31.12.2012 Views

Compilation of 13 factsheets on key sustainable sanitation ... - SSWM

Compilation of 13 factsheets on key sustainable sanitation ... - SSWM

Compilation of 13 factsheets on key sustainable sanitation ... - SSWM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

disappearing <str<strong>on</strong>g>of</str<strong>on</strong>g> glaciers in the Andes – which is currently the source<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> water supply for Lima. More photos showing water scarcity in<br />

Lima: www.flickr.com/photos/gtzecosan/sets/7215762951163<str<strong>on</strong>g>13</str<strong>on</strong>g>40/<br />

Climate change pro<str<strong>on</strong>g>of</str<strong>on</strong>g>ing measures involve households,<br />

communities, service providers and governments alike, and<br />

some examples are given below.<br />

3.2.1 Adaptati<strong>on</strong> to increased occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> droughts<br />

and increasing water scarcity<br />

In order to adapt sanitati<strong>on</strong> systems to water scarcity, the<br />

measures that can be taken include for example:<br />

• Wastewater especially greywater, treated to the<br />

•<br />

appropriate degree for the intended use can be reused<br />

for the irrigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> food crops, energy crops, parks,<br />

lawns and other public spaces, for groundwater recharge<br />

or as service water. In cases where potable water is<br />

used for irrigati<strong>on</strong>, the use <str<strong>on</strong>g>of</str<strong>on</strong>g> treated wastewater would<br />

substitute the extracti<strong>on</strong>, processing and distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

potable water and thus may lead to energy savings. The<br />

nutrient c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the wastewater also reduces the need<br />

for mineral fertiliser input. Further informati<strong>on</strong> <strong>on</strong><br />

wastewater reuse in agriculture can be found in WHO<br />

(2006).<br />

Dry toilet systems can be an alternative, especially in<br />

water scarce areas, to water-flushed toilets. Toilets<br />

which do not require water for flushing, but can<br />

nevertheless be indoors (such as urine diversi<strong>on</strong><br />

dehydrati<strong>on</strong> toilets (UDDTs) or composting toilets), save<br />

about 40L/pers<strong>on</strong>/day in comparis<strong>on</strong> to c<strong>on</strong>venti<strong>on</strong>al<br />

flush toilets.<br />

• Water or wastewater irrigati<strong>on</strong> methods should minimise<br />

water losses through evaporati<strong>on</strong>. Therefore, subsurface<br />

drip irrigati<strong>on</strong> is generally preferable although possible<br />

nozzle clogging should be c<strong>on</strong>sidered (Palada et al,<br />

2011).<br />

3.2.2 Adaptati<strong>on</strong> to increasing amounts and periods <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rainfall and flooding<br />

In order to adapt sanitati<strong>on</strong> systems to flooding, <strong>on</strong>e<br />

effective measure is building sanitati<strong>on</strong> structures in a way<br />

that they are above ground and either not affected by<br />

flooding such as UDDTs built high enough above ground, or<br />

to use mobile toilet systems (Johannessen et al., 2012) 4<br />

.<br />

Another measure is building sanitati<strong>on</strong> systems where flood<br />

water can drain quickly, such as elevated sludge drying<br />

beds, or c<strong>on</strong>structed wetlands.<br />

3.3 Emissi<strong>on</strong> trading as an additi<strong>on</strong>al financial benefit<br />

The first phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the Kyoto Protocol – the internati<strong>on</strong>ally<br />

binding c<strong>on</strong>tract <strong>on</strong> climate protecti<strong>on</strong> measures valid until<br />

the end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2012 – assigns each participating country which<br />

has emissi<strong>on</strong> reducti<strong>on</strong> commitments, an allowed amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

greenhouse gas emissi<strong>on</strong>s. In order to reach this emissi<strong>on</strong><br />

target at the least macroec<strong>on</strong>omic costs, the Kyoto Protocol<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>fers three market-based flexible mechanisms. One <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

them, the Clean Development Mechanism (CDM), is<br />

designed for trading emissi<strong>on</strong> reducti<strong>on</strong>s which have been<br />

achieved in developing countries.<br />

4 See publicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> SuSanA library dealing with the issue <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

flooding: www.susana.org/lang-en/library?search=flood<br />

The CDM can be used for emissi<strong>on</strong> reducti<strong>on</strong>s achieved<br />

through <strong>sustainable</strong> sanitati<strong>on</strong> systems. It can c<strong>on</strong>tribute to<br />

an additi<strong>on</strong>al financial benefit but also generates CDMrelated<br />

costs which are mostly fixed and which negate<br />

achieved credits to some extent.<br />

Hence, for <strong>sustainable</strong> sanitati<strong>on</strong> systems a minimum<br />

project scale is required to make CDM ec<strong>on</strong>omically<br />

attractive. This is dependent <strong>on</strong> the baseline and the project<br />

scenario, the energy demand <str<strong>on</strong>g>of</str<strong>on</strong>g> the fertiliser producti<strong>on</strong><br />

plants, the different available sources <str<strong>on</strong>g>of</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

country being c<strong>on</strong>sidered, the transacti<strong>on</strong> costs and the<br />

price <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> credits which fluctuates.<br />

The minimum project scale for an ec<strong>on</strong>omic use <str<strong>on</strong>g>of</str<strong>on</strong>g> CDM for<br />

energy recovery (biogas use) and nutrient recovery (urine<br />

use) was analysed for a case study in India (Olt, 2008).<br />

Assuming average transacti<strong>on</strong> costs and a l<strong>on</strong>g-term price<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 20 EUR/CER 5 , the minimum viable project scale was<br />

found to be around 25,000 PE 6<br />

for energy recovery, and<br />

37,000 PE for nutrient recovery.<br />

From an emissi<strong>on</strong> reducti<strong>on</strong> point <str<strong>on</strong>g>of</str<strong>on</strong>g> view, this project had<br />

favourable c<strong>on</strong>diti<strong>on</strong>s regarding energy recovery but<br />

unfavourable c<strong>on</strong>diti<strong>on</strong>s regarding nutrient recovery.<br />

Therefore the above indicated project scale for energy<br />

recovery represents an absolute minimum value, while the<br />

value for nutrient recovery can also be lower.<br />

In order to reach this project size, similar CDM projects may<br />

be bundled together to a "Programme <str<strong>on</strong>g>of</str<strong>on</strong>g> Activities" (PoA). A<br />

manual for biogas plants at household level is given in GFA<br />

(2009). Further informati<strong>on</strong> <strong>on</strong> PoA is available at the<br />

website <str<strong>on</strong>g>of</str<strong>on</strong>g> UNFCCC 7<br />

.<br />

4 Renewable energy producti<strong>on</strong> from<br />

sanitati<strong>on</strong><br />

4.1 Biogas producti<strong>on</strong><br />

4.1.1 Overview<br />

Biogas is a renewable energy that can be used for cooking,<br />

lighting, heating and for generating electrical power. It is<br />

produced by bacteria that decompose organic matter under<br />

anaerobic c<strong>on</strong>diti<strong>on</strong>s (i.e. in the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen). The<br />

technology <str<strong>on</strong>g>of</str<strong>on</strong>g> anaerobic digesti<strong>on</strong> has been applied to<br />

human and animal excreta for over 150 years. The<br />

anaerobic bacteria grow slowly, and higher temperatures<br />

result in faster decompositi<strong>on</strong> rates 8<br />

.<br />

For biogas generati<strong>on</strong> various substrates can be used (also<br />

in combinati<strong>on</strong> with each other):<br />

5<br />

1 CER (Certified Emissi<strong>on</strong>s Reducti<strong>on</strong>) is c<strong>on</strong>sidered equivalent to<br />

<strong>on</strong>e metric t<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 emissi<strong>on</strong>s<br />

6<br />

PE = populati<strong>on</strong> equivalent, equalling approximately the organic<br />

biodegradable load <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e pers<strong>on</strong>.<br />

7<br />

http://cdm.unfccc.int/ProgrammeOfActivities/index.html<br />

8<br />

For further informati<strong>on</strong> <strong>on</strong> anaerobic digesti<strong>on</strong> and biogas<br />

producti<strong>on</strong>, please see the SuSanA library and filter for biogas<br />

systems. Also photos <str<strong>on</strong>g>of</str<strong>on</strong>g> biogas systems are available in the<br />

Sustainable Sanitati<strong>on</strong> photo collecti<strong>on</strong>: www.flickr.com/<br />

photos/gtzecosan/collecti<strong>on</strong>s/72157 626218224122/<br />

Renewable energies and climate change: Working Group 3 - page 4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!