17.12.2012 Views

Radical Cations

Radical Cations

Radical Cations

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Radical</strong> <strong>Cations</strong> •+ : Generation, Reactivity, Stability<br />

R A R A<br />

MacMillan Group Meeting<br />

4-27-11<br />

by<br />

Anthony Casarez


� Chemical oxidation<br />

Three Main Modes to Generate <strong>Radical</strong> <strong>Cations</strong><br />

� Photoinduced electron transfer (PET)<br />

1)<br />

2)<br />

� Electrochemical oxidation (anodic oxidation)<br />

D A D A<br />

h!<br />

D A D A* D A<br />

h!<br />

D A D* A D A<br />

D<br />

Anode<br />

D


� Stoichiometric oxidant: SET<br />

Bn<br />

Me3SiOO O Me<br />

N<br />

H<br />

N<br />

hexyl<br />

t-Bu<br />

Chemical Oxidation<br />

Ce(NH 4) 2(NO 3) 6<br />

DME<br />

FeCl 3, DMF<br />

Bn<br />

Me 3SiO<br />

O Me<br />

N<br />

H<br />

N<br />

hexyl<br />

t-Bu<br />

MacMillan et al. Science 2007, 316, 582.<br />

Booker-Milburn, K. I. Synlett 1992, 809.


� PET: Organic arene<br />

OMe<br />

� PET: Metal mediated<br />

MeO<br />

Photoinduced Electron Transfer<br />

R<br />

NC CN<br />

h!, MeCN, MeOH<br />

h!, MgSO 4,<br />

MeNO 2, Ru(bpy) 3 2+<br />

MeN NMe<br />

OMe<br />

MeO<br />

Arnold, D. R.; Maroulis, A. J. J. Am. Chem. Soc. 1976, 98, 5931.<br />

Ischay, M. A.; Lu, Z.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 8572.<br />

CN<br />

CN<br />

R


� Anodic oxidation<br />

MeO<br />

N<br />

H<br />

N<br />

CO 2Me<br />

Me O<br />

Et<br />

Electrochemical Oxidation<br />

anode, MeOH<br />

DCM, NaClO4<br />

2,6-lutidine<br />

anode, 2,6-lutidine<br />

MeCN, Et 4NClO 4<br />

MeO<br />

N H<br />

Me O<br />

Ponsold, K.; Kasch, H. Tetrahedron Lett. 1979, 4463.<br />

M. J. Gašić et al. J. Chem. Soc. Chem. Comm. 1993, 1496.<br />

N<br />

CO 2Me<br />

Et


Key Points<br />

Primary Fate of <strong>Radical</strong> <strong>Cations</strong><br />

� A radical cation will be generated from the electrophore on the molecule with the lowest<br />

oxidation potential (usually π or n, where n = nonbonding electrons).<br />

� The chemistry of the resultant radical cation is determined from the functionality around its<br />

periphery.<br />

� Deprotonation of the radical cation is a major pathway, resulting in a radical which adheres<br />

to typical radical reactivity patterns.<br />

� Secondary reactions play a major role in our generation and use of radical cations.<br />

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.


Primary Fate of <strong>Radical</strong> <strong>Cations</strong><br />

Symbol Classification Primary Product A B<br />

CH C–H deprotonation π-C • + H + or n-C • + H + C H<br />

AH A–H deprotonation π-A • + H + O, N, S, X H<br />

AB A–B bond cleavage π-A • + B + or π-A + + B • A B<br />

CC C–C bond cleavage π-C • + C + C C<br />

CX C–X bond cleavage π-C • + X + C Si, Sn<br />

Nu Nu attack Nu-π-A-B •+ A B<br />

CA cycloaddition cycloaddition A B<br />

R rearrangement rearrangement A B<br />

ET electron transfer π-A-B or π-A-B 2+ A B<br />

Rad radical attack R-π-A-B + A B<br />

RA radical anion attack RA-π-A-B A B<br />

H hydrogen transfer H-π-A-B + A B<br />

Dim dimerization (π-A-B) 2 2+ A B<br />

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.


Primary Fate of <strong>Radical</strong> <strong>Cations</strong><br />

Symbol Classification Primary Product A B<br />

CH C–H deprotonation π-C • + H + or n-C • + H + C H<br />

AH A–H deprotonation π-A • + H + O, N, S, X H<br />

AB A–B bond cleavage π-A • + B + or π-A + + B • A B<br />

CC C–C bond cleavage π-C • + C + C C<br />

CX C–X bond cleavage π-C • + X + C Si, Sn<br />

Nu Nu attack Nu-π-A-B •+ A B<br />

CA cycloaddition cycloaddition A B<br />

R rearrangement rearrangement A B<br />

ET electron transfer π-A-B or π-A-B 2+ A B<br />

Rad radical attack R-π-A-B + A B<br />

RA radical anion attack RA-π-A-B A B<br />

H hydrogen transfer H-π-A-B + A B<br />

Dim dimerization (π-A-B) 2 2+ A B<br />

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.


Thermochemical Cycle: Calculating pKaʼs<br />

E ox(RH)<br />

R-H<br />

R-H<br />

!G[pK a(RH •+ )]<br />

!G[pK a(RH)]<br />

� ΔG = –nF[E ox (RH) – E ox (R – )]<br />

� pKa(RH •+ ) = ΔG/2.303RT<br />

R • + H +<br />

R – + H +<br />

E ox(R – )<br />

Nicholas, A. M. de P.; Arnold, D. R. Can. J. Chem. 1982, 60, 2165.


Deprotonation<br />

� Acidity of a radical cation is severely increased compared to the neutral counterpart.<br />

H<br />

H<br />

H<br />

B<br />

R-H pKa (π-RH •+ ) pKa (π-RH) reference<br />

PhCH 2 CN –32 21.9 a<br />

PHCH 2 SO2Ph –25 23.4 b<br />

Ph 2 CH 2 –25 32.2 c<br />

PhCH 3 –20 43 c<br />

indene (3-H) –18 20.1 d<br />

CpH –17 18.0 c,e<br />

fluorene (9-H) –17 22.6 f<br />

C 5 Me 5 H –6.5 26.1 e<br />

a) Bordwell et al. J. Phys. Org. Chem. 1988, 1, 209. b) Bordwell et al. J. Phys. Org. Chem.1988, 1,<br />

225. c) Bordwell, F. G.; Cheng, J.-P. J. Am. Chem. Soc. 1989, 111, 1792. d) Bordwell, F. G.; Satish,<br />

A. V. J. Am. Chem. Soc. 1992, 114, 10173. e) Bordwell, F. G.; Cheng, J.-P. J. Am. Chem. Soc. 1988,<br />

110, 2872. f) Bordwell, F. G.; Cheng, J.-P.; Bausch, M. J. J. Am. Chem. Soc. 1988, 110, 2867.<br />

H<br />

H H–B +


Me<br />

Ph<br />

Ph<br />

O<br />

Ph<br />

O<br />

Ph<br />

O<br />

Deprotonation<br />

R-H pKa (RH •+ ) pKa (RH)<br />

Me<br />

H<br />

Me<br />

H<br />

Et<br />

Et<br />

H<br />

O<br />

H B<br />

Me<br />

N N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

O<br />

2<br />

Me<br />

Ph<br />

N N<br />

–13 27.9<br />

–11 27.0<br />

–11 24.4<br />

O<br />

Me<br />

H–B +<br />

Bordwell, F. G.; Zhang, X. J. Org. Chem. 1992, 57, 4163.


Secondary Reactions<br />

� Secondary Reactions play a major role in “radical cation” chemistry.<br />

Code Secondary Rxn Product Oxidation System<br />

R • ox R • R + cation anode, chemical<br />

R • red R • R – anion PET<br />

R • rad typical radical behavior various all<br />

R • add.ox R • + C=C R–C–C • R–C–C + cation anode, chemical<br />

R • add.red R • + C=C R–C–C • R–C–C – anion PET<br />

R • RA R • + R •– R–R •– anion PET<br />

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.


π-RH •+ Deprotonation<br />

� π-RH •+ deprotonation followed by a secondary reactivity pathway (benzylic radical)<br />

MeO<br />

MeO<br />

MeO<br />

Me O<br />

Me O<br />

anode, MeOH<br />

DCM, NaClO 4<br />

2,6-lutidine<br />

95%<br />

MeO<br />

MeO<br />

H<br />

MeO<br />

B<br />

B<br />

H<br />

Me O<br />

Me O<br />

MeO<br />

anode<br />

MeO<br />

MeOH<br />

Me O<br />

Me O<br />

Ponsold, K.; Kasch, H. Tetrahedron Lett. 1979, 4463.


Determining n vs π Electrophores<br />

� Consider the ionization potential of the separate n- and π- moieties<br />

7.69 eV<br />

7.17 eV<br />

H<br />

N H<br />

Me<br />

N Me<br />

� Oxidation with typically take place at the center with the lower ionization potential<br />

NH 3<br />

9.24 eV 10.17 eV<br />

HNMe 2<br />

9.24 eV 8.24 eV<br />

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.<br />

H. M. Rosenstock et al. J. Phys. Chem. Ref. Data 1977, 6, Suppl. 1.


n-RH •+ Deprotonation<br />

� n-RH •+ deprotonation followed by a secondary reactivity pathway (α-amino radical)<br />

Me<br />

n donor<br />

N Me<br />

Me<br />

N<br />

OMe<br />

anode, MeOH<br />

KOH, 73%<br />

Me<br />

N<br />

OMe<br />

Me<br />

N<br />

H<br />

H<br />

H<br />

OH<br />

Me<br />

N<br />

H H<br />

T. Shono et al. J. Am. Chem. Soc. 1982, 104, 5753.


� Typical arene oxidation products are observed<br />

H<br />

! donor<br />

N H<br />

anode<br />

n-RH •+ Deprotonation<br />

H<br />

N H<br />

H 2N NH 2<br />

� Observation of these products indicates that the arene is the site of oxiation, not N-lone pairs<br />

H<br />

N<br />

N<br />

N<br />

NH 2<br />

T. Shono et al. J. Am. Chem. Soc. 1982, 104, 5753.


σ-CH •+ Deprotonation<br />

� Deprotonation of the radical ion pair happens by the solvent<br />

NC CN<br />

NC<br />

CN<br />

h!, 81%<br />

MeCN<br />

MeCN<br />

H<br />

NC CN<br />

NC<br />

CN<br />

Albini et al. J. Chem. Soc. Chem. Commun. 1995, 41.


σ-CH •+ Deprotonation<br />

� Deprotonation of the radical ion pair happens by the solvent<br />

Adm CN<br />

NC<br />

CN<br />

NC CN<br />

NC<br />

CN<br />

Adm<br />

NC<br />

NC<br />

h!, 81%<br />

MeCN<br />

CN<br />

CN<br />

MeCN<br />

H<br />

NC CN<br />

NC<br />

CN<br />

NC CN<br />

NC<br />

CN<br />

Albini et al. J. Chem. Soc. Chem. Commun. 1995, 41.


π-AH •+ Deprotonation<br />

� π-OH •+ deprotonation is very prevalent while π-NH •+ deprotonations are rare.<br />

HO<br />

anode, MeOH<br />

MeCN, 69%<br />

O<br />

OMe<br />

Morrow, G. W.; Chen, Y. Swenton, J. S. Tetrahedron 1991, 47, 655.


π-AH •+ Deprotonation<br />

� π-OH •+ deprotonation is very prevalent while π-NH •+ deprotonations are rare.<br />

HO<br />

O<br />

OMe<br />

anode, MeOH<br />

MeCN, 69%<br />

–H +<br />

MeCN<br />

O<br />

HO<br />

HOMe<br />

O<br />

O<br />

Morrow, G. W.; Chen, Y. Swenton, J. S. Tetrahedron 1991, 47, 655.


� Reaction at the ortho-position can also occur<br />

OH<br />

π-AH •+ Deprotonation<br />

TEMPO-modified<br />

anode<br />

(–)-sparteine, 91%<br />

� Implementing a biased substrate forces reaction at the ortho-position<br />

98% ee<br />

OH<br />

OH<br />

T. Osa et al. J. Chem. Soc. Chem. Commum. 1994, 2535.


n-AH •+ Deprotonation: Very Limited<br />

� The details surrounding the cycloaddition below are speculative at best.<br />

Ph<br />

H<br />

N NHPh<br />

Th •+ ClO 4 –<br />

MeCN<br />

Ph<br />

H<br />

N NHPh<br />

N Me<br />

� The limited examples show how rare these deprotonations are<br />

–e –<br />

Ph<br />

–2H + N<br />

NPh<br />

Shine, H. J.; Hoque, A. K. M. M. J. Org. Chem. 1988, 53, 4349.<br />

N<br />

Me


Primary Fate of <strong>Radical</strong> <strong>Cations</strong><br />

Symbol Classification Primary Product A B<br />

CH C–H deprotonation π-C • + H + or n-C • + H + C H<br />

AH A–H deprotonation π-A • + H + O, N, S, X H<br />

AB A–B bond cleavage π-A • + B + or n-A • + B + A B<br />

CC C–C bond cleavage π-C • + C + C C<br />

CX C–X bond cleavage π-C • + X + C Si, Sn<br />

Nu Nu attack Nu-π-A-B •+ A B<br />

CA cycloaddition cycloaddition A B<br />

R rearrangement rearrangement A B<br />

ET electron transfer π-A-B or π-A-B 2+ A B<br />

Rad radical attack R-π-A-B + A B<br />

RA radical anion attack RA-π-A-B A B<br />

H hydrogen transfer H-π-A-B + A B<br />

Dim dimerization (π-A-B) 2 2+ A B<br />

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.


O<br />

π-A-B •+ Bond Dissociation<br />

� Dienolether has a lower oxidation potential than the enolether<br />

Me 3Si<br />

Me 3Si<br />

O<br />

–e –<br />

SiMe 3 +<br />

OTMS<br />

Me<br />

O<br />

H<br />

Ce(NH 4) 2(NO 3) 6<br />

CH 2<br />

MeCN, 77%<br />

OTMS<br />

Me<br />

H<br />

H<br />

O<br />

–SiMe 3 +<br />

O<br />

–e –<br />

O<br />

Me<br />

Me<br />

OTMS<br />

� Eventhough [O] may happen at n (lone pairs), the resonance structure affords the π-oxidized<br />

product.<br />

Ruzziconi et al. Tetrahedron Lett. 1993, 34, 721.


π-A-B •+ Bond Dissociation<br />

� Certain Mukaiyama–Michael reactions are postulated to operate via a radical cation initiated<br />

fragmentation<br />

Ph<br />

O<br />

Me<br />

Me<br />

Me<br />

Me<br />

OTES<br />

OEt<br />

OTES<br />

OEt<br />

LA<br />

DCM , –78 °C<br />

Lewis Acid 4°–4° product 4°–2° product Product ratio<br />

Bu 2 Sn(OTf) 2 85 0 100:0<br />

SnCl 4 95 0 100:0<br />

Et 3 SiClO 4 93 0 100:0<br />

TiCl 4 97 2.4 97:3<br />

Ph<br />

O<br />

Me Me<br />

O<br />

Me Me<br />

OEt<br />

J. Otera et al. J. Am. Chem. Soc. 1991, 113, 4028.


Mukaiyama–Michael Proposed Catalytic Cycle<br />

Et 3SiO Me Me<br />

Ph<br />

Et 3SiCl<br />

O<br />

Me Me<br />

Et 3SiCl<br />

OEt<br />

catalyst regeneration<br />

Ph<br />

Cl–<br />

Me<br />

SnCl 4<br />

O<br />

Cl SnCl4 3Sn<br />

O Me Me<br />

O Me<br />

R OEt<br />

Ph<br />

Me Me<br />

Ph<br />

Me<br />

• –R• coupling complexation<br />

O<br />

SnCl 3<br />

Me<br />

Me<br />

OTES<br />

OEt<br />

e – transfer<br />

Me<br />

Me<br />

Ph<br />

Me<br />

O<br />

OTES<br />

OEt<br />

Me<br />

Me<br />

J. Otera et al. J. Am. Chem. Soc. 1991, 113, 4028.


� Limited mostly to azoalkanes and triazines<br />

Me<br />

N<br />

N<br />

Me<br />

OH<br />

Me<br />

n-A-B •+ Bond Dissociation<br />

h!, DCA<br />

Ph 2<br />

OH<br />

Me<br />

Me<br />

N<br />

N<br />

BET<br />

Me<br />

OH<br />

Me<br />

O<br />

Me<br />

Me<br />

OH<br />

Me<br />

Adam, W.; Sendelbach, J. J. Org. Chem. 1993, 58, 5316.<br />

N 2


Primary Fate of <strong>Radical</strong> <strong>Cations</strong><br />

Symbol Classification Primary Product A B<br />

CH C–H deprotonation π-C • + H + or n-C • + H + C H<br />

AH A–H deprotonation π-A • + H + O, N, S, X H<br />

AB A–B bond cleavage π-A • + B + or n-A • + B + A B<br />

CC C–C bond cleavage π-C • + C + C C<br />

CX C–X bond cleavage π-C • + X + C Si, Sn<br />

Nu Nu attack Nu-π-A-B •+ A B<br />

CA cycloaddition cycloaddition A B<br />

R rearrangement rearrangement A B<br />

ET electron transfer π-A-B or π-A-B 2+ A B<br />

Rad radical attack R-π-A-B + A B<br />

RA radical anion attack RA-π-A-B A B<br />

H hydrogen transfer H-π-A-B + A B<br />

Dim dimerization (π-A-B) 2 2+ A B<br />

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.


π-C-C •+ Bond Dissociation<br />

� Fragmentation of a β-ether generates an oxocarbenium ion<br />

MeO<br />

NC CN<br />

h!, MeCN, MeOH<br />

H +<br />

MeO<br />

MeO<br />

OMe<br />

MeO<br />

DCB<br />

HOMe<br />

–H +<br />

Arnold, D. R.; Maroulis, A. J. J. Am. Chem. Soc. 1976, 98, 5931.


Me<br />

Me<br />

Stereoelectronic Effects in Deprotonation and Fragmentation<br />

H<br />

H<br />

� Deprotonation � Fragmentation<br />

h!, DCB<br />

collidine, MeCN<br />

h!, DCB<br />

collidine, MeCN<br />

N.R.<br />

Me<br />

H<br />

Poniatowski, A.; Floreancig, P. A. In Carbon-Centered Free <strong>Radical</strong>s and <strong>Radical</strong><br />

<strong>Cations</strong>; Forbes, M. E., Ed.; Wiley & Sons: New Jersey, 2010; Vol 3., pp 43-60.<br />

D. R. Arnold et al. Can. J. Chem. 1997, 75, 384.<br />

Ph<br />

Ph<br />

Ph<br />

H<br />

Me<br />

O<br />

R<br />

R<br />

H<br />

R<br />

OMe<br />

Ph<br />

H<br />

O<br />

"*<br />

Me


π-C-C •+ Bond Dissociation<br />

� Nucleophile assisted C–C bond fragmentation with complete inversion of stereochemistry<br />

Ph<br />

Ph<br />

Me<br />

D<br />

h!, 1-CN<br />

MeCN, MeOH<br />

Ph<br />

Ph<br />

H + Ph<br />

HOMe<br />

Me<br />

D<br />

Ph Me D<br />

� Nucleophile assisted π-C-C •+ fragmentation is limited to strained systems<br />

OMe<br />

–H +<br />

Ph<br />

1-CN<br />

Ph Me D<br />

OMe<br />

Dinnocenzo et al. J. Am. Chem. Soc. 1990, 112, 2462.


n-C-C •+ Bond Dissociation<br />

� To drive the reaction, the electrophore must be highly prone to oxidation or the resulting radical<br />

must be stabilized by a moiety on the molecule<br />

N<br />

H<br />

N<br />

H<br />

N<br />

CO 2Me<br />

V<br />

N<br />

Et<br />

H<br />

CHO 2Me<br />

Et<br />

anode,<br />

2,6-lutidine<br />

MeCN,<br />

Et 4NClO 4<br />

NaBH 4<br />

N<br />

H<br />

V<br />

N<br />

H<br />

N<br />

N<br />

CO 2Me<br />

CO2Me Et<br />

Et<br />

Et<br />

AcO<br />

MeO 2C<br />

N<br />

N<br />

H<br />

OH Me<br />

N<br />

H<br />

M. J. Gašić et al. J. Chem. Soc. Chem. Comm. 1993, 1496.<br />

N<br />

N<br />

CO 2Me<br />

–e –<br />

N<br />

Et<br />

CO 2Me<br />

OMe<br />

Et


n-C-C •+ Bond Dissociation<br />

� To drive the reaction, the electrophore must be highly prone to oxidation or the resulting radical<br />

must be stabilized by a moiety on the molecule<br />

N<br />

H<br />

N<br />

H<br />

N<br />

CO 2Me<br />

V<br />

N<br />

Et<br />

H<br />

CHO 2Me<br />

Et<br />

anode,<br />

2,6-lutidine<br />

MeCN,<br />

Et 4NClO 4<br />

NaBH 4<br />

N<br />

H<br />

V<br />

N<br />

H<br />

N<br />

N<br />

CO 2Me<br />

CO2Me Et<br />

Et<br />

Et<br />

AcO<br />

MeO 2C<br />

N<br />

N<br />

H<br />

OH Me<br />

N<br />

H<br />

M. J. Gašić et al. J. Chem. Soc. Chem. Comm. 1993, 1496.<br />

N<br />

N<br />

CO 2Me<br />

–e –<br />

N<br />

Et<br />

CO 2Me<br />

OMe<br />

Et


AcO<br />

AcO<br />

TCB<br />

O<br />

Me<br />

O<br />

Me<br />

O<br />

O<br />

n-C-C •+ Bond Dissociation<br />

TCB, h!<br />

RSH, H 2O, 90%<br />

� Easily oxidized acetal<br />

AcO<br />

AcO<br />

TCB<br />

Me<br />

Me<br />

H 2O<br />

O<br />

O<br />

O<br />

O<br />

OH<br />

A. Albini et al. Tetrahedron Lett. 1994, 50, 575.


Me 3SiO<br />

σ-C-C •+ Bond Dissociation<br />

FeCl 3, DMF<br />

64%<br />

� ESR studies on strained systems show that<br />

the inner C-C bond is selectively weakened<br />

Me 3SiO<br />

Cl 3Fe<br />

–SiMe 3<br />

� Trapping of the pendant olefin and Cl •<br />

abstraction form the bicycle<br />

O<br />

H<br />

Booker-Milburn, K. I. Synlett 1992, 809.<br />

H<br />

Cl<br />

H


Primary Fate of <strong>Radical</strong> <strong>Cations</strong><br />

Symbol Classification Primary Product A B<br />

CH C–H deprotonation π-C • + H + or n-C • + H + C H<br />

AH A–H deprotonation π-A • + H + O, N, S, X H<br />

AB A–B bond cleavage π-A • + B + or n-A • + B + A B<br />

CC C–C bond cleavage π-C • + C + C C<br />

CX C–X bond cleavage π-C • + X + C Si, Sn<br />

Nu Nu attack Nu-π-A-B •+ A B<br />

CA cycloaddition cycloaddition A B<br />

R rearrangement rearrangement A B<br />

ET electron transfer π-A-B or π-A-B 2+ A B<br />

Rad radical attack R-π-A-B + A B<br />

RA radical anion attack RA-π-A-B A B<br />

H hydrogen transfer H-π-A-B + A B<br />

Dim dimerization (π-A-B) 2 2+ A B<br />

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.


π-C-X •+ Bond Dissociation: Calculated BDEʼs<br />

� Aromatic ionization severely weakens the adjacent bond by ~30 kcal/mol on average<br />

� Si and Sn are the most common X-groups used as fragmentation substrates<br />

Reaction<br />

ΔH R (p-C-X •+ )<br />

BDE kcal/mol<br />

ΔH R (p-C-X)<br />

BDE kcal/mol Ref<br />

PhCH 2 –SiMe 3 •+ PhCH2 • + Me3 Si + +30 +77 a<br />

PhCH 2 –Cl •+ PhCH 2 2+ + Cl • +40 +72 b<br />

PhCH 2 –Br •+ PhCH 2 2+ + Br • +26 +58 b<br />

PhCH 2 –OMe •+ PhCH 2 2+ + • OMe +43 +71 b<br />

PhCH 2 –SMe •+ PhCH 2 2+ + • SMe +38 +61 b<br />

PhS–Xan •+ PhS • + Xan + –11 +26.4 c<br />

PhS–TPCP •+ PhS • + TPCP + –18.6 +40.3 c<br />

Xan = 9-xanthyl; TPCP = 1,2,3-triphenylcyclopropenyl<br />

a) J. P. Dinnocenzo et al. J. Am. Chem. Soc. 1989, 111, 8973.<br />

b) Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.<br />

c) E. M. Arnett el al. J. Am. Chem. Soc. 1992, 114, 221.


π-C-X •+ Bond Dissociation<br />

� R 3 Si– and R 3 Sn– moieties can be used as “super protons”<br />

� The dependence of k on MeOH, H 2 O,<br />

Bu 4 NF indicates Nu-assisted Si-bond<br />

cleavage<br />

SiMe 3<br />

anode, Et 4NOTs<br />

MeOH, 91%<br />

OMe<br />

J. Yoshida et al. Tetrahedron Lett. 1986, 27, 3373.<br />

P. S. Mariano et al. J. Am. Chem. Soc. 1984, 106, 6439.


π-C-X •+ Bond Dissociation<br />

� R 3 Si– and R 3 Sn– moieties can be used as “super protons”<br />

� The dependence of k on MeOH, H 2 O,<br />

Bu 4 NF indicates Nu-assisted Si-bond<br />

cleavage<br />

ClO 4 –<br />

N<br />

Me<br />

SiMe 3<br />

h!, MeCN<br />

70%<br />

� Iminium salts can act as photooxidants<br />

under PET conditions<br />

N<br />

N<br />

SiMe 3<br />

SiMe 3<br />

anode, Et 4NOTs<br />

MeOH, 91%<br />

Me N Me<br />

–Me3Si +<br />

Me<br />

OMe<br />

J. Yoshida et al. Tetrahedron Lett. 1986, 27, 3373.<br />

P. S. Mariano et al. J. Am. Chem. Soc. 1984, 106, 6439.


n-C-X •+ Bond Dissociation<br />

� Iminium ion used in the “cation pool” method is generated via n-C-X •+ cleavage<br />

N<br />

CO 2Me<br />

SiMe 3<br />

N<br />

CO 2Me<br />

SiMe 3<br />

– F<br />

Bn 4NBF 4, DCM<br />

anode, –78 °C<br />

N<br />

CO 2Me<br />

� F – assisted C–Si bond cleavage<br />

–e –<br />

BF 4 –<br />

N<br />

CO 2Me<br />

J. Yoshida et al. J. Am. Chem. Soc. 2005, 127, 7324.


� “Cation pool” oxidizes benzylsilane directly<br />

BF 4 –<br />

N<br />

CO 2Me<br />

Me 3Si<br />

π-C-X •+ Bond Dissociation<br />

OMe<br />

DCM, –50 °C<br />

� Oxidation potential of benzylsilane must be


� “Cation pool” oxidizes benzylsilane directly<br />

BF 4 –<br />

N<br />

CO 2Me<br />

Me 3Si<br />

π-C-X •+ Bond Dissociation<br />

OMe<br />

DCM, –50 °C<br />

� Oxidation potential of benzylsilane must be


Me 3Si<br />

� Stronger oxidant<br />

than iminium ion<br />

N<br />

CO 2Me<br />

OMe<br />

N<br />

CO 2Me<br />

Proposed Mechanism<br />

OMe<br />

Me 3Si<br />

Me 3Si<br />

Propagation<br />

Propagation<br />

OMe<br />

BF 4 –<br />

N<br />

CO 2Me<br />

OMe<br />

OMe<br />

Initiation<br />

BF 4 –<br />

N<br />

CO 2Me<br />

OMe<br />

Me 3Si +<br />

N<br />

CO 2Me<br />

J. Yoshida et al. J. Am. Chem. Soc. 2007, 129, 1902.


O<br />

hexyl<br />

N<br />

N<br />

n-C-X •+ Bond Dissociation<br />

SiMe 3 DCN, h!<br />

O<br />

N O<br />

OMe<br />

SiMe 3<br />

SiMe 3<br />

N Bn<br />

O<br />

i-PrOH, 90% N<br />

DCA, h!, 67%<br />

MeCn/MeOH<br />

O N O<br />

Me<br />

DCA, h!<br />

MeCN, 59%<br />

hexyl<br />

O<br />

H Me<br />

97:3 dr<br />

N<br />

Pandy, G.; Reddy, G. D. Tetrahedron Lett. 1992, 33, 6533. Steckhan et al.<br />

Angew. Chem. Int. Ed. Engl. 1995, 34, 2137. Mariano et al. J. Org. Chem.<br />

1992, 57, 6037.<br />

O<br />

OMe<br />

O N O<br />

H<br />

Me<br />

N O<br />

N<br />

Bn<br />

O


ClO 4 –<br />

N<br />

Me<br />

NC<br />

Ph<br />

CN<br />

σ-C-X •+ Bond Dissociation<br />

SiMe 3<br />

N<br />

Me<br />

SiMe 3<br />

h!, 42%<br />

MeCN<br />

Ph SiMe 3<br />

h!, 66%<br />

MeCN<br />

NC<br />

N<br />

–Me 3Si +<br />

CO 2Me<br />

� Coupling of the radical cation to the oxidant is the prominent primary fate after σ-C-X •+ cleavage<br />

Mariano P. S.; Ohga, K. J. Am. Chem. Soc. 1982, 104, 617.<br />

Otsuji et al. Tetrahedron Lett. 1985, 26, 461.<br />

Ph


Primary Fate of <strong>Radical</strong> <strong>Cations</strong><br />

Symbol Classification Primary Product A B<br />

CH C–H deprotonation π-C • + H + or n-C • + H + C H<br />

AH A–H deprotonation π-A • + H + O, N, S, X H<br />

AB A–B bond cleavage π-A • + B + or n-A • + B + A B<br />

CC C–C bond cleavage π-C • + C + C C<br />

CX C–X bond cleavage π-C • + X + C Si, Sn<br />

Nu Nu attack Nu-π-A-B •+ A B<br />

CA cycloaddition cycloaddition A B<br />

R rearrangement rearrangement A B<br />

ET electron transfer π-A-B or π-A-B 2+ A B<br />

Rad radical attack R-π-A-B + A B<br />

RA radical anion attack RA-π-A-B A B<br />

H hydrogen transfer H-π-A-B + A B<br />

Dim dimerization (π-A-B) 2 2+ A B<br />

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.


� Moeller en route to (–)-alliacol A<br />

Me<br />

Me<br />

TBSO<br />

OTBS Me<br />

O<br />

� Trauner en route to (–)-guanacastepene E<br />

TBDPSO<br />

Me<br />

O<br />

TBSO<br />

Me<br />

Me<br />

Me<br />

OBn<br />

Nu-π-A-B •+<br />

anode, LiClO4<br />

2,6-lutidine<br />

MeOH/DCM, 88%<br />

anode, LiClO4<br />

2,6-lutidine<br />

MeOH/DCM, 81%<br />

Me<br />

Me<br />

TBSO<br />

TBDPSO<br />

MeO<br />

O<br />

O<br />

Mihelcic, J.; Moeller, K D. J. Am. Chem. Soc. 2004, 126, 9106.<br />

Trauner et al. J. Am. Chem. Soc. 2006, 128, 17057.<br />

H<br />

Me<br />

O<br />

Me<br />

H<br />

H<br />

O<br />

Me<br />

Me<br />

Me<br />

OBn


Me NHOAc<br />

NOAc<br />

Me<br />

OH<br />

–H +<br />

Nu-n-A-B •+<br />

anode THF, H 2O<br />

NaBF 4, 70%<br />

H 2O<br />

NOAc<br />

Me<br />

–H +<br />

–e –<br />

Me NHOAc<br />

� The authors do not rule out the possibility of olefin oxidation as an alternative mechanism<br />

H<br />

NOAc<br />

Me<br />

Karady et al. Tetrahedron Lett. 1989, 30, 2191.


N PTOC<br />

PTOC =<br />

Nu-n-A-B •+<br />

AcOH N<br />

t-BuSH, 60%<br />

O<br />

S<br />

O<br />

N<br />

Me<br />

Newcomb, M.; Deeb, T. M. J. Am. Chem. Soc. 1987, 109, 3163.


N PTOC<br />

Nu-n-A-B •+<br />

AcOH N<br />

t-BuSH, 60%<br />

H<br />

NH N<br />

HSR<br />

–H +<br />

� Initially formed nitrene is immediately protonated<br />

Me<br />

Newcomb, M.; Deeb, T. M. J. Am. Chem. Soc. 1987, 109, 3163.


Primary Fate of <strong>Radical</strong> <strong>Cations</strong><br />

Symbol Classification Primary Product A B<br />

CH C–H deprotonation π-C • + H + or n-C • + H + C H<br />

AH A–H deprotonation π-A • + H + O, N, S, X H<br />

AB A–B bond cleavage π-A • + B + or n-A • + B + A B<br />

CC C–C bond cleavage π-C • + C + C C<br />

CX C–X bond cleavage π-C • + X + C Si, Sn<br />

Nu Nu attack Nu-π-A-B •+ A B<br />

CA cycloaddition cycloaddition A B<br />

R rearrangement rearrangement A B<br />

ET electron transfer π-A-B or π-A-B 2+ A B<br />

Rad radical attack R-π-A-B + A B<br />

RA radical anion attack RA-π-A-B A B<br />

H hydrogen transfer H-π-A-B + A B<br />

Dim dimerization (π-A-B) 2 2+ A B<br />

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.


Cycloaddition<br />

� Experimental kinetic data for radical cation cycloadditions (rt)<br />

p-An<br />

p-An<br />

Reaction k [M –1 s –1 ] comments reference<br />

p-An<br />

p-An<br />

Me<br />

Me<br />

p-An<br />

p-An<br />

Me<br />

3 x 10 8<br />


Diels–Alder [4 + 2] Cycloaddition<br />

� Shown to operate via a cation radical chain mechanism<br />

k = 3 x 10 8 [M –1 s –1 ]<br />

DCM, 70%<br />

Ar 3N – SbCl 5<br />

Suprafacial selectivity observed<br />

DP + Ar 3 N •+ Ar 3 N + DP •+<br />

DP •+ + D A •+<br />

A •+ + DP A + DP •+<br />

2DP •+ dication<br />

DP •+ H + + DP •<br />

H<br />

H<br />

5:1 endo/exo<br />

Propagation<br />

Termination<br />

Bauld et al. J. Am. Chem. Soc. 1981, 109, 3163.<br />

Lorenz, K. T.; Bauld, N. L. J. Am. Chem. Soc. 1987, 109, 1157


Diels–Alder [4 + 2] Cycloaddition<br />

� Shown to operate via a cation radical chain mechanism<br />

Initiator<br />

Ar 3N<br />

H<br />

H<br />

DCM, 70%<br />

Ar 3N – SbCl 5<br />

H<br />

H<br />

H<br />

H<br />

5:1 endo/exo<br />

Propagator<br />

Bauld et al. J. Am. Chem. Soc. 1981, 109, 3163.<br />

Lorenz, K. T.; Bauld, N. L. J. Am. Chem. Soc. 1987, 109, 1157


� Photoredox catalyzed radical cation formation<br />

MeO<br />

O<br />

[2 + 2] Cycloaddition<br />

MeO<br />

h!, MgSO 4, 88%<br />

MeNO 2, Ru(bpy) 3 2+<br />

MeN NMe<br />

Concerted cycloaddition<br />

–e – +e –<br />

� Electron donating substituent on the arene is necessary to promote the initial oxidation<br />

O<br />

MeO<br />

H<br />

Ischay, M. A.; Lu, Z.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 8572.<br />

O<br />

H


� Stereoconvergent transformation<br />

MeO<br />

OMe<br />

O<br />

O<br />

[2 + 2] Cycloaddition<br />

h!, MgSO 4, 71%<br />

MeNO 2, Ru(bpy) 3 2+<br />

MeN NMe<br />

isomerization > cycloaddition<br />

h!, MgSO 4, 82%<br />

MeNO 2, Ru(bpy) 3 2+<br />

MeN NMe<br />

MeO<br />

MeO<br />

H<br />

H<br />

O<br />

6:1 dr<br />

O<br />

5:1 dr<br />

Ischay, M. A.; Lu, Z.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 8572.<br />

H<br />

H


Primary Fate of <strong>Radical</strong> <strong>Cations</strong><br />

Symbol Classification Primary Product A B<br />

CH C–H deprotonation π-C • + H + or n-C • + H + C H<br />

AH A–H deprotonation π-A • + H + O, N, S, X H<br />

AB A–B bond cleavage π-A • + B + or n-A • + B + A B<br />

CC C–C bond cleavage π-C • + C + C C<br />

CX C–X bond cleavage π-C • + X + C Si, Sn<br />

Nu Nu attack Nu-π-A-B •+ A B<br />

CA cycloaddition cycloaddition A B<br />

R rearrangement rearrangement A B<br />

ET electron transfer π-A-B or π-A-B 2+ A B<br />

Rad radical attack R-π-A-B + A B<br />

RA radical anion attack RA-π-A-B A B<br />

H hydrogen transfer H-π-A-B + A B<br />

Dim dimerization (π-A-B) 2 2+ A B<br />

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.


Claisen Rearrangement: A Representative Example<br />

� Though potentially powerful, the radical cation Claisen rearrangement has found very limited<br />

use in synthsis<br />

MeO<br />

OMe<br />

O<br />

•<br />

MeCN, 65%<br />

Ar 3N – SbCl 5<br />

� The radical cation Cope rearrangement seems to be limited to aryl substituted systems.<br />

MeO<br />

OMe<br />

OH<br />

Venkatachalam et al J. Chem. Soc Chem. Commun. 1994, 511.


Primary Fate of <strong>Radical</strong> <strong>Cations</strong><br />

� Both radical (Rad) and radical anion (RA) have been previously discussed<br />

Symbol Classification Primary Product A B<br />

CH C–H deprotonation π-C • + H + or n-C • + H + C H<br />

AH A–H deprotonation π-A • + H + O, N, S, X H<br />

AB A–B bond cleavage π-A • + B + or n-A • + B + A B<br />

CC C–C bond cleavage π-C • + C + C C<br />

CX C–X bond cleavage π-C • + X + C Si, Sn<br />

Nu Nu attack Nu-π-A-B •+ A B<br />

CA cycloaddition cycloaddition A B<br />

R rearrangement rearrangement A B<br />

ET electron transfer π-A-B or π-A-B 2+ A B<br />

Rad radical attack R-π-A-B + A B<br />

RA radical anion attack RA-π-A-B A B<br />

H hydrogen transfer H-π-A-B + A B<br />

Dim dimerization (π-A-B) 2 2+ A B<br />

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.


Primary Fate of <strong>Radical</strong> <strong>Cations</strong><br />

Symbol Classification Primary Product A B<br />

CH C–H deprotonation π-C • + H + or n-C • + H + C H<br />

AH A–H deprotonation π-A • + H + O, N, S, X H<br />

AB A–B bond cleavage π-A • + B + or n-A • + B + A B<br />

CC C–C bond cleavage π-C • + C + C C<br />

CX C–X bond cleavage π-C • + X + C Si, Sn<br />

Nu Nu attack Nu-π-A-B •+ A B<br />

CA cycloaddition cycloaddition A B<br />

R rearrangement rearrangement A B<br />

ET electron transfer π-A-B or π-A-B 2+ A B<br />

Rad radical attack R-π-A-B + A B<br />

RA radical anion attack RA-π-A-B A B<br />

H hydrogen transfer H-π-A-B + A B<br />

Dim dimerization (π-A-B) 2 2+ A B<br />

Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.


� The Hofmann–Löffler–Freytag reaction<br />

NH N<br />

N N<br />

NCS, ether<br />

NEt 3, h!, quant<br />

–H +<br />

S N 2 ring closure<br />

� Typically a 1,5-H-atom abstraction<br />

Hydrogen Transfer<br />

Cl<br />

H<br />

N N<br />

Cl<br />

H –H<br />

N N<br />

+<br />

N–C homolysis<br />

H • abstraction<br />

H<br />

Cl •<br />

H<br />

N N<br />

H<br />

H<br />

N N<br />

Kimura, M.; Ban, Y. Synthesis 1976, 201.


Hydrogen Transfer<br />

� The Hofmann–Löffler–Freytag reaction<br />

Me<br />

Me<br />

Me<br />

Me<br />

NH<br />

N<br />

� Intermediate en route to the synthesis of kobusine<br />

Cl<br />

NCS, DCM<br />

0 °C, 85%<br />

hν, TFA<br />

KOH, EtOH<br />

39%<br />

Me<br />

Me<br />

Me<br />

N<br />

N<br />

Cl<br />

Me<br />

HO<br />

OH<br />

Kimura, M.; Ban, Y. Synthesis 1976, 201.<br />

N


� Epoxonium cyclization<br />

Bn O<br />

OMe Me O<br />

<strong>Radical</strong> <strong>Cations</strong> in Synthesis: Floreancig Lab<br />

Me O<br />

Ot-bu<br />

� Cyclic acetal formation en route to theopederin D<br />

MeO<br />

CbzHN<br />

O<br />

O<br />

H<br />

Bn<br />

O<br />

O<br />

Me<br />

Me<br />

OMe<br />

O<br />

O<br />

h!, NMQPF 6, O 2<br />

NaOAc, Na 2S 2O 3<br />

DCE, PhMe, 79% O<br />

h!, NMQPF 6,<br />

NaOAc, Na 2SO 3<br />

DCE, PhMe, 76%<br />

CbzHN<br />

MeO<br />

O<br />

O<br />

H<br />

O<br />

O<br />

H<br />

Me<br />

O<br />

O<br />

Me<br />

Houk and Floreancig et al. J. Am. Chem. Soc. 2007, 129, 7915.<br />

Floreancig et al. Angew. Chem. Int. Ed. Engl. 2008, 47, 7317.<br />

H<br />

Me<br />

Me<br />

OMe<br />

OMe<br />

O<br />

2:1 dr<br />

O


� Used in Moellerʼs synthesis of nemorensic acid<br />

Me<br />

Me OH Me S<br />

� Bogerʼs synthesis of vinblastine<br />

MeO<br />

N<br />

H<br />

N<br />

CO 2Me<br />

N<br />

Et<br />

Et<br />

S<br />

N<br />

OAc<br />

H<br />

Me HO CO2Me <strong>Radical</strong> <strong>Cations</strong> in Synthesis<br />

anode, 71%<br />

Et 4NOTs<br />

MeOH/THF<br />

i. FeCl 3, 2h<br />

ii. Fe 2(ox) 3–NaBH 4<br />

air, 0 °C, lutidine<br />

43%<br />

Me<br />

Me<br />

Me<br />

O S<br />

MeO<br />

S<br />

N<br />

N<br />

H<br />

MeO2C MeO<br />

OH<br />

Et<br />

H<br />

Moeller et al J. Am. Chem. Soc. 2002, 124, 10101.<br />

Boger et al J. Am. Chem. Soc. 2008, 130, 420.<br />

N<br />

Et<br />

N<br />

OAc<br />

H<br />

Me<br />

HO CO2Me


H<br />

H<br />

H<br />

O<br />

R<br />

!-arylation<br />

O<br />

intramolecular<br />

!-arylation<br />

O NO 2<br />

R<br />

R'<br />

R'<br />

!-nitroalkylation<br />

R'<br />

<strong>Radical</strong> <strong>Cations</strong> in Synthesis: MacMillan Lab<br />

SOMO-activated<br />

Bn<br />

O Me<br />

N<br />

R<br />

N<br />

H<br />

t-Bu<br />

H<br />

H<br />

H<br />

O<br />

O<br />

R<br />

!-enolation<br />

O<br />

R<br />

!-vinylation<br />

R<br />

O<br />

R'<br />

!-allylation<br />

R'<br />

R'

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!