of</strong> molar mass at this stage cannot be determined with the same reliability, as<br />

Mark-Howuink equation for poly(vinyl acetate) is applicable for molar masses >20kg/mol<br />

(Gruendling et al. 2010). It should be emphasized that size exclusion chromatography (SEC)<br />

allows analysis <strong>of</strong> the soluble fraction only. Further results clearly confirm the importance <strong>of</strong><br />

this remark. Interesting behaviour can be observed in the case <strong>of</strong> thermal aging. For about<br />

four weeks a gradual increase in molar mass <strong>of</strong> Winacet was recorded, and then it was a fairly<br />

quick decrease.<br />

number average molar mass,<br />

Mn/(kg·mol –1 )<br />

80<br />

60<br />

40<br />

20<br />

time <strong>of</strong> heating /days<br />

0 10 20 30 40<br />

0 10 20 30 40<br />

time <strong>of</strong> UV exposure /hours<br />

486<br />

90<br />

80<br />

70<br />

60<br />

number average molar mass,<br />

Mn /(kg·mol –1 )<br />

Fig. 3 Changes <strong>of</strong> molar mass <strong>of</strong> Winacet during thermal (�) and photolytic (�) ageing<br />

Comparison <strong>of</strong> above results with changes in the polydispersity during photolytic<br />

degradation shows the greatest change at the beginning <strong>of</strong> the process as well (Figure 4). At<br />

the same time the content <strong>of</strong> soluble fraction decreases rapidly and after 5h amounts to 75%<br />

only. This demonstrates clearly the ongoing process <strong>of</strong> cross-linking <strong>of</strong> Winacet. Number <strong>of</strong><br />

double bonds resulting from the elimination <strong>of</strong> acetic acid is sufficient to photooxidative<br />

polymerisation and insoluble macromolecular structure is formed. It may also be noted that<br />

the process will involve both large and small molecules <strong>of</strong> polymer, because the<br />

polydispersity does not decrease, and even increases. The process <strong>of</strong> cross-linking is<br />

overlapped by a process <strong>of</strong> chain scission, causing a gradual lowering <strong>of</strong> the molar mass <strong>of</strong> the<br />

soluble fraction.


Polydispersity, D<br />

6<br />

5<br />

4<br />

0 10 20 30 40<br />

time <strong>of</strong> UV exposure /hours<br />

Fig. 4 Changes <strong>of</strong> soluble fraction content and its polydyspersity during photolytic ageing<br />

Polydispersity, D<br />

5,0<br />

4,5<br />

4,0<br />

0 10 20 30 40<br />

time <strong>of</strong> heating /days<br />

Fig. 5 Changes <strong>of</strong> soluble fraction content and its polydyspersity during thermal ageing<br />

In the case <strong>of</strong> thermal degradation, in the first stage <strong>of</strong> the process the formation <strong>of</strong><br />

insoluble fraction is practically not observed (Figure 5), although the molar mass shows a<br />

clear increase. This is accompanied by a decrease in polydispersity, as molar mass distribution<br />

narrows. The result indicates that the relatively smaller PVAc molecules take a larger part in<br />

the process <strong>of</strong> deacetylation. After 4 weeks there is a sudden change in the nature <strong>of</strong> the<br />

process, confirmed by all three analysed parameters. The content <strong>of</strong> soluble fraction begins to<br />

decrease rapidly, accompanied by the decrease in molar mass and increase in polydispersity.<br />

It can be said for sure that the system has reached the point <strong>of</strong> gelation, and all changes are a<br />

consequence <strong>of</strong> the elimination <strong>of</strong> the insoluble fraction from the analysis subject.<br />

487<br />

90<br />

80<br />

70<br />

60<br />

100<br />

90<br />

80<br />

soluble fraction content /%<br />

soluble fraction content /%


CONCLUSIONS<br />

Investigations on Winacet RA ageing indicate that deacetylation process occurs,<br />

leading to double bonds forming and then further cross-linking. The reactions can be<br />

efficiently initiated by UV light. Degradation also proceeds in elevated temperature without<br />

radiation, but the ratio is much lower. Insoluble fraction occurs during the ageing, which<br />

strongly influences the results <strong>of</strong> SEC determination <strong>of</strong> molar mass distribution. As the<br />

insoluble fraction is formed, the layers <strong>of</strong> Winacet RA made on wood cannot be easily<br />

removed with solvents. Only surface layer can be mechanically scraped. If the possibility <strong>of</strong><br />

consolidant removal is a demand, Winacet RA should not be applied for wood conservation.<br />

REFERENCES<br />

1. CIABACH J. 2001: W�a�ciwo�ci �ywic sztucznych stosowanych w konserwacji<br />

zabytków, Wydawnictwo Naukowe Uniwersytetu Miko�aja Kopernika, Toru�<br />

2. GIURGINCA, M., POPA, L., ZaHarescu, T., 2003: “Thermo-oxidative degradation<br />

and radio-processing <strong>of</strong> ethylene vinyl acetate elastomers”, Polymer Degradation and<br />

Stability, 82, 463-466<br />

3. GRUENDLING, T., JUNKERS, T., GUILHAUS, M., BARNER-KOWOLLIK, Ch.,<br />

2010: “Mark-Houwink Parameters for the Universal Calibration <strong>of</strong> Acrylate,<br />

Methacrylate and Vinyl Acetate Polymers Determined by Online Size-Exclusion<br />

Chromatography–Mass Spectrometry”, Macromolecular Chemistry and Physics, 211,<br />

520–528<br />

4. HOLLAND, B.J., HAY, J.N., 2002: “The thermal degradation <strong>of</strong> poly(vinyl acetate)<br />

measured by thermal analysis–Fourier transform infrared spectroscopy”, Polymer, 43,<br />

2207-2211<br />

5. PACIOREK M., 1993: “Studia i materia�y Wydzia�u Konserwacji i Restauracji Dzie�<br />

Sztuki Akademii Sztuk Pi�knych w Krakowie, t. III. Badania wybranych tworzyw<br />

termoplastycznych stosowanych do impregnacji drewna”, Wydawnictwo Literackie,<br />

Kraków<br />

6. RIMEZ, B., RAHIER, H., Van ASSCHE, G., ARTOOS, T., BIESEMANS, M., Van<br />

MELE, B., 2008a: “The thermal degradation <strong>of</strong> poly(vinyl acetate) and poly(ethyleneco-vinyl<br />

acetate), Part I: Experimental study <strong>of</strong> the degradation mechanism”, Polymer<br />

Degradation and Stability, 93, 800-810<br />

7. RIMEZ, B., RAHIER, H., Van ASSCHE, G., ARTOOS, T., Van MELE, B., 2008b:<br />

“The thermal degradation <strong>of</strong> poly(vinyl acetate) and poly(ethylene-co-vinyl acetate),<br />

Part II: Modelling the degradation kinetics”, Polymer Degradation and Stability, 93,<br />

1222-1230<br />

8. SYNTHOS DWORY Sp. z o.o., 2009: “Winacet® RA – Technical Data Sheet”<br />

(online: www.synthosgroup.com, available: August 10 th 2010)<br />

9. VAIDERGORINA, E.Y.L., MARCONDESA, M.E.R., TOSCANO, V.G., 1987:<br />

“Photodegradation <strong>of</strong> poly(vinyl acetate)”, Polymer Degradation and Stability, 18 (4),<br />

329-339<br />

10. ZHU, W., YING, Q., SHI, L., 1983: “Solution properties and long chain branching <strong>of</strong><br />

polyvinyl acetate”, Acta Polymerica Sinica, 1, 47-55<br />

488


Streszczenie: Termiczne i fotolityczne starzenie polimeru Winacet RA. W pracy<br />

przeprowadzono starzenie pow�ok otrzymanych z polimeru Winacet RA. Badano zmiany<br />

masy molowej podczas d�ugotrwa�ego ogrzewania w temperaturze 100°C oraz podczas<br />

ekspozycji na promieniowanie UV. W przypadku starzenia fotolitycznego stwierdzono bardzo<br />

szybkie powstawanie usieciowanej frakcji nierozpuszczalnej. W przypadku starzenia<br />

termicznego pocz�tkowo rejestrowano wzrost masy molowej, a� do osi�gni�cia punktu<br />

�elowania po 4 tygodniach. Po tym pojawi�a si� frakcja nierozpuszczalna, a masa molowa<br />

frakcji rozpuszczalnej gwa�townie spad�a. Ze wzgl�du na zachodz�cy proces deacetylacji i<br />

dalszego sieciowania, stosowanie tego poli(octanu winylu) w konserwacji drewna powinno<br />

by� ograniczone. Pow�oka uzyskana po zastosowaniu polimeru Winacet RA nie b�dzie mog�a<br />

zosta� pó�niej usuni�ta za pomoc� rozpuszczalników.<br />

Corresponding author:<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

ul. Nowoursynowska 159,<br />

02-117 <strong>Warsaw</strong>, Poland<br />

e-mail: piotr_mankowski@sggw.pl<br />

e-mail: andrzej_radomski@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 490-494<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Iron chloride solution penetration into oak wood<br />

PIOTR MA�KOWSKI, TOMASZ ZIELENKIEWICZ, PIOTR BORUSZEWSKI<br />

Department <strong>of</strong> Wood Science and Wood Protection, Faculty <strong>of</strong> Wood Technology, <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong><br />

Science – <strong>SGGW</strong><br />

Abstract: Iron chloride solution penetration into oak wood. The result <strong>of</strong> the analysis <strong>of</strong> iron (III) chloride<br />

penetration into oak wood is presented in this paper. Wetting angle <strong>of</strong> oak wood by 2,5 % iron (III) chloride<br />

water solution was determined as well as the depth <strong>of</strong> iron salt penetration. X-ray spectrometry was applied to<br />

analyse concentration gradient <strong>of</strong> iron on the section <strong>of</strong> oak wood samples.<br />

Keywords: oak wood, iron III chloride<br />

INTRODUCTION<br />

Natural processes <strong>of</strong> wood colour change are long-lasting and their mechanism is not<br />

enough known. Reactions <strong>of</strong> tannins included in the wood structure with iron salts cause<br />

wood darkening. Oak is the species <strong>of</strong> high tannins content and high durability. Black oak<br />

derived in natural conditions is a very valuable and unique raw material. Numerous studies<br />

concerning oak wood artificial darkening were performed (Krzysik 1978). Black colouring <strong>of</strong><br />

oak wood can be achieved by applying heat treatment (Grze�kiewicz 2008) or single- or twostage<br />

dyeing (Tyszka 1995), perfomed in the presence <strong>of</strong> water. Wood is the hydrophylic<br />

material, what arises from its chemical composition specificity. Superficial absorbing capacity<br />

<strong>of</strong> wood can be determined by wetting angle value (characterizing the ability to cover the<br />

material surface with used liquid). This value may indirectly be the measure <strong>of</strong> solutions<br />

penetration ability.<br />

X-ray fluorescence (XRF) is one <strong>of</strong> the techniques which may be applied to analyse<br />

the penetration process into wood structure. This is fast and non-destructible technique which<br />

is <strong>of</strong>ten used to determine different elements contents. Zielenkiewicz et al. (2009) used XRF<br />

to examine the chlorine content gradient in wood samples treated with Xylamit, preservative<br />

containing chlorine. This technique was also applied to analyse the penetration <strong>of</strong> copper<br />

based preservative into wood structure (Zawadzki et al. 2009).<br />

The aim <strong>of</strong> this paper is to specify the penetration <strong>of</strong> iron (III) chloride into the<br />

structure <strong>of</strong> oak wood (Quercus robur L.) using X-ray spectrometry and wetting angle<br />

measurements (goniometer).<br />

MATERIALS AND METHODS<br />

The studies <strong>of</strong> wetting angles (�) <strong>of</strong> oak wood (Quercus robur L.) by 2,5% solution <strong>of</strong><br />

iron (III) chloride were performed. Measurements <strong>of</strong> contact angle (�) was conducted on<br />

Phoenix 300 goniometer (Surface Electro Optics), based on the sessile drop method. The<br />

analyser is equipped with a digital camera with microscopic lens and a computer-controlled<br />

stepper motor which allows for precise application <strong>of</strong> smal droplet size. The values <strong>of</strong> contact<br />

angle for all tested materials were determined in 1-second intervals for the first 40 seconds,<br />

and in 5-second intervals for the next 40 seconds after application <strong>of</strong> droplets <strong>of</strong> solution onto<br />

the surface.<br />

Measurement <strong>of</strong> contact angle allowed the assessment <strong>of</strong> iron chloride solution<br />

behaviour on the oak surface. Contact angle is a measure <strong>of</strong> interaction between the substrate<br />

and the wetting solution. The lower value indicates a better wetting <strong>of</strong> the material which may<br />

result in easier penetration.<br />

490


It was stated that a single drop wets the sample front and penetrate surface adjacent<br />

zone <strong>of</strong> wood. There was performed the trial <strong>of</strong> water solutions penetration depth testing in<br />

case <strong>of</strong> immersed oak wood (in the direction along fibres).<br />

Samples <strong>of</strong> oak wood (30x15x45 mm) were treated (long cold bath) with the 2,5%<br />

water solution <strong>of</strong> iron (III) chloride. Different durations were applied: sample 1 – 1 day,<br />

sample 2 – 5 days, sample 3 – 10 days, sample 4 – 20 days, sample 5 – 30 days.<br />

X-ray spectrometry was applied to analyse migration <strong>of</strong> iron (III) chloride into the<br />

structure <strong>of</strong> oak wood. Spectro Midex M X-ray spectrometer was used. Each sample ws half<br />

cut after treatment (along fibres), then the uncovered surface was studied using mapping<br />

option available in spectrometer. Maps <strong>of</strong> iron content (<strong>of</strong> qualitative character) on the studied<br />

surface are the results <strong>of</strong> these measurements. Each point <strong>of</strong> a map was exposed within 30 s<br />

using 0,6 mm collimator.<br />

RESULTS<br />

Fig. 1 presents the wetting angle <strong>of</strong> the oak wood cross-section. The change with<br />

passing time is observable. The angle equals 35 deg after 1 second, 15 deg after 50 seconds<br />

and 7 deg after 90 seconds.<br />

Fig. 1 Observations <strong>of</strong> cross-section surface wetting angle (from left: after 1 s, 50 s and 90 s).<br />

The dynamics <strong>of</strong> wetting angle changes on the oak wood cross-section is presented in<br />

the fig. 2. Uniform decrease <strong>of</strong> wetting angle with time is visible. Drop penetrates surface<br />

adjacent zone <strong>of</strong> wood.<br />

491


wetting angle/ deg<br />

40<br />

20<br />

0<br />

y = -0,2912x + 31,638<br />

R 2 = 0,9089<br />

0 60 120<br />

time/s<br />

Fig. 2 The wetting angle (on the cross-section) change with time.<br />

Fig. 3 presents the colour change <strong>of</strong> oak wood samples after bath in 2,5 % water<br />

solution <strong>of</strong> iron (III) chloride. Colour change increases with the bath duration what is visible<br />

in the fig. 3.<br />

Fig. 3 Colour change in oak wood samples treated with iron (III) chloride (from left: after 1, 5, 10, 20, 30 days).<br />

The gradient <strong>of</strong> iron content in oak wood samles treated with iron (III) chloride within<br />

1, 10 and 20 days (samples 1, 3 and 4) is presented in the fig. 4. Ranges <strong>of</strong> values corresponds<br />

to so called „impulse counts for iron. Volume <strong>of</strong> absorbed iron generally increases with time<br />

<strong>of</strong> treatment. In the sample 1 the range <strong>of</strong> absorbtion is very poor. Raised iron content is<br />

observable only along sample edges. Penetration is better from the sample front side, along<br />

fibres. Area with the lowest range <strong>of</strong> impulse counts covers majority <strong>of</strong> the sample surface.<br />

This area is much lesser in the sample 3. Penetration <strong>of</strong> iron (III) chloride is much better,<br />

especially along fibres. This tendency is kept in the sample 4 which seems to be the best<br />

penetrated one. Area with the lowest range <strong>of</strong> values covers the smallest part <strong>of</strong> the surface.<br />

492


Additionally, the highest content <strong>of</strong> iron in samples 3 and 4 is about twice higher than in the<br />

sample 1. Further increasing <strong>of</strong> treatment duration seems to deteriorate absorbtion degree.<br />

Area with the lowest values range in the sample 5 is more extensive and with the highest<br />

values – less extensive than in the sample 4. It may mean that efficiency <strong>of</strong> this kind <strong>of</strong><br />

treatment posses maximum in the function <strong>of</strong> time.<br />

Fig. 4 Iron concentration gradient in samples 1, 3, 4 section.<br />

Frontiers <strong>of</strong> presented areas are generally quite regular. There are some exeptions<br />

which are probably caused by wood anisotropy.<br />

CONCLUSION<br />

Penetration depth <strong>of</strong> iron (III) chloride into wood structure increases with duration <strong>of</strong><br />

treatment. Process proceeds mainly along oak fibres.<br />

Wetting angle decreases with time. Character <strong>of</strong> these changes is linear.<br />

Efficiency <strong>of</strong> penetration may by improved by applying vacuum method <strong>of</strong> treatment.<br />

It should cause treatment time shortening.<br />

REFERENCES<br />

1. GERARDIN P., PETRI M., PETRISSANS M., LAMBERT J., EHRHRARDT J.,<br />

2007: Evolution <strong>of</strong> wood surface free energy after heat treatment. Polymer<br />

Degradation and Stability 92, 653-657.<br />

2. GRZE�KIEWICZ M., 2008: Termiczna modyfikacja drewna. Przemys� Drzewny 3,<br />

29-31.<br />

3. KRZYSIK F., 1978: Czarna d�bina-sposób powstawania i cechy charakterystyczne.<br />

Sylwan 6.<br />

4. TYSZKA J., 1995: Barwienie drewna WPLiS.<br />

5. WOLKENHAUER A., AVRAMIDIS G., HAUSWALD E., MILITZ H., VIÖL W.,<br />

2009: Sanding vs. plasma treatment <strong>of</strong> aged wood: A comparison with respect to<br />

surface energy. International Journal <strong>of</strong> Adhesion & Adhesives 29, 18–22.<br />

6. ZAWADZKI J., ZIELENKIEWICZ T., RADOMSKI A., DRO�D�EK M., SA�EK A.,<br />

2009: Badanie jako�ci impregnacji drewna preparatem wodnorozpuszczalnym w<br />

warunkach laboratoryjnych. Przemys� Drzewny, 3, 20-22.<br />

493


7. ZIELENKIEWICZ T., RADOMSKI A., ZAWADZKI J., NIES�OCHOWSKI A.,<br />

2009: Migrations <strong>of</strong> chlorine compounds in pine wood samples (Pinus sylvestris L.).<br />

<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> <strong>SGGW</strong>, For. And Wood Technol., 69,<br />

480-484.<br />

Streszczenie: Wnikanie roztworu chlorku �elaza (III) w drewno d�bowe. W pracy<br />

przedstawiono wynik oznaczania wnikania roztworu chlorku �elaza (III) w drewno d�bowe<br />

(Quercus robur L.). Okre�lono zale�no�� k�ta zwil�ania drewna d�bowego 2,5 % roztworem<br />

chlorku �elaza (III) od czasu a tak�e g��boko�� wnikania roztworu soli �elaza w drewno.<br />

Stosuj�c spektr<strong>of</strong>otometr XRF okre�lono gradient st��e� �elaza wnikaj�cego od czo�a próbek.<br />

Corresponding authors:<br />

Piotr Ma�kowski<br />

Tomasz Zielenkiewicz<br />

Piotr Boruszewski<br />

Department <strong>of</strong> Wood <strong>Sciences</strong> and Wood Protection,<br />

Faculty <strong>of</strong> Wood Technology,<br />

<strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong>,<br />

Ul. Nowoursynowska 159,<br />

02-776 <strong>Warsaw</strong>,<br />

Poland<br />

e-mail: piotr_mankowski@sggw.pl<br />

e-mail: tomasz_zielenkiewicz@sggw.pl<br />

e-mail: piotr_boruszewski@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 495-498<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

������ ��������� ���������� �������������� �� �������<br />

�����������<br />

������� ��������, ������� �����<br />

������� ���������� ��������������� ������������� ������������ ����������� � ������������������<br />

������� – �����<br />

Abstract: The useful model <strong>of</strong> line is developed for the production <strong>of</strong> radial saw-timbers from wood on the basis<br />

<strong>of</strong> the coupled band sawing machine-tools. The <strong>of</strong>fered model is one <strong>of</strong> variants <strong>of</strong> making <strong>of</strong> especially radial<br />

saw-timbers from a whole log. A band sawing line can be used in the different spheres <strong>of</strong> national economy at<br />

making <strong>of</strong> radial saw-timbers and purveyances from wood.<br />

Keywords: radial saw-timbers, band sawing line, band sawing machine-tools, segment, sector, purveyance.<br />

����������� ����� ������������� ������� ������������ ����������������<br />

��������������, � ����� ��������� � ������� �� �������������� [1]. ��� ������� �<br />

���, ��� ��������� ������� ��������� ��������� ���������� �������������<br />

������������� ���� �������, ������, �������� � ���������. ������� � ������ ������<br />

�� ����� ���� ������������ ������������� ������ ����������.<br />

��� ������� �������� ������������ ����� ���������������� ��������������<br />

������ �������� ������� �������� ����� � ������� �����������,<br />

������������������ �� ������� ��������� ����� ��������� �� ���������. ��� �����,<br />

��������������, ������� ����������������� ���������� ������������ �����������<br />

�������������� ����� ����������� ������������ ������������ [2].<br />

������� �������� �������� ����������� � �������������� �������������<br />

����������� ���� ����������, ������� ������������ � �������� ��������������� �<br />

��� ���������� ������������. ���������� ������������� ����� ���������� �<br />

������������ ������ � ��������� �����, ��������� � ������� ������� ���<br />

�������������. ��� ����������� �� ���������� ������-������������� ����������:<br />

����� �������� ������, ������� ����������� ��������, �������������� ����������<br />

���������� ��� �����, ����� ������� ������ ���������.<br />

��� �������� [3], ��� ������������ ���������� �������������� �������<br />

��������� �� ������������ ����������� ����� �������: ���������, ���������-<br />

����������, ���������-���������, �������-����������, ��������� � ��������<br />

�������� ���� ������ � ���������� ����������� ��������. ������ � ���� ����������<br />

����� ������� ����� ���������� ������ �� ���������� ������������� [4,5],<br />

���������� � ���� ��������� �������� �� ������������ ������� ����, ��������<br />

������ � ����������.<br />

� �������� ����������� ��������� ��� ������������ ��������������<br />

���������� ����������� ����, ��������������� � ������������� ������, ��������-<br />

��������� �������� � ����� [6]. ��� ���������� ����������� ���� ������� � �����<br />

��������� ���������� �������������� ����� �������������� ��������������� �<br />

������������� ������. �������� ��������� � ���� ������ �������� �������������<br />

������ �������������� ����. ������ ����� ������������ ���������� ������� ����� �<br />

������� ������� �������.<br />

����� ����������� ��������� ������� � ������������ ����������<br />

�������������� �������� �� ��������� ������������������, ������������<br />

������������ ��� ����� �������� ����� ��������� ����������� �������.<br />

495


���� ���� ����������� �������� ��������� «����������» � «����� ����������<br />

��������������» � ��������� �������� �� ���������� [7]. ��� �������������<br />

������������ ���������� ������� ������� �������������� ������ �� ����������<br />

������������� ������������ ������������ ��������������� ������. ������� �����<br />

����� �� ��������� ������������� ����� ������������ [6]:<br />

- ��������� ������ ������� – �� 2�� �� 3,2��;<br />

- �� ������� ��������������� ���������� ������ �� ���������;<br />

- ������������ �������� ������ � ����������� �� ������ (������) �������;<br />

- �������� ������� ������� ��������� ������ ���������;<br />

- ����������� ���������� ��������������� ������� �������.<br />

��� ���������� ���������� ���������� ������� � �������� ��������<br />

������������, ������������ ��������������� ������� � ������� ����������������� �<br />

����������������� ���� ���. �������, ��� ���������� ����� ��������� ����������<br />

������� ����� ������������ ��� ������� ������� � ����� � ������� ������� �� ����<br />

��������� ������������� �����������.<br />

���� ���������� ������ ����� �� ���� ��������� ��������������� �������<br />

������������� ���� � ����������� �����������. �� �������� ������� ����� ��� – 1<br />

(���.1), ��������� �� ����� ���������� [8]:<br />

- ���������� 3 ��� �������� ������ � ��������� ������ ������;<br />

- ��������������� ���������� 6 ��� ������, ��������� � ������������� ������;<br />

- ��������� ��� ������ ������ � ������ ��� � ���������� 5;<br />

- ��������� ��������������� ������� 7 ��� ���������� ������ �����<br />

����������������� ��������� ����������� ������� ��������, � ����� �����;<br />

- ���������� ��������� 8 � ����������� ��������� 9 ��� �������� �����;<br />

- ������ ���������� ������ 4 � ������������ ���������� ������� ������������<br />

���������� 10.<br />

���.1. ����� ����� ���-1 � ����������� �����������<br />

����� ���������� ����� ��������: ��� ��������������� ������, ��������<br />

������ � ���� ������� � ���������-�������������� ��������� ��������������<br />

���������, ������������������ ������� ���������� ������.<br />

� ������ ������������� ������� ������������ ���������� ��������������<br />

����� ������ �������� ����� ������� �������� ����� ��������� � �������<br />

������������������� �������� �������. ����� ������ ����� ������ �����<br />

���������� ��������� ������ ����� � ������������ �������� ��������� ��<br />

��������� � ��������������� �������, ��� ��������� ����������� ��������������<br />

� ��������� ����������� ���� ������� �� ��������� ���� �������� ������.<br />

�� ���.2 �������� �������������� ������ ��������������� ����� ���<br />

������������ ���������� �������������� �� ��������� ������ �����.<br />

496


��������������� ����� ����� ��� ��������������� ������ 1, �������� ������ 2<br />

� ���� ������� � ���������-�������������� ��������� �������������� ���������,<br />

�������� �������� ��������� 3 �� ��������� � ������� ����� �������,<br />

������������������ ������� ���������� ������.<br />

������ ����� �������������� ���� ��������� �������. ���������� ������<br />

������������� �� ����� ���������-����������, ���������-��������� ��� ���������<br />

��������. ��� ���� � ������ ������ �������� ��������� ���������� �����<br />

����������� ���� � ��� ��������. �� ������ ������ – ��������� ���������� �����<br />

����������� ���� � ������ �������. � ������� ������ – ������ ��� ������ (�<br />

����������� �� �������� �����) ��������. ����� ������� ��� ������ ����������<br />

����� ������������ �� ��������� � ����������� ������ �� ��������� ������� ���<br />

������ ���������� ����� ����������� ������������.<br />

2<br />

3<br />

4<br />

0<br />

6<br />

���.2. �������������� ������ ��������������� ����� ��� ������������<br />

���������� �������������� �� ���������<br />

������� 4 ����������� � ������ �������� 5 ��� ������ ������������� 6.<br />

���������� ����������� 3 ��������� � ����������� �� ������� ���������� �������<br />

�������������� �� ��������������� ����. ����� ����� �������� ������ �������� �<br />

���������� ����������� ������������ ������ �� ��������������� ������� �, �����<br />

�������, ������������ ������� ����������� ���� ����������. ����������<br />

����������� 3 ����� ������� ������� ��������� �������������� �� ���������������<br />

���� �� ������� ���������������� ������. �������� ������ �������� � ��������<br />

����������� � ������������ ������� � ������ ������� �������� �� ������<br />

��������������� ������. � ���������� ������� �����������.<br />

������������������ �������� ���������� ����������� ������������� ��������<br />

��������������� ������� 1 � ���������� �����������, ������������� �����������<br />

1<br />

497<br />

5<br />

0


��������� ������ 2 � ��������� �������� ��������� 3. ��� ����������� ��� ����,<br />

����� ��������� ���� ������ ��� ��������� ����� ����� �������� � ����� 0.<br />

����������� ���������� �������������� �� ��������� ������ ����� ��<br />

�������� ��������������� ����� �������� ��������� ������������������ �������� �<br />

��� ���� �� ���� ������������� ��������� �������, ��������� ������� ������� � 2 –<br />

2,5 ���� ��������� ������� ������� ��������� ��� �, �������������� �� ������� ��<br />

�������������.<br />

������������ ������ �������� ����� �� ��������� ��������� ������<br />

���������� �������������� �� ������ ������. ��� ����� ���� ������� ���<br />

���������� ���������� � ������ �����������. ��������������� ����� �����<br />

�������������� � ������ ������ ��������� ��������� ��� ������������ ����������<br />

�������������� � ��������� �� ���������.<br />

REFERENCES:<br />

1. ������� �., 2006: ����������� ����������� ���������. �.: Derevo. Ru �2, �.<br />

34-39.<br />

2. ��������� �.�., ������ �.�., 2000: ����������� ��������� �������������<br />

����������� ��������� �� ����������� ������������. �.: ��������������������<br />

�������������� � 6, �. 5-8.<br />

3. ������� ��������, ����� ����������, 2008: ����������� �������� ����<br />

��������� ���������� ��������������. <strong>Warsaw</strong>: <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong><br />

<strong>Sciences</strong> Forestry and Wood Technology � 64, �. 47 - 51.<br />

4. �������� ������ ���������� (RU), ������ � 2310555 (�� 2007.11.20): ������<br />

������� ������ �� ���������� ������� ���������.<br />

5. ������� ������ ��������� (RU); ������� �������� �������� (RU); �����<br />

������ �������� (RU); �������� ���� �������� (RU); ������ ������� ������������<br />

(RU); ������� ���� ���������� (RU), ������ � 2310556 (�� 2007.11.20): ������<br />

������������ ���������� ��������������.<br />

6. ���������� �.�., ����� �.�., ������ �.�., �������� �.�. 2005: �����������<br />

������������� � ����������� ������������. �������: �� "�����������". 176 �.<br />

7. �������� �. �. 2009: ����������� �������� ������������ ���� ��� ���������<br />

���������� ��������������. �: �������� ������ ����� ������� �135, �.364-370.<br />

8. ������ �.�., ��������� �.�., ������ �.�. 1993: ������������<br />

��������������������� ������������. ����� 2. �: ����, 336�.<br />

Streszczenie: Metoda przetarcia tarcicy promieniowej z drewna okr�g�ego. Zaprezentowano<br />

model linii produkcyjnej tarcicy promieniowej na bazie sprz��onych pi� ta�mowych.<br />

Prezentowanie rozwi�zanie jest jednym z wielu metod produkcji tarcicy promieniowej.<br />

Corresponding authors:<br />

Natalia Marchenko, Zinoviy Sirko<br />

Department <strong>of</strong> Wood Processing,<br />

National <strong>University</strong> <strong>of</strong> <strong>Life</strong> and Environmental <strong>Sciences</strong> <strong>of</strong> Ukraine,<br />

Kyiv,<br />

Str. Geroiv Oborony 15,<br />

03041 Ukraine<br />

E-mail: mattrom@ukr.net


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 499-503<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Collagen modified hardener for melamine-formaldehyde adhesive for<br />

increasing water-resistance <strong>of</strong> plywood<br />

JÁN MATYAŠOVSKÝ – PETER JURKOVI� – PETER DUCHOVI�<br />

VIPO, a.s., Partizánske, Slovakia<br />

Abstract: Collagen modified hardener for melamine-formaldehyde adhesive for increasing water-resistance <strong>of</strong><br />

plywood. One <strong>of</strong> the very important technological operations in woodworking industry is gluing. The aim <strong>of</strong> this<br />

work was preparation <strong>of</strong> hardener for melamine-formaldehyde (MEF) adhesives suitable for gluing <strong>of</strong> plywood.<br />

Commercial hardener was modified by biopolymers (waste animal polymers). Glued joints were expected to be<br />

classified as resistant to water in class 3.<br />

In the experiments, two types <strong>of</strong> leather collagen hydrolysates (VIPOTAR I and VIPOTAR II) were<br />

applied into MEF adhesive. Leather collagen hydrolysates were obtained from waste produced by leather<br />

industry. Glued plywood specimens were preliminary conditioned by two different ways. Plywood glued with<br />

MEF adhesive with the modified hardener showed good strength properties when evaluated according to the<br />

standard STN EN 314-1, 2. Glued joints can be graded in class 3.<br />

Keywords: biopolymer, hardener, gluing, melamine adhesive, plywood, water-resistance<br />

INTRODUCTION<br />

Great attention is paid to improvement <strong>of</strong> technology <strong>of</strong> gluing and development <strong>of</strong><br />

new types <strong>of</strong> adhesives. The important effort is exploitation <strong>of</strong> available products that could<br />

improve effectiveness <strong>of</strong> adhesive mixtures and reduce cost in production <strong>of</strong> adhesives. For<br />

the improvement <strong>of</strong> product quality (from the point <strong>of</strong> view <strong>of</strong> hygienic criteria), searching<br />

and using <strong>of</strong> raw materials reducing release <strong>of</strong> formaldehyde from glued joints is very<br />

important. Biopolymers could be such materials (e.g. waste from leather or food industry).<br />

Melamine-formaldehyde (MEF) adhesives are thermo-reactive adhesives curing at<br />

neutral or acidic pH at higher temperatures (130-140 °C) usually at presence <strong>of</strong> hardeners.<br />

Laser scanning microscopy was used to investigate the distribution <strong>of</strong> adhesive in wood<br />

fibers. Cyr et al. (2007) researched penetration <strong>of</strong> melamine-urea-formaldehyde (MUF)<br />

adhesive at fiberboard (MDF) production. Atomic force microscopy (AFM) enabled to<br />

recreate the finest detail <strong>of</strong> fiber surface. Adhesive can penetrate into any layers <strong>of</strong> wood cell<br />

walls, uses its affinity to both water and wood polymers to penetrate through pores from<br />

surface to lumen.<br />

Improvement the water resistance for challenge expositions, or modification <strong>of</strong> certain<br />

properties <strong>of</strong> joints can be achieved by a mixture <strong>of</strong> adhesives e.g. urea-formaldehyde (UF)<br />

with resorcinol, melamine or polyvinylacetate (PVAC). Problems <strong>of</strong> influence <strong>of</strong> melamine<br />

content in MUF adhesives on formaldehyde emission and cured resine structure was<br />

investigated by Tohmura et al. (2001). They used 6 MUF adhesives synthesized with different<br />

F/(M+U) and M/U molar ratios. The 13 C nuclear magnetic resonance (NMR) spectroscopy <strong>of</strong><br />

cured MUF resins revealed that more methylol groups, dimethylene-ether, and branched<br />

methylene structures were present in the MUF resins with a higher F/(M+U) molar ratio,<br />

leading to increased bond strength and formaldehyde emmission. The lower formaldehyde<br />

emission from cured MUF adhesives with a higher M/U molar ratio may be ascribed to the<br />

stronger linkages between triazine carbons <strong>of</strong> melamine than those <strong>of</strong> urea carbons.<br />

Dukarska and Lecka (2008) researched in preparation <strong>of</strong> adhesive mixture based on<br />

melamine adhesive for production <strong>of</strong> exterior plywood. Melamine-urea-phenol-formaldehyde<br />

499


(MUPF) and phenol-formaldehyde (PF) resins were filled by the waste from polyurethane<br />

(PUR) foam. Usage <strong>of</strong> adhesive mixtures based on MUF adhesive was searched by Jozwiak<br />

(2007). Fillers used were potato starch and rye flour. Obtained results showed that glued<br />

plywood met the standard for bond quality grade 3 and the mixture could be used for wood<br />

gluing at various levels <strong>of</strong> wood moisture content (6 – 21 %).<br />

Cellulose and lignin, as the basic wood component, are able to interact with proteins.<br />

Experiments were carried out on the interaction with dried animal blood plasma and egg<br />

albumin (Polus-Ratajzak et al. 2003). Infrared FTIR spectroscopy was used to analyze<br />

chemical changes in cellulose and lignin during the reaction. Obtained spectra indicated on<br />

possible chemical reaction between the peptide chain and reactive groups associated with<br />

cellulose.<br />

Shitij Chaba and Anil N. Netravali (2005) presented the research in modification <strong>of</strong><br />

soy protein concentrate using glutaraldehyde and polyvinyl alcohol. The modified resin allow<br />

to process soy protein polymer without any plasticizer. The modified resin also showed<br />

increased tensile properties, improved thermal stability and reduced moisture resistance as<br />

compared to soy protein concentrate resin.<br />

At present, the market has got an excess protein, especially protein hydrolysates from<br />

leather waste. Collagen belongs to the most important technical proteins, which enables more<br />

effective preparation <strong>of</strong> adhesive mixtures for plywood and other board types preparation,<br />

Sedlia�ik (2008, 2009), Sedlia�iková (2007). Collagen is possible to use also for increasing <strong>of</strong><br />

water-resistance <strong>of</strong> polyurethane adhesives, Šmidriaková (2010).<br />

The aim <strong>of</strong> our research was to develop a hardener for MEF adhesive mixtures. The<br />

mixtures could be used for wo<strong>of</strong> gluing in bond quality grade 3, according to the standard EN<br />

314-1, 2. The adhesive joint <strong>of</strong> grade 3 is applicable at outdoor conditions – at unlimited<br />

climatic influences. Non modified commercial MEF adhesives provide glued joint in grade 2.<br />

The MEF hardener was modified by biopolymers <strong>of</strong> animal origin. Various waste<br />

biopolymers (leather waste) could be secondary used.<br />

EXPERIMENTAL PART<br />

The experiments were carried out with the adhesive (KRONOCOL SM 10) and the<br />

particular hardener (hardener - product <strong>of</strong> Duslo Šala). Required hardener addition is 3 %.<br />

To prepare a modified hardener, biopolymers in the form <strong>of</strong> collagen substrates were<br />

used. Substrates were prepared by dechromation <strong>of</strong> chrome leather waste at two different<br />

temperatures and were specified as activator VIPOTAR I (prepared at 20 °C) and activator<br />

VIPOTAR II (at 30 °C). Substrates pH value was adapted to the value <strong>of</strong> 4,0. Solubility and<br />

hydrophobic improvement was assured by addition <strong>of</strong> lyotropic agent and hydrophobic agent<br />

(methylester <strong>of</strong> tannery fat MEKT). Commercial hardener was activated by addition <strong>of</strong><br />

activators VIPOTAR I or VIPOTAR II in ratios 3,5 %. Adhesive mixtures were tested in 3layer<br />

beech plywood. Pressing temperature was 130 °C, adhesive consumption 150 g.m -2 .<br />

Shear strength was measured and evaluated using a tensile testing machine LaborTech<br />

4.050 with 5 kN head. Glued joint quality was tested according to the standard STN EN 314-<br />

1. Bond quality was expressed as grade 1, 2 or 3. Requirements for joint quality at plywood<br />

are determined by the standard STN EN 314-2.<br />

RESULTS AND DISCUSSION<br />

To test the effectiveness <strong>of</strong> activator VIPOTAR I, influence <strong>of</strong> various concentrations<br />

<strong>of</strong> the activator on shear strength <strong>of</strong> prepared plywood was tested. If activator was added in<br />

hardener (in adhesive mixture), shear strength <strong>of</strong> the joint was increased. The improvement<br />

500


was observed only under specific activator concentration. The optimal addition was<br />

determined as 3,5 %. At higher ratio (5 %), the shear strength was lower when compared to<br />

ratios 3,5 % or 2,5 %.<br />

In table 1, mean values <strong>of</strong> shear strength evaluated according the method for grade 3,<br />

together with individual measured minimal and maximal values, are shown. Above mentioned<br />

tendency <strong>of</strong> shear strength is also evident in this detailed evaluation. Based on the<br />

experiments, further experiments were carried with addition <strong>of</strong> 3,5 %.<br />

Table 1. The shear strength <strong>of</strong> plywood specimens glued with the adhesive mixture with various amount <strong>of</strong><br />

activator VIPOTAR I<br />

sample Activator<br />

addition in<br />

hardener<br />

[%]<br />

Required<br />

standard value <strong>of</strong><br />

shear strength<br />

[MPa]<br />

501<br />

Average shear<br />

strength<br />

[MPa]<br />

Minimal<br />

measured shear<br />

strength<br />

[MPa]<br />

Maximal<br />

measured shear<br />

strength<br />

[MPa]<br />

reference – 1,0 1,1 0,82 1,26<br />

1 2,5 1,0 1,6 1,33 2,31<br />

2 3,5 1,0 1,9 1,66 2,59<br />

3 5,0 1,0 1,3 0,92 1,46<br />

When preparing adhesive mixture for the experiments <strong>of</strong> water resistance, both<br />

activators VIPOTAR I and VIPOTAR II were used. Activators were added in the amount <strong>of</strong> 3,5<br />

%. Resulting shear strength values for plywood conditioned for grade 2 are listed in table 2.<br />

Table 2. The shear strength <strong>of</strong> preliminary conditioned plywood specimens (gluing in grade 2)<br />

Sample<br />

/modifier/<br />

Required<br />

standard<br />

value<br />

[MPa]<br />

Average<br />

shear<br />

strength<br />

[MPa]<br />

Standard<br />

deviation<br />

[MPa]<br />

Coefficient<br />

<strong>of</strong><br />

variation<br />

[%]<br />

Minimal<br />

measured<br />

shear<br />

strength<br />

[MPa]<br />

Maximal<br />

measured<br />

shear<br />

strength<br />

[MPa]<br />

1- VIPOTAR I 1,0 2,8 0,20 7,3 2,4 3,2 12<br />

2 – VIPOTAR I 1,0 2,5 0,23 9,2 2,2 2,9 12<br />

3 –VIPOTAR II 1,0 2,5 0,28 11,1 2,0 3,0 12<br />

4 –VIPOTAR II 1,0 2,4 0,26 10,9 2,1 3,0 12<br />

Number<br />

<strong>of</strong><br />

samples<br />

All mean values <strong>of</strong> shear strength for grade 2 markedly exceeded required standard<br />

value <strong>of</strong> 1,0 [MPa]; even all individual measured values were double than standard required<br />

value. The shear strength in comparison with the shear strength <strong>of</strong> the joint glued without the<br />

modifiers was significantly higher, more than doubled. Final shear strength values for<br />

plywood conditioned for grade 3 are listed in table 3.<br />

Table 3. The shear strength <strong>of</strong> preliminary conditioned plywood specimens (gluing in grade 3)<br />

Sample<br />

/modifier/<br />

Required<br />

standard<br />

value<br />

[MPa]<br />

Average<br />

shear<br />

strength<br />

[MPa]<br />

Standard<br />

deviation<br />

[MPa]<br />

Coefficient<br />

<strong>of</strong><br />

variation<br />

[%]<br />

Minimal<br />

measured<br />

shear<br />

strength<br />

[MPa]<br />

Maximal<br />

measured<br />

shear<br />

strength<br />

[MPa]<br />

1 – VIPOTAR I 1,0 2,4 0,29 11,7 1,7 2,9 15<br />

2 – VIPOTAR I 1,0 2,3 0,37 16,1 1,6 2,8 13<br />

3 – VIPOTAR II 1,0 2,3 0,22 9,7 1,8 2,8 15<br />

4– VIPOTAR II 1,0 1,9 0,35 18,9 1,4 2,4 15<br />

Number<br />

<strong>of</strong><br />

samples<br />

[ks]<br />

Similarly as for grade 2, all mean shear strength values <strong>of</strong> grade 3 exceeded required<br />

standard value <strong>of</strong> 1,0 [MPa]. Moreover, all individual measured values were above the<br />

standard required value. Similarly as in the experiments for grade 2, the shear strength at<br />

grade 3 compared with the shear strength <strong>of</strong> the joint glued without the modifiers, was higher.


If we compare individual measured minimal and maximal values <strong>of</strong> shear strength for<br />

two various ways <strong>of</strong> conditioning <strong>of</strong> tested material, we can see that strength for grade 3<br />

reached lower values when compared with grade 2. The same tendency was observed at mean<br />

values <strong>of</strong> shear strength. Such results can be expected, as preliminary conditioning for grading<br />

3 is significantly more aggressive (longer total time <strong>of</strong> boiling interrupted with drying at<br />

higher temperature).<br />

All tested adhesive mixtures and glued joints met the standard for grade 2 and grade 3,<br />

as well, and significantly exceeded the shear strength values <strong>of</strong> the reference sample.<br />

Our findings confirmed the expected presumption; the strength and water resistance <strong>of</strong><br />

adhesive bond is markedly influenced by the addition <strong>of</strong> a small amount <strong>of</strong> biopolymer (skin<br />

collagen). Commercial hardener was modified by activators VIPOTAR I and VIPOTAR II in<br />

the ratio 3,5 %. If we consider the ratio <strong>of</strong> activators in all volume <strong>of</strong> adhesive mixture, the<br />

concentration <strong>of</strong> them is very low; nevertheless, their impact on the resulting strength and<br />

water resistance <strong>of</strong> adhesive joints is so marked.<br />

CONCLUSION<br />

Our assumption that the addition <strong>of</strong> biopolymers in form <strong>of</strong> hydrolysates containing<br />

skin collagen can result in increased shear strength and increased water resistance, was<br />

confirmed. Collagen macromolecules dispersed in solution or in adhesive mixture have good<br />

adhesion to glued surface. In line with the results <strong>of</strong> other authors, we assume the right<br />

chemical reaction between the functional groups <strong>of</strong> protein and functional groups <strong>of</strong> the<br />

adhesive.<br />

From the above results, it is visible that researched additives can become modifiers for<br />

adhesive mixtures based on MEF adhesives. MEF adhesives used in praxis are graded as<br />

adhesives class 2. Glued joints graded as class 2 are suitable in the environments with higher<br />

moisture (e. g. sheltered exterior, outdoor conditions – short-time climatic influences, indoor<br />

conditions with higher moisture when compared with grade 1). Both <strong>of</strong> the tested collagen<br />

substrates significantly increased the shear strength <strong>of</strong> glued joint, and enabled to grade the<br />

bond as 3. Adhesive bonds graded as 3 are applicable at outdoor conditions – at unlimited<br />

climatic influences.<br />

REFERENCES:<br />

1. CYR, P.L., RIEDL, B., WANG, X. M., 2008: Investigation <strong>of</strong> Urea-Melamine-<br />

Formaldehyde (UMF) resin penetration in Medium-Density Fibreboard (MDF) by High<br />

Resolution Confocal Laser Scanning Microscopy. In: Holz als Roh-und Werkst<strong>of</strong>f, 66:<br />

129–134.<br />

2. DUKARSKA, D., LECKA, J., 2008: Polyurethane foam scraps as MUPF and PF filler in<br />

the manufacture <strong>of</strong> exterior plywood. In: <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> -<br />

<strong>SGGW</strong>, Forestry and Wood Technology, Warszawa, No. 65: 14–19.<br />

3. JOZWIAK, M., 2007: Possibility <strong>of</strong> gluing veneers with high moisture content with the<br />

use modified MUF adhesives resin. In: <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> –<br />

<strong>SGGW</strong>. Forestry and Wood Technology, Warszawa, No. 61.<br />

4. POLUS-RATAJCZAK, I., MAZELA, B., GOLINSKI P., 2003: The chemical interaction<br />

<strong>of</strong> animal origin proteins with cellulose and lignin in wood preservation. In: <strong>Annals</strong> <strong>of</strong><br />

<strong>Warsaw</strong> Agricultural <strong>University</strong> - <strong>SGGW</strong>, Forestry and Wood Technology, Warszawa,<br />

No. 53: 296–299.<br />

5. SEDLIA�IK, J., SEDLIA�IKOVÁ, M., 2009: Innovation tendencies at application <strong>of</strong><br />

adhesives in wood working industry. In: <strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> –<br />

<strong>SGGW</strong>. Forestry and Wood Technology, Warszawa, No 69, s. 262-266. ISSN 1898-5912.<br />

502


6. SEDLIA�IK, J., ŠMIDRIAKOVÁ, M., JABLO�SKI, M., 2008: Obniženie<br />

energetycznych wymaga� wytwarzania sklejek. Przemysl drzewny No.4, s. 24–26, ISSN<br />

0373-9856.<br />

7. SEDLIA�IKOVÁ, M., KMEC, S., KOPNÝ, J., 2007: Racionalizácia výroby preglejok.<br />

In: Pokroky vo výrobe a použití lepidiel v drevopriemysle. Technická univerzita vo<br />

Zvolene, ISBN 80-228-1697-3. p. 30-33.<br />

8. SHITIJ CHABA, NETRAVALI, A. N., 2005: „Green“ composites. Part 2:<br />

Characterization <strong>of</strong> flax yarn and glutaraldehyde/poly (vinyl alcohol) modified soy protein<br />

concentrate composites. In: Journal <strong>of</strong> materials science 40: 6275-6282.<br />

9. STN EN 314-1: 2005. Preglejované dosky. Kvalita lepenia. �as� 1: Skúšobné metódy.<br />

10. STN EN 314-2: 2005. Preglejované dosky. Kvalita lepenia. �as� 2: Požiadavky.<br />

11. ŠMIDRIAKOVÁ, M., KOLLÁR, M., 2010: Modifikácia polyuretánových lepidiel<br />

biopolymérmi na lepenie dreva s vyšším obsahom vlhkosti. Acta Facultatis Xylologiae,<br />

52 (1), TU Zvolen, 2010, s. 75 – 83.<br />

12. TOHMURA, S., INOUE, A., SAHARI, S. H., 2001: Influence <strong>of</strong> the melamine content in<br />

melamine-urea-formaldehyde resins on formaldehyde emission and cured resin structure.<br />

In: J. Wood Sci. 47: 451- 457.<br />

Acknowledgement<br />

This paper was processed in the frame <strong>of</strong> the APVV projects No. APVV-0521-07,<br />

APVV-0773-07, VMSP-0044-07 and VMSP-P0062-09 as the result <strong>of</strong> author’s research at<br />

significant help <strong>of</strong> APVV agency Slovakia.<br />

Streszczenie: Zastosowanie utwardzacza modyfikowanego kolagenem do kleju melaminow<strong>of</strong>ormaldehydowego<br />

w celu zwi�kszenia odporno�ci na wod� sklejek. Jednym z najbardziej<br />

odpowiedzialnych zada� w przemy�le drzewnym jest klejenie. Niniejsza praca dotyczy<br />

utwardzacza �ywic melaminowo-formaldehydowych odpowiedniego do produkcji sklejki.<br />

Utwardzacz by� modyfikowany biopolimerami (odpady produkcji zwierz�cej). Spodziewano<br />

si� osi�gni�cia klacy 3 odporno�ci na wod�. Testowano dwa hydrolizaty kolagenu skórnego<br />

(VIPOTAR I oraz VIPOTAR II) w zastosowaniu do �ywic melaminowo-formaldehydowych.<br />

Sklejone próbki by�y sezonowane wdwiema ró�nymi metodami. Sklejki klejone �ywic�<br />

melaminowo-formaldehydow� utwardzan� modyfikowanym utwardzaczem wykazuj� dobre<br />

w�a�ciwo�ci mechaniczne (wg. STN EN 314-1, 2) i mog� by� zakwalifikowane do klasy 3<br />

odporno�ci na wod�.<br />

Corresponding authors:<br />

Ing. Ján Matyašovský, PhD.<br />

Ing. Peter Jurkovi�, PhD.<br />

Ing. Peter Duchovi�<br />

VIPO, a.s. Partizánske<br />

ul. gen. Svobodu 1069/4<br />

958 01 Partizánske, Slovakia<br />

e-mails: jmatyasovsky@vipo.sk<br />

pjurkovic@vipo.sk


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010: 504-508<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Enhancing the fungal performance <strong>of</strong> wood coatings by pre-treatment with<br />

Na2O-SiO2 solution<br />

BART�OMIEJ MAZELA 1 , PATRYCJA HOCHMA�SKA 1 , IZABELA RATAJCZAK 2 ,<br />

KINGA SZENTNER 2<br />

1<br />

Institute <strong>of</strong> Chemical Wood Technology, Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>, Wojska Polskiego 38/42, 60-637<br />

Poznan, Poland,<br />

2<br />

Department <strong>of</strong> Chemistry, Poznan <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>, Wojska Polskiego 75, 60-625 Poznan, Poland<br />

Abstract: Enhancing the fungal performance <strong>of</strong> wood coatings by pre-treatment with Na2O-SiO2 solution. The<br />

influence <strong>of</strong> pre-treatment with Na2O-SiO2 solution on efficacy <strong>of</strong> solvent-borne wood coatings against decay<br />

fungi and moulds was tested. Pre-treatment with biocide was used as reference. Primers were applied by vacuum<br />

impregnation, while topcoats by dipping. The test material (pine and beech samples) was visually inspected<br />

several times during 3 weeks <strong>of</strong> exposure to moulds. After 8 weeks a mass loss <strong>of</strong> samples subjected to decay<br />

fungi was evaluated. The results showed, that pre-treatment with Na2O-SiO2 solution significantly improved<br />

fungal performance <strong>of</strong> solvent-borne coatings.<br />

Keywords: Na2O-SiO2, pre-treatment, wood coatings, fungal performance<br />

INTRODUCTION<br />

Restrictions on the use <strong>of</strong> biocides in paints, changes in the product formulation, air pollution<br />

and reduced wood quality together with the theory on global climatic change, have been put<br />

forward as hypothesis for an evident increase <strong>of</strong> discolouring fungi (moulds and blue-stain<br />

fungi) on the surface <strong>of</strong> painted wood in outdoor applications [Gobbaken and Jenssen 2007].<br />

As home improvement has led to increased interest in DIY wood coatings, this problem was<br />

consider as urgent. Many alternative agents to biocides were tested. Silicon compounds are<br />

one <strong>of</strong> them. Such additive should be capable to protect both dry film and wood substrate<br />

from various types <strong>of</strong> growth and biodegradation. [Mazela et.al. 2009] decreased water<br />

absorption <strong>of</strong> wood by adding silicon compounds to different wood coatings. However<br />

biological resistance couldn’t be achieved. Therefore, in the present study silicon compounds<br />

are performed as composites with sodium acetate (Na2O-SiO2). Previous research have shown<br />

that impregnation with SiO2 composites, without fungicide addition, can significantly enhance<br />

fire-resistance [Miyafuji and Saka 2001], antimicrobial properties [Tanno et.al. 1997] and<br />

water-repellency [Miyafuji and Saka 1999] <strong>of</strong> wood. Thus, the influence <strong>of</strong> pre-treatment with<br />

Na2O-SiO2 composite on efficacy <strong>of</strong> solvent-borne wood coatings against decay fungi and<br />

moulds was tested.<br />

MATERIALS AND METHODS<br />

Coating systems composition<br />

Pine and beech sapwood samples and nine solvent-borne impregnating systems were used as<br />

substrate material. Wood samples were divided into two sets: leached (L) and non-leached<br />

(NL) after impregnation. Pre-treatment with Na2O-SiO2 (M+) and biocide containing<br />

solutions (B) were applied by vacuum impregnation method while coatings based on alkyd<br />

resin (A) and mixture <strong>of</strong> oils (O) were applied by dipping. Combination <strong>of</strong> primer and topcoat<br />

504


were marked as MA, MO, BA, BO. Samples impregnated with methanol solution (M) and<br />

non-impregnated (controls) were also included. Detailed description is presented in table 1.<br />

Table 1. Characteristic <strong>of</strong> the different solvent-borne formulations<br />

Nr Primer<br />

Impregnation<br />

method<br />

Topcoat<br />

Impregnation<br />

method<br />

Mark<br />

1 MTMOS:Methanol 0,03:1,00<br />

MTMOS:Methanol:Acetic acid<br />

Vacuum - - M<br />

2 0,03:1,00:0,01+<br />

Sodium acetate /0,06<br />

Vacuum - - M+<br />

MTMOS:Methanol:Acetic acid<br />

Alkyd resin (55%) 30%<br />

3 0,03:1,00:0,01+<br />

Vacuum Siccative 0,2% Dipping MA<br />

Sodium acetate /0,06<br />

White spirit<br />

4<br />

MTMOS:Methanol:Acetic acid<br />

0,03:1,00:0,01+<br />

Sodium acetate /0,06<br />

Alkyd resin (55%) 12%<br />

Vacuum<br />

Linseed and rape oil 30%<br />

Alkyd resin 1%<br />

Siccative 3%<br />

White spirit<br />

Dipping MO<br />

5 Polyphase 912 4%<br />

White spirit<br />

Vacuum - - B<br />

Alkyd resin (55%) 12%<br />

Alkyd resin (55%) 30%<br />

6 Polyphase 912 4%<br />

Vacuum Siccative 0,2% Dipping BA<br />

White spirit<br />

White spirit<br />

7<br />

Alkyd resin (55%) 12%<br />

Polyphase 912 4%<br />

White spirit<br />

Vacuum<br />

Linseed and rape oil 30%<br />

Alkyd resin 1%<br />

Siccative 3%<br />

White spirit<br />

Alkyd resin (55%) 30%<br />

Dipping BO<br />

8 - - Siccative 0,2%<br />

White spirit<br />

Linseed and rape oil 30%<br />

Dipping A<br />

9 - -<br />

Alkyd resin 1%<br />

Siccative 3%<br />

White spirit<br />

Dipping O<br />

Fungal performance:<br />

Impregnated samples and controls were subjected to biological tests to determine<br />

impregnating systems efficacy using decay fungi and moulds. Prior to fungal exposure,<br />

samples were exposed to leaching procedure according to EN 84.<br />

Decay resistance<br />

Laboratory testing <strong>of</strong> decay resistance <strong>of</strong> samples with a size <strong>of</strong> 7,5 x 25 x 50 mm (the last<br />

dimension along the grain), was evaluated using method based on ENV 839. The assessment<br />

<strong>of</strong> effectiveness <strong>of</strong> a solvent-borne formulations was performed against brown rot and whiterot<br />

fungus: Coniophora puteana and Coriolous versicolor, respectively. Samples were<br />

removed from decay assessment after 8 weeks. After exposure time, average mass loss <strong>of</strong> 6<br />

samples per each treatment was calculated.<br />

Micr<strong>of</strong>ungal growth<br />

The mycological test was performed for the mixture <strong>of</strong> following micr<strong>of</strong>ungi: Aspergillus<br />

niger, Penicillium funiculosum, Paeciliomyces varioti and Trichoderma viride.<br />

The investigation was performed for samples <strong>of</strong> dimensions <strong>of</strong> 4 × 40 × 40 mm (the last<br />

dimension along the grain). Each variant <strong>of</strong> treatment consisted <strong>of</strong> 6 repetitions. Samples<br />

505


inoculated with spore suspension <strong>of</strong> micr<strong>of</strong>ungi were incubated for 3 weeks. The assessment<br />

<strong>of</strong> fungal growth on the samples surface was carried out visually several times during the test<br />

(3, 7, 10, 14, 21 day). The growth was classified between 0 and 4:<br />

0H – no growth <strong>of</strong> fungi on the specimen, inhibition zone on the nutrient<br />

0 – no growth <strong>of</strong> fungi on the specimen<br />

1 – less than 10% <strong>of</strong> the specimen area covered by fungi<br />

2 – less than 30%<br />

3 – less than 60%<br />

4 – specimen totally overgrown by fungi.<br />

RESULTS<br />

The highest effectiveness <strong>of</strong> preservatives against both decay and micr<strong>of</strong>ungi was found for<br />

biocidal solutions (B, BA, BO). Among non-biocidal treatments combination <strong>of</strong> primer and<br />

topcoats (MA, MO) revealed very good results. In the decay resistance (Fig.1), leaching<br />

(tab.2) increased mass loss <strong>of</strong> the samples. Mass loss <strong>of</strong> non-leached samples pre-treated with<br />

Na2O-SiO2 (MA, MO) did not exceed 10%, while samples without pre-treatment (A, O)<br />

ranged between 23 and 32%. The combination <strong>of</strong> primer and topcoat applied on beech<br />

samples showed higher decay resistance than on pine samples (5 to 6% <strong>of</strong> mass loss).<br />

Table 2. Mass loss (%) <strong>of</strong> samples due to the leaching.<br />

Treatment Pine Beech Treatment Pine Beech<br />

M 1,56 1,32 M+ 11,47 8,98<br />

A 0,92 0,57 MA 12,19 8,99<br />

O 0,91 0,56 MO 12,61 8,64<br />

B 1,48 0,66 BA 2,75 0,74<br />

Control 1,22 0,75 BO 1,69 0,53<br />

Fig.1. (a) Mass loss <strong>of</strong> pine samples ater 8 weeks <strong>of</strong> exposing to Coniophora puteana<br />

(b) Mass loss <strong>of</strong> beech samples ater 8 weeks <strong>of</strong> exposing to Coriolous versicolor<br />

In case <strong>of</strong> micr<strong>of</strong>ungi test pre-treament with Na2O-SiO2 inhibited growth <strong>of</strong> micr<strong>of</strong>ungi on the<br />

samples, which was already observed after 3 days <strong>of</strong> exposure (Fig.2). Growth index <strong>of</strong><br />

samples without pre-treatment increased rapidly reaching a rating <strong>of</strong> 3 after 7 days. Then<br />

growth index slowed down and after 21 days obtained almost a rating <strong>of</strong> 4. The mould growth<br />

<strong>of</strong> pre-treated samples increased evenly.<br />

506


Fig.2. Micr<strong>of</strong>ungal growth <strong>of</strong> pine and beech samples<br />

CONCLUSIONS<br />

� Na2O-SiO2 solution is an effective preservative but it is susceptible to leaching;<br />

� Pre-treatment with Na2O-SiO2 solution showed substantial improvement in the fungal<br />

performance <strong>of</strong> solvent-borne coatings;<br />

� Among non-biocidal treatments combination <strong>of</strong> primer and topcoats (MA, MO) were<br />

the most effective.<br />

REFERENCES<br />

1. L.R. GOBAKKEN, K.M. JENSSEN, Growth and succession <strong>of</strong> mould on<br />

commercial paint systems in two field sites, (2007): IRG/WP 07-30421.<br />

2. B.MAZELA, P. HOCHMA�SKA, I. RATAJCZAK, K. WICH�ACZ-<br />

SZENTNER, Silicon compounds as hydrophobic agents (additives) improving<br />

coatings performance: water absorption, Ann. WULS-<strong>SGGW</strong>, For and Wood<br />

Technol., (2009) 69:61-64.<br />

3. H. MIYAFUJI, S. SAKA, Na2O-SiO2 wood-inorganic composites prepared by the<br />

sol-gel process and their fire-resistance properties, J Wood Sci (2001) 47:483-489.<br />

4. F. TANNO, S. SAKA, K. TAKABE, Antimicrobial TMSAC-added Woodinorganic<br />

composites prepared by sol-gel process. Mater. Sci. Res. Int. (1997)<br />

3:137-142.<br />

507


5. H. MIYAFUJI, S. SAKA, Topochemistry <strong>of</strong> SiO2 wood-inorganic composites for<br />

enhancing water-repellency, Wood Sci Technol (1999) 4:270-275.<br />

Streszczenie: Poprawa w�a�ciwo�ci grzybobójczych �rodków ochronno-impregnacyjnych<br />

poprzez zastosowanie impregnacji wst�pnej roztworem Na2O-SiO2. Podstawowym celem<br />

bada� by�o okreslenie odporno�ci na dzia�anie czynników biologicznych drewna<br />

impregnowanego powierzchniowo bezbiocydowymi �rodkami ochronno-impregnacyjnymi.<br />

Dokonano przede wszystkim oceny wp�ywu zastosowania impregnacji wst�pnej przy pomocy<br />

roztworu Na2O-SiO2 na skuteczno�� zabezpieczenia przed rozwojem grzybów rozk�adaj�cych<br />

i mikrogrzybów. Do bada� mykologicznych zastosowano próbki drewna sosny i buka.<br />

Przedstawione wyniki bada� wskazuj� na popraw� w�a�ciwo�ci grzybobójczych �rodków<br />

ochronno-impregnacyjnych w wyniku zastosowania tzw. podk�adu zawieraj�cego zwi�zek<br />

krzemoorganiczny.<br />

Corresponding authors:<br />

B. Mazela · P. Hochma�ska<br />

Institute <strong>of</strong> Chemical Wood Technology,<br />

<strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> in Poznan, Wojska Polskiego 38/42, 60637 Poznan, Poland<br />

e-mail: bartsimp@owl.au.poznan.pl (B. Mazela)


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> – <strong>SGGW</strong><br />

Forestry and Wood Technology No 71, 2010; 509-514<br />

(Ann. WULS-<strong>SGGW</strong>, For and Wood Technol. 71, 2010)<br />

Biomass as a source <strong>of</strong> renewable energy in Poland<br />

EL�BIETA MIKO�AJCZAK<br />

Department <strong>of</strong> Economic and Wood Industry Management, Pozna� <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Abstract: Biomass as a source <strong>of</strong> renewable energy in Poland. Both the accessibility <strong>of</strong> biomass as potential<br />

energy source, as well as the level <strong>of</strong> its current usage suffice to claim that it constitutes one <strong>of</strong> the most<br />

important resources <strong>of</strong> renewable energy in Poland. It’s acquisition as well as utilization is economically so<br />

attractive that biomass became a serious competition for fossil fuels. Biomass is being used mainly for heat<br />

production in small and medium size power units in dispersed generation as well as large combined heat and<br />

power stations specializing in deriving energy via incineration in condensation coal boilers. In comparison with<br />

other fuels biomass is highly ecological. The article includes analysis <strong>of</strong> the level <strong>of</strong> biomass usage for<br />

generating energy in Poland.<br />

Keywords: renewable energy, biomass, heat and power energy, usage, production<br />

INTRODUCTION<br />

Chemical energy accumulated in biomass is called ”pure carbon”, therefore just like in<br />

case <strong>of</strong> classical coal its parameters are being described. The usefulness <strong>of</strong> coal is classified<br />

using three variables: A/B/C, where A characterizes fuel heating potential [MJ/kg], B<br />

describes percentage content <strong>of</strong> ash and, a C – percentage content <strong>of</strong> sulphur. In Poland<br />

combustion <strong>of</strong> coal <strong>of</strong> the following parameters is permissible: 21/15/0,64. At the same time<br />

biomass average variables are: 14/1/0,1, which means that this source <strong>of</strong> energy has lower<br />

calorific value however it is more environment friendly.<br />

BIOMASS ENERGY USAGE IN INDUSTRY AND HOUSEHOLDS<br />

Picture 1. Using biomass for deriving energy divided into peat and wood, solid residue fuels, bio-fuels and<br />

biogas [TJ]<br />

509


Source: Own research on the basis <strong>of</strong> [Fuel and energy sector 2009]<br />

Energy production from biomass <strong>of</strong> calorific value between 9 and 18 MJ/kg May be<br />

carried out using various technologies<br />

� Direct incineration in specially designed power boilers (straw, wood and pellet)<br />

� Combustion with traditional energy sources (coal, oil and gas),<br />

� Burning <strong>of</strong> the matter created during biomass fermentation or thermal<br />

decomposition - pyrolysis (methanol, ethanol, biogas, biodiesel).<br />

In accordance with the data provided by Central Statistical Office biomass utilization<br />

to derive energy is steadily growing in almost every group analyzed on picture 1. The only<br />

decreasing trend in 2008, in comparison with two preceding years, was showed in the usage<br />

<strong>of</strong> solid waste fuels. The highest growth dynamic in 2008 embraced biomass liquid fuels<br />

where the increase reached 318%.<br />

In table 1 the volume <strong>of</strong> usage <strong>of</strong> energy converted from solid biomass by various<br />

recipients was presented, taking into account indirect usage as well as own consumption in<br />

transformation process by power sector. The majority <strong>of</strong> this type <strong>of</strong> renewable energy for<br />

transformations input is used by pr<strong>of</strong>essional energy sector. In 2008 it amounted to over<br />

30 000TJ. The level <strong>of</strong> own consumption by energy sector, due to its low size may be omitted.<br />

In end-usage households had represented the biggest share <strong>of</strong> 64% in 2008. On the other had<br />

solid biomass utilization for production was rather small. Within the period under analysis it<br />

ranged from 20% in 2004 and 2005 up to 26 % in 2007. In the following year, 2008, fall to<br />

21% <strong>of</strong> this energy source usage for production was noted. Almost 60% <strong>of</strong> biomass energy<br />

used for production was utilized in 2008 by paper and printing industry while 34% was used<br />

by wood industry, both sectors in possession <strong>of</strong> their own post-production wood residue.<br />

Table 1. Usage <strong>of</strong> energy derived from solid biomass by various groups <strong>of</strong> recipients, taking<br />

into account the usage for transformations input as well as own consumption by energy sector<br />

between 2004 and 2008 [TJ]<br />

Detailed list 2004 2005 2006 2007 2008<br />

Acquisition 170 056 174 431 192 097 197 150 198 401<br />

Change <strong>of</strong> supply - - -73 -924 +500<br />

Total domestic usage 170 056 174 431 192 024 196 226 198 902<br />

Usage for transformations input<br />

8 905 17 500 21 180 25 434 38 251<br />

including:<br />

power plants/pr<strong>of</strong>essional heat plants 3 837 9 641 13 430 17 471 30 428<br />

pr<strong>of</strong>essional thermal power stations 1 244 1 412 1 601 1 529 1 897<br />

Industrial power and heat plants 3 598 6 194 5 954 6 266 5 726<br />

Industrial thermal power stations 226 253 195 168 200<br />

Own consumption in transformation process<br />

including:<br />

4 2 11 57 20<br />

Power plants, heat plants, thermal power<br />

stations<br />

4 2 10 56 20<br />

Oil and gas extracting - - 1 1 -<br />

Final usage 161 147 156 029 170 833 170 735 160 631<br />

Production<br />

31 864 30 990 41 752 44 172 34088<br />

including:<br />

iron and steel industry 4 2 1 1 1<br />

mineral 153 102 140 116 223<br />

means <strong>of</strong> transport 6 1 7 5 5<br />

machine 52 54 29 25 37<br />

foods and tobacco 373 214 239 164 336<br />

510


paper and printing 18 957 18 611 30 368 30 877 19 729<br />

wood 9 327 9 641 7 952 9 925 11 532<br />

other sectors <strong>of</strong> industry 2 768 2 190 3 016 3 059 2 196<br />

Construction 17 30 24 21 6<br />

Remaining recipients<br />

129 266 125 909 129 057 126542 126 537<br />

including:<br />

trade and services 6 028 6 171 4 580 5 482 5 013<br />

households 103 360 100 700 104 500 102 000 102 500<br />

agriculture and forestry 19 878 19 038 19 977 19 060 19 024<br />

Source: [ from renewable sources in 2008]<br />

ENERGY PRODUCTION FROM BIOMASS<br />

In 2008 in biomass utilizing installations 3,2 TW h <strong>of</strong> energy was generated. As<br />

indicated by the data presented in table 2, it has been a fourfold increase on the amount <strong>of</strong><br />

energy derived from this source in 2004 (growth by 2,432 TW h). It has to be said that the<br />

highest growth level was observed in the year following Poland accession to the EU. The<br />

amount <strong>of</strong> solid biomass allocated for energy production in 2005, in comparison with 2004,<br />

increased by 82%. In the upcoming years further growth in the production <strong>of</strong> energy from this<br />

source is foreseen which is mainly the result <strong>of</strong> the development <strong>of</strong> dispersed generation<br />

based on combined heat and power production. Using biomass in c<strong>of</strong>iring, which in<br />

corresponding period under analysis, grew almost 4,8 times should gradually embrace residue<br />

biomass and the one coming from plants grown specifically to possess energy. It’s the result<br />

<strong>of</strong> implementing mechanisms forcing using in this technology biomass other than that coming<br />

from wood waste [Directive 2008], as this type <strong>of</strong> biomass should be primarily used by wood,<br />

pulp, paper and wood board industries.<br />

Picture 2. Power production in solid biomass utilizing installations accounting for c<strong>of</strong>iring between 2004 and<br />

2008 [GWh]<br />

Source: own research on the basis <strong>of</strong> [Energy from renewable sources in 2008]<br />

In the period between 2005 and 2008 capacity <strong>of</strong> installations harvesting power from<br />

biomass grew by 22% while the overall capacity from all renewable energy sources noted<br />

45% increase. Data presented in table 2 does not account for c<strong>of</strong>iring which share in biomass<br />

based energy production, as seen in picture 2, is significant (over 92% in 2008). Decreasing,<br />

in the analyzed period, overall share <strong>of</strong> power capacity in biomass utilizing units in<br />

511


comparison with the total capacity <strong>of</strong> all renewable energy sources utilizing installations<br />

pro<strong>of</strong>s the strategy <strong>of</strong> more balanced development <strong>of</strong> the whole renewable energy sector<br />

confirming the fact that the possibility <strong>of</strong> increasing biomass energy potential when energy<br />

generating farming is almost non-existent is very limited indeed.<br />

Table 2 Capacity <strong>of</strong> biomass converting power plants between 2005 and 2008 [MW].<br />

Type <strong>of</strong> plant 2005 2006 2007 2008<br />

Generating power from forestry, agricultural and garden<br />

residues<br />

0,790 0,790 5,210<br />

Generating power from mixed biomass 189,790 0,000 0,000 3,580<br />

Generating power from industrial residue, wood, pulp and<br />

paper<br />

238,000 254,600 223,200<br />

Generating power from total biomass 189,790 238,790 255,390 231,990<br />

Capacity from all renewable energy sources 1 157,537 1 362,141 1 523,777 1 678,271<br />

Share <strong>of</strong> capacity <strong>of</strong> biomass power plants in the overall<br />

capacity <strong>of</strong> all renewable energy sources converting power<br />

plants [%]<br />

Source: own research on the basis <strong>of</strong> [Report 2009]<br />

16,4 17,5 16,8 13,8<br />

HEAT PRODUCTION FROM BIOMASS<br />

Also the amount <strong>of</strong> solid biomass used for heat production increased in the analyzed<br />

period even though its growth was not so dynamic. In 2008 two and a half more times <strong>of</strong> heat<br />

was produced from solid biomass than in 2004 and 41% more than in the previous year<br />

(Picture 3).<br />

Picture 3. Heat production from solid biomass between 2004 and 2008 [TJ]<br />

Source: own research on the basis <strong>of</strong> [Energy generated from renewable sources in 2008]<br />

DEVELOPMENT PROSPECTS OF RENEWABLE ENERGY SECTOR IN POLAND<br />

The need to fulfill the EU requirements regarding the share <strong>of</strong> renewable energy in the<br />

overall national energy balance is the main reason for which the utilization <strong>of</strong> biomass as the<br />

most easily obtainable source <strong>of</strong> energy is rapidly growing. In accordance with experts’<br />

forecast [http://www.proekologia.pl/news.php?extend.678, 26.05.2010] Such situation should<br />

it last for five years will lead to the fivefold increase in the plants demand for biomass in 2020<br />

(reaching 20 m tons).<br />

512


It is estimated that fulfilling the EU target <strong>of</strong> 15% share <strong>of</strong> biomass in energy<br />

production from renewable sources in the final energy balance in 2020 entails annual<br />

investment <strong>of</strong> 4 billon PLN. The largest investment not just in Poland but also worldwide will<br />

be located in Po�aniec. 240 million euro worth power plant will open at the end <strong>of</strong> 2012. It<br />

will be converting only biomass and not like the other largest power plants <strong>of</strong> that type in the<br />

world using biomass combined with coal, which is the result <strong>of</strong> current regulations concerning<br />

eliminating biomass c<strong>of</strong>iring. Problems with obtaining adequate quantity <strong>of</strong> biomass that is<br />

1mln ton annually will be eliminated due to already signed contacts with biomass producers<br />

from Lubelskie Region. It is estimated that the capacity <strong>of</strong> new power plant namely 190MW–<br />

will meet energy needs <strong>of</strong> over 400 thousand<br />

households[http://www.gramwzielone.pl/index.php/zielone/artykul/W-Polancu-powstanieogromna-elektrownia-na-biomase,<br />

16.06.2010].<br />

CONCLUSIONS<br />

1. All types <strong>of</strong> biomass utilization to generate energy is constantly growing. The highest<br />

dynamics in 2008 embraced liquid fuels from biomass, increase by 318%.<br />

2. The majority <strong>of</strong> energy possessed from solid biomass for transformations input was<br />

used by pr<strong>of</strong>essional energy sector reaching over 30 000 TJ. In the final usage<br />

households had the biggest share <strong>of</strong> 64%. Using biomass in production was<br />

insignificant and in the analyzed period amounted to 20% in 2004 and 2005 and 26%<br />

in 2007.<br />

3. Almost 60% <strong>of</strong> energy harvester from biomass used for production in 2008 was<br />

utilized by paper and printing industry and 34% by wood industry both sectors mainly<br />

based on their own post-production wood residue.<br />

4. In installations using biomass in 2008, 3,2 TW h <strong>of</strong> power was created which means<br />

that in comparison with 2004 there has been a fourfold increase <strong>of</strong> energy production<br />

from this source (growth by 2,432 TW h),<br />

5. Using biomass in c<strong>of</strong>iring, which in the analyzed period grew 4.8 times, should to an<br />

ever lager extend embrace residue biomass as well as that from biomass farming, as in<br />

accordance with directive <strong>of</strong> Minister <strong>of</strong> Economic Affairs from 2008 at first it should<br />

be used by wood industry, as well as pulp, paper and wood board sector.<br />

6. Between 2005 and 2008 biomass using power plants’ capacity grew by 22%, while<br />

capacity <strong>of</strong> power plants using all renewable energy sources grew by 45%.<br />

7. The amount <strong>of</strong> solid biomass assigned for heat production increased in 2008, 2,5 times<br />

in comparison with 2004 and by 41% in relation to the previous year.<br />

REFERENCES<br />

1. Energia ze �róde� odnawialnych w 2008 r. GUS Warszawa 2009.<br />

2. Gospodarka paliwowo-energetyczna w latach 2007, 2008. GUS Warszawa 2009.<br />

3. Raport zawieraj�cy analiz� realizacji celów ilo�ciowych i osi�gni�tych wyników w<br />

zakresie wytwarzania energii elektrycznej w odnawialnych �ród�ach energii.<br />

Warszawa, listopad 2009. MP rok 2010, nr 7, poz. 64.<br />

4. http://www.gramwzielone.pl/index.php/zielone/artykul/W-Polancu-powstanieogromna-elektrownia-na-biomase,<br />

ods�ona 16.06.2010.<br />

5. http://www.proekologia.pl/news.php?extend.678, ods�ona 26.05.2010.<br />

513


Streszczenie: Biomasa jako �ród�o energii odnawialnej w Polsce. Pozyskiwanie i<br />

wykorzystywanie biomasy jest na tyle atrakcyjne ekonomicznie, �e sta�a si� ona powa�nym<br />

konkurentem paliw kopalnych. Biomasa znajduje zastosowanie g�ównie do produkcji energii<br />

cieplnej w obiektach ma�ej i �redniej mocy w generacji rozproszonej oraz w<br />

elektrociep�owniach du�ej mocy do produkcji energii elektrycznej uzyskiwanej w procesie<br />

wspó�spalania w kondensacyjnych kot�ach w�glowych W porównaniu z innymi paliwami jest<br />

wysoce ekologiczna. W opracowaniu, obejmuj�cym lata 2004 – 2008, przeprowadzono<br />

analiz� stanu wykorzystania biomasy na cele energetyczne w Polsce, w podziale na torf i<br />

drewno, paliwa odpadowe sta�e, biopaliwa oraz biogaz. Przedstawiono zu�ycie energii<br />

pozyskanej z biomasy sta�ej przez ró�ne grupy odbiorców, z uwzgl�dnieniem zu�ycia na wsad<br />

przemian oraz zu�ycia w�asnego sektora energii. Dokonano porównania wielko�ci produkcji<br />

energii elektrycznej w instalacjach wykorzystuj�cych biomas� sta��, z uwzgl�dnieniem<br />

wspó�spalania oraz produkcji ciep�a z biomasy sta�ej. Zaprezentowano aktualn� moc<br />

zainstalowana w elektrowniach wytwarzaj�cych z biomasy oraz nakre�lono perspektywy<br />

rozwoju energetyki odnawialnej w Polsce.<br />

Corresponding author:<br />

Pozna� <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong>, Department <strong>of</strong> Economic and Wood Industry Management<br />

ul. Wojska Polskiego 38/42, 60-627 Pozna�, Poland<br />

tel.: + 48 61 848 73 69<br />

fax.: + 48 61 848 74 26<br />

dr in�. El�bieta Miko�ajczak<br />

e-mail: emikolaj@up.poznan.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong> - <strong>SGGW</strong><br />

Forestry and Wood Technology No. 71, 2010: 515-518<br />

(Ann. WULS-<strong>SGGW</strong>, For. and Wood Technol. 71, 2010)<br />

Bending strength <strong>of</strong> OSB subjected to boiling test<br />

RADOS�AW MIRSKI, ADAM DERKOWSKI<br />

Department <strong>of</strong> Wood-Based Materials, Pozna� <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Abstract: Bending strength <strong>of</strong> OSB subjected to boiling test. The aim <strong>of</strong> this study was to determine bending<br />

strength <strong>of</strong> OSB subjected to the boiling test. Tests were conducted on OSB/3 and OSB/4 <strong>of</strong> 12, 15 and 22 mm<br />

in thickness, produced in the years 2002 and 2009. All boards subjected to testing were resinated in the core<br />

layers with PMDI and in the face layers with MUPF. Analyses showed that despite a decrease in strength caused<br />

by this test, on average by 50%, recorded values were still much higher than the requirements for boards<br />

subjected to the accelerated ageing test (the so-called cyclical test). Thus it seems that the determination <strong>of</strong><br />

bending strength after the boiling test may under certain conditions replace the V313 test.<br />

Keywords: OSB, mechanical properties, ageing tests<br />

INTRODUCTION<br />

Oriented strandboards (OSB), thanks to their very good physical and mechanical<br />

properties, are successfully replacing plywood or solid wood in case <strong>of</strong> these applications, in<br />

which to date these materials have seemed to be irreplaceable. This pertains particularly to the<br />

broadly understood building construction industry, in which they prove to be excellent as<br />

elements <strong>of</strong> shuttering, sheathing or structures.<br />

A major trend in research concerning OSB, due to the specific character <strong>of</strong> their applications,<br />

comprises problems connected with their dimensional stability and performance under<br />

changeable environmental conditions (Wu and Lee 2002, Papadopoulos and Traboulay 2002,<br />

Wang et al. 2004, Hartley 2007, Mirski et al. 2007). These investigations concern mainly<br />

boards manufactured under commercial scale production conditions, although some studies<br />

have been published, in which it was attempted to model this phenomenon (Xu and Suchsland<br />

1996).<br />

It is also essential to ensure high strength <strong>of</strong> manufactured boards throughout the entire life<br />

cycle <strong>of</strong> products made from these boards, particularly in case <strong>of</strong> their use under humid<br />

conditions. For this reason numerous studies have been undertaken aiming at the<br />

determination <strong>of</strong> properties <strong>of</strong> these boards over a long period <strong>of</strong> their utilisation, most<br />

frequently conducted using various types <strong>of</strong> ageing tests (Pritchard et al. 2001, Czarnecki et<br />

al. 2003, Mirski et al. 2005). In these methods boards are subjected most frequently to the<br />

cyclically alternating action <strong>of</strong> air at high and low temperatures and/or high and low humidity<br />

levels. In turn, to determine water resistance <strong>of</strong> these boards, in accordance with the standard<br />

PN-EN 300, two tests are applied:<br />

- variant 1 – subjecting boards to an accelerated ageing test, the so-called cyclical test<br />

according to PN-EN 321,<br />

- variant 2 - subjecting boards to the boiling test according to PN-EN 1087-1.<br />

If for the first option there are two variants <strong>of</strong> requirements specified either using the internal<br />

bond test, or by measuring bending strength after the cyclical test, then for the other option<br />

requirements are specified only using the internal bond measurement after the boiling test.<br />

Thus in this study it was decided to investigate bending strength <strong>of</strong> OSB subjected to the<br />

boiling test.<br />

515


MATERIAL AND METHODS<br />

Analyses were conducted on commercial OSB <strong>of</strong> three nominal thicknesses and two<br />

types, i.e.:<br />

- OSB/3 <strong>of</strong> 12, 15 and 22 mm in thickness – manufactured in 2009 – denoted as N,<br />

- OSB/3 and OSB/4 <strong>of</strong> 15 mm in thickness – manufactured in 2002 – denoted as S.<br />

Boards produced in 2002 were stored in a warehouse which was heated in winter. Moreover,<br />

all tested boards were resinated in the core layer using an isocyanate adhesive (PMDI), while<br />

in the face layers melamine-urea-phenol-formaldehyde resin (MUPF) was applied.<br />

In order to determine bending strength after the boiling test from each board a total <strong>of</strong> 16<br />

samples were collected both for the longer and the shorter axes. Such prepared experimental<br />

material was conditioned for 4 weeks in a conditioning chamber at a temperature <strong>of</strong> 20�C and<br />

65RH. After the conditioning process, in accordance with the assumptions <strong>of</strong> the standard<br />

PN-EN 1087-1, samples were subjected to the boiling process for 2 h, next cooling in cold<br />

water (20�C) for 1 h and drying at a temperature <strong>of</strong> 70�C for 16 h. After the completion <strong>of</strong> the<br />

test samples were again placed in the conditioning chamber for 4 weeks.<br />

RESULTS AND DISCUSSION<br />

Bending strength <strong>of</strong> tested OSB is presented in Table 1. It results from these data that<br />

properties <strong>of</strong> tested boards considerably exceed values specified by the standard PN-EN 300,<br />

particularly in terms <strong>of</strong> strength determined along the shorter axis. In this respect the most<br />

advantageous results were recorded for OSB3/15S. If in this case values determined for the<br />

longer axis are by almost 70% higher than the requirements <strong>of</strong> the standard, then for the<br />

shorter axis they are by as much as 130% higher. In turn, OSB/3 with a thickness <strong>of</strong> 12 mm,<br />

produced in 2009, exhibited values <strong>of</strong> bending strength most similar to those required by the<br />

standard. Moreover, it needs to be stressed here that values <strong>of</strong> bending strength recorded for<br />

OSB produced in the years 2000 - 2002 frequently exceeded the requirements <strong>of</strong> the standard<br />

even by as much as over 2-fold, which was presented in our previous studies (Derkowski et<br />

al. 2002 and Czarnecki et al. 2003).<br />

Results <strong>of</strong> bending strength testing for OSB subjected to the boiling test are presented in<br />

Table 2. As it could have been expected, the highest bending strength determined for the<br />

longer axis was found for OSB/4, although the strength <strong>of</strong> OSB/3 with an analogous thickness<br />

was only slightly lower. As it results from data presented in Table 2, all tested boards<br />

exhibited bending strength after the boiling test being higher, and for OSB/3 <strong>of</strong> 15 mm in<br />

thickness - even over 2-fold, than that specified by the standard for the testing method in PN-<br />

EN 321+ PN-EN 310. On the basis <strong>of</strong> the requirements for boards in terms <strong>of</strong> their internal<br />

bond after the cyclical test (V313) and after the boiling test it may be assumed that the boiling<br />

test more intensively affects the boards, since the imposed requirements after that test are by<br />

0.02 N/mm 2 lower. Thus if a given board after the boiling test exhibits bending strength for<br />

the longer axis being higher than it is specified by the standard after the cyclical tests, then the<br />

tested boards should also meet these requirements if they are subjected to the cyclical test.<br />

516


Bending strength <strong>of</strong> OSB<br />

Type <strong>of</strong><br />

board<br />

According to<br />

PN-EN 300<br />

Numerical value <strong>of</strong> MOR<br />

Longer axis Shorter axis<br />

Mean value<br />

Standard<br />

deviation<br />

According to<br />

PN-EN 300<br />

Mean value<br />

[N/mm 2 ] [N/mm 2 ]<br />

517<br />

Table 1<br />

Standard<br />

deviation<br />

OSB/3 12N 20 22.0 2.06 10 14.7 2.00<br />

OSB/3 15N 20 27.4 3.48 10 15.0 1.22<br />

OSB/3 15S 20 33.3 4.65 10 23.0 2.33<br />

OSB/4 15S 28 35.1 5.44 15 23.1 1.98<br />

OSB/3 22N 18 26.6 2.51 9 19.5 1.51<br />

Bending strength <strong>of</strong> OSB after the boiling test<br />

Type <strong>of</strong><br />

board<br />

According<br />

to PN-EN<br />

300 *<br />

Mean<br />

value<br />

Numerical value <strong>of</strong> MOR<br />

Longer axis Shorter axis<br />

Standard<br />

deviation<br />

Coefficient<br />

<strong>of</strong> variation<br />

Mean<br />

value<br />

Standard<br />

deviation<br />

Table 2<br />

Coefficient<br />

<strong>of</strong> variation<br />

[N/mm 2 ] [%] [N/mm 2 ] [%]<br />

OSB/3 12N 8 8.00 0.60 7.5 5.30 0.79 14.9<br />

OSB/3 15N 8 16.7 1.86 11.1 9.04 1.66 18.4<br />

OSB/3 15S 8 18.7 2.60 13.9 12.4 1.11 10.7<br />

OSB/4 15S 14 19.0 2.82 14.8 12.0 1.66 13.8<br />

OSB/3 22N 7 10.9 1.28 11.8 7.82 0.60 7.70<br />

* - requirements for testing methods <strong>of</strong> PN-EN 321+ PN-EN 310<br />

CONCLUSION REMARKS<br />

It results from the conducted analyses that all boards used in the experiment are<br />

characterised by a relatively high bending strength after the boiling test. Despite the decrease<br />

in strength caused by this test, amounting on average to 50%, irrespective <strong>of</strong> the board type,<br />

thickness and the year <strong>of</strong> manufacture, recorded values were still much higher than the<br />

requirements for boards subjected to the accelerated ageing test (the so-called cyclical test).<br />

Thus it seems that the determination <strong>of</strong> bending strength after the boiling test may under<br />

certain conditions replace the V313 test, which due to the necessity <strong>of</strong> sample freezing at a<br />

temperature below –15�C and the relatively long duration <strong>of</strong> the test itself (21 days) is more<br />

difficult to perform.<br />

REFERENCES<br />

1. CZARNECKI R., DERKOWSKI A., MIRSKI R., 2003: Comparison <strong>of</strong> properties <strong>of</strong><br />

OSB/3 and OSB/4 boards subjected to action <strong>of</strong> humid conditions. Ann. <strong>Warsaw</strong><br />

Agricult. Univ. For. and Wood Technol. Special issue I: 28-31.


2. DERKOWSKI A., ��CKA J., MIRSKI R., 2002: Properties <strong>of</strong> OSB/3 boards in<br />

dependence upon the environment humidity. Ann. <strong>Warsaw</strong> Agricult. Univ. For. and<br />

Wood Technol. Special issue I: 91-94.<br />

3. HARTLEY I. D., WANG S., ZHANG Y., 2007: Water vapor sorption isotherm<br />

modeling <strong>of</strong> commercial oriented strand panel based on species groups and resin type.<br />

Building and Environment 42: 3655–3659.<br />

4. MIRSKI R., DERKOWSKI A., CZARNECKI R., 2005: Properties <strong>of</strong> OSB/3 and<br />

OSB/4 boards depending on cyclic changes in humidity and air temperature. Ann.<br />

<strong>Warsaw</strong> Agricult. Univ.-<strong>SGGW</strong>, For. and Wood Technol. 57: 60-65.<br />

5. MIRSKI R., DERKOWSKI A., ��CKA J., 2007: The effect <strong>of</strong> ambient conditions on<br />

dimensional stability <strong>of</strong> OSB/3. Ann. <strong>Warsaw</strong> Agricult. Univ.-<strong>SGGW</strong>, For. and Wood<br />

Technol. 62: 40-48.<br />

6. PAPADOPOULOS A. N., TRABOULAY E., 2002: Dimensional stability <strong>of</strong> OSB<br />

made from acetylated Fir strands. Holz als Roh- und Werkst<strong>of</strong>f 60, 84-87.<br />

7. PRITCHARD J., ANSELL M.P., THOMPSON J.H., BONFIELD P.W., 2001: Effect<br />

<strong>of</strong> two relative humidity environments on the performance properties <strong>of</strong> MDF, OSB<br />

and chipboard. Part 1. MOR, MOE and fatigue life performance. Wood Sci. Technol.<br />

35(5): 395-403.<br />

8. WANG S., GU H., NEIMSUWAN T., WANG S.G., 2004: Comparison study <strong>of</strong><br />

thickness swell performance <strong>of</strong> commercial oriented strandboard flooring products.<br />

Forest Prod. J. 55(12): 239-245.<br />

9. WU Q., LEE J. N., 2002: Thickness swelling <strong>of</strong> oriented strandboard under long-term<br />

cyclic humidity exposure conditions. Wood Fiber Sci. 34(1): 125-139.<br />

10. XU W., SUCHSLAND O., 1996: Linear expansion <strong>of</strong> wood composites: A Model.<br />

Wood Fiber Sci 29(3): 272-281.<br />

Streszczenie: Wytrzyma�o�� na zginanie p�yt OSB poddanych próbie gotowania. W pracy<br />

zbadano wytrzyma�o�� na zginanie statyczne p�yt OSB poddanych próbie gotowania. W<br />

badaniach u�yto p�yty OSB/3 i OSB/4 o grubo�ciach 12, 15 i 22 mm, wyprodukowane w<br />

latach 2002 i 2009. Wszystkie poddane badaniom p�yty zaklejane by�y w warstwie<br />

wewn�trznej PMDI, a w warstwach zewn�trznych MUPF. Przeprowadzone badania<br />

wykaza�y, i� pomimo spadku wytrzyma�o�ci wywo�anego t� prób�, �rednio o 50%, uzyskane<br />

warto�ci w dalszym ci�gu by�y znacznie wy�sze ni� wymagania stawiane p�ytom<br />

poddawanym próbie przyspieszonego starzenia (tzw. „badaniu cyklicznemu). Wydaje si�<br />

zatem, i� okre�lenie wytrzyma�o�ci na zginanie statyczne po próbie gotowania mo�e w<br />

pewnych warunkach zast�pi� test V313.<br />

Corresponding authors:<br />

Rados�aw Mirski, Adam Derkowski<br />

Pozna� <strong>University</strong> <strong>of</strong> <strong>Life</strong> <strong>Sciences</strong><br />

Department <strong>of</strong> Wood-Based Materials<br />

Wojska Polskiego 38/42<br />

60-627 Pozna�<br />

Poland<br />

e-mail: rmirski@up.poznan.pl<br />

e-mail: ader@up.poznan.pl

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!