07.01.2013 Views

Monday, March 11, 2002 - DPG-Tagungen

Monday, March 11, 2002 - DPG-Tagungen

Monday, March 11, 2002 - DPG-Tagungen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Nuclear Physics Sectional Programme Overview<br />

<strong>Monday</strong>, <strong>March</strong> <strong>11</strong>, <strong>2002</strong><br />

AFTERNOON<br />

13.30 Welcome (main auditorium)<br />

13.45<br />

P<br />

14.30<br />

P<br />

15.15<br />

P<br />

A<br />

HK 2<br />

B<br />

HK 3<br />

C<br />

HK 4<br />

D<br />

HK 5<br />

E<br />

HK 6<br />

F<br />

HK 7<br />

HK1 - Talks - from 13.45 to 15.45<br />

Plenary talk<br />

G. t’Hooft (Utrecht)<br />

Instantons and Confinement in QCD<br />

Plenary talk<br />

R. F. Casten (Yale)<br />

A Perspective on Nuclear Structure Physics in<br />

the Context of the U. S. Long Range Planning<br />

Process<br />

Plenary talk<br />

T. Peitzmann (Münster)<br />

Heavy Ion Physics in the RHIC Era<br />

15.45 coffee break<br />

HK2-7 - Talks - from 16.15 to 19.00<br />

Theory I<br />

Nuclear Physics / Spectroscopy I<br />

Nuclear and Particle Astrophysics I<br />

Electromagnetic and Hadronic Probes I<br />

Heavy Ions I<br />

Instrumentation and Applications I<br />

19.30 Welcome reception


Nuclear Physics Sectional Programme Overview<br />

8.30<br />

P<br />

Tuesday, <strong>March</strong> 12, <strong>2002</strong><br />

MORNING AFTERNOON<br />

HK8 - Talks - from 8.30 to 10.30 HK15 - Talks - from 14.00 to 16.00<br />

Plenary talk<br />

L. v. Smekal (Erlangen)<br />

Aspects of Confinement in QCD: The Glue of<br />

Strong Interactions<br />

14.00<br />

P<br />

Plenary talk<br />

U.-J. Wiese (Bern)<br />

Recent Progress in Lattice QCD<br />

14:45 Plenary talk<br />

9.00 Plenary talk P T. R. Hemmert (München)<br />

P N. Kalantar-Nayestanaki (Groningen) Chiral Extrapolation of Lattice QCD<br />

Search for Three-Body Force Effects data for Baryon Properties<br />

9.30 Plenary talk 15.15 Plenary talk<br />

P C. Sturm (GSI) P A. Zilges (Darmstadt)<br />

Properties of K-Mesons in the Nuclear Electric dipole strength in atomic nuclei -<br />

Medium a key to the breaking of isospin symmetry<br />

10.00 Plenary talk 15.45 Plenary talk<br />

P A. Gillitzer (Jülich) P N. Pietralla (Köln)<br />

Pionic 1s States in Heavy Atoms and Nuclear Physics with a Free Electron Laser<br />

the Pion-Nucleus Interaction<br />

16.15 coffee break<br />

10.30 Poster Session HK16-21 - Talks - from 16.45 to 18.45<br />

and coffee in the Foyer of the Chemistry<br />

building<br />

HK9 bis HK14<br />

A<br />

HK 16<br />

B<br />

HK 17<br />

C<br />

HK 18<br />

D<br />

HK 19<br />

E<br />

HK 20<br />

F<br />

HK 21<br />

Theory II<br />

Nuclear Physics / Spectroscopy II<br />

Nuclear and Particle Astrophysics II<br />

Electromagnetic and Hadronic Probes II<br />

Heavy Ions II<br />

Instrumentation and Applications II<br />

12.45 lunch break 19.30 Evening talk in auditorium H1 (downtown)<br />

Prof. Dr. Dr. Birger Kollmeier (Oldenburg)<br />

Cocktailpartys und Hörgeräte - Neurosensorische Analyse<br />

des auditorischen Systems und ihre Anwendungen -


Nuclear Physics Sectional Programme Overview<br />

Wednesday, <strong>March</strong> 13, <strong>2002</strong><br />

MORNING AFTERNOON<br />

HK22 - Talks - from 8.30 to 10.15 HK29-34 - Talks - from 14.00 to 15.30<br />

8.30 Plenary talk A Theory IV<br />

P M. Büscher (Jülich) HK 29<br />

Investigation of K + -Meson production<br />

in pp and pA collisions with ANKE B Nuclear Physics / Spectroscopy IV<br />

HK 30<br />

9.00 Plenary talk<br />

P H. Bulten (Amsterdam) C Nuclear Physics / Spectroscopy V<br />

Few-body systems studied with internal HK 31<br />

targets in the NIKHEF electron storage ring<br />

D Electromagnetic and Hadronic Probes IV<br />

9.30 Plenary talk HK 32<br />

P S. Rombouts (Gent)<br />

The Quantum Monte Carlo approach to E Heavy Ions IV<br />

nuclear structure HK 33<br />

10.00 Poster Award Ceremony F Instrumentation and Applications IV<br />

HK 34<br />

10.15 coffee break 15.30 coffee break<br />

HK23 - 28 - Talks - from 10.45 to 12.45<br />

A Theory III<br />

HK 23<br />

B Nuclear Physics / Spectroscopy III<br />

HK 24<br />

C Nuclear and Particle Astrophysics III 16.00 Public session of the ’Komitee<br />

HK 25 -17.45 Hadronen und Kerne’<br />

D Electromagnetic and Hadronic Probes III 18.00 Session of the <strong>DPG</strong> Fachverband<br />

HK 26 -19.00<br />

E Heavy Ions III<br />

HK 27<br />

F Instrumentation and Applications III<br />

HK 28<br />

12.45 lunch break


Nuclear Physics Sectional Programme Overview<br />

Thursday, <strong>March</strong> 14, <strong>2002</strong><br />

MORNING AFTERNOON<br />

HK35 - Talks - from 8.30 to 10.30 HK37-42 - Talks - from 14.00 to 15.30<br />

8.30 Plenary talk A Theory V<br />

P K. Jungmann (Groningen) HK 37<br />

The Muon Magnetic Moment<br />

B Nuclear Physics / Spectroscopy VI<br />

9.00 Plenary talk HK 39<br />

P D. Bödeker (Bielefeld)<br />

High-temperature QCD and relativistic C Theory VI<br />

heavy ion collisions HK 38<br />

9.30 Plenary talk D Electromagnetic and Hadronic Probes V<br />

P K. Helbing (Erlangen)<br />

Experimental verification of the GDH<br />

HK 40<br />

sum rule at ELSA and MAMI E<br />

HK 41<br />

Heavy Ions V<br />

10.00 Plenary talk<br />

P S. Scherer (Mainz) F Instrumentation and Applications V<br />

Compton Scattering off the Nucleon at MAMI<br />

Energies<br />

HK 42<br />

10.30 coffee break 15.30 coffee break<br />

HK36 - Talks - from <strong>11</strong>.00 to 12.45 HK43-48 - Talks - from 16.00 to 18.00<br />

<strong>11</strong>.00 Plenary talk A Theory VII<br />

P J. Wambach (Darmstadt) HK 43<br />

Ciral Symmetry and the Medium Modification<br />

of Hadrons B Nuclear Physics / Spectroscopy VII<br />

HK 45<br />

<strong>11</strong>.45 Plenary talk<br />

P U. Thoma (JLab) C Theory VIII<br />

Search for Missing Baryon Resonances HK 44<br />

12.15 Plenary talk D Electromagnetic and Hadronic Probes VI<br />

P S. Goriely (Brüssel) HK 46<br />

The Role of Nuclear Physics in providing<br />

Data for Astrophysics E Heavy Ions VI<br />

HK 47<br />

12.45 lunch break<br />

F Instrumentation and Applications VI<br />

HK 48


Nuclear Physics Sectional Programme Overview<br />

8.30<br />

P<br />

9.00<br />

P<br />

9.30<br />

P<br />

10.00<br />

P<br />

<strong>11</strong>.00<br />

P<br />

<strong>11</strong>.30<br />

P<br />

12.00<br />

P<br />

Friday, <strong>March</strong> 15, <strong>2002</strong><br />

MORNING<br />

HK49 - Talks - from 8.30 to 10.30<br />

Plenary talk<br />

M. Düren (HERMES)<br />

New Results from HERMES<br />

Plenary talk<br />

S. Spanier (SLAC)<br />

New Results from the BaBar collaboration<br />

Plenary talk<br />

K. Langanke (Aarhus)<br />

Nuclear quests in astrophysics<br />

Plenary talk<br />

O. Kester (München)<br />

Acceleration of radioactive ion beams at REX-<br />

ISOLDE<br />

10.30 coffee break<br />

HK50 - Talks - from <strong>11</strong>.00 to 12.30<br />

Plenary talk<br />

R. Jakob (Wuppertal)<br />

The Advantage of Exclusiveness<br />

Plenary talk<br />

O. Zimmer (München)<br />

Neutron beta decay and the CKM matrix<br />

Plenary talk<br />

G. Neyens (Leuven)<br />

Quadrupole and magnetic moments of<br />

neutron-rich nuclei from projectile fragmentation<br />

12.30 End of Meeting


Nuclear Physics <strong>Monday</strong><br />

Sessions<br />

– Invited and Contributed Lectures, Posters –<br />

HK1 Plenary Session<br />

Time: <strong>Monday</strong> 13:45–15:45 Room: Plenarsaal<br />

Plenary Talk HK 1.1 Mon 13:45 Plenarsaal<br />

Instantons and Confinement in QCD — •Gerard ’t Hooft —<br />

Utrecht University and Spinoza Institute<br />

Quantum Chromodynamics, a theory that describes in great detail<br />

the dynamics of the strong forces among the subatomic particles, is a<br />

non-Abelian gauge theory, and it has a delicate topological structure.<br />

The nature of the forces that keep the quarks permanently confined into<br />

pairs or triplets can be understood in terms of this topology: we find<br />

that Bose-Einstein condensation takes place in the colour-magnetic sector.<br />

The theory allows for a very special kind of transitions, or events,<br />

called ”instantons”. It turns out that these explain the special way in<br />

which the chiral symmetry of the system is manifested, such as the entirely<br />

different mixing angles between the vector particles on the one<br />

hand and the isoscalars on the other.<br />

Plenary Talk HK 1.2 Mon 14:30 Plenarsaal<br />

A Perspective on Nuclear Structure Physics in the Context of<br />

the U.S. Long Range Planning Process — •Richard F. Casten<br />

— Wright Nuclear Structure Laboratory, Yale University, New Haven,<br />

CT 06520-8124, U.S.A.<br />

Nuclear physics in the USis entering a crucial phase in which two major<br />

facilities – CEBAF at Jefferson Laboratory and RHIC at Brookhaven<br />

National Laboratory – are now running and obtaining significant new<br />

results, and in which a third facility, the exotic beam laboratory Rare<br />

Isotope Accelerator (RIA), is being recommended as the highest priority<br />

for major new construction in the current Long Range Planning Pro-<br />

HK2 Theory I<br />

cess. These initiatives reflect the three major pillars on which nuclear<br />

physics research stands, namely, the interactions of quarks and gluons,<br />

the quark-gluon structure of hadronic matter, and of the structure of<br />

nuclei themselves. Each of these has wider ramifications, especially in<br />

regard to astrophysics and the Standard Model. This talk will focus on<br />

the recent Long Range planning effort in the US– both the nature of<br />

the process itself and on the Recommendations resulting from it. It will<br />

then go on to discuss in more specificity the major accomplishments in<br />

nuclear structure in recent years and the exciting prospects for future<br />

discoveries in this field. Especially important in this regard is the discovery<br />

potential inherent in the RIA facility. This work was supported<br />

by U.S. DOE under Grant No. DE-FG02-91ER-40609.<br />

Plenary Talk HK 1.3 Mon 15:15 Plenarsaal<br />

Heavy Ion Physics in the RHIC Era — •Thomas Peitzmann —<br />

Universität Münster, 48149 Münster, Germany<br />

The first year of running of the Relativistic Heavy Ion Collider in<br />

Brookhaven at a beam energy of √ sNN = 130 GeV has brought the study<br />

of strongly interacting matter into a new era and has already provided<br />

a large number of exciting results by the four heavy ion experiments.<br />

Highlights of these early results will be presented and discussed in comparison<br />

with previous results from lower energy heavy ion experiments<br />

and from measurements in pp (p¯p) collisions and with theoretical expectations.<br />

The status of the measurements at the full RHIC energy of<br />

√ sNN = 200 GeV in 2001 and the future prospects will also be discussed.<br />

Time: <strong>Monday</strong> 16:15–19:00 Room: A<br />

Group Report HK 2.1 Mon 16:15 A<br />

New soft pion theorems for hard reactions — •M.V. Polyakov 1,2 ,<br />

P.V. Pobylitsa 1,2 ,andM.I. Strikman 1,3 — 1 Petersburg Nuclear<br />

Physics Institute, 188350 Gatchina, Russia — 2 Institute for Theoretical<br />

Physics II, Ruhr University Bochum, 44780 Bochum, Germany —<br />

3 Pennsylvania State University, University Park, PA16802,USA<br />

We prove a new soft pion theorem for the near threshold pion production<br />

by a hard electromagnetic probe. This theorem relates various<br />

near threshold pion production amplitudes to the nucleon form factors<br />

at large momentum transfer. The new soft pion theorem exploits the<br />

kinematic domain Q 2 ≫ Λ 3 /mπ (Λ ∼ 1 GeV is a typical hadronic scale,<br />

Q 2 is a virtuality of the incident photon).<br />

The new soft pion theorem is in a good agreement with the SLAC<br />

data for the structure function F p<br />

2 (W, Q 2 ) for W 2 ≤ 1.4 GeV 2 and<br />

9 ≤ Q 2 ≤ 30.7 GeV 2 .<br />

Group Report HK 2.2 Mon 16:45 A<br />

Relativistic chiral SU(3) symmetry, large Nc sum rules and<br />

meson-baryon scattering — •Matthias F.M. Lutz 1 and Evgeni<br />

E. Kolomeitsev 2 — 1 GSI, Planck Str. 1, D-64291 Darmstadt and Institut<br />

für Kernphysik, TU Darmstadt, D-64289 Darmstadt — 2 ECT*,<br />

Villa Tambosi, I-38050 Villazzano (Trento)<br />

The relativistic chiral SU(3) Lagrangian is used to describe kaonnucleon<br />

scattering imposing constraints from the pion-nucleon sector and<br />

the axial-vector coupling constants of the baryon octet states. We solve<br />

the covariant coupled-channel Bethe-Salpeter equation with the interaction<br />

kernel truncated at chiral order Q 3 where we include only those<br />

terms which are leading in the large Nc limit of QCD. The baryon decuplet<br />

states are an important explicit ingredient in our scheme, because<br />

together with the baryon octet states they form the large Nc baryon<br />

ground states of QCD. Part of our technical developments is a minimal<br />

chiral subtraction scheme within dimensional regularization, which leads<br />

to a manifest realization of the covariant chiral counting rules. All SU(3)<br />

symmetry-breaking effects are well controlled by the combined chiral and<br />

large Nc expansion, but still found to play a crucial role in understanding<br />

the empirical data. We achieve an excellent description of the data set<br />

typically up to laboratory momenta of plab � 500 MeV.<br />

Group Report HK 2.3 Mon 17:15 A<br />

Determination of vector meson properties by matching resonance<br />

saturation to a constituent quark model — •Stefan Leupold<br />

— Institut für Theoretische Physik, Universität Giessen, Germany<br />

We calculate the low-energy coefficients of chiral perturbation theory<br />

in two different ways, namely (i) by assuming resonance saturation and<br />

(ii) within a constituent quark model derived as the low energy effective<br />

theory of the instanton model. By matching the expressions of the two<br />

models we determine mass and coupling constants for vector and axialvector<br />

mesons. We recover in this way the KSFR relation as well as<br />

the universality of the vector meson coupling. The latter is found to be<br />

g =2π. For the ρ-meson mass we get mρ = √ 8 πFπ ≈ 826 MeV where<br />

Fπ denotes the pion decay constant.<br />

HK 2.4 Mon 17:45 A<br />

Electromagnetic transition form factors and dilepton decay<br />

rates of nucleon resonances — •Mikhail Krivoruchenko, Christian<br />

Fuchs, Boris Martemyanov, andAmand Faessler —Institut<br />

fuer Theoretische Physik, Universitaet Tuebingen, Auf der Morgenstelle<br />

14, D-72076 Tuebingen, Germany<br />

Relativistic, kinematically complete phenomenological expressions for<br />

the dilepton decay rates of nucleon resonances with arbitrary spin and<br />

parity are derived in terms of the magnetic, electric, and Coulomb tran-


Nuclear Physics <strong>Monday</strong><br />

sition form factors. The dilepton decay rates of the nucleon resonances<br />

with masses below 2 GeV are estimated using the extended vector meson<br />

dominance model for the transition form factors. The model provides a<br />

unified description of the photo- and electroproduction data, the vector<br />

meson decays, and the dilepton decays. The constraints on the transition<br />

form factors from the quark counting rules are taken into account.<br />

The parameters of the model are fixed by fitting the available photo- and<br />

electroproduction data and using results of the multichannel partial-wave<br />

analysis of the πN scattering. The vector meson coupling constants of<br />

the magnetic, electric, and Coulomb types are determined. The dilepton<br />

widths and the dilepton spectra from decays of nucleon resonances with<br />

masses below 2 GeV are calculated [1,2]. The results are used to model<br />

the dilepton spectra in proton-proton, proton-deuteron, and heavy-ion<br />

collisions.<br />

[1] M.I. Krivoruchenko, Amand Faessler: Phys.Rev. D 65, 017502 (<strong>2002</strong>).<br />

[2] M.I. Krivoruchenko, B.V. Martemyanov, Amand Faessler, C. Fuchs:<br />

submitted to Ann.Phys. (N.Y.), nucl-th/0<strong>11</strong>0066.<br />

HK 2.5 Mon 18:00 A<br />

Color-Flavor Unlocking and Phase Structure of Strongly Interacting<br />

Matter — •Michael Buballa 1,2 , Jǐri Hǒsek 3 ,andMicaela<br />

Oertel 4 — 1 IKP, TU Darmstadt, Darmstadt, Germany — 2 GSI, Darmstadt,<br />

Germany — 3 Dept. Theor. Phys., ˇ Reˇz (Prague), Czech Republik<br />

— 4 IPN-Lyon, Villeurbanne, France<br />

At low temperatures and high densities strongly interacting matter<br />

is expected to be a color superconductor. One can distinguish at least<br />

two different superconducting phases, the two-flavor color superconductor<br />

(2SC) and the so-called color-flavor locked (CFL) phase, which incorporates<br />

three quark flavors. We calculate the phase diagram within a<br />

3-flavor NJL-type quark model with realistic quark masses. The model<br />

exhibits spontaneous chiral symmetry breaking as well as diquark condensation<br />

in the 2SC phase and in the CFL phase. We investigate the colorflavor<br />

unlocking phase transition, taking into account self-consistently<br />

calculated effective quark masses. We find that it is mainly triggered by<br />

a first-order phase transition with respect to the strange quark mass. It<br />

takes place at a relatively high value of the chemical potential such that<br />

we find a large region where the 2SC phase is the most favored state.<br />

We also investigate the possible existence of more “exotic” phases, like<br />

unisotropic condensates. It turns out that the relevance of such condensates<br />

is strongly parameter dependent. This leaves room for surprises.<br />

HK 2.6 Mon 18:15 A<br />

Dispersion relations in real and virtual Compton scattering<br />

— •Marc Vanderhaeghen 1 , Dieter Drechsel 1 , Michael<br />

Gorchtein 1 , Andreas Metz 2 , and Barbara Pasquini 3 —<br />

1 Johannes Gutenberg University Mainz — 2 Vrije Universteit Amsterdam<br />

— 3 ECT* Trento<br />

A unified presentation is given of the use of dispersion relations in<br />

the real and virtual Compton scattering processes off the nucleon. It<br />

is reviewed how for Compton scattering, dispersion relations establish a<br />

connection between low energy nucleon structure quantities such as its<br />

HK3 Nuclear Physics / Spectroscopy I<br />

polarizabilities on the one hand and the nucleon excitation spectrum on<br />

the other hand. Various types of dispersion relations are subsequently<br />

discussed for the real Compton scattering (RCS) process as a tool to extract<br />

nucleon polarizabilities from RCSdata and the present knowledge<br />

on the nucleon polarizabilities obtained in this way is reviewed [1]. Subsequently,<br />

we present the extension of the dispersion relation formalism<br />

to the virtual Compton scattering (VCS) process as a tool to extract<br />

generalized polarizabilities of the nucleon [2]. The information on generalized<br />

nucleon polarizabilities as extracted in this way from recent VCS<br />

experiments is reviewed in particular in view of new JLab VCSdata for<br />

photon virtualities Q 2 in the range 1 - 2 GeV 2 .<br />

[1] D. Drechsel, B. Pasquini and M. Vanderhaeghen, in preparation<br />

[2] B. Pasquini et al., Eur.Phys.J.A <strong>11</strong> (2001) 185.<br />

HK 2.7 Mon 18:30 A<br />

Thermodynamics of the chiral condensate — •Thomas<br />

M. Schwarz, Norbert Kaiser, and Wolfram Weise —<br />

Physik-Department, Technische Universität München.<br />

We study the temperature and density dependence of the scalar quark<br />

condensate 〈¯qq〉 using effective field theory methods. Nucleons interact<br />

via perturbative chiral pion exchange and scalar plus vector four-point<br />

interactions. The latter are treated in relativistic mean field approximation<br />

giving rise to an effective nucleon mass M ∗ and an effective chemical<br />

potential µ ∗ . Contributions from pion fluctuations at two-loop level are<br />

included in the self consistency equations for M ∗ and µ ∗ . The strengths<br />

of the contact interactions are adjusted to the empirical nuclear matter<br />

saturation point and compressibility κ. From this we predict an effective<br />

nucleon mass of M ∗ (ρ0) � 0.8M. At a temperature T � 17 MeV a<br />

liquid-gas phase transition is observed. The dependence of the equation<br />

of state P (T,µ,mπ) on the pion mass allows to calculate deviations from<br />

the leading linear decrease in density of the quark condensate. We find<br />

that these are small below normal nuclear matter density, but substantial<br />

at higher densities. In a further step we include three-loop contributions<br />

from 2π-exchange.<br />

Supported in part by BMBF and GSI.<br />

HK 2.8 Mon 18:45 A<br />

Renormalon Model of Twist-4 Corrections to Meson Wave<br />

Functions — •Stefan Gottwald — Institut für Theoretische Physik,<br />

Universität Regensburg, D-93040 Regensburg, Germany<br />

In this talk I present a renormalon-inspired model of twist-4 power<br />

corrections to the light-cone wave functions of the pion and the rhomeson,<br />

and compare it to the results obtained using the conformal wave<br />

expansion.<br />

This renormalon approach allows one to get some insight in the convergence<br />

properties of the conformal expansion and the basic result is that<br />

global features of the higher-twist wave functions calculated in the renormalon<br />

approach turn out to be surprisingly close to simple models based<br />

on the truncated conformal expansion. At the same time, the renormalon<br />

calculation indicates a “soft” divergence of the conformal expansion close<br />

to the kinematic boundaries.<br />

Time: <strong>Monday</strong> 16:15–19:00 Room: B<br />

Group Report HK 3.1 Mon 16:15 B<br />

New interpretation of the O(6) limit of the interacting boson<br />

model. — •J. Jolie 1 , P. von Brentano 1 , V. Werner 1 ,andR.F.<br />

Casten 2 — 1 Institut fuer Kernphysik, Universitaet zu Koeln — 2 Yale<br />

University, New Haven, USA<br />

It is shown that the O(6) limit of the IBM, can be interpreted as a<br />

critical point of a phase transition inbetween oblate and prolate rotational<br />

nuclei[1]. This quantum phase transition relates to the shape of<br />

the nucleus and can be described exactly for any number of interacting<br />

bosons N at the critical point. It will be shown that an important tool<br />

to theoretically study such finite-N quantum phase transitions is provided<br />

by the determination of the wavefunction entropy [2]. Besides this<br />

also other signatures of phase transitional character are discussed [3]. [1]<br />

J.Jolie, R.F. Casten, P. von Brentano, V. Werner, Phys. Rev. Lett.87<br />

(2001) 162501. [2] P. Cejnar, J.Jolie Phys. Rev. E 61 (2000) 6237. [3] V.<br />

Werner, P. von Brentano, R.F. Casten, J. Jolie, acc. for publ. in Phys.<br />

Lett. B. Work supported by DFG under project No Br 799/10-1 of US-<br />

DOE under grant N0 DE-FG02-91ER40609 and NATO under grant No<br />

SA 5-2-05 (CRG 950668).<br />

Group Report HK 3.2 Mon 16:45 B<br />

Decay properties of N� nuclei: A status report from the ISOL<br />

facility of GSI — •J. Döring for the GSI-ISOL collaboration — GSI,<br />

Darmstadt, Germany<br />

Nuclei with N�Z between the double shell closures 56 Ni and 100 Snare<br />

of great interest due to their special nuclear-structure features, including<br />

shape coexistence, the influence of the proton drip-line, tests of the Standard<br />

Model of Weak Interaction by means of precision data on superallowed<br />

0 + →0 + β-decays, and the relevance to the astrophysical rp process.<br />

These motivations form the basis of the research program pursued at the<br />

ISOL facility of GSI Darmstadt. After describing the fusion-evaporation<br />

reactions, used for producing the neutron-deficient isotopes of interest,<br />

and the detectors for decay measurements, we present examples of recent<br />

experiments, i.e. (i) the β-delayed proton emission from 57 Zn (T1/2


Nuclear Physics <strong>Monday</strong><br />

=38±4 ms)to 56 Ni [1], (ii) the accurate determination of the branching<br />

ratio for the 58 Cu(1 + )→ 58 Ni(0 + ) β transition (81.2±0.5 %), which serves<br />

as a calibration in deducing the Gamow-Teller strength distribution from<br />

high-resolution 58 Ni( 3 He,t) 58 Cu data [2], and (iii) an attempt to reach a<br />

precision of 4 parts in 10 4 for the half-life of the superallowed 0 + →0 + βdecay<br />

of 62 Ga by accumulating about 2×10 6 positron events. Finally, an<br />

outlook will be given, including in particular the novel technique of extracting<br />

short-lived tin isotopes as singly charged sulfide molecules from<br />

the ion source, which opens exciting perspectives for future β-decay experiments<br />

on 102 Sn and 100 Sn.<br />

[1] A. Jokinen et al., submitted to Eur. Phys. J. A.<br />

[2] Z. Janas et al., Eur. Phys. J. A 12, 143 (2001).<br />

Group Report HK 3.3 Mon 17:15 B<br />

Investigation of the level scheme of 144 Gd and lifetimes of the<br />

triaxial quadrupole band — •R.M. Lieder 1 , W. Gast 1 , H.M.<br />

Jäger 1 , L. Mihailescu 1 , A.A. Pasternak 2 , E.O. Podsvirova 2 , D.<br />

Bazzacco 3 , R. Menegazzo 3 , S. Lunardi 3 , C. Rossi Alvarez 3 , G.<br />

de Angelis 4 , E. Farnea 4 , A. Gadea 4 , D.R. Napoli 4 , T. Rza¸ca-<br />

Urban 5 , W. Urban 5 ,andA. Dewald 6 — 1 IKP, FZ Jülich, D-52425<br />

Jülich — 2 A.F. Joffe PTI, RU-194021 St. Petersburg — 3 INFN, Sezione<br />

di Padova, I-35131 Padova — 4 INFN, LNL, I-35020 Legnaro — 5 IEP,<br />

Univ. Warsaw, PL-00-681 Warsaw — 6 IKP, Univ. Köln, D-50937 Köln<br />

High-spin states in 144 Gd have been excited in the 100 Mo( 48 Ti,4n) reaction<br />

at 215 MeV and studied with EUROBALL at the LNL, Italy.<br />

Several dipole and stretched E2 cascades have been observed. The study<br />

of lifetimes of the E2 cascades is of importance for the understanding of<br />

the transition from highly to superdeformed states between the A ≈ 130<br />

and A ≈ 150 regions. This transition is expected to occur via triaxial<br />

shapes. The strongest E2 cascade in 144 Gd is considered to have a<br />

configuration involving rotation aligned h<strong>11</strong>/2 protons as well as rotation<br />

aligned h<strong>11</strong>/2 neutron holes and h9/2 neutrons resulting in a well<br />

deformed triaxial nuclear shape. More information on the configuration<br />

of this band was obtained in a DSA study with GASP at the LNL, Italy<br />

using the <strong>11</strong>4 Cd( 36 S,6n) reaction at E = 182 MeV. The target consisted of<br />

a 1.2 mg/cm 2 <strong>11</strong>4 Cd foil backed by a 1.2 mg/cm 2 Ta and a 55 mg/cm 2 Bi<br />

layer. Because most of the γ-lines of interest are contaminated by background<br />

lines special techniques have been developed for the analysis. The<br />

results of the lifetime analysis support the proposed interpretation.<br />

HK 3.4 Mon 17:45 B<br />

New methods for measuring nuclear skins — •A. Krasznahorkay<br />

1,2 , H. Akimune 3 , A.M. van den Berg 2 , N. Blasi 4 , S.<br />

Brandenburg 2 , M. Csatlós 1 , H. Fujimura 3 , M. Fujiwara 3,5 , J.<br />

Gulyás 1 , M. Hagemann 6 , K. Hara 3 , M. N. Harakeh 2 , M. Hunyadi<br />

2 , M. de Huu 2 , F. Ihara 3 , T. Ishikawa 7 , Z. Máté 1 , D. Sohler 1 ,<br />

S.Y. van der Werf 2 ,andL. Zolnai 1 — 1 ATOMKI, Debrecen, Hungary<br />

— 2 KVI, Groningen, The Netherlands — 3 RCNP, Osaka, Japan —<br />

4 INFN, Milano, Italy — 5 JAERI, Tokai, Japan — 6 Univ. Gent, Belgium<br />

— 7 Univ. Kyoto, Japan<br />

The neutron-skin thickness of 208 Pb and <strong>11</strong>4,124 Sn has been investigated<br />

in order to constrain the symmetry energy term of the nuclear<br />

energy functional. The precise knowledge of the symmetry energy is essential<br />

not only for describing the structure of neutron-rich nuclei, but<br />

also for describing the properties of the neutron-rich matter in nuclear<br />

astrophysics. We have used inelastic alpha scattering to excite the giant<br />

dipole resonance (GDR). The cross section of this process depends<br />

strongly on ∆Rnp/R, the radial difference of the neutron and proton<br />

densities [1]. We have also used the excitation of the spin-dipole resonance<br />

(SDR) to measure the neutron-skin thickness since the total L=1<br />

strength of the SDR is sensitive to it [2]. Recently new experiments were<br />

carried out at the KVI using 196 MeV α and 177 MeV 3 He beams from<br />

the AGOR superconducting cyclotron. A critical test of both the GDR<br />

and SDR methods will be discussed.<br />

[1] A. Krasznahorkay et al., Phys. Rev. Lett. 66, 1287 (1991)<br />

[2] A. Krasznahorkay et al., Phys. Rev. Lett. 82, 3216 (1999).<br />

HK 3.5 Mon 18:00 B<br />

Nuclear matter distribution of light neutron rich He nuclei from<br />

elastic proton scattering at large momentum transfer — •Oleg<br />

Kisselev for the S174 collaboration — Gesellschaft für Schwerionenforschung<br />

mbH, Planckstrasse 1, D-64291 Darmstadt<br />

Elastic proton scattering from the 6 He and 8 He halo nuclei was investigated<br />

in inverse kinematics at energies around 700 MeV/u at GSI Darmstadt.<br />

The experimental setup consisted of a liquid hydrogen target, a<br />

forward spectrometer for tracking and identifying the projectile nuclei,<br />

and a tracking system for the detection of the recoil protons. This setup<br />

allowed for a high precision and low background measurement. The aim<br />

of the experiment was to deduce the differential p 6 He and p 8 He cross sections<br />

for the region of high momentum transfer close to the expected first<br />

diffraction minimum. This new information together with the data obtained<br />

at small momentum transfer provides additional knowledge about<br />

the structure of the alpha-like core in 6 He and 8 He. The present status<br />

of the data analysis and first results will be presented.<br />

HK 3.6 Mon 18:15 B<br />

Alpha decay of <strong>11</strong>4 Ba — •C. Mazzocchi for the GSI-ISOL collaboration<br />

— GSI, Darmstadt, Germany<br />

Alpha decay is a rich source of nuclear-structure information, offering<br />

insight into properties such as ground-state binding energies and spectroscopic<br />

factors for α-particle emission, in particular for neutron-deficient<br />

isotopes beyond the doubly-magic nucleus 100 Sn. Based on this motiva-<br />

tion we searched for the α decay of <strong>11</strong>4 Ba (T1/2 = 430 +300<br />

−150 ms [1]). The<br />

<strong>11</strong>4 Ba nuclei were produced through the 58 Ni( 58 Ni,2n) reaction, separated<br />

from other reaction products as a mass-separated and chemically clean<br />

beam of <strong>11</strong>4 Ba 19 F + ions by means of the ISOL facility of GSI Darmstadt,<br />

implanted into a stopper foil, and studied by using silicon-detector telescopes<br />

for decay spectroscopy.<br />

We measured for the first time the α-particle energy (3410±40 keV)<br />

of <strong>11</strong>4 Ba, the half-life (160 +290<br />

−60 ms) of its daughter nucleus <strong>11</strong>0 Xe, and the<br />

α-branching ratios and widths for these two isotopes and for the granddaughter<br />

nucleus 106 Te [2]. The increase of the α-particle energies along<br />

the α-decay chain from <strong>11</strong>4 Ba to 102 Sn is a clear signature of the double<br />

shell-closure occurring at 100 Sn. The experimental values obtained for<br />

the α-decay Q values of these three isotopes as well as for the Q value<br />

for 12 C emission from <strong>11</strong>4 Ba (19000±40 keV) will be dicussed in comparison<br />

with theoretical predictions. In view of the large uncertainties of<br />

the reduced α-widths, no firm conclusions can be drawn concerning the<br />

occurrence of superallowed α decay.<br />

[1] Z. Janas et al., Nucl. Phys. A 627, <strong>11</strong>9 (1997).<br />

[2] C. Mazzocchi et al., submitted to Phys. Lett. B.<br />

HK 3.7 Mon 18:30 B<br />

Simple Parametrization of neutron separation energies in terms<br />

of the neutron to proton ratio N/Z ∗ — •K. Vogt, T. Hartmann,<br />

and A. Zilges — Institut für Kernphysik, Technische Universität Darmstadt,<br />

D-64289 Darmstadt, Germany<br />

It is shown that single- and two-nucleon separation energies can be<br />

parametrized in a new way using the neutron to proton ratio N/Z and<br />

the mass number A. Very simple empirical formulas have been achieved<br />

using a least squares fit to all available experimental data [1]. It is demonstrated<br />

that the observed N/Z dependence can be derived from the Fermi<br />

Gas model. For an estimate of the usefulness of these formulas, the resulting<br />

neutron separation energies are compared to results from several<br />

mass formulas currently in use [2,3]. As an outlook, possible practical<br />

applications are discussed.<br />

∗ supported by the DFG (contract Zi 510/2-1 and FOR 272/2-1).<br />

[1]K.Vogt,T.Hartmann,A.Zilges,Phys.Lett.B517 (2001)<br />

[2] P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data<br />

Nucl. Data Tables, 59, 185 (1995)<br />

[3] F.Tondeur,S.Goriely,J.M.Pearson,andM.Onsi,Phys. Rev. C<br />

62, 024308 (2000)<br />

HK 3.8 Mon 18:45 B<br />

Calculated groundstate properties of Er-isotopes in comparison<br />

with messured 2 + -states — •Thomas Cornelius 1 , M. Bender 2 ,<br />

T. Bürvenich 1 , A. Sulaksono 1 , P. Fleischer 3 , S . S chramm 4 ,<br />

J. A. Maruhn 1 , P.–G. Reinhard 3 , J. H. Hamilton 5 , and W.<br />

Greiner 1 — 1 Institut für Theoretische Physik, Universität Frankfurt am<br />

Main — 2 Service de Physique Nucléaire Théorique, Université Librede<br />

Bruxelles — 3 Institut für Theoretische Physik II, Universität Erlangen-<br />

Nürnberg — 4 Nuclear Theory Group, Argonne National Laboratory —<br />

5 Department of Physics, Vanderbilt University, Nashville<br />

Self-consistent mean-field models are nowadays well developed and provide<br />

a pertinent picture of nuclear properties throughout the whole mass<br />

table. We consider two different models, the Skyrme-Hartree-Fock approach<br />

(SHF) and the relativistic mean-field model (RMF). In our former<br />

investigations deformed calculations appear to be important for some observables<br />

like the 2-proton-shell-gap [1].<br />

In our talk we want to show a possible correlation of the lowest, exper-


Nuclear Physics <strong>Monday</strong><br />

imental measured 2 + -state for Er-isotopes and their calculated deformed<br />

groundstate properties. The investigation in this region is of special interest<br />

since the measured data do not show the results that are naivly<br />

expected.<br />

HK4 Nuclear and Particle Astrophysics I<br />

Supported by the BMBF, GSI, DFG.<br />

[1] M. Bender, T. Cornelius, G. A. Lalazissis, J. A. Maruhn, W.<br />

Nazarewicz und P.–G. Reinhard , nucl-th/0<strong>11</strong>0057 (2001), accepted for<br />

publication in Eur. Phys. J. A<br />

Time: <strong>Monday</strong> 16:15–19:00 Room: C<br />

Group Report HK 4.1 Mon 16:15 C<br />

The Physics of the Knee in the Cosmic-Ray Spectrum – Recent<br />

Results from KASCADE – — •Karl-Heinz Kampert for<br />

the KASCADE collaboration — Institut für Experimentelle Kernphysik,<br />

University of Karlsruhe and Forschungzzentrum Karlsruhe<br />

An update on measurements of cosmic rays in the energy range around<br />

10 15 eV is presented. Emphasis is placed on recent KASCADE data and<br />

on progress in air shower simulations using the CORSIKA package. High<br />

energy hadrons observed in the KASCADE calorimeter exhibit a distinct<br />

sensitivity to details in the modelling of high-energy hadronic interactions,<br />

particularly to the inelastic p-Air cross section and to diffractive<br />

dissociation. Thus, the experimental data can be used to constrain models<br />

employed in EASsimulations. Electron and muon shower sizes, on<br />

the other hand, are well suited to extract the energy and mass of the<br />

primary particles. Applying unfolding methods to their size spectra and<br />

adopting a model of high energy hadronic interactions, energy distributions<br />

of 4 mass groups are reconstructed in the energy range between 10 15<br />

and 10 17 eV. The preliminary energy spectra show a knee-like structure<br />

in each of these distributions. Their position suggests a scaling according<br />

to the rigidity of the primary particle. Astrophysical implications of this<br />

important finding will be discussed.<br />

Group Report HK 4.2 Mon 16:45 C<br />

KATRIN a next generation neutrino mass experiment —<br />

•Jochen Bonn for the KATRIN collaboration — B: Institut für<br />

Physik Universität Mainz<br />

Neutrino masses are of crucial importance for nuclear and particle<br />

physics as well as for cosmology. Our present knowledge is based on<br />

neutrino oscillation experiments and on the investigation of weak decays.<br />

The convincing evidence for neutrino oscillations found in the detection<br />

of solar and atmospheric neutrinos are a clear indication for differences<br />

in the squares of the neutrino masses but they do not allow to determine<br />

the masses themselves. To set the mass scale, direct mass measurements<br />

like e.g. the investigation of tritium β-decay are needed. The sensitivity<br />

limit of the presently running experiments in Mainz and Troitsk of<br />

about 2 eV/c 2 are not sufficient to distinguish between alternative theoretical<br />

models asking for very light neutrinos or degenerated neutrinos<br />

with cosmologically relevant masses up to about 1 eV/c 2 .<br />

The new KArlsruhe TRItium Neutrino mass experiment, KATRIN is<br />

presently designed and experiments in preparation of KATRIN are carried<br />

out. The sensitivity limit of KATRIN shall be in the sub eV range.<br />

The results of the present neutrino mass experiments will be briefly reported<br />

and the status of KATRIN will be discussed.<br />

Experiments in preparation of KATRIN are sponsored by BMBF under<br />

contract Nr. 05CK1UM1/5 and 05CK1VK1/7.<br />

Group Report HK 4.3 Mon 17:15 C<br />

A new precision measurement of the electric dipole moment<br />

of the neutron — •Reinhold Henneck for the SUNS colaboration<br />

collaboration — Paul-Scherrer-Institut, CH-5232 Villigen, Schweiz<br />

At PSI we are presently setting up a new source for ultracold neutrons<br />

(UCN) which will deliver UCN densities in excess of 1000 UCN/cm 3 .This<br />

improvement of about 2 orders of magnitude over existing facilities will<br />

open new prospects for studies of fundamental properties of the neutron<br />

and its decay. As a first experiment we intend to improve the sensitivity<br />

in the measurement of the neutron electric dipole moment (EDM) to<br />

about 5 · 10 −28 e·cm. At this level Supersymmetry models predict a finite<br />

EDM value. The EDM spectrometer employs the conventional Ramsey<br />

method, but makes use of a system of 8 HV chambers and 5 chambers<br />

without HV, which will reduce the influence of systematic effects due to<br />

magnetic problems and leakage currents considerably.We shall discuss the<br />

principle of the experiment, the expected statistical uncertainty, systematic<br />

effects as well as details of the most important parts. In particular we<br />

shall focus on the problems which are connected with the magnetic field<br />

and which are being investigated in a separate Magnetic Test Experiment<br />

now.<br />

HK 4.4 Mon 17:45 C<br />

Final results of the KARMEN experiment on the search for<br />

¯νµ → ¯νe oscillations — •Markus Steidl for the KARMEN collaboration<br />

— Forschungszentrum Karlsruhe, Institut für Kernphysik<br />

The final results from the KARMEN2 experiment in its search for<br />

¯νµ → ¯νe oscillation are presented. The KARMEN2 experiment has been<br />

performed from 1997 until 2001 at the spallation neutron source ISIS of<br />

the Rutherford Laboratorium (UK). Beamstop Neutrinos νe,νµ und ¯νµ<br />

with energies up to 52 MeV from the π + –µ + decay chain are used for the<br />

search of neutrino oscillations. The very low ISIS beam contamination<br />

with ¯νe leads to a high sensitivity in the appearance channel ¯νµ → ¯νe .<br />

Events induced by ¯νe are detected in the 56 t liquid scintillator KAR-<br />

MEN detector via the p (¯νe ,e + ) n reaction. As the KARMEN2 search<br />

yields clearly no hints for the presence of an oscillation signal, stringent<br />

limits on the oscillation parameters sin2 (2θ)and∆m2are set. These final<br />

KARMEN2 results are then combined with the final results of the LSND<br />

experiment, which claims observed evidence in this oscillation channel.<br />

The combined analysis allows the investigation of the statistical compatibility<br />

of the two experiments and the construction of a combined<br />

confidence interval on the allowed oscillation parameters sin2 (2θ) and<br />

∆m2 .<br />

HK 4.5 Mon 18:00 C<br />

Neutrino-nucleon scattering rate in the relativistic random<br />

phase approximation — •Lysiane Mornas1 and Armando Pérez2 — 1Departamento de Física, Universidad de Oviedo, E-33007 Oviedo<br />

(Asturias), Spain — 2Departamento de Física Teórica, Universidad de<br />

Valencia, E-46100 Burjassot (Valencia), Spain<br />

We present a calculation of the neutrino-nucleon scattering cross section<br />

which takes into account the nuclear correlations in the relativistic<br />

random phase approximation. Our approach is based on a quantum<br />

hadrodynamics model with exchange of σ, ω, π, ρ and δ mesons. In<br />

view of applications to neutrino transport in the final stages of supernova<br />

explosion and protoneutron star cooling, we study the evolution<br />

of the neutrino mean free path as a function of density, proton-neutron<br />

asymmetry and temperature.<br />

Special attention was paid to the issues of renormalization of the Dirac<br />

sea, residual interactions in the tensor channel, coupling to the delta meson<br />

and meson mixing. In contrast with the results of other authors<br />

[1,2], it is found that RPA corrections with respect to the mean field<br />

approximation amount to only 10% to 15% at high density [3].<br />

[1]S.Reddy,M.Prakash,J.M.LattimerandJ.Pons,Phys. Rev. C59<br />

(1999) 2888.<br />

[2]S.YamadaandH.Toki,Phys.Rev.C61 (2000) 015803.<br />

[3] L. Mornas and A. Pérez, nucl-th/0106058 subm. to Eur. Phys. J. A<br />

HK 4.6 Mon 18:15 C<br />

Results of the 2001 measurements of the Mainz neutrino<br />

mass experiment — •Christine Kraus, Jochen Bonn, Beate<br />

Bornschein, Lutz Bornschein, Fernando Conda, Björn<br />

Flatt, Beatrix Müller, Ernst Wilhelm Otten, Jean-Pierre<br />

Schall, Thomas Thümmler, and Christian Weinheimer —<br />

Institut für Physik, Johannes Gutenberg Universität Mainz, 55099<br />

Mainz<br />

The Mainz neutrino mass experiment investigates the endpoint region<br />

of the tritium β decay spectrum to determine the mass of the electron antineutrino.<br />

The principle of the Mainz spectrometer, Magnetic Adiabatic<br />

Collimation followed by a retarding Electrostatic Filter (MAC-E-Filter),<br />

combines both a high resolution and a large acceptance. After an optimal<br />

preparation of the apparatus, ≈ 2 month of data were taken. The data<br />

fit good together with the results of 98/99. The results of the analysis


Nuclear Physics <strong>Monday</strong><br />

will be presented for the data of 2001 in combination with the 98/99<br />

measurements.<br />

Work sponsored by BMBF: FKZ 06Mz866I/5.<br />

HK 4.7 Mon 18:30 C<br />

Superfluidity in Nuclear Matter — •Jan Kuckei and Herbert<br />

Müther — Institut f¨r Theoretische Physik, Universität Tübingen<br />

Superfluidity plays an important role in the physics of nuclear matter.<br />

It is paramount for several properties of neutron stars, such as their<br />

cooling mechanism and certain dynamical features.<br />

We present calculations of the superfluid pairing gap for isospin T=0<br />

and isospin T=1 pairing. The sensitivity of the pairing correlations on<br />

the nucleon-nucleon interaction as well as the determination of the singleparticle<br />

spectra are discussed in detail. For asymmetric nuclear matter<br />

HK5 Electromagnetic and Hadronic Probes I<br />

we observe proton and neutron pariring with a total momentum different<br />

from zero.<br />

HK 4.8 Mon 18:45 C<br />

COBRA - Search for Double Beta Decays using CdTe Detectors<br />

— •Henning Kiel 1 , Kai Zuber 1 , Yorck Ramachers 2 ,andDaniel<br />

Muenstermann 1 — 1 Lehrstuhl fuer Experimentelle Physik IV, Universitaet<br />

Dortmund — 2 Nuclear and Particle Physics Laboratory, University<br />

of Oxford<br />

The physics potential of CdTe semiconductor detectors for double beta<br />

and rare decay searches is explored.<br />

The principle layout of the planned COBRA experiment is presented.<br />

Finally first results of measurements done with the current test setup<br />

and the feasibility of the experiment are shown.<br />

Time: <strong>Monday</strong> 16:15–19:00 Room: D<br />

Group Report HK 5.1 Mon 16:15 D<br />

Study of the meson production in the 1 GeV/c 2 mass range —<br />

•Pawe̷l Moskal for the COSY-<strong>11</strong> collaboration — Institut für Kernphysik,<br />

Forschungszentrum Jülich, Germany — Nuclear Physics Institute,<br />

Jagellonian University, Cracow, Poland<br />

A study of the 1 GeV/c 2 mass range is motivated by the continuing discussion<br />

on the nature of the scalar resonances f0(980) and a0(980), which<br />

have been interpreted as exotic four quark objects[1], conventional qq<br />

states[2] or molecular like KK bound state[3]. Utilizing the missing mass<br />

technique we investigated the pp → ppX and pp → ppK + X − reactions<br />

by scanning beam energies in the range permitting to create a mass close<br />

to that of the f0 and a0 resonances. Experiments have been carried out<br />

at the COSY–<strong>11</strong> facility[4] installed at the cooler synchrotron COSY[5].<br />

In the presentation the notion of the close to threshold total cross section<br />

for broad resonances will be introduced, and a trial of its estimation<br />

in case of f0(980) and a0(980) mesons excitations will be presented and<br />

critically discussed.<br />

[1] R. Jaffe, Phys. Rev. D15(1997) 267.<br />

[2] D. Morgan, M. R. Pennington, Phys. Rev. D48(1993) <strong>11</strong>85.<br />

[3]J.Weinstein,N.Isgur,Phys.Rev.D41(1990) 2236.<br />

[4] S. Brauksiepe et al., Nucl. Instr. & Meth. A 376 (1996) 397.<br />

[5] D. Prasuhn et al., Nucl. Instr. & Meth. A 441 (2000) 167.<br />

Group Report HK 5.2 Mon 16:45 D<br />

Recent results from the EDDA experiment at COSY — •Oleg<br />

Eyser for the EDDA collaboration — Institut für Experimentalphysik,<br />

Universität Hamburg<br />

The EDDA experiment ist dedicated to the measurement of excitation<br />

functions for various observables in elastic proton proton scattering. The<br />

detector consists of two concentric double layers of scintillators that cover<br />

over 80% of the solid angle for momenta ranging from 0.8 to 3.3 GeV/c.<br />

EDDA, an internal experiment at COSY, makes use of a hydrogen<br />

atomic beam target and the recirculating COSY proton beam. While<br />

the polarization in COSY is limited to the y-direction normal to the<br />

accelerator plane, the polarization of the target protons can be aligned<br />

arbitralily in space, namely along the x, y, and z axis. A cyclic combination<br />

of different polarizations makes three spin correlation coefficients<br />

accessible: ASS, ANN,andASL.<br />

After completion of the excitation functions for the analyzing power<br />

AN ([1]), several energies have been scanned with high accuracy. Recent<br />

results for the three spin correlation coefficients will be presented in this<br />

talk and will be compared to existing und accordingly updated phase<br />

shift anlyses.<br />

This work is supported by the BMBF and the FZ Jülich.<br />

[1] M. Altmeier et al., Phys. Rev. Lett. 85, 1819 (2000)<br />

HK 5.3 Mon 17:15 D<br />

LIFETIME OF THE Λ–HYPERON BOUND IN HEAVY HY-<br />

PERNUCLEI — SUMMARY OF THE COSY–13 RESULTS<br />

— •Pawel Kulessa for the COSY–13 collaboration — Institut für<br />

Kernphysik, Forschungszentrum Jülich, Germany — H. Niewodniczański<br />

Institute of Nuclear Physics, Poland<br />

The nonmesonic decay of Λ–hyperons has been investigated by the<br />

observation of delayed fission of heavy hypernuclei produced in pro-<br />

ton – Au, Bi and U collisions at COSY-Jülich. The lifetime of heavy<br />

hypernuclei obtained by the COSY–13 collaboration τΛ = (138 ±<br />

6(stat.) ± 17(syst.)) ps for p+U, (161±7(stat.)±14(syst.)) ps for p+Bi<br />

and (130±13(stat.)±15(syst.)) ps for p+Au are the most accurate result<br />

for proton and antiproton induced collisions on these targets so far. This<br />

result together gives an average value for the lifetime of heavy hypernuclei<br />

with masses A>180: τΛ = (145 ± <strong>11</strong>)ps. By comparing the lifetimes<br />

of light and heavy hypernuclei we found – on the confidence level of 0.98<br />

– a violation of the phenomenological ∆I=1/2 rule known from the the<br />

weak mesonic decays of strange particles.<br />

HK 5.4 Mon 17:30 D<br />

First results of π 0 − η mixing angle measurement — P.<br />

Hawranek 1 , H. Machner 2 , •P. Hawranek 1 , and H. Machner<br />

2 for the GEM collaboration and the GEM collaboration —<br />

1 Jagellonian University, Cracow, Poland — 2 Institut für Kernphysik,<br />

Forschungszentrum Jülich, Jülich, Germany<br />

Isospin symmetry may be broken - except for trivia reasons like<br />

Coulomb effects - via π 0 − η mixing. The mixing angle is related to<br />

the difference of the squared up and down quark masses. In order to<br />

measure this mixing angle we have studied the ratio of the two isospin<br />

related reactions pd → 3 Heπ 0 and pd → 3 Hπ + close to the η-threshold.<br />

A simple model Ref. 1 predicts the effect to be largest at large momentum<br />

transfer. The reactions have been measured at five different<br />

momenta in the vicinity of the η-threshold. Both recoils were measured<br />

simultaneously with an unusual magnetic spectrograph having two focal<br />

planes. The experiment will be presented as well as first data.<br />

[1] A. Magiera and H. Machner, Nucl. Phys. A674 (2000) 515<br />

HK 5.5 Mon 17:45 D<br />

Energy dependence of the Λ/Σ0 cross section ratio — •Piotr<br />

Kowina for the COSY–<strong>11</strong> collaboration — Research Centre Jülich, Germany<br />

— University of Silesia, Katowice, Poland<br />

Measurements of the near threshold Λ and Σ0 production via the<br />

pp → pK + Λ/Σ0 reaction at COSY–<strong>11</strong> [1] showed a strong discrepancy<br />

compared to high energy data [2]. Close to threshold at excess energies<br />

ɛ ≤ 13 MeV the Λ/Σ0 cross section ratio has been determined to be 28 +6<br />

−9<br />

which exceeds the value at high excess energies (ɛ ≥ 150 MeV) of about<br />

2.5 by an order of magnitude. In order to get a further understanding<br />

additional data have been taken between 13 MeV and 150 MeV excess<br />

energy. The final analysis will be presented and will be discussed in<br />

view of different interpretations. Calculations within a meson exchange<br />

model [3] taking into account pion and kaon exchange reproduce the<br />

measured ratio by a destructive interference of π and K exchange amplitudes.<br />

Within a factor of two also other models [4,5] describe the data<br />

by including heavier exchange mesons and/or nucleon resonances.<br />

[1] S. Sewerin, G. Schepers et al., Phys. Rev. Lett. 83(1999) 682.<br />

[2] V. Flaminio et al., Compilation of Cross sections,<br />

CERN HERA 84 01 (1984).<br />

[3] A. Gasparian et al., Phys. Lett.B 480 (2000) 273.<br />

[4] A. Sibirtsev et al., e-Print Archive nucl-th/0004022 (2000).<br />

[5] R. Shyam, G. Penner, U. Mosel, Phys.Rev.C 63 (2001) 022202.


Nuclear Physics <strong>Monday</strong><br />

HK 5.6 Mon 18:00 D<br />

Erste Messung der Analysierstärke Ay in der Reaktion<br />

�pp → ppη am Experiment COSY-<strong>11</strong> — •Peter Winter für die<br />

COSY-<strong>11</strong>-Kollaboration — Institut für Kernphysik, Forschungszentrum<br />

Jülich, 52425 Jülich<br />

Unter Verwendung der am Detektorsystem COSY-<strong>11</strong> gemessenen Daten<br />

in der Reaktion �pp → ppη werden erste Ergebnisse der Analysierstärke<br />

bei einem Strahlimpuls pStrahl =2.096 GeV/c – entsprechend<br />

einer Überschußenergie von Q = 40 MeV – vorgestellt [1]. Eine Selektion<br />

der ppη-Endzustände erfolgt mittels kinematisch vollständiger Rekonstruktion<br />

dieses Drei-Teilchen-Systems. Die Bestimmung der relativen<br />

Luminosität beider Spineinstellungen beruht auf der Messung der<br />

elastischen Proton-Proton-Streuung. Die zeitlich gemittelte Strahlpolarisation<br />

wird durch simultane Messung der elastischen pp-Streuung am<br />

EDDA-Experiment [2] bestimmt. Eine Extraktion einzelner Interferenzterme<br />

von Partialwellenamplituden wird durchgeführt und ermöglicht<br />

einen Vergleich mit theoretischen Vorhersagen.<br />

[1] P. Winter, Erste Messung der Analysierstärke Ay in der Reaktion<br />

�pp → ppη am Experiment COSY-<strong>11</strong>, Diplomarbeit, Rheinische<br />

Friedrich-Wilhelms-Universität Bonn, 2001.<br />

[2] M. Altmeier et al., Phys. Rev. Lett., 85 (2000) 1819 und F. Bauer,<br />

private Mitteilung.<br />

HK 5.7 Mon 18:15 D<br />

Two Kaon Production at the φ - Meson Threshold with the<br />

MOMO-Experiment at COSY — •R. Jahn 1 , F. Bellemann 1 ,<br />

A. Berg 1 , J. Bisplinghoff 1 , G. Bohlscheid 1 , J. Ernst 1 , F. Hinterberger<br />

1 , R. Ibald 1 , L. Jarczyk 2 , R. Joosten 1 , A. Kozela 3 ,<br />

H. Machner 4 , A. Magiera 2 , R. Maschuw 1 , T. Mayer-Kuckuk 1 ,<br />

G. Mertler 1 , J. Munkel 1 , P.v. Rossen 4 , H. Schnitker 1 , J.<br />

Smyrski 2 , A. Strzalkowski 2 ,andR. Tölle 4 for the MOMO collaboration<br />

— 1 Institut für Strahlen- und Kernphysik, Universität Bonn<br />

— 2 Institute of Physics, Jagellonian University Cracow, Poland —<br />

3 Institute of Nuclear Physics, Cracow, Poland — 4 Institut für Kernphysik,<br />

Forschungszentrum Jülich<br />

The reaction pd → 3 HeK + K − was measured kinematically complete at<br />

the COSY synchroton at beam momenta near 2.6 GeV/c corresponding<br />

to c.m. energies above the K + K − threshold of 35 MeV, 40 MeV and 56<br />

MeV. In total, some 6000 kaon pairs could be uniquely identified. The<br />

KK mass spectra are consistent with phase space topped by a clear signal<br />

of the φ meson, even at 35 MeV, which corresponds to just 2.8 MeV<br />

avbove the φ threshold. In contrast to the MOMO two pion production<br />

data measured with the reaction pd → 3 Heπ + π − (Phys. Rev. C60<br />

(1999) 061002) the two kaon angular distributions indicate pure s-wave<br />

production. The obtained cross sections, ranging into the sub-nanobarn<br />

domain, will be presented and discussed.<br />

Supported by the BMBF.<br />

HK 5.8 Mon 18:30 D<br />

Hyperon Production in the Reaction Channel pp → K 0 Σ + p at<br />

COSY-TOF ∗ — •M. Wagner, W. Eyrich, M. Fritsch, F. Stinzing,<br />

W. Schroeder und S.Wirthfür die COSY-TOF-Kollaboration<br />

— Physikalisches Institut, Universität Erlangen-Nürnberg<br />

HK6 Heavy Ions I<br />

In the framework of the exclusive hyperon measurement program in<br />

proton-proton collisions at the COSY-TOF experiment the reaction channel<br />

pp → K 0 Σ + p has been measured at three beam momenta in the<br />

threshold region: 2.85 GeV/c, 2.95 GeV/c and 3.2 GeV/c. The combination<br />

of the complex start detector system, which is designed and<br />

optimized for the reconstruction of hyperon reactions, and the stop detector<br />

arrangement ensure full phase space coverage.<br />

The data of the lowest beam momentum are based on a beam time in<br />

1998 and have been taken using a short version of the stop detector. The<br />

beam momenta of 2.95 GeV/c and 3.2 GeV/c have been measured with<br />

an extended stop detector setup including both the barrel and the ring<br />

hodoscope in the endcap especially improving the efficiency for the Σ +<br />

channel.<br />

In the first part of the talk analysis methods - in particular the background<br />

suppression - will be presented. In the second part for the first<br />

time in the threshold region differential data including Dalitz analysis<br />

are presented. ∗ supported by BMBF and FZ Jülich<br />

HK 5.9 Mon 18:45 D<br />

The Deuteron Break-up Experiment at ANKE/COSY — •S.<br />

Dymov 1,2 , R. Engels 3 , P. Jansen 4 , A. Kacharava 5 , F. Klehr 4 ,<br />

H. Kleines 6 , V. Komarov 2 , V. Koptev 7 , P. Kravtsov 7 , A. Kulikov<br />

2 , V. Kurbatov 2 , B. Lorentz 1 , G. Macharashvili 2 , M.<br />

Mikirtytchiants 1,7 , M. Nekipelov 1,7 , V. Nelyubin 7 , D. Prasuhn<br />

1 , A. Petrus 2 , F. Rathmann 1 , J. Sarkadi 6 , H. Seyfarth 1 , H.<br />

Paetz gen. Schieck 3 , E. Steffens 5 , H. Ströher 1 , Yu. Uzikov 2 ,<br />

A. Vassiliev 7 , S.Yaschenko 5 , B. Zalikhanov 2 ,andK. Zwoll 6<br />

for the ANKE collaboration — 1 IKP, FZJ, Germany — 2 LNP, JINR<br />

Dubna, Russia — 3 IKP, Universität zu Köln, Germany — 4 ZAT, FZJ,<br />

Germany — 5 PI II, Universität Erlangen-Nürnberg, Germany — 6 ZEL,<br />

FZJ, Germany — 7 HEPD, PNPI Gatchina, Russia<br />

For nucleon-nucleon interaction studies with polarized beams and targets<br />

at COSY/Jülich our group is currently developing a polarized internal<br />

storage-cell gas target for the magnetic spectrometer ANKE. The<br />

polarized atomic beam source is already performing well. Since nuclear<br />

reactions involving polarized deuterons have not been measured sufficiently<br />

well in the COSY energy range, our group is setting up a Lamb-<br />

Shift target polarimeter. The implementation of the internal target into<br />

the ring constitutes a major technological enterprise. First tests with<br />

different apertures at the ANKE target location have been carried out.<br />

Last year a first measurement of the cross section of the deuteron breakup<br />

reaction pd → ppn in collinear kinematics with detection of a proton<br />

pair near 0 ◦ was carried out. For the first time proton pairs from the<br />

break-up reaction at relative energy Tpp < 3 MeV have been detected.<br />

Time: <strong>Monday</strong> 16:15–19:00 Room: E<br />

Group Report HK 6.1 Mon 16:15 E<br />

Exploring Nuclear Matter at Extreme Temperatures and Densities:<br />

Results from the PHENIX Experiment at RHIC — •Klaus<br />

Reygers for the PHENIX collaboration — Institut für Kernphysik,<br />

Westfälische Wilhelms-Universität, Münster, Germany<br />

The Relativistic Heavy Ion Collider (RHIC) in Brookhaven/USA became<br />

operational in the summer of 2000. This machine collides gold ions<br />

at energies of up to √ snn = 200 GeV. The primary objective of the experiments<br />

at RHIC is to study a form of nuclear matter in which quarks and<br />

gluons are no longer confined within hadrons. The PHENIX experiment<br />

consists of a multitude of specialized detector systems and is therefore<br />

capable of measuring a variety of observables. A selection of PHENIX<br />

results will be discussed in this talk. Among the presented results will be<br />

the centrality dependence of identified hadron spectra and data on the<br />

elliptic flow pattern of particle production. Furthermore hadron production<br />

at large transverse momenta will be discussed. A striking difference<br />

compared to results at lower energies is found - an observation that belongs<br />

to the most important results of the first RHIC beamtime.<br />

Group Report HK 6.2 Mon 16:45 E<br />

Excitation Function of Λ and charged KProduction at<br />

CERN-SPS Energies ∗ — •André Mischke 1,2 , L. Betev 2 ,<br />

A. Billmeier 1,2 , C. Blume 1 , R. Bramm 2 , P. Buncic 2 , P.<br />

Dinkelacker 2 , M. Ga´zdzicki 2 , T. Kollegger 2 , I. Kraus 1,2 ,<br />

C. Markert 1,2 , R. Renfordt 2 , A. Sandoval 1,2 , R. Stock 2 , H.<br />

Ströbele 1,2 , D. Vranic 2 , A. Wetzlar 2 , and J. Zaranek 2 —<br />

1 GSI, Planckstrasse 1, D-64291 Darmstadt — 2 Institut f. Kernphysik,<br />

August Eulerstr.6, D-60486 Frankfurt<br />

Within the framework of the NA49 energy scan program, Λ hyperons<br />

and charged Kaons were measured in central 208 Pb+ 208 Pb collisions<br />

at 40, 80 and 158 A·GeV with a large acceptance hadron spectrometer<br />

over a large range of rapidity and transverse momentum. Neutral


Nuclear Physics <strong>Monday</strong><br />

strange hadrons Λ, ¯ ΛandK 0 s are identified by reconstructing their decay<br />

topologies. The charged decay products as well as the charged Kaons<br />

were measured with 4 Time Projection Chambers (TPCs), two of them<br />

are located inside 2 large dipole magnets, the other two downstream of<br />

the magnets symmetrically to the beam line. Transverse mass spectra<br />

and rapidity distributions for Λ and charged Kaons will be shown for<br />

all three energies. The multiplicities at mid-rapidity and the total yields<br />

will be studied as a function of collision energy together with AGSand<br />

RHIC measurements and compared with model predictions. The ratio<br />

Λ/π as well as K + /π + shows a non-monotonic energy dependence and<br />

has a maximum between top AGSand 40 A·GeV.<br />

∗ Supported by BMBF und GSI.<br />

Group Report HK 6.3 Mon 17:15 E<br />

Recent Results from the WA98-Experiment — •Henner<br />

Büsching for the WA98 collaboration — University of Münster,<br />

Münster, Germany<br />

Recent results from the WA98 experiment with p and Pb induced reactions<br />

at 158 AGeV are presented. The CERN-SPS experiment WA98<br />

investigates the properties of hot, dense matter with the main focus on<br />

the measurement of photons and neutral mesons with the leadglass detector<br />

LEDA.<br />

Azimuthal γ-γ correlations at high pT which are influenced by jet-like<br />

structures and elliptic flow have been studied. An influence of energy loss<br />

effects (jet-quenching) should be evident in a characteristic modification<br />

of the correlation. A clear indication of back-to-back correlations can be<br />

seen with strong dependence on the pT of the photons and the size of the<br />

system.<br />

Results on transverse mass spectra of neutral pions measured at central<br />

rapidity are presented for impact parameter selected Pb+Pb collisions.<br />

In going from peripheral to medium central collisions there is a nuclear<br />

enhancement increasing with transverse mass similar to the Cronin effect,<br />

while for very central collisions this enhancement appears to be weaker<br />

than expected.<br />

Finally, results on event-by-event fluctuations of average transverse<br />

momentum of photons are presented. The magnitude of those fluctuations<br />

can indicate the equilibration level attained in the Pb+Pb collisions.<br />

HK 6.4 Mon 17:45 E<br />

Two particle correlations in STAR — •Dominik Flierl, Clemens<br />

Adler, Jens Berger, Thomas Dietel, Sören Lange, Reinhard<br />

Stock, andChristof Struck for the STAR collaboration — Universität<br />

Frankfurt<br />

The STAR detector system at RHIC is built to detect a large fraction<br />

of the hadrons produced in collisions of ultra relativistic heavy ions. The<br />

large TPC as the central detector of STAR identifies species and momentum<br />

of emitted particles. Most of the detected particles are pions, but a<br />

higher level trigger enables STAR also to search for rare particles. Those<br />

probes carry information about the early stages of the collision, but the<br />

expansion of highly compressed nuclear matter is best observed with the<br />

most abundant species : pions. Collective flow and spatial conditions<br />

at thermal freeze out when the pions leave the interaction volume are<br />

accessible by two pion correlations. We will present results from charged<br />

pion HBT studies at √ sNN = 130GeV.<br />

Supported by BMBF and GSI.<br />

HK 6.5 Mon 18:00 E<br />

Directed and Elliptical Flow Measured with the Forward-TPCs<br />

of the STAR Experiment — •Markus Oldenburg, Volker<br />

Eckardt, Andreas Gärtner, Patrizia Krok, Gaspare Lo<br />

Curto, Maria Mora, Jörn Putschke, Norbert Schmitz,<br />

Andreas Schüttauf, Frank Simon, Janet Seyboth, Peter<br />

Seyboth, and Michael Vidal — Max-Planck-Institut für Physik,<br />

Föhringer Ring 6, 80805 München, Germany<br />

The STAR detector at the Relativistic Heavy Ion Collider (RHIC) measures<br />

the hadronic observables of Au+Au collisions at √ sNN = 200 GeV<br />

per nucleon pair. The ’Max-Planck-Institut für Physik’ in Munich contributes<br />

two Forward-TPCs which expand the overall acceptance of<br />

STAR into the pseudorapidity region 2.5 < |η| < 4.<br />

Hydrodynamical models predict that in peripheral heavy-ion collisions<br />

the initial spatial anisotropy of the reaction zone is transformed into an<br />

anisotropy in the momentum distribution of the produced particles. This<br />

is caused by the pressure gradient generated at a very early stage of the<br />

collision. Anisotropic flow measures these azimuthal anisotropies by a<br />

Fourier expansion of the azimuthal angular distribution of the detected<br />

hadrons.<br />

Due to their acceptance coverage the FTPCs are suited to measure not<br />

only elliptical flow v2 (2 nd order Fourier coefficient) as the TPC already<br />

did in the region |η| < 1.5 but also directed flow v1 (1 st order Fourier<br />

coefficient). Therefore these detectors allow the determination of the (up<br />

to now) unknown sign of v2. In this talk a feasibility study and first<br />

results of the flow measurement with the FTPCs will be presented.<br />

HK 6.6 Mon 18:15 E<br />

Measurement of the Transverse Energy Distribution at Midrapidity<br />

in √ sNN = 130 GeV Au + Au Collisions by the PHENIX-<br />

Experiment at RHIC — •Christian Klein-Bösing —University<br />

of Münster, Germany<br />

The Relativistic Heavy Ion Collider (RHIC) in Brookhaven/USA<br />

started operation in the summer of 2000. During the first running period<br />

of RHIC gold-gold collisions with energies up to √ sNN = 130 GeV has<br />

been created. The PHENIX detector at RHIC is able to measure the<br />

properties of nuclear matter at the highest temperatures and energy<br />

densities produced in these collisions.<br />

To allow an estimation of the energy density the measurement of energy<br />

produced transverse to the beam direction provides valuable information,<br />

which can be compared to predictions of a phase transition at<br />

energy densities of about one GeV/fm 3 . The centrality dependence of<br />

the transverse energy is compared to results at lower energies from other<br />

experiments.<br />

HK 6.7 Mon 18:30 E<br />

Neutral Pion Spectra in Au+Au collisions at √ s NN = 130 GeV<br />

— •Stefan Bathe for the PHENIX collaboration — University of<br />

Münster, Germany<br />

Transverse momentum spectra for neutral pions in the range 1 GeV/c<br />


Nuclear Physics <strong>Monday</strong><br />

HK7 Instrumentation and Applications I<br />

Time: <strong>Monday</strong> 16:15–19:00 Room: F<br />

Group Report HK 7.1 Mon 16:15 F<br />

The source for ultra-cold neutrons at the research neutron facility<br />

FRM-II — •F. Joachim Hartmann, Igor Altarev, Andreas<br />

Frei, Stephan Gröger, Stephan Paul, Gerd Petzoldt,<br />

Wolfgang Schott, Uwe Trinks, andOliver Zimmer —Physik-<br />

Department, Technische Universität München<br />

A source for ultra-cold neutrons (UCN) with solid deuterium is planned<br />

for the new Munich high-flux neutron source FRM-II. Ultra-cold neutrons<br />

have energies below about 250 neV and may be stored in vessels, magnetic<br />

bottles and by gravity. The new source, Mini-D2, will be installed<br />

in beam tube SR-4 of FRM-II. It consists of a so-called converter, about<br />

170 cm 3 of solid deuterium at a temperature of 5 K, and the storage volume,<br />

an evacuated tube of 6 cm diameter and about 8 m length. The<br />

walls of the storage tube will be coated with Be. The converter is located<br />

inside the storage volume very close to the Cold Source of FRM-II.<br />

From model calculations we may expect that in pulsed mode the source<br />

will produce UCN densities of about 10 4 cm −3 , by far more than the<br />

world’s best sources existing up to now. This enhancement in density<br />

will allow to measure important properties of the free neutron like the<br />

electric dipole moment or the lifetime with strongly improved precision.<br />

The layout of the source and the first experiment planned, the magnetic<br />

confinement of UCN, will be presented.<br />

Group Report HK 7.2 Mon 16:45 F<br />

The new, high-intensity ultracold neutron source at PSI —<br />

•Reinhold Henneck for the SUNS collaboration collaboration — Paul-<br />

Scherrer-Institut, CH-5232 Villigen, Schweiz<br />

The new PSI source for ultracold neutrons (UCN) is based on an intense,<br />

pulsed proton beam with a very low duty cycle, a spallation target<br />

of heavy material which is able to stand the high beam load of 2 mA<br />

for several seconds and a large moderator (30 l) of solid deuterium at<br />

about 6 K. Recent experimental studies have revealed a large gain factor<br />

for the production of UCN in solid deuterium from which one expects<br />

UCN densities in excess of 1000 UCN/cm 3 . This improvement of about<br />

2 orders of magnitude over existing facilities will open new prospects for<br />

studies of fundamental properties of the neutron and its decay. As a<br />

first experiment we intend to improve the sensitivity in the measurement<br />

of the neutron electric dipole moment to about 5 · 10 −28 e·cm. We will<br />

discuss the general principle of this new type of source as well as details<br />

of the most important subsystems which are now being developed: (1)<br />

proton target, (2) heavy water moderator/ reflector, (3) solid deuterium<br />

moderator, (4) storage vessel and neutron guides.<br />

Group Report HK 7.3 Mon 17:15 F<br />

First Successful Stopping, Bunching and Trapping of Radioactive<br />

Ions at the Ion Trap Facility SHIPTRAP at GSI Darmstadt<br />

— •W. Quint 1,2,3,4 , D. Ackermann 1 , F. Attallah 1 , H. Backe 2 ,<br />

D. Beck 1 , A. Dretzke 2 , O. Engels 3 , D. Habs 3 , F. Herfurth 4 , F.<br />

Hessberger 1 , S. Hofmann 1 , H.-J. Kluge 1 , W. Lauth 2 , B. Lommel<br />

1 , G. Marx 1 , G. Münzenberg 1 , M. Mukherjee 1 , J. Neumayr 3 ,<br />

S. Rahaman 1 , D. Rodriguez 1 , C. Scheidenberger 1 , M. Sewtz 2 ,<br />

G. Sikler 1 , M. Tarisien 1 , P. Thirolf 3 , V. Varentsov 3 ,andC.<br />

Weber 1 — 1 GSI Darmstadt — 2 Universität Mainz — 3 Universität<br />

München — 4 CERN<br />

SHIPTRAP is an ion trap facility at the separator for heavy-ion reaction<br />

products (SHIP) at GSI. The scientific programme of the SHIP-<br />

TRAP facility comprises mass spectrometry, nuclear spectroscopy, laser<br />

spectroscopy and chemistry of transeinsteinium elements. The SHIP-<br />

TRAP facility consists of a gas cell for stopping and thermalizing highenergy<br />

recoil ions from SHIP, a rf ion guide for extraction of the ions<br />

from the gas cell, a linear rf trap for accumulation and bunching of the<br />

ions, and a Penning trap for isobaric purification. In first on-line tests<br />

we successfully stopped, accumulated and trapped radioactive nuclides<br />

which were produced in fusion reactions of a 40 Ca primary beam with<br />

a cerium target. The radioactive nuclides were extracted from the ion<br />

trap and identified by time-of-flight detection. The total efficiency for<br />

stopping, accumulating and trapping the ions was about 1 %.<br />

HK 7.4 Mon 17:45 F<br />

Ein Multilayer-Detektor zum Nachweis von ultrakalten Neutronen<br />

— •Gerd Petzoldt 1 , Igor Altarev 1 , Stephan Gröger 1 , Erwin<br />

Gutsmiedl 2 , F. Joachim Hartmann 1 , Peter Maier-Komor 1 ,<br />

Stephan Paul 1 , Wolfgang Schott 1 , Uwe Trinks 1 und Oliver<br />

Zimmer 1 — 1 Physik-Department, Technische Universität München —<br />

2 FRM II, Technische Universität München<br />

Es wurde ein Halbleiterdetektor für ultrakalte Neutronen (UCN) entwickelt,<br />

der auf einer Silizium PIN-Diode basiert. Zum Nachweis der<br />

Neutronen wird die Reaktion 6 Li(n,α) 3 H in einer auf den Detektor aufgebrachten<br />

Konverterschicht aus 6 LiF verwendet. Um das optische Potential<br />

der Oberfläche für Neutronen zu verringern, wird das 6 LiF mit einem<br />

Material negativer Streulänge in einer Multilayerstruktur kombiniert; die<br />

resultierende Reflektivität für Neutronen wurde für verschiedene Multilayerstrukturen<br />

mit einem Neutronenoptik-Programm berechnet. Der<br />

Energieverlust der Reaktionsprodukte in den verschiedenen Strukturen<br />

wurde mittels eines Monte-Carlo-Programmes simuliert. Drei Strukturen<br />

wurden hergestellt und in zwei verschiedenen Experimenten am Institut<br />

Laue-Langevin (ILL) in Grenoble, Frankreich, getestet. Die Ergebnisse<br />

werden vorgestellt.<br />

HK 7.5 Mon 18:00 F<br />

Measurements at the Jyväskylä RFQ-cooler— •A. Wilfart 1 , T.<br />

Sieber 1 , O. Kester 1 , D. Habs 1 , A. Nieminen 2 ,andJ. Szerypo 2 —<br />

1 Sektion Physik, LMU München, Am Coulombwall 1, D-85748 Garching<br />

— 2 University of Jyväskylä, PB35 YFL, FIN-40351 JYV ÄSKYLÄ<br />

In order to measure the beam emittance of cooled low energetic ion<br />

beams (30 keV) from the Jyväskylä RFQ-ion-cooler, we designed an emittance<br />

meter for very low intensities and low beam energies by SIMION.<br />

We wanted to examine the dependence of the transmission and the emittance<br />

on the beam intensity (20pA-40nA) injected into the cooler device.<br />

In addition the improvement of the beam emittance due to the cooler<br />

has been studied. Finally the effect of different beam optic elements in<br />

the beam line, e. g. ”einzellenses”and skimmer electrodes on the beam<br />

could be easily measured with the emittance meter. The results of the<br />

measurements and the emittance meter lay-out in hard and software will<br />

be presented.<br />

HK 7.6 Mon 18:15 F<br />

Messung der Ortssensitivität eines 12-fach segmentierten, gekapselten<br />

HPGe-Detektors — •D. Weißhaar, J. Eberth, J. Jolie,<br />

H.G. Thomas, T. Waasem und N. Warr — Institut für Kernphysik,<br />

Universität zu Köln<br />

Segmentierte HPGe-Detektoren ermöglichen den Aufbau kompakter γ-<br />

Spektrometer mit hoher Granularität wie das MINIBALL- Spektrometer<br />

für Messungen am radioaktiven Strahl. Die Granularität ist notwendig<br />

um die Dopplerverbreiterung von γ-Linien bei Experimenten mit hohem<br />

v/c der γ-emittierenden Kerne zu minimieren. Der 12-fach segmentierte<br />

Detektor entspricht dem 6-fach segmentierten MINIBALL-Detektor<br />

mit einer zusätzlichen Quersegmentierung, die den vorderen Bereich vom<br />

hinteren abtrennt. Der Detektor wurde mit einer kollimierten Quelle<br />

abgetastet und die Verbesserung der Ortssensitivität aufgrund der<br />

zusätzlichen Tiefeninformation im Vergleich zum 6-fach segmentierten<br />

MINIBALL-Detektor untersucht.<br />

[1]J.Eberthet al., Prog. Part. Nucl. Phys. 46, 389 (2001).<br />

gefördert durch das BMBF (06OK958)<br />

HK 7.7 Mon 18:30 F<br />

Feasability study of spin correlations in 2 He ( 1 S0) — •J.<br />

Heyse 1 , C. Bäumer 2 , A.M. van den Berg 3 , E.L. Bolster 4 ,<br />

J.A. Brooke 5 , P. Busch 4 , M. Hagemann 1 , M.N. Harakeh 3 ,<br />

M.A. de Huu 3 , C. Polachic 5 , C. Rangacharyulu 5 , and H.J.<br />

Wörtche 3 for the EuroSuperNova collaboration — 1 Vakgroep Subatomaire<br />

en Stralingsfysica, Universiteit Gent, Belgium — 2 Westfälische<br />

Wilhems-Universität Münster — 3 Kernfysisch Versnellerinstituut,<br />

Rijksuniversiteit Groningen, The Netherlands — 4 University of Hull,<br />

United Kingdom — 5 Univeristy of Saskatchewan, Canada<br />

We present results of a feasability study for examining the Einstein-<br />

Podolsky-Rosen type spin correlations of protons in a 1 S0 intermediate<br />

state. A deuteron beam of 170 MeV was extracted from the AGORcyclotron<br />

at KVI, producing protons in a 12 C(d, 2 He) 12 B reaction popu-


Nuclear Physics <strong>Monday</strong><br />

lating the ground state of 12B. The coincident measurement of the proton<br />

momenta and spin-correlations was performed by means of the Big-Bite<br />

Spectrometer and the EuroSuperNova detector. The experiment opts for<br />

a precision test of quantum mechanical predictions versus Bell’s inequalities.<br />

HK 7.8 Mon 18:45 F<br />

Tracking Detectors for Gamma-ray Imaging — •Lucian Mihailescu,<br />

Werner Gast, andRainer Lieder — Forschungszentrum<br />

Jülich, IKP, Jülich<br />

Gamma-ray imaging devices based on the Compton-camera principle<br />

could provide the highest detection efficiency, at least in theory, since<br />

they do not require any kind of collimation or masking. In reality, the<br />

large volume detectors needed for good efficiency, the high granularity<br />

needed for precise localization of the Compton interactions, and the high<br />

HK8 Plenary Session<br />

energy resolution needed for the reconstruction of the scattering angles<br />

made them incompetitive for practical implementation with respect to<br />

other approaches until now. With the advent of a new technical concept,<br />

the gamma-ray tracking detector, this situation may change. The<br />

tracking detector is a large volume high resolution semiconductor detector<br />

with relatively low granularity, but combined with advanced digital<br />

signal processing methods it is able to provide an effective position sensitivity<br />

being two orders of magnitude higher than that given by the<br />

physical granularity. The signal processing employs the WPC (Wavelet<br />

transform - Pattern recognition - Correlation) analysis which decomposes<br />

and extracts multiple interactions occuring in the detector by analyzing<br />

the features of the digitized detector segment signals. In this contribution<br />

we present the relevant criteria for a Compton-camera design based<br />

on tracking detector principles with planar Ge diodes.<br />

Time: Tuesday 08:30–10:30 Room: Plenarsaal<br />

Plenary Talk HK 8.1 Tue 08:30 Plenarsaal<br />

Aspects of Confinement in QCD: The Glue of Strong Interactions<br />

— •Lorenz von Smekal —Universität Erlangen-Nürnberg<br />

In QED, the charge of a particle is of long-range nature. It can exist<br />

because the photon is massless. Localized objects are neutral like atoms.<br />

Without symmetry breaking, or Higgs mechanism, particles carrying the<br />

charges of the gauge group must be non-local objects. With mass gap<br />

such objects cannot exist in QCD, and all hadrons are thus color-neutral.<br />

Here, I present two approaches to study this phenomenon.<br />

Charged states are always possible with suitable boundary conditions<br />

in a finite volume. This allows to study their fate in the thermodynamic<br />

limit from Monte-Carlo simulations on finite lattices. Suggesting the<br />

picture of a dual Meissner effect, the confinement of electric and the<br />

condensation of magnetic charges can be demonstrated in this way. 1<br />

In the covariant continuum formulation, the conditions for confinement<br />

relate to the infrared behavior of gluon and ghost correlations. Confinement<br />

is then encoded in critical infrared exponents. 2<br />

The necessity of fixing a gauge in this formulation is affected by the<br />

Gribov problem. This problem, ways to by-pass it, and implications on<br />

the mass gap and confinement are discussed.<br />

1 Ph. de Forcrand and L. von Smekal, preprint [hep-lat/0107018].<br />

2 R. Alkofer and L. von Smekal, Physics Reports 353/5-6 (2001) 281.<br />

Plenary Talk HK 8.2 Tue 09:00 Plenarsaal<br />

Search for Three-Body Force Effects — •Nasser Kalantar-<br />

Nayestanaki — KVI, Groningen, The Netherlands<br />

Three-body forces are, though small, very important in nature. The<br />

effect of these forces have far-reaching consequences in many fields of<br />

physics. In nuclear physics, a relatively good understanding of most<br />

phenomena has been arrived at by only considering two-nucleon forces.<br />

However, high precision data emerging are revealing the shortcomings of<br />

these forces. In the last few decades, the two-nucleon system has been<br />

thoroughly investigated both experimentally and theoretically. These<br />

studies have resulted in modern potentials which describe the bulk of<br />

the data in a large range of energy. This knowledge can be employed in<br />

the Faddeev framework to calculate scattering observables in three-body<br />

systems. In regions where the effects of Coulomb force are considered<br />

to be small or can be calculated accurately, and energies are low enough<br />

HK9 Poster Session: Theory<br />

to avoid relativistic effects, deviations from experimental data must then<br />

be a signature of effects like three-body force effects. Data such as those<br />

obtained from elastic and inelastic proton-deuteron scattering can thus<br />

provide more information on three-body forces.<br />

Plenary Talk HK 8.3 Tue 09:30 Plenarsaal<br />

Properties of K-Mesons in the Nuclear Medium — •Christian<br />

Sturm — GSI Darmstadt<br />

Experimental data on the production and propagation of kaons and<br />

antikaons in heavy ion collisions at relativistic energies are reviewed with<br />

respect to in-medium effects. The K − /K + ratios measured in nucleusnucleus<br />

collisions are 1 - 2 orders of magnitude larger than in protonproton<br />

collisions. The azimuthal angle distributions of K + mesons indicate<br />

a repulsive kaon-nucleon potential. Microscopic transport calculations<br />

consistently explain both the yields and the emission patterns<br />

of kaons and antikaons assuming that their properties are modified in<br />

dense nuclear matter. The K + production excitation functions measured<br />

in light and heavy collision systems provide evidence for a soft nuclear<br />

equation-of-state.<br />

Plenary Talk HK 8.4 Tue 10:00 Plenarsaal<br />

Pionic 1s States in Heavy Atoms and the Pion-Nucleus Interaction<br />

— •Albrecht Gillitzer — IKP, Forschungszentrum Jülich<br />

In the lowest energy levels negative pions bound to heavy nuclei form<br />

halo-like states whose size is given by nuclear dimensions. The 1s states<br />

are almost exclusively determined by the s-wave part of the interaction,<br />

which is therefore directly accessible by the measurement of pionic binding<br />

energies and widths. The deduced repulsive central potential is significantly<br />

larger than resulting from the free πN interaction which indicates<br />

the presence of nuclear medium effects.<br />

Deeply bound pionic states in heavy atoms are inaccessible in electromagnetic<br />

cascades subsequent to the capture of stopped negative pions,<br />

and can only be populated in direct reactions. In a series of experiments<br />

at the GSI Fragment Separator these states were discovered in 207 Pb and<br />

then more precisely studied in 205 Pb. Very recently the formation of pionic<br />

1s states in several Sn isotopes was studied in order to investigate<br />

the isotope dependence which would allow to separate the isoscalar and<br />

the isovector part of the interaction. First results of this new experiment<br />

will be presented.<br />

Time: Tuesday 10:30–12:45 Room: Foyer Chemie<br />

HK 9.1 Tue 10:30 Foyer Chemie<br />

Dispersive Effects in Nucleon Polarisabilities Observed in<br />

Deuteron Compton Scattering — •Harald W. Grießhammer<br />

— Institut für Theoretische Physik (T39), TU München, D-85747<br />

Garching — ECT*, Villa Tambosi, I-38050 Villazzano (Trento), Italy<br />

A formalism to extract the dynamical nucleon polarisabilities defined<br />

via a multipole expansion of the structure amplitudes in nucleon Compton<br />

scattering was developed in [1]. In contradistinction to the static<br />

polarisabilities, dynamical polarisabilities gauge the response of the in-<br />

ternal degrees of freedom of a composed object to an external, real photon<br />

field of arbitrary energy. Being energy dependent, they contain information<br />

about dispersive effects induced by internal relaxation mechanisms,<br />

baryonic resonances and meson production thresholds of the nucleon.<br />

As the iso-scalar dynamical polarisabilities are directly accessible in<br />

low energy deuteron Compton scattering, their energy dependence is discussed<br />

especially in the light of the SAL data at ω =91MeVwhich<br />

suggest a magnetic dipole polarisability five times bigger than values<br />

from extractions at zero energy. At those energies, dynamical effects are


Nuclear Physics Tuesday<br />

however large and cannot be mimicked by taking only the slopes of the<br />

polarisabilities at zero energy into account. An analysis using dynamical<br />

polarisabilities from either Heavy Baryon Chiral Perturbation Theory<br />

including the ∆(1232) as dynamical degree of freedom or using dispersion<br />

theory predicts however values in agreement with experiment at all<br />

energies. We comment on recent data from Lund at ω ≈ 50 MeV.<br />

Supported in part by DFG under grant GR 1887/1-2 and by BMBF.<br />

[1.] H.W. Grießhammer and T.R. Hemmert: nucl-th/0<strong>11</strong>0006.<br />

HK 9.2 Tue 10:30 Foyer Chemie<br />

Debye Screening At Finite Temperature, Revisited — •Roland<br />

A. Schneider — Physik-Department, Technische Universität München,<br />

Garching, Germany<br />

We present a new, alternative way to calculate the screening of the<br />

static potential between two charges in (non)abelian gauge theories at<br />

high temperatures by looking at the magnetic properties of the vacuum.<br />

The Hard Thermal Loop (HTL) gluon and photon Debye masses are<br />

recovered in a first, though incomplete approximation. In QED, the<br />

complete calculation to order α exhibits an interesting cancellation of<br />

terms, resulting in a logarithmic running α(T ). Debye screening is then<br />

caused by the modified index of refraction of the vacuum. In QCD, an<br />

unphysical Landau pole occurs that arises, as in more sophisticated thermal<br />

renormalization group calculations, from the wrong sign of the gluon<br />

contribution.<br />

Supported in part by BMBF and GSI.<br />

HK 9.3 Tue 10:30 Foyer Chemie<br />

Thermodynamics of fireball expansion — •Thorsten Renk 1 ,<br />

Roland A. Schneider 1 ,andWolfram Weise 1,2 — 1 Technische Universität<br />

München — 2 ECT ∗ ,Trento<br />

The fireball created in an ultrarelativistic heavy ion collision is the<br />

environment in which all processes providing clues about the possible<br />

formation of the quark-gluon plasma (QGP) happen. It is therefore crucial<br />

to understand the dynamics of this hot and dense system. We set<br />

up a model in which the fireball evolution is reconstructed between two<br />

stages, the freeze-out, which is accessible by hadronic observables, and<br />

the initial conditions for which the overlap geometry can be calculated.<br />

Using the equation of state (EoS) provided by a quasiparticle model of<br />

the QGP, we are able to calculate thermodynamical properties in volume<br />

slices of constant proper time and determine the volume expansion selfconsistently.<br />

The resulting evolution model can then be tested against<br />

other observables.<br />

Work supportet in part by BMBF and GSI.<br />

HK 9.4 Tue 10:30 Foyer Chemie<br />

Simple High Accuracy Calculations of the Three Nucleon System<br />

at Very Low Energies — •Harald W. Grießhammer —<br />

Institut für Theoretische Physik (T39), TU München, D-85747 Garching<br />

At very low energies, pions do not have to be treated as explicit degrees<br />

of freedom in an Effective Field Theory of few nucleon systems. The resulting<br />

power counting allows for simple, model independent, systematic<br />

and rigorous computations of the properties of nuclear systems with an<br />

error estimate. Usually, high precision calculations are performed with<br />

relative ease. In the triton channel of the three nucleon system, it has<br />

however been demonstrated [1] that an unusual, non-perturbative renormalisation<br />

phenomenon leads to a three body force which is needed even<br />

at leading order in order to absorb cut-off dependence. This yields a<br />

limit cycle for the three body force, and explanations of the Efimov and<br />

Thomas effects as well as of the Phillips line of nuclear physics. Here,<br />

it is shown that this phenomenon is limited to the doublet Swave only,<br />

so that computations in the other channels can be performed with ease<br />

to high accuracy. Demonstrating a new technique to obtain results of<br />

increasing accuracy in the Effective Field Theory approach, corrections<br />

to the Phillips line obtained at LO as well as phase shifts in the triton<br />

channel of nd scattering are discussed both above and below the deuteron<br />

breakup point. The calculations converge rapidly.<br />

Supported in part by DFG under grant GR 1887/1-2 and by BMBF.<br />

[1.] P. Bedaque, H.-W. Hammer and U. van Kolck: Nucl. Phys. A676,<br />

357 (2000).<br />

HK 9.5 Tue 10:30 Foyer Chemie<br />

Note on finite temperature sum rules for vector and axialvector<br />

spectral functions — •Eugenio Marco 1 , Ralf Hofmann 2 ,<br />

and Wolfram Weise 1,3 — 1 Physik-Department, Technische Universität<br />

München — 2 Max-Planck-Institut für Physik (Werner-Heisenberg-<br />

Institut), — 3 ECT ∗ , Villazzano (Trento), Italy<br />

An updated analysis of vector and axial-vector spectral functions is<br />

presented. The resonant contributions to the spectral integrals are shown<br />

to be expressible as multiples of 4π2f 2 π , encoding the scale of spontaneous<br />

chiral symmetry breaking in QCD. Up to order T 2 this behavior carries<br />

over to the case of finite temperature.<br />

Work supported in part by BMBF, GSI and the Alexander von Humboldt<br />

Foundation.<br />

HK 9.6 Tue 10:30 Foyer Chemie<br />

Chiral Magnetism of the Nucleon — •Thomas R. Hemmert 1<br />

and Wolfram Weise 1,2 — 1 Physik Department T39, TU München<br />

— 2 ECT*, Trento, Italy<br />

We are analysing the quark-mass dependence of the isovector anomalous<br />

magnetic moment of the nucleon [1]. Quenched Lattice data for this<br />

quantity from the Adelaide group [2] are only available for quark-masses<br />

heavier than 20 times the physical light quark masses, making extrapolation<br />

schemes necessary to bridge the gap between lattice data and the<br />

physical magnetic moments of the nucleon. We report on recent work<br />

of such an extrapolation performed with the help of chiral effective field<br />

theories, resulting in a simple extrapolation formula for the case of the<br />

magnetic moments. We also compare our extrapolation formula with the<br />

Pade-formula recently suggested by the Adelaide group [2].<br />

[1] T.R. Hemmert and W. Weise, “Chiral Magnetism of the Nucleon”,<br />

forthcoming. Preliminary results are reported in nucl-th/0105051.<br />

[2] D.B. Leinweber, D.H. Lu and A.W. Thomas, Phys.Rev.D60:034014<br />

(1999).<br />

WorksupportedinpartbyDFGandBMBF<br />

HK 9.7 Tue 10:30 Foyer Chemie<br />

Baryon chiral perturbation theory with a cutoff regularization:<br />

Inclusion of decuplet states — •Bu¯gra Borasoy 1 , Barry Holstein<br />

2 , Randy Lewis 3 , and Pierre Ouimet 3 — 1 Physik Department,<br />

Technische Universität München — 2 University Of Massachusetts,<br />

Amherst, USA — 3 University of Regina, Regina, Canada<br />

In SU(3) chiral perturbation theory short distance effects, arising from<br />

the propagation of Goldstone bosons over distances smaller than a typical<br />

hadronic size, are model-dependent and can lead to a lack of convergence<br />

in the SU(3) chiral expansion if they are included in loop diagrams. Such<br />

effects can be removed in a chirally consistent fashion by use of a cutoff<br />

ameliorating problems which have arisen in previous calculations due to<br />

large loop effects. In this investigation, we employ cutoff regularization<br />

and focus on the inclusion of decuplet states which may yield significant<br />

contributions since the mass difference between the nucleon and decuplet<br />

is less than twice the pion mass and octet and decuplet states become<br />

even degenerate in the large Nc limit. We discuss the octet baryon<br />

masses, axial couplings, s-wave hyperon decay, and magnetic moments<br />

taking contributions from internal decuplet states into account. The realistic<br />

treatment of chiral baryon corrections is just what is needed in<br />

order to extrapolate state of the art lattice calculations, which are done<br />

for quark masses (and therefore pion masses) considerably heavier than<br />

the values given experimentally, down to realistic values.<br />

Work supported in part by the DFG.<br />

HK 9.8 Tue 10:30 Foyer Chemie<br />

Study of relativistic bound states in a scalar model using diagonalization/Monte<br />

Carlo methods — •Bu¯gra Borasoy 1 and<br />

Dean Lee 2 — 1 Physik Department, Technische Universität München<br />

— 2 North Carolina State University, Raleigh, USA<br />

A recently proposed diagonalization/Monte Carlo computational<br />

scheme is used to study relativistic two-body and three-body bound<br />

states in (φ 6 − φ 4 )1+1 theory. Diagonalization makes it possible to<br />

extract detailed information about wavefunctions and excited states,<br />

while Monte Carlo allows one to handle the exponential increase in the<br />

number of basis states for large volume systems. The first half of the<br />

method involves finding and diagonalizing the Hamiltonian restricted to<br />

an optimal subspace which includes the most important basis vectors<br />

of the lowest energy eigenstates. Once the most important basis<br />

vectors are found and their interactions treated exactly, Monte Carlo<br />

is used to sample the contribution of the remaining basis vectors. In


Nuclear Physics Tuesday<br />

this investigation we demonstrate how the new diagonalization/Monte<br />

Carlo scheme is applied to the study of relativistic bound states<br />

which are of primary interest to particle and nuclear physics. We also<br />

derive solutions to the non-relativistic versions of the two- body and<br />

three-body bound state problems and compare our numerical results<br />

for the relativistic bound states energies and wavefunctions with an<br />

assortment of different approximations and results from the literature.<br />

We find that the approach is well-suited for calculating bound state<br />

energies and wavefunctions.<br />

Work supported in part by the DFG.<br />

HK 9.9 Tue 10:30 Foyer Chemie<br />

Chiral 2π-exchange NN-potentials: Relativistic 1/M 2 -<br />

corrections — •Norbert Kaiser — Physik-Department T39,<br />

TU-München, 85747 Garching<br />

We calculate in baryon chiral perturbation theory the relativistic<br />

1/M 2 -corrections to the leading order two-pion exchange diagrams. We<br />

give explicit expressions for the corresponding one-loop NN-amplitudes<br />

in momentum space. The resulting isovector central and isoscalar spinspin<br />

and tensor NN-amplitudes involve non-static terms proportional to<br />

the squared nucleon center-of-mass momentum p 2 . From the two-pion<br />

exchange box diagrams we obtain an isoscalar quadratic spin-orbit NNamplitude.<br />

We give also analytical expressions for the corresponding<br />

NN-potentials in coordinate space. The diagrammatic results presented<br />

here make the chiral NN-potential complete at next-to-next-to-next-toleading<br />

order.<br />

[1] N. Kaiser, Phys.Rev.C65 (<strong>2002</strong>) 0170xx (in print), nucl-th/0109071.<br />

Work supported in part by BMBF, DFG and GSI.<br />

HK 9.10 Tue 10:30 Foyer Chemie<br />

Chiral corrections to the double scattering term for the<br />

pion-deuteron scattering length — •Norbert Kaiser —<br />

Physik-Department T39, TU-München, 85747 Garching<br />

The empirical value of real part of the pion-deuteron threshold Tmatrix<br />

Re Tπd =4π(1+mπ/Md)Re aπd = −(0.496±0.016) fm can be well<br />

understood in terms of the dominant isovector πN double scattering con-<br />

tribution Re Tπd = −(T − πN) 2 < (πr) −1 >d with < 1/r >d= � ∞<br />

0 dr[u2 (r)+<br />

w 2 (r)]/r the inverse deuteron radius. However, since the leading order<br />

(Weinberg-Tomozawa) prediction for T − πN = mπ/2f 2 π =1.61 fm is about<br />

13% below the empirical value the leading order chiral double scattering<br />

contribution to Re Tπd is also about 25% too small. We calculate in chiral<br />

perturbation theory all one pion-loop corrections to the double scattering<br />

term which in the case of πN-scattering close the gap between the<br />

current algebra prediction and the empirical value of T − πN. In addition<br />

there is in the πd-system an off-shell correction for the exchanged virtual<br />

pion. Its coordinate space representation reveals that it is equivalent to<br />

2π-exchange in the deuteron with a large distance behavior e −2mπr r −5/2 .<br />

When folded with the deuteron density its short distance singularity r −3<br />

is regulated by introducing rmin =1/Λ =0.23 fm with Λ a cutoff entering<br />

the chiral logarithm ln(mπ/2Λ) in T − πN. We evaluate the chirally<br />

corrected double scattering term and the off-shell contribution with various<br />

realistic deuteron wave functions. We find that the off-shell correction<br />

contributes at most -8% and that the isovector double scattering term<br />

explains at least 90% of the empirical value of Re Tπd. Work supported<br />

in part by BMBF, DFG and GSI.<br />

HK 9.<strong>11</strong> Tue 10:30 Foyer Chemie<br />

Chiral 2π-exchange NN-potentials: Two-loop contributions —<br />

•Norbert Kaiser — Physik-Department T39, TU-München, 85747<br />

Garching<br />

We calculate in heavy baryon chiral perturbation theory the local NNpotentials<br />

generated by the two-pion exchange diagrams at two-loop order.<br />

We give explicit expressions for the mass-spectra (or imaginary<br />

parts) of the corresponding isoscalar and isovector central, spin-spin and<br />

tensor NN-amplitudes. We find from two-loop two-pion exchange a sizeable<br />

isoscalar central repulsion which amounts to 62.3MeVatr =1.0fm.<br />

There is a similarly strong isovector central attraction which however<br />

originates mainly from the third order low energy constants ¯ dj entering<br />

the chiral πN-scattering amplitude. We also evaluate the one-loop<br />

2π-exchange diagram with two second order chiral ππNN-vertices proportional<br />

to the low energy constants c1,2,3,4 as well as the first relativistic<br />

1/M -correction to the 2π-exchange diagrams with one such vertex. The<br />

diagrammatic results presented here are relevant components of the chiral<br />

NN-potential at next-to-next-to-next-to-leading order.<br />

[1] N. Kaiser, Phys. Rev. C64 (2001) 057001. Work supported in part<br />

by BMBF, DFG and GSI.<br />

HK 9.12 Tue 10:30 Foyer Chemie<br />

Chiral corrections to kaon nucleon scattering lengths —<br />

•Norbert Kaiser — Physik-Department T39, TU-München, 85747<br />

Garching<br />

We calculate the threshold T-matrices of kaon-nucleon and antikaonnucleon<br />

scattering to one-loop order in SU(3) heavy baryon chiral perturbation<br />

theory. To that order the complex-valued isospin-1 KN threshold<br />

T-matrix can be successfully predicted from the isospin-0 and 1 KN<br />

threshold T-matrices. As expected perturbation theory fails to explain<br />

the isospin-0 KN threshold T-matrix which is completely dominated by<br />

the nearby subthreshold Λ ∗ (1405)-resonance. Cancelations of large terms<br />

of second and third chiral order are observed as they seem to be typical<br />

for SU(3) baryon chiral perturbation theory calculations. We also give<br />

the kaon and eta loop corrections to the πN scattering lengths and we<br />

investigate πΛ scattering to one-loop order. The second order s-wave<br />

low-energy constants are all of natural size and do not exceed 1 GeV −1<br />

in magnitude.<br />

[1] N. Kaiser, Phys. Rev. C64 (2001) 045204. Work supported in part<br />

by BMBF, DFG and GSI. paragraph<br />

HK 9.13 Tue 10:30 Foyer Chemie<br />

Nuclear spin-orbit interaction from chiral pion-nucleon dynamics<br />

— •Norbert Kaiser — Physik-Department T39, TU-München,<br />

85747 Garching<br />

Using the two-loop approximation of chiral perturbation theory, we calculate<br />

the momentum and density dependent nuclear spin-orbit strength<br />

Uls(p, kf). This quantity is derived from the spin-dependent part of the<br />

interaction energy Σspin = i<br />

2 �σ · (�q × �p ) Uls(p, kf) of a nucleon scattering<br />

off weakly inhomogeneous isospin symmetric nuclear matter from initial<br />

momentum �p−�q/2 tofinalmomentum�p+�q/2. We find that iterated 1πexchange<br />

generates at saturation density kf0 = 272.7 MeV a spin-orbit<br />

strength at p =0ofUls(0,kf0) =35.1MeVfm 2 in perfect agreement with<br />

the empirical value used in the shell model. This novel spin-orbit strength<br />

is neither of relativistic nor of short range origin. In fact it is linearly<br />

proportional to the nucleon mass M and its range is the pion Compton<br />

wave length m −1<br />

π =1.46 fm. The potential Vls underlying the spin-orbit<br />

strength � Uls = Vls r 2 ls becomes a rather weak one, Vls = 17 MeV, after the<br />

identification rls = m −1<br />

π as suggested by the present calculation. We observe<br />

however a strong p-dependence of Uls(p, kf0) leading even to a sign<br />

change at p = 200 MeV. This and other features of Σspin which go beyond<br />

the usual shell model parametrization leave questions concerning the ultimate<br />

relevance of the spin-orbit interaction generated by 2π-exchange<br />

in a finite nucleus. We calculate also the isovector part of the single<br />

particle potential in isospin asymmetric nuclear matter proportional to<br />

τ3(N − Z)/(N + Z) and find reasonable agreement with empirical values.<br />

Work supported in part by BMBF, DFG and GSI.<br />

HK 9.14 Tue 10:30 Foyer Chemie<br />

Development of a parton cascade for ultrarelativistic heavy ion<br />

collisions — •Zhe Xu and Carsten Greiner — Institut für Theoretische<br />

Physik, Universität Gießen, Germany<br />

We present a Monte Carlo program solving the Boltzmann equation<br />

for partons in ultrarelativistic heavy ion collisions. The initial parton<br />

momentum distribution is computed in perturbative QCD via the multiple<br />

production of minijets. At present, the treatment includes only<br />

elastic scatterings among the partons. We also discuss the initial spatial<br />

distribution of parton production and its consequence on parton thermalization<br />

in heavy ion collisions.<br />

Work supported by BMBF.<br />

HK 9.15 Tue 10:30 Foyer Chemie<br />

Quantum transport for Φ 4 theory in 2+1 dimensions — •Sascha<br />

Juchem, Wolfgang Cassing, andCarsten Greiner — Institut für<br />

Theoretische Physik, Universität Gießen, Germany<br />

During the last years quantum off-shell transport theory has reachieved<br />

great interest in the description of strongly interacting matter out of equilibrium.<br />

In this context approaches are favoured that go beyond the standard<br />

quasiparticle picture and take into account the dynamical off-shell<br />

properties of the propagating degrees of freedom. We exactly solve the<br />

general quantum mechanical transport equations - the Kadanoff-Baym<br />

equations - for the model case of a Φ 4 theory in 2 + 1 space-time dimensions.<br />

While restricting to homogeneous configurations in space, we study<br />

thermal equilibration, taking into account the appropriate renormaliza-


Nuclear Physics Tuesday<br />

tion prescription. Furthermore, we investigate the influence of standard<br />

many-body approximation schemes to the full theory.<br />

Work supported by GSI and BMBF.<br />

HK 9.16 Tue 10:30 Foyer Chemie<br />

Wide–angle Compton scattering and generalized parton distributions<br />

— •T. Oppermann 1 , A.V. Radyushkin 2 , A. Schäfer 1 ,<br />

and C. Weiss 1 — 1 Institut für Theoretische Physik, Universität Regensburg,<br />

D–93053 Regensburg, Germany — 2 Theory Group, Jefferson<br />

Lab, Newport News, VA 23606, USA, and Old Dominion University,<br />

Norfolk, VA 23529, USA<br />

Real Compton scattering off the nucleon, γN → γN, at COM energies<br />

s ∼ few GeV 2 and sufficiently large t (wide–angle Compton scattering,<br />

WACS) is measured in the Hall A experiment at JLAB. In QCD this<br />

process is dominated by Compton scattering off a single quark in the nucleon,<br />

accompanied by soft interactions with the spectator system (“soft<br />

mechanism”) [1]. The WACSamplitude can be expressed in terms of the<br />

so–called double distribution of quarks in the nucleon, which at small t<br />

can be related to the generalized parton distributions measured in hard<br />

exclusive electroproduction. We present estimates of the WACScross<br />

section incorporating information about the structure and the modeling<br />

of the double distributions gained from studies of hard scattering processes,<br />

in particular the so–called D–term [2]. We also discuss the role of<br />

O(t/s) kinematical corrections to the WACSamplitude.<br />

[1] A. V. Radyushkin, Phys. Rev. D58 (1998) <strong>11</strong>4008<br />

[2]M.V.PolyakovandC.Weiss,Phys.Rev.D60 (1999) <strong>11</strong>4017<br />

HK 9.17 Tue 10:30 Foyer Chemie<br />

Simple picture of twist–3 effects in deeply–virtual Compton<br />

scattering — A.V. Radyushkin 1 and •C. Weiss 2 — 1 Theory Group,<br />

Jefferson Lab, Newport News, VA 23606, USA, and Old Dominion University,<br />

Norfolk, VA 23529, USA — 2 Institut für Theoretische Physik,<br />

Universität Regensburg, D–93053 Regensburg, Germany<br />

Deeply–virtual Compton scattering (DVCS) is being widely discussed<br />

as a process which allows to measure the generalized parton distributions<br />

(GPD’s) of the nucleon. While the original QCD treatment included only<br />

the twist–2 contribution to the DVCSamplitude [1], various investigations<br />

have shown that gauge invariance requires one to include also certain<br />

kinematical twist–3 contributions, leading to more complicated relations<br />

between the GPD’s and the observable cross sections (Wandzura–<br />

Wilczek–type relations) [2]. We show that these twist–3 contributions<br />

can be understood in a simple way, as a spin rotation applied to the<br />

twist–2 part of the quark density matrix in the target [3]. This allows<br />

for a very compact representation of the twist–3 effects, as well as for a<br />

simple physical interpretation.<br />

[1] X. Ji, Phys. Rev. D55 (1997) 7<strong>11</strong>4; A. V. Radyushkin, Phys. Rev.<br />

D56 (1997) 5524<br />

[2] A. V. Radyushkin and C. Weiss, Phys. Lett. B493 (2000) 332; Phys.<br />

Rev. D 63 (2001) <strong>11</strong>4012<br />

[3] A. V. Radyushkin and C. Weiss, Phys. Rev. D 64 (2001) 097504<br />

HK 9.18 Tue 10:30 Foyer Chemie<br />

Collective dynamics in selfconsistent Mean-Field-Models —<br />

•Patrick Fleischer and Paul-Gerhard Reinhard — Institut<br />

fuer theoretische Physik II, Universitaet Erlangen-Nuernberg, Staudtstr.<br />

7, 91058 Erlangen, Germany<br />

The low-energy dynamics of nuclei are dominated by rotations and<br />

surfacevibrations. Exotic nuclei often show very soft potential-energysurfaces<br />

(PEF) for these vibration-modes. The low energy spectra provide<br />

important information about the underlying PEF.<br />

We present results of theoretical low energy spectra calculations. The<br />

basis of the description is the selfconistent Skyrme-Hartree-Fock-Method.<br />

The PEF are unfolded by using a quadrupole constraint. The collective<br />

masses (and zero point energies corrections) are calculated with selfconsistent<br />

cranking. Using the PEF together with the masses one can<br />

calculate the excitation spectra with a collective Bohr Hamiltonian.<br />

We consider the trends of quadrupol excitations in light exotic nuclei<br />

(S, Mg). We investigate heavy neutrondeficient nuclei having strong<br />

formisomers which lead to dense monopole states. Further on we calculate<br />

the two nucleon gaps of magic nuclei (Sn, Pb). We compare results<br />

of different available Skyrme-Forces. The trends of these forces are quite<br />

similar but they show big differences in quantitative details.<br />

HK 9.19 Tue 10:30 Foyer Chemie<br />

New chiral-symmetry-breaking operators in pseudoscalar QCD<br />

sum rules — •Hilmar Forkel — Institut für Theoretische Physik,<br />

Uni Heidelberg, Philosophenweg 19, 69120 Heidelberg<br />

We introduce instanton-generated Wilson coefficients associated with<br />

the leading chiral-symmetry-breaking operators in the operator product<br />

expansion of the pseudoscalar correlator. The new contributions are fully<br />

nonperturbative (both at soft and hard momenta) and supply previously<br />

missing information about spontaneous chiral symmetry breaking which<br />

reconciles the associated pseudoscalar sum rule with Goldstone’s theorem.<br />

As a consequence, this sum rule becomes the first in its channel<br />

which is able to reproduce the light mass scale of the pion, thereby resolving<br />

a longstanding puzzle. Several predictions and structural insights<br />

from the new sum rule are discussed.<br />

HK 9.20 Tue 10:30 Foyer Chemie<br />

Inequalities for the masses of the lightest ππ resonances in<br />

large Nc QCD — •M.V. Polyakov 1,2 and V.V. Vereshagin 3<br />

— 1 Petersburg Nuclear Physics Institute, 188350 Gatchina, Russia —<br />

2 Institute for Theoretical Physics II, Ruhr University Bochum, 44780<br />

Bochum, Germany — 3 Institute of Physics, St. Petersburg State University,<br />

198504 St. Petersburg, Russia<br />

We derive and analyse inequlities relating masses of the lightest ππ resonances<br />

(ρ and σ) to coupling constants of the effective chiral lagrangian<br />

in the limit of large number of colours.<br />

HK 9.21 Tue 10:30 Foyer Chemie<br />

Hard exclusive reactions with electroweak probes — •Jens<br />

Ossmann — Institut fuer Theoretische Physik II, Ruhr-Universitaet<br />

Bochum, 44780 Bochum<br />

We show how modern neutrino beams from muon storage rings can be<br />

used to aquire new information about generalized parton distributions in<br />

not too far future.<br />

In particular we study the reaction νµ + p → µ + + n + γ and compare<br />

it with deeply virtual Compton scattering (DVCS) which is shortly<br />

reviewed. Since this electroweak reaction can be described in terms of<br />

generalized parton distributions it can be used to check the result from<br />

DVCS. But due to its weak nature it is also a useful tool to explore new<br />

kinematical regions.<br />

HK 9.22 Tue 10:30 Foyer Chemie<br />

The πA → ππA reaction — •Carsten Isselhorst, Zoheir Aouissat,<br />

andJochen Wambach — Institut fuer Kernphysik Schlossgartenstr.9<br />

64289 Darmstadt<br />

Chiral symmetry and its restoration has attracted great interest from<br />

experimental as well as theoretical side in the past few years.<br />

Experiments done by the CHAOSCollaboration in 1996 have shown<br />

an enhancement in the invariant mass spectrum of the πA → ππA reaction<br />

near the two pion threshold. This has also been confirmed by<br />

an experiment by the Crystal Ball collaboration. In the present talk we<br />

try to connect this experimental results with partial restoration of chiral<br />

symmetry. To achieve this we developed a model for the pion and its<br />

chiral partner, the sigma meson, which preserves the constraints from<br />

chiral symmetry. This leads to a strong reshapening of the Tππ scattering<br />

matrix in the medium. This is then used to calculate the total and<br />

differential cross section for the πA → ππA reaction and compared with<br />

the CHAOSexperiment.<br />

HK 9.23 Tue 10:30 Foyer Chemie<br />

Six-quark dressed bag states in 2- and 3-nucleon systems<br />

— •M.M. Kaskulov 1 , V.I. Kukulin 2 , and P. Grabmayr 1 —<br />

1 Physikalisches Institut, Universität Tübingen — 2 Institute of Nuclear<br />

Physics, Moscow State University<br />

The recently developed two-component six-quark dressed-bag model<br />

for the NN interaction is applied to electromagnetic processes on twoand<br />

three-nucleon systems. It is our aim to employ this model for the<br />

description of few-body systems and their response to the electromagnetic<br />

fields. An important feature of the reaction model is the consistent<br />

use of the short-range hadronic form factors with the cut-offs used in<br />

the potential ansatz. Possibilities for new types of meson exchange currents<br />

associated with chiral fields inside multi-quark dressed bag states in<br />

nuclei are discussed. Specifically, results for capture and desintegration<br />

reactions will be shown.<br />

This work is supported by the DFG (SPP 1034)


Nuclear Physics Tuesday<br />

HK 9.24 Tue 10:30 Foyer Chemie<br />

Quark Loop Calculations of Electroweak Meson Observables in<br />

a Covariant Bethe–Salpeter Model — •Matthias Koll, Ralf<br />

Ricken, Bernard Metsch, andVladimir Hellmann — Institut<br />

für Theoretische Kernphysik, Nußallee 14-16, D–53<strong>11</strong>5 Bonn, Germany<br />

We present recent theoretical results concerning electroweak processes<br />

such as γγ decays of π 0 ,η,η ′ mesons, the so–called π2ℓγ/K2ℓγ decays<br />

or scattering reactions like γπ → γπ and related processes. The basis<br />

of our calculations is a relativistic quark model based on the instantanteous<br />

Bethe–Salpeter equation; as quark–antiquark interactions, we<br />

adopt a linearly rising confinement potential with a suitably chosen spinorial<br />

structure plus a residual force induced by ’t Hooft’s instantons.<br />

First, we present the results for the light meson spectrum where we<br />

ultimately fix the few parameters of our model. We then discuss certain<br />

decays of pseudoscalar mesons into non–hadronic final states and compare<br />

the results with experimental data as well as with other theoretical<br />

calculations. Finally, we study the relevance of pure quark box contributions<br />

to processes like γγ → ππ or Compton scattering off pseudoscalar<br />

mesons at low energies and present our lowest order results concerning<br />

specific scattering reactions.<br />

HK 9.25 Tue 10:30 Foyer Chemie<br />

Coulomb effect in hard-photon proton-proton bremsstrahlung<br />

— •R.G.E. Timmermans and T.D. Penninga — Theory group,<br />

KVI, University of Groningen, Zernikelaan 25, 9747 AA Groningen, The<br />

Netherlands<br />

We study proton-proton bremsstrahlung near the end point of the photon<br />

spectrum. The Coulomb interaction is treated exactly and highquality<br />

pp potential models are used. The effect of the Coulomb force is<br />

shown to be dramatic. Implications for experiment are discussed.<br />

HK 9.26 Tue 10:30 Foyer Chemie<br />

Final State Interaction Effects in Incoherent Photoproduction<br />

of π-Mesons on the Deuteron — •Eed Darwish 1,2 , Hartmuth<br />

Arenhövel 1 ,andMichael Schwamb 1 — 1 Institut für Kernphysik, J.<br />

Gutenberg-Universität, J.-J. Becher-Weg 45, D-55099 Mainz, Germany<br />

— 2 Physics Department, Faculty of Science, South Valley University,<br />

Sohag, Egypt<br />

Incoherent photoproduction of pions on the deuteron in the ∆(1232)<br />

resonance region is investigated with inclusion of nucleon-nucleon (NN)<br />

and pion-nucleon (πN) rescattering. The elementary γN → πN production<br />

amplitude contains besides the standard pseudovector Born terms<br />

the resonance contribution from the ∆(1232) excitation [1].<br />

The major point of concern is the inclusion of NN and πN rescattering<br />

which we limit to contributions of two-particle interactions in the<br />

NN-andπN-subsystems. As models for the interaction of the NN-and<br />

πN-subsystems we use separable interactions from Haidenbauer et al. [2]<br />

and Nozawa et al. [3], respectively.<br />

In general, the inclusion of final state interaction effects is found to<br />

be important in the total and differential cross sections. Moreover, they<br />

lead to an improved agreement with the existing experimental data.<br />

[1] R. Schmidt et al., Z.Phys.,A355 (1996), 421<br />

[2]J.Haidenbaueret al., Phys.Rev.,C30 (1984), 1822<br />

[3] S. Nozawa et al., Nucl. Phys., A513 (1990) 459<br />

HK 9.27 Tue 10:30 Foyer Chemie<br />

Two and Three Neutron Halos in Helium and Lithium Isotope<br />

— •M. Tomaseli 1,2 , T. Kuehl 2 , P. Egelhof 2 , W. Noertershaeuser<br />

2 , A. Dax 2 , H. Wang 2 , D. Marx 2 , S.R. Neumaier 2 ,<br />

H.-J. Kluge 2 , I. Tanihata 3 , S.Fritzsche 4 ,andM. Muttere 1 —<br />

1 Institute of Nuclear Physics, Darmstadt University, D-64289 Darmstadt,<br />

Germany — 2 Gesellschaft fuer Schwerionenforschung (GSI), D-64291<br />

Darmstadt, Germany — 3 RIKEN 2-1 Hirosawa, Wako-Shi, Saitama 351-<br />

0198, Japan — 4 Institute of Physics, Kassel University, D-34132 Kassel,<br />

Germany<br />

The far reaching shape of the matter distributions (halo) of exotic<br />

nuclei with high isospin components is calculated in the Dynamic Correlation<br />

Model (DCM) which is based on the interaction of valence- and<br />

core-particles. In this model, one, two, or more valence particles and<br />

intrinsic vacuum-clusters (collective-excitations of reference vacuum) are<br />

treated within the same formalism. Matter and charge distributions of<br />

lithium and beryllium isotopes are strongly modulated by the couplig of<br />

the valence particles with the core and the matter radii extracted from<br />

the theoretical distributions are in good agreement with experimental<br />

results. Within the model the core-protons are de facto contributing to<br />

the halo formation. The effect of the core excitation mechanism on the<br />

calculated cross sections for proton scattering on helium and lithium isotopes<br />

is analysed. For the charge radii new experiments based on the<br />

determination of the volume-shift are discussed<br />

HK 9.28 Tue 10:30 Foyer Chemie<br />

Three quark correlations in hot and dense nuclear matter —<br />

•Michael Beyer 1 , Stefano Mattiello 1 , Tobias Frederico 2 ,<br />

and Hans J Weber 3 — 1 FBPhysik,U.Rostock,Germany— 2 Sao<br />

Paulo, Inst. Tech. Aeronautics, Brazil — 3 U of Virginia, Charlottesville,<br />

USA<br />

We investigate the transition region from quark to nuclear matter at<br />

high densities and temperatures as it might be relevant for highly relativistic<br />

heavy ion collisions. To this end, we present a relativistic threebody<br />

equation to investigate three-quark clusters in hot and dense quark<br />

matter. To derive such an equation we use the Dyson equation approach.<br />

The equation systematically includes the Pauli blocking factors as well as<br />

the self energy corrections of quarks. Special relativity is realized through<br />

the light front form. Presently we use a zero-range force and investigate<br />

the Mott transition.<br />

References<br />

M. Beyer, S. Mattiello, T. Frederico, H.J. Weber, Phys. Lett. B521<br />

(2001) 33; S. Mattiello, M. Beyer, T. Frederico, H.J. Weber, Few-Body<br />

Systems in print.<br />

HK 9.29 Tue 10:30 Foyer Chemie<br />

The Jülich pion-nucleon model — •Achot M. Gasparyan , Johann<br />

Haidenbauer, Christoph Hanhart, andJosef Speth —<br />

FZ Jülich, IKP, 52425 Jülich<br />

The coupled channel model of the πN interaction developed by the<br />

Jülich group [1] yields a quite satisfactory description of the πN phase<br />

shifts and inelasticities as well as of the ηN differential and total cross<br />

sections in the energy range from the πN threshold up to about 1600<br />

MeV. Presently we are extending this model to higher energies and we<br />

will report corresponding results at this meeting.<br />

For the extension to higher energies further channels like KΛ, KΣ,<br />

and ωN (which open at center of mass energies within the region 1600-<br />

1700 MeV) have to be included. In addition, contributions from several<br />

pole diagrams, in particular of the S31(1620), P 13(1720) and D33(1700)<br />

resonances, are considered.<br />

[1] O. Krehl et al., Phys. Rev. C 62, 025207 (2000).<br />

HK 9.30 Tue 10:30 Foyer Chemie<br />

The influence of three body cuts on the reaction NN → NNx—a<br />

toy model study — •Andreas Motzke 1 , Charlotte Elster 1,2 ,<br />

Christoph Hanhart 1 ,andJosef Speth 1 — 1 Institut für Kernphysik<br />

(Theorie), Forschungszentrum Jülich, D-52425 Jülich — 2 Department of<br />

Physics and Astronomy, Ohio University, Athens, OH 45701<br />

In recent years there is an increasing interest in meson production reactions<br />

in NN collisions. High quality data is available for a large number<br />

of different mesons. Unfortunately, several theoretical issues are still to<br />

be investigated in detail. One of those is the impact of three body cuts<br />

on the reaction cross sections. In this talk we will study the significance<br />

of NNπ–cuts on the reaction NN → NNx within a toy model<br />

developed in Ref. [1]. We discuss the numerical methods used and compare<br />

the exact results to several approximations used in the literature. [1]<br />

C.Hanhart, G.A.Miller, F.Myhrer, T.Sato, and U.van Kolck, Phys.Rev.C<br />

63(2001)044002.


Nuclear Physics Tuesday<br />

HK10 Poster Session: Nuclear Physics/Spectroscopy<br />

Time: Tuesday 10:30–12:45 Room: Foyer Chemie<br />

HK 10.1 Tue 10:30 Foyer Chemie<br />

Investigation of nuclear structures in 124 Xe * — •B. Saha 1 ,<br />

A. Dewald 1 , O. Möller 1 , R. Peusquens 1 , A. Fitzler 1 , T.<br />

Klug 1 , I. Schneider 1 , D. Tonev 1 , K. Jessen 1 , K.O. Zell 1 , P.<br />

von Brentano 1 , and B.J.P. Gall 2 — 1 Institut für Kernphysik,<br />

Universität zu Köln, Köln, Germany — 2 IReS, UMR7500IN2P3-CNRS,<br />

Université Louis Pasteur, Strasbourg, France<br />

The so-called magnetic rotation which appears in the spectra as regular<br />

M1 bands is now a well established excitation mode seen in several lead<br />

isotopes. It is still not clear whether it also exists in the A=130 region<br />

where similar M1 bands are known, e.g in 124 Xe [1] and 128 Ba. Crucial<br />

experimental observables are the B(M1) values which are expected to<br />

decrease with increasing spin. Therefore we performed a recoil distance<br />

measurement (RDM) with the EUROBALL spectrometer at Strasbourg<br />

and the Köln plunger using the reaction <strong>11</strong>0 Pd( 18 O,4n) 124 Xe at a beam<br />

energy of 86 MeV. Lifetimes of levels of the ground state band (gsb) as<br />

well as of the M1 band could be determined with γ-γ-coincidence data.<br />

By gating from above the levels of interest, problems due to the feeding<br />

histories of the levels could be avoided. The experimental setup will be<br />

presented and the deduced transition probabilities will be used to interprete<br />

the nuclear structures of 124 Xe. Especially the bandcrossing of the<br />

gsb with the (νh<strong>11</strong>/2) 2 and (πh<strong>11</strong>/2) 2 s-bands will be discussed.<br />

[1] I. Schneider et al., Phys.Rev.C60, 014312 (1999)<br />

The authors would like to acknowledge the support provided by the<br />

EUROBALL team.<br />

*supportedbyBMBF,ProjectNo.06OK958<br />

HK 10.2 Tue 10:30 Foyer Chemie<br />

Electronic timing technique and transition probabilities<br />

in 136Nd — •Oliver Möller1 , A. Dewald1 , A. Fitzler1 , I.<br />

Schneider1 , G. Kemper1 , K.O. Zell1 , P. von Brentano1 , J.<br />

Jolie1 , R. Krücken2 , D. Bazzacco3 , and C. Rossi-Alvarez3 — 1Institut für Kernphysik, Universität zu Köln, Köln, Germany —<br />

2 3 AWWNSLab, Yale University, CT, 06520 USA — Dip. di Fisicia,<br />

Universita Padova, Italy<br />

The beam pulsing system at the Cologne FN Tandem accelerator has<br />

been used to measure lifetimes of excited states in 46V, 54Co and 136Nd in<br />

the nanosecond and sub-nanosecond range. A new program for the data<br />

analysis was developed that reproduces the time spectra of the transitions<br />

of interest by using the measured time spectrum of a γ-line of similar<br />

energy as a prompt reference. In addition lifetimes of excited states of<br />

136Nd, measured with EUROBALL spectrometer at Legnaro using the<br />

recoil distance method (RDM), will be presented. The deduced B(E2)values<br />

including the B(E2;10 + → 8 + ) value obtained with the electronic<br />

timing technique will be used to discuss the interaction of the ground<br />

state band with two s-bands. *supported by BMBF; Project No. 06 OK<br />

958<br />

HK 10.3 Tue 10:30 Foyer Chemie<br />

Photo-induced population of the h <strong>11</strong>/2 isomers in 135,137Ba —<br />

•H. von Garrel1 , D. Belic1 , P. von Brentano2 , C. Fransen2 ,<br />

A. Gade2 , U. Kneissl1 , C. Kohstall1 , M. Kreutz1 , A. Linnemann2<br />

, H.H. Pitz1 , M. Scheck1 , F. Stedile1 ,andV. Werner2 —<br />

1 2 Institut für Strahlenphysik, Universität Stuttgart, Stuttgart — Institut<br />

für Kernphysik, Universität zu Köln, Köln<br />

Photoactivation and photon scattering experiments have been performed<br />

at the Stuttgart bremsstrahlung facility on 135,137Ba to investigate<br />

the nuclear structure and isomer population near the N=82 shell<br />

closure. The combination of these methods can give valuable model independent<br />

information, especially lifetimes of the populating levels and<br />

the branching ratio Γiso/Γ0 [1]. For 135Ba in the photoactivation experiments<br />

five intermediate states (IS) have been found in the energy range<br />

1.3-2.6 MeV populating the 28.7 h isomer at 268 keV. For three of them<br />

dipole-excited states can be suggested from the NRF measurements with<br />

2.5 MeV bremsstrahlung endpoint energy. For 137Ba three IShave been<br />

found in photoactivation of the 662 keV, 2.55 min. isomer in the energy<br />

range of 2.2-3.2 MeV. From NRF also three levels can be ascribed to<br />

these IS. The results of the measurements are discussed and compared<br />

with theoretical calculations.<br />

[1] D. Belic et al., Nucl. Instr. a. Meth. A 463 (2000) 26-41.<br />

HK 10.4 Tue 10:30 Foyer Chemie<br />

The influence of the N =50neutron-core on dipole excitations<br />

in 87 Rb — •L. Käubler 1 , K.D. Schilling 1 , R. Schwengner 1 , D.<br />

Belic 2 , P. v. Brentano 3 , F. Dönau 1 , C. Fransen 3 , M. Grinberg<br />

4 , E. Grosse 1 , U. Kneissl 2 , C. Kohstall 2 , A. Linnemann 3 ,<br />

P. Matschinsky 3 , A. Nord 2 , N. Pietralla 3 , H.H. Pitz 2 , M.<br />

Scheck 2 , F. Stedile 2 ,andV. Werner 3 — 1 Inst. f. Kern- und Hadronenphysik,<br />

FZ Rossendorf, 01314 Dresden — 2 Inst. f. Strahlenphysik,<br />

Uni Stuttgart, 70569 Stuttgart — 3 Inst. f. Kernphysik, Uni zu Köln,<br />

50937 Köln — 4 Inst. f. Nuclear Research and Nuclear Energy, Sofia,<br />

BG-1784 Sofia<br />

Dipole excitations in the semimagic N=50 nucleus 87 Rb were investigated<br />

at the Stuttgart Dynamitron facility using bremsstrahlung with<br />

an endpoint energy of 4.0 MeV. The magnetic dipole excitations are well<br />

reproduced in the framework of the shell model, however, these calculations<br />

cannot describe the observed electric dipole excitations. The 1/2 +<br />

state at 3060 keV is proposed to be the weak coupling of an f5/2 proton<br />

hole to the 3 − octupole vibrational state in the N =50core 88 Sr. The<br />

relatively strong E1 transition from that state to the ground state is explained<br />

as mainly the neutron h<strong>11</strong>/2 → g9/2 transition. The breakup of<br />

the N = 50 core and neutron excitations into the h<strong>11</strong>/2 shell are essential<br />

to describe electric dipole excitations, but neutron-core excitations<br />

do not play an important role for the structure of magnetic dipole excitations.<br />

∗ Supported by the DFG, contracts Br-799/9, Gr-1674/1-1 and<br />

Kn-154/30, and the SMWK, contract 7533-70-FZR/702.<br />

HK 10.5 Tue 10:30 Foyer Chemie<br />

High-spin structure of the spherical nucleus 90 Y ⋆<br />

— •R. Schwengner 1 , G. Rainovski 1,2 , K.D. Schilling 1 , A.<br />

Wagner 1 , A. Jungclaus 3 , E. Galindo 4 , O. Thelen 5 , D.R.<br />

Napoli 6 , C.A. Ur 7 , G. de Angelis 6 , M. Axiotis 6 , A. Gadea 6 , N.<br />

Marginean 6 , T. Martinez 6 ,andT. Kröll 7 — 1 FZ Rossendorf —<br />

2 INRNE Sofia — 3 Universidad de Madrid — 4 Universität Göttingen<br />

— 5 Universität Köln — 6 INFN, LN Legnaro — 7 INFN, Università di<br />

Padova<br />

High-spin states in 90 Y were populated in the 82 Se( <strong>11</strong> B,3n) reaction<br />

at a beam energy of 37 MeV using the XTU tandem accelerator of the<br />

Legnaro National Laboratory. Gamma rays were detected with the spectrometer<br />

GASP. The level scheme of 90 YwasextendeduptoJ π =(18 + )<br />

at 9.6 MeV. Mean lifetimes of four levels were determined using the<br />

Doppler shift attenuation method. The structure of 90 Y was interpreted<br />

in terms of the shell model. The calculations were performed in the<br />

model space π(0f5/2, 1p3/2, 1p1/2, 0g9/2) ν(1p1/2, 0g9/2, 1d5/2) aswellasin<br />

an extended space including the ν(0g7/2) orbital. The calculations in the<br />

extended model space reveal a correspondence between states in 90 Yand<br />

89 Y. Moreover, it is possible to assign a sequence of the predicted states<br />

with J π ≥ 14 (+) that reproduces the experimental B(M1) values of up<br />

to about 1 W.u.<br />

⋆ Supported by the European Commission and the Saxon Ministry of<br />

Sciences and Arts.<br />

HK 10.6 Tue 10:30 Foyer Chemie<br />

Acquisition of Data from Digital Electronics for a Large Ge Array<br />

— •N. Warr, J. Eberth, G. Pascovici, andD. Weißhaar for<br />

the Miniball collaboration — Institut für Kernphysik, Zülpicherstr. 77,<br />

D-50937 Köln, Germany<br />

Modern arrays for γ-ray spectroscopy typically have over a 100 channels<br />

and require special data acquisition systems. The current trend<br />

towards position sensitivity through pulse-shape analysis and eventually<br />

to γ-ray tracking imposes the use of digital electronics. We report on<br />

the successful implementation of such a system, using commercial digital<br />

electronics for Miniball which already has 126 Ge channels.<br />

Each Miniball triple cluster has three 6-fold segmented Ge detectors<br />

which yield 7 signals (core and 6 segments). 36 camac-based DGF cards<br />

supplied by Xia are used for the six triple clusters of phase I. The data<br />

are buffered by the DGF cards and transferred to a PC using a block<br />

mode fast camac transfer by one PCI-based camac crate controller for<br />

each crate. The camac crates are read out in parallel, so there is little increase<br />

in dead time as more crates are added when using a multiprocessor<br />

PC.


Nuclear Physics Tuesday<br />

A complete spectrometer also requires ancillary detectors and although<br />

the simplest method is to use the same digital electronics for the ancillary<br />

detectors, this may be an expensive option if traditional electronics<br />

is already available. To circumvent this problem, we have conceived a<br />

method to use a single DGF card together with traditional analogue electronics,<br />

where the DGF card provides a timestamp for the analogue data<br />

which is read out in the conventional way.<br />

Funded by BMBF under contract no. 060K958.<br />

HK 10.7 Tue 10:30 Foyer Chemie<br />

Picosecond lifetime determination in the mirror nuclei 47Cr and<br />

47V — •Dimitar Tonev 1 , Pavel Petkov 1,2 , Alfred Dewald 1 ,<br />

Silvia Lenzi 3 , Daniel R. Napoli 4 , Ventseslav Andrejtscheff 2 ,<br />

and Peter von Brentano 1 — 1 Institut fuer Kernphysik, der Universitaet<br />

zu Koeln, Zuelpicherstr 77, 50937 Koeln, Deutschland — 2 Bulgarian<br />

Academy of Sciences, Institute for Nuclear Research and Nuclear Energy,<br />

1784 Sofia, Bulgaria — 3 Dipartimento di Fisica and INFN, Sezione<br />

di Padova, Padova, Italy — 4 INFN, Laboratory Nazionali di Legnaro,<br />

Legnaro, Italy<br />

Lifetime measurements in the mirror nuclei 47Cr and 47V are performed<br />

by means of the Doppler-shift attenuation method using the multidetector<br />

array EUROBALL. The determined transition strengths in the<br />

yrast cascades are well described by full pf-Shell model calculations and<br />

the behaviour of the transition quadrupole moments with increasing spin<br />

confirms the nuclear structure and shape changes inferred in earlier works<br />

investigating Coulomb energy differences (CED).<br />

HK 10.8 Tue 10:30 Foyer Chemie<br />

Transition Matrix Elements in Neutron-rich Fission Fragments<br />

— •C. Hutter 1,2 , R. Krücken 1 , J.R. Cooper 1,3 , C.J. Barton 1 ,<br />

C.W. Beausang 1 , M. Caprio 1 , R.F. Casten 1 , W.-T. Chou 1 ,<br />

A.A. Hecht 1 , N. Pietralla 1,4 , N.V. Zamfir 1 , A. Aprahamian 5 ,<br />

M. Shawcross 5 , D. Cline 6 , C.Y. Wu 6 , K.E. Gregorich 7 , R.M.<br />

Clark 7 , A.O. Macchiavelli 7 , M. Stoyer 3 , and A. Zilges 2 —<br />

1 WNSL-Yale University — 2 Institut für Kernphysik, Technische Universität<br />

Darmstadt — 3 Lawrence Livermore National Laboratory —<br />

4 Institut für Kernphysik, Universität zu Köln — 5 Notre Dame University<br />

— 6 University of Rochester — 7 Lawrence Berkeley National Laboratory<br />

In view of the prospects of studying neutron-rich nuclei far from stability<br />

using RIBs it is important to get structural information on those<br />

nuclei already accessible today by means of spectroscopy following fission.<br />

The systematic knowledge of transition matrix elements in these nuclei is<br />

key to observe modifications off the shell structure of nuclei far from stability.<br />

In this contribution we report on a recoil distance Doppler shift<br />

experiment using Gammasphere and the New Yale Plunger Device to<br />

measure lifetimes of excited states in neutron rich nuclei produced in the<br />

fission of 252 Cf. Fission fragments emitted in a cone of ± 20 ◦ from a thin<br />

50 µCi 252 Cf source were detected by a set of photo cells. Complementary<br />

fragments were stopped in a gold stopper after traveling a variable distance.<br />

Gamma rays in coincidence with fission fragments were detected<br />

by the Gammasphere array. First results for A≈ 100 and 140 nuclei will<br />

be presented. Supported by the U.S. DOE (DE-FG02-91ER-40609) and NSF, and<br />

the German DFG under contract No.Pi 393/1.<br />

HK 10.9 Tue 10:30 Foyer Chemie<br />

New g factor measurement of the 44 Ca(2 + 1 ) state + — •S.<br />

Schielke 1 , K.-H. Speidel 1 , O. Kenn 1 , J. Leske 1 , G. Müller 1 ,<br />

and J. Gerber 2 — 1 Institut für Strahlen- und Kernphysik, Univ.<br />

Bonn, D-53<strong>11</strong>5 Bonn — 2 Institut de Recherches Subatomiques, F-67037<br />

Strasbourg, France<br />

In view of the precise g(2 + 1 ) values obtained for Ti and Cr isotopes [1]<br />

suggesting considerable excitations of protons and neutrons of the 40 Ca<br />

core to fp shell orbits the first 2 + states of Ca isotopes should show a<br />

similar behaviour. However, from an early measurement on 44 Ca [2] the<br />

g(2 + 1 ) value was found to be negative indicating a dominant f7/2 neutron<br />

component in the wave function. We have remeasured this g factor<br />

by employing projectile Coulomb excitation in inverse kinematics combined<br />

with the transient field technique. A 44 Ca beam provided by the<br />

Cologne tandem accelerator was Coulomb excited by scattering from a<br />

carbon target. The g factor was derived from spin precessions in ferromagnetic<br />

Gd. Contrary to [2] the newly determined g factor is definitely<br />

positive indicating collective admixtures due to core excitation.<br />

+ supported by DFG<br />

[1] R. Ernst et al., Phys. Rev. Lett. 84 (2000) 416<br />

[2] Y. Niv et al., Phys. Rev. Lett. 43 (1979) 326<br />

HK 10.10 Tue 10:30 Foyer Chemie<br />

Search for hyperdeformation in the A ≈ 125 region∗ — •J. Domscheit1 , H. Amro2 , R. Clark3 , M. Cromaz3 , P. Fallon3<br />

, A. Görgen3 , G.B. Hagemann4 , B. Herskind4 , H. Hübel1 ,<br />

D.R. Jensen4 , I.Y. Lee3 , W.C. Ma2 , A.O. Macchiavelli3 , D.<br />

Ward 3 , and J.N. Wilson4 — 1ISKP Univ. Bonn, Germany —<br />

2 3 4 Mississippi State Univ., USA — LBNL, Berkeley, USA — NBI, Copenhagen,<br />

Denmark<br />

The compound nucleus 128Ba was produced in the symmetric reaction<br />

64Ni + 64Ni at a bombarding energy of 265 MeV at the 88-Inch<br />

cyclotron in Berkeley. This reaction was chosen in order to populate<br />

high-spin states with large deformation at relatively low excitation energy.<br />

Gamma-ray coincidences were measured with the Gammasphere<br />

spectrometer. The strongest exit channels and their relative intensities<br />

were: 122Xe (100), 124Ba (98), 125Ba (62), 125Cs (24) and 123Ba (7). A<br />

search was peformed for regular sequences of discrete transitions using<br />

different approaches, but up to date no hyperdeformed bands (axis ratio<br />

≈ 3:1) could be established. Two different search routines are presented<br />

and the limits for the detection of regular sequences are discussed. The<br />

data were also used to extend and correct the previously known level<br />

scheme of 125Cs [1,2].<br />

[1] J.R. Hughes et al., Phys. Rev. C 44 (1991) 2390<br />

[2] D. Ward, AIP Conf. Proc. 259 (1992) 358<br />

∗Work supported by BMBF, Germany (contract no 06 BN 907)<br />

HK 10.<strong>11</strong> Tue 10:30 Foyer Chemie<br />

High-spin spectroscopy in 161,162 Lu ∗ — •P. Bringel 1 , J. Domscheit<br />

1 , H. Hübel 1 , A. Neusser 1 , G. Schönwasser 1 , A.K. Singh 1 ,<br />

G.B. Hagemann 2 , D.R. Jensen 2 , D. Bazzacco 3 , S. Lunardi 3 , M.<br />

Axiotis 4 , Th. Kröll 4 , D.R. Napoli 4 , C. Ur 4 , H. Amro 5 , S.C.<br />

Pancholi 6 , R. Bhowmik 7 , S. Bhattacharya 8 ,andC. Petrache 9<br />

— 1 ISKP, Univ. Bonn, Germany — 2 NBI, Copenhage, Denmark —<br />

3 INFN e Dipart. di Fisica, Padova, Italy — 4 INFN,LNL,Legnaro,Italy<br />

— 5 Dep. of Physics, Mississippi State University, USA — 6 Dep. of<br />

Physics & Astronomy, Dehli University, Dehli, India — 7 Nuclear Science<br />

Centre, New Dehli, India — 8 SINP, Calcutta, India — 9 Univ. di<br />

Camerino, Italy<br />

Triaxial superdeformation (TSD) has recently been established in Lu<br />

and Hf isotopes in the mass 165 region. The aim of this work is to<br />

search for the predicted TSD in 161 Lu and 162 Lu. High-spin states in<br />

these nuclei have been populated in the r eaction 100 Mo( 65 Cu,xn) at 260<br />

MeV beam energy at the Legnaro Tandem accelerator. Gamma-ray coincidences<br />

have been measured with the GASP array. The data permit<br />

an extension of all the known normal-deformed (ND) bands in 161,162 Lu.<br />

The searc h for TSD is in progress.<br />

∗ Work supported by BMBF (Contract no. 06 BN 907) and by DFG<br />

(Contract no. Hu 325/10)<br />

HK 10.12 Tue 10:30 Foyer Chemie<br />

Photon scattering on 98Mo ⋆<br />

— •G. Rusev1,2 , R. Schwengner1 , F. Dönau1 , L. Käubler1 , S.<br />

Mallion1 , K.D. Schilling1 , A. Wagner1 , H. von Garrel3 , U.<br />

Kneißl3 , C. Kohstall3 , M. Kreutz3 , H.H. Pitz3 , M. Scheck3 ,<br />

and F. Stedile3 — 1Inst. für Kern- und Hadronenphysik, FZ<br />

Rossendorf — 2INRNE Sofia — 3IfS, Universität Stuttgart<br />

We present results of the first photon-scattering experiment on the<br />

nuclide 98Mo. This experiment was carried out at the bremsstrahlung<br />

facility of the Stuttgart Dynamitron accelerator at an electron energy of<br />

3.8 MeV. Photons scattered from a 98Mo target with a mass of 1998 mg,<br />

enriched to 98.55%, were measured with three HPGe detectors placed<br />

at 90◦ , 127◦ and 150◦ , respectively, to the incident photon beam. We<br />

identified five states with J = 1 in the energy range from 2.8 to 3.6 MeV.<br />

A state at about 2.8 MeV is a candidate for the [2 + ⊗ 3− ] 1− two-phonon<br />

excitation while states with 3.2 to 3.6 MeV may be considered as J π =1 +<br />

states. An analogous experiment was carried out for the nuclide 100Mo and is also being analysed.<br />

⋆ Supported by the DFG under contract no. Do 466/1-1.<br />

HK 10.13 Tue 10:30 Foyer Chemie<br />

Structure studies in odd-A iodine nuclei — •Hariprakash<br />

Sharma 1,2 and P. Banerjee 3 — 1 University of Kalyani, Kalyani-741<br />

235, India — 2 Forschungszentrum Rossendorf, PF 510<strong>11</strong>9, 01314<br />

Dresden, Germany — 3 Saha Institute of Nuclear Physics, 1/AF Bidhan<br />

Nagar,Calcutta-700 064, India


Nuclear Physics Tuesday<br />

Recent experimental data on odd-mass iodine isotopes (A=<strong>11</strong>9-125)<br />

have revealed several interesting structural features. These include the<br />

observation of coexistence of prolate and oblate bands with similar proton<br />

configurations, three quasi-particle bands, signature inversion in yrast<br />

positive-parity bands, shape coexistence. Presently particle rotor model<br />

calculations have been performed for the πh<strong>11</strong>/2, πg9/2 and πg7/2 bands<br />

in 121,123,125 I using an axially symmetric deformed Nilsson potential. The<br />

calculations reproduced the experimental results well and predict a moderate<br />

quadrupole deformation ∼0.2 for these bands.<br />

Work supported by BRNS-DAE under project number 99/37/30 and<br />

BRNS/822.<br />

HK 10.14 Tue 10:30 Foyer Chemie<br />

γ-spectroscopic study of spin-isospin giant resonances in 208Bi —<br />

•A. Krasznahorkay1,2 , A.M. van den Berg2 , S. Brandenburg2 ,<br />

M. Csatlós1 , M. Fujiwara3,4 , V. Hannen2 , M. N. Harakeh2 , J.<br />

Gulyás1 , F. Ihara4 , Z. Máté1 ,andR. Zegers2 — 1Institute of Nuclear<br />

Research (ATOMKI) Debrecen, Hungary — 2KVI, Groningen, The<br />

Netherlands — 3RCNP, Osaka, Japan — 4JAERI, Tokai, Japan<br />

Spin-isospin giant resonances have been excited in 208Bi using the<br />

208 3 Pb( He,t) reaction and the γ-decay of the states has been investigated<br />

in order to get a deeper insight into the microscopic structure of<br />

the spin-dipole (SD) and Gamow-Teller (GT) excitations and Isobaric<br />

Analogue States (IAS).<br />

The experiments were carried out at the KVI using 177 MeV 3He beams from the AGOR superconducting cyclotron. The energy of the<br />

tritium ejectiles was analyzed by the BBSmagnetic specrometer, which<br />

was set at zero degree with respect to the beam direction, while the energy<br />

of the γ-rays was measured with a large NaI detector equipped with<br />

anticoincidence shield.<br />

We could observe transitions for the first time both from the SD and<br />

GT resonances to low-lying states with well defined particle-hole configurations.<br />

HK 10.15 Tue 10:30 Foyer Chemie<br />

Investigation of the 1S0 n-n FSI using the d(d, 2He) 2nreaction-a technique to measure the n-n scattering length — •C. Bäumer1 ,<br />

A.M. van den Berg2 , N. Blasi3 , B. Davids2 , D. Frekers1 , D.<br />

De Frenne4 , E. Grewe1 , M. Hunyadi2 , M.A. de Huu2 , E. Jacobs4<br />

, B. Junk1 , A. Negret4 , S.Rakers1 , R. Schmidt1 ,andH.J.<br />

Wörtche2 — 1Westfälische Wilhelms-Universität Münster, Germany —<br />

2 3 Kernfysisch Versneller Instituut, Groningen, The Netherlands — INFN<br />

Milano, Italy — 4Universiteit Gent, Belgium<br />

The cross section for the d(d, 2He) 2n reaction at Ed=170 MeV and<br />

small momentum transfer has been measured. The experiment was carried<br />

out at the AGOR facility of the KVI (Groningen/NL). The two<br />

correlated protons of the 2He were momentum analyzed with the BBS<br />

magnetic spectrometer and detected in coincidence by the ESN-detector.<br />

An energy resolution of 140 keV was achieved.<br />

The (d, 2He) reaction is used to map out the 2nsystemwithhighpreci sion. In the region of lowest momentum transfer the reaction is mediated<br />

by the Gamow-Teller transition operator which excites the di-neutron<br />

system predominantly into the 1S0 state. In the region of low internal<br />

momentum of the 2n system the shape of the 1S0 final-state interaction<br />

gives quantitative information about the neutron-neutron scattering<br />

length ann.<br />

In this talk preliminary results are presented and the advantages of the<br />

d(d, 2He) 2n reaction over similiar approaches to extract ann are discussed.<br />

HK 10.16 Tue 10:30 Foyer Chemie<br />

Measurement of the M1 and M2 spin-flip strength distribution<br />

in 48 Ca — •N. Blasi 1 , C. Bäumer 2 , A.M. van den Berg 3 ,<br />

R. Bieber 3 , D. Frekers 2 , M. Hagemann 4 , V.M. Hannen 3 , M.N.<br />

Harakeh 3 , J. Heyse 4 , F. Hofmann 5 , M.A. de Huu 3 , E. Jacobs 4 ,<br />

Y. Kalmykov 5 , B.A.M. Krüsemann 3 , P. von Neumann-Cosel 5 ,<br />

S.Rakers 2 , B. Reitz 5 , A. Richter 5 , R. Schmidt 2 , K. Schweda 5 ,<br />

A. Shevchenko 5 ,andH.J. Wörtche 3 — 1 INFN, Milano (It) — 2 IKP,<br />

Münster (De) — 3 KVI, Groningen (Nl) — 4 Universiteit Gent (B) —<br />

5 IKP, Darmstadt (De)<br />

Polarization transfer observables in intermediate energy proton-nucleus<br />

scattering carry important information about details of the nuclear structure,<br />

which in many cases are difficult to extract otherwise. We have<br />

started to measure the transverse spin-flip probability Snn with highest<br />

precision and statistics in 48 Ca scattering in order to disentangle the<br />

isovector spin-M1 and spin-M2 resonances. Of course, for further elucidation<br />

of the dynamics of spin magnetization, (e,e ′ )-measurements are<br />

also required to provide additional clues for a consistent interpretation.<br />

Our first measurements were done on 48 Ca at the focal-plane polarimeter<br />

set-up of the AGOR BBSmagnetic spectrometer at the KVI using<br />

polarized protons at 174 MeV. Spectral resolution of order 100 keV was<br />

achieved, and Snn spectral functions of 250 keV bin size allow a first<br />

insight into details of the nuclear response. The poster will describe<br />

the novel techniques of the measurement and present various results. It<br />

will also describe some of the potentials for future measurements of spin<br />

observables at intermediate energies using the present facility.<br />

HK 10.17 Tue 10:30 Foyer Chemie<br />

Side-feeding pattern investigation in the <strong>11</strong>4Cd( 36S,xn) and<br />

100 48 1,2 1 Mo( Ti,xn) reactions — •A.A. Pasternak , W. Gast , H.M.<br />

Jäger1 , L. Mihailescu1 , R.M. Lieder1 , E.O. Podsvirova1,2 , D.<br />

Bazzacco3 , R. Menegazzo3 , S. Lunardi3 , C. Rossi Alvarez3 ,<br />

G. de Angelis4 , E. Farnea4 , A. Gadea4 , D.R. Napoli4 , T.<br />

Rza¸ca-Urban5 ,andW. Urban5 — 1IKP, FZ Jülich, D-52425 Jülich<br />

— 2A.F. Joffe PTI, RU-194021 St. Petersburg — 3INFN, Sezione di<br />

Padova, I-35131 Padova — 4INFN, LNL, I-35020 Legnaro — 5IEP, Univ. Warsaw, PL-00-681 Warsaw<br />

A new approach for the investigation of continuum γ-ray cascades has<br />

been developed based on Monte-Carlo simulations of entry-state population<br />

distributions and the deexcitation of the entry states. The aim<br />

is to fit simultaneously different types of experimental data, viz. statistical<br />

distributions of γ-ray cascades like γ-multiplicity distributions and<br />

DSA γ-ray lineshapes, being sensitive to the time-distribution of the sidefeeding<br />

cascades. In the deexcitation process stretched E2 bands (including<br />

rotational damping) and statistical E1, M1 and E2 transitions have<br />

been considered. For the near-magic nuclei 142−146Gd also superdeformed<br />

bands (SDB) and magnetic rotational bands have been taken into account.<br />

Fold distributions for the <strong>11</strong>4Cd( 36S,xn) 144,145,146Gd (E=182MeV)<br />

and 100Mo( 48Ti,xn) 143,144,145Gd (E=215 MeV) reactions measured with<br />

GASP have been fitted. For the case of <strong>11</strong>4Cd( 36S,6n) 144Gd side-feeding<br />

time distributions have been calculated with the same fit parameters. Experimental<br />

DSA lineshapes can be reproduced assuming a considerable<br />

number of SDB in the continuum.<br />

HK 10.18 Tue 10:30 Foyer Chemie<br />

Fusion to superheavy nuclei and quasifission in the dinuclear<br />

model — •T.M. Shneidman1,2 , G.G. Adamian1,2,3 , N.V. Antonenko1,2<br />

, and W. Scheid1 — 1Institut für Theoretische Physik der<br />

Justus-Liebig-Universität, D-35392 Giessen, Germany — 2Joint Institute<br />

for Nuclear Research, 141980 Dubna, Russia — 3Institute of Nucear<br />

Physics, Tashkent 702132, Uzbekistan<br />

The dinuclear system concept is used to describe the evaporation<br />

residue cross sections for the production of superheavy nuclei and charge<br />

and mass distributions from quasifission in the same reactions. Th dinuclear<br />

system evolves to fusion by the transfer of nucleons between the<br />

clusters and decays with some probability into fragments with a given<br />

mass and charge asymmetry which is the quasifission. Calculated evaporation<br />

residue cross sections and mass and charge distributions from<br />

quasifission are compared with available data from experiments at JINR<br />

in Dubna and at GSI in Darmstaft.<br />

Supported by BMBF and Volkswagen Stiftung.<br />

HK 10.19 Tue 10:30 Foyer Chemie<br />

Fusion to superheavy nuclei and quasifission in the dinuclear<br />

model — •T.M. Shneidman 1,2 , G.G. Adamian 1,2,3 , N.V. Antonenko<br />

1,2 , and W. Scheid 1 — 1 Institut für Theoretische Physik der<br />

Justus-Liebig-Universität, D-35392 Giessen, Germany — 2 Joint Institute<br />

for Nuclear Research, 141980 Dubna, Russia — 3 Institute of Nucear<br />

Physics, Tashkent 702132, Uzbekistan<br />

The dinuclear system concept is used to describe the evaporation<br />

residue cross sections for the production of superheavy nuclei and charge<br />

and mass distributions from quasifission in the same reactions. The dinuclear<br />

system evolves to fusion by the transfer of nucleons between the<br />

clusters and decays with some probability into fragments with a given<br />

mass and charge asymmetry which is the quasifission. Calculated evaporation<br />

residue cross sections and mass and charge distributions from<br />

quasifission are compared with available data from experiments at JINR<br />

in Dubna and at GSI in Darmstadt.<br />

Supported by BMBF and Volkswagen-Stiftung.


Nuclear Physics Tuesday<br />

HK 10.20 Tue 10:30 Foyer Chemie<br />

M1 and M2 modes in 180 ◦ electron scattering at the S-DA-<br />

LINAC ⋆ — •Y. Kalmykov 1 , A. Dzhioev 2 , N. Goncharova 2 , F.<br />

Hofmann 1 , H. Lenske 3 , P. von Neumann-Cosel 1 , B. Reitz 4 , A.<br />

Richter 1 , and J. Wambach 1 — 1 Institut für Kernphysik, Technische<br />

Universität Darmstadt — 2 Institute of Nuclear Physics, Moscow<br />

State University, Russia — 3 Institut für Theoretische Physik, Universität<br />

Giessen — 4 Jefferson Lab., Newport News, USA<br />

Electron scattering at 180 ◦ is a proven technique for investigating magnetic<br />

excitations of nuclei. Two projects have been performed recently<br />

with the 180 ◦ system at the S-DALINAC: investigations of M1 and M2<br />

transitions in self-conjugate sd-shell nuclei and M2 transitions in the<br />

medium-heavy nucleus 58 Ni. The high experimental sensitivity allows<br />

studies of subtle effects like isospin mixing in isoscalar M1 transitions [1].<br />

The deduced M2 strength distributions in 24 Mg, 28 Si and 32 Sare compared<br />

to a particle core coupling-type of shell model calculation. The<br />

comparison of the extracted M2 strength distribution in 58 Ni and the<br />

spin-dipole strength deduced from a (�p,�p ′ ) experiment at KVI indicates<br />

the presence of large orbital contributions which are interpreted as the<br />

twist mode in nuclei [2]. This finding is corroborated by QPM calculations<br />

including the coupling to complex degrees of freedom.<br />

⋆ Supported by the DFG under contract FOR 272/2-1.<br />

[1] F. Hofmann et al., Phys. Rev. C , in press.<br />

[2] B. Reitz et al., Phys. Lett. B , submitted.<br />

HK 10.21 Tue 10:30 Foyer Chemie<br />

The Neutron Decay Spectrometer ”aspect” — •S .Baeßler 1 , F.<br />

Glück 1 , J. Byrne 2 , M.G.D. van der Grinten 2 , F.J. Hartmann 3 ,<br />

W. Heil 1 , G. Pezoldt 3 ,andO. Zimmer 3 — 1 Institut für Physik,<br />

University of Mainz, Germany — 2 School of Chemistry, Physics and Environmental<br />

Sciences, University of Sussex, Brighton, UK — 3 Physik<br />

Department E18, TU München, Germany<br />

Since recently the upper left element of the Cabbibo-Kobayashi-<br />

Maskawa-Matrix Vud can be determined from neutron decay data alone<br />

with an accuracy which is comparable to the traditional derivation from<br />

nuclear decay data. Both methods agree with each other. However,<br />

both values for Vud, together with Vus and Vub from high energy physics,<br />

violate the unitarity of the Cabbibo-Kobayashi-Maskawa-Matrix by<br />

about 2 to 3 sigma.<br />

The neutron decay data used for this test are the neutron lifetime τn<br />

and the beta asymmetry A. Recent determinations of A are not consistent<br />

with each other. In the standard model measurements of the electron<br />

neutrino correlation coefficient a are equivalent to measurements of A,<br />

so that a new measurement of a can either solve the unitarity problem,<br />

or it can confirm it with entirely different systematics.<br />

In this poster the spectrometer ”aspect” is presented. Its purpose is to<br />

measure a with a relative accuracy of a few parts per thousand which corresponds<br />

to an improvement in A by half an order of magnitude. Details<br />

can be found in [1].<br />

[1] O. Zimmer et al., NIM A 440 (2000) 548<br />

HK 10.22 Tue 10:30 Foyer Chemie<br />

Hyperfinestructure, Isotope- and Isomer- shift of neutron rich<br />

Sn isotopes up to the doubly magic 132-Sn — •Jens Lassen,<br />

Roland Horn, andGerhard Huber for the COMPLIScollaboration<br />

and the CERN-ISOLDE collaboration — Inst. für Physik, EXAKT,<br />

Johannes Gutenberg-Universität<br />

Neutron rich isotopes are produced at CERN-ISOLDE by means of<br />

proton induced fission of 238-U. These isotopes are extraced as an ion<br />

beam and are supplied to the experiments after mass separation. For<br />

neutron rich Sn-isotopes a strong isobaric contamination, e.g. Te and<br />

Cs is present. Therefore COMPLIS, an additional element- and isotopeselective<br />

secondary, pulsed laser ion-source is used for the spectroscopy<br />

of neutron-rich Sn isotopes [1]. COMPLIS is based on inplantation of<br />

the primary ISOLDE ion beam into a grafite target, subsequent laserdesorption<br />

followed by multistep resonant laser-ionization, and time-offlight<br />

mass-spectrometry.<br />

Optical isotope shift and hyperfine structure are determined by scanning<br />

the first, resonant excitation laser frequency. With COMPLISthe<br />

isotope shift and hyperfine structure of the Sn isotopes and spin isomers<br />

from 125-Sn to the doubly magic 132-Sn were investigated spectroscopically<br />

[2]. First results of these measurements will be presented.<br />

[1] J. Sauvage et al., Hyperf. Interact. 129 (2000) 303-317<br />

[2] B. Rouissiere et. al., IPN Orsay Report DR 01 017<br />

HK 10.23 Tue 10:30 Foyer Chemie<br />

A 3 He Magnetometer to Improve the Sensitivity of the Detection<br />

of an Electric Dipole Moment of the Neutron — •S.<br />

Baeßler 1 , W. Heil 1 , Y. Borisov 2 , V. Lobashev 2 , W. Kilian 3 , H.<br />

Rinneberg 3 , P. Seifert 3 ,andY. Sobolev 3 — 1 Institut für Physik,<br />

Mainz, Germany — 2 PNPI Gatchina, Russia — 3 PTB Berlin, Germany<br />

In the near future new powerful sources of ultracold neutrons (UCN)<br />

will be available. They enable us to improve the sensitivity of experiments<br />

searching for a (static) electric dipole moment of the neutron<br />

(EDM) to be about several 10 −28 e·cm. The main sources of systematic<br />

uncertainties are temporal and spatial fluctuations of the magnetic field<br />

which could be correlated with the electrical field and produce an apparent<br />

EDM. A precondition for the above mentioned EDM experiment is<br />

a magnetometer capable of recording and corrrecting for the magnetic<br />

field false effect precisely.<br />

A prototype of a 3 He magnetometer will be decribed. If its output<br />

signal is integrated over periods of about 100 seconds, this is a typical<br />

UCN storage time, the magnetometer is capable of recording magnetic<br />

field fluctuations in the order of several fT in an EDM appartus corresponding<br />

to an uncertainty of the EDM in the above mentioned range.<br />

HK 10.24 Tue 10:30 Foyer Chemie<br />

First measurement of β-decay properties of the proton drip-line<br />

nucleus 60 Ga — •C. Mazzocchi for the GSI-ISOL collaboration —<br />

GSI, Darmstadt, Germany<br />

Nuclei with N�Z between the double shell closures 56 Ni and 100 Snare<br />

of particular interest due to their special nuclear-structure features, including<br />

shape coexistence, the influence of the proton dripline, and the<br />

relevance to the astrophysical rp process. We used the 28 Si( 36 Ar,p3n) reaction<br />

and the ISOL facility of GSI Darmstadt to investigate for the first<br />

time the β decay of 60 Ga [1]. Beta-delayed γ rays were studied by means<br />

of an array of a plastic scintillator and germanium detectors, whereas<br />

charged particles were recorded in silicon-detector telescopes. The halflife<br />

(T1/2) was found to be 70±15 ms. In analogy to the mirror nucleus<br />

60 Cu, spin and parity of 2 + were assigned to the β-decaying 60 Ga state.<br />

Based on the βγγ coincidence data, several 60 Zn levels were identified,<br />

including the isobaric analogue state at 4851.9±0.7 keV and a hitherto<br />

unobserved (2 + 2) state at 2558.7±0.5 keV. The latter lies higher than<br />

in 62−66 Zn, which may reflect the SU(3) structure beyond 56 Ni. By using<br />

Coulomb-displacement energy systematics, a semi-empirical proton<br />

separation energy (Sp) of40±70 keV was derived for 60 Ga. The experimental<br />

results on T1/2, Sp and the structure of 60 Zn levels will be<br />

dicussed in comparison with theoretical predictions, in particular those<br />

obtained from large-scale shell model calculations. Due to the small Sp<br />

value of 60 Ga, only a small fraction of the rp process flow runs through<br />

this nucleus, while its dominant part involves the β decay of 60 Zn.<br />

[1] C. Mazzocchi et al., Eur. Phys. J. A 12, 269 (2001).<br />

HK 10.25 Tue 10:30 Foyer Chemie<br />

Investigation of the 208 Pb(γ,γ ′ ) Reaction Near and Above the<br />

Neutron Emission Threshold* — T. Hartmann, Y. Kalmykov,<br />

P. von Neumann-Cosel, A. Richter, N. Ryezayeva, •A. Shevchenko,<br />

S.Volz, J. Wambach, andA. Zilges — Institut für Kernphysik,<br />

Technische Universität Darmstadt, Germany<br />

A highly-sensitive study of E1, M1 and E2 excitations in 208 Pb at<br />

energies close to the neutron threshold is presented. The resonant photon<br />

scattering experiment with an endpoint energy of 9 MeV has been<br />

performed at the S-DALINAC using two HPGe detectors with 100% efficiency.<br />

The experiment extends previous studies [1] to higher excitation<br />

energies. A detailed picture of the fine structure of the dipole strength<br />

near and above the neutron emission threshold in 208 Pb is obtained. The<br />

deduced E1 strength distribution is compared to microscopic QPM calculations<br />

including the coupling to complex degrees of freedom. The<br />

main low-lying E1 strength is concentrated in two regions near 5.5 and<br />

7.3 MeV. The latter one complies with RRPA predictions for the pygmy<br />

dipole resonance [2].<br />

[1] J. Enders et al., Phys. Lett. B486 (2000) 15.<br />

[2] D. Vretenar et. al., Phys. Rev. C63 (2001) 047301.<br />

* Supported by the DFG under contract FOR 272/2-1.


Nuclear Physics Tuesday<br />

HK 10.26 Tue 10:30 Foyer Chemie<br />

Investigation of Electric Dipole Resonances in N = 82 nuclei ∗ —<br />

•S .Volz, M. Babilon, T. Hartmann, P. Mohr, K. Vogt, andA.<br />

Zilges — Technische Universität Darmstadt, Institut für Kernphysik,<br />

Darmstadt, Germany<br />

Collective electric dipole excitations in atomic nuclei require a breaking<br />

of the proton-neutron symmetry. In nuclei with neutron excess a<br />

so-called Pygmy Dipole Resonance (PDR) has been predicted around 7<br />

MeV which is caused by an oscillation of a neutron crust against a protonneutron<br />

core. Whereas some experimental findings in Ca [1], Sn [2] and<br />

Pb [3] nuclei seem to support such a picture, systematic evidence is still<br />

missing. For the N=82 nuclei 138 Ba, 140 Ce and 144 Sm Nuclear Resonance<br />

Fluorescence (γ,γ ′ ) experiments [4] have been performed in the energy<br />

range between 3 and 10 MeV at the Darmstadt S-DALINAC accelerator.<br />

A resonance-like structure around 7 MeV has been observed in all three<br />

nuclei and will be discussed in the context of various model predictions.<br />

∗ supported by the DFG (contract Zi 510/2-1 and FOR 272/2-1).<br />

[1] T. Hartmann et al., Phys. Rev. Lett. 85, 274 (2000)<br />

[2] K. Govaert et al., Phys.Rev.C57, 2229 (1997)<br />

[3] T. Chapuran et al., Phys.Rev.C22, 1420 (1980)<br />

[4] U. Kneissl et al., Prog. Part. Nucl. Phys. 37, 349 (1996)<br />

HK 10.27 Tue 10:30 Foyer Chemie<br />

Electric dipole strength in medium mass nuclei ∗ — •T. Hartmann<br />

1 , M. Babilon 1 , C. W. Beausang 2 , J. R. Cooper 2 , C. Hutter<br />

1 , R. Krücken 2 , P. Mohr 1 ,andA. Zilges 1 — 1 Institut für Kernphysik,<br />

Schlossgartenstr.9, 64289 Darmstadt — 2 Physics Department -<br />

WNSL, Yale University, New Haven, Connecticut 06520-8124<br />

Recent photon scattering (γ,γ ′ ) studies focused on low lying collective<br />

electric dipole strength in medium mass nuclei [1,2]. Electric dipole<br />

transitions are signs for breaking the p-n-symmetry in a nucleus. Possible<br />

explanations are a coupling of two vibrational phonons or a vibration of a<br />

neutron skin against an inert core. For an understanding of the origin of<br />

the observed E1 strength it is nessessary to gain information about the<br />

detailed γ-decay pattern. We performed a 48 Ca(p,p’γ) 48 Ca test experiment<br />

at the YRAST-Ball at Yale University to find out if an excitation<br />

with hadronic probes allow to detect weak decay branches.<br />

∗ Supported by DFG (Zi510/2-1 and FOR272/2-1) and by the US DOE<br />

(DE-FG02-91ER-40609).<br />

[1] T. Hartmann, J. Enders, P. Mohr, K. Vogt, S. Volz, and A. Zilges,<br />

Phys.Rev.Lett.85, 274 (2000); Erratum Phys. Rev. Lett. 86, 4981<br />

(2001).<br />

[2] T. Hartmann, J. Enders, P. Mohr, K. Vogt, S. Volz, and A. Zilges,<br />

Phys. Rev. C, in press.<br />

HK 10.28 Tue 10:30 Foyer Chemie<br />

Fine Structure of the Isoscalar Giant Quadrupole Resonance<br />

in Closed-Shell Nuclei from High-Resolution Inelastic Proton<br />

Scattering* — J. Carter 1 , R. Fearick 2 , S . Förtsch 3 , Y. Fujita<br />

4 , D. Lacroix 5 , J. Lawrie 3 , Y. Kalmykov 6 , S. Mukherjee<br />

3 , R. Newman 3 , P. von Neumann-Cosel 6 , V. Ponomarev 6 ,<br />

A. Richter 6 , •A. Shevchenko 6 , F. Smit 3 ,andJ. Wambach 6 —<br />

1 Physics Department, University of the Witwatersrand, Johannesburg,<br />

South Africa — 2 Physics Department, University of Cape Town, South<br />

Africa — 3 National Accelerator Centre (NAC), Faure, South Africa —<br />

4 University of Osaka, Japan — 5 LPC Caen — 6 Institut für Kernphysik,<br />

Technische Universität Darmstadt, Germany<br />

The fine structure of giant resonances carries important information on<br />

the coherent motion of nucleons in collective modes of excitations and on<br />

the role of internal and external mixing for the damping.This is reflected<br />

in characteristic energy scales which can be extracted using a wavelet<br />

analysis [1]. After successful application to 208 Pb new experiments at<br />

NAC with high-resolution (35-50 keV) inelastic proton scattering on a<br />

variety of closed-shell nuclei were carried out under kinematical conditions<br />

favoring excitation of the ISGQR. They show that the appearence<br />

of fine structure is a global phenomenon. First results and an interpretation<br />

in comparison to microscopic QPM calculations including coupling<br />

to 2p-2h states are presented.<br />

[1] D. Lacroix et al., Phys. Lett. B479 (2000) 15<br />

*Supported by the DFG under contract FOR 272/2-1 and by the<br />

South-African FRD.<br />

HK 10.29 Tue 10:30 Foyer Chemie<br />

Decay spectroscopy of the N = Z +1 nucleus 79 Y — •J. Döring<br />

for the GSI-ISOL collaboration — GSI, Darmstadt, Germany<br />

In the mass 80 region, the occupation of the intruder d5/2 and high-j<br />

g9/2 orbitals in the proton-rich odd-mass strontium and yttrium nuclei<br />

drives these nuclei to large prolate deformation which is stabilised by the<br />

Z = 38 gap in the single-particle energies. This gives rise to low-lying<br />

collective states which may be populated in β decay. To search for such<br />

states, the β + /EC ground-state decay of the odd-proton N = Z +1nucleus<br />

79 Y has been studied. The 79 Y nuclei were produced by using the<br />

46 Ti( 40 Ca,αp2n) reaction and investigated as mass-separated and chemically<br />

clean beams of 79 Y 19 F + ions by means of the ISOL facility of GSI<br />

Darmstadt. The fluorination method yielded a very efficient suppression<br />

of unwanted reaction products.<br />

Positrons and β-delayed γ rays were measured by using a plasticscintillator<br />

and composite germanium detectors, respectively. The known<br />

79 Y decay scheme [1,2] was extended by about 20 new γ transitions based<br />

on β-γ-γ coincidence relations. Some of the 79 Sr states were identified<br />

to form a rotational-like decay sequence feeding into the 1/2 + [431]<br />

Nilsson bandhead state at 375 keV which is known from an in-beam<br />

study [3]. Quasiparticle-triaxial-rotor calculations indicate that a welldeformed<br />

prolate shape is necessary to reproduce the experimental excitation<br />

energies of this positive-parity sequence.<br />

[1] H. Grawe et al., Z. Phys. A 341, 247 (1992).<br />

[2] J. Mukai et al., Z. Phys. A 342, 393 (1992).<br />

[3] S. Suematsu et al., Kyushu Univ., Tandem Acc. Lab. (1991) p. 72.<br />

HK 10.30 Tue 10:30 Foyer Chemie<br />

Three-Nucleon Forces in Elastic Proton-Deuteron Scattering<br />

— •Karsten Ermisch 1 , A.M. van den Berg 1 , R. Bieber 1 , W.<br />

Glöckle 2 , J. Golak 3 , M. Hagemann 4 , V.M. Hannen 1 , M.N.<br />

Harakeh 1 , M.A. de Huu 1 , N. Kalantar-Nayestanaki 1 , H. Kamada<br />

3 , M. Kiˇs 1 , J. Kuro´s- ˙ Zo̷lnierczuk 3 , M. Mahjour-Shafiei 1 ,<br />

A. Micherdzińska 5 , A. Nogga 2 , R. Skibiński 3 , H. Wita̷la 3 ,and<br />

H.J. Wörtche 1 — 1 Kernfysisch Versneller Instituut, Groningen, The<br />

Netherlands — 2 Institut für Theoretische Physik II, Bochum, Germany<br />

— 3 Institute of Physics, Jagellonian University, Cracow, Poland —<br />

4 Department of Subatomic and Radiation Physics, Gent, Belgium —<br />

5 Institute of Physics, University of Silesia, Katowice, Poland<br />

In the recent years, high-quality nucleon-nucleon potentials have been<br />

developed, which describe the current NN database with a χ 2 ≈ 1. A<br />

question of interest is now, whether these modern nucleon-nucleon potentials<br />

are also adequate to describe three-nucleon systems and to which<br />

extent three-nucleon forces have to be taken into account. Possible observables<br />

which are sensitive to three-nucleon forces are the differential<br />

cross section and the vector analyzing power of elastic proton-deuteron<br />

scattering. To make a systematic investigation of three-nucleon force effects,<br />

both observables have been measured at KVI at several energies<br />

between 100 MeV and 200 MeV for a center-of-mass angular region between<br />

30 ◦ and 170 ◦ . In this contribution, the experimental techniques<br />

used for the measurements along with the preliminary results of the measurements<br />

will be presented.<br />

HK 10.31 Tue 10:30 Foyer Chemie<br />

Spectroscopy of 193 Os, 194 Ir and 196 Pt — •Hans-Friedrich<br />

Wirth 1 , Yvonne Eisermann 1 , Ralf Hertenberger 1 , Gerhard<br />

Graw 1 , Sandra Christen 2 , Oliver Möller 2 , Dimitar Tonev 2 ,<br />

and Jan Jolie 2 — 1 Sektion Physik, LMU München — 2 IKP, Universität<br />

zu Köln<br />

One of the challenges of nuclear spectroscopy is to what an extend the<br />

complex spectra of heavy nuclei result from a restricted number of relevant<br />

degrees of freedom. Especially interesting are nuclei where because<br />

of an assumed specific bosonic and fermionic structure supersymmetry<br />

as a dynamical symmetry may relate the spectra of even-even, even-odd,<br />

odd-even and odd-odd nuclei, as observed for 194 Pt, 195 Au, 195 Pt and<br />

196 Au at low excitation energies, see A. Metz et al., Phys. Rev. Lett. 83,<br />

1542 (1999) and Phys. Rev. C61, 064313 (2000) and J. Groeger et al.,<br />

Phys. Rev. C62, 064304 (2000). To confirm part of the tentative assignments<br />

made for 196 Au and to study nearby nuclei, we measured at the<br />

Munich Q3D spectrograph ( � d,α) to 196 Au and 194 Ir and ( � d,p) to 193 Os.<br />

A new Stern-Gerlach polarised source provided 2 Mikroamp. beam on<br />

target, and with a new detector system we obtain at high countrates<br />

excellent resolution in this very dense spectra and thus unique determination<br />

of excitation energies, spin and parity. Results and experimental<br />

techniques will be discussed.<br />

Work supported in part by the DFG under C4-Gr894/2-3.


Nuclear Physics Tuesday<br />

HK 10.32 Tue 10:30 Foyer Chemie<br />

Light charged particle emission in thermal neutron-induced fission<br />

of 252 Cf ∗ — •S .Oberstedt 1,2 , A. Oberstedt 3 , D. Rochman 1 ,<br />

F. Gönnenwein 4 , I. Tsekhanovitsch 1 , J. Becker 3,5 , J. O. Denschlag<br />

6 , H. Bax 2 , F.-J. Hambsch 2 , and S. Raman 7 — 1 Institut<br />

Laue-Langevin, 6 rue Jules Horowitz, F-38042 Grenoble — 2 EC-JRC<br />

Institute for Reference Materials and Measurements (IRMM), B-2440<br />

Geel — 3 Institutionen för Naturvetenskap, Örebro Universitet, SE-70182<br />

Örebro — 4 Eberhard-Karls Universität Tübingen, D-72076 Tübingen —<br />

5 FB Physik, Bergische Universität GH Wuppertal, D-42097 Wuppertal<br />

— 6 Institut f. Kernchemie, Universität Mainz, D-55099 Mainz — 7 Oak<br />

Ridge National Laboratory, Oak Ridge, Tennessee 37831<br />

High resolution spectral measurements of light charged particles (LCP)<br />

emitted during thermal neutron-induced fission of 252 Cf ∗ (E ∗ =6.2MeV)<br />

have been performed with the recoil mass-separator LOHENGRIN. LCP<br />

emission yields, their mean kinetic energies and widths have been obtained<br />

for nuclear charges Z ≥ 2. For this compound nuclear system<br />

isotopic data for LCPs with Z ≥ 3 are presented for the first time. Emission<br />

of LCPs with masses up to A = 36 has been observed, the heaviest<br />

ternary particle measured so far in low-energy fission.<br />

HK 10.33 Tue 10:30 Foyer Chemie<br />

233 Pa(n,f) cross section for accelerator driven systems —<br />

•Andreas Oberstedt 1 , Birger Fogelberg 2 , Franz-Josef<br />

Hambsch 3 , Stephan Oberstedt 3 , Elisabet Ramström 1,2 ,<br />

and Fredrik Tovesson 1,3 — 1 Dept. of Natural Sciences, Örebro<br />

University, SE-70182 Örebro — 2 Dept. of Radiation Science, Uppsala<br />

University, SE-6<strong>11</strong>82 Nyköping — 3 EU-JRC IRMM, B-2440 Geel<br />

The fission cross section of 233 Pa is of particular interest for reactiv-<br />

ity calculations in accelerator driven systems (ADS) for nuclear power<br />

production involving 232 Th- 233 U fuel cycles, since protactinium plays a<br />

keyrole as an intermediate nucleus in the formation of the fuel 233 U. Neither<br />

previously known experimental values nor the fission cross section<br />

data in evaluated libraries (ENDF, JENDL) above the threshold were<br />

sufficiently accurate to meet the requirements of the IAEA. Despite the<br />

very short half-life of 233 Pa of T1/2=27.0 d and the corresponding high<br />

β-activity, we recently succeeded for the first time to measure directly<br />

the fission cross section for neutron energies between 1.0 and 6.0 MeV<br />

[1].<br />

[1] F. Tovesson, F.-J. Hambsch, A. Oberstedt, B. Fogelberg, E. Ramström,<br />

S. Oberstedt, Phys. Rev. Lett. (in press)<br />

HK 10.34 Tue 10:30 Foyer Chemie<br />

Dilepton detection in the Plastic Ball detector at KVI —<br />

•M. Kiˇs 1 , H. Amir Ahmadi 1 , J.C.S. Bacelar 1 , R. Castelijns 1 ,<br />

R. Čaplar2 , K. Ermisch 1 , I. Gaˇsparić 2 , M.N. Harakeh 1 , N.<br />

Kalantar-Nayestanaki 1 , H. Löhner 1 ,andM. Mahjour-Shafiei 1<br />

— 1 Kernfysisch Versneller Instituut, Groningen, The Netherlands —<br />

2 Institut Rugjer Boˇsković, Zagreb, Croatia<br />

The Plastic Ball detector, a 4π array with approximately 550 plastic<br />

phoswitch scintillators, has been coupled with the SALAD detector at<br />

KVI. It was used for the detection of electron-positron pairs originating<br />

from virtual bremsstrahlung production in a proton-proton scattering at<br />

190 MeV.The Plastic Ball covers about 77% of the 4π solid angle which<br />

together with the good particle identification properties of the phoswich<br />

detector modules leads to much better conditions for the dilepton detection<br />

as compared with previous experiment. The preliminary results of<br />

the ongoing work on the data analysis will be presented.<br />

HK<strong>11</strong> Poster Session: Nuclear and Particle Astrophysics<br />

Time: Tuesday 10:30–12:45 Room: Foyer Chemie<br />

HK <strong>11</strong>.1 Tue 10:30 Foyer Chemie<br />

Quark matter in heavy-ion collisions and compact stars —<br />

•David Blaschke 1,2 , Gerhard Burau 1 , Christian Gocke 1 ,<br />

Hovik Grigorian 1,3 , Yuri Kalinovsky 1,4 , and Gevorg<br />

Poghosyan 1,3 — 1 Fachbereich Physik, Universitaet Rostock —<br />

2 Bogoliubov Lab. for Theor. Physics, JINR Dubna — 3 Department of<br />

Physics, Yerevan State University — 4 Lab. for Information Technologies,<br />

JINR Dubna<br />

A nonlocal, chiral quark model approach is developed at finite temperature<br />

and density for the description of the chiral symmetry restoration<br />

and deconfinement phase transition as well as for the occurence of a color<br />

superconducting phase with a nonvanishing diquark condensate. The<br />

phase diagram as well as in-medium modification of hadronic properties<br />

are given. Special emphasis is on the description of the Mott effect for<br />

mesons at the deconfinement transition. Signals for this phase transition<br />

in heavy-ion collisions and in compact stars are derived. The anomalous<br />

J/psi suppression effect as observed by the CERN NA50 experiment is<br />

discussed as a Mott effect for D-meson states with consequences for the<br />

kinetics of heavy flavors (charmlike enhancement). A clustering of the<br />

population of compact stars at the critical line dividing hadronic star<br />

from quark core star configurations in the phase diagram (angular velocity<br />

vs. baryon number) of accreting compact stars in low-mass X-ray<br />

binaries is suggested as a signal for deconfinement in their interior. Consequences<br />

of the color superconductivity transition for explosive phenomena<br />

and for the cooling evolution of protoneutron stars are demonstrated.<br />

HK <strong>11</strong>.2 Tue 10:30 Foyer Chemie<br />

Hyperon ordering in neutron star matter — •L. Mornas 1 , M.A.<br />

Perez Garcia 1 , J. Diaz Alonso 1,2 , J.P. Suarez Curieses 1 ,and<br />

N. Corte Rodriguez 1 — 1 Departamento de Fisica, Universidad de<br />

Oviedo, E-33007, Oviedo, Asturias, Spain — 2 Observatoire de Paris,<br />

DARC (UMR 8629 CNRS) F-92190 Meudon, France<br />

In a simplified quantum hadrodynamics model where neutrons, protons<br />

and Λ hyperons interact via the exchange of σ and ω mesons, we<br />

compare the energy of the usually assumed uniform phase of neutron<br />

star matter, to a configuration in which di-lambda pairs immersed in an<br />

uniform nucleon fluid are localized on the nodes of a regular lattice. The<br />

confining potential is calculated self consistently under the condition of<br />

β-equilibrium. We were able to obtain stable ordered phases for some<br />

reasonable values of the model parameters. The equation of state can be<br />

considerably softened if such a transition takes place. This could in turn<br />

have important consequences on the structure and cooling of neutron<br />

stars.<br />

[1] M.A. Pérez García, et al.,Nucl. Phys. A in press<br />

HK <strong>11</strong>.3 Tue 10:30 Foyer Chemie<br />

The electro-magnetic design of the KATRIN prespectrometer<br />

— •Björn Flatt for the KATRIN collaboration — Johannes Gutenberg<br />

Universität Mainz, 55099 Mainz<br />

The KArlsruhe TRItium Neutrino experiment KATRIN is a planned<br />

next generation tritium beta decay experiment with sub-eV sensitivity<br />

on the electron neutrino mass. In order to determine the neutrino mass<br />

from the beta spectrum its endpoint region has to be analysed with a<br />

high precision. A MAC-E-Filter with 1 eV energy resolution will be used<br />

as main spectrometer. A second MAC-E-Filter will be installed as a prefilter<br />

between β electron source and main spectrometer. The purpose of<br />

this so-called pre-spectrometer is to prevent the main, low energy, part<br />

of the β electrons from proceeding to the main spectrometer, where these<br />

electrons could become a major background source. The new design of<br />

the electrode system and the magnets of the pre-spectrometer follows<br />

the requirement of a low trapping probability for charged particles. This<br />

configuration, which is under construction at the FZ Karlsruhe, is presented.<br />

Sponsored by BMBF under FKZ 05CK1UM1/5<br />

HK <strong>11</strong>.4 Tue 10:30 Foyer Chemie<br />

Particle storage in MAC–E–Filters — Beatrix Müller,<br />

•Thomas Thümmler, Jochen Bonn, Beate Bornschein, Lutz<br />

Bornschein, Christian Weinheimer, Jean–Pierre Schall,<br />

Björn Flatt, Fernando Conda, Christine Kraus, andErnst<br />

W. Otten — Institut für Physik, Johannes Gutenberg–Universität<br />

55099 Mainz<br />

Spectrometers of the Magnetic–Adiabatic–Collimator type are used to<br />

examine the endpoint region of the tritium /beta–decay spectrum. Due<br />

to the low count rate of the signal a low background count rate is crucial<br />

for the sensitivity on the neutrino mass especially for the planned<br />

KArlsruhe–TRItium–Neutrino experiment. The magnetic and electric<br />

field configuration of MAC–E–Filter leads to trapping conditions for<br />

charged particles, which are suspected to be the main reason for back-


Nuclear Physics Tuesday<br />

ground events. Our simulations show that trapping conditions can be<br />

destroyed by use of an electric dipole field which is perpendicular to the<br />

magnetic field lines. First experimental studies are under way at the<br />

Mainz neutrino mass experiment.<br />

Work sponsored by BMBF: FKZ06Mz866I/5.<br />

HK <strong>11</strong>.5 Tue 10:30 Foyer Chemie<br />

Interferenzeffekt über einen weiten Energiebereich in der<br />

6 Li(d,α) 4 He-Reaktion — •Götz Ruprecht, Daniel Bemmerer,<br />

Konrad Czerski und Peter Heide — Technische Univerität Berlin<br />

Eigene und Meßdaten anderer Gruppen für die Reaktion 6 Li(d,α) 4 He<br />

im astrophysikalisch relevanten Energiebereich wurden mit Berechnungen<br />

verglichen. Es stellte sich heraus, daß eine starke Interferenz zwischen<br />

einer breiten, knapp unterschwelligen 2 + -Resonanz und dem direkten<br />

Reaktionsanteil auftritt. Die Phasen beider Beiträge haben eine<br />

ähnliche Energieabhängigkeit, so daß die Interferenz auch weit außerhalb<br />

des eigentlichen Resonanzgebietes erhalten bleibt. Zur Berechnung<br />

reicht nicht, wie bei schmalen Resonanzen üblich (s. z.B. [1]), das Hinzufügen<br />

eines Interferenzterms, der lediglich die Resonanzphase enthält.<br />

Vielmehr müssen beide Anteile komplett berechnet und kohärent addiert<br />

werden. Dazu wurde der direkte Anteil im Rahmen der DWBA-Theorie<br />

[2] mit Nullreichweitennäherung und der Resonanzterm in der Parametrisierung<br />

von [3] berechnet. Die numerischen Rechnungen basieren auf<br />

dem Quellcode des Programms DWUCK4 von [4]. Als Ergebnis zeigt<br />

sich eine sehr gute Übereinstimung sowohl der S-Faktoren als auch der<br />

Winkelverteilungen über einen weiten Energiebereich.<br />

[1] T. Rauscher und G. Raimann, Phys. Rev. C 53(1996)53<br />

[2]G.R.Satchler,Nucl. Phys. 55(1964)1<br />

[3] A. M. Lane und R. G. Thomas, Rev. Mod. Phys. 30(1958) 257<br />

[4] http://spot.colorado.edu/˜kunz<br />

HK12 Poster Session: Electromagentic and Hadronic Probes<br />

Time: Tuesday 10:30–12:45 Room: Foyer Chemie<br />

HK 12.1 Tue 10:30 Foyer Chemie<br />

Studying Charmed Mesons in Matter — •Olaf N. Hartmann<br />

for the Antiproton Physics Study Group collaboration — Gesellschaft für<br />

Schwerionenforschung, Darmstadt<br />

The proposed antiproton facility at GSI [1] with beam momenta up<br />

to 15 GeV/c will enable investigations of the interaction between particles<br />

containing hidden and open charm with nucleons and nuclei. These<br />

studies will address questions related to the connection of hadron masses<br />

and the spontaneously broken chiral symmetry in QCD. Chiral symmetry<br />

is expected to be partially restored in a hot and/or dense nuclear<br />

environment, leading to observable modifications of hadronic properties<br />

[2,3].<br />

Recent calculations [4] for the D + and D − mesons predict a mass split<br />

of the order of 50 MeV and large enhancements of the near threshold<br />

production cross section. Another example is the possibility to do comprehensive<br />

measurements of the J/ψ-N cross section. Detection of the<br />

weakly decaying charmed hadrons requires that secondary vertices can<br />

be reconstructed with a resolution of about 100 µm. Therefore, a silicon<br />

pixel based microvertex detector is a central component of the detector<br />

concept for the proposed antiproton ring at GSI. The physics potential<br />

and first simulation results on this detector will be presented.<br />

[1] http://www.gsi.de/GSI-Future/cdr/<br />

[2] T. Yamazaki et.al., Phys.Lett.B 418(1998)246<br />

[3] R. Barth et.al., Phys.Rev.Lett 78(1997)4007<br />

[4] A. Hayashigaki, Phys.Lett.B 487(2000)96<br />

HK 12.2 Tue 10:30 Foyer Chemie<br />

Measurement off Virtual Compton scattering off the proton —<br />

•D. Trnka for the TAPS- and A2 collaboration — II. Physikalisches<br />

Institut, Heinrich-Buff-Ring 16, 35392 Giessen<br />

Virtual Compton scattering (VCS), γp→ e + e − p, provides information<br />

on the nucleon electromagnetic form factor and therefore allows to<br />

investigate electromagnetic properties of the proton and its resonances<br />

(e.g.,∆ and D13). Even though a large fraction of the VCScross section<br />

is determined by the Bethle-Heitler (BH) process, there are kinematical<br />

regimes where BH is suppressed so that VCSoff the proton can be studied.<br />

The γp→ e + e − p reaction was investigated at the MAMI tagged<br />

photon beam facility. The lepton pairs were detected with the photon<br />

spectrometer TAPS. Preliminary results will be presented and compared<br />

to theoretical predictions [1].<br />

[1] A. Yu.Korchin and O. Scholten , Phys. Rev. C 62, 015205 (2000)<br />

HK 12.3 Tue 10:30 Foyer Chemie<br />

Research with cooled Antiprotons — •H. Orth 1 , T. Barnes 2 ,<br />

D. Bettoni 3 , R. Calabrese 3 , W. Cassing 4 , M. Düren 4 , S.<br />

Ganzhur 5 , A. Gillitzer 6 , O. Hartmann 1 , V. Hejny 6 , P.<br />

Kienle 7 , H. Koch 5 , W. Kühn 4 , U. Lynen 1 , R. Meier 8 , V.<br />

Metag 4 , P. Moskal 6 , S . Paul 7 , K. Peters 5 , J. Pochodzalla 9 ,<br />

J. Ritman 4 , M. Sapojnikov 10 , L. Schmitt 7 , C. Schwarz 1 , K.<br />

Seth <strong>11</strong> , N. Vlassov 10 , W. Weise 7 , and U. Wiedner 12 — 1 GSI,<br />

Darmstadt — 2 Univ. Tenn., Knoxville — 3 INFN, Ferrara — 4 Univ.<br />

Gießen — 5 Univ. Bochum — 6 FZ Jülich — 7 TU München — 8 Univ.<br />

Tübingen — 9 Univ. Mainz — 10 JINP, Dubna — <strong>11</strong> Northwestern Univ.,<br />

Evanston — 12 ISV, Uppsala<br />

GSI has proposed to build a new international accelerator facility for<br />

beams of ions and antiprotons. One of the main topics will be investigations<br />

into the structure of hadrons and their interaction with the<br />

nuclear medium using cooled antiproton beams of unprecedented quality<br />

and intensity in the momentum range of 1.5 to 15 GeV/c stored in the<br />

High Energy Storage Ring (HESR). The physics program consists of the<br />

following research directions: Charmonium spectroscopy: precision measurements<br />

of mass, width, and decay branches of all charmonium states;<br />

establishment of the existence of QCD-predicted gluonic excitation of<br />

hadrons (i.e. hybrids and glueballs) in the charmonium mass range (3-5<br />

GeV); search for modifications to the properties of charm mesons in the<br />

nuclear environment; study of single and double hypernuclei by precision<br />

γ-ray spectroscopy. Furthermore, many additional interesting physics<br />

topics can be addressed with increasing luminosity of the facility.<br />

HK 12.4 Tue 10:30 Foyer Chemie<br />

Charmonium Spectroscopy with Antiprotons — •J. Ritman for<br />

the Antiproton Physics Study Group collaboration — II. Phys. Inst.,<br />

Gießen<br />

GSI-Darmstadt has recently completed a conceptual design report for<br />

a major new international facility[1]. One of the main components is a<br />

storage ring that allows high luminosity in-ring experiments with cooled<br />

antiprotons between 1.5 and 15 GeV/c. A multi-faceted physics program<br />

into the non-perturbative behavior of Quantum Chromodynamics is envisioned<br />

using ¯p induced reactions. This program includes the attempt<br />

to develop a quantitative understanding of quark confinement, which is a<br />

unique feature of QCD. A promising method to learn more about quark<br />

confinement is to study the excitation spectrum of a bound charm anticharm<br />

quark pair. This system is heavy enough to apply perturbative<br />

methods, and deviations can be attributed to confinement effects. The<br />

physics potential of measuring charmonium states in ¯pp reactions will be<br />

presented together with detailed simulations of the proposed detector’s<br />

performance. Specific emphasis is given to the identification of leptons<br />

(e ± ,µ ± ) with high transverse momentum that are used to identify the<br />

charmonium states.<br />

[1] Conceptual Design Report: http://www.gsi.de/GSI-Future<br />

HK 12.5 Tue 10:30 Foyer Chemie<br />

Optional Extension of the Physics Program with Antiprotons at<br />

GSI — •Sergey Ganzhur for the AntiprotoPhysics Study Group collaboration<br />

— Ruhr UniversitäBochum, Institut für Experimentalphysik I<br />

A major new facility has been proposed at GSI-Darmstadt, which covers<br />

a wide physics program [1]. One of the major components of the<br />

upgrade is a High Energy Storage Ring (HESR) for cooled antiprotons<br />

(1.5–15GeV/c) enabling experiments with a luminosity as high as<br />

about 2 × 10 32 cm −2 s −1 . The first measurements will deal with charmonium<br />

physics, the search for spin-exotic states, medium modification of<br />

hadrons in nuclei, and spectroscopy of double hypernuclei. In this presentation<br />

a possible extension of this program including the measurement of<br />

CP-violation in the charm and hyperon sectors, D-meson spectroscopy<br />

and the study of the dynamics of quarks and gluons in the nucleon and<br />

other hadrons using the inverted Deeply Virtual Compton Scattering<br />

(DVCS) is reported.<br />

This poster will present the physics case and detailed GEANT4 simula-


Nuclear Physics Tuesday<br />

tions of the proposed detector system. Particular emphasis will be placed<br />

on the performance of the central tracking detectors which is a crucial<br />

factor for the feasibility of these extentions to the antiproton physics<br />

program.<br />

[1] Conceptual Design Report: http://www.gsi.de/GSI-Future<br />

HK 12.6 Tue 10:30 Foyer Chemie<br />

The Search for Excited Glue with Antiproton Beams — •C.<br />

Schwarz for the Antiproton Physics Study Group collaboration — GSI,<br />

Darmstadt<br />

One of the main thrusts of the recently proposed High Energy Storage<br />

Ring (HESR) for antiprotons at GSI [1] is the search for gluonic excitations<br />

in the charmonium mass range. Beams of cooled antiprotons with<br />

momenta of 1.5 to 15 GeV/c on an internal target allow the search for<br />

charmed hybrids and glueballs up to a mass of 5.5 GeV/c 2 . Here, all<br />

states are directly populated and allow a measurement with a mass resolution<br />

of δm/m ≈ 10 − 5. In the charmed region the number of resonances<br />

is relatively small and the relative decay widths are narrower than in the<br />

light quark sector. Hence, unambigous identification of the production<br />

and formation experiments is easily performed. The proposed detector<br />

is capable to measure electrons, gammas, and the hadronic final states.<br />

Above points and implicated good particle identification based on imaging<br />

Cherenkov detectors (DIRC,Aerogel Counters) is emphasized in the<br />

present poster This concept of particle identification has been proven to<br />

work by GEANT4 simulations. The measurement of hadronic channels<br />

will allow a selective filtering of final states with gluonic (bosonic) degrees<br />

of freedom.<br />

[1] Conceptual Design Report: http://www.gsi.de/GSI-Future<br />

HK 12.7 Tue 10:30 Foyer Chemie<br />

Hypernuclear Physics with Antiprotons — •J. Pochodzalla for<br />

the Antiproton Physics Study Group collaboration — Inst. f. Kernphysik,<br />

Mainz<br />

One of the main components of the proposed international accelerator<br />

facility at the GSI [1] is a storage ring that allows high luminosity<br />

in-ring experiments with cooled antiprotons between 1.5 and 15 GeV/c.<br />

Due to the large yield of hyperon-antihyperon pairs produced at these<br />

energies a large-scale production of single and double hypernuclei under<br />

unique experimental conditions will be feasible. The precision γ-ray<br />

spectroscopy of these exotic nuclei and the study of their weak decays<br />

provide a large variety of new and exciting perspectives ranging from genuine<br />

hypernuclear states with new symmetries not available in ordinary<br />

nuclei, over non-mesonic weak decays which offer the unique chance to<br />

study the interplay of the quark-exchange and meson-exchange aspects of<br />

the baryon-baryon forces, up to the possibility to study basic properties<br />

of hyperons and strange exotic objects. The physics potential of these<br />

measurements will be presented together with detailed considerations on<br />

the technical realisation of this project.<br />

[1] Conceptual Design Report: http://www.gsi.de/GSI-Future<br />

HK 12.8 Tue 10:30 Foyer Chemie<br />

Calibration of the neutron polarimeter for GE,n — •Frank Klein<br />

— Institut für Kernphysik, J. Gutenberg-Universität Mainz<br />

Previous double polarization measurements of GE,n at the Mainz<br />

microtron MAMI yielded a new parametrization for the electric form<br />

factor of the neutron [1]. This parametrization lies almost a factor of<br />

two above the so far favoured extraction of GE,n from elastic D(e, e ′ )<br />

scattering, where the Paris potential has been used [2]. In order to verify<br />

GE,n in a model-independent way also at higher momentum transfers in<br />

the range of 0.6 − 0.8 (GeV/c) 2 , a neutron polarimeter for a D(�e, e ′ �n)p<br />

experiment was built at the three-spectrometer facility. The results<br />

from the calibration of this polarimeter will be presented.<br />

This work was supported by the DFG (SFB 443).<br />

[1] C. Herberg et al., Eur. Phys. J. A5, 131 (1999)<br />

[2] S. Platchkov et al., Nucl. Phys. A 510, 740 (1990)<br />

HK 12.9 Tue 10:30 Foyer Chemie<br />

Analysis of the pilot experiment (e,e ′ pn) at MAMI — •J. Heim<br />

— Physikalisches Institut, Universität Tübingen, for the Amsterdam,<br />

Glasgow, Mainz (A1) and Tübingen Collaboration<br />

Two-nucleon emission experiments with real and virtual photons represent<br />

an important tool for the study of nuclear many-body systems<br />

beyond the independent particle motion. 3 He and 16 O have been selected<br />

as the benchmark targets for a comprehensive investigations. The<br />

(e,e ′ pp) and the (γ,pN) reactions studied so far have shown indications<br />

of the role of nucleon-nucleon correlations competing with two-body currents<br />

which also result in 2N emission. The (e,e ′ pn) reaction are expected<br />

to give information on tensor correlations, which cannot be seen in pp<br />

knockout. The analysis of the pilot experiment including D, 3 He and 16 O<br />

targets will be presented.<br />

This work is supported by DFG, DAAD, EPSRC, NWO and FOM.<br />

HK 12.10 Tue 10:30 Foyer Chemie<br />

First Analysis of COMPASS Data — •Martin von Hodenberg,<br />

A. Danasino, H. Fischer, J. Franz, A. Grünemeier, S. Hedicke,<br />

F.H. Heinsius, F. Karstens, W. Kastaun, K. Königsmann, J.<br />

Reymann, T. Schmidt, H. Schmitt, andJ. Worch for the COM-<br />

PASS collaboration — Fakultät für Physik, Universität Freiburg<br />

COMPASS is an experiment at the SPS at CERN, which is aiming at a<br />

better understanding of the spin structure of the nucleon, by performing<br />

a measurement of the gluon polarisation ∆G/G. In order to achieve this<br />

goal, polarised muons with an energy of 160 GeV are scattered from a<br />

polarised LiD-target and events are studied where the underlying process<br />

is the fusion of a virtual photon with a gluon of the nucleon. In the year<br />

2001 COMPASS has taken its first data with an almost complete setup<br />

and the analysis is in full activity. The presentation will inform about<br />

the current status of the ongoing analysis.<br />

This project is supported by BMBF.<br />

HK 12.<strong>11</strong> Tue 10:30 Foyer Chemie<br />

Der Myontrigger des COMPASS Experiments — •Mario Leberig<br />

für die COMPASS-Kollaboration — Institut für Kernphysik, Universität<br />

Mainz<br />

Eines der Ziele der COMPASS-Kollaboration ist die Messung des<br />

Gluonbeitrags zum Nukleonspin in der polarisierten tiefinelastischen<br />

Myon–Nukleon–Streuung. Dazu steht am SPS (CERN) ein polarisierter<br />

160 GeV Myonstrahl mit einer Intensität von etwa 5 · 10 7 µ/s zur<br />

Verfügung. Die besondere Kinematik des interessanten Prozesses – der<br />

Photon-Gluon-Fusion – und die Eigenarten des Myonstrahles machen<br />

den Aufbau eines vielschichtigen Triggersystems nötig. Der Vortrag beschreibt<br />

das Triggerkonzept und dessen Realisierung für die Datennahmeperiode<br />

im Sommer 2001. Ein besonderer Schwerpunkt wird dabei<br />

auf die Bestimmung der Triggereigenschaften Anhand aktueller Daten<br />

gelegt.<br />

HK 12.12 Tue 10:30 Foyer Chemie<br />

of the<br />

New Results on the Polarized Structure Function gd 1<br />

Deuteron from the HERMES Experiment — •Christoph<br />

Weiskopf for the HERMEScollaboration — University of Erlangen,<br />

Germany<br />

The HERMESexperiment at DESY investigates the spin structure of<br />

the nucleon in deep-inelastic scattering of longitudinally polarized electrons<br />

or positrons on polarized internal gas targets of high purity. The<br />

scattered and produced particles are detected in a forward spectrometer<br />

with high momentum and angular resolution and a reliable particle<br />

identification.<br />

Between 1998 and 2000, data have been taken with a polarized atomic<br />

deuterium target. The double-spin asymmetry Ad 1 in the virtual-photon<br />

nucleon cross section has been measured, which is directly related to the<br />

spin structure function gd 1 .<br />

Compared to previous analyses of HERMESdeuteron data, the kinematic<br />

range has been extended to values of Bjorken-x down to 0.0021 and<br />

photon virtualities Q2 down to 0.1 GeV 2 . The data analysis is outlined<br />

in its most important steps, and the most recent results are presented.<br />

This work is supported by the German Bundesministerium für Bildung<br />

und Forschung.<br />

HK 12.13 Tue 10:30 Foyer Chemie<br />

Azimuthal Single-Spin Asymmetries in Semi-Inklusive Deep-<br />

Inelastic Scattering — •C. Schill for the HERMEScollaboration —<br />

Fakultät für Physik der Universität Freiburg, Hermann-Herder-Str. 3,<br />

D-79104 Freiburg.<br />

In the HERMESexperiment azimuthal single-spin asymmetries have<br />

been observed in semi-inclusive deep-inelastic scattering of 27.5 GeV electrons<br />

off a polarized hydrogen target. Azimuthal target spin asymmetries<br />

provide access to the chiral-odd spin structure function h1(x, Q 2 )<br />

of the nucleon. This structure function is related to the transversity<br />

distribution δq(x) of the quarks in the nucleon. The transversity distri-


Nuclear Physics Tuesday<br />

bution describes the probability to find a transversely polarized quark<br />

in a transversely polarized nucleon. The unpolarized quark density q(x),<br />

the longitudinally polarized quark density ∆q(x) and the transversity<br />

distribution δq(x) together provide a complete description of the quark<br />

and spin density distributions in leading order (twist-2).<br />

For semi-inclusively produced π + and π 0 on a hydrogen target a significant<br />

moment of sin φ is observed in the azimuthal distribution. For π −<br />

the sin φ moment is found to be small. Since 1998 HERMES is taking<br />

data with a polarized deuteron target.<br />

An investigation of the flavour dependence of the transversity distribution<br />

δq(x) will be possible with the measurement of single-spin asymmetries<br />

for different hadrons (π + , π 0 , π − and K + ) and different target<br />

nucleons.<br />

This project is supported by the German BMBF.<br />

HK 12.14 Tue 10:30 Foyer Chemie<br />

Measurement of inclusive K-meson production in B-meson decays<br />

using the BABAR detector — •Stefan Christ for the<br />

BABAR collaboration — AG Elementarteilchenphysik, Universitätsplatz<br />

3, 18051 Rostock<br />

A method to measure the K-meson spectrum from B 0 , ¯ B 0 , B + and<br />

B − decays at the BABAR detector is presented. The BABAR detector is<br />

operated at the PEP-II asymmetric B-meson factory at SLAC. B-mesons<br />

are produced in pairs from Υ(4S) decays with opposite b-quark flavour.<br />

Fully reconstructing one B-meson that decayed into a flavour tagging<br />

channel provides information about the b-quark flavour of this second<br />

B-meson. All particles not used for the reconstruction have to originate<br />

from the second B-meson. By identifying these particles the K-meson<br />

spectrum can be measured for each flavour individually. The analysis<br />

method is presented. The performance of the particle identification is<br />

determined without Monte Carlo simulation.<br />

HK 12.15 Tue 10:30 Foyer Chemie<br />

Measurement of Inclusive η Production in e + e − -Annihilation<br />

Reactions with the BABAR Experiment — •Denis Altenburg<br />

for the BABAR collaboration — TU Dresden, Institut fuer Kern- und<br />

Teilchenphysik, 01062 Dresden<br />

The η momentum spectra and multiplicities in multihadronic events<br />

from e + e − -annihilation reactions are measured using 14.3 fb −1 on the<br />

Υ(4S) resonance ( √ s ≈ 10.58 GeV) and 2.6 fb −1 off resonance data<br />

( √ s ≈ 10.54 GeV) collected with the BABAR detector. The η mesons<br />

are reconstructed using the decay mode η → γγ. The inclusive branching<br />

ratio of B mesons to η mesons B(B →ηX ) has been determined and has<br />

been found to be in reasonable agreement to the corresponding CLEO<br />

result.<br />

HK 12.16 Tue 10:30 Foyer Chemie<br />

Search for the Decay D ∗ s → Dsπ 0 and Measurement of the Partial<br />

Widths Ratio Γ(D ∗ s → Dsπ 0 )/Γ(D ∗ s → Dsγ) with BABAR —<br />

•Martin Dickopp for the BABAR collaboration — Inst. f. Kern- und<br />

Teilchenphysik, TU Dresden, 01062 Dresden<br />

The search for the isospin violating decay D ∗ s → Dsπ 0 in data accumulated<br />

with the BABAR detector located at the asymmetric e + e −<br />

storage facility PEP-II at SLAC is presented. Furthermore, the partial<br />

widths ratio Γ(D ∗ s → Dsπ 0 )/Γ(D ∗ s → Dsγ) has been measured. The<br />

result improves the precision of a measurement by CLEO in 1995.<br />

HK 12.17 Tue 10:30 Foyer Chemie<br />

Search for Eta-nucleus bound state at COSY, Juelich — B. Roy,<br />

H. Machner, •B. Roy, andH. Machner for the GEM collaboration<br />

and the GEM collaboration — Institut für Kernphysik, Forschungszentrum<br />

Jülich, Jülich, Germany<br />

In contrast to the π -nucleon interaction, the η-nucleon interaction<br />

is strong and attractive at low energies ( S-wave ). This provides an<br />

interesting possibility of the existence of the eta-nucleus bound states,<br />

and their production in near threshold η production in proton nucleus<br />

collisions. We plan to produce these η-nuclei in p+ A ZX → 3 He+ A−2<br />

Z−1Yη<br />

or p+ A Z<br />

X → d+A−1<br />

Z Xη reactions by choosing the “magic momentum”of<br />

the proton-beam and the detection angle of 3 He/d such that the η is<br />

produced with very small momentum. In order to detect the η -mesic<br />

nucleus events in the presence of large background, it would be necessary<br />

to demand a triple coincidence of 3 He and the η -mesic nucleus decay<br />

particles, namely, protons and pions. In order to tag the η -mesic nucleus<br />

through its decay products, a large acceptance plastic scintillator<br />

detector “ENSTAR” is being built in Mumbai, India. The detector fab-<br />

rication is at an advanced stage at BARC, Mumbai and will be shipped<br />

to Jülich immediately after the completion of the construction work.<br />

HK 12.18 Tue 10:30 Foyer Chemie<br />

Search for a quasi-bound 3 Heη state at the COSY-TOF spectrometer<br />

— •A. Gillitzer for the COSY-TOF collaboration — IKP,<br />

Forschungszentrum Jülich<br />

The peculiar behavior of the pd → 3 Heη cross section close to threshold<br />

has been interpreted as being the result of a quasi-bound state of the<br />

3 Heη system just below the threshold. We will study this longstanding<br />

question in a formation experiment at the COSY-TOF spectrometer, by<br />

measuring the excitation function of the reaction pd → pppπ − in the<br />

bound region of the 3 Heη system. This is a sensitive observable because<br />

the decay of a quasi-bound 3 Heη state is expected to be dominated by<br />

the ηN → πN channel with two spectator nucleons, a final state having<br />

a characteristic kinematical topology. The COSY-TOF spectrometer including<br />

the forward calorimeter is particularly well-suited for the study<br />

the of the pppπ − final state, i.e. the absorption of the η mesononthe<br />

neutron in 3 He, since the TOF spectrometer has both large acceptance<br />

for the pπ − pair and good particle identification for the pp spectator pair.<br />

The outline of the experiment will be presented, including a discussion<br />

of expected background reactions.<br />

HK 12.19 Tue 10:30 Foyer Chemie<br />

Study of η production on light nuclei — M. Ulicny 1 , H. Machner<br />

2 , •M. Ulicny 1 ,andH. Machner 2 for the GEM collaboration and<br />

the GEM collaboration — 1 University of P. J. ˇ Safárik, Koˇsice, Slovakia<br />

— 2 Institut für Kernphysik, Forschungszentrum Jülich, Jülich, Germany<br />

The production of η-mesons on light nuclei in proton induced reactions<br />

is of interest, because of the high momenta transferred in the reaction,<br />

considerably larger than in pion production. Such high momenta can not<br />

be transferred in a NN-interaction This makes the p + 6 Li → 7 Be + η<br />

reaction especially interesting. We have started to study this reaction<br />

near the kinematical threshold. A proton beam of 1297 MeV/c from the<br />

Cosy accelerator has been used to test the experimental setup. For the<br />

detection of the recoiling nuclei, the magnetic spectrograph BIG KARL<br />

operates as a full solid angle detector. A new introduced detection system<br />

in the focal plane area being completely in vacuum ensures high<br />

kinematical resolution of the heavy recoil. Results of the test run as well<br />

as further detector improvements are discussed.<br />

HK 12.20 Tue 10:30 Foyer Chemie<br />

Deeply bound pionic states in Sn isotopes — •A. Gillitzer 1 , M.<br />

Fujita 2 , H. Geissel 3 , H. Gilg 4 , R.S. Hayano 5 , S. Hirenzaki 2 , K.<br />

Itahashi 6 , M. Iwasaki 6 , P. Kienle 4 , L. Maier 4 , M. Matos 3 , G.<br />

Münzenberg 3 , T. Ohtsubo 7 , M. Sato 6 , M. Shindo 5 , K. Suzuki 5 ,<br />

T. Suzuki 5 , H. Weick 3 , M. Winkler 3 , T. Yamazaki 8 , and T.<br />

Yoneyama 6 — 1 IKP, Forschungszentrum Jülich — 2 Nara Women’s<br />

University — 3 GSI Darmstadt — 4 Technische Universität München —<br />

5 University of Tokyo — 6 Tokyo Institute of Technology — 7 Niigata University<br />

— 8 RI Beam Science Lab., RIKEN<br />

The comparative measurement of binding energy and width of deeply<br />

bound pionic states in nuclei with different N/Z ratio allows to separately<br />

determine the isoscalar and the isovector part of the pion-nucleus potential.<br />

For this purpose the population of deeply bound pionic states in Sn<br />

isotopes was studied in a recent experiment at the GSI Fragmentseparator<br />

(FRS), using the (d, 3 He) reaction from <strong>11</strong>2,<strong>11</strong>6,120,124 Sn targets. The<br />

incident d beam kinetic energy was chosen to be 500 MeV in order to allow<br />

the formation of substitutional pionic 1s states coupled to 3s1/2 neutron<br />

hole states in recoilfree kinematics. Prominent peaks in the excitation<br />

energy spectrum corresponding to the pionic 1s state were observed in<br />

the irradiation of <strong>11</strong>6,120,124 Sn. First results of the data analysis will be<br />

presented.<br />

HK 12.21 Tue 10:30 Foyer Chemie<br />

Luminosity determination at COSY-<strong>11</strong> using the pd elastic scattering<br />

— •S .Steltenkampfor the COSY-<strong>11</strong> collaboration — Institut<br />

für Kernphysik, Universität Münster, Germany<br />

Measurements on the near-threshold η and η ′ meson production in<br />

the reaction channel pd → 3 HeX have been performed at the internal<br />

beam experiment COSY-<strong>11</strong> [1,2]. To extract total and differential cross<br />

sections, the proton-deuteron elastic scattering has been measured simultaneously<br />

as reference reaction for normalization purposes. Close to<br />

the η and η ′ meson production thresholds (pthr.,η = 1.570 GeV/c, pthr.,η ′<br />

= 2.434 GeV/c) the COSY-<strong>11</strong> facility allows for an identification and


Nuclear Physics Tuesday<br />

momentum reconstruction of elastically scattered protons using a set of<br />

two drift chambers and a scintillation wall. Additionally, a granulated<br />

silicon pad detector enables to detect the corresponding deuterons in<br />

coincidence.<br />

The experimental method will be discussed and recent results will be<br />

presented.<br />

[1] H.-H. Adam, diploma thesis, Universität Münster, Germany (2000).<br />

[2] I. Geck, Staatsexamensarbeit, Universität Münster, Germany (2001).<br />

HK 12.22 Tue 10:30 Foyer Chemie<br />

Luminosity determination in pp experiments at ANKE — •P.<br />

Fedorets 1 , M. Büscher 2 , V. Chernyshov 1 , S.Dymov 3 , V. Komarov<br />

3 , and Yu. Uzikov 3 for the ANKE collaboration — 1 ITEP,<br />

Moscow — 2 Forschungszentrum Jülich — 3 JINR, Dubna<br />

In Jan./Feb. 2001 a first beam time on the a + 0 production in the<br />

reaction pp → da + 0 was performed using the cluster jet target at the<br />

magnetic spectrometer ANKE at COSY Jülich. One way to determine<br />

the average luminosity during this beam time is to use the elastic<br />

proton-proton scattering where the differential cross section is well<br />

known. With ANKE one of the elastically scattered proton is detected<br />

in the forward detection system. The value obtained by this method<br />

yields L =(2.70 ± 0.55) × 10 31 s −1 cm −2 .<br />

HK 12.23 Tue 10:30 Foyer Chemie<br />

Investigation of the reaction pp → nK + Σ + — •Peter Schönmeier<br />

for the COSY-TOF collaboration — Institut für Kern- u. Teilchenphysik,<br />

Technische Universität Dresden *<br />

Reactions of the type pp → NKY are presently studied at COSY in<br />

very detail, in particular the channels Y = (Λ, Σ 0 ). Data on Σ + , Σ − are<br />

not known close to threshold. The COSY-TOF spectrometer complemented<br />

by the neutron detector COSYnus provides access to the nK + Σ +<br />

channel. Its identification is rendered possible by the detection of a neutron,<br />

kaon, and Σ + → nπ + ,pπ 0 decay which results, in general, in an<br />

angle between the tracks of the charged primary and secondary particle.<br />

However, one neutral particle remains undetected. Hence, control of the<br />

large background due to pp → npπ + reactions is of utmost importance<br />

in order to obtain a clear nK + Σ + -signal. We present first results from a<br />

measurement performed at a beam momentum of 2.85 GeV/c.<br />

∗ supported by BMBF and FZJ<br />

HK 12.24 Tue 10:30 Foyer Chemie<br />

Hyperon Production in the channel pp → K + Λp at COSY-TOF ∗<br />

— •W. Schroeder, W. Eyrich, M. Fritsch, F. Stinzing, M.<br />

Wagner,andS.Wirthfor the COSY-TOF collaboration — Physikalisches<br />

Institut, Universität Erlangen-Nürnberg<br />

The exclusive measurement of hyperon production reactions in proton<br />

proton collisions near threshold is one of the main topics at the timeof-flight<br />

spectrometer COSY-TOF. For the hyperon program a complex<br />

start detector system is used in combination with a segmented stop detector.<br />

The setup covers the full phase space and allows the extraction and<br />

reconstruction of the reaction pp → K + Λp almost without background.<br />

The extension of the stop detector by a ring and a barrel-hodoscope to<br />

a 3 m version increases the detector efficiency and improves the angular<br />

and time-of-flight resolution.<br />

Using this upgraded detector version in a measurement in January 2000<br />

Λ-samples with large statistics were recorded at the two beam momenta<br />

of 2.95 and 3.20 GeV/c.<br />

After a short introduction to the analysis methods the preliminary results<br />

of these data will be discussed and compared to Λ-data of previous<br />

measurements at COSY.<br />

∗ supported by BMBF and FZ Jülich<br />

HK 12.25 Tue 10:30 Foyer Chemie<br />

The Reaction pd → 3 Heη at COSY-<strong>11</strong> — •H.-H. Adam for the<br />

COSY-<strong>11</strong> collaboration — Institut für Kernphysik, Universität Münster,<br />

Germany<br />

The production of mesons in proton-deuteron interactions provides the<br />

possibility to study reaction processes with more than only one involved<br />

target nucleon, i.e. two-step processes [1,2]. Such data might also be of<br />

importance in the context of meson production in heavy ion collisions.<br />

Of considerable interest is the production of η mesons in the<br />

pd → 3 He η reaction channel, which exposes remarkable features [3,4].<br />

The unexpected large threshold amplitude decreases by a factor of three<br />

from threshold up to an excess energy of Q ∼ 7 MeV. This strong<br />

decrease in the near threshold region is commonly attributed to a<br />

strong η 3 He final state interaction and is therefore of special interest<br />

in view of the existence of η-mesic nuclei. Although being topic of<br />

several theoretical investigations, the possibility for the formation of<br />

quasi-bound 3 He − η states is still an open question. Therefore, the<br />

COSY-<strong>11</strong> physics program has been extended to near-threshold meson<br />

production experiments in the proton-deuteron interaction. Recent<br />

results on the pd → 3 Heη reaction, studied at excess energies ranging<br />

from Q = 5 MeV to Q = 40 MeV will be presented.<br />

[1] K. Kilian, H. Nann, AIP Conf. Proc. No. 221 (1990) 185.<br />

[2]G.Fäldt and C. Wilkin, Nucl. Phys. A 587 (1995) 769.<br />

[3] J. Berger et al., Phys. Rev. Lett. 61 (1988) 919.<br />

[4] B. Mayer et al., Phys. Rev. C 53 (1996) 2068.<br />

HK 12.26 Tue 10:30 Foyer Chemie<br />

Messung und Analyse der Reaktion γp → K0Σ+ — •Ralf Lawall<br />

für die SAPHIR-Kollaboration — Nussallee 12, 53<strong>11</strong>5 Bonn<br />

Eine neue Messung der Reaktion γp → K0Σ + ist mit dem<br />

SAPHIR-Detektor am Elektronen-Stretcher-Ring ELSA durchgeführt<br />

worden. Die Daten überspannen den Photonenergiebereich von der<br />

Schwelle bis 2.6 GeV und den vollen Produktionswinkelbereich des<br />

2-Teilchenendzustandes. Totale und differentielle Wirkungsquerschnitte<br />

und die Σ + -Polarisation sind bestimmt worden.<br />

HK 12.27 Tue 10:30 Foyer Chemie<br />

Messung der Reaktion γp → K + π + Σ− — •Inez Schulday für die<br />

SAPHIR-Kollaboration — Nussallee 12, 53<strong>11</strong>5 Bonn<br />

Zur Analyse der Reaktion γp → K + π + Σ− sind Daten ausgewertet worden,<br />

die mit dem 4π-SAPHIR-Detektor am Elektronen-Stretcher-Ring<br />

ELSA aufgenommen wurden. Totale und differentielle Wirkungsquerschnitte<br />

sind für den Energiebereich von der Schwelle bis 2.6 GeV bestimmt<br />

worden.<br />

HK 12.28 Tue 10:30 Foyer Chemie<br />

Messung des Differentiellen Wirkungsquerschnitts der Reaktion<br />

γp → pη mit η → 2γ bei Photonenenergien von 0.7 GeV bis<br />

1.3 GeV mit dem CB-ELSA Detektor — •Imrich Fabry für die<br />

CB-ELSA-Kollaboration — ISKP, Universität Bonn<br />

Nach nahezu einem Jahrzehnt erfolgreicher Datennnahme am<br />

CERN wurde der Crystal Barrel Detektor nach Bonn gebracht, wo<br />

am Elektronen-Stretcher-Ring ELSA des Physikalischen Instituts der<br />

Universität Bonn die erste Serie von Experimenten bei ELSA-Energien<br />

bis zu 3.2 GeV durchgeführt worden ist.<br />

Im Schwellenbereich wird die Reaktion dominiert durch die Produktion<br />

der N(1535)S<strong>11</strong> Nukleon-Resonanz. Diese Resonanz spielt<br />

eine grosse Rolle in der Baryonenspektroskopie. Dieser Bereich<br />

ist mit übereinstimmenden Ergebnissen durch frühere Experimente<br />

(TAPS,GRAAL,PHOENICS) gut vermessen. Oberhalb von 1 GeV<br />

existieren jedoch nur wenige Datenpunkte. Messungen bis 1.1 GeV<br />

wurden von GRAAL und PHOENICSdurchgeführt, mit sich teilweise<br />

widersprechenden Resultaten. Unsere Daten, die bis 2.8 GeV Photonenenergie<br />

reichen, können zur Klärung der Situation beitragen. Eine<br />

erste Analyse eines Teildatensatz bei einer Photonenenergie von bis<br />

zu 1.4 GeV mit neuen, vorläufigen Ergebnissen zum Differentiellen<br />

Wirkungsquerschnitt werden vorgestellt.<br />

Gefördert durch die DFG.<br />

HK 12.29 Tue 10:30 Foyer Chemie<br />

η photoproduction cross section in η → 2γ and η → 3π 0 decays<br />

with the CB-ELSA experiment at ELSA — •Michael Fuchs for<br />

the CB-ELSA collaboration — ISKP, Universität Bonn<br />

Data on η photoproduction off protons were taken by the CB-ELSA<br />

experiment at the electron stretcher accelerator (ELSA) at Bonn. The<br />

crystal barrel detector is a nearly 4π photon calorimeter and is – in<br />

combination with an inner scintillating fibre trigger detector – an ideal<br />

instrument to investigate multiphoton final states.<br />

A topic of the experiment is the η and η’ photoproduction, especially<br />

the production via baryon resonances. Differential cross sections for η<br />

decaying into 3π 0 and into 2γ will be presented. The photon energy<br />

range up to 2.8 GeV extends the one of previous experiments by a factor<br />

of 2.<br />

Supported by the DFG.


Nuclear Physics Tuesday<br />

HK 12.30 Tue 10:30 Foyer Chemie<br />

Search for Narrow Nucleon Resonances Below Pion Threshold<br />

— •M. Kohl, C. Rangacharyulu, A. Richter, andG. Schrieder<br />

for the A1 collaboration — Institut f. Kernphysik, TU Darmstadt<br />

The question if resonance states exist in the invariant mass region between<br />

the nucleon mass and the pion threshold is of particular importance<br />

for the structure of the nucleon. Since the decay energy of such states is<br />

not large enough to produce a pion, only electromagnetic or weak decay<br />

is possible, leading to extremely narrow decay widths. Recently, some<br />

experimental indications for such resonances have been reported. In pp<br />

scattering, narrow excited states of the nucleon at 1004, 1044, and 1094<br />

MeV/c 2 have been observed [1]. The high-resolution three-spectrometer<br />

facility of the A1 collaboration at the Mainz Microtron MAMI is particularly<br />

suited to verify the existence of such narrow nucleon resonances. A<br />

test experiment in the 1 H(e,e’π + )X reaction provided first indication for<br />

a state at MX = 1007 MeV/c 2 - yet with small significance. The status<br />

of the measurements will be reported.<br />

[1] B. Tatischeff et al., Phys. Rev. Lett. 79 (1997) 601<br />

Supported by DFG under contract RI 242/15-2.<br />

HK 12.31 Tue 10:30 Foyer Chemie<br />

Investigation of the Polarisation Asymmetry in Eta-<br />

Photoproduction on Protons in the GDH-Experiment at ELSA<br />

— •Melitta Godo and Thilo Michel for the GDH-Kollaboration<br />

collaboration — Physikalisches Institut IV, Erwin-Rommel-Str. 1, 91058<br />

Erlangen<br />

An analysis of the data taken by the GDH-Experiment at ELSA in<br />

the energy range between 700 and 1000 MeV has shown the possibility<br />

to extract information about the asymmetry of the eta-photoproduction.<br />

The reaction is identified by a missing-mass-method. With regard to<br />

this method, the acceptance of the GDH-detector for this particular reaction<br />

channel has been simulated. This presentation outlines the acceptance<br />

calculations and first experimental data of an asymmetry in<br />

eta-photoproduction.<br />

HK 12.32 Tue 10:30 Foyer Chemie<br />

Strange decays from excited states of the nucleon — •Ralph<br />

Castelijns, J. Bacelar, and H. Löhner for the Crystal Barrel/TAPScollaboration<br />

— Kernfysisch Versneller Instituut, Groningen,<br />

The Netherlands<br />

The spectrum of excited states of the nucleon can provide essential<br />

information on the quark-gluon structure of hadrons. Complete information<br />

on various decay channels is mandatory, however some channels have<br />

hardly been explored. In particular, decays with many photons in the<br />

final state are difficult to access. We exploit the opportunity of a joint<br />

HK13 Poster Session: Heavy Ions<br />

experiment with the TAPSphoton spectrometer (528 BaF2 crystals) and<br />

the Crystal Barrel detector (1290 CsI detectors) at the tagged photon<br />

beam of ELSA in Bonn to study the barely known decay of excited nucleon<br />

states into a neutral K meson and a Sigma hyperon. This decay<br />

channel may reveal unknown resonances, in particular one expected near<br />

the production threshold. The experiment requires the measurement of<br />

six photons and a proton in the final state. We report on the feasibility<br />

studies and present first results from a commissioning experiment with<br />

photonuclear reactions on the proton.<br />

HK 12.33 Tue 10:30 Foyer Chemie<br />

High-Precision Measurements of Proton-Proton<br />

Bremsstrahlung — •M. Mahjour-Shafiei 1 , H. Amir-Ahmadi 1 ,<br />

J.C.S. Bacelar 1 , R. Castelijns 1 , K. Ermisch 1 , I. Gaˇsparić 2 ,<br />

M.N. Harakeh 1 , N. Kalantar-Nayestanaki 1 , M. Kiˇs 1 , and<br />

H. Löhner 1 — 1 Kernfysisch Versneller Instituut, Groningen, The<br />

Netherlands — 2 Institut Rugjer Boˇsković, Zagreb, Croatia<br />

The understanding of the strong force acting between nucleons is one<br />

of the most fundamental problems addressed by nuclear physics. One<br />

of the simplest reactions to study this force, besides elastic scattering,<br />

is proton-proton Bremsstrahlung. In 1996 a series of experiments were<br />

set up at KVI to study real and virtual proton-proton bremsstrahlung<br />

at 190 MeV in which the kinematics was chosen such that one goes as<br />

far away as possible from the elastic channel, thereby producing higher<br />

energy photons. In continuation of that work and in order to cover a<br />

much larger area of the available phase space, a new set up employing<br />

the SALAD and the Plastic-Ball detectors together was used with which<br />

much smaller photon energies were measured, thus moving toward the<br />

elastic channel. The preliminary results of the first measurements will<br />

be presented.<br />

HK 12.34 Tue 10:30 Foyer Chemie<br />

Investigation of the Polarisation Asymmetry in Eta-Photoproduction<br />

on Protons in the GDH-Experiment at ELSA —<br />

•Melitta Godó and Thilo Michel — Physikalisches Institut IV,<br />

Erwin-Rommel-Str. 1, 91058 Erlangen<br />

An analysis of the data taken by the GDH-Experiment at ELSA in<br />

the energy range between 700 and 1000 MeV has shown the possibility<br />

to extract information about the asymmetry of the eta-photoproduction.<br />

The reaction is identified by a missing-mass-method. With regard to<br />

this method, the acceptance of the GDH-detector for this particular reaction<br />

channel has been simulated. This presentation outlines the acceptance<br />

calculations and first experimental data of an asymmetry in<br />

eta-photoproduction.<br />

Time: Tuesday 10:30–12:45 Room: Foyer Chemie<br />

HK 13.1 Tue 10:30 Foyer Chemie<br />

Close dilepton pair rejection strategies for HADES — •Jaroslav<br />

Bielcik —GSI,Darmstadt<br />

The second-generation dilepton spectrometer HADESat GSI has recently<br />

started to take physics data from heavy-ion induced reactions in<br />

the 1-2 AGeV energy range. The main contribution to the combinatorial<br />

background in the measured e + e− continuum comes from conversion<br />

pairs induced by π0 decay photons.The identification of these pairs and<br />

their removal from the track sample decreases significantly the combinatorial<br />

background to be subtracted from the reconstructed e + e − mass<br />

distribution in order to isolate the vector meson e + e − signal. A full simulation<br />

of the HADESspectrometer response to conversion pairs has been<br />

performed and was used to develop efficient strategies based on a cluster<br />

analysis in MDC and RICH subdetectors to identify such pairs.Our<br />

methods will be presented and results will be discussed.<br />

HK 13.2 Tue 10:30 Foyer Chemie<br />

The HADES second level trigger algorithm: principles and first<br />

results from experiments with 12 C beam — •Alberica Toia,<br />

Wolfgang Kuehn, James Ritman, Joerg Lehnert, Markus<br />

Petri, Michael Traxler, Ingo Froehlich, Daniel Kirschner,<br />

Daniel Schaefer, andAdrian Gabriel for the HADEScollaboration<br />

— II. Physikalisches Institut, Giessen<br />

The dilepton spectrometer HADESat GSI Darmstadt investigates lepton<br />

decays of vector mesons in elementary and heavy ion reactions. Since<br />

the branching ratio of these decays is in the order of 10 −5 , a highly selective<br />

real time trigger is needed in order to improve the quality of data and<br />

the statistics. This trigger consists of 3 Image Processing Units which<br />

perform pattern recognition to detect lepton signatures in different subdetectors<br />

and a Matching Unit which combines the position information<br />

into tracks to make the final decision. To investigate and characterize<br />

the functionality of this trigger, all hardware components have been emulated<br />

with software. After testing the emulation with simulated and<br />

real data, the performance of the hardware trigger has been investigated<br />

with data from recent beamtimes. The goals, methods and results of this<br />

analysis will be presented.<br />

HK 13.3 Tue 10:30 Foyer Chemie<br />

Correlation studies with INDRA@GSI — •C. Schwarz for the<br />

ALADIN-INDRA collaboration —<br />

GSI, Darmstadt<br />

Correlation funcions, constructed from light-particle coincidences, give<br />

access to the spatial extension of the emitting source. This is due to the<br />

final-state interaction of the emitted particle pairs which depend on their<br />

spatial proximity. Using this technique, the interaction zone as well as<br />

the quasi-projectile and quasi-target sources of light particles were inves-


Nuclear Physics Tuesday<br />

tigated for several reaction systems studied at beam energies between 40<br />

and 150 AMeV during the INDRA@GSI campaign. The observed dependence<br />

of the source size on the impact parameter and on the collision<br />

partners agree well with the expectations for the reaction geometry.<br />

HK 13.4 Tue 10:30 Foyer Chemie<br />

Pions in Spectator Fragmentation Induced by Relativistic 12 C<br />

Projectiles — •Ketel Turzó for the ALADIN-INDRA collaboration<br />

— GSI Darmstadt, Planckstr. 1, D-64291 Darmstadt<br />

As part of the INDRA@GSI campaign in 1998/1999, fragmentation<br />

in asymmetric systems like 12 C+ 197 Au and 12 C+ <strong>11</strong>2,124 Sn was studied<br />

at bombarding energies ranging from 95 to 1800 AMeV. At angles<br />

θlab ≥ 45 ◦ , particle detection and identification with high resolution was<br />

achieved with the Si-Si-CsI(Tl) calibration telescopes of the INDRA multidetector<br />

system, including the identification of charged pions.<br />

Delta and pion production and absorption represent an efficient heating<br />

mechanism in collisions at relativistic energies. The present data permit<br />

the study of correlations between pion and fragment emissions, i.e. between<br />

emissions reflecting properties of the primary heating phase of the<br />

collision and of the subsequent decay of a highly equilibrated spectator<br />

system. First results, indicating an anticorrelation between the multiplicities<br />

of pions and intermediate-mass fragments for lower spectator<br />

excitations, will be presented.<br />

HK 13.5 Tue 10:30 Foyer Chemie<br />

Particle Intensities at the GSI Secondary Beam Facility —<br />

•M. Ardid 1 , J. Diaz 1 , A. Andronic 2 , A. Banu 2 , O. Busch 2 , M.<br />

Gersabeck 2 ,andR.S. Simon 2 — 1 Institut de Física Corpuscular, Universitat<br />

de València and Centro Superior de Investigaciones Científicas,<br />

E-46071 València, Spain — 2 Gesellschaft für Schwerionenforschung, D-<br />

64291 Darmstadt, Germany<br />

Using protons and 12 Cand 14 N ions from the 18 Tm heavy–ion synchrotron<br />

SIS, secondary beams of electrons and pions are produced and<br />

delivered to the experimental areas in the SIS target hall. We discuss<br />

the production mechanism in the pencil–like thick target rods and address<br />

the transport performance of the beam lines as well as the impact<br />

of diagnostic detectors for monitoring and precise momentum definition.<br />

Mixed π − /e − beams with momenta between 0.5 and 2.0 GeV/c have been<br />

extensively used for prototype tests of the ALICE Transition Radiation<br />

Detector, while π + beams around 1 GeV/c with maximum intensity and<br />

optimal π + /p ratio are required for physics runs at the HADESand Kaon<br />

Spectrometer.<br />

HK 13.6 Tue 10:30 Foyer Chemie<br />

Λ - Production in C+C Reactions at 158 AGeV* — •I. Kraus 1 ,<br />

L. Betev 2 , A. Billmeier 1 , C. Blume 1 , R. Bramm 2 , P. Buncic 2 , P.<br />

Dinkelaker 2 , M. Ga´zdzicki 2 , T. Kollegger 2 , C. Markert 3 , R.<br />

Renfordt 2 , A. Sandoval 1 , R. Stock 2 , H. Ströbele 2 , D. Vranić 1 ,<br />

A. Wetzler 2 ,andJ. Zaranek 2 for the NA49 collaboration — 1 GSI,<br />

Darmstadt — 2 Institut für Kernphysik, Frankfurt — 3 Yale, New Haven,<br />

USA<br />

The number of hyperons (Λ) per participating nucleon is higher in<br />

A+A than in p+p collisions [1]. It is interesting to measure the detailed<br />

behavior of hyperon production as a function of the system size in order<br />

to determine the onset of this type of strangeness enhancement.<br />

NA49 has taken data not only on Pb+Pb but also C+C collisions.<br />

The results from the light C+C system are compared to earlier measurements<br />

of Λ hyperons in central S+S (NA35), central Pb+Pb and p+p<br />

interactions.<br />

[1] A.Mischke et al. (NA49 Collab.), Proceedings of the 6th International<br />

Conference on Strangeness in Quark Matter 2001<br />

* Supported by GSI and BMBF<br />

HK 13.7 Tue 10:30 Foyer Chemie<br />

Production of φ → e + e − in central Pb+Pb collisions at<br />

158AGeV ∗ — •Peter Dinkelaker 1 , L. Betev 1 , C. Blume 2 , R.<br />

Bramm 1 , P. Buncic 1 , M. Ga´zdzicki 1 , T. Kollegger 1 , I. Kraus 2 ,<br />

A. Mischke 2 , R. Renfordt 1 , A. Sandoval 2 , R. Stock 1 , H.<br />

Ströebele 1 , D. Vranic 1 , A. Wetzler 1 ,andJ. Zaranek 1 for the<br />

NA49 collaboration — 1 Institut für Kernphysik, Universität Frankfurt<br />

— 2 Gesellschaft für Schwerionenforschung, Darmstadt<br />

The first results on φ → e + e − production in central Pb+Pb collisions<br />

at 158 AGeV are presented. They are based on the NA49 data (3 million<br />

events) taken in the dedicated run in 2000. The obtained upper limit<br />

estimate for the φ yield is compared with the results for the hadronic decay<br />

channel φ → K + K − measured in NA49 and for the leptonic decay<br />

channel φ → µ + µ − measured in NA50. A review of models concerning<br />

φ production and possible differences between results obtained from<br />

leptonic and hadronic decay channels is given.<br />

∗ supported by BMBF and GSI<br />

HK 13.8 Tue 10:30 Foyer Chemie<br />

Calibration and charged particle distributions of the Forward-<br />

TPCs in the STAR Experiment — •Jörn Putschke, Volker<br />

Eckardt, Andreas Gärtner, Gaspare Lo Curto, Markus<br />

Oldenburg, Patrizia Krok, Maria Mora, Andreas Schüttauf,<br />

Norbert Schmitz, Janet Seyboth, Peter Seyboth, Frank<br />

Simon, and Michael Vidal — Max-Planck-Institut für Physik,<br />

Föhringer Ring 6, 80805 München<br />

The two Forward-TPCs, designed and constructed at the Max-Planck-<br />

Institut für Physik in Munich, expand the overall acceptance of the STAR<br />

detector at the Relativistic Heavy Ion Collider (RHIC) to the pseudorapidity<br />

region 2.5 < |η| < 4. Due to the high multiplicity of approximatly<br />

500 charged particle in each Forward-TPC in a central Au+Au collisions<br />

at √ sNN = 200 GeV, a radial drift configuration perpendicular to the<br />

magnetic field was choosen to improve the two-track separation.<br />

To calibrate the drift velocity and the � E × � B corrections in the nonuniform<br />

radial drift field a laser calibration system was used. In contrast<br />

to a standard configuration TPC a good measurement of the drift velocity<br />

is essential to accurately determine the spatial positions of the hit<br />

clusters and to precisely determine the momenta of the charged particles.<br />

Preliminary results will be discussed on the charged particle distributions<br />

and the baryon number flow as difference in the distributions of<br />

positively and negatively charged particle as a function of η.<br />

HK 13.9 Tue 10:30 Foyer Chemie<br />

The role of three-body collisions in φ mesonproduction processes<br />

near threshold in heavy-ion reactions — •H.W. Barz 1 ,<br />

B. Kämpfer 1 , M. Zetenyi 2 ,andGy. Wolf 2 — 1 FZ Rossendorf,<br />

D-01314 Dresden — 2 KFKI Budapest, H-1525 Budapest<br />

The amplitude of subthreshold φ meson production is calculated using<br />

dominant tree-level diagrams for three-body collision. It is shown that<br />

the production can overwhelmingly be described by two consecutive twostep<br />

processes, i.e. the cross section factorises in two sub-cross-sections<br />

with an intermediate on-shell particle. As a consequence to desribe the<br />

production of heavy mesons within transport models all intermediate<br />

particles have to be included in the calculations. The effect is demonstrated<br />

in calculating φ production in heavy-ion collisions at bombarding<br />

energies around 2 GeV per nucleon as recently measured by the FOPI<br />

collaboration. Including elementary ρ − N, ρ − ∆andπ − ρ collisions the<br />

calculated production rates increase by about a factor of three compared<br />

to earlier calculations which do not include these channels. Momentum<br />

spectra of φ mesons and dilepton spectra which are accessible in future<br />

HADESand FOPI experiments are given.<br />

HK14 Poster Session: Instrumentation and Applications<br />

Time: Tuesday 10:30–12:45 Room: Foyer Chemie<br />

HK 14.1 Tue 10:30 Foyer Chemie<br />

Quantitative analysis of lepton induced Cherenkov rings in<br />

a CsI based RICH — •L. Fabbietti, T. Eberl, J. Friese, R.<br />

Gernhäuser, J. Homolka, H.-J. Körner, M. Münch, B. Sailer,<br />

and S. Winkler for the HADEScollaboration — Technische Universität<br />

München, James-Franck-Strasse 1,D-85748 Garching<br />

A Monte-Carlo based understanding of the lepton induced Cherenkov<br />

ring recognition in the RICH detector is crucial for the whole lepton<br />

identification in the HADESspectrometer.<br />

A dedicated measurement was performed which allows to study the<br />

response of the RICH detector to the photon signal. The results of these<br />

studies were used to optimize the digitasation procedure for the RICH detector,<br />

in order to achieve a good agreement between real and simulated<br />

data for the heavy ion reaction environment.


Nuclear Physics Tuesday<br />

A set of full GEANT simulations of the HADESspectrometer, using<br />

UrQMD and thermal sources as input, was analysed and compared<br />

to the experimental data for the reaction C+C@1.5AGeV and<br />

Cr+Al@1.5AGeV. The quantitative evaluation of these comparisons will<br />

be presented.<br />

∗ supported by BMBF (6TM970I) and GSI (TM-FR1).<br />

HK 14.2 Tue 10:30 Foyer Chemie<br />

Impact of the calibration of the HADES drift chambers on the<br />

quality of the tracking — •Peter Zumbruch for the HADEScollaboration<br />

— GSI, Gesellschaft für Schwerionenforschung, Darmstadt,<br />

Germany<br />

HADES, a High Acceptance DiElectron Spectrometer, is a second generation<br />

experiment at the GSI SIS facility in Darmstadt. Its scientific<br />

program includes studies of in-medium properties of hadrons in hadronic<br />

matter and the electromagnetic structure of hadrons.<br />

High quality tracking is needed to provide a high invariant mass resolution<br />

(1 background.<br />

In the HADESsetup a high precision tracking is performed by two<br />

pairs of two multiwire drift chamber (MDC) modules in front and behind<br />

of the toroidial magnet field.<br />

The quality of the tracking is mainly affected by the performance and<br />

the alignment of the individual chambers as well as the accuracy of the<br />

drift time measurements. Hence, precise time calibration strategies - developed<br />

with data and simulation - are essential to meet the ambitious<br />

design goals of HADES.<br />

supported by<br />

GSI, BMBF, DFG, INTAS, EC<br />

HK 14.3 Tue 10:30 Foyer Chemie<br />

The HADES Run Control ∗ — •B. Sailer, T. Eberl, L. Fabbietti,<br />

J. Friese, R. Gernhäuser, J. Homolka, H.-J. Körner, M.<br />

Münch, andS. Winkler — Technische Universität München, James-<br />

Franck-Strasse 1, D-85748 Garching<br />

The new High Acceptance DiElectron Spectrometer HADES has been<br />

setup at GSI Darmstadt and is now ready to take data. The ATM-based<br />

data aquisition together with a multilevel trigger system will be able to<br />

read out 70 000 channels with a first level trigger rate of 10 5 Hz with zero<br />

supression and transport 1−2×10 3 events to mass storage every second.<br />

To operate this complex system consists of more than 1 000 frontend and<br />

over 100 VME boards with a large number of different tasks and layouts,<br />

a run control system based on the EPICSpackage has been developed<br />

making use of its network communication layer, monitoring capabilities<br />

and sequencing. In particular an interface has been developed that allows<br />

to bring several thousand parameters from different sources to the run<br />

control system and to write back status information to a database. The<br />

layout of the system will be presented.<br />

∗ supported by BMBF (6TM970I) and GSI (TM-FR1).<br />

HK 14.4 Tue 10:30 Foyer Chemie<br />

Programmable Downscalers and Dead-Time Measurement for<br />

HADES — •D. Schäfer, I. Fröhlich, A. Gabriel, D. Kirschner,<br />

W. Kühn, J. Lehnert, M. Petri, J. Ritman, A. Toia, andM.<br />

Traxler for the HADEScollaboration — II. Physikalisches Institut<br />

Universität Giessen, Heinrich-Buff-Ring 14, 35392 Giessen<br />

The HADES-Spectrometer at GSI Darmstadt allows the production of<br />

dilepton pairs in hadron and heavy ion induced reactions up to 2 AGeV to<br />

be investigated. The trigger system (raw event rate 100 kHz) is designed<br />

to reduce the event rate by a factor of 100.<br />

The HADESTrigger system is a distributed modular system. It includes<br />

dedicated Detector Trigger Units for each detector subsystem<br />

which all communicate with the Central Trigger Unit (CTU) via the<br />

first and second level trigger bus.<br />

In order to accomodate a large variety of experiments the functionality<br />

of the CTU will be extended by an additional module. This module<br />

provides programmable downscaling and dead time measurement for<br />

each of the individual inputs. Dead-time measurements will be made by<br />

determining the rates before and after the downscaling for each input.<br />

The add-on will be implemented into a Field Programmable Gate Array<br />

(FPGA) to allow flexible configuration.<br />

HK 14.5 Tue 10:30 Foyer Chemie<br />

Concept for a Dedicated Multi-Node Data Processing System<br />

for Realtime Trigger and Analysis Applications — •D.<br />

Kirschner, I. Fröhlich, A. Gabriel, W. Kühn, J. Lehnert, M.<br />

Petri, J. Ritman, D. Schäfer, A. Toia, andM. Traxler —II.<br />

Phys. Inst. Giessen,, Heinrich-Buff-Ring 14, 35392 Giessen<br />

Modern Experiments in hadron physics like the HADESdetector at<br />

GSI-Darmstadt produce a large amount of data that has to be distributed,<br />

stored and analyzed. Analysis of this data is very time consuming<br />

due to the large amount of data and the complex algorithms<br />

needed.<br />

This problem can be addressed by a dedicated multi-node and multi-<br />

CPU computing architecture interconnected by Gigabit-Ethernet. Dedicated<br />

hardware has the advantages over “Grid-Computers” in skaleability,<br />

price per computational unit, predictability of time behavior (posibility<br />

of real time applications) and ease of administration. Gigabit-<br />

Ethernet provides an efficient and standardized infrastructure for data<br />

distribution. This infrastructure can be used to distribute data in an<br />

experiment as well as to distribute data in a multi-node computing environment.<br />

The concept of a prototype VME-Bus card for data distribution and<br />

analysis in a multi-node environment will be presented. The card will<br />

be divided into two major units: a network unit featuring two Gigabit<br />

Ethernet connections and a computational part featuring several Digital<br />

Signal Processors.<br />

HK 14.6 Tue 10:30 Foyer Chemie<br />

Status of the HADES detector alignment — •Alexandre<br />

Sadovski 1 , H. Agakichiev 2 , H. Alvarez-Pol 3 , I. Duran 3 , B.<br />

Fuentes 3 , J. A. Garzon 3 , W. König 2 , R. Kotte 1 , V. Pechenov 4 ,<br />

M. Sanchez 3 ,andP. Zumbruch 2 for the HADEScollaboration —<br />

1 Forschungszentrum Rossendorf, Institut für Kern- und Hadronenphysik,<br />

Dresden, Germany — 2 GSI Darmstadt, Germany — 3 Universidade de<br />

Santiago de Compostela, Spain — 4 Joint Institute of Nuclear Research,<br />

Dubna, Russia<br />

The accurate determination of the masses of various vector mesons decaying<br />

into e + e − pairs is among the physics goals of the starting HADES<br />

experiments at SIS/GSI Darmstadt. This requires an overall invariant<br />

mass resolution of about 1 %. To achieve the corresponding momentum<br />

resolution a precise knowledge of the detector position is needed. A common<br />

way to do this is to correct (align) for possible deviations from the<br />

nominal positions using calibration data and the knowledge of the detector’s<br />

geometry. Several alignment procedures have been developed and<br />

tested using tracks from data on heavy-ion collisions aquired during several<br />

data taking periods. Alignment corrections for the multiwire drift<br />

chamber (MDC) positions have been found. Checks for MDC alignments<br />

have been developed and successfully applied. The methods and results<br />

used will be presented and surveyed.<br />

HK 14.7 Tue 10:30 Foyer Chemie<br />

A client - server based online monitoring system based on<br />

ROOT,QT and OpenGL for the use in the HADES experiment.<br />

— •Jörn Wüstenfeld for the HADEScollaboration — Johann<br />

- Wolfgang Goethe Universität Frankfurt, Institut für Kernphysik<br />

August-Euler-Stra¨se 6 D-60486 Frankfurt / M<br />

Even though the prices for CPU’s and memory are low, no experiment<br />

has ever enought computing power available. Therefore new techniques<br />

for the online/offline analysis have to be developed. One possible way<br />

is to use a client - server model, where the computing intensive part is<br />

done on one central machine with fast CPU’s and big memory, while<br />

the displaying task is hosted by decentral machines with less computing<br />

power.<br />

Following this concept, a monitoring system has been implemented in<br />

the HADESanalysis framework. Besides basic functionalities it provides<br />

global detector performace monitoring and a 3D eventdisplay of HADES.<br />

The talk will present the conceptual design of the monitoring system and<br />

a demonstration of the achieved monitor capabilities.<br />

This work was supported by GSI, BMBF, DFG, INTAS, EC.<br />

HK 14.8 Tue 10:30 Foyer Chemie<br />

Datenaufbereitung und -analyse für das A4-Experiment an<br />

MAMI — •Sebastian Baunack für die A4-Kollaboration — Institut<br />

für Kernphysik, Johannes-Gutenberg-Universität Mainz, 55099 Mainz<br />

Das totalabsorbierenden Bleifluorid-Kalorimeter des A4-Experimentes<br />

an MAMI zur Messung der Paritätsverletzung in der elastischen Streu-


Nuclear Physics Tuesday<br />

ung polarisierter Elektronen an unpolarisiertem Wasserstoff ist seit Inbetriebnahme<br />

im Sommer 2000 erfolgreich im Einsatz. Seither wurden<br />

viele Hundert Stunden Daten am Strahl genommen.<br />

Um im Meßbetrieb eine schnelle Qualitätsprüfung vornehmen zu<br />

können, wurde ein Online-Datenanalysesystem entwickelt, das die<br />

Energiespektren des Kalorimeters auswertet und graphisch darstellt.<br />

Die Zusammenführung mit weiteren Daten (Strahlmonitorierung etc.)<br />

bildet die Basis für die spätere Offline-Analyse.<br />

Datenaufbereitung und -analyse für einen ersten Datenpunkt werden<br />

vorgestellt.<br />

HK 14.9 Tue 10:30 Foyer Chemie<br />

Monitorierung strahlbedingter Asymmetrien für das A4-<br />

Experiment an MAMI — •Thorsten Hammel für die<br />

A4-Kollaboration — Institut für Kernphysik, Johannes-Gutenberg-<br />

Universität Mainz, 55099 Mainz<br />

Die Kollaboration A4 an MAMI strebt die Vermessung eines möglichen<br />

Beitrags der Strangeness zu den Pauli-Formfaktoren des Nukleons<br />

an. Die experimentelle Methode besteht in der Bestimmung der paritätsverletzenden<br />

Asymmetrie in der Zählrate der elastischen Streuung<br />

von rechts- und linkshändig polarisierten Elektronen an einem unpolarisiertem<br />

Flüssig-Wasserstoff-Target.<br />

Während des Experiments ist eine Messung von allen Größen, die im<br />

Falle einer Korrelation mit der Polarisationsumschaltung eine systematische<br />

Veränderung der gemessenen Asymmetrie bewirken können, erforderlich.<br />

Hierzu werden Strahlparameter, wie Strom, Intensität, Energie,<br />

Strahllage, Strahlwinkel, sowie die Targetdichte während der gesamten<br />

Messzeit gleichzeitig zum laufenden Experiment überwacht. Das hierzu<br />

entwickelte Detektorsystem ist seit 1999 aufgebaut und erfolgreich im<br />

Einsatz.<br />

Es werden das Detektorsystem sowie Messungen mit dem vollständigen<br />

Aufbau und Ergebnisse vorgestellt und diskutiert.<br />

HK 14.10 Tue 10:30 Foyer Chemie<br />

Aufbau der Ausleseelektronik für das A4-Experiment an MAMI<br />

— •Rainer Kothe für die A4-Kollaboration — Institut für Kernphysik,<br />

Johannes-Gutenberg-Universität Mainz, 55099 Mainz<br />

Die Kollaboration A4 an MAMI strebt die Vermessung des Beitrags<br />

der Strangeness zu den Pauli-Formfaktoren des Nukleons an. Die experimentelle<br />

Methode besteht in der Bestimmung der paritätsverletzenden<br />

Asymmetrie in der Zählrate der elastischen Streuung rechts- und<br />

linkshändig polarisierter Elektronen an einem unpolarisiertem Flüssig-<br />

Wasserstoff-Target.<br />

Die gestreuten Elektronen werden mit 1022 Bleifluoridkristallen nachgewiesen.<br />

Die Energie der Einzelereignisse wird mittels der nachgeschalteten<br />

Ausleseelektronik bestimmt und kanalweise histogrammiert.<br />

Vorgestellt wird diese Ausleseelektronik, im Hinblick auf deren Aufbau,Test<br />

und Weiterentwicklung, sowie Ergebnisse bisheriger Messungen.<br />

HK 14.<strong>11</strong> Tue 10:30 Foyer Chemie<br />

Investigation of Parametric X–Radiation under small Bragg angles<br />

at MAMI — •G. Kube, C. Ay, H. Backe, N. Clawiter, M.<br />

El Ghazaly, F. Hagenbuck, K.-H. Kaiser, W. Lauth, H. Mannweiler,<br />

H. Rochholz, andT. Weber — Institut für Kernphysik,<br />

Universität Mainz, J.-J. Becher Weg 45, 55099 Mainz<br />

When a charged ultrarelativistic particle passes through a perfect crystal<br />

the particle field can be diffracted in the vicinity of the Bragg angle.<br />

The emitted radiation is called quasi– Čerenkov radiation or parametric<br />

X–radiation. The energy ¯hω of the X–ray photons which are<br />

most efficiently radiated is predicted for silicon with plasma frequency<br />

ωp =31eV/¯hand a Lorentz factor γ = 1672, as for the Mainz Microtron<br />

MAMI, to be ¯hω = γ ¯hωp = 51.8 keV [1]. Angular distributions of (<strong>11</strong>1),<br />

(333) and (444) reflections for silicon single crystals of various thicknesses<br />

between 100 and 500 µm have been investigated at MAMI for Bragg angles<br />

θB ≤ 5◦ . The measured intensity distributions will be compared with<br />

theoretical calculations.<br />

[1] A. Caticha, Phys.Rev. B45 (1992) 9541<br />

Work supported by the DFG under contract BA 1336/1-3<br />

HK 14.12 Tue 10:30 Foyer Chemie<br />

Stabilization system for the A4-Compton-Polarimeter —<br />

•Jürgen Diefenbach for the A4 collaboration — Institut für<br />

Kernphysik, Universität Mainz<br />

The A4-Collaboration at the University of Mainz measures parity violation<br />

in electron proton scattering. The longitudinal polarization of<br />

the electron beam is to be measured with a compton backscattering polarimeter.<br />

The intracavity design requires long laser resonator arms. It is<br />

therefore important to properly stabilize the optics. First an overview of<br />

the stabilization requirements is given, then implementation methods using<br />

analog and digital filters are presented. The effects on the measuring<br />

accuracy are discussed.<br />

HK 14.13 Tue 10:30 Foyer Chemie<br />

Elemental Analysis of Soil Samples from Toshki in Upper Egypt<br />

by using Instrumental Neutron Activation Analysis Techniques<br />

— •Atef Eltaher 1,2 , K. L. Kratz 1 , A. Nosser 2 ,andA. Azzam 3 —<br />

1 Institut für Kernchemie, J. Gutenberg-Universität, D-55128 Mainz, Germany<br />

— 2 Physics Department, Faculty of science, Al-Azher University,<br />

Assiut Egypt — 3 Nuclear Physics Deparment, Atomic Energy Authority,<br />

Cairo Egypt<br />

Instrumental neutron activation analysis techniques (INAA) were applied<br />

for elemental analysis of soil samples collected from Toshki area 280<br />

km from Aswan city in Upper Egypt. The samples were irradiated with<br />

thermal neutrons at the TRIGA Mainz research reactor. Gamma-ray<br />

spectra were recorded using a HPGe detector to determine the contents<br />

of major, minor and trace elements in these samples. As a result of the<br />

analysis, altogether 32 elements were identified qualitatively and quantitatively.<br />

These elements are: Na, Mg, Al, Cl, K, Sc, Ca, Cr, Ti, V, Mn,<br />

Fe,Co,Zn,Rb,Zr,As,Nb,Sn,Ba,Cs,La,Ce,Nd,Eu,Sm,Yb,Lu,Hf,<br />

Ta, Th and U. In several cases, X-ray fluorescence analysis (XRF) was<br />

used for comparison. Furthermore delayed neutron activation analysis<br />

(DNAA) was used to determine the uranium content from these samples.<br />

The results from different analysis techniques will be compared and<br />

discussed.<br />

HK 14.14 Tue 10:30 Foyer Chemie<br />

Implementation of a RISC CPU in FPGA<br />

— •A. Danasino, H. Fischer, J. Franz, A. Grünemaier, S.<br />

Hedicke, F.H. Heinsius, M. von Hodenberg, F. Karstens, W.<br />

Kastaun, K. Königsmann, J. Reymann, T. Schmidt, H. Schmitt,<br />

and J. Worch for the COMPASS collaboration — Fakultät für Physik,<br />

Universität Freiburg<br />

The CATCH modules are the central building blocks of the readout<br />

system of the COMPASS experiment. The CATCH acts as a local event<br />

builder, adding information useful for the localization of the signals sent<br />

from the detectors. The CATCH is designed with several programmable<br />

logic devices (FPGA and CPLD). For monitoring and control of the data<br />

flow a complete system-on-a-chip design is implemented in one FPGA.<br />

It includes a 16 bit RISC processor which is clocked with 10 MHz. The<br />

microprocessor core is derived from the XSOC project developed by Jan<br />

Gray of Gray Research LLC. Very flexible programming can be done<br />

in integer C which is translated to the MIPSbased instruction set of<br />

the microprocessor. It can communicate to all other FPGAs on the<br />

CATCH, reset and monitor mezzanine cards and send serial initialization<br />

data to the front end boards. It can drive a four character display<br />

on the front panel of the CATCH module. For further information:<br />

http://hpfr02.physik.uni-freiburg.de/projects/compass/electronics<br />

This project is supported by the BMBF.<br />

HK 14.15 Tue 10:30 Foyer Chemie<br />

X-ray diagnostics and calibration of the COMPASS straw detectors<br />

— •Klaus Platzer 1 , Wolfgang Duennweber 1 ,andHermann<br />

Wellenstein 2 — 1 Sektion Physik der LMU, Am Coulombwall 1,<br />

85748 Garching — 2 Physics Department, Brandeis University, Waltham<br />

MA 02454<br />

A scanning device consisting of a continuous beam, 50kV X-ray tube<br />

and a 20mm x 30mm CCD has been installed for the inspection of the<br />

straw tracking system of the COMPASS experiment at CERN. One double<br />

layer of about 800 straws, covering an area of 3.2m x 2.7m, is scanned<br />

in about 30 hours. The result is a grid of 5000 wire positions. The control<br />

of wire and wall spacing is possible with a local resolution better than<br />

5 µm. The absolute wire positions are determined with an accuracy of<br />

about 50 µm, wich is sufficient as compared with the particle tracking<br />

resolution of about 200 µm of a single straw.


Nuclear Physics Tuesday<br />

HK 14.16 Tue 10:30 Foyer Chemie<br />

Tracking Capabilities of COMPASS GEM Detectors † — •Frank<br />

Simon 1 , Jan Friedrich 2 , Boris Grube 2 , Bernhard Ketzer 3 ,<br />

Igor Konorov 2 , Stephan Paul 2 ,andFabio Sauli 3 for the COM-<br />

PASS collaboration — 1 Max–Plank–Institut für Physik, München, Germany<br />

— 2 Physik–Department E18 TU München, Garching, Germany —<br />

3 CERN, Geneva, Switzerland<br />

For the small angle tracking of the COMPASS Experiment at CERN’s<br />

SPS accelerator, a total of 20 triple–GEM detectors, each with an active<br />

area of 31×31 cm 2 , are used. Prior to their successful operation in<br />

the COMPASS physics run in 2001, the detectors were tested in various<br />

particle beams to determine their tracking capabilities. The spatial<br />

resolution was shown to be better than 50 µm and an efficiency of 99%<br />

was reached for minimum–ionizing particles. The GEM detectors are<br />

equipped with an orthogonal two–dimensional projective readout that<br />

leads to a correlation between the charge collected on both readout coordinates.<br />

The charge ratio has a mean value close to unity and a width<br />

σ


Nuclear Physics Tuesday<br />

In this talk we discuss the possible application of new reconstruction<br />

techniques in nuclear physics experiments. Furthermore the problem of<br />

generalisation and implementation in other fields such as medical imaging<br />

will be discussed. As an application we present the status of ongoing<br />

work with planar low energy x-ray images obtained at small stereo angles.<br />

HK 14.24 Tue 10:30 Foyer Chemie<br />

Performance of the CERES TPC — •H. Appelshaeuser 1 and A.<br />

Marin 2 for the CEREScollaboration — 1 Physikalisches Institut der<br />

Universität Heidelberg — 2 Gesellschaft für Schwerionenforschung mbH<br />

In 1998 the CERESspectrometer was upgraded by the addition of<br />

a large cylindrical Time Projection Chamber (TPC) operated inside<br />

the field of a new magnet system to provide momentum measurement.<br />

Key issue is the improvement in mass resolution in the ρ/ω/φ region to<br />

∆m/m < 2%. The TPC adds also to the electron identification capability<br />

via dE/dx. Furthermore, the TPC opens the possibility of reconstructing<br />

the φ meson through its K + K − decay channel.<br />

The operation of a radial drift TPC inside an inhomogeneous magnetic<br />

field requires a very detailed understanding of the underlying electric and<br />

magnetic field configurations, drift properties for the Ne:CO2 (80:20) gas<br />

mixture, and detector geometry. We present the status of the TPC calibration<br />

and discuss the present performance.<br />

HK 14.25 Tue 10:30 Foyer Chemie<br />

Laboratory High Speed DAQ — •F. Karstens, A. Danasino, H.<br />

Fischer, J. Franz, A. Günemeier, S. Hedicke, F.H. Heinsius,<br />

M. v. Hodenberg, W. Kastaun, K. Königsmann, J. Reymann,<br />

T. Schmidt, H. Schmitt, andJ. Worch —Fakultät für Physik der<br />

Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg.<br />

Hitherto data acquisition systems in laboratories were characterized by<br />

flexible setups, but slow data rates. High data rates are mainly realized<br />

in fixed setups at large accelerator experiments. This poster presents a<br />

solution, which involves both - high data rates and flexible usability.<br />

The DAQ of the COMPASS-Experiment at CERN has been adapted<br />

for laboratory purpose with two additional modules - a trigger-logiccontroller<br />

and a trigger-distributor - substituting the sophisticated trigger<br />

system. In our system trigger signals are generated by a programmable<br />

combinatoric logic in a VME-module using modern FPGA technology.<br />

Alternatively the module can be used as a programmable prescaler. The<br />

second module, realized in NIM-standard, provides a fan out for the trigger<br />

signals and the experiment clock. It interfaces to the existing DAQ,<br />

in particular to the Freiburg CATCH-module.<br />

The DAQ system is scalable and conveniently adjustable to different<br />

inputs due to exchangeable mezzanine cards, what makes it interesting<br />

for a variety of experiments.<br />

For further information:<br />

http://hpfr02.physik.uni-freiburg.de/projects/compass/electronics<br />

This project is supported by BMBF.<br />

HK 14.26 Tue 10:30 Foyer Chemie<br />

Development of the ALICE TRD Radiator — •Damian Bucher<br />

for the ALICE-TRD collaboration — Institut für Kernphysik, Westfälische<br />

Wilhelms-Universität, Münster, Germany<br />

In this poster we present the design and tests of the radiator for the<br />

ALICE Transition Radiation Detector (TRD). The ALICE TRD consists<br />

of 540 individual detector modules which cover an overall area of about<br />

750 m 2 . Individual modules, which consist out of a radiator followed by<br />

a drift chamber, have entrance windows with a maximum size of about<br />

1.2 ∗ 1.6 m 2 which are covered by the radiators.<br />

The radiator for this detector not only has to give a very good transition<br />

radiation yield but also acts as one of the main mechanical supporting<br />

structures of the detector modules. The crucial goal is to keep<br />

the entrance windows, which serve as the cathodes of the drift chambers,<br />

within the tolerated deflection of 1 mm.<br />

To achieve this, various materials were evaluated during several test<br />

beamtimes and checked for their mechanical properties. The requirements<br />

for the radiator resulting from the detector design as well as the<br />

final foam/fibre sandwich construction are presented.<br />

HK 14.27 Tue 10:30 Foyer Chemie<br />

A new Data Acquisition System for COSY TOF ∗ — •A. Erhardt<br />

1 , M. Drochner 2 , T. Sefzick 2 ,andP. Wuestner 2 for the<br />

COSY-TOF collaboration — 1 Physikalisches Institut der Universität<br />

Tübingen — 2 Forschungszentrum Jülich<br />

Driven by the need for a faster data acquisition and implementation<br />

of the delayed-pulse technique for π + identification by use of multihit<br />

TDCs, the TOF collaboration decided to build a new data acquisition<br />

system. The experiment messaging system (EMS) has been chosen for<br />

several reasons: The system is successfully in use at several other experiments<br />

at COSY and the know-how is nearby since the system has been<br />

designed by people working at the Forschungszentrum Jülich. The new<br />

DAQ has been installed before the August 2001 beamtime and has been<br />

successfully used in that beamtime. This contribution shows how the different<br />

components cooperate, how compatibility with the collaborations’<br />

data analysis demands will be assured, and which further developments<br />

are planned. ∗ supported by BMBF (06 TÜ 987) and DFG (European<br />

Graduate School)<br />

HK 14.28 Tue 10:30 Foyer Chemie<br />

LED-Flashers for the TOF detectors — •I. Martin, P. Grabmayr,<br />

T. Hehl, andJ. Heim — Physikalisches Institut, Univ. Tübingen<br />

For the detection of neutrons at intermediate energies the time-of-flight<br />

method employing fast scintillation counters is the only one which provides<br />

sufficient resolution for precision studies. A pulser system with<br />

Light Emitting Diodes has been developed for calibration, adjustment<br />

and surveillance during data taking. This system has been improved<br />

recently with blue ultra-bright LEDs. The electronic and mechanical redesign<br />

will be presented. Results from bench test will be shown as well as<br />

the performance during data taking at the (γ,NN) experiments at MAMI<br />

will be discussed.<br />

[1] T. Hehl al., Nucl. Instr. Meth. A354 (1995) 505<br />

This work is supported by the DFG (European Graduate School Basel-<br />

Tübingen and SPP 1034)<br />

HK 14.29 Tue 10:30 Foyer Chemie<br />

The Nuclear Polarization of Molecules from Recombined<br />

Polarized Hydrogen and Deuterium Gas Atoms — •Hellmut<br />

Seyfarth 1 , Ralf Engels 2 , Peter Kravtsov 3 , Bernd Lorentz 1 ,<br />

Maxim Mikirtytchiants 1,3 , Hans Paetz gen. Schieck 2 , Frank<br />

Rathmann 1 , Hans Ströher 1 , Nikolay Tchernov 3 ,andAlexandre<br />

Vassiliev 3 — 1 Institut für Kernphysik, Forschungszentrum Jülich,<br />

52425 Jülich, Germany — 2 Institut für Kernphysik, Universität zu<br />

Köln, 50937 Köln, Germany — 3 High Energy Physics Department, St.<br />

Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia<br />

During the past decade, polarized atomic H and D storage-cell gas<br />

targets have been successfully applied at storage rings. However, a fraction<br />

of the polarized atoms recombines in wall collisions. The nuclear<br />

polarization, of the molecules is not directly accessible with a Breit-Rabi<br />

polarimeter (as used at HERMES), only the polarization of the atoms<br />

extracted from the cell can be measured. In order to overcome the resulting<br />

systematic uncertainty in the total overall nuclear polarization<br />

of the target gas, the nuclear polarization of recombined H2 molecules<br />

was recently studied in a separate experiment [1]. A high value has been<br />

found for a strong external magnetic holding field. In the framework of<br />

an ISTC project [2], additional investigations of polarized hydrogen and<br />

new studies of polarized deuterium molecules are being prepared. These<br />

will also include different hyperfine state compositions and variation of<br />

the storing conditions like material and dimensions of the cell walls.<br />

[1] T. Wise et al., Phys. Rev. Lett. 87, 042701 (2001).<br />

[2] International Science and Technology Center, project no. 1861.<br />

HK 14.30 Tue 10:30 Foyer Chemie<br />

Study of the liquid hydrogen jet properties at the ANKE pellet<br />

target — •P. Fedorets 1 , V. Balanutsa 1 , W. Borgs 2 , M.<br />

Büscher 2 , A. Bukharov 3 , V. Chernetsky 1 , V. Chernyshov 1 ,<br />

M. Chumakov 1 , A. Gerasimov 1 , V. Goryachev 1 , L. Gusev 1 , Z.<br />

Khorguashvili 4 , and S. Podchasky 1 for the ANKE collaboration<br />

— 1 ITEP, Moscow — 2 Forschungszentrum Jülich — 3 MPEI, Moscow —<br />

4 IPH GAS, Tbilisi<br />

A pellet target will be utilized at the ANKE spectrometer to reach<br />

highest luminosities with a hydrogen pellet jet crossing the stored, circulating<br />

COSY beam. One of the main experimental tasks is to produce<br />

a stable liquid hydrogen jet, which will further be broken into microdroplets<br />

of about 50 µm diameter by acoustic excitation and finally freeze<br />

into pellets. Special care has to be taken about the jet-production boundary<br />

conditions. For this purpose jet modifications close to the triple-point<br />

(T =14K,p = 100 mbar) were studied, since only there stable jet can<br />

be generated. The status of the ANKE pellet target and the results of


Nuclear Physics Tuesday<br />

the hydrogen jet investigations will be presented.<br />

HK 14.31 Tue 10:30 Foyer Chemie<br />

Beam Properties of the ANKE Atomic Beam Source —<br />

•Alexandre Vassiliev1 , Reinhard Emmerich2 , Ralf Engels2 ,<br />

Vladimir Koptev1 , Peter Kravtsov1 , Jürgen Ley2 , Bernd<br />

Lorentz3 , Stefan Lorenz4 , Maxim Mikirtytchiants1,3 , Mikhail<br />

Nekipelov1,3 , Hans Paetz gen. Schieck2 , Frank Rathmann3 ,<br />

Hellmut Seyfarth3 , Erhard Steffens4 , and Hans Ströher3 — 1High Energy Physics Department, Petersburg Nuclear Physics<br />

Institute, 188300 Gatchina, Russia — 2Institut für Kernphysik,<br />

Universität zu Köln, 50937 Köln, Germany — 3Institut für Kernphysik,<br />

Forschungszentrum Jülich, 52425 Jülich, Germany — 4Physikalisches Institut II, Friedrich-Alexander Universität, 91058 Erlangen, Germany<br />

The polarized atomic beam source (ABS) will be utilized to feed the<br />

storage-cell gas target in future experiments at the magnetic spectrometer<br />

ANKE. The ABSproduces an intensity of (6.9 ± 0.3) · 1016 hydrogen<br />

atoms/s in two hyperfine substates, measured with a compression tube<br />

having the dimensions of the feeding tube of the storage-cell and installed<br />

at its position. For future polarization studies and experiments<br />

with polarized internal gas targets a Lamb-shift polarimeter, built at<br />

the University of Cologne, has been installed at the ABS. First measurements<br />

of the nuclear polarization of the atomic hydrogen beam yield<br />

Pz =0.889 ± 0.009. In addition, measurements of the degree of dissociation<br />

and of the beam profile at the position of the storage cell feeding<br />

tube will be discussed.<br />

HK 14.32 Tue 10:30 Foyer Chemie<br />

Calibration of a Compton polarimeter in a wide energy range∗ — C. Hutter1 , •D. Galaviz1 , K. Sonnabend1 , T. Hartmann1 ,<br />

P. Mohr1 , W. Rochow2 , K. Vogt1 , S . Volz1 , and A. Zilges1 — 1Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße<br />

9, D-64289 Darmstadt — 2Physikalisches Institut, Universität<br />

Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen<br />

A fourfold segmented High Purity Germanium detector can be used<br />

as Compton-polarimeter [1] in order to derive parities from photon scattering<br />

experiments. In order to calibrate the analyzing power of the<br />

polarimeter, (p, pγ), (p, αγ), and (α, γ) reactions have been studied in<br />

detail.<br />

We present a complete set of results up to a γ energy of 10 MeV.<br />

[1] B. Schlitt et al., Nucl. Instr. and Meth. in Phys. Res. A337 (1994)<br />

416<br />

∗ supported by DFG (Zi 510/2-1 und FOR 272/2-1)<br />

HK 14.33 Tue 10:30 Foyer Chemie<br />

Ergebnisse der Streukorrektur für die PET bei der Schwerionentherapie<br />

— •Falk Pönisch und Wolfgang Enghardt —<br />

Forschungszentrum Rossendorf e.V., Postfach 510<strong>11</strong>9, 01314 Dresden<br />

Die Behandlung von Tumourpatienten mit 12 C-IonenwirdanderGSI<br />

Darmstadt seit Dezember 1997 durchgeführt. Bei der Dosisapplikation<br />

entstehen durch Wechselwirkung des Therapiestrahls mit dem bestrahlten<br />

Gewebe β + -emittierende Nuklide. Ihre räumliche Verteilung kann<br />

online mit dem am Strahl befindlichen Doppelkopf PET Scanner nachgewiesen<br />

werden. Voraussetzung für eine retrospektive Kontrolle der Dosislokalisation<br />

ist die Rekonstruktion der Radioaktivitätsverteilung aus den<br />

Messdaten mit Hilfe eines Maximum Likelihood Expectation Maximization<br />

(MLEM) Algorithmus. Die Comptonstreuung der Annihilationsphotonen<br />

im Gewebe des Patienten beeinträchtigt die Abbildungstreue der<br />

rekonstruierten Verteilung erheblich; deshalb sind die Messdaten dagegen<br />

zu korrigieren. Die vom Strahlentherapeuten verordnete Dosis bestimmt<br />

die Zählstatistik der PET-Studien. Die Zahl der registrierten Ereignisse<br />

liegt 2 bis 3 Grössenordnungen unter der in der Nuklearmedizin üblichen.<br />

Deswegen sind die dort ausgearbeiteten Verfahren der Streukorrektur<br />

auf PET bei der Schwerionentherapie nicht anwendbar und so wurde ein<br />

Verfahren der Streukorrektur in den MLEM-Rekonstruktionsalgorithmus<br />

integriert. Anhand der Rekonstruktionen von Phantom- und Patientenmessungen<br />

konnte die Richtigkeit der Methode bestätigt werden.<br />

HK 14.34 Tue 10:30 Foyer Chemie<br />

BunchlengthmeasurementsatELBE— •Pavel Evtushenko,<br />

Ulf Lehnert, Peter Michel, and Jochen Teichert —<br />

Forschungszentrum Rossendorf (FZR),Institut fuer Kern und Hadronenphysik,Postfach<br />

510<strong>11</strong>9,01314 Dresden<br />

Last year the first ELBE accelerating module was commissioned. During<br />

the commissioning the electron beam parameters such as transverse<br />

emittance, energy spread and bunch length were measured. Each of them<br />

was studied at different bunch charges as a function of RF field phase<br />

in the first accelerating cavity. Especially for an accelerator like ELBE,<br />

which is intended to be a driver for free electron laser (FEL), bunch length<br />

measurement in picosecond range becomes very important and impose<br />

some challenge. Coherent transition radiation (CTR) technique was used<br />

to measure bunch length. This technique uses the Martin-Puplett interferometer<br />

to measure the autocorrelation of the CTR pulse yielding a<br />

minimum 2 ps RMSbunch length at 77pC bunch charge. Short description<br />

of the method, experimental setup, data evaluation procedure and<br />

results of the measurements will be presented.<br />

HK 14.35 Tue 10:30 Foyer Chemie<br />

Investigation of light spots and related field emission at the<br />

S–DALINAC ⋆ — •M. Gopych, W. Beinhauer, M. Brunken, H.-<br />

D. Gräf, T. Hartmann, M. Hertling, S.Kostial, U. Laier, A.<br />

Lenhardt, M. Platz, A. Richter, B. Schweizer, A. Stascheck,<br />

O. Titze, andS.Watzlawik—Inst.für Kernphysik, TU Darmstadt,<br />

Schlossgartenstr. 9, 64289 Darmstadt<br />

Above certain field thresholds spots of light associated with field emission<br />

have been observed on the surface of an RF niobium superconducting<br />

cavity at the S–DALINAC. The spectrum of the optical radiation has<br />

been measured by an spectrometer set up on axis at the beam line exit<br />

of the accelerator. It shows a sharp peak at 693 nm and three small ones<br />

at about 670 nm, 705 nm, and 714 nm. Measurements of field dependence<br />

and intensity of the light spots revealed a behaviour similar to the<br />

electroluminescence phenomenon. Additional results of measurements<br />

aiming at the investigation of the emission of light and related field emission<br />

performed at the superconducting cavities will be presented.<br />

⋆ Supported by the DFG (FOR 272/2-1 and GRK 410/2)<br />

HK 14.36 Tue 10:30 Foyer Chemie<br />

Trigger and Readout for the Auger-Fluorescence telescopes —<br />

•Andreas Kopmann, Hermann-Josef Mathes, Hartmut Gemmeke,<br />

Matthias Kleifges, Alexandre Menshikov, and Denis<br />

Tcherniakhovski — Institut f”ur Prozessdatenverarbeitung und Elektronik,<br />

Forschungszentrum Karlsruhe<br />

The Pierre Auger Collaboration started with the construction of the<br />

first hybrid detector in Argentina. In the final state this experiment will<br />

consist of a large array of Cerenkov water detectors and 30 fluorescence<br />

telescopes to observe fluorescence light of EAS(Extensive air shower)<br />

with energies above 10 18 eV. Each telescope will be equipped with an<br />

independent trigger and readout system. The combination of fast hardware<br />

based pattern recognition and special software algorithms provide<br />

a trigger rate of a few events per hour.<br />

Since October 2001 two of this camera systems are operational. They<br />

demonstrate the power of the realized concept. The actual implemented<br />

trigger algorithms and their efficiency as well as the first data are presented.<br />

HK 14.37 Tue 10:30 Foyer Chemie<br />

ROOT-based off-line and on-line analysis of COSY-TOF data ∗<br />

— •Martin Schulte-Wissermann and Leonhard Karsch for the<br />

COSY-TOF collaboration — Institut für Kern- und Teilchenphysik, TU<br />

Dresden, Germany<br />

The COSY-TOF spectrometer is used to study proton-proton collisions<br />

with up to 2.5 GeV kinetic energy. During an experiment which<br />

lasts typically several weeks data in the order of 100 GB are stored on<br />

tape. Due to the modular setup of the detector, which is optimized for<br />

each individual experiment, the data analysis software has to be adapted<br />

accordingly.<br />

Using ROOT as the fundamental framework, we have developed a strategy<br />

(set of rules) how to efficiently combine the contributions of all collaborators<br />

involved in the data analysis. We provide interfaces, data<br />

containers, and function libraries which are easy to use, robust, and well<br />

documented. The application of these tools in the analysis of COSY-<br />

TOF data will be demonstrated.<br />

The usefullness of the whole concept in the on-line supervision and calibration<br />

was shown during a recent run. ∗ Supported by BMBF and FZJ.


Nuclear Physics Tuesday<br />

HK15 Plenary Session<br />

Time: Tuesday 14:00–16:15 Room: Plenarsaal<br />

Plenary Talk HK 15.1 Tue 14:00 Plenarsaal<br />

Recent Progress in Lattice QCD — •Uwe-Jens Wiese — Institut<br />

fuer Theoretische Physik, Universitaet Bern, Sidlerstrasse 5, CH-3012<br />

Bern<br />

Lattice QCD provides a framework in which one can hope to understand<br />

the strong interactions from first principles. In this approach quark<br />

and gluon fields are regularized nonperturbatively on a Euclidean spacetime<br />

lattice with spacing a. In his original formulation, Wilson avoided<br />

the fermion doubling problem at the cost of breaking chiral symmetry<br />

explicitly at non-zero a. Recently, the fermion doubling problem has<br />

been solved completely. In the resulting lattice fermion formulation chiral<br />

symmetry remains exact already at non-zero a. The lattice QCD path<br />

integral takes the form of a 4-d statistical mechanics system that can be<br />

simulated with Monte Carlo methods. In practice, lattice QCD simulations<br />

must reach the infinite volume limit, the continuum limit of zero<br />

a, as well as the chiral limit of light quarks. Recent progress has been<br />

made in all these directions. Still, the simulation of dynamical quarks remains<br />

the bottleneck of lattice QCD calculations. D-Theory provides an<br />

alternative formulation of lattice QCD in which Wilson’s classical link<br />

matrices are replaced by discrete quantum links to which the efficient<br />

meron-cluster algorithm may be applicable.<br />

Plenary Talk HK 15.2 Tue 14:45 Plenarsaal<br />

Chiral Extrapolation of Lattice QCD data for Baryon Properties<br />

— •Thomas R. Hemmert — Physik Department T39, TU<br />

München<br />

QCD should predict basic baryon properties like masses, magnetic moments,<br />

form factors, etc. However, these quantities are not accessible in<br />

terms of quark-gluon perturbation theory. In this talk we focus on two<br />

techniques—Lattice simulations of QCD and Chiral Perturbation Theory<br />

(ChPT)—which currently begin to develop significant overlap in addressing<br />

such questions. Baryon ChPT has been successfully applied to study<br />

the influence of the spontaneously broken chiral symmetry on low energy<br />

processes involving pions and nucleons. In the present context we are interested<br />

in the explicit breaking of chiral symmetry by the finite (current-)<br />

quark masses in low energy baryon observables. Such observables can be<br />

calculated in computer simulations on a finite space-time grid—Lattice<br />

QCD. However, these simulations are usually not performed with realistic<br />

small quark masses as the simulation of full QCD with three light<br />

flavors u, d, s is technically quite challenging. For reasons of numerical<br />

stability it is standard practice in Lattice QCD to work with sets of quite<br />

heavy quark masses and then extrapolate the results to physical quark<br />

masses. We will show that ChPT via its built-in explicit breaking of chiral<br />

symmetry can provide guidance for this extrapolation procedure that<br />

goes beyond the traditionally used linear ansatz. Furthermore, we discuss<br />

extensions of standard baryon ChPT to so called (partially-) quenched<br />

baryon ChPT that allow to estimate the size of artificial modifications of<br />

HK16 Theory II<br />

baryon properties due the use of the “quenching” simplification.<br />

Plenary Talk HK 15.3 Tue 15:15 Plenarsaal<br />

Electric dipole strength in atomic nuclei – a key to the breaking<br />

of isospin symmetry — •Andreas Zilges — Institut für Kernphysik,<br />

TU Darmstadt, Schlossgartenstrasse 9, D-64289 Darmstadt, Germany<br />

A global or local breaking of the symmetry of proton and neutron distributions<br />

in nuclei leads to electric dipole excitations. The most prominent<br />

feature is the Giant Dipole Resonance (GDR) at energies of about<br />

15 MeV. At the other end of the energetic scale a bound two phonon<br />

octupole–quadrupole excitation has been established as a fundamental<br />

E1 mode around 4 MeV in all medium and heavy mass nuclei.<br />

In recent photon scattering experiments at the Superconducting Darmstadt<br />

Linear Accelerator S–DALINAC we investigated several nuclei near<br />

shell closures in the energy range between the two phonon state and the<br />

neutron threshold. Collective electric dipole strength exhausting up to<br />

one percent of the energy weighted sum rule has been observed. These<br />

excitations are clearly separated from the GDR. Possible interpretations<br />

in terms of a local breaking of isospin symmetry and the influence of a<br />

neutron skin will be discussed.<br />

∗ supported by the DFG (contracts Zi 510/2-1 and FOR 272/2-2).<br />

Plenary Talk HK 15.4 Tue 15:45 Plenarsaal<br />

Nuclear Physics with a Free Electron LASER $ — •N. Pietralla<br />

— Institut für Kernphysik, Universität zu Köln — WNSL, Yale University,<br />

U.S.A.<br />

The electron storage ring at the Duke Free Electron LASER Laboratory<br />

operates at electron energies between 0.2 and 1.1 GeV. Its beam<br />

drives the OK-4 Free Electron LASER with tunable wavelengths in the<br />

optical range. The high photon density inside of the optical cavity enables<br />

one to obtain a large luminosity for Compton scattering processes<br />

between the polarized optical LASER photons and the relativistic electrons<br />

in the ring. Compton scattered photons experience a forwardpeaked<br />

Lorentz-boost by a factor of 106 –108 by transformation to the lab<br />

system and they form after collimation a nearly monochromatic, tunable,<br />

completely polarized γ-ray beam with an intensity of up to 109 γ’s/sec.<br />

This “High Intensity γ-ray Source” (HIγS), with a degree of linear polarization<br />

of Pγ > 99% and a narrow band width of ∆Eγ/Eγ < 4%,<br />

offers new conditions for experiments with photo-nuclear reactions, e.g.,<br />

for the photo-disintegration of the deuteron or for Nuclear Resonance<br />

Fluorescence (NRF) close to the particle emission threshold. First NRF<br />

experiments have recently been performed [1] at HIγS. Parity quantum<br />

numbers of J = 1 states of 138Ba and 88Sr have been measured. The results<br />

demonstrate the experimental progress made by the new technique.<br />

[1] N.Pietralla et al., Phys. Rev. Lett. 88 (<strong>2002</strong>), in press.<br />

$<br />

Supported by the U.S.-DOE and by the Emmy Noether-Programm of the DFG<br />

under contract Pi 393/1.<br />

Time: Tuesday 16:45–18:45 Room: A<br />

Group Report HK 16.1 Tue 16:45 A<br />

Glueballs and Instantons — •Hilmar Forkel — Institut für Theoretische<br />

Physik, Uni Heidelberg, Philosophenweg 19, 69120 Heidelberg<br />

The impact of QCD instantons on scalar glueball properties is studied<br />

in the framework of an instanton-improved operator product expansion<br />

(IOPE) for the 0 ++ glueball correlation function. Direct instanton contributions<br />

are found to strongly dominate over those from perturbative fluctuations<br />

and soft vacuum fields. All IOPE sum rules, including the one<br />

involving a subtraction constant, show a high degree of stability and are,<br />

in contrast to previous glueball sum rules, consistent with the low-energy<br />

theorem for the zero-momentum correlator. The predicted glueball mass<br />

mG =1.53 ± 0.2 GeV is less sensitive to the instanton contributions then<br />

the glueball coupling (residue) fG =1.01 ± 0.25 GeV, which increases by<br />

about half an order of magnitude. Both glueball properties are shown<br />

to obey scaling relations as a function of the average instanton size and<br />

density.<br />

HK 16.2 Tue 17:15 A<br />

Scale setting with Hypercubic Blocking — •Roland Hoffmann<br />

— Institut für Theoretische Physik, Universität Regensburg, Universitätsstrasse<br />

31, D-93053 Regensburg<br />

We measure the static potential from Wilson loops constructed using<br />

hypercubic blocked (HYP) links. The HYP smearing mixes gauge<br />

links within hypercubes attached to the original link only. The HYP<br />

potential agrees with the potential measured using thin links for distances<br />

r/a ≥ 2. We calculated the lowest order perturbative expansion<br />

of the lattice Coulomb potential of HYP links. These results are used<br />

in analyzing the static potential with Wilson’s action as well as with the<br />

Lüscher-Weisz action. The statistical accuracy of the potential with HYP<br />

links improves by about an order of magnitude, which makes it possible<br />

to determine a reliable scale even with limited statistics.


Nuclear Physics Tuesday<br />

HK 16.3 Tue 17:30 A<br />

Spectral Function of Quarks in Quark Matter — •Frank<br />

Frömel, Stefan Leupold, and Ulrich Mosel — Institut für<br />

Theoretische Physik, Universität Gießen, Germany<br />

We investigate the spectral function of light quarks in infinite quark<br />

matter using a simple albeit self-consistent model. Relations between<br />

correlation functions and collision rates are used to calculate the spectral<br />

function in an iterative process. Similar calculations have already<br />

been performed for nucleons in nuclear matter [1]. It was found there<br />

that this approach reproduces the results of many-body theory using a<br />

pointlike nucleon interaction with constant scattering amplitude. In our<br />

calculations the interactions between the quarks are described by the<br />

SU(2) Nambu–Jona-Lasinio model. We apply this method to calculate<br />

the quark spectral function at zero temperature and finite chemical potential.<br />

Work supported by DFG.<br />

[1] J. Lehr, H. Lenske, S. Leupold, U. Mosel, nucl-th/0108008<br />

HK 16.4 Tue 17:45 A<br />

Chiral symmetry restoration and the Z3 sectors of QCD —<br />

•Wolfgang Söldner, Christof Gattringer, P.E.L. Rakow,<br />

and Andreas Schäfer — Institut für Theoretische Physik, Universität<br />

Regensburg, D-93040 Regensburg, Germany<br />

Quenched SU(3) lattice gauge theory shows three phase transitions,<br />

namely the chiral, deconfinement and Z3 phase transition. Knowing<br />

whether or not the chiral and deconfinement phase transition occure at<br />

the same temperature for all Z3 sectors could be crucial to understand the<br />

underlying microscopic dynamics. We find that the spectral gap opens<br />

up at the same critical temperature in all Z3 sectors in contrast to earlier<br />

claims in the literature.<br />

HK 16.5 Tue 18:00 A<br />

Thermal QCD on the Lattice: Quasiparticles And Confinement<br />

— •Roland A. Schneider 1 and Wolfram Weise 1,2 — 1 Physik-<br />

Department, Technische Universität München, Garching, Germany —<br />

2 ECT*, Villazzano (Trento), Italy<br />

We propose a novel quasiparticle interpretation of the equation of state<br />

of deconfined QCD at finite temperature. Using appropriate thermal<br />

masses, we introduce a phenomenological parametrization of the onset<br />

HK17 Nuclear Physics / Spectroscopy II<br />

of confinement in the vicinity of the predicted phase transition. Lattice<br />

results of the energy density, the pressure and the interaction measure of<br />

pure SU(3) gauge theory are excellently reproduced. We find a relationship<br />

between the thermal energy density of the Yang-Mills vacuum and<br />

the chromomagnetic condensate 〈B 2 〉T. Finally, an extension to QCD<br />

with dynamical quarks is discussed. Good agreement with lattice data<br />

for 2, 2+1 and 3 flavour QCD is obtained. We also present the QCD<br />

equation of state for realistic quark masses. Applications to dilepton<br />

production in heavy-ion collisions are outlined. Published in Phys. Rev.<br />

C64 (2001) 055201.<br />

Work supported in part by BMBF and GSI.<br />

HK 16.6 Tue 18:15 A<br />

Kaons in nuclear matter — •Thomas Roth, Michael Buballa,<br />

and Jochen Wambach — Institut f. Kernphysik, TU Darmstadt<br />

We investigate the modification of Kaons in isospin symmetric and<br />

non symmetric nuclear matter. Using the leading s-wave couplings of<br />

the SU(3) chiral meson-baryon Lagrangian we solve the coupled channel<br />

Kaon-nucleon scattering equation selfconsistently.<br />

We obtain a description of the in medium properties of the Kaonnucleon<br />

scattering amplitude dominated by the Λ(1405) resonance. The<br />

in-medium Kaon propagator is calculated for different densities and different<br />

proton-neutron mixtures.<br />

While the Λ(1405) resonance is little affected by increasing density, we<br />

find that the Kaon mass experiences a strong downward shift. This will<br />

be important for the concept of Kaon condensation in neutron stars.<br />

HK 16.7 Tue 18:30 A<br />

Alpha Cluster Condensation in 12 Cand 16 O — •G. Röpke 1 , A.<br />

Tohsaki 2 , H. Horiuchi 3 ,andP. Schuck 4 — 1 FB Physik, Universität<br />

Rostock, D-18051 Rostock, Germany — 2 Department of Fine Materials<br />

Engineering, Shinshu University, Ueda 386-8567, Japan — 3 Department<br />

of Physics, Kyoto University, Kyoto 606-8502, Japan — 4 Institut de<br />

Physique Nucleaire, F-91406 Orsay Cedex, France<br />

Anewα-cluster wave function is proposed which is of the α-particle<br />

condensate type. Applications to 12 Cand 16 O show that states of low<br />

density close to the 3 and 4 α-particle thresholds in both nuclei are possibly<br />

of this kind. It is conjectured that all self-conjugate 4n nuclei may<br />

show similar features.<br />

Time: Tuesday 16:45–18:45 Room: B<br />

Group Report HK 17.1 Tue 16:45 B<br />

Peculiar Properties of Deformed Odd-Odd N = Z Nuclei —<br />

•Alexander Lisetskiy, N. Pietralla, K. Jessen, I. Schneider,<br />

A. Schmidt, andP. von Brentano — Institut für Kernphysik, Universität<br />

zu Köln, D-50937 Köln, Germany<br />

The near degeneracy of the states with total isospin quantum numbers<br />

T =0andT = 1 in odd-odd N=Z nuclei and very strong magnetic<br />

dipole (M1) transitions between them [1,2] are among the most interesting<br />

phenomena observed in N = Z nuclei. Furthermore the nuclei<br />

along the N = Z line offer a possibility to estimate the isospin mixing<br />

in the low-lying states from electromagnetic transition strengths. In the<br />

present work we analyze recent data and theoretical results on the structure<br />

of the odd-odd N=Z nuclei 46 V, 50 Mn, and 54 Co [1-4]. New data in<br />

combination either with the full pf-shell model or with collective rotorplus-quasideuteron<br />

model results help to establish systematic regularities<br />

for isovector M1 transitions, to reveal collective band structures in deformed<br />

odd-odd N = Z nuclei 46 Vand 50 Mn, and to estimate the small<br />

isospin mixing (0.4 %) between low-lying states with T =1andT =0<br />

in the odd-odd N = Z nucleus 54 Co.<br />

[1] A. F. Lisetskiy et al., Phys. Rev.C60, 064310 (1999).<br />

[2] A. F. Lisetskiy et al., Phys. Lett. B 512, 290 (2001).<br />

[3] I. Schneider et al., Phys.Rev.C61, 044312 (2000).<br />

[4] N. Pietralla et al., Phys. Rev.C65, in press (<strong>2002</strong>).<br />

Group Report HK 17.2 Tue 17:15 B<br />

High-accuracy mass measurements on N = Z nuclei using<br />

ISOLTRAP — •Frank Herfurth 1 , F. Ames 2 , G. Audi 3 , D.<br />

Beck 4 , K. Blaum 4 , G. Bollen 5 , A. Kellerbauer 1 , H.-J. Kluge 4 ,<br />

D. Lunney 3 , R.B. Moore 6 , D. Rodrígez 4 , E. Sauvan 1 , C.<br />

Scheidenberger 4 , S.Schwarz 5 , G. Sikler 4 , C. Weber 4 ,andthe<br />

ISOLDE-Collaboration 1 — 1 CERN, Geneva — 2 LMU, Munich<br />

— 3 CSNSM, Orsay — 4 GSI, Darmstadt — 5 NSCL, East Lansing —<br />

6 McGill Univ., Montreal<br />

ISOLTRAP is a Penning trap mass spectrometer installed at the online<br />

mass separator ISOLDE at CERN/Geneva. It serves for highaccuracy<br />

mass measurements of radioactive nuclides by determining their<br />

cyclotron frequency. After high-accuracy mass measurements on 74 Rb,<br />

74 Kr and 34 Ar, the mass of 32 Ar was measured recently. A relative uncertainty<br />

below 10 −7 was reached despite the short half-life of only 98 ms.<br />

This mass value is needed in the context of the search for scalar contributions<br />

to the standard model of weak interactions [1]. The experimental<br />

QEC value for the 32 Ar superallowed β decay has now the required uncertainty<br />

of only a few keV. 72 Kr is one of the two waiting point nuclei that<br />

define the speed of the astrophysical rp-process beyond A = 64. Among<br />

other things, its mass is an important input for the correct understanding<br />

and modeling of the rp-process in this region. The mass of 72 Kr was<br />

measured with a relative uncertainty of about 10 −7 .<br />

[1]E.G.Adelbergeret al., Phys. Rev. Lett. 83, 1299 and 3101 (1999)<br />

.


Nuclear Physics Tuesday<br />

HK 17.3 Tue 17:45 B<br />

Study of the oblate deformed g9/2 band in the N=Z+1 nucleus<br />

69 Se — •I. Stefanescu 1 , J. Eberth 1 , G. Gersch 1 , T. Steinhardt<br />

1 , O. Thelen 1 , N. Warr 1 , D. Weisshaar 1 , G. de Angelis<br />

2 , T. Martinez 2 , D. Curien 3 , K.P. Lieb 4 , A. Jungclaus 4 , R.<br />

Schwengner 5 ,andE. Stefanova 5 for the Euroball collaboration —<br />

1 Institut für Kernphysik, Zülpicherstr. 77, D-50937 Köln, Germany —<br />

2 Laboratori Nazionali INFN, I-35020 Legnaro, Italy — 3 CRN Strasbourg,<br />

F-67037 Strasbourg, France — 4 II. Phys. Institut, Universität Göttingen,<br />

D-37073 Göttingen, Germany — 5 Inst. für Kern- und Hadronenphysik ,<br />

Forschungszentrum Rossendorf, Germany<br />

The γ-ray transitions in the 69 Se nucleus have been investigated in the<br />

40 Ca( 32 S,2pn) 69 Se reaction at 105 MeV using the Euroball array coupled<br />

with ancillary detectors. The target consisted of a 800 µg/cm 2 99.965 %<br />

enriched self-suporting 40 Ca foil.<br />

The level scheme of 69 Se has been established by means of particlegated<br />

γ-γ and γ-γ-γ coincidences up to 13.7 MeV and J π =53/2 + for the<br />

prolate-deformed band which crosses the oblate band built on the g9/2<br />

orbital. Some new lines have also been added to the structure resulting<br />

from the coupling of one octupole phonon to the 9/2 + state in the prolate<br />

band.<br />

The spins of the levels were deduced, whenever possible, from the analysis<br />

of the directional correlation ratios from oriented states (DCO) using<br />

the γ-γ and the neutron-γ-γ events.<br />

Funded by German BMBF under Contract No. 06OK958.<br />

HK 17.4 Tue 18:00 B<br />

Nature of the Scissors Mode near Shell Closure ⋆ — •P. von<br />

Neumann-Cosel 1 , E. Guliyev 2 , F. Hofmann 1 , A.A. Kuliev 3 ,and<br />

A. Richter 1 — 1 Institut für Kernphysik, Technische Universität Darmstadt<br />

— 2 Department of Engineering Physics, Ankara University, Turkey<br />

— 3 Department of Physics, Sarkara University, Turkey<br />

While the global features of the scissors mode in heavy nuclei are quite<br />

well understood, peculiarities remain to be solved in nuclei near shell<br />

closure. There, the simple geometrical picture of a scissors-like motion<br />

of deformed proton and neutron bodies breaks down. Two examples<br />

are discussed. QRPA calculations of the low-energy dipole strength in<br />

122−130 Te are reported which provide new insight into the complex distributions<br />

which cannot be understood in spherical models. The extracted<br />

deformation dependence of the scissors mode strength is discussed with<br />

respect to various models. Another interesting case are the 194,196 Pt isotopes<br />

in the region of γ-softness near the N = 126 shell gap. Photon<br />

scattering experiments surprisingly suggest an upward shift of the scissors<br />

mode centroid in 194 Pt by about 500 keV with respect to the sys-<br />

HK18 Nuclear and Particle Astrophysics II<br />

tematics in rare-earth nuclei. First microscopic calculations of the M1<br />

and E1 strengths in 194,196 Pt are presented using the above model.<br />

⋆ Supported by the DFG under contract FOR 272/2-1.<br />

HK 17.5 Tue 18:15 B<br />

Phase transitions and two-neutron separation energies in<br />

algebraic models — •Ruben Fossion 1 , Kris Heyde 1 , and<br />

Jose-Enrique Garcia-Ramos 2 — 1 Department of Subatomic<br />

Physics, University of Gent, Proeftuinstraat,86 B-9000 Gent(Belgium)<br />

— 2 Departamento de Fiscia Aplicada. EPSLa Rabida, Universidad de<br />

Huelvam 21819 Palos de la Frontera (Spain)<br />

In the last few years, interest for the study of phase transitions and<br />

phase coexistence in atomic nuclei has been revived, in particular making<br />

use of algebraic methods such as the Interacting Boson Model (IBM).<br />

In the present study we consider the three transitional regions in which<br />

one observes rapid structural changes i.e. (a) the Nd-Sm-Gd region, (b)<br />

the Ru-Pd region and, (c) the Os-Pt region. Although these regions<br />

have been studied extensively emphasizing excited state properties, not<br />

so much attention has been given, up to now, concerning possible phase<br />

transitions in the nuclear ground-state properties.<br />

In this work, a new type of plot is presented that allows the study of<br />

phase transitions in finite systems, such as atomic nuclei. This approach<br />

allows to establish a connection between excited-state properties and<br />

binding energies. It can be shown that the binding energy and in particular<br />

the 2-neutron separation energy presents a very sensitive observable<br />

that allows to discriminate between apparently equivalent Hamiltonians.<br />

We also present results on the systematics of 2-neutron separation energies<br />

in long chains of isotopes.<br />

HK 17.6 Tue 18:30 B<br />

Cluster interpretation of the properties of the alternating parity<br />

bands in actinides — •T.M. Shneidman 1,2 , G.G. Adamian 1,2,3 ,<br />

N.V. Antonenko 1,2 , R.V. Jolos 1,2 , and W. Scheid 1 — 1 Institut<br />

für Theoretische Physik der Justus-Liebig-Universität, D-35392 Giessen,<br />

Germany — 2 Joint Institute for Nuclear Research, 141980 Dubna, Russia<br />

— 3 Institute of Nucear Physics, Tashkent 702132, Uzbekistan<br />

A cluster model interpretation is suggested for the properties of the<br />

alternating parity bands in Ra, Th and U isotopes, which includes a<br />

description of the parity splitting [1] and the Eλ (λ=1,2,3) transition<br />

probabilities. The mass asymmetry and relative distance coordinates are<br />

the most important variables of the model. The characteristics of the<br />

Hamiltonian used are determined in investigations of heavy ion reactions<br />

at low energies.<br />

[1] T.M.Shneidman et al., Phys.Lett. B(<strong>2002</strong>), in press.<br />

Time: Tuesday 16:45–18:45 Room: C<br />

Group Report HK 18.1 Tue 16:45 C<br />

Nuclear Input Data for the r-Process: Cosmochronometer for<br />

Old Halo Stars — •B. Pfeiffer 1 , K.-L. Kratz 1 , H. Schatz 2 ,and<br />

J.J. Cowan 3 — 1 Inst. f. Kernchemie, Univ. Mainz — 2 NSCL, Michigan<br />

State Univ., East Lansing, USA — 3 Dep. of Phys. and Astr., Univ.<br />

Oklahoma, Norman, USA<br />

The description of the rapid neutron-capture process (r-process) requires<br />

environments with a high neutron density, where neutron captures<br />

are faster than β-decays, even for unstable nuclei up to 15 - 30 units from<br />

stability near the neutron drip-line. These exotic nuclei with a large neutron<br />

excess are of considerable interest not only for astrophysics but for<br />

nuclear structure studies. They experience dramatic changes giving rise<br />

to new shell structures characterized by vanishing gaps [1].<br />

The updated nuclear physics input is applied for classical r-process<br />

models. The calculated abundances are compared to new observations<br />

of extremely metal-poor, old stars in the Galactic halo. The observed<br />

abundances for heavier neutron-capture elements (including the third rprocess<br />

peak elements) are consistent wth a scaled solar system distribution.<br />

Our theoretical production value for Th/U ratio combined with the<br />

new observations make more reliable chronometric age estimates possible<br />

[2]. These ages are lower limits for the age of the Universe.<br />

[1] B. Pfeiffer et al., Nucl. Phys. A693, 282 (2001)<br />

[2] R. Cayrel et al., Nature 409, 691 (2001); J.J. Cowan et al., submitted<br />

to Ap. J.<br />

HK 18.2 Tue 17:15 C<br />

Measurement of the 197 Au(γ,n) 196 Au cross section close above<br />

the reaction threshold ∗ — •P. Mohr, K. Vogt, M. Babilon,<br />

W. Bayer, T. Hartmann, C. Hutter, K. Lindenberg, K.<br />

Sonnabend, S . Volz, and A. Zilges — Institut für Kernphysik,<br />

Technische Universität Darmstadt, D-64289 Darmstadt, Germany<br />

Recently, the interest in (γ,n) reactions has been revived because of<br />

their astrophysical relevance for the nucleosynthesis of neutron-deficient<br />

p nuclei [1]. It has been shown that the astrophysical (γ,n) reaction rate<br />

depends on the (γ,n) cross section only in narrow energy window – a<br />

Gamow-like window – above the (γ,n) threshold [1,2]. We have measured<br />

(γ,n) reaction rates for several nuclei in a quasi-thermal photon<br />

bath at typical temperatures of a supernova explosion [1,3].<br />

The cross section of the reaction 197 Au(γ,n) 196 Au has been measured at<br />

the S-DALINAC close above the reaction threshold at Ethr =8.071 MeV<br />

using the method of photoactivation. From a combination of our result<br />

and data from literature [4] we derive the 197 Au(γ,n) 196 Au cross section<br />

from threshold to the giant dipole resonance with very small uncertainties.<br />

This cross section can be used as standard in future experiments.<br />

[1] P. Mohr et al., Phys. Lett. B 488, 127 (2000).<br />

[2] P. Mohr et al., Nucl.Phys.A688, 82c (2001).<br />

[3] K. Vogt et al., Phys.Rev.C63, 055802 (2001).<br />

[4] B. L. Berman et al., Phys.Rev.C36, 1286 (1987); A. Veyssiere et<br />

al., Nucl.Phys.A159, 561 (1970); G. M. Gurevich et al., Nucl.Phys.<br />

A351, 257 (1981); H. Utsunomiya et al., to be published.


Nuclear Physics Tuesday<br />

∗ supported by DFG (contracts Zi 510/2-1 and FOR 272/2-1).<br />

HK 18.3 Tue 17:30 C<br />

Resonance strengths for the reaction 28 Si(α, γ) 32 S at low energies<br />

— •M. Babilon, T. Hartmann, C. Hutter, P. Mohr,<br />

K. Sonnabend, K. Vogt, S.Volz,andA. Zilges — Institut für<br />

Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9,<br />

D-64289 Darmstadt, Germany<br />

Silicon burning is supposed to be the dominant mechanism for element<br />

synthesis in the mass range A = 28-65. Capture reactions like (α, γ),<br />

(p,γ), (n,γ) and the inverse photodisintegration processes are involved<br />

[1].<br />

During a calibration of a Compton polarimeter [2] γ-decays of eight resonances<br />

in the 28 Si(α, γ) 32 Sreaction have been studied. The results for resonance<br />

strengths and decay branches from previous measurements [3-5]<br />

were verified, and in several cases the uncertainties in resonance strengths<br />

could be significantly reduced.<br />

∗ supported by the DFG (contracts Zi510/2-1 and FOR272/2-1)<br />

[1] C. E. Rolfs, W. S. Rodney, ”Cauldrons in the Cosmos” (1988)<br />

[2] C. Hutter et al., this conference<br />

[3]D.W.O.Rogersel al., Nucl.Phys.A281, 345 (1977)<br />

[4]J.W.Toevsel al., Nucl.Phys.A172, 589 (1971)<br />

[5]P.J.M.Smuldersel al., Physica30, <strong>11</strong>97 (1964)<br />

HK 18.4 Tue 17:45 C<br />

Determination of the (n,γ) reaction rate of unstable 185 W<br />

in the astrophysical s-process via its inverse reaction — •K.<br />

Sonnabend, P. Mohr, K. Vogt, M. Babilon, W. Bayer, D.<br />

Galaviz, T. Hartmann, C. Hutter, S.Volz,andA. Zilges —<br />

Institut für Kernphysik, Technische Universität Darmstadt, D-64289<br />

Darmstadt, Germany<br />

The β-unstable isotope 185 W is a branching point in the astrophysical<br />

s-process. Therefore the ratio of the (n,γ) reaction rate and β-decay rate<br />

of 185 W is of common interest. We have measured the inverse reaction<br />

186 W(γ,n) 185 W due to the experimental difficulties in measuring the (n,γ)<br />

reaction rate of an unstable isotope directly. Our preliminary result is<br />

in agreement with theoretical predictions for the (γ,n) cross section [1]<br />

and available data [2-4]. Therefore, the predicted (n,γ) cross section under<br />

s-process conditions of about 700 millibarn and the derived neutron<br />

density [5] are confirmed.<br />

∗ supported by the DFG (contracts Zi510/2-1 and FOR272/2-1)<br />

[1] T. Rauscher, F.-K. Thielemann, At. Data Nucl. Data Tables 75, 1<br />

(2000)<br />

[2] B.L. Berman et al., Phys. Rev. 185, 1576 (1969)<br />

[3] A.M. Goryachev, G.N. Zalesnyĭ, IZV. An. KazSSR 6, 8 (1978)<br />

[4] G.M. Gurevich et al., Nucl. Phys. A351, 257 (1981)<br />

[5] F. Käppeler et al., ApJ. 366, 605 (1991)<br />

HK 18.5 Tue 18:00 C<br />

Electron Screening in Metals — •Francesco Raiola, Claus<br />

Rolfs, andFrank Strieder for the LUNA collaboration — Institut<br />

für Experimentalphysik III, Ruhr-Universität Bochum<br />

Recently, the electron screening effect on the d(d,p)t reaction has been<br />

studied in the metals Al, Zr, and Ta, where deuterated metals were produced<br />

via implantation of low-energy deuterons. The resulting S(E) data<br />

show the well known exponential enhancement, however the extracted<br />

electron screening potential values Ue are one order of magnitude larger<br />

than the values found in the corresponding gas-target experiment as well<br />

as that predicted from the adiabatic limit. In a new measurement at the<br />

100 kV accelerator at the Ruhr-Universität Bochum the observation of<br />

the large electron screening effect in the d(d,p)t reaction using a deuterated<br />

Ta target has been confirmed using somewhat different experimental<br />

approaches. Studies using other deuterated metals are on the way and<br />

new results will be presented in this talk.<br />

HK 18.6 Tue 18:15 C<br />

ERNA: a status report — •Daniel Schürmann for the ERNA<br />

collaboration — Institut für Experimentalphysik III, Ruhr-Universität<br />

Bochum, Universitätsstr. 150, 44780 Bochum<br />

The European Recoil Separator for Nuclear Astrophysics (ERNA) is<br />

currently in an advanced stage of construction and testing at the Dynamitron<br />

Tandem Laboratory of the Ruhr-Universität Bochum. It is<br />

mainly devoted to a new measurement of the astrophysically important<br />

12 C(α, γ) 16 O reaction cross section. Exploiting the separation of beam<br />

and recoil ions one measures the total cross section. Furthermore it is<br />

possible to clean up the γ-ray spectra by coincidence techniques and<br />

obtain information about the γ-ray angular distribution. Key parameters<br />

characterising the separator are the suppression factor of the carbon<br />

beam and the recoil acceptance. Measurements of these quantities and<br />

comparison with optical calculations are presented.<br />

HK 18.7 Tue 18:30 C<br />

The Trojan-Horse Method in Nuclear Astrophysics — •Stefan<br />

Typel 1 und Hermann Wolter 2 — 1 NSCL/Michigan State University,<br />

USA — 2 University of Munich, Germany<br />

The Trojan-Horse method (THM) is an indirect way to determine the<br />

energy dependence of nuclear cross sections at the very low energies of<br />

astrophysical interest. In this method the Coulomb barrier in the astrophysical<br />

reaction is effectively reduced by adding a spectator to one of the<br />

participating nuclei and by studying the breakup of the final three-body<br />

system in the particular region of the phase space where the momentum<br />

transfer to the spectator is small. In the plane-wave impulse approximation<br />

the cross section is a product of three factors: (1) a kinematical<br />

factor, (2) a momentum distribution, (3) an off-shell two-body cross section.<br />

The relation of the latter to the on-shell cross section was previously<br />

assumed in a heuristic approximation. We present inprovements in the<br />

theoretical description of the process starting from a distorted wave Born<br />

approximation. It yields a simple connection between the on-shell and<br />

off-shell cross sections. Applications of the THM in recent experiments,<br />

e.g. 7 Li(p,α)α and 6 Li(d,α)α, are discussed.<br />

HK19 Electromagnetic and Hadronic Probes II<br />

Time: Tuesday 16:45–18:45 Room: D<br />

Group Report HK 19.1 Tue 16:45 D<br />

Meson Spectroscopy with BABAR∗ — •Klaus Götzen for<br />

the BABAR collaboration — Institut für Experimentalphysik I,<br />

Ruhr-Universität Bochum<br />

The high luminosity of PEP-II in combination with the vertexing possibilities<br />

of the BABAR-Detector offers unique opportunities on light<br />

meson spectroscopy. The basic interest in this domain is the search for<br />

exotic states. In order to find those, the spectrum of conventional mesons<br />

must be precisely known. Earlier analyses were not able to resolve all<br />

ambiguities arising because of overlapping states. Some ambiguities can<br />

be resolved using a clean initial state which restricts the final state to<br />

specific quantum numbers, such as the weak decays of D ± s<br />

-mesons into<br />

three pseudoscalars, allowing only a few resonances to occur.<br />

Discussed in particular are the decays D ± s → K0 S K0 S π± and D ± s →<br />

π + π − π ± , and the data selection and Dalitz plot analyses are presented.<br />

These decays are of particular interest for the discussion of the existence<br />

and the spin of isoscalar resonances above 1.5 GeV/c 2 .Inthismassre-<br />

gion the glueball ground state is conjectured to lie and might mix strongly<br />

with other isoscalar J PC =0 ++ -states.<br />

∗ supported by the BMB+F<br />

Group Report HK 19.2 Tue 17:15 D<br />

Measurement of time–dependent CP–Asymmetries in B 0 –<br />

mesondecays to CP–eigenstates and studies of charmonium<br />

decays of B–mesons — •Jens Brose for the BABAR collaboration<br />

— Institut für Kern- und Teilchenphysik, TU Dresden, 01062 Dresden<br />

The BABAR detector, at the PEP-II asymmetric B-meson factory at<br />

SLAC collected a sample of 52 events/fb whilst operating at energies near<br />

the Υ(4S) resonance in 2000/2001.<br />

A study of time-dependent CP–asymmetries in events where one neutral<br />

B meson is fully reconstructed in a charmonium final state (J/ΨK 0 S,<br />

J/ΨK 0 L , Ψ(2S)K0 S , χc1K 0 S and J/ΨK∗0 (K ∗0 → K 0 S π0 )) is presented.<br />

Since the final state J/ΨK ∗0 is an admixture of CP-even and CPodd<br />

states, an analysis of the different decay amplitudes is necessary.


Nuclear Physics Tuesday<br />

The results of this analysis are reported together with measurements of<br />

B → charmonium branching fractions.<br />

HK 19.3 Tue 17:45 D<br />

Hard exclusive electroproduction of real photons and π + on the<br />

proton at HERMES — •Björn Seitz for the HERMEScollaboration<br />

— II. Physikalisches Insitut, Justus–Liebig Universität Giessen,<br />

Heinrich–Buff Ring 16, 35392 Giessen, F.R.G.<br />

The production of mesons (or photons) in deep–inelastic lepton scattering<br />

gives access to information on the structure of hadrons that is<br />

otherwise hard to obtain. When the production process involves at least<br />

on hard scale and is exclusive, the data can be interpreted in terms of<br />

the recently introduced generalized parton distributions (GPDs). These<br />

GPDs provide a unified description of hadronic structure, which can be<br />

applied to many different reactions.<br />

Single Spin Asymmetries in the hard, exclusive electroproduction of<br />

real photons (DVCS) and π + on the proton have been measured for the<br />

first time by HERMES. Sizeable asymmetries for DVCS using a polarized<br />

beam and unpolarized target have been observed. A large asymmetry<br />

using an unpolarized beam and a longitudinal polarized target has been<br />

observed in the exclusive electroproduction of π + . These data provide a<br />

first testing ground for the GPD formalism.<br />

HK 19.4 Tue 18:00 D<br />

Azimuthal asymmetries in pion and kaon production in SIDIS<br />

off longitudinally polarized proton and deuterium targets at<br />

HERMES — •Peter Schweitzer 1 , Klaus Goeke 2 ,andAnatoli<br />

Efremov 3 — 1 Dipartimento di Fisica Nucleare e Teorica, Universitá<br />

degli Studi di Pavia, Pavia, Italy — 2 Institut für Theoretische Physik<br />

II, Ruhr-Universität Bochum, Germany — 3 Joint Institute for Nuclear<br />

Research, Dubna, 141980 Russia<br />

Recently azimuthal asymmetries in pion production from SIDIS off<br />

a polarized proton target have been measured by HERMESand SMC.<br />

New HERMESdata from a longitudinally polarized deuetrium target<br />

will be released soon (possibly in February). The asymmetries can be<br />

explained by the Collins effect and contain information on the transversity<br />

distribution function and the T-odd Collins’ fragmentation function.<br />

Recently a very successful approach has been developed which is based<br />

on 2 ingredients and explains well existing data and allows unambigous<br />

predictions for new experiments with no free parameters. Ingredient (1)<br />

HK20 Heavy Ions II<br />

is experimental information on the Collins fragmentation function from<br />

DELPHI. Ingredient (2) are results from non-perturbative calculations<br />

of the transversity distribution function in the chiral quark soliton model<br />

and in the instanton model of the QCD-vacuum.<br />

HK 19.5 Tue 18:15 D<br />

Extraction of polarized quark distributions of the nucleon at<br />

HERMES — •Brecht Hommez — University of Gent, Proeftuinstraat<br />

86, B 9000 Gent, Belgium<br />

New results from the HERMESexperiment on polarized quark distributions<br />

for the valence and the sea quarks in the nucleon will be presented.<br />

The HERMESexperiment has measured double spin asymmetries in<br />

the cross section for deep-inelastic scattering of longitudinal polarised<br />

positrons off longitudinal polarised hydrogen and deuterium targets.<br />

From these asymmetries, based on inclusive and semi-inclusive measurements,<br />

polarised quark distributions were extracted as a function of x.<br />

Since 1998, a dual-radiator Ring Imaging Cherenkov detector has been<br />

installed in HERMES, which allows the identification of kaons, pions and<br />

protons over almost the entire kinematic range of the experiment. Semiinclusive<br />

kaon asymmetries will provide an enhanced sensitivity on the<br />

polarisation of the strange sea quarks in the sea.<br />

HK 19.6 Tue 18:30 D<br />

η photo- and electroproduction on nucleons — •Eugenio<br />

Marco, Bugra Borasoy, and Stefan Wetzel — Physik-<br />

Department, Technische Universität München<br />

The Swave contribution to photo- and electroproduction of the η ′ meson<br />

on both the proton and neutron is investigated within a relativistic<br />

chiral unitary approach based on coupled channels. We work with an<br />

effective chiral Lagrangian which includes the η ′ as an explicit degree<br />

of freedom and incorporates important features of the underlying QCD<br />

Lagrangian such as the axial U(1) anomaly. Unitarity constraints are imposed<br />

in performing the resummation of the amplitudes obtained from<br />

chiral perturbation theory and cross sections of η ′ photo- and electroproduction<br />

from nucleons are obtained. The investigation of the η ′ -nucleon<br />

system may offer new insights into the role of gluons in chiral dynamics.<br />

Work supported in part by the DFG and the Alexander von Humboldt<br />

Foundation.<br />

Time: Tuesday 16:45–18:45 Room: E<br />

Group Report HK 20.1 Tue 16:45 E<br />

The Compressed Baryonic Matter experiment at the future<br />

facility at GSI — •Volker Friese 1 , Anton Andronic 1 , Peter<br />

Braun-Munzinger 1 , Christian Finck 1 , Bengt Friman 1 , Norbert<br />

Herrmann 2 , Romain Holzmann 1 , Wolfgang Koenig 1 ,<br />

Matthias Lutz 1 , Peter Senger 1 , Yanghwan Shin 1 , Reinhard<br />

Simon 1 , Herbert Ströbele 3 , and Joachim Stroth 1,3 — 1 GSI<br />

Darmstadt — 2 Univ. Heidelberg — 3 Univ. Frankfurt<br />

A major field of research at the proposed accelerator facility at GSI will<br />

be the production and investigation of super-dense strongly-interacting<br />

matter. The exploration of the QCD phase diagram in the region of high<br />

baryon densities is complementary to the studies of matter at high temperatures<br />

performed at the CERN-SPS, RHIC and the future LHC. The<br />

planned experimental program will focus on diagnostic probes which have<br />

not been measured before in the beam energy range between 2 and 40<br />

AGeV: light vector mesons decaying into electron-positron pairs, hidden<br />

and open charm and multi-strange hyperons. In addition, hadronic observables<br />

such as protons, pions and kaons will be detected with large acceptance.<br />

The experimental challenge is the efficient identification of rare<br />

probes (both hadrons and electrons) embedded in events with charged<br />

particle multiplicities of up to 1000 at reaction rates of up to 10 MHz.<br />

The proposed layout of the detector system and performance simulations<br />

will be presented.<br />

Group Report HK 20.2 Tue 17:15 E<br />

Kaon and Antikaon Production in Nucleus-Nucleus Collisions<br />

at SIS Energies — •Florian Uhlig for the KaoScollaboration —<br />

TU Darmstadt<br />

The study of the<br />

properties of hadrons in dense matter and the nuclear equation-of-state<br />

at high baryon densities represents a major goal of today’s<br />

heavy-ion collision experiments.<br />

The production of strange particles<br />

serves as a sensitive tool for probing both issues [1][2].<br />

Systematic measurements of kaons and antikaons emitted in C+C,<br />

Ni+Ni<br />

and Au+Au collisions were performed with the Kaon Spectrometer<br />

KaoSat<br />

SIS/GSI. The particle yields were determined as function of momentum,<br />

collision centrality and emission angle. Of particular interest with<br />

respect to in-medium effects is the azimuthal emission pattern of<br />

kaons and antikaons. Recent results will be presented.<br />

[ ∗ ] supported by BMBF and GSI<br />

[1] F. Laue, C. Sturm et al., Phys. Rev. Lett. 82 (1999) 1640<br />

[2] C.Sturm et al., Phys. Rev. Lett. 86 (2001) 39<br />

HK 20.3 Tue 17:45 E<br />

Measurement of long-lived strange resonances in FOPI ∗ —<br />

•Markus Merschmeyer for the FOPI collaboration — Physikalisches<br />

Institut der Universität Heidelberg<br />

K 0 and Λ have been measured in the reactions Ni+Ni at 1.93 AGeV<br />

and Ru+Ru at 1.69 AGeV. Spectra and rapidity distributions are discussed<br />

and point, as is the case for charged kaons, in the theoretical<br />

description to the necessity for introducing in-medium potentials. Further<br />

information on this topic can be gained from the investigation of<br />

subthreshold production of double strange baryons at SIS energies. The


Nuclear Physics Tuesday<br />

capability of the FOPI detector for measuring Ξ − and theoretical predictions<br />

from thermal model calculations are presented.<br />

∗ supported by BMBF (06HD953) and GSI (HD-PEL)<br />

HK 20.4 Tue 18:00 E<br />

Direct Measurement of Delta Production in 40 Ar + nat Ca at<br />

0.8A GeV — •Ana Marin for the TAPScollaboration — Gesellschaft<br />

für Schwerionenforschung, D-64291 Darmstadt, Germany<br />

Charged pions and protons can be identified in the modularized photon<br />

spectrometer TAPSif one restricts the analysis to isolated BaF2<br />

crystals in the hit response and if one correlates time–of–flight and deposited<br />

energy. This method is exploited in 40 Ar+ nat Ca at 0.8A GeV to<br />

investigate the production of ∆(1232) resonances in the rapidity range<br />

0.2


Nuclear Physics Tuesday<br />

HK 21.5 Tue 18:15 F<br />

Recent Developments at the S–DALINAC ⋆ — •U. Laier 1 ,<br />

W. Beinhauer 1 , M. Brunken 1 , M. Gopych 1 , H.-D. Gräf 1 , T.<br />

Hartmann 1 , M. Hertling 1 , S . Kostial 1 , A. Krassilnikov 2 , A.<br />

Lenhardt 1 , P. Michel 3 , M. Platz 1 , A. Richter 1 , G. Schrieder 1 ,<br />

B. Schweizer 1 , A. Stascheck 1 , O. Titze 1 , S . Watzlawik 1 , T.<br />

Weiland 2 ,andH. Weise 4 — 1 Inst. für Kernphysik, TU Darmstadt<br />

— 2 Fachgebiet TEMF, TU Darmstadt — 3 FZ Rossendorf — 4 TESLA<br />

collaboration, DESY Hamburg<br />

We report on new developments and studies at the S–DALINAC. Results<br />

of measurements performed at the superconducting cavities which<br />

revealed the emission of light in conjunction with field emission are presented.<br />

The former concept of a fully digital RF control system was<br />

changed to a hybrid system consisting of a fast analog feedback circuit<br />

and a DSP-based unit. A fast computer code (V-code) using the model<br />

of ensembles to describe the beam properties was implemented to study<br />

injector beam dynamics. Diagnostics for transverse beam properties using<br />

tomographic techniques have been developed and tested. Compton<br />

diodes developed for the bremsstrahlung diagnosis at the S–DALINAC<br />

were also used for special measurements at TTFL and at ELBE. A new<br />

high energy bremsstrahlung facility was set up to measure the polarizability<br />

of the nucleon by Compton scattering and the 169 ◦ -magic-angle<br />

spectrometer was equipped with silicon microstrip detectors for resolu-<br />

HK22 Plenary Session<br />

tion improvement.<br />

⋆ Supported by the DFG (FOR 272/2-1 and GRK 410/2)<br />

HK 21.6 Tue 18:30 F<br />

An Electrostatic Storage Ring at IAP — •Carsten Welsch 1 ,<br />

Alwin Schempp 1 ,andHorst Schmidt-Boecking 2 — 1 IAP, Goethe<br />

University, Robert-Mayer Strasse 2-4, D-60054 Frankfurt / Main —<br />

2 IKF, Goethe University, August-Euler-Strasse 6, 60486 Frankfurt /<br />

Main<br />

An electrostatic storage ring may be seen as a cross between an electromagnetic<br />

trap and ’classical’ rings. Low costs, small size combined<br />

with mass independence of the necessary fields and good accessibility of<br />

the experimental sections are some of its interesting properties. Possible<br />

experiments with such a machine cover a wide range: Especially the<br />

advantage of being able to store heavy biomolecules and the absence of<br />

magnetic fields makes experiments possible one cannot cover with magnetic<br />

rings.<br />

At IAP design studies have been made for a ring to store particles of<br />

energies up to 50 keV and a quarter ring section is presently being build<br />

up. The necessary optical elements are presented here as well as diagnostic<br />

elements and the control system. An overview of the beam dynamics<br />

calculation shows the high flexibility of the circulating beam and gives<br />

an idea of possible experiments.<br />

Time: Wednesday 08:30–10:00 Room: Plenarsaal<br />

Plenary Talk HK 22.1 Wed 08:30 Plenarsaal<br />

Investigation of K + -meson production in pp and pA collisions<br />

with ANKE — •M. Büscher for the ANKE collaboration — Institut<br />

für Kernphysik, Forschungszentrum Jülich, 52425 Jülich<br />

ANKE is a magnetic spectrometer located at an internal target position<br />

in one of the straight sections of COSY-Jülich. In a first series of measurements<br />

with ANKE, the production of K + -mesons in pA (A =C,Cu,Ag,<br />

Au) collisions in a wide range of beam energies, T =1.0 ...2.3GeV, has<br />

been investigated. The main experimental challenge is that far below the<br />

free NN threshold (TNN =1.58 GeV) the cross section for K + -production<br />

is extremely small, e.g. σtot = 39 nb for pC collisions at 1.0GeV.<br />

For the first time, the complete momentum spectrum of kaons produced<br />

at angles ϑ


Nuclear Physics Wednesday<br />

Group Report HK 23.2 Wed <strong>11</strong>:15 A<br />

Renormalization Group Flow in large Nc and beyond — •Kai<br />

Schwenzer for the Rhone-Neckar-Flow collaboration — Institut fuer<br />

Theoretische Physik, Universitaet Heidelberg, Philosophenweg 19, 69120<br />

Heidelberg<br />

We calculate renormalization group flow equations for the bosonized<br />

Nambu–Jona-Lasinio model in large Nc approximation. The flow equations<br />

decouple and can be solved analytically. The solution is equal to<br />

a self consistent solution of the NJL model in the same approximation,<br />

which shows that flow equations are a promising method to solve the<br />

NJL model. Including explicit chiral symmetry breaking, the large Nc<br />

approximation describes physics reasonably well. We further compare<br />

the analytic solution to the usually used polynomial truncation and find<br />

consistency. Further we also discuss the inclusion of meson loops by an<br />

extension to higher orders in 1/Nc.<br />

HK 23.3 Wed <strong>11</strong>:45 A<br />

Renormalization in Self-Consistent Approximation schemes at<br />

Finite Temperature — •Hendrik van Hees 1 and Jörn Knoll 2 —<br />

1 Fakultät für Physik, Universität Bielefeld, Universitätsstraße, D-33615<br />

Bielefeld — 2 GSI Darmstadt, Theorie, Planckstraße 1, D-64291 Darmstadt<br />

Within finite temperature field theory, we show that self-consistent<br />

Dyson resummation schemes can be renormalized with all counter terms<br />

defined at the vacuum level (1) provided that the underlying theory is<br />

renormalizable and that the self-consistent scheme follows Baym’s Φderivable<br />

concept. The scheme generates the renormalized self-consistent<br />

equations of motion and the same time the corresponding generating<br />

functional and the thermodynamical potential in consistency with the<br />

equations of motion. This guarantees the standard Φ-derivable properties<br />

like thermodynamic consistency and exact conservation laws also for<br />

the renormalized approximation schemes to hold. First numerical applications<br />

for the φ 4 -theory including the tadpole and the sunset self-energy<br />

diagram are presented in order to show the practicability of the scheme<br />

(2). The question of symmetry violations of such schemes and the concepts<br />

to recover the symmerties (like Goldstone modes) are discussed<br />

(3).<br />

(1) H. van Hees and J. Knoll, Phys. Rev. D, Dec 15 2001; hepph/0107200<br />

(2) H. van Hees and J. Knoll, Phys. Rev. D, submitted; hep-ph/0<strong>11</strong><strong>11</strong>93<br />

(3) H. van Hees and J. Knoll, to be submitted to Phys. Rev. D.<br />

HK 23.4 Wed 12:00 A<br />

Evaluation of QCD sum rules for light vector mesons at finite<br />

density and temperature — •Sven Zschocke 1 , Burkhard<br />

Kaempfer 1 ,andOleg Pavlenko 2 — 1 Research Center Rossendorf<br />

e.V., PF 510<strong>11</strong>9, 01314 Dresden, Germany — 2 Institute for Theoretical<br />

Physics, 252143 Kiev-143, Ukraine<br />

The Borel QCD sum rules are evaluated at finite nucleon densities<br />

and temperatures to determine the in–medium behaviour of the lightest<br />

vector mesons ρ, ω and φ. The influence of the poorly known four–<br />

quark condensate is considered. The ρ meson mass drops with increasing<br />

density quite independent of the temperature, while the ω meson experi-<br />

HK24 Nuclear Physics / Spectroscopy III<br />

ences a positive or negative mass shift depending on the parametrization<br />

of the four–quark condensate. On the contrary, the φ meson in–medium<br />

behaviour is mainly determined by the chiral condensate of the strange<br />

quarks and depends on the hidden strangness fraction in the nucleon.<br />

The investigations address a density and temperature region relevant for<br />

the starting experiments of HADES.<br />

HK 23.5 Wed 12:15 A<br />

Chiral Dynamics of the η ′ — •Niklas Beisert, Bugra Borasoy,<br />

and Stefan Wetzel — Physik-Department, Technische Universität<br />

München<br />

We investigate chiral dynamics of the η ′ at low energies based on a<br />

U(3) chiral Lagrangian.<br />

As a first example, the dominant hadronic decay mode of the η ′ ,<br />

η ′ → ηππ, is evaluated up to one-loop order. For the evaluation of loop<br />

integrals we employ infrared regularization which makes 1/Nc counting<br />

rules redundant. Reasonable agreement with data is obtained without<br />

finetuning any parameters.<br />

In the second part of the report, the spectrum of scalar resonances<br />

is analysed by non-pertubative means. The chiral effective Lagrangian<br />

is combined with a coupled-channel Bethe-Salpeter approach which generates<br />

bound state poles of two pseudoscalar mesons. By taking the<br />

next-to-leading order Lagrangian into account we observe a number of<br />

resonances, including exotics, around 1.5 GeV, some of which can be<br />

identified with resonances found in nature.<br />

Work supported in part by the DFG.<br />

HK 23.6 Wed 12:30 A<br />

The case for a large polarized antiquark flavor asymmetry<br />

∆ū(x) − ∆ ¯ d(x) — R.J. Fries 1 , K. Goeke 2 , M. Polyakov 2 , A.<br />

Schäfer 1 ,and•C. Weiss 1 — 1 Institut für Theoretische Physik, Universität<br />

Regensburg, D–93053 Regensburg, Germany — 2 Institut für<br />

Theoretische Physik II, Ruhr–Universität Bochum, D–44780 Bochum,<br />

Germany<br />

The flavor asymmetry of the polarized antiquark distributions in the<br />

proton, ∆ū(x) − ∆ ¯ d(x), is measured in semi-inclusive DISat HER-<br />

MESand in future polarized Drell–Yan / W ± production experiments at<br />

RHIC. Standard explanations for the origin of the antiquark flavor asymmetries<br />

are i) the Pauli blocking effect in a constituent quark picture of<br />

the nucleon, or ii) “meson cloud” contributions to the DISprocess. Estimates<br />

of ∆ū(x) − ∆ ¯ d(x) from rho meson contributions have resulted in<br />

very small values [1]. We show that a sizable polarized flavor asymmetry<br />

is obtained in the meson cloud picture from the interference of πN and<br />

σN contributions to the DISprocess [2]. The value of ∆ū(x) − ∆ ¯ d(x)<br />

expected from this effect is compatible with the Pauli blocking model of<br />

Glück and Reya [3], as well as with the prediction of the chiral quark–<br />

soliton model based on the Nc →∞limit of QCD [4]. We comment on<br />

the experimental consequences of a large polarized flavor asymmetry.<br />

[1] R.J. Fries and A. Schäfer, Phys. Lett. B 443, 40 (1998)<br />

[2]B.Dressler,K.Goeke,M.V.PolyakovandC.Weiss,Eur.Phys.J.C<br />

14, 147 (2000)<br />

[3]M.Glück and E. Reya, Mod. Phys. Lett. A 15, 883 (2000)<br />

[4] D.I. Diakonov et al. Nucl. Phys. B 480, 341 (1996)<br />

Time: Wednesday 10:45–12:45 Room: B<br />

Group Report HK 24.1 Wed 10:45 B<br />

Cluster Knockout from Halo Nuclei — •L.V. Chulkov for the<br />

S174 collaboration — Gesellschaft für Schwerionenforschung, D-64291<br />

Darmstadt, Germany — Russian Research Centre “Kurchatov Institute”,<br />

R-123182 Moscow, Russia<br />

Quasi-elastic scattering of a proton on a cluster inside the halo nuclei<br />

6 He and 8 He has been studied at relativistic energies. The purpose of the<br />

experiment is to determine the spectroscopic factor of the α-cluster in<br />

6 He and in 8 He and the relative contribution of the 6 He ∗ +2n configuration<br />

in the 8 He wave function. These quantities are of vital importance<br />

for understanding the structure of halo nuclei. Additionally, the 4 He projectile<br />

was used as a bench mark nucleus to illustrate the kinematics of<br />

different reaction mechanisms.<br />

The experimental setup consisted of a 600 mg/cm 2 liquid hydrogen<br />

target, a forward spectrometer for tracking and identifying the projectile<br />

fragments and position sensitive detectors for the detection of the recoil<br />

protons. The direction of the fragment has been measured together<br />

with the momentum vector of the recoil proton. The processes of valence<br />

neutron or α-cluster knockout dominate the reaction mechanism.<br />

These processes are well separated by the reaction kinematics through<br />

the correlations in azimuthal and polar angles of the detected particles.<br />

The combination of the relativistic energy beams with the comprehensive<br />

kinematical analysis provides a direct method to determine the<br />

structure of exotic nuclei. The experiment has no analogy with any<br />

other radioactive beam experiments and the experimental data obtained<br />

are unique.


Nuclear Physics Wednesday<br />

Group Report HK 24.2 Wed <strong>11</strong>:15 B<br />

Search for the Spin-Dipole Resonance in 12 B — •M.A. de Huu 1 ,<br />

A.M. van den Berg 1 , N. Blasi 2 , M. Hagemann 3 , M.N. Harakeh 1 ,<br />

J. Heyse 3 , M. Hunyadi 1 , R. de Leo 4 , S. Micheletti 2 , H. Okamura<br />

5 , and H.J. Wörtche 1 for the EuroSuperNova collaboration<br />

— 1 Kernfysisch Versneller Instituut, Groningen, The Netherlands —<br />

2 INFN, Milano, Italy — 3 Vakgroep Subatomaire en Stralingsfysica, Universiteit<br />

Gent, Belgium — 4 INFN, Bari, Italy — 5 Saitama University,<br />

Saitama, Japan<br />

We report on an experiment performed at KVI to search for the spindipole<br />

resonance in 12 B and to decompose it into its three different spin<br />

components (J π =0 − ,1 − ,and2 − )byusingthe( � d, 2 He + n) reaction on<br />

12 C. To populate states in 12 B, we used a purely tensor-polarized deuteron<br />

beam at Ed = 170 MeV extracted from the AGOR-cyclotron. The two<br />

outgoing protons of the unbound 2 He nucleus from the 12 C(d, 2 He) reaction<br />

were measured with the Big-Bite Spectrometer and the EuroSuperNova<br />

focal-plane detection system. In coincidence, neutrons emitted<br />

from unbound states in 12 B were detected with the EDEN detector using<br />

a time-of-flight technique for the energy determination of the neutrons.<br />

Both the data obtained for the tensor analyzing power and the angular<br />

correlations for the neutron-decay channels will be used to disentangle<br />

the contributions of the different spin-dipole states. Preliminary results<br />

of the analysis will be shown.<br />

HK 24.3 Wed <strong>11</strong>:45 B<br />

Observation of microwave-induced transitions between hyperfine<br />

levels of antiprotonic helium — •Eberhard Widmann —<br />

Department of Physics, University of Tokyo<br />

The ASACUSA collaboration at the Antiproton Decelerator of CERN<br />

succeeded in the year 2001 for the first time to observe two microwaveinduced<br />

transitions between hyperfine levels of antiprotonic helium. The<br />

hyperfine levels are those of a highly excited state (principal quantum<br />

nunber 37, angular quantum number 35) of the exotic three-body system<br />

¯p–e − –He 2+ . The observed transitions at ∼ 12.91 GHz correspond<br />

to an electron spin flip in the orbital magnetic field of the antiproton.<br />

The experimental accuracy is ∼ 1.5×10 −5 , and the measured frequencies<br />

agree with three-body QED calculations on the level a few 10 −5 . The<br />

current precision of the theory is limited by the omission of terms of order<br />

α 2 ≈ 5 × 10 −5 which is worse than the experimental resolution.<br />

This constitutes the first precise measnurement of the orbital magnetic<br />

moment of a composite particle. In addition to providing a benchmark<br />

for three-body QED calculations, the hyperfine structure of antiprotonic<br />

helium is sensitive to the magnetic moment of the antiproton, an important<br />

quantity related to CPT invariance. An increased accuracy of both<br />

experiment and theory may yield an improved value of the antiproton<br />

magnetic moment which is only known with an accuracy of 3 × 10 −3 .<br />

HK 24.4 Wed 12:00 B<br />

Gamow-Teller matrix elements from the (d, 2 He) reaction at<br />

170 MeV — •S .Rakers, C. Bäumer, D. Frekers, E. Grewe,<br />

B. Junk, andR. Schmidt for the EUROSUPERNOVA collaboration<br />

— Institut für Kernphysik, Westfälische Wilhelms-Universität Münster,<br />

Wilhelm-Klemm-Str. 9, D-48149 Münster<br />

The (d, 2 He) reaction, where 2 He denotes the unbound system of two<br />

protons being in a 1 S0 state, is a charge-exchange reaction of (�n,�p) type.<br />

HK25 Nuclear and Particle Astrophysics III<br />

At extreme forward angles, the probe excites Gamow-Teller states with<br />

high purity.<br />

We have performed (d, 2 He) experiments on the N=Z nuclei 12 Cand<br />

24 Mg at Ed=170 MeV. The protons from the 2 He decay were detected<br />

in coincidence with the BBS-ESN spectrometer/detector setup at the<br />

AGOR cyclotron in Groningen. Energy resolutions of 145 keV were<br />

achieved, allowing a detailed spectroscopy of the final nuclei 12 Band<br />

24 Na.<br />

In the talk, we will present spectra, angular distributions, and DWBA<br />

calculations. In the case of the 24 Mg, the 0 ◦ spectrum is compared with<br />

(p,n) reaction data in which the same levels in the analog nucleus 24 Al are<br />

populated. A detailed one-to-one correspondence is observed. Spectra<br />

canalsobecomparedwith(p,p ′ ) data, yielding a complete level scheme<br />

for 1 + states in the A=24 (T=1) isospin triplet.<br />

HK 24.5 Wed 12:15 B<br />

Exclusive measurement of breakup reactions with the oneneutron<br />

halo nucleus <strong>11</strong> Be — •R. Palit for the LAND collaboration<br />

— Institut für Kernphysik, Johann Wolfgang Goethe Universität,D-<br />

60486 Frankfurt, Germany<br />

One-neutron removal reactions of 520 MeV/u <strong>11</strong> Be projectiles impinging<br />

on carbon and lead targets were studied in a kinematically complete<br />

experiment using the LAND set-up at GSI. The 10 Be fragments, neutrons,<br />

as well as gamma-rays from the excited states of the fragment<br />

were detected in coincidence and the partial cross sections populating<br />

the ground and excited states of the core nucleus were deduced. The<br />

relative energy spectrum between the 10 Be core and a neutron in the<br />

continuum was derived, yielding the spectroscopic factor for the neutron<br />

in the 2s halo state. The comparison of electromagnetic and nuclear<br />

contributions to the breakup will be presented. It has been found that<br />

Coulomb breakup predominantly populates the core ground state, while<br />

excited states account for only a few percent of the total cross section.<br />

Model calculations interconnecting the structure of <strong>11</strong> Be and the experimental<br />

cross sections will be presented.<br />

Supported by BMBF (06OF<strong>11</strong>2, 06MZ864) and by GSI (OF ELZ, MZ KRK).<br />

HK 24.6 Wed 12:30 B<br />

Systematic study of the structure of neutron rich oxygen isotopes<br />

— •Kate Jones for the LAND/S188/S233 collaboration —<br />

Gesellschaft für Schwerionenforschung (GSI), Planckstr. 1, D-64291<br />

Darmstadt, Germany<br />

The one neutron removal from isotopes of oxygen with A = 17 to<br />

23 has been studied in complete kinematics using the LAND/ALADIN<br />

setup at GSI at energies around 500 MeV/A. The radioactive beams<br />

were produced via fragmentation using the fragment separator, FRS.<br />

Targets of carbon and lead have been used to study the nuclear knockout<br />

and Coulomb dissociation respectively. The charged (A-1) fragments<br />

and neutrons were detected in coincidence with the gamma-rays emitted<br />

from excited states of the residual nucleus. The single particle structure<br />

of the projectile can be deduced from the low-lying E1 strength using a<br />

direct break up model. Detailed structural information of the odd-mass<br />

oxygen isotopes, including the halo nucleus candidate 23 O, has been derived<br />

from Coulomb dissociation.<br />

Supported by BMBF (06OF<strong>11</strong>2, 06MZ864) and by GSI (OF ELZ, MZ KRK).<br />

Time: Wednesday 10:45–12:15 Room: C<br />

Group Report HK 25.1 Wed 10:45 C<br />

Astrophysical S factor for 7 Be(p,γ) 8 B from precision cross section<br />

measurements — •A.R. Junghans 1 , E.C. Mohrmann 1 , K.A.<br />

Snover 1 , T.D. Steiger 1 , E.G. Adelberger 1 , J.M. Casandjian 1 ,<br />

H.E. Swanson 1 , L. Buchmann 2 , S.H. Park 2 ,andA. Zyuzin 2 —<br />

1 CENPA, University of Washington, Seattle WA, U.S.A. — 2 TRIUMF,<br />

Vancouver B.C., Canada<br />

Super-K and SNO are sensitive mainly to neutrinos from the decay of<br />

8 B produced by the 7 Be(p,γ) 8 B reaction in the Sun. An improved determination<br />

of this cross section (Sfactor) at solar energies is necessary<br />

at the level of ±5% in order that this reaction rate not be the dominant<br />

uncertainty in the νe flux predicted by solar model calculations 1 . We<br />

have made new, direct measurements of the 7 Be(p,γ) 8 B cross section at<br />

27 points from Ecm = 0.18 to 1.2 MeV using the van de Graaff accelerator<br />

of the University of Washington with a Terminal Ion Source, and a<br />

106 mCi 7 Be target produced at TRIUMF and deposited on a Mo backing.<br />

The water-cooled target, mounted on the end of a rotating arm,<br />

is irradiated in the proton beam and then rotated 180 degrees in front<br />

of a Si-detector where the α particles following the β decay of 8 Bare<br />

counted. Our technique involves a number of improvements over previous<br />

measurements. In our measurements, we have achieved a precision<br />

±5% or better per point. Results will be presented and compared with<br />

model calculations and with other experiments. 1 J. Bahcall et al. Phys.<br />

Lett. B433 (1998) 1


Nuclear Physics Wednesday<br />

HK 25.2 Wed <strong>11</strong>:15 C<br />

The 18 O(α, γ) rate during stellar He burning — •Sa’ed Dababneh<br />

1 , Joachim Görres 2 , Michael Heil 1 , Franz Käppeler 1 , Rene<br />

Reifarth 1 , and Michael Wiescher 2 — 1 Forschungszentrum Karlsruhe,<br />

Institut für Kernphysik, 76021 Karlsruhe — 2 University of Notre<br />

Dame, Department of Physics, Notre Dame, IN 46556, USA<br />

The 22 Ne(α,n) reaction is the dominant neutron source for the weak<br />

s process in massive stars and plays also a significant role in s-process<br />

nucleosynthesis in thermally pulsing AGB stars. 22 Ne is produced by the<br />

reaction sequence 14 N(α, γ) 18 F(β + ) 18 O(α, γ) 22 Ne. While the first reaction<br />

is well understood, α-capture on 18 O is still affected by considerable<br />

uncertainties. At the temperatures of interest the reaction rate is dominated<br />

by two resonances at α-energies of 470 keV and 566 keV. Since<br />

these resonances were not yet observed directly, the rates had to be based<br />

on estimated resonance strengths. We have searched for these resonances<br />

using an intense α-beam and a Ge-clover detector in combination with<br />

BGO detectors. First results of this experiment will be reported, and the<br />

implications for stellar neutron production will be discussed.<br />

HK 25.3 Wed <strong>11</strong>:30 C<br />

Study of the 14N(p,γ) 15O reaction at low energies — •Frank<br />

Strieder for the LUNA collaboration — Institut für Physik mit Ionenstrahlen,<br />

Ruhr-Universität Bochum, Germany<br />

The 14N(p,γ) 15O capture reaction is a crucial reaction in stellar models,<br />

being the limiting reaction in the CNO cycle. Therefore, this reaction<br />

controlls not only the energy generation in the CNO cycle but also influences<br />

the determination of the age of globular clusters in our galaxy.<br />

The cross section of the 14N(p,γ) 15O reaction has already been measured<br />

by different groups but large uncertainties remain in the absolute value<br />

of the astrophysical Sfactor. By using the new 400 kV LUNA accelerator<br />

at the Gran Sasso underground laboratory (LNGS) the cross section<br />

of this reaction will be studied complementary with a solid and a gas<br />

target to energies far below the 278 keV resonance. The solid target<br />

set-up consists of targets produced by plasma deposition techniques and<br />

several large volume HPGe detectors taking advantage of the very low<br />

γ-ray background at LNGS. The gas target set-up is based on a large<br />

BGO summing crystal and a windowless gas target system with the target<br />

chamber placed inside the detector central hole. A progress report<br />

on the details of the experiments and the first results will be given in this<br />

talk.<br />

HK 25.4 Wed <strong>11</strong>:45 C<br />

Alpha decay of low-lying states in 19Ne: studies toward a determination<br />

of the 15O(α,γ) 19Ne reaction rate in novae and Xray<br />

bursts — •B. Davids1 , R. Siemssen1 , A. M. van den Berg1 ,<br />

F. Fleurot1 , M. Hunyadi1 , M. de Huu1 , R. E. Segel2 , H. W.<br />

Wilschut1 ,andH. J. Wörtche1 — 1Kernfysisch Versneller Instituut,<br />

Zernikelaan 25, 9747 AA Groningen, the Netherlands — 2Department of<br />

Physics and Astronomy, Northwestern University, 2145 Sheridan Road,<br />

Evanston, Illinois 60208 USA<br />

The rate of the 15 O(α,γ) 19 Ne reaction strongly influences breakout<br />

from the hot CNO cycles into the rp process in novae and X-ray bursts.<br />

As a direct measurement of the cross section for this reaction is not yet<br />

feasible, measurements of the reduced alpha widths of low-lying states<br />

in 19 Ne using transfer reactions with stable beams offer the most reliable<br />

information on the resonant reaction rate. At the KVI, we have carried<br />

out a preliminary measurement of this kind using the highly selective<br />

p( 21 Ne,t) 19 Ne reaction. The principles of this technique and initial results<br />

will be presented.<br />

HK 25.5 Wed 12:00 C<br />

Determination of S�1 and S�2 for 12 C(α,γ) 16 O from Gamma<br />

Angular Distribution Measurements — •Michael Fey 1 , J.W.<br />

Hammer 1 , D. Malcherek 1 , R. Kunz 1 , A. Lefèbvre 2 , J. Kiener 2 ,<br />

V. Tatischeff 2 , M. Assunção 2 , A. Coc 2 , C. Grama 2 , F. Hammache<br />

2 , F. Hannachi 2 , A. Korichi 2 , A. Lopez-Martens 2 , J.P.<br />

Thibaud 2 , F. Haas 3 , C. Beck 3 , S.Courtin 3 , M. Rousseau 3 , N.<br />

Rowley 3 , S . S zilner 3 , S. Harissopulos 4 , E. Galanopoulos 4 ,<br />

G. Kriembardis 4 , T. Paradellis 4 , G. Staudt 5 , J. Weil 6 , and<br />

F. Fleurot 7 — 1 Institut für Strahlenphysik, Universität Stuttgart,<br />

Germany — 2 CSNSM, Orsay, France — 3 IRes, Strasbourg, France —<br />

4 N.C.S.R. “Demokritos”, Athens, Greece — 5 Physikalisches Institut,<br />

Universität Tübingen, Germany — 6 University of Kentucky, Lexington,<br />

USA — 7 KVI, University of Groningen, Netherlands<br />

Several Experiments on 12 C(α,γ) 16 O have been performed at the<br />

4MV Dynamitron accelerator in Stuttgart with arrays of high efficient<br />

HPGe(BGO)-detectors to obtain γ angular distributions in a wide energy<br />

range. From these the E1 andE2 cross sections can be separated, which<br />

are required to describe the complex capture mechanism of this reaction<br />

with several interfering states and the non-resonant capture. From an<br />

R-matrix analysis one obtains an appropriate model description of this<br />

reaction and the extrapolation into the stellar energy range of stellar<br />

burning temperatures. The status of the experiments and several results<br />

will be presented and discussed.<br />

HK26 Electromagnetic and Hadronic Probes III<br />

Time: Wednesday 10:45–12:45 Room: D<br />

Group Report HK 26.1 Wed 10:45 D<br />

Electromagnetic structure of the nucleon investigated by free<br />

and quasi-free Compton scattering — •Martin Schumacher,<br />

Karsten Kossert, Marcus Camen und Frank Wissmann für<br />

die A2-Kollaboration — Zweites Physikalisches Institut der Universität,<br />

Bunsenstraße 7–9, D-37073 Göttingen<br />

The electromagnetic structure of the nucleon may be parameterized<br />

through amplitudes for one pion photoproduction or through invariant<br />

amplitudes for Compton scattering. In addition structure constants are<br />

used having a straightforward physical interpretation. These structure<br />

constants are the E2/M1 ratio of the p → ∆ transition, the electromagnetic<br />

polarizabilities α and β and the spin polarizabilities γ0 and<br />

γπ. Recently, these structure constants have been measured at MAMI<br />

(Mainz) by Compton scattering at the free proton and the proton and<br />

neutron bound in the deuteron using different experimental setups. It is<br />

reported about the experiments and about new results for the backward<br />

spin polarizability γπ and the electromagnetic polarizabilities α and β for<br />

the proton and the neutron.<br />

Group Report HK 26.2 Wed <strong>11</strong>:15 D<br />

The COMPASS Experiment at CERN — •F.H. Heinsius for the<br />

COMPASS collaboration — Universität Bonn — Universität Freiburg<br />

The COMPASS experiment at CERN investigates the hadron structure<br />

by deep inealistic muon scattering and hadronic production processes.<br />

The main goal of the experiment is to measure the gluon contribution<br />

to the nucleon spin via open charm production and hadron pairs with<br />

high transverse momentum. A major part of the experiment has been installed<br />

in 2001 and first data taking has started. Highlights of the physics<br />

programme as well as the status of the experiment will be presented.<br />

The project is supported by BMBF.<br />

HK 26.3 Wed <strong>11</strong>:45 D<br />

Simulations for the Measurement of the Polarizabilities of the<br />

Pion at COMPASS* — •Roland Kuhn, Jan Friedrich, Stephan<br />

Paul, and Lars Schmitt for the COMPASS collaboration — TU<br />

München, Physik-Department E18, James-Franck-Straße, 85747 Garching,<br />

Germany<br />

A Monte Carlo simulation of the Primakoff Compton scattering pro-


Nuclear Physics Wednesday<br />

cess π − N → π − γN is presented which demonstrates the feasibility of the<br />

measurement of the pion polarizabilities α and β with the COMPASS<br />

spectrometer at the CERN SPS. Data samples with a total of 2.9 million<br />

events, corresponding to three days of COMPASS data taking, were<br />

generated using the Polaris event generator and have been analyzed to<br />

study event selection algorithms and reconstruction efficiency. For the<br />

hadronic background 4.5 million events have been simulated using the<br />

Fritiof event generator. The results of this study and the accuracy which<br />

can be achieved will be presented. *This project is supported by the<br />

BMBF and the Maier-Leibnitz-Labor, Garching<br />

HK 26.4 Wed 12:00 D<br />

Near-threshold π 0 production from the neutron in d(γ,π 0 n)p —<br />

•D.L. Hornidge for the A2 collaboration — University of Saskatshewan,<br />

Saskatoon, Canada — Johannes Gutenberg–Universität, Mainz<br />

A significant body of experimental results now exists for the proton<br />

photo-pion amplitudes near threshold and is in good agreement with<br />

ChPT predictions. Due to the experimental intricacies involved, there is<br />

a clear lack of data in the threshold region for the neutron. Preliminary<br />

attempts to determine the neutron amplitudes using the coherent production<br />

from the deuteron were hampered by the difficulties in separating<br />

out nuclear effects. For these reasons, a measurement of π 0 photoproduction<br />

in the threshold region from the neutron via the d(γ,π 0 n)p reaction<br />

channel has been performed using the Mainz Microtron (MAMI). Photons<br />

in the energy range Eγ = 95.7 − 208.5 MeV were tagged using<br />

the Glasgow tagger, the TAPSspectrometer was employed to detect the<br />

neutral-pion decay photons, and a segmented liquid-scintillator detector<br />

covering the angular range θn =21.5 ◦ ± 8.5 ◦ , φn =0.0 ◦ ± 8.5 ◦ was<br />

used to detect recoil neutrons under quasi-free kinematical conditions.<br />

Preliminary results will be presented.<br />

HK 26.5 Wed 12:15 D<br />

Pion production in p + d reactions in the resonance region<br />

— H. Machner and •H. Machner for the GEM collaboration and<br />

the GEM collaboration — Institut für Kernphysik, Forschungszentrum<br />

Jülich, Jülich, Germany<br />

Pion production is the first inelastic channel in pp interactions. The<br />

pd → 3 Heπ 0 and pd → 3 Hπ + reactions are the key reactions for the<br />

understanding of meson production on nuclei. We have measured com-<br />

HK27 Heavy Ions III<br />

plete angular distributions and total cross sections for both reactions in<br />

the region of the ∆(1232) resonance for seven different beam momenta.<br />

No data existed for the first reaction in this range, while previous data<br />

for the second reaction were sometimes in disagreement. The recoiling<br />

trinucleons were detected with the GEM detector (Ref. 1). The data<br />

show two two components: one for small momentum transfer and the<br />

second one for large momentum transfer. While the first one can be reproduced<br />

by model calculations the models fail to account for the second<br />

component. The possible reaction mechanisms will be discussed.<br />

[1] M. Betigeri et al., Nuclear Instr. Methods in Physics Research A 421<br />

(1999) 447<br />

HK 26.6 Wed 12:30 D<br />

First results from the new pionic hydrogen experiment —<br />

•M. Hennebach1 , D. F. Anagnostopoulos2 , W. Breunlich3 , H.<br />

Fuhrmann3 , D. Gotta1 , A. Gruber3 , P. Indelicato4 , Y.-W. Liu5 ,<br />

B. Manil4 , V. Markushin5 , N. Nelms6 , A. J. Rusi El Hassani7 ,<br />

L. M. Simons5 ,andH. Zmeskal3 — 1IKP, FZ Jülich — 2Dept. of<br />

Mat. Science, Univ. of Ioannina — 3IMEP, Österr. Akademie der Wiss.,<br />

Wien — 4 Lab. Kastler-Brossel, UPMC Paris — 5 PSI, Villigen — 6 Univ.<br />

of Leicester — 7 Dept. de Phys., Tanger, Morocco<br />

A new high–precision measurement of the strong–interaction shift (ɛ1s)<br />

and broadening (Γ1s) of the ground state in pionic hydrogen (πH) has<br />

been started at PSI. This experiment constitutes a direct measurement<br />

of the πN scattering lengths and is an important test of the methods of<br />

chiral perturbation theory (χPT).<br />

Pions from the πE5 beam at PSI are slowed down into a cryogenic gas<br />

target installed inside the cyclotron trap to form pionic atoms. Resultant<br />

x–rays are reflected onto a large area CCD array by a Bragg spectrometer.<br />

ɛ1s is derived by comparing the measured energy with a pure QED<br />

calculation; Γ1s is obtained after deconvolution of the crystal response<br />

function. Collision processes during the cascade of the pion through the<br />

atomic levels could skew the measured values - molecular formations of<br />

the form [(π − pp)p]ee could shift the measured energy, and Coulomb deexcitation<br />

will increase the width of the line. The possible influence of these<br />

collision processes is investigated by varying the target density. During<br />

the first production run, conducted in spring 2001, measurements ranged<br />

from 3 bar to liquid hydrogen (eqv. pressure ∼700 bar).<br />

Time: Wednesday 10:45–12:45 Room: E<br />

Group Report HK 27.1 Wed 10:45 E<br />

Particle flow at RHIC — •Christian Fuchs, Amand Faessler,<br />

Eugene Zabrodin, andLarissa Bravina — Institut für Theoretische<br />

Physik, Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen,<br />

Germany<br />

We investigate directed (v1) and elliptic flow (v2) of hadrons in heavy<br />

ion collisions at RHIC energies, i.e. at √ s = 130 and 200 AGeV. The<br />

microscopic quark-gluon string model (QGSM) is used. Available data<br />

on the elliptic flow from the STAR Collaboration [1] are well described<br />

by this approach, in particular the pt dependence of v2 is reproduced also<br />

at high pt where hydrodynamical models usually fail [2]. The origin of<br />

the elliptic flow within the QGSM model is discussed and predictions for<br />

v1 are given. The success of the QGSM model for the description of the<br />

elliptic flow is thereby due to the variety of string excitations included<br />

in that model. We further present predictions for the flow of negatively<br />

and positively charged kaons at SPS and RHIC. Here the change in the<br />

flow pattern reflects in a clear way the transition from baryon to meson<br />

dominated matter when going from SPS to RHIC energies.<br />

[1] K.H. Ackermann et al., STAR Collab., Phys. Rev. Lett. 86 (2001)<br />

402<br />

[2] E. Zabrodin, C. Fuchs, L. Bravina, A. Faessler, Phys. Lett. B508<br />

(2001) 184<br />

Group Report HK 27.2 Wed <strong>11</strong>:15 E<br />

Charmonium Evolution in a Hot and Dense Environment —<br />

•Alberto Polleri 1 , Thorsten Renk 1 , Roland A. Schneider 1 ,<br />

and Wolfram Weise 1,2 — 1 Physik Department, TU München, D-<br />

85747 Garching,Germany — 2 ECT*, I-38050 Villazzano (TN), Italy<br />

It has been suggested long ago that the measurement of the J/ψ production<br />

cross section in ultra-relativistic nuclear collisions can provide<br />

an important signal of quark-gluon deconfinement. Intense theoretical<br />

work has been performed in order to understand the production process<br />

in proton-nucleus collisions. This piece of information is used to provide<br />

a baseline to the study of the subsequent evolution of J/ψ and,<br />

more generally, of charmonia, in the hot and dense medium produced in<br />

more complex high-energy nucleus-nucleus collisions. With this input,<br />

we study the subsequent interactions of charmonia as they collide with<br />

the constituents of the produced fireball. The latter evolves in a manner<br />

controlled by the equation of state as given by lattice QCD, and is constructed<br />

in such a way that the observed hadronic spectra are correctly<br />

reproduced. A kinetic description of charmonium interactions with both<br />

quark-gluon and hadronic degrees of freedom allows to study in microscopic<br />

detail the evolution in different regimes, controlled by collision<br />

energy, kinematics (rapidity and pT ) and geometry (centrality). While<br />

the amount of data collected at the CERN-SPS accelerator is well described,<br />

new predictions for the presently running BNL-RHIC machine<br />

are presented.<br />

[*] Work supported in part by BMBF and GSI.<br />

Group Report HK 27.3 Wed <strong>11</strong>:45 E<br />

Chemical Freeze-out of Antihyperons in Relativistic Heavy Ion<br />

Collisions — •Carsten Greiner — Institut fuer Theoretische Physik,<br />

Universitaet Giessen<br />

We elaborate on our recent suggestion on antihyperon production in<br />

relativistic heavy ion collisions solely by means of multi-mesonic (fusiontype)<br />

reactions. It will be shown that the antihyperons are driven towards<br />

chemical equilibrium with pions, nucleons and kaons on a timescale of<br />

1–3 fm/c in a still moderately baryon-dense hadronic environment. Explicit<br />

rate calculations for a dynamical setup will be presented and detail<br />

the proposed picture. For an estimated entropy to baryon ratio of


Nuclear Physics Wednesday<br />

S/A ≈ 30 − 40 at maximum SPS energies yields of each antihyperon<br />

specie are obtained which are consistent with chemical saturated populations<br />

of T ≈ 150 − 160 MeV. The proposed picture thus supports<br />

dynamically the chemical freeze-out for the antibaryons at such a temperature.<br />

The production process should also dominate at AGSenergies<br />

or at energies of possible future heavy ion facilities at GSI.<br />

HK 27.4 Wed 12:15 E<br />

Dilepton radiation from a fireball — •Thorsten Renk 1 , Roland<br />

A. Schneider 1 ,andWolfram Weise 1,2 — 1 Technische Universität<br />

München — 2 ECT ∗ ,Trento<br />

Dileptons are important probes in the context of heavy ion collisions,<br />

as they do not thermalize but rather escape at all stages of the fireball<br />

evolution, therefore providing a window to the early conditions where the<br />

quark-gluon plasma (QGP) presumably exists. Using a thermodynamically<br />

self-consistent model for the fireball created in a heavy ion collision,<br />

we calculate the emission of dilepton radiation during the fireball evolution<br />

and compare to SPS 40 and 160 AGeV data. For the QGP phase of<br />

the evolution, we use a quasiparticle model to obtain the thermal spectral<br />

function which determines the dilepton rate. In the hadronic phase,<br />

the spectral function is calculated using an improved vector meson dominance<br />

model combined with chiral dynamics. We find good agreement<br />

HK28 Instrumentation and Applications III<br />

to the data. Predictions for the PHENIX experiment at RHIC are also<br />

given.<br />

Work supported in part by BMBF and GSI.<br />

HK 27.5 Wed 12:30 E<br />

Diffusion in relativistic systems — •Georg Wolschin — 69120<br />

Heidelberg<br />

Phase-transition scenarios to a quark-gluon phase are based on the assumption<br />

that at least a substantial part of the system thermalizes. In<br />

this work, the kinetic equilibration in the system of participant baryons<br />

is investigated analytically in the relativistic diffusion model (RDM, [1])<br />

from SIS via AGS to SPS and RHIC energies.<br />

The dissipation-fluctuation theorem (Einstein relation) is fulfilled at<br />

low SIS-energies, whereas progressively larger deviations rising to an order<br />

of magnitude are found at AGS-, SPS- and RHIC-energies. This<br />

effect is investigated as a consequence of the strong-coupling character of<br />

the system. The rapidity diffusion coefficient becomes time-dependent.<br />

Predictions for the 40 A GeV/c SPS, and 2*100 A GeV/c RHIC runs are<br />

made. In spite of the successful application of thermodynamical concepts<br />

to hadron production, the system does not reach thermal equilibrium.<br />

[1] G. Wolschin, Eur. Phys. J. A 5 (1999) 85; Europhys. Lett. 47<br />

(1999) 30.<br />

Time: Wednesday 10:45–12:45 Room: F<br />

Group Report HK 28.1 Wed 10:45 F<br />

The Readout System of the COMPASS Experiment<br />

— •Thomas Schmidt 1 , H. Angerer 2 , A. Danasino 1 , H. Fischer<br />

1 , J. Franz 1 , B. Grube 2 , A. Grünemaier 1 , S. Hedicke 1 ,<br />

F.H. Heinsius 1 , M. von Hodenberg 1 , F. Karstens 1 , W. Kastaun<br />

1 , K. Königsmann 1 , I. Konorov 2 , J. Reymann 1 , H. Schmitt 1 ,<br />

L. Schmitt 2 , and J. Worch 1 for the COMPASS collaboration —<br />

1 Fakultät für Physik, Universität Freiburg — 2 Physik-Department E18,<br />

Technische Universität München<br />

COMPASS is a fixed-target experiment at CERN to investigate the spin<br />

structure of the nucleon, particularly seeking to determine the gluon polarization.<br />

Large data and event-rates made the development of a new<br />

Data Acquisition (DAQ) System necessary. Data are digitized directly<br />

at the detector and transfered to common readout interfaces (CATCH).<br />

These initialize all frontend-boards at the start of the data acquisition,<br />

distribute the clock and trigger-signals of the trigger-control system to<br />

all connected equipments and monitor the trigger and data-flow.<br />

CATCH is realized as a 9U VME-module based on reprogrammable<br />

FPGA chips. For adaptation of different types of detectors the inputs are<br />

designed as exchangeable mezzanine-cards. Data arriving at the CATCH<br />

are sorted and transfered to a networked DAQ system via optical S-Link<br />

at a rate of up to 1.2 Gbit/s in a detector independent format.<br />

In 2001 data of more than 150 000 electronic channels have been<br />

recorded. Functionality and performance of the CATCH and the DAQsystem<br />

during last year’s beam time are presented.<br />

This project is supported by the BMBF.<br />

HK 28.2 Wed <strong>11</strong>:15 F<br />

Silicon Microstrip Detectors for the COMPASS Experiment* —<br />

•Robert Wagner, Boris Grube, Rita De Masi, Igor Konorov,<br />

Stephan Paul, andMichael Wiesmann for the COMPASS collaboration<br />

— TU München, Physik-Department E18, James-Franck-Straße,<br />

85747 Garching, Germany<br />

The fixed target experiment COMPASS at the CERN SPS started<br />

taking data in 2001. As part of its tracking system, double-sided silicon<br />

microstrip detectors have been commissioned in the target region of<br />

the experiment. The readout system is based on the APV25 chip and<br />

a low-noise ADC module performing zero suppression. The detector design<br />

and setup is described. While operation at cryogenic temperatures<br />

is planned in <strong>2002</strong>, for the 2001 run emphasis was still set on investigating<br />

the detectors’ properties. The system has been operated in the<br />

COMPASS high-intensity muon beam, where the noise performance, the<br />

ADC data reduction algorithms, the time resolution and further detector<br />

parameters could be studied. *This project is supported by the BMBF<br />

and the Maier-Leibnitz-Labor, Garching<br />

HK 28.3 Wed <strong>11</strong>:30 F<br />

Beam Loss Monitor for HERMES — •Andreas Reischl, Martin<br />

van Beuzekom, Othmane Bouhali, Sander Mos, andJos Stejiger<br />

for the HERMEScollaboration — NIKHEF POBox 41882, 1009 DB<br />

Amsterdam, The Netherlands<br />

A Beam Loss Monitor (BLM), made of ionization chambers, has been<br />

designed and constructed. It is installed in the HERMESfront region<br />

and will be used as a fast trigger for the HERA lepton-beam dump kicker.<br />

The aim is to protect radiation sensitive detector components like the so<br />

called Lambda Wheels, Recoil Detector and the target cell etc., against<br />

accidental beam losses. A sudden and large increase in the radiation level<br />

near the experiment is a suitable indication of beam inabilities leading to<br />

a loss of beam. The amount of radiation caused by these accidents can<br />

be reduced greatly by kicking the beam out of the machine. The detector<br />

system and the beam dump magnet have to be fast. The detector,<br />

together with a fast electronic trigger and an optical link (about 4km)<br />

which route the trigger signal, serves the kicker magnets, which can be<br />

powered in a sufficiently short time. We report of the design principles,<br />

the calibration done on a X-Ray generator and the first results of tests<br />

done at HERMESin the fall of 2001.<br />

HK 28.4 Wed <strong>11</strong>:45 F<br />

A Scintillating Fibre Hodoscope for High Rate Applications at<br />

COMPASS ∗ — •R. Webb 1 , J. Bisplinghoff 2 , D. Eversheim 2 ,<br />

W. Eyrich 1 , R. Joosten 2 , O. Nähle 2 , F. Stinzing 3,1 , A. Teufel<br />

1 , S.Wirth 2,1 und R. Ziegler 1,2 — 1 Physikalisches Institut, Universität<br />

Erlangen-Nürnberg, D-91058 Erlangen — 2 Institut für Strahlenund<br />

Kernphysik, Universität Bonn, D-53<strong>11</strong>5 Bonn — 3 Fakultät für Physik,<br />

Universität Freiburg, D-79104 Freiburg i. Br.<br />

Scintillating fibre detectors are at the present the only technology capable<br />

of tracking at rates of 10 6 particles/s/mm 2 .<br />

Such capability is required for tracking in the central area of the spectrometer<br />

at the COMPASS experiment. Eight detector stations with<br />

19 planes having space resolutions between 0.5 and 1.0 mm have been<br />

realized. Results from the 2001 beam time which show that these fibre<br />

hodoscopes fulfil all expectations in the areas of time resolution and<br />

efficiency will be presented.<br />

∗ supported by BMBF<br />

HK 28.5 Wed 12:00 F<br />

The HERMES Polarized Internal Gas Target — •Mark Henoch<br />

for the HERMEScollaboration collaboration — Physikalisches Institut,<br />

Univ. Erlangen-Nürnberg, 91058 Erlangen<br />

The HERMES experiment (HERa MEasurement of Spin) at DESY<br />

uses the HERA polarized lepton beam in combination with the polarized<br />

internal target technique in order to determine the spin dependent structure<br />

functions of the proton and neutron via deep-inelastic scattering.


Nuclear Physics Wednesday<br />

The HERMEStarget consists of a storage cell internal to the HERA<br />

lepton ring in which hydrogen or deuterium gas is injected from an atomic<br />

polarized source.<br />

A sampled beam is extracted from the center of the storage cell to<br />

analyse the target gas for atomic polarization and atomic fraction using<br />

a Breit-Rabi-Polarimeter and a target gas analyser.<br />

These values can be related to the average values inside the storage<br />

cell using sampling corrections.<br />

The analysis of the average target polarization of the year 2000 with<br />

deuterium gas in a longitudinal magnetic holding field will be presented<br />

as well as preparations and first results of the change to a transversal<br />

holding field using hydrogen gas.<br />

HK 28.6 Wed 12:15 F<br />

The Common GEM and Silicon Readout for the COMPASS Experiment<br />

[ ∗ ]—•Boris Grube 1 , Rita De Masi 1 , Jan Friedrich 1 ,<br />

Igor Konorov 1 , Stephan Paul 1 , Lars Schmitt 1 , Frank Simon 1 ,<br />

Robert Wagner 1 , Michael Wiesmann 1 ,andBernhard Ketzer 2<br />

for the COMPASS collaboration — 1 TU München, Physik-Department<br />

E18, James-Franck-Straße, 85748 Garching, Germany — 2 CERN, CH-<br />

12<strong>11</strong> Genève 23, Switzerland<br />

COMPASS is a fixed target experiment at the CERN SPS which uses<br />

GEM and Silicon detectors for small angle tracking. For both detector<br />

types the APV 25, a development of the CMScollaboration, was chosen<br />

as the frontend chip. The system utilizes the ’Multi’ readout mode of the<br />

APV, in which the chip sends three consecutive samples for each event.<br />

By calculating the ratios of the amplitudes of the different samples, it<br />

is possible to determine the position along the assumed pulse shape and<br />

thus to get precise timing information. The readout chain is based on<br />

reconfigurable logic in the form of Field Programmable Gate Arrays<br />

HK29 Theory IV<br />

(FPGAs) and is designed to stand high trigger rates of up to 100 kHz.<br />

The analog signals of the APV are digitized by 10 bit ADCs. The digital<br />

signals are then processed and sparsified by a zero suppression logic. Because<br />

fluctuations of the baseline of the APV are observed, the data have<br />

to be corrected for this ’common mode noise’, before a threshold cut can<br />

be applied. This correction is performed in the hardware using a combination<br />

of averaging and histogramming. [ ∗ ] This project is supported by<br />

the BMBF and the Maier-Leibnitz-Labor, Garching<br />

HK 28.7 Wed 12:30 F<br />

The new TAPS electronics — •Peter Drexler for the TAPS<br />

collaboration — II. Physikalisches Institut, Justus-Liebig-Universität<br />

Giessen<br />

To adapt the photonspectrometer TAPSto the needs of advanced,<br />

state-of-the-art experiments, a completely new readout for 4 channels<br />

per module has been designed to replace and improve the currently used<br />

electronics. The main goal for the new design has been the need for<br />

a better handling, easier maintainance, improved performance and the<br />

capability to cope with higher rates. The readout of a typical TAPS-<br />

BaF2-signal comprises 4 QACs for the separate integration of the long<br />

and short scintillation components in two different dynamic ranges, a<br />

TAC and 2 LEDs for more sophisticated trigger conditions. A CFD is<br />

included to optimize the timing information. A PLD provides the slow<br />

control. These combined analog and digital functions are implemented<br />

on a piggyback residing on a commercial motherboard, developed by<br />

the HADEScollaboration. Therefore, the compatibility allows combined<br />

experiments with the HADESsetup. First results of in-beam test experiments<br />

obtained with the new electronics with regard to energy and time<br />

resolution will be presented.<br />

Time: Wednesday 14:00–15:30 Room: A<br />

Group Report HK 29.1 Wed 14:00 A<br />

Towards the theory of coherent hard dijet production on<br />

hadrons and nuclei — •Vladimir Braun 1 , Dmitry Ivanov 1 ,<br />

Andreas Schäfer 1 , and Lech Szymanowski 2 — 1 Institut für<br />

theoretische Physik, Universität Regensburg, D-93040, Regensburg —<br />

2 CPhT, École Polytechnique, F-9<strong>11</strong>28 Palaiseau, France<br />

We carry out a detailed calculation of the cross section of a pion diffraction<br />

dissociation in two jets with large transverse momenta, originating<br />

from a hard gluon exchange between the pion constituents. Both the<br />

quark and the gluon contribution are considered and in the latter case<br />

we present calculations both in covariant and in axial gauges. We find<br />

that the standard collinear factorization does not hold in this reaction.<br />

The structure of non-factorizable contributions is discussed and the results<br />

are compared with the experimental data. Our conclusion is that<br />

the existing theoretical uncertainties do not allow, for the time being, for<br />

a quantitative extraction of the pion distribution amplitude.<br />

HK 29.2 Wed 14:30 A<br />

Twist-3 generalized parton distributions from instantons —<br />

•Dmitri Kiptily 1 and M.V. Polyakov 1,2 — 1 Institute for Theoretical<br />

Physics II, Ruhr University Bochum, 44780 Bochum, Germany —<br />

2 Petersburg Nuclear Physics Institute, 188350 Gatchina, Russia<br />

The Deeply Virtual Compton Scattering (DVCS) is a two photon scattering<br />

off a hadron considered in the Bjorken limit, when initial photon<br />

has a large virtuality. The leading twist contribution to the DVCSamplitude<br />

expresses through the Generalized Parton Distributions (GPD).<br />

The leading (twist-3) power corrections consist of two parts: the pure<br />

quark “kinematical” contribution expressed through twist-2 GPDs and<br />

the quark-gluon one originated from non-diagonal hadronic matrix elements<br />

of type 〈P ′ |¯qGq|P 〉. The latter is supposed to be small relative to<br />

the “kinematical” one, although there wasn’t suggested any theoretical<br />

justification to this hypothesis.<br />

We discuss the twist-3 quark-gluon effects in the DVCS. We estimate<br />

the non-diagonal hadronic matrix elements in a framework of the model<br />

of the instanton vacuum. It turns out, that the contribution is parametrically<br />

small due to the small packing fraction of the instanton vacuum.<br />

HK 29.3 Wed 14:45 A<br />

Nucleon Spectral Function by Transport Theory — •Jürgen<br />

Lehr, Horst Lenske, Stefan Leupold, andUlrich Mosel —Institut<br />

für Theoretische Physik, Universität Gießen, Germany<br />

We calculate the nucleon spectral function in nuclear matter using the<br />

relation between collision rates and correlation functions known from<br />

quantum transport theory. Contributions to the correlational self energy<br />

of 2p1h and 1p2h structure are considered. For the calculations<br />

we use a constant matrix element. The obtained spectral functions und<br />

momentum distributions are in good agreement with results from manybody<br />

calculations, thus indicating that the hole-type spectral function is<br />

dominated by the average short-range correlation strength. First results<br />

from the implementation of the spectral function into our BUU transport<br />

model are discussed.<br />

Work supported by BMBF and DFG.<br />

HK 29.4 Wed 15:00 A<br />

Nucleon Form Factors in intermediate Momentum Transfer<br />

— •Nils Mahnke 1 , Vladimir Braun 1 , Alexander Lenz 1 , and<br />

Eckart Stein 1,2 — 1 Inst. für theor. Physik, Universität Regensburg,<br />

D-93040 Regensburg, Germany — 2 Physics Department, Maharishi University<br />

of Management, NL-6063 NP Vlodrop, Netherlands<br />

This Talk will present our results for the proton and neutron form factors<br />

in intermediate momentum transfer, based on the systematic study<br />

of higher-twist light-cone distribution amplitudes of the nucleon in QCD.<br />

HK 29.5 Wed 15:15 A<br />

A relativistic point-coupling model in Hartree- and Hartree-<br />

Fock-approximation — •Thomas Bürvenich 1 , T. Cornelius 1 , A.<br />

Sulaksono 1 , S.Schramm 2 , J. A. Maruhn 1 , P.-G. Reinhard 3 , D.<br />

G. Madland 4 ,andW. Greiner 1 — 1 Institut für Theoretische Physik,<br />

Universität Frankfurt am Main — 2 Nuclear Theory Group, Argonne National<br />

Laboratory — 3 Institut für Theoretische Physik II, Universität<br />

Erlangen–Nürnberg — 4 T-16 Division, Los Alamos National Laboratory<br />

Relativistic point-coupling models (RMF-PC) are powerful tools for<br />

typical nuclear structure applications [1] with a quality comparable to<br />

other mean-field approaches like the relativistic mean-field model with


Nuclear Physics Wednesday<br />

meson exchange (RMF-FR) and the Skyrme-Hartree-Fock (SHF) model.<br />

A comparison of the predictions of these models for a variety of observables<br />

makes it possible to study the influence of the different ingredients<br />

of the models on their predictive power. Especially the role of finite range<br />

and relativistic framework can be investigated separately. The structure<br />

of the RMF-PC model allows Hartree-Fock calculations which are hardly<br />

HK30 Nuclear Physics / Spectroscopy IV<br />

more expensive than calculations on the Hartree level. We discuss first<br />

results and show perspectives for the near future. Supported by BMBF,<br />

GSI, DFG.<br />

[1] T. Bürvenich, D. G. Madland, J. A. Maruhn, und P.-G. Reinhard,<br />

nucl-th/0<strong>11</strong>1012 (2001), accepted for publication in Phys. Rev. C<br />

Time: Wednesday 14:00–15:30 Room: B<br />

Group Report HK 30.1 Wed 14:00 B<br />

Intruder and Multi–Phonon States in 108 Cd — •A. Gade, P. von<br />

Brentano, J. Jolie, C. Fransen, A. Linnemann, andV. Werner<br />

— Institut für Kernphysik, Zülpicher Straße 77, 50937 Köln<br />

Therareisotope 108 Cd was investigated using the powerful combination<br />

of two different experimental techniques: γγ–spectroscopy following<br />

the β–decay of 108 In and the non–selective (α, n) fusion evaporation reaction.<br />

This resulted in the observation of 120 new states and more than<br />

580 new transitions, the determination of more than 80 multipole mixing<br />

ratios and eight effective lifetimes resulting from a DSA analysis in the<br />

fusion evaporation reaction.<br />

The proton 2p–2h intruder band, which is typical for near proton–magic<br />

nuclei, was established up to the 4 + member including lower limits for the<br />

absolute transition strengths of inter– and intraband decays. The heavily<br />

suppressed absolute E2 transition strength out of the proposed intruder<br />

band indicates this band structure to be fairly pure. These findings are<br />

compared to neighboring Cd isotopes and related structures.<br />

A further particularly interesting problem is the coupling of the lowest<br />

quadrupole and octupole modes in nuclei. We report on the observation<br />

of the complete quadrupole–octupole coupled quintuplet of negative<br />

parity (2 + 1 ⊗ 3 − 1 ) (J− ) in 108 Cd, the fourth complete quadrupole–octupole<br />

multiplet ever proposed. The energy splitting within the multiplet is calculated<br />

using a simple Hamiltonian which results in an analytical single–<br />

parameter description for the energies.<br />

Partly supported by the DFG under contract Br799/10–1.<br />

HK 30.2 Wed 14:30 B<br />

Isomer spectroscopy and large scale shell model calculations<br />

at the borderline to fission — •H. Grawe1 , K. Hauschild2 , M.<br />

Rejmund2 , E. Caurier3 , F. Nowacki 3 , J. Döring1 , M. Górska1 ,<br />

K. Helariutta4 , P. Jones4 , R. Julin4 , W. Korten2 , M. Leino4 ,<br />

K. Schmidt1 , and J. Uusitalo4 — 1GSI, Darmstadt, Germany —<br />

2 3 DAPNIA/SPhN CEA, Saclay, France — IReS,Strasbourg, France —<br />

4JYFL, Jyväskylä,Finland<br />

Nuclear structure calculations in the complementary mean field and<br />

shell model approaches are limited in their predictive power due to the<br />

neglect of correlations and the model space truncation, respectively. The<br />

availability of large-scale shell model codes enables separation of truncation<br />

effects from deficiencies in the realistic interactions employed.<br />

Progress in detection techniques, such as recoil decay tagging, allows for<br />

γ-ray spectroscopy at the borderline to fission down to cross sections of<br />

< 1µb [1,2]. The N=126 isotones up to 217Pa were studied and compared<br />

to shell model predictions in the full 82≤ Z ≤126 proton model space using<br />

the Kuo-Herling realistic interaction. Excellent agreement is found for<br />

masses, excitation energies and E2 properties, while E3 correlations due<br />

to the neglect of neutron degrees of freedom and 208Pb core excitations<br />

cannot be described. Enhanced pair scattering, besides the expected<br />

L=3 correlations, are found to be responsible for the non-existence of the<br />

Z=92 subshell [1] predicted in early mean field calculations [3].<br />

[1] K. Hauschild et al., Phys. Rev. Lett. 87, 072501 (2001)<br />

[2] R. Herzberg et al., Phys. Rev. C 65, 014303 (<strong>2002</strong>)<br />

[3] K. Rutz et al., Nucl. Phys. A 634, 67 (1998)<br />

HK 30.3 Wed 14:45 B<br />

Evidence for proton excitations in 130−136Xe isotopes from measurements<br />

of g factors of first excited 2 + and 4 + states + — •K.-H.<br />

Speidel1 , R. Ernst1 , G. Jakob2 , N. Benczer-Koller2 , G. Kumbartzki2<br />

, J. Holden2 , T.J. Mertzimekis2 , A.E. Stuchbery3 , A.<br />

Pakou 4 , P. Maier-Komor5 , A. Macchiavelli6 , M. McMahan6 ,<br />

L. Phair6 ,andI.Y. Lee6 — 1Institut für Strahlen- und Kernphysik,<br />

Univ. Bonn, D-53<strong>11</strong>5 Bonn — 2Dept. of Physics and Astronomy, Rutgers<br />

Univ., New Brunswick, NJ 08903, USA — 3Dept. of Nuclear Physics,<br />

Australian National Univ., Canberra ACT 0200, Australia — 4Dept. of<br />

Physics, Univ. of Joannina, Greece — 5Technische Univ. München,<br />

D-86748 Garching — 6Lawrence Berkeley National Lab., Berkeley, CA<br />

94720, USA<br />

The g factors of the 2 + 1 ,4 + 1 and 2 + 2 states in the stable 130−136 Xe isotopes<br />

have been measured via projectile Coulomb excitation in inverse<br />

kinematics in combination with the transient field technique. Isotopically<br />

pure Xe beams were provided by the 88-inch LBL cyclotron. The results<br />

show a steady decrease in g(2 + 1 ) as the number of neutron holes increases<br />

in the lighter nuclei below the closed N=82 neutron shell. The g factors<br />

of the 4 + 1 states in 132,134 Xe are consistently larger than the g factors of<br />

the 2 + 1 states, a characteristic of proton excitation. In contrast, the g<br />

factors of the 2 + 1 ,4 + 1 and 2 + 2 states in 130 Xe are approximately equal as<br />

would be expected for a vibrational nucleus.<br />

+ supported by BMBF and DFG<br />

HK 30.4 Wed 15:00 B<br />

Magnetic and collective rotation in 79 Br<br />

— •F. Dönau 1 , R. Schwengner 1 , T. Servene 1 , H. Schnare 1 ,<br />

J. Reif 1 , G. Winter 1 , L. Käubler 1 , H. Prade 1 , S . S koda 2 , J.<br />

Eberth 2 , H.G. Thomas 2 , F. Becker 2 , B. Fiedler 2 , S. Freund 2 ,<br />

S. Kasemann 2 , T. Steinhardt 2 , O. Thelen 2 , T. Härtlein 3 , C.<br />

Ender 3 , F. Köck 3 , P. Reiter 3 ,andD. Schwalm 3 — 1 FZ Rossendorf<br />

— 2 Universität Köln — 3 MPI Heidelberg<br />

Excited states of the nucleus 79 Br were investigated via the reaction<br />

76 Ge( 7 Li,4n) at35MeV.Amagneticdipole(M1) band starting at J π =<br />

15/2 − wasobserveduptoJ π = (29/2 − ). Mean lifetimes were deduced<br />

for most of the levels of the M1 band. We have interpreted the M1 band<br />

by applying the hybrid version of the Tilted-Axis-Cranking (TAC) model<br />

together with the shell-correction method. The Total Routhian Surfaces<br />

calculated within the TAC model predict a substantial triaxial deformation<br />

for the excited 3qp configuration π(g9/2) ν(g9/2) ν(fp) assigned to the<br />

M1 band. The comparison of experimental characteristics with predictions<br />

of the TAC calculations shows that the M1 band can be described<br />

by this tilted configuration which implies a strong magnetic component.<br />

On the other hand, considerable contributions of the collective spin are<br />

necessary to generate high spin. The M1 band is therefore considered as<br />

a band including components of both, magnetic and electric rotation.<br />

HK 30.5 Wed 15:15 B<br />

Mixed-symmetry excitations near the Z=38 sub-shell ∗ — •V.<br />

Werner 1 , D. Belic 2 , P. von Brentano 1 , C. Fransen 1 , A. Gade 1 ,<br />

H. von Garrel 2 , U. Kneissl 2 , C. Kohstall 2 , A. Linnemann 1 , A.<br />

Lisetskiy 1 , N. Pietralla 1 , H.H. Pitz 2 , M. Scheck 2 ,andF. Stedile<br />

2 — 1 Institut für Kernphysik, Universität zu Köln — 2 Institut für<br />

Strahlenphysik, Universität Stuttgart<br />

Isovector excitations are particularly sensitive to the proton-neutron<br />

interaction, which plays a fundamental role in the nuclear many-body<br />

system, and which can well be studied, e.g., in light N=Z nuclei. The<br />

investigation of mixed-symmetry (MS) states as, e.g., described in the<br />

IBM-2 framework, gives a complementary approach to the study of the<br />

proton-neutron interaction in other, heavier open-shell even-even nuclei.<br />

The fundamental MSstate, the low-lying one-phonon 2 + ms state, has been<br />

identified in the N=52 nuclei 94 Mo [1] and 96 Ru [2]. We present new<br />

results of a photon scattering experiment on 92 Zr, performed at the Dynamitron<br />

accelerator of the Institut für Strahlenphysik in Stuttgart.<br />

Several J=1 and J=2 states of 92 Zr have been observed and the 2 + 2 state<br />

has been identified as the one-phonon MSstate based on its large M1strength<br />

to the 2 + 1 state. It is shown that the excitation energy of the<br />

2 + ms state is lowered systematically when approaching the Z=38 sub-shell<br />

closure. The discussed structures are also studied in the shell model, and<br />

the results support the MScharacter of the 2 + 2 state of 92 Zr.<br />

[1] N. Pietralla et al., Phys. Rev. Lett. 83, 1303 (1999).<br />

[2] N. Pietralla et al., Phys. Rev. C 64, 031301(R) (2001).<br />

∗ gefördert durch die DFG, Sachbeihilfe Br799/9-3


Nuclear Physics Wednesday<br />

HK31 Nuclear Physics / Spectroscopy V<br />

Time: Wednesday 14:00–15:30 Room: C<br />

Group Report HK 31.1 Wed 14:00 C<br />

Nuclear radii and moments of short-lived isotopes in the range<br />

17−28 Ne — •W. Geithner 1 , S. Kappertz 1 , M. Keim 1 , R. Neugart 1 ,<br />

S.Wilbert 1 , P. Lievens 2 , K. Marinova 3 , K.-M. Hilligsoe 4 , H.<br />

Simon 5 , S. Franchoo 6 , L. Weissman 6 ,andISOLDE Collaboration<br />

6 — 1 Inst. für Physik, Univ. Mainz — 2 K.U. Leuven — 3 Univ. Sofia<br />

— 4 Univ. Aarhus — 5 TU Darmstadt — 6 CERN, Geneva<br />

Laser spectroscopy experiments at the ISOLDE mass separator on<br />

neon isotopes from 17 Ne at the proton drip line to the neutron-rich 28 Ne<br />

have revealed interesting aspects of nuclear structure in the lower sdshell<br />

region. These include the question of a proton halo structure of<br />

17 Ne and the mirror properties in comparison with 17 N, the N = 8 neutron<br />

shell closure as well as the development of single-particle and deformation<br />

properties with the number of neutrons in the sd shell. The<br />

changes of nuclear mean square charge radii, and the magnetic moments<br />

and quadrupole moments are obtained from the measurement of isotope<br />

shifts and hyperfine structure of optical spectral lines. For experiments<br />

on light elements the required accuracy and sensitivity of collinear laser<br />

spectroscopy was achieved by improving the determination of Doppler<br />

shifts and by employing a β-activity detection in combination with stateselective<br />

collisional ionization. Recently, these improvements were also<br />

exploited to complement earlier data on argon isotopes and to investigate<br />

73 Kr for which a remarkably large inverted odd-even staggering was<br />

observed. (Supported by BMBF and EU.)<br />

HK 31.2 Wed 14:30 C<br />

New experimental campaign on the 20 Ne(4 + ) g factor + — •J.<br />

Leske 1 , K.-H. Speidel 1 , O. Kenn 1 , S. Schielke 1 , G. Müller 1 , J.<br />

Gerber 2 , N. Benczer-Koller 3 ,andG. Kumbartzki 3 — 1 Institut<br />

für Strahlen- und Kernphysik, Univ. Bonn, D-53<strong>11</strong>5 Bonn — 2 Institut<br />

de Recherches Subatomiques, F-67037 Strasbourg, France — 3 Dept. of<br />

Physics and Astronomy, Rutgers Univ., New Brunswick, NJ 08903, USA<br />

In view of the eminent role of 20 Ne for nuclear structure calculations the<br />

early measurements of magnetic moments on the first 2 + and 4 + states<br />

have caused tremendeous turmoil (see e.g. [1]). All these experiments<br />

in which the technique of transient magnetic fields was employed have<br />

yielded surprisingly a much smaller g factor for the 4 + state compared<br />

to the 2 + state. It was argued that in analogy to heavy nuclei the pronounced<br />

backbending in 20 Ne might be responsible for this observation.<br />

However, such a scenario would be in striking contradiction with isospin<br />

conservation: for pure T=0 states the g factors of 2 + and 4 + should be<br />

equal to g � +0.5. Sensible T=1 admixtures cannot explain the observed<br />

large difference. New measurements were performed at the Cologne tandem<br />

accelerator in substantially improved experimental conditions. The<br />

states of interest were populated in the reaction 12 C( 12 C, α) 20 Ne using<br />

a technically improved multilayered target with evaporated Gd. Deexcitation<br />

γ rays were measured in coincidence with α particles emitted at<br />

backward and forward angles implying two different Ne velocities. Experimental<br />

details and preliminary results will be discussed.<br />

+ supported by DFG<br />

[1] K.-H. Speidel et al., Nucl. Phys. A378 (1982) 130<br />

HK 31.3 Wed 14:45 C<br />

First γ rays produced by radioactive beams at REX-ISOLDE —<br />

•Heiko Scheit for the MINIBALL collaboration and the REX-ISOLDE<br />

collaboration — Max-Planck-Institut für Kernphysik, Heidelberg<br />

During the commissioning of the REX radioactive beam accelerator<br />

at ISOLDE/CERN in October and November of 2001 one of the MINI-<br />

BALL triple cluster detectors was placed near the target station of the<br />

REX accelerator. The aim was to study the operation of such a detector<br />

under realistic conditions. Especially the γ background due to β decay of<br />

the radioactive beam nuclei, and due to the proximity of the RF cavities<br />

of the accelerator to the experimental station was investigated together<br />

with the influence of the macro- and micro-structure of the REX beam.<br />

In addition to the triple cluster detector a double-sided Si strip detector<br />

was used to detect scattered particles in coincidence with γ rays.<br />

The commissioning of the accelerator went exceptionally well and stable<br />

23 Na and radioactive 24,25 Na isotopes were accelerated to 2 A·MeV<br />

and transmitted to the target station with intensities between 10 5 and 10 7<br />

particles per second, where 58 Ni and Be targets of 1 mg/cm 2 were used<br />

to populate excited states via Coulomb excitation and nuclear reactions.<br />

Preliminary results will be presented and an outlook on the experiments<br />

to be performed at REX-ISOLDE using MINIBALL in <strong>2002</strong> will<br />

be given.<br />

Partly supported by the BMBF.<br />

HK 31.4 Wed 15:00 C<br />

ATRAP on the way to cold antihydrogen — •D. Grzonka for<br />

the ATRAP collaboration — Research Centre Jülich, Germany<br />

The ATRAP experiment at the CERN antiproton decelerator AD aims<br />

for a test of the CPT invariance by a comparison of the hydrogen to antihydrogen<br />

atom spectroscopy. For high precision measurements of atomic<br />

transitions cold atoms of antihydrogen are essential which requires trapping<br />

techniques. The present first phase of the ATRAP experiment deals<br />

with the production of antihydrogen. In the last year the trapping and<br />

handling of antiprotons and positrons in the trap was studied and optimized<br />

resulting in a loss free trapping over longer periods which is<br />

crucial for any recombination experiments. Furthermore two schemes<br />

for antihydrogen production the Pulsed Field Recombination [1] and the<br />

Three Body Recombination were studied. An intense interaction between<br />

the overlapping antiproton and positron clouds has been achieved which<br />

was demonstrated by the clear observation of a positron cooling of the<br />

antiprotons [2]. It is very likely that in such a configuration also Rydberg<br />

antihydrogen has been produced but the observed signals in the<br />

performed studies are not sufficient for a clear statement. Status and<br />

further steps on the the experimantal studies at ATRAP are given.<br />

[1] C. Wesdorp et al., Phys. Rev. Lett. 84 (2000) 3799.<br />

[2] G. Gabrielse et al., Phys. Lett. 507 (2001) 1.<br />

HK 31.5 Wed 15:15 C<br />

Analyzing-power of pp-bremsstrahlung ∗ — •Andrea Wilms for<br />

the COSY-TOF collaboration — Institut für Experimentalphysik I,<br />

Ruhr–Universität Bochum<br />

The high angular acceptance of the time of flight spectrometer COSY–<br />

TOF and the good emittance of the extracted proton beam make it<br />

possible to measure cross sections of two and three particle reactions<br />

down to the µb region. COSY extracted its first polarized proton beam<br />

with a beam momentum of p = 798.0 MeV/c in Dec. 98, which provides<br />

the possibility to measure polarization observables like asymmetries and<br />

analyzing–powers by using an unpolarized LH2-target.<br />

The event selection and the results for the angular distributions of several<br />

reaction channels in the COSY energy range particularly of �pp–<br />

bremsstrahlung, are presented. Additionally, the evaluation of the beam<br />

polarization by using the well–known analyzing–power Ay of the elastic<br />

proton scattering is shown. ∗ supported by the BMB+F<br />

HK32 Electromagnetic and Hadronic Probes IV<br />

Time: Wednesday 14:00–15:30 Room: D<br />

Group Report HK 32.1 Wed 14:00 D<br />

Neutral meson photoproduction off nuclei — •M. Pfeiffer for<br />

the TAPSand A2 collaboration — II. Physikalisches Institut, Heinrich-<br />

Buff-Ring 16, 35392 Giessen<br />

The photoproduction of mesons allows a detailed study of lower lying<br />

nucleon resonances. A series of experiments has been carried out with<br />

photon energies up to 820 MeV at the Mainz Microtron (MAMI) using<br />

different production targets.<br />

The 3 He experiment focuses on the coherent eta production. Former<br />

experiments on other light targets ( 2 H, 4 He) show small coherent contributions<br />

only. However, the quantum numbers of 3 He suggest a larger<br />

coherent signal. Standard theoretical models of the coherent photoproduction<br />

fail to explain the cross section in the vicinity of the production<br />

threshold, but calculations by Shevchenko et. al. [1] take the possibility


Nuclear Physics Wednesday<br />

of so-called eta-mesic nuclei into account. These quasi bound states of η<br />

and nucleus might be responsible for the near threshold behaviour of the<br />

cross section.<br />

In another experiment, the meson photoproduction off carbon was<br />

studied. This experiment offers the possibility to investigate in-medium<br />

modifications of the ω meson. On the proton, the ω (mω=782 MeV) is<br />

out of reach of the MAMI energy regime. But, assuming a modification<br />

of the omega mass and width in the carbon nucleus, the cross section<br />

for incident photon energies up to 882 MeV becomes measurable. First<br />

results are shown and compared to theoretical calculations [2].<br />

[1] N. V. Shevchenko et.al., nucl-th/0108031<br />

[2] W. Cassing, private communications<br />

HK 32.2 Wed 14:30 D<br />

Static Magnetic Moment of the ∆ + (1232) — •Martin Kotulla<br />

for the TAPS/A2 collaboration — II. Physikalisches Institut, Heinrich-<br />

Buff-Ring 16, 35392 Giessen<br />

Static magnetic moments of baryons are important properties which<br />

provide a crucial test for hadron structure calculations. SU(3) e.g., predicts<br />

µ∆ = Q(∆)µp for the ∆ isobars. Information on µ ∆ + can be obtained<br />

from the observation of a γ transition within the ∆ resonance.<br />

Therefore, the reaction γ p → π ◦ γ ′ p wasmeasuredwiththeBaF2<br />

calorimeter TAPSat the Mainz Microtron accelerator facility. The extraction<br />

of µ ∆ +, however, requires the application of a reaction model.<br />

The experimental results will be presented and the feasibility to extract<br />

µ ∆ + based on theoretical models [1],[2] will be discussed.<br />

[1] D. Drechsel, M. Vanderhaeghen, Phys.Rev.C64:065202,2001<br />

[2] A.I. Machavariani, A. Faessler, to be submitted<br />

HK 32.3 Wed 14:45 D<br />

Photoproduction of pion pairs from nuclei — •Silke Janssen for<br />

the TAPS- und A2 collaboration — II. Physikalisches Institut, Heinrich-<br />

Buff-Ring 16, 35392 Giessen<br />

The photoproduction of pion pairs from nuclei has been studied in the<br />

range of incident photon energies from 400-460 MeV. The experiments<br />

were performed with the tagged photon beam at the MAMI electron accelerator<br />

facility using the photon spectrometer TAPSfor the detection<br />

of neutral and charged pion pairs. The invariant mass distribution of the<br />

two pions shows a different behaviour as a function of the target mass<br />

HK33 Heavy Ions IV<br />

depending on the isospin of the pion pair. For the π 0 π 0 (I=0) channel a<br />

shift in the invariant mass distribution towards the 2π - threshold is observed<br />

for increasing nuclear mass number while no change in the shape<br />

of the invariant mass distribution is found for the π 0 π ± (I=1) channel.<br />

This observation can not be explained by final state interaction but is<br />

consistent with theoretical predictions for a partial restoration of chiral<br />

symmetry at normal nuclear matter density.<br />

[1] R.Rapp et al., Phys.Rev.C 59(99)1237<br />

[2] M.Lutz et al., NPA 542(92)521<br />

[3] T.Hatsuda et al., Phys.Rev.Lett. 82(99)2840<br />

HK 32.4 Wed 15:00 D<br />

Investigation of the 3He(e, e ′ pn)p reaction at MAMI — •P.J.<br />

Barneo — NIKHEF, Amsterdam, in collaboration with the Universities<br />

of Mainz, Tübingen and Glasgow.<br />

The 3He(e, e ′ pn)p reaction has been studied in the spectrometer-hall of<br />

the A1-collaboration at MAMI (Mainz). Data were taken at an energy<br />

transfer of 220 MeV and three-momentum transfer of 375 MeV/c.<br />

The reaction cross section is sensitive to nucleon-nucleon correlations<br />

in the three-nucleon system and the contributions of two-body mechanisms,<br />

i.e. intermediate ∆-excitation and meson-exchange currents.<br />

The data analysis will be discussed and preliminary experimental results<br />

will be compared to existing data for the complementary reaction<br />

3 ′ He(e, e pp)n, measured at AmPS(Amsterdam), and to continuum Faddeev<br />

calculations of the Bochum group, performed with realistic NN interactions.<br />

HK 32.5 Wed 15:15 D<br />

Analyse der Photoproduktion der Vektormesonen ω und Φ—<br />

•Jens Barth for the SAPHIR collaboration — Physikalisches Institut,<br />

Nussallee 12, 53<strong>11</strong>5 Bonn<br />

Zur Analyse der Photoproduktion der Vektormesonen ω und Φ wurden<br />

die beiden Reaktionen γp → pω → pπ + π−π 0 und γp → pΦ →<br />

pK + K− aus den Daten des SAPHIR-Detektors am Elektronen-Stretcher-<br />

Ring ELSA untersucht. Es sind totale und differentielle Wirkungsquerschnitte,<br />

sowie Zerfallswinkelverteilungen im Gottfried-Jackson- und im<br />

Helizitätssystem bei Photonenergien von der Reaktionsschwelle bis zu 2.6<br />

GeV bestimmt worden.<br />

Time: Wednesday 14:00–15:30 Room: E<br />

HK 33.1 Wed 14:00 E<br />

Strangeness production in p+p interactions and collisions of<br />

light ions at Elab=158 AGeV/c — •Claudia Höhne, Volker<br />

Friese, and Falk Pühlhofer for the NA49 collaboration — Fachbereich<br />

Physik, Philipps-Universität Marburg*<br />

New data of the CERN experiment NA49 allow a systematic study of<br />

strangeness production varying not only the beam energy and the centrality<br />

of the interaction but also the size of the colliding system using<br />

protons and light ions as reaction partners. Of particular interest are<br />

small systems in which no phase transition into the QGP is expected<br />

and the role of multiple nucleon-nucleon collisions can be investigated.<br />

According to UrQMD calculations rescattering of newly created particles<br />

should play a minor role in such reactions.<br />

The production of kaons and φ-mesons in p+p, C+C and Si+Si collisions<br />

was measured at the CERN SPS with a beam energy of 158 AGeV.<br />

Phase space distributions of these particles as well as for pions were extracted.<br />

Strangeness enhancement with respect to p+p collisions is found<br />

already in semicentral C+C interactions; it increases further in Si+Si reactions.<br />

*supported by BMBF<br />

HK 33.2 Wed 14:15 E<br />

Correlation Study of Strange Baryons in Pb+Pb Reactions<br />

at 158 AGeV ∗ — •C. Blume 1 , L. Betev 2 , A. Billmeier 2 , R.<br />

Bramm 2 , P. Buncic 2 , P. Dinkelaker 2 , M. Ga´zdzicki 2 , T. Kollegger<br />

2 , I. Kraus 1 , C. Markert 1 , A. Mischke 1 , R. Renfordt 2 ,<br />

A. Sandoval 1 , R. Stock 2 , H. Ströbele 2 , D. Vranić 1 , A. Wetzler<br />

2 ,andJ. Zaranek 2 — 1 GSI Darmstadt — 2 IKF Frankfurt<br />

The large number of strange baryons produced in ultrarelativistic<br />

heavy ion collisions makes the study of their correlations feasible. Of<br />

special interest is the measurement of the correlation function of Λ pairs,<br />

since it can shed light on the nature of their mutual interaction. Since, on<br />

the other side, the interaction of Λs with protons is rather well known,<br />

the pΛ correlation function can be used to extract information on the<br />

spacial extent of the emitting source. Compared to the analysis of pp<br />

correlations this method has the advantage of avoiding the influence of<br />

the Coulomb interaction.<br />

We will present preliminary results on ΛΛ and pΛ correlations in central<br />

Pb+Pb reactions at 158 AGeV. The measurements will be compared to<br />

theoretical caluclations and their implications will be discussed.<br />

∗ Supported by BMBF und GSI<br />

HK 33.3 Wed 14:30 E<br />

Energy Dependence of Kaon and Pion Production in Central<br />

Pb+Pb Collisions — •Roland Bramm 1 , L. Betev 2 , C. Blume 3 ,<br />

P. Buncic 2 , P. Dinkelaker 2 , M. Gazdzicki 2 , T. Kollegger 2 , I.<br />

Kraus 3 , A. Mischke 3 , R. Renfordt 2 , A. Sandoval 3 , R. Stock 2 ,<br />

H. Ströbele 2 , D. Vranic 3 , A. Wetzler 2 ,andJ. Zaranek 2 for the<br />

NA49 collaboration — 1 CERN, Genève — 2 IKF, Universität Frankfurt<br />

— 3 GSI, Darmstadt<br />

The experiment NA49 investigates pion and kaon production in central<br />

Pb+Pb collisions at CERN-SPS energies (20-158 AGeV). The pion<br />

spectra are obtained from the analysis of distributions of all negatively<br />

charged hadrons. The kaon spectra are acquired using the particle identification<br />

based on the analysis of the specific energy loss (dE/dx) and in<br />

the midrapidity region via the analysis of the time of flight data (ToF).<br />

Rapidity and transverse momentum spectra at 40, 80 and 158 AGeV<br />

will be presented. A transition from a ”pion suppression” to a ”pion<br />

enhancement” compared to the p+p data at a collision energy around<br />

40 AGeV is observed. The K+ to pi+ ratio shows a non-monotonic be-


Nuclear Physics Wednesday<br />

haviour with a maximum located close to 40 AGeV. A comparison with<br />

models is included.<br />

HK 33.4 Wed 14:45 E<br />

Directed and elliptic flow in Pb+Pb collisions at 40 A GeV ∗ —<br />

•Alexander Wetzler 1 , Latchezar Betev 1 , Christoph Blume 2 ,<br />

Nicolas Borghini 3 , Roland Bramm 1 , Predrag Buncic 1 ,<br />

Phuong Mai Dinh 4 , Peter Dinkelaker 1 , Marek Ga´zdzicki 1 ,<br />

Thorsten Kollegger 1 , Ingrid Kraus 2 , André Mischke 2 ,<br />

Jean-Yves Ollitrault 4 , Art Poskanzer 5 , Rainer Renfordt 1 ,<br />

Andres Sandoval 2 , Reinhard Stock 1 , Herbert Ströbele 1 ,<br />

Danilo Vranic 2 ,andJacek Zaranek 1 for the NA49 collaboration<br />

— 1 Institut für Kernphysik, Universität Frankfurt — 2 Gesellschaft für<br />

Schwerionenforschung, Darmstadt — 3 Université Libre de Bruxelles<br />

— 4 CEA-Sacclay, Gif-sur-Yvette — 5 Lawrence Berkeley Laboratory,<br />

Berkeley California<br />

Azimuthal distributions of pions and protons have been measured by<br />

the NA49 experiment in Pb+Pb collisions at 40 A GeV over a wide range<br />

in rapidity and tranverse momentum. Analyses in terms of first and second<br />

order Fourrier coefficients [1] and by the cumulant method [2] yield<br />

consistent results for the values of directed (v1) and elliptic (v2) flow.<br />

At 40 A GeV beam energy we obtain values of v1 and v2 averaged over<br />

rapidity and transverse momentum. These results are compared to the<br />

corresponding values at 158 A GeV.<br />

[1] A. M. Poskanzer, S.A. Voloshin, Phys. rev. C58,1671(1998); S.A.<br />

Voloshin, A.M. Poskanzer, Phys. Lett. B474(2000)27 [2] N. Borghini,<br />

P.M. Dinh, J-Y. Ollitrault, Phys. rev. C64(2001)054901<br />

( ∗ )gefördert von BMBF und GSI<br />

HK 33.5 Wed 15:00 E<br />

Centrality and Beam Energy Dependence of HBT Correlations<br />

at SPS — •Heinz Tilsner and Harald Appelshäuser for the<br />

CEREScollaboration — Physikalisches Institut der Universität Heidelberg,<br />

Philosophenweg 12, D-69120 Heidelberg<br />

HK34 Instrumentation and Applications IV<br />

The Analysis of Bose-Einstein momentum correlations of identical pions<br />

(HBT interferometry) provide an ideal tool to gain insight into the<br />

space-time evolution as well as the existence of collective velocity fields<br />

at the time of thermal freeze-out of the pion emitting source, created in<br />

ultra-relativistic collisions of heavy ions.<br />

The CERESspectrometer was upgraded in 1998 by the addition of<br />

a cylindrical Time Projection Chamber (TPC) to improve the momentum<br />

resolution. Furthermore, the upgrade also improved substantially<br />

the hadron detection capability of the spectrometer and allowed for a<br />

systematic investigation of hadronic observables at midrapidity.<br />

We present the centrality and beam energy dependence of two-pion<br />

HBT correlations in 40, 80 and 158 AGeV Pb+Au collisions.<br />

HK 33.6 Wed 15:15 E<br />

Rescattering in Heavy Ion Collisions - Charge Fluctuations —<br />

•Michael Döring 1,2,3 and Volker Koch 1,2 — 1 Theory Group, GSI,<br />

Planckstrasse 1, 64291 Darmstadt — 2 Nuclear Theory Group, LBNL,<br />

Cyclotron Rd. 1, 94720 Berkeley — 3 University of Münster, Dep. of<br />

Theoretical Physics, 48149 Münster<br />

One major goal in heavy ion collisions is to produce evidence of the<br />

quark gluon plasma (QGP). A possible signature is reduced charge fluctuation<br />

due to the fractional charge of the quarks in the QGP. In the<br />

hadronic phase fluctuations may be screened or enhanced caused by<br />

hadronic interaction. Using an effective Lagrangian based on vector dominance,<br />

we calculate the charge fluctuations up to second order in a hot<br />

pion gas applying finite temperature field theory.<br />

Time: Wednesday 14:00–15:30 Room: F<br />

Group Report HK 34.1 Wed 14:00 F<br />

Simulations concerning the design of a general purpose detector<br />

for use at the proposed HESR project at GSI Darmstadt<br />

— •V. Hejny for the Antiproton Physics Study Group collaboration —<br />

Institut für Kernphysik, Forschungszentrum Jülich<br />

A Conceptual Design Report for a major new international facility<br />

at GSI Darmstadt 1 has recently been published. One part covers the<br />

installation of a High-Energy Storage Ring (HESR), in which antiprotons<br />

in a momentum range between 1.5 GeV/c and 15 GeV/c can be<br />

stored. This will allow experiments, for example, concerning charmonium<br />

spectroscopy, the search for hybrids and glueballs and the interaction<br />

of hidden and open charm particles with nucleons and nuclei. It is<br />

proposed to use a modular general-purpose spectrometer, which meets<br />

all basic requirements for these investigations. This has to be proved by<br />

doing a detailed Monte-Carlo simulation of the detector system. These<br />

simulations are done using the OO-based package Geant4 together with<br />

Pluto++ for primary event generation and Root for further data analysis<br />

in an integrated environment. After the presentation of the current<br />

design of the detector - based on the physics goal - and its basic features,<br />

the implementation of the simulation and first results are discussed.<br />

1 Conceptual Design Report: http://www.gsi.de/GSI-Future<br />

Group Report HK 34.2 Wed 14:30 F<br />

Track Reconstruction with Prototypes for ALICE TRD —<br />

•Oliver Busch for the ALICE TRD collaboration — GSI Darmstadt<br />

Hard processes, and in particular studies of charm and beauty production,<br />

have become the center stage for the ALICE physics program. The<br />

Transition Radiation Detector (TRD), in conjunction with other ALICE<br />

detectors, will allow to explore various aspects of dielectron physics,<br />

among them the production of quarkonia like J/ψ, ψ ′ and the members<br />

of the Υ family. The study of such rare probes requires good electron<br />

identification and dedicated triggers to make the relevant signatures<br />

accessible to ALICE with sufficient statistics. The TRD provides the<br />

necessary capabilities to trigger on high pt (>3 GeV) electrons by means<br />

of track reconstruction in a magnetic field.<br />

We have tested prototypes of the TRD composed of a radiator and a<br />

drift chamber with pad readout, filled with a Xe,CO2(15%) mixture and<br />

operated in a magnetic field of up to 0.3 T. The tests have been performed<br />

using the secondary pion beam at GSI Darmstadt with a momentum of<br />

1 GeV/c. We compare results for different shapes of pads as well as<br />

various chamber geometries, in terms of trajectory reconstruction and<br />

single point resolution. As an important application, the Lorentz angle<br />

of ionization electrons drifting in a Xe based mixture has been measured<br />

directly for the first time. This quantity is relevant for the trajectory<br />

reconstruction in the final detector. We present the experimental results<br />

and compare them to GARFIELD calculations.<br />

HK 34.3 Wed 15:00 F<br />

The STAR Level-3 Trigger System ∗ — •Clemens Adler 1 , Jens<br />

Berger 1 , Martin Demello 2 , Thomas Dietel 1 , Dominik Flierl 1 ,<br />

Jeff Landgraf 3 , Söeren Lange 1 , Micheal LeVine 3 , Ante Ljubicic,Jr.<br />

3 , John Nelson 4 , Dieter Röhrich 5 , Reinhard Stock 1 ,<br />

Christof Struck 1 ,andPablo Yepes 2 — 1 Institut für Kernphysik,<br />

Universität Frankfurt, Frankfurt, Germany — 2 Rice University, Houston,<br />

Texas, USA — 3 Brookhaven National Laboratory, Upton, New York,<br />

USA — 4 University of Birmingham, Birmingham, United Kingdom —<br />

5 University of Bergen, Bergen, Norway<br />

The STAR experiment at RHIC is a large acceptantance detector for<br />

the measurement of a wide variety of observables. The STAR Level-3<br />

trigger system is a high level trigger, based on the real-time reconstruction<br />

of the events. A simple analysis of physics observables based on the<br />

particle track information is performed and a trigger decision can be issued.<br />

Central Au+Au collisions can be processed at a rate of up to 50s −1 .<br />

In 2001 the Level-3 system was used for the first time to enhance rare<br />

physics signals in central Au+Au collisions. In earlier runs the Level-3<br />

system has been useful for quality assurance and background rejection.<br />

( ∗ )gefördert von BMBF und GSI


Nuclear Physics Wednesday<br />

HK 34.4 Wed 15:15 F<br />

GRID Computing ∗ — •Rüdiger Berlich — Lehrstuhl für Experimentalphysik<br />

1, Ruhr-Universität Bochum, 44780 Bochum<br />

The availability of high-performance network connections and the need<br />

to process and store huge amounts of data has led to a natural progression<br />

in the way the existing computer infrastructure is perceived and used.<br />

The requirements of the LHC experiments have led to a new paradigm<br />

in distributed computing, called ”the GRID”. The huge amounts of<br />

data produced by the upcoming LHC experiments cannot be processed<br />

entirely at CERN anymore. Instead, processing and storage capacities<br />

from participating institutions around the world are seemlessly bundled<br />

HK35 Plenary Session<br />

together, effectively creating a ”virtual supercomputer”. Today, GRID<br />

computing is an important research topic beyond the boundaries of particle<br />

physics. Within Germany, GRID research is funded by the BMBF,<br />

European-wide projects like the European Data Grid are realised with<br />

the help of the European Union. The talk highlights the current developments<br />

in parallel and distributed computation with special emphasis<br />

on GRID computing. It gives examples from particle physics (BaBar)<br />

and explains the mission of the newly founded competence centre for<br />

GRID computing at the Forschungszentrum Karlsruhe, which will play<br />

an important role in the BaBar computing model.<br />

∗ supported by the BMB+F<br />

Time: Thursday 08:30–10:30 Room: Plenarsaal<br />

Plenary Talk HK 35.1 Thu 08:30 Plenarsaal<br />

The Muon Magnetic Moment — •Klaus Jungmann 1 and on behalf<br />

of the muon g-2 collaboration 2 — 1 Kernfysisch Versneller<br />

Instituut, Zernikelaan 25, NL 9747 AA Groningen — 2 Brookhaven National<br />

Laboratory, Upton, New York, USA<br />

The anomaly of the muon magnetic moment describes the deviation<br />

of the particles magnetic g-factor from the value 2 predicted in the Dirac<br />

theory for spin 1/2 particles. The quantity can be calculated to very<br />

high precision using standard theory. The by far largest contribution<br />

arises from Quantum Electrodynamical effects, i.e. photon and lepton<br />

fields. There are contributions of some 60 ppm due to hadronic vacuum<br />

polarization and some 1.3 ppm from weak interaction. Compared to the<br />

electron magnetic anomaly, the muon is more sensitive to the heavier<br />

particles by the square of the mass ratio. Therefore, precision calculations<br />

and accurate measurements together offer a possibility to search<br />

for physics beyond the standard theory. Either hints to yet unknown<br />

forces in nature may be gained (in case of disagreement) or parameters<br />

in existing speculative models can be significantly bounded (in case of<br />

agreement). At the Brookhaven National Laboratory, USA, a magnetic<br />

storage ring experiment reached a first result which at the time of publication<br />

disagreed with the most recent and most accurate calculations.<br />

Careful reevaluations of the theoretical situation were started and are<br />

being continued. Of special interset are the hadronic contributions in<br />

particular hadronic light by light scattering. The experiment has in the<br />

mean time taken more data which is being analyzed. Work in progressing.<br />

Plenary Talk HK 35.2 Thu 09:00 Plenarsaal<br />

High-temperature QCD and relativistic heavy ion collisions —<br />

•Dietrich Bödeker —Fakutät für Physik, Universität Bielefeld, D-<br />

33516 Bielefeld<br />

Relativistic collisions of large nuclei create strongly interacting matter<br />

at high energy densities. If there are sufficiently many interactions<br />

such a system will thermalize which would allow for a study of Quantum<br />

Chromodynamics at finite temperature. I discuss recent theoretical developments<br />

in this field and their confrontation with experimental data.<br />

Plenary Talk HK 35.3 Thu 09:30 Plenarsaal<br />

Experimental verification of the GDH sum rule at ELSA and<br />

MAMI — •Klaus Helbing for the GDH-Collaboration collaboration<br />

— Erlangen: Universität Erlangen-Nürnberg, Physikalisches Institut,<br />

Abteilung IV, Erwin-Rommel-Str. 1, D-91058 Erlangen<br />

The Gerasimov-Drell-Hearn (GDH) sum rule connects static properties<br />

of the nucleon like the anomalous magnetic moment κ and the nucleon<br />

mass m, with the helicity dependent photoabsorption cross sections σ3/2<br />

and σ1/2, which are observables of the dynamics of the excitation spec-<br />

trum.<br />

�∞<br />

HK36 Plenary Session<br />

0<br />

dν<br />

ν<br />

�<br />

σ3/2(ν) − σ1/2(ν) �<br />

= 2π2 α<br />

m 2 · κ 2<br />

For the first time this fundamental sum rule is verified experimentally<br />

with circularly polarized real photons and longitudinally polarized nucleons.<br />

First results of our measurements on the proton in the photon<br />

energy range 200-800 MeV at the Mainz electron accelerator MAMI have<br />

been published. The measurements of the GDH-Collaboration have been<br />

continued at the accelerator ELSA in Bonn where a tagged photon facility<br />

allows to study photon energies from 680 MeV up to 3 GeV. Our new<br />

data provide up to now unaccessible information about the spin structure<br />

of the proton from the resonance region up to the onset of the Regge<br />

regime.<br />

Plenary Talk HK 35.4 Thu 10:00 Plenarsaal<br />

Compton Scattering off the Nucleon at MAMI Energies —<br />

•Stefan Scherer — Institut für Kernphysik, Johannes Gutenberg-<br />

Universität, 55099 Mainz<br />

In recent years, real and virtual Compton scattering off the nucleon<br />

have attracted considerable interest from both the experimental and theoretical<br />

side. Real Compton scattering gives access to the so-called electromagnetic<br />

polarizabilities containing the structure information beyond<br />

the global properties of the nucleon such as its charge, mass, and magnetic<br />

moment. These polarizabilities have an intuitive interpretation in<br />

terms of induced dipole moments and thus characterize the response of<br />

the constituents of the nucleon to a soft external stimulus. The use<br />

of virtual photons considerably increases the possibilities to investigate<br />

structure and dynamics of the target. The virtual Compton scattering<br />

reaction e − p → e − pγ allows one to map out the local response to external<br />

fields and can be described in terms of generalized electromagnetic polarizabilities.<br />

We will discuss experimental results for the polarizabilities of<br />

the proton which have been obtained at the Mainz Microtron (MAMI)<br />

and compare them with theoretical predictions. A simple classical interpretation<br />

in terms of the induced electric and magnetic polarization<br />

densities is proposed.<br />

Time: Thursday <strong>11</strong>:00–12:45 Room: Plenarsaal<br />

Plenary Talk HK 36.1 Thu <strong>11</strong>:00 Plenarsaal<br />

Chiral Symmetry and the Medium Modifiaction of Hadrons —<br />

•Jochen Wambach —IKPTU-Darmstadt<br />

A fundamental question in strong interaction physics is how mass is<br />

generated in the sector of light quarks. The answer lies in the nonperturbative<br />

structure of the QCD vacuum itself in which quarks and<br />

gluons condense. This is in marked contrast to the heavy-quark sector<br />

where the masses of the hadrons are determined by the quark masses<br />

themselves. When nuclear matter is subjected to extreme conditions in<br />

density and temperature such as in the interior of neutron stars or in<br />

central relativistic heavy-ion collisions, the QCD vacuum will be altered,<br />

eventually leading to the liberation of the elementary constituents in a<br />

new state of matter. Such a restructuring of the vacuum must be accompanied<br />

by significant changes in the spectral properties of hadrons. In<br />

the framework of effective field theory this relationship and observable<br />

consequences for the meson spectrum will be addressed.


Nuclear Physics Thursday<br />

Plenary Talk HK 36.2 Thu <strong>11</strong>:45 Plenarsaal<br />

Search for Missing Baryon Resonances — •Ulrike Thoma —<br />

Thomas Jefferson National Laboratory, 12000 Jefferson Avenue, Newport<br />

News, VA 23606, USA<br />

It is widely accepted that QCD is most probably the correct theory of<br />

strong interactions. But a major goal of QCD is still unfulfilled: to provide<br />

the theory of quark confinement. Instead, constituent quark models<br />

have been developed which describe the baryon spectrum with good success.<br />

However there is an interesting controversy in baryon spectroscopy.<br />

Constituent quark model calculations predict much more resonances than<br />

have been observed so far. Two very different explanations have been<br />

proposed:<br />

1) The ”missing” states are not missing. They have not been observed<br />

so far because of lack of high quality data in channels different from πN.<br />

If these states decouple from πN they would not have been observed so<br />

far.<br />

2) The ”missing” states are not missing, they do not exist. The<br />

nucleon-resonances could have a quark-diquark structure. This reduces<br />

the number of internal degrees of freedom and therefore the number of<br />

existing states.<br />

Photoproduction experiments investigating channels different from πN<br />

are expected to have a big discovery potential if these states really exist.<br />

This is one of the goals of the CB-ELSA experiment in Bonn and of the<br />

CLASexperiment at Jefferson Laboratory. Recent progress in the search<br />

for these ”missing” states will be discussed.<br />

HK37 Theory V<br />

Plenary Talk HK 36.3 Thu 12:15 Plenarsaal<br />

THE ROLE OF NUCLEAR PHYSICS IN PROVIDING DATA<br />

FOR ASTROPHYSICS — •Stephane Goriely —IAA-Universite<br />

Libre de Bruxelles, CP 226, Campus de la Plaine, B-1050 Brussels<br />

Impressive progress has been made for the last decades in the various<br />

fields related to nuclear astrophysics. However, major problems and<br />

puzzles remain, which challenges continuously the nuclear astrophysics<br />

concepts and findings. To put them on a safer footing requires a deeper<br />

and more precise understanding of the many nuclear physics processes<br />

operating in the astrophysical environment.<br />

More specifically, major difficulties related to the specific conditions of<br />

the astrophysical plasma remain (capture of charged particles at low energies,<br />

large number of nuclei and properties to consider, exotic species,<br />

high-temperature and/or high-density environments, ...). In many astrophysical<br />

scenarios, only theoretical predictions can fill the gaps. The<br />

nuclear ingredients to the reaction or weak interaction models should<br />

preferentially be estimated from microscopic global predictions based on<br />

sound and reliable nuclear models which, in turn, can compete with more<br />

phenomenological highly-parametrized models in the reproduction of experimental<br />

data. The latest developments made in deriving the nuclear<br />

inputs of relevance in astrophysics applications are reviewed. Emphasis<br />

is made on the possibility to make use of reliable microscopic models for<br />

practical applications.<br />

Time: Thursday 14:00–15:30 Room: A<br />

Group Report HK 37.1 Thu 14:00 A<br />

Dynamical Correlations in In-Medium Hyperon and Nucleon<br />

Interactions — •Ch. Keil, H. Lenske, andC. Greiner — Institut<br />

für Theoretische Physik, Universität Gießen, Germany<br />

The extension of isospin nuclear structure physics into the full SU(3)f<br />

flavor sector is investigated in a field-theoretical approach using Dirac-<br />

Brueckner theory and the DDRH field theory for finite nuclei. Baryonbaryon<br />

interactions in free space and hadronic matter are calculated in a<br />

SU(3)f scheme by solving the K-Matrix equations for the lowest meson<br />

nonets and baryon octets. Results for BB interactions in infinite hadronic<br />

matter are presented. The structure of correlated two-baryon wave functions<br />

in nuclear matter is discussed and applications in HBT-analyses of<br />

hyperon production in heavy ion collisions are indicated. DDRH theory is<br />

used to extract density dependent meson-baryon vertices, allowing applications<br />

to finite nuclei in a covariant and thermodynamically consistent<br />

approach. RMF calculations for single Λ hypernuclei are in good agreement<br />

with observed hyperon separation energies and spin-orbit splittings.<br />

The ΛΛ correlation energy, however, derived experimentally from recent<br />

measurements of 6 ΛΛHe is underestimated, indicating that correlation dynamics<br />

are likely to play an important role for in-medium hyperon interactions.<br />

Taking into account loop diagrams extensions of the theory<br />

beyond the ladder-approximation are envisaged. As a first application<br />

we determine from a re-analysis of the Urbana nuclear equation of state<br />

the content of RPA loop diagrams. They are found to introduce a density<br />

dependence, shifting the equilibrium point to the empirical position.<br />

Work supported by BMBF.<br />

HK 37.2 Thu 14:30 A<br />

Medium Effects in Ae, e ′ p Reactions at High Q 2 — •Dimitri Debruyne<br />

and Jan Ryckebusch — INW, proeftuinstraat 86, B-9000<br />

Gent, Belgium<br />

Medium dependencies of bound nucleons are studied in a fully relativistic<br />

and unfactorized framework for the description of exclusive A(e,e’p)<br />

processes. The theoretical framework, which is based on the eikonal approximation,<br />

can accommodate both optical-potential and Glauber approaches<br />

for the treatment of final-state interactions. We have performed<br />

calculations for the target nuclei He4, C12 and O16 in kinematic situations<br />

corresponding with Q 2 values in the range 0.5 ≤Q 2 ≤ 10 (GeV/c) 2 .<br />

One of the major findings of our investigations is that in kinematic<br />

regions where both the optical-potential and the Glauber approach seem<br />

justified, both methods for treating final-state interactions produce comparable<br />

results. We have not found any evidence for the onset of the<br />

color transparency phenomenon below Q 2 ≤ 8(GeV/c) 2 .<br />

Another issue which has received our attention is the predicted medium<br />

modification of the electromagnetic form factors for bound nucleons. By<br />

incorporating model predictions for the medium dependence of the electromagnetic<br />

form factors in our theoretical framework, we can estimate<br />

the effect on the (�e, e ′ �p) observables as a function of the nuclear density<br />

and Q 2 .<br />

HK 37.3 Thu 14:45 A<br />

Strangeness photoproduction on the nucleon in the resonance<br />

region — •Stijn Janssen and Jan Ryckebusch — Proeftuinstraat<br />

86, 9000 Gent, Belgium<br />

A study of three strangeness photoproduction processes on the proton<br />

(γp → K + Λ, γp → K + Σ 0 and γp → K 0 Σ + )withinaneffectiveLagrangian<br />

formalism is presented [1,2]. By comparing model calculations<br />

to the SAPHIR data, we explore the contributions from different N ∗ and<br />

∆ ∗ resonances in the reaction mechanism. Special attention is paid to<br />

the issue of the “missing resonances”. Some of those missing nucleon<br />

states are expected to be revealed in these strange channels. In addition,<br />

we survey the sensitivity of the extracted resonance information to the<br />

uncertainties inherent to the treatment of the background contributions.<br />

We show that those background terms inevitably produce a dominant<br />

part of the reaction amplitude and compare predictions obtained with<br />

three plausible techniques of dealing with those terms. We conclude that<br />

model dependent effects can not be neglected in the analyses at this<br />

stage.<br />

[1] S. Janssen, J. Ryckebusch, W. Van Nespen, D. Debruyne and<br />

T. Van Cauteren, Eur. Phys.J. A <strong>11</strong>, 105 (2001)<br />

[2] S. Janssen, J. Ryckebusch, D. Debruyne and T. Van Cauteren,<br />

Phys. Rev. C 65, 015201 (2001)<br />

HK 37.4 Thu 15:00 A<br />

Contribution of Single Pion Photoproduction to Spin Asymmetry<br />

and GDH Sum Rule for the Deuteron — •Eed Darwish 1,2 ,<br />

Hartmuth Arenhövel 1 ,andMichael Schwamb 1 — 1 Institut für<br />

Kernphysik, J. Gutenberg-Universität, J.-J. Becher-Weg 45, D-55099<br />

Mainz, Germany — 2 Physics Department, Faculty of Science, South Valley<br />

University, Sohag, Egypt<br />

The contribution of incoherent single pion photoproduction to the spin<br />

asymmetry for the deuteron is evaluated up to 550 MeV photon energy<br />

with inclusion of NN and πN rescattering in the final state. For the<br />

elementary production operator γN → πN, we have taken into account<br />

the standard pseudovector Born terms as well as the contribution of the<br />

∆(1232) resonance [1]. For the NN and πN interactions we use the separable<br />

representations from Haidenbauer et al. [2] and Nozawa et al. [3],<br />

respectively.


Nuclear Physics Thursday<br />

The effect of final state rescattering on the spin asymmetry for pion<br />

photoproduction on the deuteron is discussed. The corresponding<br />

Gerasimov-Drell-Hearn integrals evaluated up to 550 MeV are also<br />

presented.<br />

It turns out that the inclusion of final state interaction is important<br />

and should be considered in forthcoming theoretical studies.<br />

[1] R. Schmidt et al., Z.Phys.,A355 (1996), 421<br />

[2]J.Haidenbaueret al., Phys.Rev.,C30 (1984), 1822<br />

[3] S. Nozawa et al., Nucl. Phys., A513 (1990) 459<br />

HK 37.5 Thu 15:15 A<br />

Strong two-body decays of baryons in a covariant quark model<br />

— •Dirk Merten, Ulrich Löring, Sascha Migura, Bernard<br />

Metsch, andHerbert-R. Petry — Institut für Theoretische Kernphysik,<br />

Nussallee 14-16, D-53<strong>11</strong>5 Bonn, Germany<br />

HK38 Theory VI<br />

Strong two-body baryon decays are considered in a covariant quark<br />

model for baryons and mesons. The model is based on the Bethe-Salpeter<br />

equation in instantaneous approximation with a phenomenological confinement<br />

potential and a residual interaction induced by instantons. The<br />

parameters have been fixed to the spectra of meson and baryon resonances.<br />

The widths of strong two-body baryon decays are then evaluated<br />

without any additional free parameter in a formally covariant way.<br />

Time: Thursday 14:00–15:30 Room: C<br />

HK 38.1 Thu 14:00 C<br />

Bottom-Antibottom and Quarkonium Hadroproduction in k⊥-<br />

Factorization at High Energies — •Philipp Hägler 1 , Roland<br />

Kirschner 2 , Andreas Schäfer 1 , Lech Szymanowski 3 ,andO.V.<br />

Teryaev 4 — 1 Institut für Theoretische Physik, Universität Regensburg,<br />

D-93040 Regensburg — 2 Institut für Theoretische Physik, Universität<br />

Leipzig, D-04109 Leipzig — 3 Centre de Physique Theorique, Ecole Polytechnique,<br />

9<strong>11</strong>28 Palaiseau Cedex, France — 4 Bogoliubov Laboratory of<br />

Theoretical Physics, JINR, 141980 Dubna<br />

We have studied the hadroproduction of b ¯ b, direct χc and J/ψ in the<br />

framework of the k⊥ factorization approach at high energies. The NLLA<br />

BFKL q¯q-production vertex provides a gauge invariant description of the<br />

processes and plays a central role in our considerations. The calculated b ¯ b<br />

cross sections are significantly larger than in the collinear approach and<br />

give a good description of the Tevatron data. Concerning Quarkonium<br />

production we find that the color-singlet contributions are essentially<br />

larger than in the collinear approach. For the J/ψ the color singlet contribution<br />

is still an order of magnitude below the data. This deficit may<br />

be well described in the framework of NRQCD by color octet contribu-<br />

tions. The value of the color octet matrix element < 0|O J/ψ<br />

8 ( 3 S1)|0 > is<br />

substantially decreased in comparison with fits in the collinear factorization.<br />

This should lead to a reduction of the large transverse polarization,<br />

predicted in the collinear approach.<br />

HK 38.2 Thu 14:15 C<br />

Confinement in the Chromodielectric Model — •Gunnar<br />

Martens, Carsten Greiner, Stefan Leupold, and Ulrich<br />

Mosel — Institut für Theoretische Physik, Universität Gießen,<br />

Germany<br />

The phenomenon of confinement is an open problem and not understood<br />

from first principles. The chromodielectric model [1,2] describes it<br />

as the consequence of the interaction between color electromagnetic fields<br />

and the vacuum having dielectric properties. The vacuum is described<br />

via a scalar field with selfinteraction designed to separate perturbative<br />

from nonperturbative spatial regions. We investigate static properties of<br />

meson and baryon type configurations. For the mesons, we find the linear<br />

rising string potential and reproduce the string tension found in heavy<br />

quark meson spectroscopy. For the three quark system we study the field<br />

configuration to distinguish between the ∆ and the Y type models of the<br />

baryon.<br />

Work supported by BMBF.<br />

[1] R. Friedberg, T.D. Lee; Phys.Rev. D 15 (1977) 1694<br />

[2] C.T. Traxler, U. Mosel, T.S. Biro; Phys.Rev. C 59 (1999) 1620<br />

HK 38.3 Thu 14:30 C<br />

The Spectrum of the Dirac Operator in the linear sigma model<br />

with Quarks — •Thomas Spitzenberg 1 , kai Schwenzer 2 , and<br />

hans juergen pirner 2 for the Chiral dynamics Mainz Heidelberg<br />

collaboration — 1 institut fuer kernphysik, uni-mainz, johann-joachim<br />

becher weg 45, 55099 mainz, germany — 2 institut fuer theoretische<br />

physik, uni heidelberg, phil. weg 19,69120 Heidelberg, germany<br />

The QCD Dirac operator spectrum in the large NC approximation is<br />

derived using renormalization group flow equations. The spectrum is<br />

presented beyond the usual low energy regime.<br />

HK 38.4 Thu 14:45 C<br />

Photoproduction of φ mesons off nuclei — •Pascal Mühlich,<br />

Thomas Falter, Carsten Greiner, Jürgen Lehr, Marcus Post,<br />

and Ulrich Mosel — Institut für Theoretische Physik, Universität<br />

Gießen, Germany<br />

We investigate the consequences of possible medium modifications of<br />

the φ mesoninnuclearmatteronφ photoproduction off nuclei. Various<br />

models predict both a mass-shift and/or a in-medium broadening of the<br />

φ meson at finite nuclear matter density [1][2]. In principle, photoproduction<br />

provides a clean method to learn about the in-medium properties<br />

of the φ meson. Our purpose is to check the feasability of a proposed<br />

experiment [3], in which one tries to observe the φ properties through the<br />

K + K − -invariant mass spectrum, restricting the momentum of the φ to<br />

small values. In our calculation, we use the BUU transport model, which<br />

allows for a detailed analysis of the final state interactions both of the φ<br />

and the kaons. Due to these effects, we find only a small sensitivity of<br />

the K + K − -invariant mass distribution on the in-medium properties of<br />

the φ.<br />

Work supported by DFG and BMBF.<br />

[1] G. E. Brown, M. Rho, PRL 66 (1991), 2720.<br />

[2] E. Oset, A. Ramos, NPA 679 (2001), 616.<br />

[3] T. Nakano et al., NPA 684 (2001), 71.<br />

HK 38.5 Thu 15:00 C<br />

Chiral Dynamics and Nuclear Matter — •Stefan Fritsch 1 , Norbert<br />

Kaiser 1 ,andWolfram Weise 2,1 — 1 Physik Department der<br />

Technischen Universität München, Garching, Germany — 2 ECT*, Villazzano<br />

(Trento), Italy<br />

We calculate the equation of state of isospin-symmetric nuclear matter<br />

in the three-loop approximation of chiral perturbation theory. The<br />

contributions to the energy per particle Ē(kf) from one- and two-pion<br />

exchange diagrams are ordered in powers of the Fermi-momentum kf<br />

) two-pion exchange<br />

(modulo functions of kf/mπ). Already at order O(k4 f<br />

produces realistic nuclear binding. Without inclusion of any further<br />

short-range terms the empirical saturation point and nuclear compressibility<br />

K � 250 MeV are well reproduced at order O(k5 f) with a momentum<br />

cut-off of Λ � 0.65 GeV. In the same framework we calculate the<br />

density-dependent asymmetry energy, reproducing its empirical value of<br />

A0 � 34 MeV. We also evaluate the momentum and density dependent<br />

single particle potential of nucleons in isospin-symmetric nuclear matter.<br />

The contributions from one- and two-pion exchange diagrams give<br />

rise to a potential depth for a nucleon at rest of U(0,kf0) =−53.2MeV<br />

at saturation density. The momentum dependence of the single particle<br />

potential can be translated into a mean effective nucleon mass of<br />

¯M ∗ � 0.8M. Finally, we extend our scheme to small non-zero temperatures<br />

and observe the liquid–gas phase transition of nuclear matter at<br />

Tc � 26 MeV and ρc � 0.5ρ0.<br />

Work supported in part by BMBF, GSI and DFG.


Nuclear Physics Thursday<br />

HK 38.6 Thu 15:15 C<br />

Proton–antiproton annihilation and the partonic structure of<br />

the nucleon — •A. Freund 1 , A.V. Radyushkin 2 , A. Schäfer 1 ,<br />

O.V. Teryaev 3,1 ,andC. Weiss 1 — 1 Institut für Theoretische Physik,<br />

Universität Regensburg, D–93053 Regensburg, Germany — 2 Theory<br />

Group, Jefferson Lab, Newport News, VA 23606, USA, and Old Dominion<br />

University, Norfolk, VA 23529, USA — 3 Laboratory of Theoretical<br />

Physics, JINR Dubna, Russia<br />

We consider exclusive proton–antiproton annihilation into two photons,<br />

p¯p → γγ, ats ≫ m 2 N, which could be studied with the proposed<br />

1–15 GeV antiproton storage ring (HESR) at GSI [1]. We argue that<br />

in QCD this process is dominated by contributions in which the two<br />

photons are emitted in a single quark–antiquark annihilation process,<br />

HK39 Nuclear Physics / Spectroscopy VI<br />

accompanied by soft annihilation of the spectators (“handbag graph”).<br />

This description is analogous to the “soft mechanism” dominating wide–<br />

angle real Compton scattering off the proton [2]. The amplitude for p¯p<br />

annihilation can thus be expressed in terms of a function describing the<br />

decay of the p¯p system into a q¯q pair. This function is the deeply timelike<br />

variant of the double distribution of quarks measured in wide–angle real<br />

and also deeply virtual Compton scattering (generalized parton distributions).<br />

We present an estimate of the expected annihilation cross section<br />

based on a simple model for the decay function, and discuss experimental<br />

signatures for the dominance of the “handbag” mechanism.<br />

[1] “An International Accelerator Facility for Beams of Ions and Antiprotons”,<br />

GSI Conceptual Design Report, November 2001<br />

[2] A. V. Radyushkin, Phys. Rev. D58 (1998) <strong>11</strong>4008<br />

Time: Thursday 14:00–15:15 Room: B<br />

Group Report HK 39.1 Thu 14:00 B<br />

Neutron decay studies of the Isoscalar Giant Dipole Resonance<br />

— •M. Hunyadi 1 , A.M. van den Berg 1 , N. Blasi 2 , B. Davids 1 , U.<br />

Garg 3 , J. Gulyás 4 , M.N. Harakeh 1 , M.A. de Huu 1 , D. Sohler 4 ,<br />

and H.J. Wörtche 1 — 1 Kernfysisch Versneller Instituut, Groningen,<br />

The Netherlands — 2 INFN Milano, Milano, Italy — 3 University of Notre<br />

Dame, Notre Dame, USA — 4 Institute of Nuclear Research, Debrecen,<br />

Hungary<br />

The Isoscalar Giant Dipole Resonance (ISGDR) is the response of the<br />

nucleus to the second-order isoscalar dipole operator. motion). Its energy<br />

systematics are important in the determination of the nuclear incompressibility.<br />

So far, only singles experiments, using inelastic α-scattering,<br />

gave evidence for the ISGDR in a few nuclei, but they suffered from<br />

strong instrumental and nuclear-continuum backgrounds at very forward<br />

angles, and a partial overlap with the isoscalar giant octupole resonance.<br />

Presently, no experimental data are available on the decay properties of<br />

the ISGDR, which would be a crucial test for the theoretical descriptions<br />

of its microscopic structure and damping process.<br />

Recently we performed coincidence experiments using inelastic α- scattering<br />

at 50 MeV/A searching for the direct neutron decay of the ISGDR<br />

in 208 Pb, 124 Sn and 90 Zr. A clear indication of the presence of the direct<br />

decay component was obtained. Moreover, we exploited the advantage of<br />

the coincidence technique resulting in a considerable suppression of the<br />

background contribution. These results enabled the direct comparison<br />

with a recently published CRPA calculation.<br />

HK 39.2 Thu 14:30 B<br />

Search for triaxial superdeformation in 170 Hf* — •A. Neusser 1 ,<br />

S. Bhattacharya 2 , P. Bringel 1 , D. Curien 3 , O. Deveraux 3 , J.<br />

Domscheit 1 , G.B. Hagemann 4 , F. Hannachi 5 , H. Hübel 1 , D.R.<br />

Jensen 4 , A. Lopez-Martens 5 , E. Mergel 1 , N. Nenoff 1 ,andA.K.<br />

Singh 1 — 1 Institut für Strahlen- und Kernphysik, Univ. Bonn — 2 SINP,<br />

Calcutta — 3 IReS, Strasbourg — 4 Niels Bohr Institute, Copenhagen —<br />

5 CSNSM, Orsay<br />

Triaxial superdeformation (TSD) has recently been established in Lu<br />

and Hf isotopes in the mass 165 region. In this work we report on the<br />

first evidence for TSD in 170 Hf. High-spin states in 170 Hf have been populated<br />

at the Vivitron accelerator of IReS, Strasbourg, using the reaction<br />

124 Sn( 50 Ti,4n) at 216 MeV beam energy. Gamma-ray coincidences were<br />

detected with the EUROBALL spectrometer. A preliminary analysis of<br />

the coincidence data leads to an extension of all known normal-deformed<br />

(ND) bands in 170 Hf to higher spins. In addition, one new ND band has<br />

been found. First results of the search for TSD in 170 Hf revealed a band<br />

with similar characteristics as the TSD bands in neighbouring 168 Hf.<br />

*Work supported by BMBF, Germany (Contract no. 06 BN 907) and<br />

by DFG (Contract no. HU 325/10)<br />

HK 39.3 Thu 14:45 B<br />

Dipole strength distribution in the well deformed nucleus 178 Hf<br />

and the systematics of the Scissors Mode in the even-even Hf<br />

nuclei — •M. Scheck 1 , D. Belic 1 , P. von Brentano 2 , J.J. Carrol<br />

3 , A. Gade 2 , H. von Garrel 1 , U. Kneissl 1 , C. Kohstall 1 ,<br />

A. Linnemann 2 , H.H. Pitz 1 , F. Stedile 1 , R. Toman 3 , and V.<br />

Werner 2 for the collaboration — 1 Institut für Strahlenphysik, Universität<br />

Stuttgart,D-70569 Stuttgart — 2 Institut für Kernphysik, Universität<br />

zu Köln, D-50937 Cologne — 3 Dep. of Physics and Astronomy,<br />

Youngstown State University, USA<br />

The strength distribution of low-lying dipole excitations in 176 Hf was<br />

studied in nuclear resonance fluorescence experiments (NRF) performed<br />

at the Stuttgart bremsstrahlung facility (endpoint energy 4.1 MeV).<br />

Spectroscopic information on about 40 new spin 1 states in 176 Hf have<br />

been obtained. Ascribing to all observed K=1 states a positive parity,<br />

the detected total B(M1) ↑ strength in the energy range of the Scissors<br />

Mode amounts to 3.1(4) µ 2 N as for midshell rare earth nuclei [1] and is<br />

higher as in 178,180 Hf [2]. The M1 strength in 176 Hf fits well into the systematics,<br />

however, is more fragmented as in 178,180 Hf. On the other hand,<br />

the distribution patterns look quite similiar in all even-even Hf isotopes,<br />

with two strength concentrations at 2.7 and 3.7 MeV, respectively.<br />

Supported by the DFG, contract Nos. Kn-154/31, Br-799/6,<br />

[1] U. Kneissl et al., Prog. Part. Nucl. Phys. 37, (1996), 349.<br />

[2] N. Pietralla et al., Nucl. Phys. A618, (1997), 147.<br />

HK 39.4 Thu 15:00 B<br />

Lifetimes of triaxial superdeformed states in 163 Lu and 164 Lu ∗ —<br />

•G. Schönwaßer 1 , H. Hübel 1 , G.B. Hagemann 2 , J. Domscheit 1 ,<br />

A. Görgen 1 , B. Herskind 2 , G. Sletten 2 , J.N. Wilson 2 , D.R.<br />

Napoli 3 , C. Rossi-Alvarez 4 , D. Bazzacco 4 , R. Bengtsson 5 , H.<br />

Ryde 6 , P.O. Tjøm 7 ,andS.W. Ødeg˚ard 7 — 1 ISKP, Univ. Bonn,<br />

Germany — 2 NBI, Copenhagen, Denmark — 3 LNL, Legnaro, Italy —<br />

4 Dip. di Fisica, Univ. Padova, Italy — 5 Dep. of Math. and Phys., Lund<br />

Inst. of Technology, Sweden — 6 Dep. of Phys., Univ. Lund, Sweden —<br />

7 Dep. of Phys., Univ. Oslo, Norway<br />

Lifetimes of states in the yrast superdeformed bands of 163 Lu and<br />

164 Lu were determined in a Doppler-shift attenuation-method experiment.<br />

High-spin states were populated in the reaction 139 La( 29 Si,xn) at<br />

145 MeV. The beam was provided by the Legnaro Tandem accelarator.<br />

Gamma-ray coincidences were measured with the GASP Ge-detector ar-<br />

ray. From fractional Doppler-shifts and line shapes, average transition<br />

quadrupole moments, Qt =8.2 +1.0<br />

−0.6 band7.1 +0.5<br />

−0.6 b, were deduced for one<br />

of the bands in 163 Lu and 164 Lu, respectively. These values are much<br />

larger than the quadrupole moment of the normal-deformed yrast band<br />

in 163 Yb, Qt =4.9 +1.3<br />

−0.4 b, that was also determined in this experiment.<br />

Comparison to cranking calculations indicates that both superdeformed<br />

bands correspond to a local potential energy minimum with a pronounced<br />

triaxiality, γ ∼ 20 0 .<br />

∗ Work supported by BMBF, Germany (contract no. 06 BN 907) and<br />

by the EU (TMR/LSF contract no. ERBFMGECT980<strong>11</strong>0)


Nuclear Physics Thursday<br />

HK40 Electromagnetic and Hadronic Probes V<br />

Time: Thursday 14:00–15:30 Room: D<br />

Group Report HK 40.1 Thu 14:00 D<br />

Electroproduction of Strangeness on Light Nuclei ∗ — •Frank<br />

Dohrmann for the E91016 collaboration — FZ Rossendorf, Inst. f.<br />

Kern- u. Hadronenphysik, Dresden, Germany<br />

Jefferson Lab experiment E91016 recently studied the electroproduction<br />

of kaons, A(e,e ′ K + ), on targets of H2, D2, 3 He, 4 He, C and Al. The<br />

variety of nuclear targets involved allows for a study of the dependences<br />

of the elementary processes involving strange hadrons upon both mass<br />

number and nuclear density. In particular, the measurements on 3,4 He<br />

are the first performed. Results for the missing mass spectra from the<br />

various targets will be shown. Quantitative descriptions of these spectra<br />

need to take into account hyperon-nucleon (YN) final state interactions<br />

that are sensitive to YN potentials. The quasifree production cross sections<br />

and their angular and energy dependence for the Λ and Σ hyperons<br />

on the various target nuclei will be presented. It is of special interest<br />

to determine if the elementary production mechanisms are subject to<br />

medium modifications. Specifically, since the Λ and Σ hyperons have<br />

different isospins, medium modifications may have potentially different<br />

effects on the production of these hyperons. The presence of Λ and pos-<br />

sible Σ hypernuclear states will be addressed. We see clear evidence for<br />

the 4 ΛH on 4 He as well as the 12<br />

Λ B bound state on carbon. ( ∗ this work<br />

was supported in part by the A.v.Humboldt-Stiftung through a Feodor<br />

Lynen-Fellowship)<br />

HK 40.2 Thu 14:30 D<br />

First results of the CB-ELSA experiment — •Volker Credé for<br />

the CB-ELSA collaboration — ISKP, University of Bonn<br />

Constituent quark models predict far more states in the baryon<br />

spectrum than have been experimentally observed up to now. As nearly<br />

all results stem from πN scattering, photoproduction experiments seem<br />

to have a large discovery potential. The search for missing resonances is<br />

a topical aim of the CB-ELSA experiment. A large amount of data has<br />

been taken with a new setup since December 2000 at the e − accelerator<br />

ELSA in Bonn. In a first series of experiments, the Crystal Barrel<br />

Detector was used in a combination with Time-Of-Flight walls in the<br />

forward direction. This setup almost forms a 4π arrangement and was<br />

used to measure a variety of multi-photon final states. Almost 200 000<br />

events of the type γp → pπ 0 π 0 and 40 000 events of the type γp → pπ 0 η<br />

could be identified and reconstructed. First hints for resonance<br />

production is given and cascades of the type N ∗∗ → N ∗ → π 0 π 0 (π 0 η)p<br />

are observed. Indications for a P33(1940)∆ are seen. Furthermore,<br />

differential cross sections for η photoproduction up to 2.8 GeV could<br />

be extracted from the data. Good consistency is found for η → γγ as<br />

well as for η → 3π 0 . In addition, reactions of the type γp → pω and<br />

γp → pπ 0 ω are being analysed. The combined investigation of all these<br />

channels will help to answer questions as to what the relevant degrees<br />

of freedom and effective forces in hadrons are.<br />

Supported by DFG.<br />

HK41 Heavy Ions V<br />

HK 40.3 Thu 14:45 D<br />

Study of pηη, pω, pπ 0 ω and pη ′ final states observed by the<br />

CB-ELSA-Experiment — •Jörg Junkersfeld for the CB-ELSA<br />

collaboration — ISKP, Universität Bonn<br />

One aim of the Crystal-Barrel-Experiment at ELSA is the study of<br />

high-mass nucleon resonances in photoproduction off protons in a liquid<br />

hydrogen target. The detector system covers a large solid angle (98 %<br />

of 4π in the lab sytem) and has a large angular and energy resolution.<br />

These features allow the investigation of final states with high photonmultiplicity.<br />

Data at photon energies up to 2.8 GeV were taken. From<br />

these data 200000 pπ 0 π 0 and 40000 pπ 0 η events were identified. The<br />

covered energy range gives also access to rare final states like pηη, pω,<br />

pπ 0 ω and pη ′ . The search for these final states and the first results will<br />

be presented.<br />

Supported by DFG.<br />

HK 40.4 Thu 15:00 D<br />

Photoproduction of π 0 π 0 on protons at CB-ELSA — •Igor Horn<br />

for the CB-ELSA collaboration — ISKP, Universität Bonn<br />

The Crystal Barrel is a detector optimized to detect multiphoton final<br />

states with a large solid-angle coverage. During the last year photoproduction<br />

data including various final states with neutral mesons were taken<br />

by the CB-ELSA experiment at the electron stretcher accelerator (ELSA)<br />

in Bonn. In particular attention is paid to the γp→pπ 0 π 0 reaction. The<br />

data show clear structures due to resonance production. Evidence for<br />

successive decays of high-mass nucleon resonances via ∆ (1232) and via<br />

resonances of higher mass is observed in different mass regions. The new<br />

data taken at photon energies up to 2.8 GeV will be presented.<br />

Supported by DFG.<br />

HK 40.5 Thu 15:15 D<br />

Quasifree bremsstrahlung in the dp → dpγ reaction above the<br />

pion production threshold — •L. Demirörs 1 , J. Greiff 2 , Y. Ilyina<br />

1 , C. Pauly 1 ,andW. Scobel 1 for the CELSIUS/WASA collaboration<br />

— 1 Institut für Experimentalphysik, Hamburg University, Luruper<br />

Chaussee 149, D–22529 Hamburg — 2 The Svedberg Laboratory, Thunbergsvägen<br />

5A, Box 533, S–75121 Uppsala<br />

Experimental results of the dp → dpγ reaction are presented for<br />

several observables with deuteron projectile energies between 437<br />

MeV and 559 MeV. Measurements were initially performed with the<br />

PROMICE/WASA setup, located at the CELSIUS storage ring [1]. Due<br />

to the limited acceptance of the detector, only a fraction of the phase<br />

space was accessible, that revealed a dominance of a quasifree reaction<br />

mechanism. To investigate competing mechanisms, recent measurements<br />

were carried out with the CELSIUS/WASA setup, which has a nearly<br />

4π–acceptance of the solid angle. Results of both measurements will be<br />

shown and discussed.<br />

[1] J. Greiff et al. Phys. Rev. C66 (<strong>2002</strong>)<br />

Time: Thursday 14:00–15:30 Room: E<br />

Group Report HK 41.1 Thu 14:00 E<br />

Development and Series Production of the ALICE TPC<br />

Readout Chambers — •Danilo Vranic 1 , Gerd Augustinski 1 ,<br />

Peter Braun-Munzinger 1 , Heinz Daues 1 , Ulrich Frankenfeld<br />

1 , Chilo Garabatos 1 , Joerg Hehner 1 , Rudolf Schmidt 1 ,<br />

Herbert Stelzer 1 , Peter Glässel 2 , Bernd Windelband 2 ,and<br />

Rainer Renfordt 3 — 1 GSI Darmstadt — 2 Universität Heidelberg —<br />

3 Universität Frankfurt<br />

The Time Projection Chamber (TPC) is the central detector of the AL-<br />

ICE experiment at the LHC. It is designed to operate at unprecedented<br />

particle multiplicities - up to 25000 charged particles may be produced in<br />

a central PbPb collision into the TPC acceptance. This puts special and<br />

unusual requirements on the read-out chambers. The chambers have to<br />

run, e.g., at an average gain of 20000 and with expected currents exceeding<br />

10 micro-amperes. In this presentation we report on the design and<br />

testing of these read-out chambers and describe in detail their perfor-<br />

mance. This includes optimization of the wire and pad geometry as well<br />

as beam tests with a full size prototype at the SIS. We further report on<br />

the development of a detailed production plan for all 72 modules covering<br />

an area of about 36 sqm, including various quality control measures and<br />

acceptance tests. Finally, the actual status of the production is given.<br />

HK 41.2 Thu 14:30 E<br />

The ALICE Transition Radiation Detector — •Johannes P.<br />

Wessels for the ALICE-TRD collaboration — Physikalisches Institut,<br />

Universität Heidelberg<br />

In this talk an overview of the ALICE Transition Radiation Detector<br />

(TRD) is presented. The ALICE TRD consists of 540 individual detector<br />

modules with a total of 1.2 million readout channels. It allows<br />

electron identification above a momentum of 1 GeV/c and it will be capable<br />

of providing a very fast and efficient trigger for electrons with large<br />

transverse momentum pt. The detector will operate in the very high multiplicity<br />

environment of heavy-ion collisions at the Large Hadron Collider


Nuclear Physics Thursday<br />

(LHC), where rapidity densities of charged particles up to dN/dy = 8000<br />

are anticipated in collisions of Pb nuclei at √ s =5.5 ATeV.<br />

Along with a general overview of the detector, results from extensive<br />

in-beam tests with regard to transition radiation yield, pion rejection,<br />

and tracking performance will be presented. Using the experimental data<br />

the performance of the fast electron trigger has been simulated. Finally,<br />

the anticipated performance of the trigger for quarkonia measurements<br />

at central rapidity will be demonstrated.<br />

HK 41.3 Thu 14:45 E<br />

Investigation of the event anisotropy with the CERES/NA45<br />

experiment — •Jana Slivova and Jovan Milosevic for the<br />

CERES/NA45 collaboration — Physikalisches Institut der Universität<br />

Heidelberg, Philosophenweg 12, 69120 Heidelberg<br />

Using the data obtained at the CERES/NA45 experiment the elliptic<br />

event anisotropy was studied in Pb+Au collisions at 40, 80, and 158<br />

AGeV/c. This anisotropy is quantified by the second Fourier coefficient<br />

(v2). Results are obtained both for identified pions and for charged particles.<br />

We will compare values of v2 obtained using different methods<br />

- standard flow analysis with respect to the reaction plane, two-particle<br />

correlations, and preliminary results from the recently introduced method<br />

of cumulants (Phys. Rev. C 63, 054906 (2001)).<br />

HK 41.4 Thu 15:00 E<br />

Charge fluctuations in nuclear collisions: experimental results<br />

and model studies. — •Jacek Zaranek 1 , P. Dinkelaker 1 , L.<br />

Betev 1 , C. Blume 2 , R. Bramm 1 , P. Buncic 1 , M. Ga´zdzicki 1 ,<br />

T. Kollegger 1 , I. Kraus 2 , A. Mischke 2 , R. Renfordt 1 , A.<br />

Sendoval 2 , R. Stock 1 , H. Ströbele 1 , D. Vranic 2 ,andA. Wetzler<br />

1 for the NA49 collaboration — 1 University of Frankfurt, IKF —<br />

2 GSI, Darmstadt<br />

HK42 Instrumentation and Applications V<br />

Study of event-by-event fluctuations of electric charge in high energy<br />

nucleus-nucleus collisions may provide information on the state of matter<br />

in an early stage of the collision. They should be also sensitive to the<br />

number of resonances at chamical freez-out. Preliminary experimental<br />

data obtaind by NA49 on charge fluctuations in central Pb+Pb collisions<br />

at 40, 80 and 158 AGeV will be shown. The results will be discussed in<br />

the framework of serveral models in which the effects of global charge<br />

conservation, resonances decay kinematics and QGP formation are studied.<br />

HK 41.5 Thu 15:15 E<br />

Event-by-Event Fluctuations at 40, 80 and 158 AGeV/c in<br />

Pb+Au Collisions from CERES/NA45 — •Hiroyuki Sako and<br />

Harald Appelshäuser —GSI,Darmstadt<br />

Event-by-event fluctuations have been proposed as probes to search<br />

for the QCD critical point and deconfined phase.<br />

We present fluctuations of mean pT and charge multiplicity ratios at<br />

40, 80, and 158 AGeV/c in Pb+Au Collisions. We also compare them<br />

with other experimental data and with theoretical expectations.<br />

Time: Thursday 14:00–15:30 Room: F<br />

Group Report HK 42.1 Thu 14:00 F<br />

The AGOR facility — •S. Brandenburg, W. van Asselt, J.P.M.<br />

Beijers, H.R. Kremers, T. Nijboer, H. Post, and S . van<br />

der Veen — Kernfysisch Versneller Instituut, 9747 AA Groningen, the<br />

Netherlands<br />

The heart of the AGOR facility at the KVI is a superconducting cyclotron,<br />

constructed by a collaboration of the KVI and the IPN, Orsay,<br />

France. The facility is operational since 1997 for some 4500 hours per<br />

year. The cyclotron can accelerate both light and heavy ions (e.g. protons<br />

up to 190 MeV, lead down to 6 MeV/nucleon). It is equipped with<br />

ion sources for polarized hydrogen, light and heavy ions.<br />

The basic characteristics and performance of the facility will be described.<br />

The design issues related to the wide range of ions and energies<br />

will be discussed. Furthermore attention will be given to new developments,<br />

such as the acceleration of low-intensity triton beams.<br />

HK 42.2 Thu 14:30 F<br />

New Developments in Cryo Targets for the External COSY Experiments<br />

— •S. Abdel-Samad, M. Abdel-Bary, andK. Kilian<br />

for the COSY-TOF collaboration — Forschungszentrum Juelich<br />

For pp and pd interaction studies at COSY a very light cryo target<br />

has been developed. The target thickness in beam direction defines the<br />

interaction probability and thus the statistical precision. However all<br />

material which can be hit by particles from the reaction under study<br />

will produce secondary scattering and unwanted background. Therefore<br />

already the target thickness has to be kept short. Much more important<br />

is to keep the transversal size of the target very small and the heat conductors,<br />

mounting elements and thermal isolation as light as possible.<br />

The Juelich cryo targets have been optimized over some years in this<br />

aspect. A drastic reduction of the total mass of the target arrangement<br />

was achieved by using very thin walled, small diameter heat pipes, by<br />

using aluminum for condensers, by target cells of galvanically deposited<br />

copper and by 0.9 µm Mylar windows. Up to 2 meter long heat pipes<br />

are operational. For bubble free operation a temperature stability with<br />

< 0.2 K fluctuation has to be achieved. Details of the targets will be<br />

shown.<br />

HK 42.3 Thu 14:45 F<br />

A Silicon Tracking Telescope for Spectator Proton Detection<br />

— •A. Mussgiller 1 , G. Fiori 1 , T. Krings 1 , S. Merzliakov 2 ,<br />

D. Protic 1 , and R. Schleichert 1 for the ANKE collaboration —<br />

1 Institut für Kernphysik, Forschungszentrum Jülich — 2 Laboratory of<br />

Nuclear Problems, JINR, Dubna, Russia<br />

The identification and tracking of low energy protons enables the use of<br />

deuterons as an effective neutron target. For this purpose a self-triggering<br />

tracking telescope has been developed. The telescope consists of three<br />

layers of double-sided silicon strip detectors mounted inside the COSY<br />

vacuum. The setup allows the identification of protons from 1.5 MeVto<br />

40 MeV via the ∆E/E method and particle tracking over a wide range<br />

from 1.5 MeV protons to minimum ionizing particles. Results of the first<br />

measurements will be presented.<br />

HK 42.4 Thu 15:00 F<br />

Nuclear Polarization of Molecular Hydrogen — •F. Rathmann 1 ,<br />

J.T. Balewski 2 , J. Doskow 2 , W. Haeberli 3 , B. Lorentz 1 , H.O.<br />

Meyer 2 , P.V. Pancella 4 , R.E. Pollock 2 , B. v. Przewoski 2 ,<br />

P.A. Quin 3 , T. Rinckel 2 , Swapan K. Saha 5 , B. Schwartz 3 , T.G.<br />

Walker 3 , A. Wellinghausen 2 ,andT. Wise 3 — 1 IKP, FZJ, Jülich,<br />

Germany — 2 IUCF, Bloomington, USA — 3 Dep. of Physics, University<br />

of Wisconsin-Madison, USA — 4 Western Michigan University, Kalamazoo,<br />

USA — 5 Bose Institute, Calcutta, India<br />

We have measured the nuclear polarization of hydrogen molecules<br />

formed by recombination of polarized atomic hydrogen gas [1]. A polarized<br />

atomic hydrogen beam is incident upon a copper recombination<br />

zone and subsequently drifts into an internal target located in a straight<br />

section of the IUCF Cooler ring. The target contains an internal valve<br />

that allows us to rapidly alternate between a mostly atomic and a mostly<br />

molecular target. A comparison of the target polarization for these two<br />

states can be used to determine the fraction of the initial atom polarization<br />

that survives recombination and subsequent wall collisions in the<br />

target. That fraction was studied for temperatures between 50 K and<br />

300 K and for applied magnetic fields between 0.5 mT and 0.6 T. The<br />

target polarization was measured with a 200 MeV longitudinally polarized<br />

proton beam using the known [2] large pp elastic spin correlation<br />

coefficient Azz. The apparatus, measurement methods, results and inter-


Nuclear Physics Thursday<br />

pretation will be descussed.<br />

[1] T. Wise et al., Phys. Rev. Lett. 87, 042701 (2001).<br />

[2] B. Lorentz et al., Phys. Rec. C 61 54002(2000).<br />

HK 42.5 Thu 15:15 F<br />

A Lamb-shift Polarimeter for the Polarized Gas Target at<br />

ANKE/COSY — •Ralf Engels 1 , Reinhard Emmerich 1 , Jürgen<br />

Ley 1 , Hans Paetz gen. Schieck 1 , Maxim Mikirtytchiants 2,3 ,<br />

Frank Rathmann 2 , Hellmut Seyfarth 2 ,andAlexandre Vassiliev<br />

3 — 1 Institut für Kernphysik der Universität zu Köln, Zülpicher<br />

Str.77, 50937 Köln — 2 Institut für Kernphysik, FZ Jülich, Leo-Brandt-<br />

Str., 52425 Jülich — 3 High Energy Physics Dept., St. Petersburg Nucl.<br />

Phys. Inst., 188350 Gatchina, Russia<br />

With a Lamb-shift polarimeter it is possible to measure the occupation<br />

HK43 Theory VII<br />

numbers of the individual hyperfine substates in a beam of hydrogen or<br />

deuterium atoms. Therefore one can calculate the nuclear polarization of<br />

the atomic beam in magnetic fields of varying strength. The polarization<br />

of a slow (500-2000 eV) ion beam can be measured as well.<br />

The modular components of the polarimeter consisting of a Glavishtype<br />

ionizer, a Wienfilter, a Cs cell, a spinfilter, and a quenching region<br />

were designed, produced and then tested at the Universität zu Köln with<br />

an unpolarized (horizontal) ion beam. At the Forschungszentrum Jülich<br />

the tests were completed by measuring the necessary correction factors<br />

and the polarization of the vertical atomic beam of the source for the<br />

polarized gas target at ANKE/COSY with a 90˚ deflector behind the<br />

ionizer. First results obtained with a polarized hydrogen and deuterium<br />

beam are presented. Planned studies to investigate the polarization of<br />

the gas in storage cells are discussed as well.<br />

Time: Thursday 16:00–18:00 Room: A<br />

Group Report HK 43.1 Thu 16:00 A<br />

Two-pion production on the nucleon — •Sonja Schneider,<br />

Siegfried Krewald, andJosef Speth — Institut für Kernphysik,<br />

FZ Jülich<br />

We developed a meson-theoretical model for the pion-induced two-pion<br />

production on the nucleon. In a first step, our model was formulated<br />

strictly at the tree level. Accounting for ππ final state interaction, the<br />

exchange of a σ- oraρ-meson was replaced by the exchange of correlated<br />

two-pion states. With this second version we already achieved a good<br />

description of the data except for the ∆33-dominated π + p → π + π + n and<br />

π + p → π + π 0 p channels. In a third step, a simple treatment of threebody<br />

unitarity has to be implemented, accounting in particular for the<br />

unitarization of the πN P33 partial wave.<br />

Group Report HK 43.2 Thu 16:30 A<br />

The baryon spectrum in a covariant quark model with<br />

instanton-induced forces — •Ulrich Löring, Dirk Merten,<br />

Bernard Metsch, Herbert-R. Petry, andChristian Haupt —<br />

Institut für Theoretische Kernphysik, Univerität Bonn, Nußallee 14-16,<br />

53<strong>11</strong>5 Bonn<br />

On the basis of the Bethe-Salpeter equation in instantaneous approximation<br />

we formulated a relativistic quark model for baryons. Motivated<br />

by the success of the non-relativistic quark model, the full quark propagators<br />

are replaced by their free forms with constituent quark masses,<br />

and the interactions of the quarks are described by unretarded, static potentials.<br />

To generate the hyperfine structure of the baryon spectrum we<br />

adopt ’t Hooft’s force which is derived from QCD-instanton-effects. This<br />

relativistic model allows a very successful description of the complete<br />

baryon spectrum up to 3 GeV with spins up to J =15/2. In particular<br />

several prominent features such as the linear Regge-trajectories, the low<br />

position of the Roper resonance (and its strange counterparts) as well<br />

as the striking phenomenon of approximate parity doublets can be uniformly<br />

explained. In this respect the specific role of instanton-effects is<br />

discussed, and we demonstrate that the alternative one-gluon-exchange,<br />

however, is not able to reproduce the excited baryon spectrum correctly.<br />

HK 43.3 Thu 17:00 A<br />

Relativistic Mean Field Theory with Generalized Nucleon-<br />

Meson Couplings — •Stefan Typel 1 und Hermann Wolter 2 —<br />

1 NSCL/Michigan State University, USA — 2 University of Munich, Ger-<br />

many<br />

Nuclear matter and finite nuclei can be qualitatively well described in<br />

quantum hadrodynamics (QHD) with constant meson-nucleon couplings<br />

in the mean field approximation. For a quantitative description an effective<br />

medium dependence has to be introduced, e.g. by assuming nonlinear<br />

meson self-couplings or a density dependence of the nucleon-meson couplings.<br />

From Dirac-Brueckner theory of nuclear matter it is well known<br />

on the other hand that the nuclear self energies are both density and<br />

momentum dependent. The momentum dependence is essential for a<br />

description of elastic proton-nucleus scattering. We therefore introduce<br />

generalized nucleon-mesons couplings in the QHD-Lagrangian which lead<br />

to density and momentum dependent self energies. Two models are considered.<br />

In the first model we investigate couplings of the mesons fields<br />

to derivatives of the nucleon field. This leads to new source terms in the<br />

field equations of the mesons and density-dependent meson masses. In<br />

the second model the meson-nucleon couplings are assumed to be functions<br />

of derivative densities generating rearrangement contributions in the<br />

self-energies. We suggest parametrizations of the generalized couplings<br />

and study their effect on the equation of state of nuclear matter and the<br />

energy dependence of the Schrödinger equivalent optical potential.<br />

HK 43.4 Thu 17:15 A<br />

Short-ranged Central and Tensor Correlations in the Nuclear<br />

Many-Body System — •Thomas Neff, Hans Feldmeier, and<br />

Robert Roth — Gesellschaft für Schwerionenforschung, Darmstadt<br />

Realistisc nucleon-nucleon interactions have a strong repulsive core and<br />

a strong tensor force. We introduce a unitary correlation operator that<br />

takes care of the short-ranged central and tensor correlations induced by<br />

the nuclear force. This unitary correlation operator allows us to perform<br />

ab initio calculations of nuclei up to A ≈ 50 in a mean-field or<br />

shell model many-body approach. The unitary correlation operator is<br />

the product of a central correlation operator that performs radial shifts<br />

in the two-body density and a tensor correlation operator that aligns the<br />

two-body density with the total spin of two nucleons. An effective interaction<br />

can be defined by correlating the bare nuclear interaction. The<br />

unitary correlation operator method provides a method to extract the<br />

common low-energy behavior of realistic nuclear interactions.<br />

HK 43.5 Thu 17:30 A<br />

Nucleon-Nucleon potential from two body Dirac equations at<br />

medium energies — •Davaadorj Bayansan 1 , Andreas Funk 1 ,<br />

Bin Liu 2 , Horace W. Crater 2 , Heinrich V. von Geramb 1 ,and<br />

Hugo Arellano 3 — 1 Nuclear Theory , University Hamburg — 2 Space<br />

Institute, University Tennessee, Tullahoma — 3 Fisica, Universidad de<br />

Chile, Santiago<br />

We investigate the implication and use of Dirac’s instant form dynamics<br />

in applications of two-body Dirac equations. First, it yields a center<br />

of momentum reduction of the two-body Dirac equations to Schrödingerlike<br />

equations with effective energy dependent potentials. Second, a link<br />

to known and optimally fitted NN potentials (Nijmegen,AV18) as well as<br />

quantum inversion potentials is made. Third, the effective potentials are<br />

extented, above meson production threshold, as NN optical potentials.<br />

The latest NN phase shifts up to 3 GeV are fitted. Some application of<br />

the resulting NN potentials in medium energy nucleon-nucleus scattering,<br />

formulated in terms of NA full folding optical models, are also shown.<br />

HK 43.6 Thu 17:45 A<br />

Production of the f0(980) in the reaction π − p → π 0 π 0 n — •Felix<br />

Sassen, Siegfried Krewald, andJosef Speth — Forschungszentrum<br />

Jülich, IKP (Th), D-52425 Jülich<br />

Lately the E852-Collaboration at Brookhaven published data on pion<br />

production in the charge exchange reaction π − p → π 0 π 0 n. [1] The published<br />

S-wave mass spectrum taken at low momentum transfer t to the<br />

nucleon shows a sharp dip at mππ ≈ 1 GeV where as the same spectrum<br />

taken at high t exhibits a sharp peak at the same position.<br />

This behaviour sheded some doubt on the interpretation of the f0(980)<br />

as a K ¯ K molecule.[2] We show using a model with two production mechanisms<br />

(π- anda1-exchange) that the above experimental results do not<br />

oppose the K ¯ K interpretation of the f0(980). In our model the final state


Nuclear Physics Thursday<br />

interaction between the outgoing pions is generated using the Jülich meson<br />

exchange model with dispersion theoratical form factors for t-channel<br />

exchanges.<br />

HK44 Theory VIII<br />

[1] J.Gunter et al., Phys.Rev.D 64,072003(2001)<br />

[2] V.V.Anisovich et al., Phys.Lett.B 355,363 (1995)<br />

Time: Thursday 16:00–18:00 Room: C<br />

Group Report HK 44.1 Thu 16:00 C<br />

Self-consistent many-body approach and properties of neutron<br />

star matter — •Tobias Frick, Khalaf Gad, Jan Kuckei, Fernando<br />

Montani, andHerbert Müther — Institut für theoretische<br />

Physik der Universität Tübingen<br />

Within a Green’s functions approach, the neutron and the proton properties<br />

are studied in asymmetric nuclear matter, starting from realistic<br />

NN potentials. Going beyond a quasi-particle approximation, we account<br />

for the depletion of the hole states in the many-body system by<br />

introducing multiple poles in the two-particle propagator that appears in<br />

the ladder-equation for the effective interaction, each of them carrying a<br />

strength that is deduced from the nuclear single-particle spectral functions.<br />

The nuclear self-energies are calculated within different approximations,<br />

treating the backward-propagation of intermediate two-holeone-particle<br />

configurations perturbatively, but also in a non-perturbative<br />

Galitsii-Feynman approach. Due to a non-vanishing spectral distribution<br />

of the single-particle strength for momenta very close to the Fermi<br />

surface, a gap is introduced in the single-particle spectrum. In a natural<br />

way, this leads to a supression of the well-known pairing instability. The<br />

results of this Green’s function approach for the equation of state are<br />

compared to corresponding predicitions of the conventional Brueckner-<br />

Hartree-Fock approach. Furthermore we present the predicitions for the<br />

spectral function and momentum distribution. The sensitivity of theses<br />

on the NN interaction is discussed.<br />

Group Report HK 44.2 Thu 16:30 C<br />

Energy dependence of QCD cross sections: Saturation effects<br />

from HERA to RHIC and LHC — •Heribert Weigert 1 ,<br />

Kari Rummukainen 2 , Andreas Schäfer 1 ,andRainer Fries 1 —<br />

1 Universität Regensburg — 2 Nordita, Kopenhagen<br />

Gluon evolution enhances the importance of multiple interaction effects<br />

in eA and AA collisions at high energies. These mimic properties<br />

such as screening and saturation in ways otherwise only known from<br />

dense media. They are responsible for the unitarization of cross sections,<br />

the infrared safety of properly resummed perturbation theory and allow<br />

us to calculate the energy dependence of various cross sections semiperturbatively.<br />

I will try to highlight the key ingredients to the underlying<br />

physical picture and the ensuing technology (a renormalization group<br />

w.r.t. xBj) and its conceptual relevance to HERA, eRHIC, RHIC and<br />

LHC experiments.<br />

HK 44.3 Thu 17:00 C<br />

Energy loss of high pt hadrons by final hadronic state in ultrarelativistic<br />

heavy ion collisions — •Kai Gallmeister, Carsten<br />

Greiner, Gunnar Martens, andZhe Xu — Institut für Theoretische<br />

Physik, Universität Gießen, Germany<br />

When discussing the parton jet quenching phenomena in ultrarelativistic<br />

heavy ion collisions typically hadronization is assumed to take place<br />

in vacuum outside the reaction zone. On the other hand simple quantum<br />

mechanical estimates give a hadronization time τh ≈ E/GeV ∗ fm.For<br />

pt ≤ 10 GeV hadronization thus might well take place inside the fireball.<br />

Typical (in-)elastic collisions of these high pt particles with the dominant<br />

low momentum hadrons of the fireball have √ s ≤ 4 GeV and are<br />

thus soft and nonperturbative. The mean free path in the late hadronic<br />

stage is estimated to be λ ≈ 1 − 5 fm, resulting in in a few collisions<br />

L/λ =0, 1, 2,.... An analysis within this opacity expansion by means<br />

of the FRITIOF collisions scheme for various hadrons will be presented<br />

and it shows that these collisions can account for the modification of the<br />

pt-spectrum observed for central collisions at RHIC.<br />

Work supproted by BMBF.<br />

HK 44.4 Thu 17:15 C<br />

Dispersion Effects in Nucleon Polarisabilities — •Robert Hildebrandt,<br />

Harald Griesshammer, andThomas Hemmert —Institute<br />

for Theoretical Physics (T39), TU Muenchen, Germany<br />

The dynamical nucleon polarisabilities can be defined via a multipole<br />

expansion of the structure amplitudes in nucleon Compton scattering [1].<br />

In contradistinction to the static polarisabilities, dynamical polarisabilities<br />

gauge the response of the internal degrees of freedom of a nucleon<br />

to an external, real photon field of arbitrary energy but definite multipolarity.<br />

Being energy dependent, they therefore contain additional information<br />

about dispersive effects induced by internal relaxation, baryon<br />

resonances or meson production thresholds of the nucleon.<br />

We present the different diagrams contributing in leading order ChPT —<br />

i. e. on the one pion loop level — in theories with and without explicit<br />

∆(1232) degrees of freedom [2]. We further compare our results with<br />

a dispersion relation analysis. Once two counter terms are fixed at the<br />

static values, we obtain excellent predictions even well above the pion<br />

mass.<br />

Work supported in part by DFG and BMBF.<br />

1) H. Grießhammer, T. Hemmert: nucl-th/0<strong>11</strong>0006<br />

2) T. R. Hemmert, H. W. Griesshammer, R. P. Hildebrandt: in preparation<br />

HK 44.5 Thu 17:30 C<br />

Hadron formation in high energy photonuclear reactions —<br />

•Thomas Falter and Ulrich Mosel — Institut für Theoretische<br />

Physik, Universität Gießen, Germany<br />

Photo- and electroproduction on nuclei offer a great opportunity to investigate<br />

the physics of hadron formation. The results are usually interpreted<br />

using simple Glauber theory to describe the final state interactions<br />

(FSI) of the produced particles. We show that this purely absorptive<br />

treatment of the FSI might lead to wrong estimates of formation time<br />

and color transparency effects. We use a semi-classical transport model<br />

based on the BUU equation which allows for a realistic coupled channel<br />

description of the FSI that goes far beyond simple Glauber theory. The<br />

model has already been successfully used to describe heavy ion collisions,<br />

pion and proton induced reactions as well as photon and electron induced<br />

reactions in the resonance region. We present a possibility to account for<br />

coherence length effects within this model, which makes it possible to<br />

describe photo- and electroproduction at higher energies. As an example<br />

we will discuss inclusive and exclusive meson photoproduction in the<br />

energy range from 1 to 7 GeV.<br />

Work supported by DFG.<br />

HK 44.6 Thu 17:45 C<br />

PP bremsstrahlung and low energy NN interaction — •Mircea<br />

Dan Cozma 1 , Olaf Scholten 1 , John Tjon 1,2 ,andRob Timmermans<br />

1 — 1 KVI, Zernikelaan 27, 9747 AA Groningen, The Netherlands<br />

— 2 ITP, Utrecht, The Netherlands<br />

For the study of bremsstrahlung several microscopic models have been<br />

developed. Despite of the richness of included physics, these models are<br />

posed with problems; predictions differ substantially from experiment<br />

in some kinematical regions. It appears that this is mainly due to the<br />

high sensitivity of the bremsstrahlung process with respect to the NN<br />

interaction at low energies.<br />

The high accuracy KVI bremsstrahlung experiments showed that microscopical<br />

bremsstrahlung models using np potentials were observed to<br />

fail describing the data in the above mentioned way. We will consider<br />

a field theoretical model of the NN interaction in the 1 S0 channel which<br />

also takes into account the Coulomb interaction. This model is then incorporated<br />

in a field theoretical toy model for bremsstrahlung. Phase<br />

shifts of the NN toy model are in good agreement with the experimental<br />

pp phase shift in the low energy region.<br />

We end by presenting a fit of the NN potential of Fleischer and Tjon<br />

to the experimental pp phase shifts. Bremsstrahlung is then computed<br />

within the microscopic model of Martinus et al.. Although they are reduced,<br />

the discrepancies are still present.


Nuclear Physics Thursday<br />

HK45 Nuclear Physics / Spectroscopy VII<br />

Time: Thursday 16:00–18:00 Room: B<br />

Group Report HK 45.1 Thu 16:00 B<br />

β-decay studies of exotic nuclei and states close to 100 Sn : 94 Ag<br />

and 100 In — •C. Plettner for the GSI-ISOL collaboration — GSI,<br />

Darmstadt, Germany<br />

Nuclei along the N=Z line up to the doubly-magic 100 Sn have been<br />

subject to extensive experimental studies both in β decay and in-beam<br />

experiments. In various theoretical approaches the proton-neutron (πν)<br />

interaction in identical orbits has been addressed, which gives rise to<br />

a new S=1 pairing mode and, in stretched configurations, to spin-gap<br />

isomers. The interplay of mean field (single-particle energies), residual<br />

πν-interaction (empirical vs. realistic) and model space (core excitation)<br />

will be demonstrated for two key examples: • 94 Ag is the heaviest N=Z<br />

nucleus studied in detailed β-decay spectroscopy. It exhibits three β-<br />

decay parent states, namely the T=1, I π =0 + , T1/2 =29± 29<br />

10 ms ground<br />

state [1], a T=0, I π =(7 + ), T1/2 =0.36 ± 3 s isomer and a T1/2 =0.3 ± 2<br />

s, I > 15 high-spin isomer. The latter is suspect to establish records<br />

both in spin (I π =21 + ) and excitation energy Ex > 6 MeV among the<br />

known part of the Segré chart. • 100 In is the closest neighbour to 100 Sn<br />

studied both in high-resolution and total absorption spectroscopy. Spin<br />

I π =7 + and T1/2 =6.2 ± 4 s were determined for its ground state, which<br />

is at variance with various shell model predictions.<br />

[1] A. Stolz et al., Proc. PINGST 2000, Selected Topics on N=Z Nuclei,<br />

eds. D. Rudolph, M. Hellström, Lund, Sweden, LUIP003, Bloms i Lund,<br />

2000, p.<strong>11</strong>3<br />

Group Report HK 45.2 Thu 16:30 B<br />

Shape coexistence in the Pb region — •kris heyde1 , ruben<br />

fossion1 ,andjose-enrique garcia-ramos2 — 1Department of subatomic<br />

and radiation physics, University of Gent, Proeftuinstraat,86 B-<br />

9000 Gent (Belgium) — 2Departamento de Fisica Aplicada. EPSLa<br />

Rabida, Universidad de Huelvam 21819 Palos de la Frontera, Spain<br />

The Pb region has formed a most interesting testing region and in recent<br />

experiments (in-beam work, beta-decay, alpha-decay,..) using stateof-the<br />

art techniques, evidence has resulted for the coexistence of both<br />

spherical, oblate and prolate structures. The data basis at present encompasses<br />

both the region near the doubly-closed shell Z=82,N=126, the<br />

neutron-deficient region spanning all the way down to neutron mid-shell<br />

N=104 and also, presently, is bringing in results on the heaviest Pb nuclei<br />

( beyond N=126).<br />

Using both algebraic methods in which multi-particle multi-hole excitations<br />

across the Z=82 shell are treated as extra pairs, as well as using<br />

deformed mean-field calculations, a comprehensive set of results is obtained.<br />

Thereby we accentuate both the symmetry aspects that govern<br />

the interacting boson model algebraic structures as well as the shape<br />

degrees of freedom that become active in these single-closed shell nuclei.<br />

We shall higlight both the extensive data basis as well as the recent<br />

theoretical results.<br />

HK 45.3 Thu 17:00 B<br />

Spin-Orientation in a projectile-fragmentation reaction —<br />

•dana borremans1 , Gerda Neyens1 , Dimiter Balabanski1 ,<br />

Nico Coulier1 , Jean-Michel Daugas1 , Francois de Oliveira2 ,<br />

Georgi Georgiev1,2 , Marek Lewitowitz2 , Oscar Navilliat<br />

Cuncic3 , Iolanda Matea2 , Mihai Stanoiu2 , Stephanie<br />

Teughels1 , and Katrien Vyvey1 — 1Celestijnenlaan 200D,<br />

3001Heverlee,Belgium — 2GANIL, Caen,France — 3LPC, Caen, France<br />

To measure nuclear moments of short-lived nuclei, we need often an<br />

initially oriented ensemble of nuclear spins. This orientation can be the<br />

result of nuclear reactions. For the production of exotic nuclei, we use<br />

a projectile-fragmentation reaction. It has been shown that nuclei produced<br />

in such reaction are spin-oriented [1-4], but the spin orientation<br />

mechanism is not yet completely understood. At GANIL we studied the<br />

orientation in a projectile-fragmentation reaction using β-Level Mixing<br />

techniques [5]. In this talk the idea behind the measurement of spinorientation<br />

and the orientation mechanism will be explained, concluding<br />

with some results.<br />

[1] W.D.Schmidt-Ott et al., Z. Phys. A350 (1994) 215<br />

[2] K.Asahi et al., Phys Lett. B 251 (1990) 488<br />

[3] K.Asahi et al., Phys.Rev. C 43 (1991) 456<br />

[4] G.Neyens et al., Phys.Lett. B393 (1997) 36<br />

[5] G.Neyens et al., Phys. Res. A340 (1994) 555<br />

*D.B.is an assistant researcher,G.N. a post-doctoral researcher of<br />

FWO-Vlaanderen.<br />

HK 45.4 Thu 17:15 B<br />

γ-Spectroscopy of 40 Ca and 42 Ca — •S . Torilov 1 , S. Thummerer<br />

1 , W. von Oertzen 1 , B. Gebauer 1 , H.G. Bohlen 1 , Tz.<br />

Kokalova 1 , A. Tumino 1 , G. de Angelis 2 , M. Axiotis 2 , A.<br />

Gadea 2 , E. Farnea 2 , N. Marginean 2 , T. Martinez 2 , D.R.<br />

Napoli 2 , M. De Poli 2 , S.M. Lenzi 3 , C. Ur 3 , C. Beck 4 , M.<br />

Rousseau 4 , and P. Papka 4 — 1 Hahn-Meitner-Institut Berlin —<br />

2 INFN, Laboratori Nazionali di Legnaro — 3 Dipartimento di Fisica and<br />

INFN, Padova — 4 Institut de Recherches Subatomiques<br />

In the present work high-lying levels of two even isotopes of Ca were<br />

studied using particle-γ coincidence. To select the reaction channels for<br />

γ-spectroscopy the Si-ball ISIS has been used in combination with the<br />

GASP γ-detector array at LNL Legnaro.<br />

From this experiment 19 new levels and 25 new transitions for 40 Ca<br />

for excitation energies up to 21 MeV and 5 new levels and 5 new transitions<br />

for 42 Ca up to 13 MeV were found. The present data show in 40 Ca<br />

clearly sperarated rotational bands with a 4p-4h and 8p-8h structure and<br />

a mixture of different structures in the yrast line.<br />

For 42 Ca some very good candidates were found for the 12 + state of<br />

the 6p-4h band.<br />

HK 45.5 Thu 17:30 B<br />

Structure of excited K π =0 + bands in 168 Er. — •A. Linnemann<br />

1 , J. Jolie 1 , H.G. Börner 2 , M. Jentschel 2 ,andP. Mutti 2<br />

— 1 Institut für Kernphysik, Universität zu Köln — 2 Institut Laue-<br />

Langevin,38042 Grenoble, France<br />

In order to investigate the character of excited K π =0 + bands, that<br />

can be interpreted as β- orγγ-bands, the knowledge of absolute decay<br />

rates is mandatory. We have studied the second excited K π =0 + band<br />

in 168 Er using neutron capture on 167 Er and the γ-ray-induced Dopplerboardening<br />

technique (GRID) to measure the lifetimes. The experiment<br />

was performed at the double-flat-crystal spectrometer GAMS4 installed<br />

at the Laue-Langevin (ILL) in Grenoble. The lifetimes of the 2 + 4 state<br />

at 1493 keV and the 4 + 4 state at 1656 keV could be measured for the<br />

first time. The collectivity of this band can be studied using the absolute<br />

transition rates.<br />

HK 45.6 Thu 17:45 B<br />

Bremsstrahlung emission in the α decay of 210 Po — •Hans Boie,<br />

Jörg Fitting, Frank Köck, Martin Lauer, Heiko Scheit, and<br />

Dirk Schwalm —MPIfür Kernphysik, Heidelberg<br />

The emission of bremsstrahlung is usually well described by a semiclassical<br />

treatment. However, in an α decay the α particle is tunneling<br />

through the Coulomb barrier of the nucleus, a process which can only be<br />

understood quantum-mechanically. The question that arises is: How is<br />

the bremsstrahlung emission influenced by the tunneling process?<br />

A typical emission probability of bremsstrahlung in the α decay<br />

of 210 Po in the interesting Eγ region (∼400 keV) is about 10 −12<br />

keV −1 decay −1 . Recent measurements [1] show that the simple Coulomb<br />

acceleration model overestimates the data by more than an order of<br />

magnitude. Several theoretical treatments of the problem have been<br />

published (e.g. [2]). Due to poor statistics the data available so far does<br />

not allow to distinguish between these models. In addition, the results<br />

of [1] are in disagreement with a previous measurement.<br />

To clarify the situation and to provide high statistics data an experiment<br />

is presently being performed at the MPI-K Heidelberg, where the<br />

bremsstrahlung γ rays and the coincident α particles are detected by a<br />

cluster of three sixfold segmented HPGe detectors (of MINIBALL type<br />

[3]) and two silicon strip detectors, respectively. The experimental setup<br />

and preliminary results will be presented.<br />

[1]J.Kasagiet.al.,Phys.Rev.Lett.79, 371 (1997).<br />

[2] T. Papenbrock and G. F. Bertsch, Phys. Rev. Lett. 80, 4141 (1998).<br />

[3] J. Eberth et. al., Prog. Part. Nucl. Phys. 46, 389 (2001).


Nuclear Physics Thursday<br />

HK46 Electromagnetic and Hadronic Probes VI<br />

Time: Thursday 16:00–18:00 Room: D<br />

Group Report HK 46.1 Thu 16:00 D<br />

Exclusive Measurements of the Two-Pion Production<br />

in Proton-Proton Collis ions ∗ — •J. Kress, J. Pätzold, H.<br />

Clement, E. Dorochkevitch, A. Erhardt, G.J. Wagner, andU.<br />

Weidlich for the COSY-TOF collaboration and the PROMICE/WASA<br />

collaboration — Physikalisches Institut der Universität Tübingen<br />

After installation and commissioning of the central calorimeter at<br />

COSY-TOF runs at Tp = 750 MeV and 800 MeV have been carried out<br />

with polarized beam to study the reaction �pp → ppπ + π − over a large<br />

solid angle. Deuterons, protons and pions emerging from the pp collision<br />

in the LH2 target are identified by the ∆E − E method, π + particles in<br />

addition by the recently installed delayed pulse technique. The status<br />

of the data analysis of these runs is presented. Data taken previously<br />

with the PROMICE/WASA detector at CELSIUS in the energy range<br />

Tp = 650-775 MeV have now been fully analyzed. The final results are<br />

discussed. Besides of the exclusive data for the ppπ + π − channel also<br />

integral cross sections for the channels ppπ 0 π 0 and pnπ + π 0 have been<br />

obtained. The exclusive data show that the pp → ppπ + π − reaction at<br />

these energies proceeds via σ exchange and subsequent excitation of<br />

the Roper resonance. Its decay into Nππ is observed to be practically<br />

exclusively into (ππ)I=l=0 pairs, either directly by N ∗ → Nσ or via<br />

N ∗ → ∆π.<br />

∗supported by BMBF (06 TÜ 987) and DFG (European Graduate<br />

School)<br />

Group Report HK 46.2 Thu 16:30 D<br />

Measurement of hadronic cross sections with the KLOE experiment<br />

in Frascati — •Stefan E. Müller for the KLOE collaboration<br />

— Institut für Exp. Kernphysik Universität Karlsruhe, Postfach 3640,<br />

76021 Karlsruhe<br />

The KLOE experiment at the Frascati e + e − collider DAΦNE working<br />

at the φ(1.02 GeV) resonance started data taking in 1999. Although optimized<br />

to study neutral kaons, the KLOE detector is suited to cover a<br />

much wider field of physics. Especially appealing is the measurement of<br />

hadronic cross sections from 1.02 GeV down to the two pion threshold.<br />

The precise determination of these cross sections can be used to lower the<br />

uncertainty of the theoretical calculations for the hadronic contribution<br />

to the muon’s anomalous magnetic moment. Since DAΦNE is working<br />

at a fixed energy, the measurement is done by selecting events where the<br />

e + or the e − emits a hard photon. In this way the collision energy of the<br />

electron and the positron is lowered. The method of the measurement<br />

is presented in detail and first results for σ(e + e − → π + π − )areshown.<br />

In addition further recent results from the KLOE physics program are<br />

presented.<br />

HK 46.3 Thu 17:00 D<br />

ω-Production on a Neutron Target at ANKE — •I. Lehmann 1<br />

and S . Barsov 2 for the ANKE collaboration — 1 Forschungszentrum<br />

Jülich — 2 PNPI, Gatchina<br />

In August 2001 a test beam time to investigate the reaction: pd →<br />

pspdω took place at ANKE/COSY. It could be shown, that the slow<br />

spectator proton (Tkin =2.5 − 30 MeV) can be identified simultaneously<br />

with the fast deuteron (p ≈ 2 GeV/c) in the detection systems of ANKE.<br />

The former is detected in a near-target-silicon telescope and the latter is<br />

identified using the momentum resolution of the magnetic spectrometer<br />

together with energy losses in two layers of scintillators and the response<br />

from inclined Čerenkov counters.<br />

In the talk the methods to determine the ω-cross section from a missing<br />

mass spectrum with large background from multi-pion and ρ-production<br />

will be discussed and preliminary results will be presented.<br />

HK 46.4 Thu 17:15 D<br />

Pion-Proton-Scattering at Low Energies — •Holger Denz,<br />

Johannes Breitschopf, Heinz Clement, Margit Cröni,<br />

Arthur Erhardt, Rudolf Meier, Jens Pätzold, Florian von<br />

Wrochem, andGerhard J. Wagner for the CHAOScollaboration<br />

and the LEPScollaboration — Universität Tübingen, Physikalisches<br />

Institut, Auf der Morgenstelle 14, 72076 Tübingen, Germany<br />

From πp observables, important quantities of the strong interaction<br />

can be extracted: the πNN coupling constant, the πN sigma-termand<br />

the size of isospin symmetry violation. Presently, there is no agreement<br />

on the value of any of these quantities. This is partly due to the unsatisfactory<br />

status of the πp data base, in particular at low energies. New<br />

measurements of πp observables at low energies are aimed at providing<br />

additional information and resolving discrepancies. Elastic scattering<br />

cross sections have been measured with the CHAOSdetector at TRI-<br />

UMF for several pion energies down to 15 MeV. A large angular range<br />

has been covered with special emphasis on forward angle measurements<br />

in the Coulomb-nuclear interference region. Elastic scattering polarization<br />

observables have been measured, both with the CHAOSdetector<br />

and, at PSI, with the LEPS spectrometer and an active polarized target.<br />

An experiment measuring the π − p→ π ◦ n total cross section from<br />

30 to 250 MeV using a transmission technique has started taking data<br />

at PSI. Status and/or results of these experiments will be discussed.<br />

This work is supported by BMBF (06Tü987I) and DFG (Europäisches<br />

Graduiertenkolleg Basel-Tübingen).<br />

HK 46.5 Thu 17:30 D<br />

Total cross section of the π − p → π 0 n charge exchange reaction<br />

— •J. Breitschopf 1 , H. Clement 1 , M. Cröni 1 , H. Denz 1 ,<br />

E. Friedman 2 , P. Jesinger 1 , R. Meier 1 ,andG. J. Wagner 1 —<br />

1 Physikalisches Institut, Universität Tübingen — 2 Racah Institute of<br />

Physics, The Hebrew University, Jerusalem, Israel<br />

The mass difference of up- and down-quarks is the origin of isospin<br />

violation in the strong interaction. Isospin breaking can in principle be<br />

tested in a number of ways in the pion-nucleon system. Currently experimentally<br />

accessible is the comparison of elastic scattering of positively<br />

and negatively charged pions from protons with the charge exchange<br />

reaction π − p → π 0 n (SCX). Analyses of this system, based on the existing<br />

scattering data base, found unexpectedly large isospin breaking in<br />

s-waves for pion energies below 100 MeV. These analyses probably are<br />

not suffficiently restricted by the low amount of SCX data. Therefore,<br />

further measurements of SCX cross sections and analyzing powers are<br />

needed to test this result.<br />

A measurement of the SCX total cross section in the energy region from<br />

30 to 250 MeV has been started at PSI. The experiment employs a transmission<br />

technique using a 4π box detector consisting of thin plastic scintillators.<br />

A first beam time covered the high energy part from 60 to<br />

250 MeV, a second beam time in <strong>2002</strong> will take data from 30 to 90 MeV.<br />

The measuring procedure and the status of the experiment are discussed.<br />

This work is supported by BMBF (06Tü987I) and DFG (Europäisches<br />

Graduiertenkolleg Basel-Tübingen).<br />

HK 46.6 Thu 17:45 D<br />

Investigation of the a + 0 (980) Resonance at ANKE — •V. Kleber<br />

for the ANKE collaboration — Institut für Kernphysik, Forschungszentrum<br />

Jülich, 52425 Jülich<br />

In a recent ANKE beam time at COSY Jülich a first experiment on<br />

the production of scalar mesons in pp collisions was performed. The goal<br />

of this experiment is to investigate the a + 0 (980) resonance, a candidate<br />

for the scalar meson nonet, in the reaction pp → da + 0 .<br />

The a0(980) is known to decay in KK, πη and 2γ. At ANKE the<br />

deuteron and the decay K + or π + are detected. The mesons are identified<br />

by TOF and energy loss, the coincident deuterons by their TOF<br />

relative to the mesons. Subsequently the a + 0 (980) is investigated with a<br />

missing mass analysis.<br />

In case of a K + and a deuteron a clean sample of dK + K 0 events is obtained<br />

due to energy and strangeness conservation. In the missing mass<br />

distribution m(pp,d) a narrow structure is observed mainly given by the<br />

KK production threshold (mmin=991 MeV) and the COSY beam energy<br />

of T=2.65 GeV (mmax=1038 MeV).<br />

In the missing mass distribution m(pp,dπ + ) a clear peak from η mesons<br />

on a broad background is seen as well as a shoulder in the distribution<br />

m(pp,d) at the a0(980) mass which reveals a peak structure after background<br />

subtraction.


Nuclear Physics Thursday<br />

HK47 Heavy Ions VI<br />

Time: Thursday 16:00–18:00 Room: E<br />

Group Report HK 47.1 Thu 16:00 E<br />

Investigation of nuclear structure of light nuclei far from the<br />

stability line — •Haik Simon for the FRS/LAND collaboration and<br />

the ISOLDE collaboration — Institut für Kernphysik, Technische Universität<br />

Darmstadt<br />

The study of exotic nuclei – far from the valley of β-stability – has<br />

become one of the main topics in modern nuclear structure physics. Results<br />

of experimental investigations probing the single particle and cluster<br />

structure of light exotic nuclei are presented and consequences for<br />

nuclear models are drawn. Selected examples of experiments performed<br />

at GSI with relativistic secondary beams with energies between 0.2-1.5<br />

GeV/nucleon are given, where cross sections, momentum distributions,<br />

angular and energy correlations after break-up reactions have been measured.<br />

Momentum distributions of the charged fragments, especially in<br />

coincidence with γ radiation that is emitted if a substantial core polarisation<br />

is present, provide first information about the single particle<br />

structure of the reacting projectiles whereas detailed spectroscopic information<br />

for the ground state and continuum structure of projectiles and<br />

intermediate, unbound systems in the decay channels can be obtained<br />

using fragment-neutron correlation measurements in addition. Experiments<br />

performed at ISOLDE/CERN investigating the decay probabilities<br />

into states of the daughter nuclei with known structure represent a<br />

different approach to determine the structure of the decaying systems.<br />

This will be discussed for the bound systems 6,8 He, <strong>11</strong> Li, 14 Be, 8 Band<br />

19 C as well as for the unbound systems 5,7 He, 10 Li and 13 Be.<br />

Supported by BMBF (06DA915I) and GSI (DARIK).<br />

Group Report HK 47.2 Thu 16:30 E<br />

Au + Au collisions at 40 to 150 A MeV studied with INDRA —<br />

•Jerzy Lukasik for the ALADIN-INDRA collaboration — GSI Darmstadt,<br />

Planckstr. 1, D-64291 Darmstadt<br />

The emission of intermediate-mass fragments in collisions of 197Au on<br />

197Au has been systematically studied over the range of incident energies<br />

from 40 to 150 A MeV using the 4π-multidetector INDRA and beams<br />

from the heavy-ion synchrotron SIS at GSI. The analysis was performed<br />

as a function of incident energy and of impact parameter, defined through<br />

the total transverse energy of light charged particles (Z≤2).<br />

In more peripheral collisions, strong forward-backward asymmetries in<br />

the emission patterns with respect to the excited projectile and targetlike<br />

fragments are observed and interpreted in the framework of statistical<br />

multifragmentation and molecular dynamics models. The transversevelocity<br />

spectra of intermediate mass fragments produced at mid-velocity<br />

are found to show an intriguing invariance with respect to the incident<br />

energy which may be related to the role of Pauli blocking.<br />

In central collisions, the onset and rapid rise of collective radial flow has<br />

been observed. The considerable anisotropies in the flow pattern along<br />

the beam direction are interpreted within the statistical multifragmentation<br />

model which has been modified to allow for source deformation and<br />

collective motions.<br />

HK 47.3 Thu 17:00 E<br />

Low-Mass Lepton Pair Production in Pb-Au Collisions at 40<br />

AGeV — •Sanja Damjanovic for the CERES/NA45 collaboration<br />

— University Heidelberg, Germany, Philosophenweg 12, 69120<br />

Low-Mass Lepton Pair Production in Pb-Au Collisions at 40 AGeV<br />

Sanja Damjanovic for the CERES/NA45 Collaboration<br />

The CERES/NA45 experiment at the CERN SPS has previously measured<br />

e + e− pair production in 160 AGeV Pb-Au collisions. In the mass<br />

region m>0.2 GeV/c2 , an enhancement of 2.7 ± 0.4(statist.) ± 0.5(syst.)<br />

compared to the expectation from known hadronic decay sources was<br />

observed. In the 40 AGeV data taken in 1999, an enhancement is<br />

again found; a preliminary analysis gives the even larger value of<br />

4.5 ± 1.2(statist.).The results are compared to theoretical model calculations<br />

based on π + π − annihilation with a modified ρ-propagator.<br />

HK 47.4 Thu 17:15 E<br />

Pion production in Au-Au collisions at 1.5 AGeV — •Tanja<br />

Schuck for the KaoScollaboration — GSI, Planckstr 1, 64291 Darmstadt<br />

The production of pions is the dominant inelastic hadronic channel in<br />

nuclear processes and hence influences significantly the reaction dynamics<br />

of nucleus-nucleus collisions. However, a detailed and quantitative<br />

understanding of pion creation and reabsorption in those collisions - in<br />

particular in the resonance region - is still lacking.<br />

Using the Kaon Spectrometer KaoS at SIS/GSI the phasespace distributions<br />

of charged pions were measured in Au-Au collisions at a beam<br />

energy of 1.5 AGeV. This is well above the threshold for the population<br />

of hadronic resonances which contribute by their decay to the pion yield.<br />

The experimental data will be discussed and compared to results of<br />

calculations performed with the UrQMD transport code which aims to<br />

include these decays.<br />

HK 47.5 Thu 17:30 E<br />

Isospin Dynamics in Nuclear Fragmentation — •Hermann<br />

Wolter 1 , Virgil Baran 2 , Maria Colonna 3 , Massimo Di Toro 3 ,<br />

and Malgorzata Zielinska-Pfabe 4 — 1 University of Munich,<br />

Germany — 2 Nat. Inst. Phys. and Nucl. Eng., Bucharest, Romania —<br />

3 LNSCatania, Italy — 4 Smith Coll., Mass, USA<br />

The isospin dependence of the nuclear equation-of-state is still rather<br />

unknown away from saturation density; however, it is important in the<br />

structure of unstable nuclei and in astrophysical contexts. One way to<br />

test it is in heavy ion collisions at high density (nuclear flow) and at low<br />

density (in fragmentation processes). In this contribution we investigate<br />

the second approach. Fragmentation reactions are seen as signatures<br />

of chemical and mechanical instabilities and phase transitions in binary<br />

proton-neutron systems, which are influenced significantly by the isospin<br />

dependence of the eos. We investigate these phenomena in the framework<br />

of transport calculations, where we follow in particular the isospin<br />

dynamics, i.e. the evolution of the charge asymmetry of the fragments<br />

(liquid) and the light particles (gas) in relation to the initial asymmetry.<br />

Such processes have recently been studied experimentally and we make<br />

first comparisons to data.<br />

HK 47.6 Thu 17:45 E<br />

Isoscaling in Light-Ion Induced Reactions and its Statistical<br />

Interpretation — •Alexandre Botvina 1 , Oleg Lozhkin 2 , and<br />

Wolfgang Trautmann 1 — 1 GSI, Planckstrasse 1, D-64291 Darmstadt<br />

— 2 KRI, St.Petersburg, Russia<br />

Isotopic effects observed in fragmentation reactions induced by protons,<br />

deutrons and alpha-particles of incident energies between 0.66 and<br />

15.3 GeV on <strong>11</strong>2-Sn and 124-Sn targets are discussed. The exponential<br />

scaling of the yield ratios with the third component of the fragment<br />

isospin (N-Z)/2 is observed in all reactions, with the scaling parameters<br />

that depend on the incident energy. Breakup temperatures for these reactions<br />

are deduced from double ratios of isotopic yields and tested for<br />

their relation with the isoscaling parameters. The observed isoscaling<br />

can be understood as a consequence of a statistical origin of the emitted<br />

fragments in these reactions. The Statistical Multifragmentation Model<br />

analysis shows that the exponent describing the isoscaling behavior is<br />

proportional to the strength of the symmetry term of the fragment binding<br />

energy. A symmetry-term coefficient around 22.5 MeV for fragments<br />

at low density breakup stage is deduced from the experimental data, that<br />

is slightly weaker than for isolated nuclei.


Nuclear Physics Thursday<br />

HK48 Instrumentation and Applications VI<br />

Time: Thursday 16:00–18:00 Room: F<br />

Group Report HK 48.1 Thu 16:00 F<br />

Investigaions of scintillation detectors for relativistic heavy ion<br />

calorimetry — •Radomira Lozeva 1,2 , Jürgen Gerl 1 , Ivan Kojouharov<br />

1 , Samit Mandal 1 ,andJuri Kopatch 1 — 1 GSI, Darmstadt,<br />

Germany — 2 Faculty of Physics, University of Sofia, Sofia, Bulgaria<br />

To gain information on the energy resolution of scintillators for heavy<br />

ion detection at high particle energy an in-beam test was performed at<br />

the Fragment Separator, FRS at GSI. Primary 197 Au beam was transported<br />

through FRSand particle identification detectors to the scintillator<br />

set-up. CsI(Tl)+PMT, CsI(Tl)+PIN diode, NaI(Tl), BGO and<br />

Plastic scintillation detectors were selected for investigation.<br />

The results of the in-beam test analysis showed satisfactory results for<br />

the CsI(Tl)+PMT scintillator. An energy resolution of 0.46% FWHM<br />

for 197 Au ions of 306 MeV/n ion energy was achieved with appropriate<br />

analysis conditions. The obtainable resolution is sufficient for further<br />

mass determination of heavy ions by calorimetry and will therefore be<br />

chosen for the fast beam RISING [1] campaign at GSI.<br />

[1] http://www-aix.gsi.de/ ∼ wolle/EB at GSI/rising.html<br />

HK 48.2 Thu 16:30 F<br />

Performance of the Pre-Shower System in the HADES Spectrometer<br />

— •Jerzy Pietraszko for the HADEScollaboration — GSI,<br />

Darmstadt<br />

The Pre–Shower detector system of the HADES spectrometer is applied<br />

to electron identification with emphasis on fast pion rejection at<br />

forward angles. The detector is operated in the self–quenching streamer<br />

mode (SQS) to simplify on-line recognition of electromagnetic showers.<br />

Stable electronics at low noise guarantee robust pattern recognition<br />

through the experimental runs. On-line analysis results delivered by<br />

dedicated pattern recognition units show perfect agreement with results<br />

derived in the off-line analysis. The performance of the detector and<br />

readout system will be presented.<br />

HK 48.3 Thu 16:45 F<br />

HADES Drift Chambers (MDC III) — •Kalliopi Kanaki,<br />

Frank Dohrmann, Rugard Dressler, Wolfgang Enghardt,<br />

Eckart Grosse, Klaus Heidel, Jochen Hutsch, Burkhard<br />

Kämpfer, Roland Kotte, Lothar Naumann, Alexandre<br />

Sadovski, Joachim Seibert, and Manfred Sobiella for the<br />

HADEScollaboration — Forschungszentrum Rossendorf, Institut für<br />

Kern- und Hadronenphysik, Dresden, Germany<br />

The starting experiments with the High Acceptance Di-Electron<br />

Spectrometer (HADES) at GSI/Darmstadt require a momentum resolution<br />

of about 1%, i.e. the determination of particle tracks with a precision<br />

better than 100 µm. The tracking is accomplished mainly by largearea<br />

Multiwire Drift Chambers. Four of the MDC’s of the third plane<br />

(MDC III), produced in the Research Centre Rossendorf, have been already<br />

installed in the HADESspectrometer. In this talk, the technical<br />

aspects of the MDC III construction, the operational characteristics, and<br />

several tests performed are discussed. We also presented simulations<br />

of the electrical field configurations and resulting drift velocity patterns<br />

which are aimed at an optimision of the chamber performance.<br />

HK 48.4 Thu 17:00 F<br />

Measurement of π 0 -induced leptons in the HADES RICH ∗ —<br />

•T. Eberl, L. Fabbietti, J. Friese, R. Gernhäuser, J. Homolka,<br />

H.-J. Körner, M. Münch, B. Sailer, andS. Winkler — Technische<br />

Universität München, James-Franck-Strasse 1,D-85748 Garching<br />

A fast Ring Imaging Cherenkov detector (RICH) is the central device<br />

of the new dilepton spectrometer HADESat GSI, Darmstadt. It serves<br />

as a hadron blind trigger device for e + e − pairs in hadron and heavy ion<br />

induced collisions at 1-2 AGeV incident energy, in which π 0 are produced<br />

abundantly.<br />

The main sources of lepton pairs with small opening angles (1-15<br />

degrees) are π 0 -Dalitz decays (π 0 → e ± γ) and photo conversion pairs<br />

(π 0 → 2γ; γ → e ± ) from the target, the C4F10 gas radiator and the VUV<br />

transparent CaF2 window. These lepton signals contribute significantly<br />

to the combinatorial background, if they are not identified properly.<br />

We report on the analysis and classification of measured lepton-induced<br />

ring patterns on the RICH photocathode from a dedicated low magnetic<br />

field measurement in correlation with data from the HADEStracking<br />

(MDC) and time-of-flight (TOF wall) subdetectors.<br />

∗ supported by BMBF (6TM970I) and GSI (TM-FR1).<br />

HK 48.5 Thu 17:15 F<br />

Charged Particle Detection with PbWO4 — •Matthias Hoek 1 ,<br />

Werner Döring 1 , Volker Hejny 2 , Herbert Löhner 3 , Volker<br />

Metag 1 , Rainer Novotny 1 , and Heinrich Wörtche 3 — 1 II.<br />

Physikalisches Institut, Universität Giessen, Germany — 2 Institut für<br />

Kernphysik, FZ-Jülich, Germany — 3 Kernfysich Versneller Instituut,<br />

Groningen, The Netherlands<br />

TheresponseofPbWO4 to high energy charged hadrons has been investigated<br />

in two test experiments at the proton beam facilities COSY,<br />

FZ-Jülich (E=1.2 GeV) and AGOR, KVI, Groningen (E=85MeV). For<br />

the first time, the energy resolution for protons and deuterons below 360<br />

MeV energy, which were stopped within 150 mm of PbWO4, has been<br />

determined to σ/E=0.97%/ √ E + 3.33%. The result is comparable to<br />

the previously deduced photon response. Energy spectra of inelastically<br />

scattered protons below 85MeV measured with pure and doped PbWO4crystals<br />

are compared to similar distributions obtained for BaF2- and<br />

CeF3-detectors. The comparison to the response of charged pions indicates<br />

a strong quenching factor (¿3) of the scintillation light for hydrogen<br />

isotopes. The obtained results document the applicability of PbWO4 in<br />

photon and particle detection at medium energies.<br />

HK 48.6 Thu 17:30 F<br />

Large-Area Glass Resistive Plate Chambers (GRPC) as Fast<br />

Timing Detector — •Zbigniew Tyminski — Gesellschaft für Schwerionenforschung,<br />

Darmstadt, Germany<br />

In the framework of the FOPI upgrade project our collaboration is<br />

planning to build another time-of-flight detector shell capable of coping<br />

with the expected multiplicity of 80-100 charged particles (central<br />

Au+Au collisions at 1.5A GeV) at time resolutions below 100 ps. A possible<br />

solution are Glass Resistive Plate Chambers [1]. We have studied<br />

several prototypes of such detectors (400 cm 2 big) with 4 gaps of 300µm<br />

between glass plates of 0.5-2 mm thickness and intermediate strip electrodes<br />

formed of 12 or 16 parallel strips (pitch ≈ 3mm) which are read<br />

out on each side. The time is obtained by mean timing of the 2 signals,<br />

their difference delivers the position along the strip; charge averaging<br />

over neighbouring strips yields the perpendicular position. We describe<br />

details of the prototypes as well as tests in which we have obtained σ ≈ 70<br />

ps at efficiencies above 95%.<br />

[1] P.Fonte et al., NIM A449(2000)295<br />

HK 48.7 Thu 17:45 F<br />

The potential of in-beam PET for proton therapy monitoring:<br />

first experimental investigation — •Katia Parodi 1 , Wolfgang<br />

Enghardt 1 ,andThomas Haberer 2 — 1 Forschungszentrum<br />

Rossendorf e.V., Postfach 510<strong>11</strong>9, 01314 Dresden — 2 Gesellschaft für<br />

Schwerionenforschung, Planckstr. 1, 64291 Darmstadt<br />

On the basis of the positive clinical impact of in-beam PET on the<br />

quality assurance of carbon ion therapy at GSI Darmstadt [1] we started<br />

to investigate the potential extension of the technique to proton therapy.<br />

This is non-trivial, since protons cannot suffer the projectile fragmentation<br />

process which leads to a pronounced maximum of the β + activity in<br />

close vicinity to the dose maximum in the carbon ion case.<br />

In our experiment three monoenergetic proton beams in the energy<br />

and intensity range of therapeutic interest were stopped in targets of<br />

PMMA (C5H8O2) placed in the centre of the field of view of the in-beam<br />

positron camera installed at the GSI heavy ion therapy facility. The β +<br />

activity signal was found to be three times larger than that induced by<br />

carbon ions at the same range and applied physical dose. The reconstructed<br />

spatial β + activity distributions were well reproduced in shape<br />

by a calculation based on experimental cross-sections and on the proton<br />

flux given by the FLUKA Monte Carlo code. Despite the weaker<br />

spatial correlation between activity and dose depth-distributions in the<br />

proton case, our experiment supports the feasibility of in-beam PET for<br />

the monitoring of proton therapy based on a comparison between measured<br />

and calculated β + activity distributions, as already implemented<br />

for carbon ion therapy.<br />

[1] W. Enghardt et al, Nucl. Phys. A 654 1047c (1999)


Nuclear Physics Friday<br />

HK49 Plenary Session<br />

Time: Friday 08:30–10:30 Room: Plenarsaal<br />

Plenary Talk HK 49.1 Fri 08:30 Plenarsaal<br />

New Results from HERMES — •Michael Düren for the HERMES<br />

Kollaboration collaboration — II. Phys. Inst. Univ. Giessen<br />

The HERMESexperiment at DESY studies the spin and flavor structure<br />

of nucleons using the 27 GeV polarized electron beam at HERA<br />

scattered off longitudinally polarized gas targets. After 6 years of data<br />

taking HERMEShas produced a large variety of physics results. An<br />

overview of the recent results is given. This year HERMESstarts to<br />

take data on transversely polarized targets to study the transversity distributions<br />

of quarks in nucleons. In a new proposal HERMESplans to<br />

complete the spectrometer by a large angle recoil detector to allow for a<br />

precision measurment of hard exclusive processes.<br />

Plenary Talk HK 49.2 Fri 09:00 Plenarsaal<br />

New Results from the BaBar Experiment — •Stefan Spanier<br />

for the BABAR collaboration — SLAC<br />

The BaBar collaboration has observed a significant CP violation in<br />

the neutral B-meson system and is able to search for physics beyond the<br />

Standard Model. The experiment is situated at the asymmetric e + e − collider,<br />

PEP II of the Stanford Linear Accelerator Center (SLAC). More<br />

than 120 million B mesons have been collected at the Υ(4S) resonance.<br />

This allows for precision studies of lifetime-time dependent properties<br />

and for the observation of many rare decays.<br />

A review of the rich physics program of BaBar, which also includes<br />

the study of D-mesons, charmed baryons, τ-leptons, and radiative processes<br />

will be presented. Emphasis will be placed on measurements of<br />

CP violation in the B system.<br />

Plenary Talk HK 49.3 Fri 09:30 Plenarsaal<br />

Nuclear quests in astrophysics — •Karlheinz Langanke —University<br />

of Aarhus (DEnmark)<br />

Willy Fowler once jokingly refered to astrophysics as applied nuclear<br />

physics. Indeed nuclear physics plays a keyrole in many astrophysical<br />

models and observations ranging from big bang to supernovae and the astrophysical<br />

simulations cannot be better than their nuclear inputs. Very<br />

HK50 Plenary Session<br />

often this involves radioactive short-lived nuclei matching optimally recent<br />

experimental and theoretical developments in nuclear physics.<br />

The nuclear input required to model astrophysical processes should<br />

ultimatively come from experiment. In reality, however, data have to be<br />

supplemented by theoretical models which in turn must be constrained<br />

and guided by experiment. There has been significant progress in modelling<br />

nuclei, as they, for example, are important in supernovae. Much of<br />

this is due to recent advances in modern shell model techniques. The talk<br />

will highlight some of this progress, but also future needs in selected important<br />

astrophysical processes. These include core-collapse supernovae,<br />

r-process nucleosynthesis and neutron stars in binary systems.<br />

Plenary Talk HK 49.4 Fri 10:00 Plenarsaal<br />

Acceleration of radioactive ion beams at REX-ISOLDE — •O.<br />

Kester for the REX-ISOLDE collaboration — Sektion Physik der LMU<br />

München, Am Coulombwall 1, D-85748 Garching<br />

In 2001 the linear accelerator of the Radioactive beam Experiment<br />

(REX-ISOLDE) delivered for the first time accelerated radioactive ion<br />

beams with a beam energy of 2 MeV/u. REX-ISOLDE uses the method<br />

of charge state breeding, in order to enhance the charge state of the ions<br />

before injection into the LINAC. Radioactive singly charged ions delivered<br />

by the on-line mass separator ISOLDE are first accumulated in a<br />

Penning trap, then charge bred to an A/q = 4.5 in an electron beam<br />

ion source (EBIS) and finally accelerated in a LINAC from 5 keV/u to<br />

the final energy between 0.8 and 2.2 MeV/u. Measurements of the interplay<br />

between the REXTRAP, the transfer line and the EBIShave been<br />

done as well as the first commissioning of the accelerator. Therewith<br />

the properties of the different elements could be determined and a first<br />

optimization of the system could be carried out. In two test beam times<br />

in 2001 stable and radioactive Na isotopes ( 23 Na- 26 Na) have been accelerated<br />

and transmitted to a preliminary target station. There 58 Ni and<br />

Be targets have been used to populate exited states via Coulomb excitation<br />

and nuclear transfer reactions. First results of the commissioning<br />

and of the beam times will be presented. supported by the BMBF under<br />

06LM974 and 06HD802I<br />

Time: Friday <strong>11</strong>:00–12:30 Room: Plenarsaal<br />

Plenary Talk HK 50.1 Fri <strong>11</strong>:00 Plenarsaal<br />

The Advantage of Exclusiveness — •Rainer Jakob —BUGH<br />

Wuppertal, Theoretische Physik, Gauss-Str.20, 42097 Wuppertal<br />

Exclusive hard processes provide a distinguished view on the quark<br />

and gluon substructure of hadrons. The additional constraint on the final<br />

state in exclusicve processes enforces strict requirements on possible<br />

reaction mechanisms operative at non-asymptotic momentum transfers.<br />

The event of generalized parton distribution not only has emphasized<br />

the close relationship between perturbative QCD descriptions of inclusive<br />

and exclusive processes, but has greatly contributed in putting the formalism<br />

of exclusive reactions on a sound basis in the context of Quantum<br />

Field Theory. In generalizing the well-known and well-trusted concepts<br />

of forward parton distribution to the non-forward cases it became evident<br />

that only exclusive measurements can shed light on the question about<br />

the spatial location of partons inside hadrons, and related items like the<br />

orbital angular momentum of partons.<br />

On overview about the present status in the description of hard exclusive<br />

reactions will be attempted. Where are we now, and where are we<br />

heading for ?<br />

Plenary Talk HK 50.2 Fri <strong>11</strong>:30 Plenarsaal<br />

Neutron beta decay and the CKM matrix — •Oliver Zimmer<br />

—TUMünchen, Physik Department E18, 85748 Garching<br />

In the standard model of electroweak interactions, the quark mass<br />

eigenstates are linked to the weak eigenstates via the Cabibbo-Kobayashi-<br />

Maskawa (CKM) quark-mixing matrix. Traditionally, the first element<br />

of this matrix, Vud, is determined from well-selected, pure Fermi nuclear<br />

beta decays. An alternative derivation, which is free from corrections due<br />

to nuclear structure, employs neutron beta decay data. Thereby comparable<br />

accuracy has recently been attained, combining the values of the<br />

neutron lifetime and of the neutron beta-asymmetry. Results of most accurate<br />

determinations of Vud from both methods, including values of Vus<br />

and Vub from high-energy physics, are in contradiction to the unitarity<br />

of the CKM matrix. The origin of the discrepancy is still unresolved. A<br />

survey of the field is given, emphasizing recent and ongoing developments<br />

in neutron decay experimentation.<br />

Plenary Talk HK 50.3 Fri 12:00 Plenarsaal<br />

QUADRUPOLE AND MAGNETIC MOMENTS OF<br />

NEUTRON-RICH NUCLEI FROM PROJECTILE FRAG-<br />

MENTATION. — •Gerda Neyens for the University of Leuven,<br />

GANIL, University of Sofia, FLNR-JINR Dubna, University of<br />

Gottingen. collaboration — University of Leuven, Instituut voor Kernen<br />

Stralingsfysica, Celestijnenlaan 200 D, B-3001 Leuven, Belgium<br />

Recent advances in measuring the static moments of beams of radioactive<br />

nuclei will be presented. In particular the study of nuclei produced<br />

and spin-oriented in fragmentation reactions will be addressed [1-4]. By<br />

combining different types of spin-orientation (alignment, polarization)<br />

with different experimental techniques it is possible to measure the magnetic<br />

dipole moments, electric quadrupole moments as well as the spin<br />

of exotic nuclei. Some examples of recent results obtained at the GANIL<br />

facility, such as moments and spins of nuclei near 32Mg [5,6] will be<br />

discussed.<br />

[1] G. Neyens et al., Nuclear Instrum. and Methods, Sect. A 340, 555<br />

(1994).<br />

[2] G. Neyens et al., Phys. Lett. B 393, 1-2, 36 (1997).<br />

[3] N. Coulier et al., Phys. Rev. C 59, 1935 (1999).<br />

[4] G. Neyens et al., Phys. Rev. Lett. 82, 497 (1999).<br />

[5] S. Teughels et al., Ph.D. thesis K.U. Leuven, 2001<br />

[6] D. Borremans et al., submitted Phys. Lett. B.


ALADIN-INDRA Collaboration<br />

G. Auger1 , Ch.O. Bacri2 , M.L. Begemann-Blaich3 , N. Bellaize4<br />

, R. Bittiger3 , F. Bocage4 , B. Borderie2 , R. Bougault4 ,<br />

B. Bouriquet1 , Ph. Buchet5 , J.L. Charvet5 , A. Chbihi1 ,<br />

R. Dayras5 , D. Doré5 , D. Durand4 , J.D. Frankland1 , E.<br />

Galichet6 , D. Gourio3 , D. Guinet6 , S. Hudan1 , B. Hurst4 , H.<br />

Orth3 , P. Lautesse6 , F. Lavaud 2 , J.L. Laville1 , C. Leduc6 ,<br />

A. Le Fevre3 , R. Legrain5 , O. Lopez4 , J. ̷Lukasik3,7 , U. Lynen3<br />

, W.F.J. Müller3 , L. Nalpas5 , E. Plagnol2 , E. Rosato8 ,<br />

A. Saija9 , C. Sfienti3 , C. Schwarz3 , J.C. Steckmeyer4 , G.<br />

Tǎbǎcaru1 , B. Tamain4 , W. Trautmann3 , A. Trzciński10 , K.<br />

Turzó3 , M. Vigilante8 , C. Volant5 , B. Zwiegliński10 ,andA.S.<br />

Botvina3 1GANIL, CEA et IN2P3-CNRS, B.P. 5027, F-14076 Caen, France<br />

2IPN Orsay, IN2P3-CNRS, F-91406 Orsay, France<br />

3Gesellschaft für Schwerionenforschung, D-64291 Darmstadt, Germany<br />

4LPC, IN2P3-CNRS, ISMRA et Université, F-14050 Caen, France<br />

5DAPNIA/SPhN, CEA/Saclay, F-9<strong>11</strong>91 Gif sur Yvette, France<br />

6IPN Lyon, IN2P3-CNRS et Université, F-69622 Villeurbanne, France<br />

7H.Niewodniczański Institute of Nuclear Physics, Pl-31342 Kraków, Poland<br />

8Dipartimento di Scienze Fisiche e INFN, Universitá di Napoli, I-80126 Napoli,<br />

Italy<br />

9Dipartimento di Fisica dell’ Universitá e INFN I-95129 Catania, Italy<br />

10Soltan Institute for Nuclear Studies, Pl-00681 Warsaw, Poland<br />

ALICE-TRD Collaboration<br />

A. Andronic1 , V. Angelov2 , H. Appelshäuser3 , C. Blume1 ,<br />

P. Braun-Munzinger1 , D. Bucher4 , O. Busch1 , A. Castillo-<br />

Ramirez1 , V. Cătănescu5 , M. Ciobanu5 , S . Chernenko6 , V.<br />

Chepurnov6 , H. Daues1 , A. Devismes1 , O. Fateev6 , C. Finck1 ,<br />

P. Foka1 , C. Garabatos1 , R. Glasow4 , M. Gutfleisch2 , N. Herrmann3<br />

, M. Ivanov1 , F. Lesser2 , V. Lindenstruth2 , T. Lister4 ,<br />

T. Mahmoud3 , A. Marin1 , D. Miskowiec1 , Yu. Panebratsev6 ,<br />

T. Peitzmann4 , V. Petracek3 , M. Petrovici5 , C. Reichling2 , K.<br />

Reygers4 , A. Sandoval1 , R. Santo4 , R. Schicker3 , R. Schneider2<br />

, S . S edykh1 , S. Shimanski6 , R.S. Simon1 , L. Smykov6 , J.<br />

Stachel 3 , H. Stelzer1 , H. Tilsner3 , G. Tsiledakis1 , I. Rusanov3 ,<br />

B. Vulpescu3 , J. Wessels3 , B. Windelband3 , O. Winkelmann4 ,<br />

C. Xu3 , V. Yurevich6 , Yu. Zanevsky6 ,andO. Zaudtke4 1Gesellschaft für Schwerionenforschung, Darmstadt, Germany<br />

2Kirchhoff Institut für Physik, Heidelberg, Germany<br />

3Physikalisches Institut der Universität Heidelberg, Germany<br />

4Institut für Kernphysik, Universität Münster, Germany<br />

5 NIPNE Bucharest, Romania<br />

6 JINR Dubna, Russia<br />

ANKE Collaboration<br />

V. Abaev 1 , V. Abazov 2 , H.-H. Adam 3 , N. Amaglobeli 4 , R.<br />

Baldauf 5 , S . Barsov 1 , U. Bechstedt 6 , S. Belostotski 1 , G.<br />

Borchert 6 , W. Borgs 6 , M. Büscher 6 , W. Cassing 7 , V. Chernetsky<br />

8 , V. Chernyshev 8 , B. Chiladze 4 , M. Chumakov 8 , A.<br />

Churin 2 , J. Dietrich 6 , V. Dimitrov 9 , M. Drochner 5 , S . Dymov<br />

6 , R. Engels 10 , W. Erven 5 , P. Fedorets 8 , A. Gerasimov 8 ,<br />

Ye.S. Golubeva <strong>11</strong> , O. Gorchakov 2 , V. Goryachev 8 , D. Gotta 6 ,<br />

O. Grebenyuk 1 , V. Grishina <strong>11</strong> , D. Grzonka 6 , G. Hansen 12 ,<br />

M. Hartmann 6 , V. Hejny 6 , L. Jarczyk 13 , A. Kacharava 2,4 ,<br />

N. Kadagidze 2 , B. Kamys 13 , M. Karnadi 6 , A. Khoukaz 3 , St.<br />

Kistryn 13 , V. Kleber 6 , F. Klehr 12 , H. Kleines 5 , H.R. Koch 6 ,<br />

N. Koch 14 , V.I. Komarov 2 , L. Kondratyuk 8 , V. Koptev 1 , A.<br />

Kovalov 1 , P. Kravchenko 1 , P. Kravtsov 1 , V. Kruglov 2 , P. Kulessa<br />

6,15 , A. Kulikov 2,16 , A. Kurbatov 2 , N. Lang 3 , N. Langenhagen<br />

9 , I. Lehmann 6 , V. Leontiev 2,16 , Th. Lister 3 , H. Loevenich<br />

5 , B. Lorentz 6 , S . Lorenz 14 , G. Macharashvili 2,4 , Y.<br />

Maeda 6 , R. Maier 6 , T. Mersmann 3 , S. Merzliakov 2,16 , M.<br />

Mikirtychiants 6 , S. Mikirtychiants 1 , H. Müller 9 , A. Mussgiller<br />

6 , M. Nekipelov 6 , R. Nellen 6 , V. Nelyubin 1 , M. Nioradze<br />

4 , H. Ohm 6 , A. Petrus 2 , D. Prasuhn 6 , D. Protic 6 , K.<br />

Collaborations<br />

Collaborations<br />

Pysz 15 , C. Quentmeier 3 , F. Rathmann 6 , B. Rimarzig 9 , Z. Rudy 13 ,<br />

R. Santo 3 , J. Sarkadi 5 , H. Paetz gen.Schieck 10 , R. Schleichert<br />

6 , F. Schmidt 14 , Chr. Schneider 9 , H. Schneider 6 , O.W.B.<br />

Schult 6 , J. Seibert 9 , H. Seyfarth 6 , A. Sibirtsev 6 , K. Sistemich<br />

6 , J. Smyrski 13 , E. Steffens 14 , H.J. Stein 6 , H. Ströher 6 ,<br />

A. Strzalkowski 13 , S . Trusov 16 , Yu. Uzikov 2 , A. Vassiliev 1 ,<br />

A. Volkov 2 , K.-H. Watzlawik 6 , C. Wilkin 17 , P. Wüstner 5 , S.<br />

Yaschenko 2 , V. Yazkov 16 , B. Zalikhanov 2 , N. Zhuravlev 2 , K.<br />

Zwoll 5 ,andI. Zychor 18<br />

1 High Energy Physics Department, Petersburg Nuclear Physics Institute,<br />

188350 Gatchina, Russia<br />

2 Laboratory of Nuclear Problems, Joint Institute for Nuclear Research,<br />

Dubna, 141980 Dubna, Moscow Region, Russia<br />

3 Institut für Kernphysik, Universität Münster, W.-Klemm-Str. 9, D-48149<br />

Münster<br />

4 High Energy Physics Institute, Tbilisi State University, University Str.9,<br />

380086 Tbilisi, Georgia<br />

5 Zentrallabor für Elektronik, Forschungszentrum Jülich, D-52425 Jülich<br />

6 Institut für Kernphysik, Forschungszentrum Jülich, D-52425 Jülich<br />

7 Institut für Theoretische Physik, Universität Gießen, H.-Buff-Ring 16, D-<br />

35392 Gießen<br />

8Institute for Theoretical and Experimental Physics, Cheremushkinskaya 25,<br />

<strong>11</strong>7259 Moscow, Russia<br />

9Institut für Hadronen- und Kernphysik, Forschungszentrum Rossendorf, D-<br />

01474 Dresden<br />

10Institut für Kernphysik,Universität Köln, Zülpicher Str.77, D-50937 Köln<br />

<strong>11</strong>Institute for Nuclear Research, Russian Academy of Sciences, Moscow<br />

<strong>11</strong>7312, Russia<br />

12Zentralabteilung Technologie, Forschungszentrum Jülich, D-52425 Jülich<br />

13Institute of Physics, Jagellonian University, Reymonta 4, PL-30059 Cracow,<br />

Poland<br />

14 Physikalisches Institut II, Universität Erlangen-Nürnberg, Erwin-Rommel-<br />

Str.1, D-91058 Erlangen<br />

15 Institute of Nuclear Physics, Radzikowskiego 152, PL-31342, Cracow, Poland<br />

16 Dubna Branch, Moscow State University, 141980 Dubna Moscow Region,<br />

Russia<br />

17Physics Department, Univ.College London, Gower Street, London WC1<br />

6BT, England<br />

18The Andrzej Soltan Institute for Nuclear Studies, PL-05400 Swierk, Poland<br />

Antiproton Physics Study Group Collaboration<br />

T. Barnes 1 , D. Bettoni 2 , R. Calabrese 2 , W. Cassing 3 , M.<br />

Düren 3 , S. Ganzhur 4 , A. Gillitzer 5 , O. Hartmann 6 , V. Hejny 5 ,<br />

P. Kienle 7 , H. Koch 4 , W. Kühn 3 , U. Lynen 6 , R. Meier 8 , V.<br />

Metag 3 , P. Moskal 5 , H. Orth 6 , S . Paul 7 , K. Peters 4 , J.<br />

Pochodzalla 9 , J. Ritman 3 , M. Sapojnikov 10 , L. Schmitt 7 , C.<br />

Schwarz 6 , K. Seth <strong>11</strong> , N. Vlassov 10 , W. Weise 7 ,andU. Wiedner<br />

12<br />

1 University of Tennessee, Knoxville<br />

2INFN, Ferrara<br />

3Universität Gießen<br />

4Experimentalphysik I, Bochum<br />

5Institut für Kernphysik, FZ Jülich<br />

6GSI, Darmstadt<br />

7Technische Universität München<br />

8Physikalisches Institut, Tübingen<br />

9Institit für Kernphysik, Mainz<br />

10JINP, Dubna<br />

<strong>11</strong>Northwestern University, Evanston<br />

12 ISV, Uppsala<br />

A1 Collaboration<br />

K. Aniol 1 , J.R.M. Annand 2 , M. Ases Antelo 3 , P. Barneo Gonzalez<br />

4 , P. Bartsch 3 , D. Baumann 3 , J. Bermuth 5 , A.M. Bernstein<br />

6 , W. Bertozzi 6 , F. Bloch 7 , H.P. Blok 4 , W.U. Boeglin 8 , R.<br />

Böhm 3 , D. Bosnar 9 , D. Branford 10 , E. Burtin <strong>11</strong> , C. Carrasco 7 ,<br />

J.P. Chen 6 , D. Dale 12 , L. Dennis 13 , N. d’Hose <strong>11</strong> , S. Dieterich 14 ,


M. Ding3 , M.O. Distler3 , P. Dragovitsch13 , D. Elsner3 , M.B.<br />

Epstein1 , I. Ewald3 , K.G. Fissum6 , K. Föhl10 , H. Fonvielle15 , J.<br />

Friedrich3 , J.M. Friedrich3 , M. Garçon<strong>11</strong> , A. Gasparian12 , S.<br />

Gilad6 , R. Gilman14 , C. Glashausser14 , D. Glazier2 , P. Grabmayr16<br />

, P.A.M. Guichon<strong>11</strong> , M. Hauger7 , S. Hedicke3 , T. Hehl16 ,<br />

W. Heil5 , J. Heim16 , W.H.A. Hesselink4 , D.G. Ireland2 , E.<br />

Jans17 , P. Jennewein3 , X. Jiang14 , J. Jourdan7 , M. Kahrau3 ,<br />

S. Kerhoas-Cavata <strong>11</strong> , T. Klechneva7 , F. Klein3 , F. Klein18 ,<br />

D. Knödler19 , M. Kohl20 , A. Koslov21 , B. Krusche7 , K.W.<br />

Krygier3 , G. Kumbartzki14 , L. Lapikás17 , A. Liesenfeld3 , D.J.<br />

Margaziotis1 , S.Malov14 , I.J.D. MacGregor2 , J. Marroncle<strong>11</strong> ,<br />

S. McAleer13 , H. Merkel3 , K. Merle3 , P. Merle3 , R.A. Miskimen22<br />

, H. Müther19 , U. Müller3 , F.A. Natter16 , R. Neuhausen3 ,<br />

K. Normand7 , M. Ostrick18 , E.W. Otten5 , B. Pasquini23 , R.<br />

Perez Benito3 , J. Pochodzalla3 , Th. Pospischil3 , M. Potokar24<br />

, C. Rangacharyulu25 , R.D. Ransome14 , G. Riccardi13 ,<br />

A. Richter20 , R. Roche13 , D. Rohe7 , G. Rosner2 , D. Rowntree6<br />

, J. Sanner3 , A. Sarty13 , H. Schmieden3 , G. Schrieder20 ,<br />

M. Seimetz3 , I. Sick7 , S. ˇSirca24 , S. Strauch14 , A. Süle3 , G.<br />

Tamas 3 , J.A. Templon26 , M. Thompson21 , R. Van de Vyver27 , L.<br />

Van Hoorebeke27 , M. Vanderhaegen3 , H. de Vries17 , A. Wagner3<br />

, G.J. Wagner16 , Th. Walcher3 , G.A. Warren7 , M. Weis3 ,<br />

H. Wöhrle7 , J. Zhao6 ,andZ. Zhou6 1California State University, Los Angeles, USA<br />

2D.of Physics and Astronomy, U.Glasgow, Glasgow G12 8QQ, Scotland, UK<br />

3Institut für Kernphysik, Universität Mainz, D-55099 Mainz<br />

4Vrije Universiteit, Amsterdam, The Netherlands<br />

5Institut für Physik, Universität Mainz, D-55099 Mainz<br />

6Massachusetts Institute of Technology, Cambridge, USA<br />

7Institut für Physik, Universität Basel, CH-4056 Basel<br />

8Florida International University, Miami, USA<br />

9Department of Physics, Univ.of Zagreb, Croatia<br />

10Physics Department, U.Edinburgh, Scotland, UK<br />

<strong>11</strong>CEN Saclay, DAPNIA/SPhN, Gif sur Yvette, France<br />

12University of Kentucky, Lexington, USA<br />

13Florida State University, Tallahassee, USA<br />

14Physics Department, Rutgers University, Piscataway, USA<br />

15LPC, Univ.Blaise Pascal, IN2P3 Aubiere, France<br />

16Physikalisches Institut, U.Tübingen, D-72076 Tübingen<br />

17NIKHEF, Amsterdam, The Netherlands<br />

18Physikalisches Institut, Universität Bonn, D-53012 Bonn<br />

19Institut für Theoretische Physik, U.Tübingen, D-72076 Tübingen<br />

20Institut für Kernphysik, TU Darmstadt, D-64289 Darmstadt<br />

21School of Physics, U.of Melbourne, Parkville, Australia<br />

22Department of Physics, U.of Massachusetts, Amherst, USA<br />

23ECT, Villazzano, Trento, Italy<br />

24Institut ”Joˇzef Stefan”, Univ.of Ljubljana, Slovenia<br />

25University of Saskatchewan, Saskatoon, Canada<br />

26Department of Physics and Astronomy, U.of Georgia, Athens, GA, USA<br />

27 University of Gent, Belgium<br />

A2 Collaboration<br />

J. Ahrens 1 , J. Albert 1 , V. Alekseyev 2 , S. Altieri 3 , J.R.M.<br />

Annand 4 , I. Anthony 4 , G. Anton 5 , H.-J. Arends 1 , R. Beck 1 ,<br />

A. Bernstein 6 , A. Braghieri 3 , D. Branford 7 , M. Camen 8 , G.<br />

Caselotti 1 , S. Cherepnya 2 , P. Clive 4 , T. Davinson 7 , N. d’Hose 9 ,<br />

H. Dutz 10 , L. Fil’kov 2 , L. Fog 4 , K. Föhl 7 , N. Gimenez 1 , S.<br />

Gimeno 1 , P. Grabmayr <strong>11</strong> , N.P. Harrington 7 , S . Hasegawa 1 ,<br />

T. Hehl <strong>11</strong> , E. Heid 1 , J. Heim <strong>11</strong> , V. Hejny 12 , K. Helbing 5 , H.<br />

Holvoet 13 , L. van Hoorebeke 13 , D. Hornidge 1 , D.G. Ireland 4 ,<br />

O. Jahn 1 , S. Janssen 14 , P. Jennewein 1 , R. Kaiser 4 , V. Kashevarov<br />

2 , J.D. Kellie 4 , C. Klempt 1 , R. Kondratjev 15 , K.<br />

Kossert 8 , M. Kotulla 14 , D. Krambrich 1 , J. Krimmer <strong>11</strong> , B. Krusche<br />

16 , M. Lang 1 , B. Lannoy 13 , R. Leukel 1 , M. Lich 14 , V.<br />

Lisin 15 , K. Livingston 4 , I.J.D. MacGregor 4 , F. Mackay 4 , I.<br />

Martin <strong>11</strong> , J.C. McGeorge 4 , D. Menze 10 , J. Messchendorp 14 ,<br />

V. Metag 14 , W. Meyer 17 , K. Monstad 4 , F.A. Natter <strong>11</strong> , R.<br />

Novotny 14 , A. Ostrowski 7 , R.O. Owens 4 , A. Panzeri 3 , P. Pedroni<br />

3 , M. Pfeiffer 14 , T. Pinelli 3 , A. Polonski 15 , I. Preobrajenski<br />

1 , A. Reiter 4 , G. Rosner 4 , M. Rost 1 , D. Ryckbosch 13 ,<br />

S . S ack 14 , R. Sanderson 4 , S. Schadmand 14 , A. Schmidt 1 , B.<br />

Schoch 10 , M. Schumacher 8 , B. Seitz 8 , H. Ströher 12 , G. Tamas 1 ,<br />

A. Thomas 1 , D. Trnka 14 , R. van de Vyver 13 , S. Waddell 4 , G.J.<br />

Wagner <strong>11</strong> , Th. Walcher 1 , D. Watts 4 , J. Weiss 14 , B. Windisch 1 ,<br />

Collaborations<br />

F. Wissmann8 , S.Wolf8 ,andF. Zapadtka8 1Institut für Kernphysik, Universität Mainz, D-55099 Mainz<br />

2Lebedev Physical Institute, Leninsky Prospect 53, <strong>11</strong>7924 Moscow, Russia<br />

3INFNSezionediPavia,Pavia,I 4Department of Physics & Astronomy, University of Glasgow, Glasgow G12<br />

8QQ, Scotland, UK<br />

5Physikalisches Institut, Universität Erlangen–Nürnberg, D-44801 Erlangen<br />

6Massachusetts Institute of Technology, Cambridge MA, USA<br />

7Department of Physics & Astronomy, University of Edinburgh, Edinburgh,<br />

UK<br />

8II.Physikalisches Institut, Universität Göttingen, D-37073 Göttingen<br />

9CEN Saclay, DAPNIA/SPhN, Gif sur Yvette, F<br />

10Physikalisches Institut, Universität Bonn, D-53<strong>11</strong>5 Bonn<br />

<strong>11</strong>Physikalisches Institut, Universität Tübingen, D-72076 Tübingen<br />

12Forschungszentrum Jülich, D-52425 Jülich<br />

13Nuclear Physics Laboratory, Proeftuinstraat 86, B-9000 Gent<br />

14II.Physikalisches Institut, Universität Gießen, D-35392 Gießen<br />

15Institute for Nuclear Research, Academy of Science, Moscow, Russia<br />

16Department of Physics and Astronomy, University of Basel, CH4056 Basel<br />

17Institut für Experimentalphysik, Ruhr-Universität Bochum, D-44801<br />

Bochum<br />

CELSIUS/WASA Collaboration<br />

C. Bargholtz1 , D. Bogoslawsky2 , A. Bondar3 , H. Calén4 ,<br />

H. Clement5 , L. Demirörs6 , C. Ekström4 , K. Franson4 , M.<br />

Gornov7 , V. Grebenev7 , J. Greiff4 , Y. Gurov7 , L. Gustafsson8<br />

, B. Höistad8 , G. Ivanov2 , M. Jacewicz8 , E. Jiganov2 ,<br />

A. Johansson8 , T. Johansson8 , S. Keleta8 , K. Kilian9 , N.<br />

Kimura10 , I. Koch8 , S. Kullander8 , A. Kup´sć 4 , L. Kurdadze3 ,<br />

A. Kuzmin3 , A. Kuznetsov2 , P. Marciniewski4 , B. Morosov2 ,<br />

B.M.K. Nefkens<strong>11</strong> , W. Oelert9 , S . Oreshkin3 , C. Pauly6 , Y.<br />

Petukhov2 , A. Povtorejko2 , J. Pätzold5 , R.J.M.Y. Ruber4 ,<br />

V. Sandukovsky2 , W. Scobel6 , T. Sefzick9 , R. Shafigullin7 ,<br />

V. Sidorov3 , B. Shwartz3 , V. Sopov12 , J. Stepaniak13 , A.<br />

Sukhanov3 , V. Tchernychev12 , P–E. Tegnér1 , P. Thörngren<br />

Engblom8 , V. Tikhomirov2 , A. Turowiecki14 , G. Wagner5 , U.<br />

Wiedner8 , K. Wilhelmsen1 , Z. Wilhelmi14 , A. Yamamoto10 , H.<br />

Yamaoka10 , J. Zabierowski15 ,andJ. Zlomańczuk8 1Stockholm University, Sweden<br />

2Joint Institute for Nuclear Research, Dubna, 101000 Moscow, Russia<br />

3Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia<br />

4The Svedberg Laboratory, S–75121 Uppsala, Sweden<br />

5Physikalisches Institut, Tübingen University, D–72076 Tübingen, Germany<br />

6Institut für Experimentalphysik, Hamburg University, D–22761 Hamburg,<br />

Germany<br />

7Mephi, Moscow, Russia<br />

8Department of Radiation Sciences, Uppsala University, S–75121 Uppsala,<br />

Sweden<br />

9 IKP, Forschungszentrum Jülich GmbH, D–52425 Jülich, Germany<br />

10 KEK, Tsukuba, Japan<br />

<strong>11</strong> UCLA, Los Angeles, USA<br />

12 ITEP, Moscow, Russia<br />

13 Soltan Institute for Nuclear Studies, PL–00681 Warsaw, Poland<br />

14 Intitute for Experimental Physics, Warsaw University, PL–0061 Warsaw,<br />

Poland<br />

15 Soltan Institute for Nuclear Studies, PL–90137 Lód´z, Poland<br />

CHAOS Collaboration<br />

P.A. Amaudruz1 , A. Ambardar2 , R. Bilger3 , F. Bonutti4 , J.T.<br />

Brack5 , J. Breitschopf3 , P. Camerini4 , J. Clark6 , H. Clement3 ,<br />

H. Denz3 , L. Felawka1 , E. Fragiacomo4 , E. Friedman7 , E. Gibson8<br />

, J. Gräter3 , N. Grion4 , G.J. Hofman5 , P. Hong9 , M. Kermani2<br />

, E.L. Mathie9 , R. Meier3 , G. Moloney6 , D. Ottewell1 ,<br />

O. Patarakin10 , M. Pavan 1 , R.J. Peterson5 , R.A. Ristinen5 , R.<br />

Rui4 , M. Schepkin<strong>11</strong> , M.E. Sevior6 , G.R. Smith12 , R. Tacik9 , G.<br />

Tagliente2 , G.J. Wagner3 ,andF. von Wrochem3 1TRIUMF, 4004 Wesbrook Mall, Vancouver BC, Canada V6T 2A3<br />

2Dept.of Physics and Astronomy, University of British Columbia, Vancouver<br />

BC, Canada V6T 2A6<br />

3 Physikalisches Institut, Universität Tübingen, Auf der Morgenstelle 14, D-<br />

72076 Tübingen<br />

4 University and INFN Trieste, 34127 Trieste, Italy<br />

5 University of Colorado, Boulder CO 80309-0446, USA


6 School of Physics, University of Melbourne, Parkville, Victoria 3052, Aus-<br />

tralia<br />

7 Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel<br />

8 California State University, Sacramento CA 95819, USA<br />

9 University of Regina, Regina Saskatchewan, Canada S4S 0A2<br />

10 RRC Kurchatov Institute, 123182 Moscow, Russia<br />

<strong>11</strong> ITEP Moscow, <strong>11</strong>7218 Moscow, Russia<br />

12 Jefferson Laboratory, Newport News, VA 23606, USA<br />

COSY-TOF Collaboration<br />

M. Abdel-Bary1 , S. Abdel-Samad1 , R. Bilger2 , K.-Th.<br />

Brinkmann3 , H. Clement2 , E. Dorochkevitch2 , M. Drochner1 ,<br />

S. Dshemuchadse3 , H. Dutz4 , A. Erhardt2 , W. Eyrich5 ,<br />

D. Filges1 , A. Filippi6 , H. Freiesleben3 , M. Fritsch5 , A.<br />

Gillitzer1 , D. Hesselbarth1 , R. Jäkel3 , B. Jakob3 , L. Karsch3 ,<br />

K. Kilian1 , H. Koch7 , J. Kress2 , E. Kuhlmann3 , S . Marcello6<br />

, S. Marwinski1 , S.Mauro7 , R. Meier2 , W. Meyer7 , K.<br />

Möller8 , H.P. Morsch1 , H. Nann9 , L. Naumann8 , N. Paul1 ,<br />

E. Roderburg1 , P. Schönmeier3 , W. Schröder5 , M. Schulte-<br />

Wissermann3 , T. Sefzick1 , F. Stinzing5 , G.Y. Sun3 , G.J. Wagner2<br />

, M. Wagner5 , A. Wilms7 , P. Wintz1 , S . Wirth5 , P.<br />

Wüstner1 , G. Zangh2 ,andP. Zupranski10 1Forschungszentrum Jülich<br />

2Universität Tübingen<br />

3Technische Universität Dresden<br />

4Universität Bonn<br />

5Universität Erlangen-Nürnberg<br />

6 INFN Torino<br />

7 Ruhr-Universität Bochum<br />

8 Forschungszentrum Rossendorf<br />

9 IUCF Bloomington<br />

10 SINS Warschau<br />

COSY–<strong>11</strong> Collaboration<br />

H.-H. Adam1 , A. Budzanowski2 , R. Czyzykiewicz3 , I. Geck1 , D.<br />

Grzonka4 , M. Janusz3 , L. Jarczyk3 , B. Kamys3 , A. Khoukaz1 ,<br />

K. Kilian4 , C. Kolf4 , P. Kowina4,5 , N. Lang1 , T. Lister1 , P.<br />

Moskal3 , W. Oelert4 , C. Quentmeier1 , R. Santo1 , G. Schepers4<br />

, T. Sefzick4 , M. Siemaszko5 , J. Smyrski3 , S.Steltenkamp1 ,<br />

A. Strza̷lkowski3 , P. Winter4 , M. Wolke4 , P. Wüstner6 ,and<br />

W. Zipper5 1Institut für Kernphysik, Westfälische Wilhelms–Universität, 48149 Münster<br />

2Institute of Nuclear Physics, 31–342 Cracow, Poland<br />

3Institute of Physics, Jagellonian University, 30–059 Cracow, Poland<br />

4Institut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich<br />

5Institute of Physics, Silesian University, 40–007 Katowice, Poland<br />

6Zentrallabor für Elektronik, Forschungszentrum Jülich, 52425 Jülich<br />

E91016 Collaboration<br />

D. Abbott1 , A. Ahmidouch2,3,4 , P. Ambrozewicz5 , C.SArmstrong1,6<br />

, J. Arrington7,8 , R. Asaturyan9 , K. Assamagan3 , S.<br />

Avery 3 , K. Bailey7 , O.K. Baker3 , S. Beedoe2 , H. Bitao3 , W.<br />

Boeglin10,1 , H. Breuer<strong>11</strong> , D.S. Brown<strong>11</strong> , R. Carlini1 , J. Cha3 , N.<br />

Chant<strong>11</strong> , E. Christy3 , A. Cochran3 , L. Cole3 , G. Collins<strong>11</strong> , C.<br />

Cothran12 , J. Crowder13 , W.J. Cummings7 , S. Danagoulian2,1 ,<br />

F. Dohrmann7,14 , F. Duncan<strong>11</strong> , J. Dunne1 , D. Dutta15 , T. Eden3 ,<br />

M. Elaasar16 , R. Ent1 , L. Ewell<strong>11</strong> , H. Fenker1 , H.T. Fortune17 ,<br />

Y. Fujii18 , L.b Gan3 , H. Gao7 , K. Garrow1 , D.F. Geesaman7 , P.<br />

Gueye3 , K. Gustafsson<strong>11</strong> , K. Hafidi7 , J.O. Hansen7 , W. Hinton3<br />

, H.E. Jackson7 , H. Juengst19 , C. Keppel3 , A. Klein20 , D.<br />

Koltenuk17 , Y. Liang21 , J.H. Liu19 , A. Lung1 , D. Mack1 , R.<br />

Madey3,4 , P. Markowitz10,1 , C.J. Martoff5 , D. Meekins1 , J.<br />

Mitchell1 , T. Miyoshi18 , H. Mkrtchyan9 , R. Mohring<strong>11</strong> , S.K.<br />

Mtingwa2 , B. Mueller7 , T.G. O’Neill7 , G. Niculescu3,22 , I.<br />

Niculescu3,23 , D. Potterveld7 , J.W. Price23 , B.A. Raue10,1 , P.E.<br />

Reimer7 , J. Reinhold10,1,7 , J. Roche6 , P. Roos<strong>11</strong> , M. Sarsour24 ,<br />

Y. Sato18 , G. Savage 3 , R. Sawafta2 , R.E. Segel15 , A. Semenov4 ,<br />

S. Stepanyan9 , V. Tadevosian9 , S.Tajima25 , L. Tang3 , B. Terburg26<br />

, A. Uzzle3 , S. Wood1 , H. Yamaguchi18 , C. Yan-<strong>11</strong> , C.<br />

Yan-24 , L. Yuan3 , B. Zeidman7 , M. Zeier12 ,andB. Zihlmann12 1Thomas Jefferson National Accelerator Laboratory<br />

2NC A&T State University<br />

3 Hampton University<br />

4 Kent State University<br />

5 Temple University<br />

6 College of William and Mary<br />

7 Argonne National Laborator<br />

8 California Institute of Technology<br />

9 Yerevan Physics Institute<br />

10 Florida International University<br />

<strong>11</strong> University of Maryland<br />

12 University of Virginia<br />

13 Juniata College<br />

14 Forschungszentrum Rossendorf<br />

15 Northwestern University<br />

16 Southern University at New Orleans<br />

17 University of Pennsylvania<br />

18 Tohoku University<br />

19 University of Minnesota<br />

20 Old Dominion University<br />

21 American University<br />

22 The George Washington University<br />

23 Rensselaer Polytechnic Institute<br />

24 University of Houston<br />

25 Duke University<br />

26 University of Illinois<br />

FOPI Collaboration<br />

Collaborations<br />

A. Andronic1 , V. Barret2 , Z. Basrak3 , N. Bastid2 , G. Berek4 ,<br />

A. Bendarag2 , R. Čaplar3 , P. Crochet2 , A. Devismes1 , P.<br />

Dupieux2 , M. Dˇzelalija3 , C. Finck1 , Z. Fodor4 , A. Gobbi1 , Y.<br />

Grishkin5 , O. Hartmann1 , N. Herrmann6 , K.D. Hildenbrand1 ,<br />

B. Hong7 , D. Kang7 , J. Kecskemeti4 , Y.J. Kim7 , M. Kirejczyk8 ,<br />

M. Korolija3 , R. Kotte9 , P. Koczon1 , T. Kress1 , R. Kutsche1 ,<br />

A. Lebedev5 , Y. Leifels1 , V. Manko10 , M. Merschmeyer6 , D.<br />

Moisa<strong>11</strong> , W. Neubert9 , D. Pelte6 , M. Petrovici<strong>11</strong> , F. Rami12 ,<br />

W. Reisdorf1 , B. de Schauenburg12 , D. Schüll1 , Z. Seres4 ,<br />

B. Sikora8 , K. Sim7 , V. Simion<strong>11</strong> , K. Siwek-Wilczyńska8 , M.<br />

Smolarkiewicz8 , J. Soliwoda-Poddany8 , V. Smolyankin5 , M.R.<br />

Stockmeier6 , G. Stoicea<strong>11</strong> , Z. Tyminski1 , P. Wagner12 , K.<br />

Wisńiewski6 , D. Wohlfarth 9 , J. Yang7 , I. Yushmanov10 ,andA.<br />

Zhilin5 1GSI Darmstadt<br />

2LPC Clermont-Ferrand<br />

3RBI Zagreb<br />

4KFKI Budapest<br />

5ITEP Moscow<br />

6Universität Heidelberg<br />

7Korea University Seoul<br />

8University of Warsaw<br />

9FZ Rossendorf/Dresden<br />

10KI Moscow<br />

<strong>11</strong>NIPNE Bucharest<br />

12IReS Strasbourg<br />

FRS/LAND Collaboration<br />

D. Aleksandrov1 , T. Aumann2 , L. Axelsson3 , U. Bergmann4,5 ,<br />

T. Baumann2,6 , K. Boretzky7 , M.J.G. Borge8 , L.V. Chulkov2,1 ,<br />

R. Collatz2 , D. Cortina-Gil2 , J. Cub2 , U. Datta Pramanik2 , W.<br />

Dostal7 , B. Eberlein7 , Th.W. Elze9 , H. Emling2 , L.M. Fraile5,8 ,<br />

H. Geissel2 , V.Z. Goldberg1 , M. Golovkov1 , A. Grünschloss9 ,<br />

M. Hellström2 , J. Holeczek10 , R. Holzmann2 , M. Ivanov<strong>11</strong> , N.<br />

Iwasa12 , R. Janik<strong>11</strong> , K. Jones2 , B. Jonson3 , A.A. Korsheninnikov12<br />

, J.V. Kratz7 , G. Kraus2 , R. Kulessa13 , Y. Leifels2 ,<br />

H. Lenske14 , A. Leistenschneider9 , T. Leth4 , E. Lubkiewicz13 ,<br />

M. Meister15,3 , I. Mukha15,2,1 , G. Münzenberg2 , F. Nickel2 , T.<br />

Nilsson5,3 , G. Nyman3 , A. Ozawa 12 , R. Palit9 , B. Petersen4 , A.<br />

Richter15 , C. Scheidenberger2 , G. Schrieder15 , W. Schwab2 , H.<br />

Simon15 , B. Sitar<strong>11</strong> , M.H. Smedberg3 , M. Steiner6 , J. Stroth9 ,<br />

K. Sümmerrer2 , A. Surowiec10 , T. Suzuki12 , O. Tengblad8 , E.<br />

Wajda 13 , W. Walus13 , M. Winkler2 ,andM. Zhukov3 1Kurchatov Institute, R-123182 Moscow<br />

2Gesellschaft für Schwerionenforschung (GSI), D–64291 Darmstadt, Germany<br />

3Fysiska Institutionen, Chalmers Tekniska Högskola och Göteborgs Univer-<br />

sitet, S–412 96 Göteborg, Sweden


4 Institut for Fysik og Astronomi, Aarhus Universitet, DK–8000 Aarhus C,<br />

Denmark<br />

5EP Division, CERN, CH–12<strong>11</strong> Genève 23, Switzerland<br />

6Michigan State University, East Lansing, MI 48824-132, USA<br />

7Institut für Kernchemie, Johannes Gutenberg-Universität, D–55099 Mainz,<br />

Germany<br />

8Insto.Estructura de la Materia, CSIC, E–28006 Madrid, Spain<br />

9Institut für Kernphysik, Johann-Wolfgang-Goethe-Universität, D–60486<br />

Frankfurt, Germany<br />

10Institute of Physics, University of Silesia, PL–40-007 Katowice, Poland<br />

<strong>11</strong>Faculty of Mathematics and Physics, Comenius University, SK–84215<br />

Bratislava, Slovakia<br />

12RIKEN, 2-1 Hirosawa, Wako, Saitama 351-01, Japan<br />

13Instytut Fizyki, Uniwersytet Jagelloński, PL–30-059 Kraków, Poland<br />

14Institut für Theoretische Physik I, D–35392 Giessen, Germany<br />

15Institut für Kernphysik, Technische Universiät Darmstadt, D–64289 Darm-<br />

stadt, Germany<br />

GSI-ISOL Collaboration<br />

J. Äystö1 , M. Axiotis2 , L. Batist3 , V. Belleguic4 , B. Blank5 ,<br />

A. Blazhev4 , R. Borcea4 , G. Canchel5 , D. Cano-Ott6,7 , E.<br />

Caurier8 , M. Chartier9 , G. de Angelis2 , P. Dendooven1 ,<br />

J. Döring4 , E. Farnea6 , A. Fassbender4 , Y. Fujita10 , A.<br />

Gadea2,6 , S. Galanoupoulos<strong>11</strong> , M. Gierlik12 , M. Górska4,13 , H.<br />

Grawe4 , S. Harissopulos10 , N. Harrington14 , M. Hellström4,15 ,<br />

Z. Janas4,<strong>11</strong> , A. Jokinen1 , A. Jungclaus16 , M. Kapica4 , M.<br />

Karny12 , R. Kirchner4 , J. Kurcewicz4,12 , M. La Commara4,17 ,<br />

G.A. Lallazissis18,19 , S . Lenzi20 , H. Mahmud14 , G. Martínez-<br />

Pinedo21 , P. Mayet4 , C. Mazzocchi4,22 , P. Monro14 , F. Moroz3 ,<br />

I. Mukha4 , E. Nácher González4,6 , D.R. Napoli2 , A. Nieminen1 ,<br />

A. Ostrowski14 , J.R. Pavan 23 , H. Penttilä1 , C. Plettner4,24 ,<br />

A. P̷lochocki12 , G. Rainowski24 , M. Rejmund4 , P. Ring19 , E.<br />

Roeckl 4 , B. Rubio6 , G. Savard 25 , M. Sawicka4 , C. Schlegel4 , M.<br />

Shibata4 , K. Schmidt4,14 , R. Schwengner24 , J.L. Tain6 , S.L. Tabor23<br />

, C.A. Ur20 , S.L. Wiedekind23 , V. Wittman3 , P.J. Woods14 ,<br />

and J. ˙ Zylicz12 1Dept.of Physics, University of Jyväskylä, FIN-40351 Jyväskylä, Finland<br />

2Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy<br />

3St.Petersburg Nuclear Physics Institute, RU-188-350 Gatchina, Russia<br />

4Gesellschaft für Schwerionenforschung, D-64291 Darmstadt, Germany<br />

5Centre d’Etudes Nucléaires de Bordeaux, F-33175 Gradignan, France<br />

6Instituto de Física Corpuscular, E-46100 Burjassot (Valencia), Spain<br />

7CIEMAT, Facet Group, Dept.of Nuclear Fission, E-28040 Madrid, Spain<br />

8Institut de Recherches Subatomique, F-67037 Strasbourg, France<br />

9Dept.of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom<br />

10Dept.of Physics, Osaka University, Osaka 560-0043, Japan<br />

<strong>11</strong>Institute of Nuclear Physics, NSCR Demokritos, GR-15130 Aghia Paraskevi,<br />

Greece<br />

12Institute of Experimental Physics, University of Warsaw, PL-00681 Warsaw,<br />

Poland<br />

13Instituut voor Kern- en Stralingsfysica, University of Leuven, B-3001 Leuven,<br />

Belgium<br />

14Dept.of Physics and Astronomy, University of Edinburgh, Edinburgh EH9<br />

3JZ, United Kingdom<br />

15 Dept.of Physics, Lund University, S-22362.Sweden<br />

16 II.Physikalisches Institut, Universität Göttingen, D-37073 Göttingen, Ger-<br />

many<br />

17Dipartimento di Scienze Fisiche, Universitá di Napoli “Federico Secundo”,<br />

I-80126 Napoli, Italy<br />

18Physics Dept., Aristotele University of Thessaloniki, GR-54006 Thessaloniki,<br />

Greece<br />

19 Physics Dept., Technical University München, D-85748 Garching, Germany<br />

20 Dipartimento di Fisica dell’Universita di Padova and INFN, I-35100 Padova,<br />

Italy<br />

21 Dept.of Physics and Astronomy, University of Basel, CH-4056 Basel,<br />

Switzerland<br />

22 Universitá degli Studi di Milano, I-20133 Milano, Italy<br />

23 Dept.of Physics, Florida State University, Talahassee, FL 32306, USA<br />

24 Institut für Kern- und Hadronenphysik, Forschungszentrum Rossendorf, D-<br />

01314 Dresden, Germany<br />

25 Physics Div., Argonne National Laboatory, Argonne, IL 60439-4843, USA<br />

HADES Collaboration<br />

Collaborations<br />

G. Agakichiev1 , C. Agodi2 , H. Alvarez-Pol3 , E. Badura1 , A.<br />

Balanda4 , R. Bassini5 , G. Bellia2 , D. Bertini1 , J. Bielcik1 , M.<br />

Boehmer6 , C. Boiano5 , H. Bokemeyer1 , J.L. Boyard7 , S.Brambilla5<br />

, P. Braun-Munzinger1 , S.Chernenko8 , R. Coniglione2 ,<br />

L. Cosentino2 , M. Dahlinger1 , H. Daues1 , R. Dressler9 , I. Duran3<br />

, Th. Eberl6 , L. Fabbietti6 , O. Fateev8 , C. Fernandez3 , P.<br />

Finocchiaro2 , J. Friese6 , I. Froehlich10 , B. Fuentes3 , J. Garzon3<br />

, R. Gernhaeuser6 , M. Golubeva<strong>11</strong> , E. Grosse9 , F. Guber<strong>11</strong> ,<br />

J. Hehner1 , Th. Hennino7 , S. Hlavac 12 , J. Hoffmann1 , R. Holzmann1<br />

, J. Homolka6 , A. Ierusalimov8 , I. Iori5 , R. Ispyrian13 , M.<br />

Jaskula4 , J.C. Jourdain7 , M. Kajetanovic4 , B. Kaempfer9 , K.<br />

Kanaki9 , T. Karavicheva<strong>11</strong> , A. Kastenmueller6 , L. Kidon4 , P.<br />

Kienle6 , I. Koenig1 , W. Koenig1 , B.W. Kolb1 , H.-J. Koerner6 ,<br />

R. Kotte9 , A. Kugler14 , W. Kuehn10 , R. Kulessa4 , A. Kurepin<strong>11</strong><br />

, J. Lehnert10 , E. Lins10 , R. Lorenzo3 , D. Magestro1 , P.<br />

Maier-Komor6 , C. Maiolino2 , J. Markert15 , V. Metag10 , M.<br />

Muench6 , C. Muentz15 , L. Naumann9 , W. Niebur1 , W. Ott1 ,<br />

J. Otwinowski4 , Y. Pachmayer15 , V. Pechenov8 , M. Petri10 ,<br />

P. Piattelli2 , J. Pietraszko4 , R. Pleskac14 , M. Ploskon4 , W.<br />

Prokopowicz4 , W. Przygoda4 , B. Ramstein7 , A. Reshetin<strong>11</strong> ,<br />

J. Ritman10 , K. Rosenkranz15 , P. Rosier7 , M. Roy-Stephan7 ,<br />

J. Sabin Fernandez3 , B. Sailer6 , P. Salabura4 , C. Salz10 ,<br />

M. Sanchez3 , P. Sapienza2 , C. Schroeder1 , J. Seibert9 , K.<br />

Shileev<strong>11</strong> , R.S. Simon1 , L. Smykov8 , S.Spataro2 , H. Stelzer1 ,<br />

H. Stroebele15 , J. Stroth15 , A. Taranenko14 , V. Tiflov<strong>11</strong> , A.<br />

Titov8 , P. Tlusty14 , A. Toia10 , M. Traxler10 , H. Tsertos13 , I.<br />

Turzo12 , V. Vassiliev2 , A. Vazquez3 , V. Wagner14 , W. Walus4 ,<br />

Y. Wang15 , S. Winkler6 , J. Wuestenfeld15 , Yu. Zanevsky8 , D.<br />

Zovinec1 ,andP. Zumbruch1 1Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt, Germany<br />

2Istituto Nazionale di Fisica Nucleare - LNS, Catania, Italy<br />

3Depart.de Fisica de Particulas, Univ.of Santiago de Compostela, Spain<br />

4Smoluchowski Inst.of Physics, Jagiellonian University of Cracow, Poland<br />

5Istituto Nazionale di Fisica Nucleare, Milano, Italy<br />

6Physik Department E12, Techn.Univ.Muenchen, Garching, Germany<br />

7Institut de Physique Nucleaire d’Orsay, Orsay, France<br />

8Joint Institute of Nuclear Research, Dubna, Russia<br />

9Inst.fuer Kern- und Hadronenphysik, FZ Rossendorf, Dresden, Germany<br />

10II.Physikalisches Institut, Justus Liebig Universitaet Gießen, Germany<br />

<strong>11</strong>Institute for Nucl.Research, Russ.Academy of Science, Moscow, Russia<br />

12Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia<br />

13Department of Natural Sciences, University of Cyprus, Nicosia, Cyprus<br />

14Nuclear Physics Inst., Czech Academy of Sciences, Rez, Czech Republic<br />

15Inst.fuer Kernphysik, Joh.Wolfgang Goethe Univ., Frankfurt, Germany<br />

KaoS Collaboration<br />

I.M. Böttcher1 , A. Förster2 , E. Grosse3,4 , P. Koczoń5 ,<br />

B. Kohlmeyer1 , S. Lang2 , M. Menzel1 , L. Naumann3 , H.<br />

Oeschler2 , M. P̷loskon5 , F. Pühlhofer1 , W. Scheinast3 , A.<br />

Schmah2 , T. Schuck6 , E. Schwab5,6 , P. Senger5 , Y. Shin6 , H.<br />

Ströbele6 , C. Sturm5,2 , F. Uhlig2 , A. Wagner3 ,andW. Walu´s 7<br />

1Phillips-Universität, D-35037 Marburg<br />

2Technische Universität, D-64289 Darmstadt<br />

3Forschungszentrum Rossendorf, D-01474 Dresden<br />

4Technische Universität, D-01062 Dresden<br />

5Gesellschaft für Schwerionenforschung, D-64291 Darmstadt<br />

6Johann Wolfgang Goethe-Universität, D-60054 Frankfurt<br />

7Jagellonian University, PL-30-059 Kraków<br />

KASCADE Collaboration<br />

T. Antoni 1 , W.D. Apel 2 , F. Badea 1 , K. Bekk 2 , A. Bercuci 2 , H.<br />

Blümer 2,1 , H. Bozdog 3 , I.M. Brancus 3 , C. Büttner 2 , A. Chilingarian<br />

4 , K. Daumiller 1 , P. Doll 2 , J. Engler 2 , F. Feßler 1 ,<br />

H.J. Gils 2 , R. Glasstetter 1 , R. Haeusler 1 , W. Hafemann 2 ,<br />

A. Haungs 2 , D. Heck 2 , J.R. Hörandel 1 , T. Holst 2 , A. Iwan 1 ,<br />

K.H. Kampert 1,2 , H.O. Klages 2 , J. Knapp 1 , G. Maier 2 , H.J.<br />

Mathes 2 , H.J. Mayer 2 , J. Milke 1 , M. Müller 2 , R. Obenland 2 ,<br />

J. Oehlschläger 2 , S.Ostapchenko 1 , M. Petcu 3 , H. Rebel 2 , M.<br />

Risse 2 , M. Roth 2 , H. Schieler 2 , J. Scholz 2 , T. Thouw 2 , H. Ulrich<br />

1 , B. Vulpescu 3 , J.H. Weber 1 , J. Wentz 2 , J. Wochele 2 , J.<br />

Zabierowski 5 ,andS.Zagromski 2


1Institut für Experimentelle Kernphysik, University of Karlsruhe, 76021 Karlsruhe,<br />

Germany<br />

2Institut für Kernphysik, Forschungszentrum Karlsruhe, 76021 Karlsruhe,<br />

Germany<br />

3National Institute of Physics and Nuclear Engineering, 7690 Bucharest, Ro-<br />

mania<br />

4 Cosmic Ray Division, Yerevan Physics Institute, Yerevan 36, Armenia<br />

5 Soltan Institute for Nuclear Studies, 90950 Lodz, Poland<br />

KATRIN Collaboration<br />

A. Osipowicz1 , H. Blümer2,3 , G. Drexlin2 , K. Eitel2 , G.<br />

Meisel2 , P. Plischke2 , F. Schwamm2 , M. Steidl2 , A. Beglarian4 ,<br />

H. Gemmeke4 , S.Wüstling4 , C. Day5 , R. Gehring5 , R. Heller5 ,<br />

K.-P. Jüngst5 , P. Komarek5 , W. Lehmann5 , A. Mack5 , W. Maurer5<br />

, H. Neumann5 , M. Noe5 , T. Schneider5 , B. Bornschein6 ,<br />

L. Dörr6 , M. Glugla6 , R. Lässer6 , T. Kepcija3 , J. Wolf3 , J.<br />

Bonn7 , L. Bornschein7 , B. Flatt7 , F. Glück7 , C. Kraus7 , B.<br />

Müller7 , E. Otten7 , J.-P. Schall7 , T. Thümmler7 , C. Weinheimer8<br />

, V. Aseev9 , A. Belesev9 , A. Berlev9 , E. Geraskin9 , A.<br />

Golubev9 , O. Kazachenko9 , V. Lobashev9 , N. Titov9 , V. Usanov9<br />

, S. Zadoroghny9 , O. Dragoun10 , J. Kaspar10 , A. Kovalik10<br />

, M. Rysavy 10 , A. Spalek10 , D. Venos10 , P. Doe<strong>11</strong> , S . Elliott<strong>11</strong><br />

, R. Robertson<strong>11</strong> ,andJ. Wilkerson<strong>11</strong> 1FH Fulda, Marquardtstr.35, 36039 Fulda, Germany<br />

2Forschungszentrum Karlsruhe, Institut für Kernphysik, Postfach 3640, 76021<br />

Karlsruhe, Germany<br />

3 Universität Karlsruhe, Institut für experimentelle Kernphysik, Gaedestr.1,<br />

76128 Karlsruhe, Germany<br />

4 Forschungszentrum Karlsruhe, Institut für Prozessdatenverarbeitung und<br />

Elektronik, Postfach 3640, 76021 Karlsruhe, Germany<br />

5 Forschungszentrum Karlsruhe, Institut für Technische Physik, Postfach 3640,<br />

76021 Karlsruhe, Germany<br />

6 Forschungszentrum Karlsruhe, Tritiumlabor Karlsruhe , Postfach 3640, 76021<br />

Karlsruhe, Germany<br />

7 Universität Mainz, Institut für Physik, 55099 Mainz, Germany<br />

8 Universität Bonn, Institut für Strahlen- und Kernphysik, Nussallee 14-16,<br />

53<strong>11</strong>5 Bonn, Germany<br />

9Academy of Sciences of Russia, Institute for Nuclear Research, Moscow, Russia<br />

10Academy of Sciences of the Czech Republic, Nuclear Physics Institute,<br />

Prague, Czech Republic<br />

<strong>11</strong>University of Washington, Department of Physics, Seattle WA 98195, USA<br />

LAND/S188/S233 Collaboration<br />

P. Adrich 4 , T. Aumann 1 , K. Boretzky 2 , D. Cortina 1 , M. Csatlos<br />

8 , U. Datta Pramanik 1 , Th.W. Elze 3 , H. Emling 1 , H. Geissel<br />

1 , A. Grünschloß 3 , J. Gulyus 8 , M. Hellström 1 , S. Ilievski 1 ,<br />

N. Iwasa 1 , K. Jones 1 , A. Krasznahorkay 8 , J.V. Kratz 2 , R. Kulessa<br />

4 , T. Lange 3 , K. Le Hong 1 , Y. Leifels 1 , A. Leistenschneider<br />

3 , E. Lubkiewicz 4 , G. Münzenberg 1 , R. Palit 3 , P. Reiter 5 ,<br />

C. Scheidenberger 1 , H. Scheit 6 , H. Simon 7 , K. Sümmerer 1 , E.<br />

Wajda 4 , W. Walus 4 ,andH. Weick 1<br />

1Gesellschaft für Schwerionenforschung (GSI), Planckstr.1,D-64291 Darmstadt,<br />

Germany<br />

2Institut für Kernchemie, Johannes Gutenberg Universität, D-55099 Mainz,<br />

Germany<br />

3Institut für Kernphysik, Johann Wolfgang Goethe Universität,D-60486<br />

Frankfurt, Germany<br />

4 Instytut Fizyki, Uniwersytet Jagelloński, PL-30-059 Kraków, Poland<br />

5 Sektion Physik, Ludwig Maximilian Universität, D-85748 Garching, Germany<br />

6 Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69<strong>11</strong>7 Heidelberg,<br />

Germany<br />

7Institut für Kernphysik, Technische Universität,D-64289 Darmstadt, Germany<br />

8Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001<br />

Debrecen, Hungary<br />

LAND Collaboration<br />

T. Aumann 1 , K. Boretzky 2 , D. Cortina 1 , U. Datta Pramanik 1 ,<br />

Th.W. Elze 3 , H. Emling 1 , H. Geissel 1 , A. Grünschloß 3 , M.<br />

Hellström 1 , S. Ilievski 1 , N. Iwasa 1 , K. Jones 1 , J.V. Kratz 2 , R.<br />

Kulessa 4 , Y. Leifels 1 , A. Leistenschneider 3 , E. Lubkiewicz 4 ,<br />

G. Münzenberg 1 , R. Palit 3 , P. Reiter 5 , C. Scheidenberger 1 ,<br />

H. Simon 6 , K. Sümmerer 1 , E. Wajda 4 ,andW. Walus 4<br />

Collaborations<br />

1Gesellschaft für Schwerionenforschung (GSI), Planckstr.1,D-64291 Darmstadt,<br />

Germany<br />

2Institut für Kernchemie, Johannes Gutenberg Universität, D-55099 Mainz,<br />

Germany<br />

3Institut für Kernphysik, Johann Wolfgang Goethe Universität,D-60486<br />

Frankfurt, Germany<br />

4 Instytut Fizyki, Uniwersytet Jagelloński, PL-30-059 Kraków, Poland<br />

5 Sektion Physik, Ludwig Maximilian Universität, D-85748 Garching, Germany<br />

6 Institut für Kernphysik, Technische Universität,D-64289 Darmstadt, Ger-<br />

many<br />

LEPS Collaboration<br />

R. Bilger 1 , B. van den Brandt 2 , J. Breitschopf 1 , H. Clement 1 ,<br />

J. Comfort 3 , M. Cröni 1 , H. Denz 1 , A. Erhardt 1 , K. Föhl 4 ,<br />

E. Friedman 5 , P. Hautle 2 , G.J. Hofman 6 , J.A. Konter 2 , S.<br />

Mango 2 , R. Meier 1 , J. Pätzold 1 , M. Pavan 7 , G.J. Wagner 1 ,and<br />

F. von Wrochem 1<br />

1 Physikalisches Institut der Universität Tübingen, Auf der Morgenstelle 14,<br />

72076 Tübingen, Germany<br />

2 Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland<br />

3 Arizona State University, Tempe, AZ 85287, USA<br />

4 Department of Physics and Astronomy, Univ.of Edinburgh, UK<br />

5 Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel<br />

6 Nuclear Physics Laboratory, University of Colorado, Boulder, CO 80309, USA<br />

7 TRIUMF, 4004 Wesbrook Mall, Vancouver BC, Canada, V6T 2A3<br />

MINIBALL Collaboration<br />

J. Eberth1 , J. Fitting2 , S. Franchoo3 , W. Gast4 , J. Gerl5 , D.<br />

Habs6 , M. Huyse3 , K. Krouglov3 , M. Lauer2 , K.P. Lieb7 , R.M.<br />

Lieder4 , A. Ostrowski8 , U. Pal2 , G. Pascovici1 , P. Reiter6 , H.<br />

Scheit2 , D. Schwalm2 , P. Thirolf6 , H.G. Thomas1 , P. Van Duppen3<br />

, J. VanRoosbroeck3 , N. Warr1 ,andD. Weisshaar1 1Institut für Kernphysik, Universität Köln<br />

2Max-Planck-Institut für Kernphysik, Heidelberg<br />

3Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven<br />

4Institut für Kernphysik, Foschungszentrum Jülich<br />

5Gesellschaft für Schwerionenforschung (GSI), Darmstadt<br />

6Ludwig-Maximilians-Universität München<br />

7II.Physikalisches Institut, Universität Göttingen<br />

8Institut für Kernchemie, Universität Mainz<br />

NA49 Collaboration<br />

S.V. Afanasiev9 , T. Anticic21 , D. Barna3 , J. Bartke7 , R.A.<br />

Barton3 , L. Betev10 , H. Bia̷lkowska19 , A. Billmeier10 , C.<br />

Blume8 , C.O. Blyth3 , B. Boimska19 , M. Botje1 , J. Bracinik4 ,<br />

R. Bramm10 , R. Brun<strong>11</strong> , P. Bunčić10,<strong>11</strong> , V. Cerny4 , O. Chvala17 ,<br />

J.G. Cramer18 , P. Csató5 , P. Dinkelaker10 , V. Eckardt16 ,<br />

P. Filip16 , H.G. Fischer<strong>11</strong> , Z. Fodor5 , P. Foka8 , P. Freund16 ,<br />

V. Friese15 , J. Gál5 , M. Ga´zdzicki10 , G. Georgopoulos2 , E.<br />

G̷ladysz7 , S . Hegyi5 , C. Höhne15 , G. Igo14 , P.G. Jones3 , K.<br />

Kadija<strong>11</strong>,21 , A. Karev16 , V.I. Kolesnikov9 , T. Kollegger10 ,<br />

M. Kowalski7 , I. Kraus8 , M. Kreps4 , M. van Leeuwen1 , P.<br />

Lévai5 , A.I. Malakhov9 , S . Margetis13 , C. Markert8 , B.W.<br />

Mayes12 , G.L. Melkumov9 , A. Mischke8 , J. Molnár5 , J.M. Nelson3<br />

, G. Pálla5 , A.D. Panagiotou2 , K. Perl20 , A. Petridis2 ,<br />

M. Pikna4 , L. Pinsky12 , F. Pühlhofer15 , J.G. Reid18 , R. Renfordt10<br />

, W. Retyk20 , C. Roland6 , G. Roland6 , A. Rybicki7 ,<br />

T. Sammer16 , A. Sandoval8 , H. Sann8 , N. Schmitz16 , P. Seyboth16<br />

, F. Siklér5 , B. Sitar4 , E. Skrzypczak20 , G.T.A. Squier3 ,<br />

R. Stock10 , H. Ströbele10 , T. Susa21 , I. Szentpétery5 , J. Sziklai5<br />

, T.A. Trainor18 , D. Varga 5 , M. Vassiliou2 , G.I. Veres5 ,<br />

G. Vesztergombi5 , D. Vranić8 , S. Wenig<strong>11</strong> , A. Wetzler10 , C.<br />

Whitten14 , I.K. Yoo15 , J. Zaranek10 ,andJ. Zimányi5 1NIKHEF, Amsterdam, Netherlands<br />

2Department of Physics, University of Athens, Athens, Greece<br />

3Birmingham University, Birmingham, England<br />

4Comenius University, Bratislava, Slovakia<br />

5KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary<br />

6MIT, Cambridge, USA<br />

7Institute of Nuclear Physics, Cracow, Poland


8Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany<br />

9Joint Institute for Nuclear Research, Dubna, Russia<br />

10Fachbereich Physik der Universität, Frankfurt, Germany<br />

<strong>11</strong>CERN, Geneva, Switzerland<br />

12University of Houston, Houston, TX, USA<br />

13Kent State University, Kent, OH, USA<br />

14University of California at Los Angeles, Los Angeles, USA<br />

15Fachbereich Physik der Universität, Marburg, Germany<br />

16Max-Planck-Institut für Physik, Munich, Germany<br />

17Institute of Particle and Nuclear Physics, Charles University, Prague, Czech<br />

Republic<br />

18Nuclear Physics Laboratory, University of Washington, Seattle, WA, USA<br />

19Institute for Nuclear Studies, Warsaw, Poland<br />

20Institute for Experimental Physics, University of Warsaw, Warsaw, Poland<br />

21Rudjer Boskovic Institute, Zagreb, Croatia<br />

PHENIX Collaboration<br />

K. Adcox 40 , S.S. Adler 3 , N. N. Ajitanand 27 , Y. Akiba 14 , J.<br />

Alexander 27 , L. Aphecetche 34 , Y. Arai 14 , S.H. Aronson 3 ,<br />

R. Averbeck 28 , T. C. Awes 29 , K. N. Barish 5 , P. D. Barnes 19 ,<br />

J. Barrette 21 , B. Bassalleck 25 , S . Bathe 22 , V. Baublis 30 ,<br />

A. Bazilevsky 12,32 , S. Belikov 12,13 , F. G. Bellaiche 29 , S.T.<br />

Belyaev 16 , M. J. Bennett 19 , Y. Berdnikov 35 , S . Botelho 33 ,<br />

M. L. Brooks 19 , D. S. Brown 26 , N. Bruner 25 , D. Bucher 22 ,<br />

H. Buesching 22 , V. Bumazhnov 12 , G. Bunce 3,32 , J. Burward-<br />

Hoy 28 , S . Butsyk 28,30 , T. A. Carey 19 , P. Chand 2 , J. Chang 5 ,<br />

W. C. Chang 1 , L. L. Chavez 25 , S. Chernichenko 12 , C. Y. Chi 8 , J.<br />

Chiba 14 , M. Chiu 8 , R. K. Choudhury 2 , T. Christ 28 , T. Chujo 3,39 ,<br />

M. S. Chung 15,19 , P. Chung 27 , V. Cianciolo 29 , B. A. Cole 8 , D. G.<br />

D’Enterria 34 , G. David 3 , H. Delagrange 34 , A. Denisov 12 , A.<br />

Deshpande 32 , E. J. Desmond 3 , O. Dietzsch 33 , B. V. Dinesh 2 ,<br />

A. Drees 28 , A. Durum 12 , D. Dutta 2 , K. Ebisu 24 , Y. V. Efremenko<br />

29 , K. El Chenawi 40 , H. En’yo 17,31 , S.Esumi 39 , L. Ewell 3 ,<br />

T. Ferdousi 5 , D. E. Fields 25 , S. L. Fokin 16 , Z. Fraenkel 42 , A.<br />

Franz 3 , A. D. Frawley 9 , S. -Y. Fung 5 , S. Garpman 20 , T. K.<br />

Ghosh 40 , A. Glenn 36 , A. L. Godoi 33 , Y. Goto 32 , S. V. Greene 40 ,<br />

M. Grosse Perdekamp 32 , S.K. Gupta 2 , W. Guryn 3 , H. -˚A.<br />

Gustafsson 20 , J. S. Haggerty 3 , H. Hamagaki 7 , A. G. Hansen 19 ,<br />

H. Hara 24 , E. P. Hartouni 18 , R. Hayano 38 , N. Hayashi 31 , X. He 10 ,<br />

T. K. Hemmick 28 , J. M. Heuser 28 , M. Hibino 41 , J. C. Hill 13 , D. S.<br />

Ho 43 , K. Homma <strong>11</strong> , B. Hong 15 , A. Hoover 26 , T. Ichihara 31,32 ,<br />

K. Imai 17,31 , M. S. Ippolitov 16 , M. Ishihara 31,32 , B. V. Jacak 28,32 ,<br />

W. Y. Jang 15 , J. Jia 28 , B. M. Johnson 3 , S. C. Johnson 18,28 , K. S.<br />

Joo 23 , S. Kametani 41 , J. H. Kang 43 , M. Kann 30 , S. S. Kapoor 2 , S.<br />

Kelly 8 , B. Khachaturov 42 , A. Khanzadeev 30 , J. Kikuchi 41 , D. J.<br />

Kim 43 , H. J. Kim 43 , S.Y. Kim 43 , Y. G. Kim 43 , W. W. Kinnison 19 , E.<br />

Kistenev 3 , A. Kiyomichi 39 , C. Klein-Boesing 22 , S. Klinksiek 25 ,<br />

L. Kochenda 30 , V. Kochetkov 12 , D. Koehler 25 , T. Kohama <strong>11</strong> , D.<br />

Kotchetkov 5 , A. Kozlov 42 , P. J. Kroon 3 , K. Kurita 31,32 , M. J.<br />

Kweon 15 , Y. Kwon 43 , G. S. Kyle 26 , R. Lacey 27 , J. G. Lajoie 13 , J.<br />

Lauret 27 , A. Lebedev 13,16 , D. M. Lee 19 , M. J. Leitch 19 , X. H. Li 5 ,<br />

Z. Li 6,31 , D. J. Lim 43 , M. X. Liu 19 , X. Liu 6 , Z. Liu 6 , C. F. Maguire 40 ,<br />

J. Mahon 3 , Y. I. Makdisi 3 , V. I. Manko 16 , Y. Mao 6,31 , S.K.<br />

Mark 21 , S . Markacs 8 , G. Martinez 34 , M. D. Marx 28 , A. Masaike<br />

17 , F. Matathias 28 , T. Matsumoto 7,41 , P. L. McGaughey 19 ,<br />

E. Melnikov 12 , M. Merschmeyer 22 , F. Messer 28 , M. Messer 3 , Y.<br />

Miake 39 , T. E. Miller 40 , A. Milov 42 , S. Mioduszewski 3,36 , R. E.<br />

Mischke 19 , G. C. Mishra 10 , J. T. Mitchell 3 , A. K. Mohanty 2 ,<br />

D. P. Morrison 3 , J. M. Moss 19 , F. Mühlbacher 28 , M. Muniruzzaman<br />

5 , J. Murata 31 , S.Nagamiya 14 , Y. Nagasaka 24 , J. L. Nagle<br />

8 , Y. Nakada 17 , B. K. Nandi 5 , J. Newby 36 , L. Nikkinen 21 ,<br />

P. Nilsson 20 , S . Nishimura 7 , A. S. Nyanin 16 , J. Nystrand 20 ,<br />

E. O’Brien 3 , C. A. Ogilvie 13 , H. Ohnishi 3,<strong>11</strong> , I. D. Ojha 4,40 , M.<br />

Ono 39 , V. Onuchin 12 , A. Oskarsson 20 , L. Österman20 , I. Otterlund<br />

20 , K. Oyama 7,38 , L. Paffrath 3 , A. P. T. Palounek 19 , V. S.<br />

Pantuev 28 , V. Papavassiliou 26 , S.F. Pate 26 , T. Peitzmann 22 ,<br />

A. N. Petridis 13 , C. Pinkenburg 3,27 , R. P. Pisani 3 , P. Pitukhin 12 ,<br />

F. Plasil 29 , M. Pollack 28,36 , K. Pope 36 , M. L. Purschke 3 , I.<br />

Ravinovich 42 , K. F. Read 29,36 , K. Reygers 22 , V. Riabov 30,35 , Y.<br />

Riabov 30 , M. Rosati 13 , A. A. Rose 40 , S.S. Ryu 43 , N. Saito 31,32 ,<br />

A. Sakaguchi <strong>11</strong> , T. Sakaguchi 7,41 , H. Sako 39 , T. Sakuma 31,37 , V.<br />

Samsonov 30 , T. C. Sangster 18 , R. Santo 22 , H. D. Sato 17,31 , S.<br />

Sato 39 , S.Sawada 14 , B. R. Schlei 19 , Y. Schutz 34 , V. Semenov 12 ,<br />

Collaborations<br />

R. Seto5 , T. K. Shea3 , I. Shein12 , T. -A. Shibata31,37 , K. Shigaki14 ,<br />

T. Shiina19 , Y. H. Shin43 , I. G. Sibiriak16 , D. Silvermyr20 , K. S.<br />

Sim15 , J. Simon-Gillo19 , C. P. Singh4 , V. Singh4 , M. Sivertz3 ,<br />

A. Soldatov 12 , R. A. Soltz18 , S.Sorensen29,36 , P. W. Stankus29 ,<br />

N. Starinsky21 , P. Steinberg8 , E. Stenlund20 , A. Ster44 , S.P.<br />

Stoll3 , M. Sugioka31,37 , T. Sugitate<strong>11</strong> , J. P. Sullivan19 , Y.<br />

Sumi<strong>11</strong> , Z. Sun6 , M. Suzuki39 , E. M. Takagui33 , A. Taketani31 , M.<br />

Tamai 41 , K. H. Tanaka14 , Y. Tanaka24 , E. Taniguchi31,37 , M. J.<br />

Tannenbaum3 , J. Thomas28 , J. H. Thomas18 , T. L. Thomas25 , W.<br />

Tian6,36 , J. Tojo17,31 , H. Torii17,31 , R. S. Towell19 , I. Tserruya42 ,<br />

H. Tsuruoka39 , A. A. Tsvetkov16 , S.K. Tuli4 , H. Tydesjö20 ,<br />

N. Tyurin12 , T. Ushiroda24 , H. W. van Hecke19 , C. Velissaris26<br />

, J. Velkovska28 , M. Velkovsky28 , A. A. Vinogradov16 ,<br />

M. A. Volkov16 , A. Vorobyov30 , E. Vznuzdaev30 , H. Wang5 ,<br />

Y. Watanabe31,32 , S.N. White3 , C. Witzig3 , F. K. Wohn13 , C. L.<br />

Woody3 , W. Xie5,42 , K. Yagi39 , S. Yokkaichi31 , G. R. Young29 ,<br />

I. E. Yushmanov16 , W. A. Zajc8 , Z. Zhang28 ,andS.Zhou6 1Institute of Physics, Academia Sinica, Taipei <strong>11</strong>529, Taiwan<br />

2Bhabha Atomic Research Centre, Bombay 400 085, India<br />

3Brookhaven National Laboratory, Upton, NY <strong>11</strong>973-5000, USA<br />

4Department of Physics, Banaras Hindu University, Varanasi 221005, India<br />

5University of California - Riverside, Riverside, CA 92521, USA<br />

6China Institute of Atomic Energy (CIAE), Beijing, People’s Republic of<br />

China<br />

7Center for Nuclear Study, Graduate School of Science, University of Tokyo,<br />

7-3-1 Hongo, Bunkyo, Tokyo <strong>11</strong>3-0033, Japan<br />

8Columbia University, New York, NY 10027 and Nevis Laboratories, Irvington,<br />

NY 10533, USA<br />

9Florida State University, Tallahassee, FL 32306, USA<br />

10Georgia State University, Atlanta, GA 30303, USA<br />

<strong>11</strong>Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan<br />

12Institute for High Energy Physics (IHEP), Protvino, Russia<br />

13Iowa State University, Ames, IA 500<strong>11</strong>, USA<br />

14KEK, High Energy Accelerator Research Organization, Tsukuba-shi,<br />

Ibaraki-ken 305-0801, Japan<br />

15Korea University, Seoul, 136-701, Korea<br />

16Russian Research Center ”Kurchatov Institute”, Moscow, Russia<br />

17Kyoto University, Kyoto 606, Japan<br />

18Lawrence Livermore National Laboratory, Livermore, CA 94550, USA<br />

19Los Alamos National Laboratory, Los Alamos, NM 87545, USA<br />

20Department of Physics, Lund University, Box <strong>11</strong>8, SE-221 00 Lund, Sweden<br />

21McGill University, Montreal, Quebec H3A 2T8, Canada<br />

22Institut für Kernphysik, University of Münster, D-48149 Münster, Germany<br />

23Myongji University, Yongin, Kyonggido 449-728, Korea<br />

24Nagasaki Institute of Applied Science, Nagasaki-shi, Nagasaki 851-0193,<br />

Japan<br />

25University of New Mexico, Albuquerque, NM 87131, USA<br />

26New Mexico State University, Las Cruces, NM 88003, USA<br />

27Chemistry Department, State University of New York - Stony Brook, Stony<br />

Brook, NY <strong>11</strong>794, USA<br />

28 Department of Physics and Astronomy, State University of New York - Stony<br />

Brook, Stony Brook, NY <strong>11</strong>794, USA<br />

29 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA<br />

30 PNPI, Petersburg Nuclear Physics Institute, Gatchina, Russia<br />

31 RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama<br />

351-0198, JAPAN<br />

32RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY<br />

<strong>11</strong>973-5000, USA<br />

33Universidade de São Paulo, Instituto de Física, Caixa Postal 66318, São<br />

Paulo CEP05315-970, Brazil<br />

34SUBATECH (Ecole des Mines de Nantes, IN2P3/CNRS, Universite de<br />

Nantes) BP 20722 - 44307, Nantes-cedex 3, France<br />

35St.Petersburg State Technical University, St.Petersburg, Russia<br />

36University of Tennessee, Knoxville, TN 37996, USA<br />

37Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551,<br />

Japan<br />

38University of Tokyo, Tokyo, Japan<br />

39Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan<br />

40Vanderbilt University, Nashville, TN 37235, USA<br />

41Waseda University, Advanced Research Institute for Science and Engineering,<br />

17 Kikui-cho, Shinjuku-ku, Tokyo 162-0044, Japan<br />

42Weizmann Institute, Rehovot 76100, Israel<br />

43Yonsei University, IPAP, Seoul 120-749, Korea<br />

44KFKI Research Institute for Particle and Nuclear Physics (RMKI), Bu-<br />

dapest, Hungary


PROMICE/WASA Collaboration<br />

R. Bilger1 , M. Blom2 , D. Bogoslawsky3 , A. Bondar4 , W.<br />

Brodowski1 , H. Cálen2 , B. Chernyshev5 , I. Chuvilo6 , H.<br />

Clement1 , S. Dahlgren2 , A. David2 , E. Dorochkevitch1 , V.<br />

Dunin3 , J. Dyring2 , C. Ekstr”om7 , K. Fransson2 , C.-J. Friden7 ,<br />

M. Gornov5 , V. Grebenv5 , J. Greiff8 , M. Gurov5 , L. Gustafsson2<br />

, S. H”aggstr”om2 , H. Hirabayashi 9 , B. H”oistad2 , H.<br />

Ikegami10 , A. Jansson2 , J. Johanson2 , A. Johansson2 , T. Johansson2<br />

, K. Kilian<strong>11</strong> , G. Kolachev4 , M. Komgorov3 , L.<br />

Komgorova 3 , L. Kondratyuk6 , S. Kullander2 , A. Kup´sć 12 ,<br />

A. Kuzmin4 , A. Kuznetsov3 , P. Marciniewski12 , A. Martemyanov6<br />

, R. Meier1 , Y. Mizuno10 , B. Morosov3 , A. M”ortsell2 ,<br />

A. Nawrot12 , W. Oelert<strong>11</strong> , J. P”atzold1 , Z. Pawlowski12 ,<br />

A. Povtorejko3 , T. Purlatz4 , D. Reistad7 , R. Ruber2 , S.<br />

Sandukovsky3 , M. Schepkin6 , W. Scobel8 , T. Sefzick<strong>11</strong> , R.<br />

Shafigulin5 , B. Shwartz4 , V. Sidorov4 , T. Skorodko1 , V.<br />

Sopov6 , J. Stepaniak12 , A. Suchanov4 , A. Sukhanov3 , V. Tchernyshev6<br />

, V. Tikhomirov3 , A. Turowiecki13 , G.J. Wagner1 , Z.<br />

Wilhelmi13 , A. Yamamoto9 , H. Yamaoka9 , Y. Yuasa10 , J. Zabierowski14<br />

, A. Zernov3 ,andJ. Zlomanczuk2 1Physikalisches Institut, Auf der Morgenstelle 14, D-72076 T”ubingen<br />

2Department of Radiation Sciences, Univ.Uppsala, Uppsala, Sweden<br />

3Joint Institute for Nuclear Research, Dubna, Russia<br />

4Institute of Nuclear Physics, Novosibirsk, Russia<br />

5Moscow Engineering Physics Institute, Moscow, Russia<br />

6Institute for Theoretical and Experimental Physics, Moscow, Russia<br />

7The Svedberg Laboratory, Univ.Uppsala, Uppsala, Sweden<br />

8I.Institut f”ur Experimentalphysik der Univ.Hamburg<br />

9National Laboratory for High Energy Physics, Tsukuba, Japan<br />

10Research Centre for Nuclear Physics, Osaka, Japan<br />

<strong>11</strong>Institut f”ur Kernphysik, Forschungszentrum J”ulich, D-52405 J”ulich<br />

12Institute of Nuclear Studies, Warsaw, Poland<br />

13Institute of Experimental Physics, Warschau, Poland<br />

14Institute of Nuclear Studies, Lodz, Poland<br />

REX-ISOLDE Collaboration<br />

D. Habs1 , O. Kester1 , T. Sieber1 , S . Emhofer1 , M. Schumann1<br />

, P. Reiter1 , P. Thirolf1 , H. Bongers1 , K. Rudolph1 , F.<br />

Ames1 , K. Reisinger1 , J. Äystö2 , T. Nilsson2 , J. Cerderkall2 ,<br />

O. Forstner2 , F. Wenander2 , L. Weismann2 , H. Fynbo2 , U.<br />

Bergmann2 , G. Huber3 , B. Wolf3 , S. Franchoo3 , R. von<br />

Hahn4 , R. Repnow4 , D. Schwalm4 , H. Scheit4 , J. Fitting4 ,<br />

U. Pal4 , L. Liljeby5 , B. Jonsson6 , G. Nyman6 , K. Markenroth6<br />

, A. Schempp7 , U. Ratzinger7 , P. van Duppen8 , M. Huyse8 ,<br />

P. van den Bergh8 , G. Walter9 , A. Huck9 , A. Shotter10 ,<br />

A. Ostrowski10 , T. Davinson10 , P.J. Woods10 , A. Richter<strong>11</strong> ,<br />

G. Shrieder<strong>11</strong> , M. Pantea<strong>11</strong> , H. Simon<strong>11</strong> , O. Tengblad12 , J.<br />

Eberth13 , N. Warr13 , D. Weisshaar13 ,andJ. Zylicz14 1LMU München, Am Coulombwall 1, D-85748 Garching<br />

2CERN, CH-12<strong>11</strong> Geneva 23, Switzerland<br />

3Johannes-Gutenberg-Universität, D-55099 Mainz<br />

4MPI für Kernphysik, Postfach 103980, D-69029 Heidelberg<br />

5MSL, Frescativägen 24, S-10405 Stockholm, Sweden<br />

6Chalmers University of Technology, Gothenburg, Sweden<br />

7Universität Frankfurt, Robert-Mayer-Str.2-4, D-60325 Frankfurt<br />

8K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium<br />

9Universite Louis Pasteur, 23 R.du Loess, F-67037 Strasbourg, France<br />

10University of Edinburgh, GB-Edinburgh EH9 3JZ, Scotland<br />

<strong>11</strong>TU Darmstadt, Schlossgartenstr.9, D-64289 Darmstadt<br />

12CSIC, C/Serrano 121, E-28006 Madrid, Spain<br />

13Institut für Kernphysik, Universität Köln<br />

14ZSJ, Warsaw University, PL-02-093 Warsaw<br />

Rhone-Neckar-Flow Collaboration<br />

Kai Schwenzer 1 , Jochen Meyer 1 , Hans-Juergen Pirner 1 ,and<br />

Aldo Deandrea 2<br />

1Institut fuer Theoretische Physik, Universitaet Heidelberg, Philosophenweg<br />

19, 69120 Heidelberg<br />

2Institut de Physique Nucleaire, Batiment Paul Dirac, universite Claude<br />

Bernard Lyon I, 43, bd du <strong>11</strong> Novembre 1918, 69622 Villeurbanne Cedex,<br />

France<br />

S174 Collaboration<br />

Collaborations<br />

F. Aksouh1 , A. Bleile1 , O.V. Bochkarev2 , L.V. Chulkov2 , D.<br />

Cortina-Gil3 , A.V. Dobrovolsky4 , P. Egelhof1 , H. Geissel1 ,<br />

M. Hellström1 , N.B. Isaev4 , O.A. Kisselev1,4 , B.G. Komkov4 ,<br />

M. Mátos1 , F.V. Moroz4 , G. Münzenberg1 , M. Mutterer5 , V.A<br />

Mylnikov4 , S.F. Neumaier1 , V.N. Pribora2 , D.M. Seliverstov4 ,<br />

L.O. Sergueev4 , A. Shrivastava 1 , K. Sümmerer1 , H. Weick1 , M.<br />

Winkler1 ,andV.I. Yatsoura4 1Gesellschaft für Schwerionenforschung (GSI), D-64291 Darmstadt, Germany<br />

2Russian Research Centre “Kurchatov Institute”, R-123182 Moscow, Russia<br />

3Depto.de Fisica de Particulas, Universidade de Santiago de Compostela,<br />

E-15706 Santiago de Compostela, Spain<br />

4Petersburg Nuclear Physics Institute, 188350 St.Petersburg, Russia<br />

5Institut für Kernphysik, Technische Universität, D-64289 Darmstadt, Ger-<br />

many<br />

WA98 Collaboration<br />

M.M. Aggarwal 4 , A.L.S. Angelis7 , V. Antonenko13 , V. Arefiev6<br />

, V. Astakhov6 , V. Avdeitchikov6 , T.C. Awes16 , P.V.K.S.<br />

Baba10 , S.K. Badyal10 , S.Bathe14 , B. Batiounia6 , T. Bernier15 ,<br />

K.B. Bhalla9 , V.S. Bhatia4 , C. Blume14 , D. Bucher14 , H.<br />

Büsching14 , L. Carlén12 , S. Chattopadhyay 2 , M.P. Decowski3 ,<br />

H. Delagrange15 , P. Donni7 , M.R. Dutta Majumdar2 , K. El<br />

Chenawi12 , A.K. Dubey1 , K. Enosawa 18 , S. Fokin13 , V. Frolov6 ,<br />

M.S. Ganti2 , S. Garpman12 , O. Gavrishchuk6 , F.J.M. Geurts19 ,<br />

T.K. Ghosh8 , R. Glasow14 , B. Guskov6 , H.˚A. Gustafsson12 , H.<br />

H.Gutbrod5 , I. Hrivnacova 17 , M. Ippolitov13 , H. Kalechofsky7<br />

, K. Karadjev13 , K. Karpio20 , B.W. Kolb5 , I. Kosarev6 ,<br />

I. Koutcheryaev13 , A. Kugler17 , P. Kulinich3 , M. Kurata18 ,<br />

A. Lebedev13 , H. Löhner8 , L. Luquin15 , D.P. Mahapatra1 , V.<br />

Manko13 , M. Martin7 , G. Martínez15 , A. Maximov6 , Y. Miake18 ,<br />

G.C. Mishra1 , B. Mohanty1 , M.-J. Mora15 , D. Morrison<strong>11</strong> , T.<br />

Mukhanova13 , D.S. Mukhopadhyay 2 , H. Naef7 , B.K. Nandi1 ,<br />

S.K. Nayak10 , T.K. Nayak2 , A. Nianine13 , V. Nikitine6 , S.Nikolaev6<br />

, P. Nilsson12 , S . Nishimura18 , P. Nomokonov6 , J. Nystrand12<br />

, A. Oskarsson12 , I. Otterlund12 , T. Peitzmann14 , D.<br />

Peressounko13 , V. Petracek17 , S.C. Phatak1 , W. Pinganaud15 ,<br />

F. Plasil16 , M.L. Purschke5 , J. Rak17 , R. Raniwala9 , S. Raniwala<br />

9 , N.K. Rao10 , F. Retiere15 , K. Reygers14 , G. Roland3 ,<br />

L. Rosselet7 , I. Roufanov6 , C. Roy15 , J.M. Rubio7 , S.S. Sambyal10<br />

, R. Santo14 , S.Sato18 , H. Schlagheck14 , H.-R. Schmidt5 ,<br />

Y. Schutz15 , G. Shabratova 6 , T.H. Shah10 , I. Sibiriak13 , T.<br />

Siemiarczuk20 , D. Silvermyr12 , B.C. Sinha2 , N. Slavine6 , K.<br />

Söderström12 , G. Sood4 , S.P. Sørensen<strong>11</strong> , P. Stankus16 , G. Stefanek20<br />

, P. Steinberg3 , E. Stenlund12 , M. Sumbera17 , T. Svensson12<br />

, A. Tsvetkov13 , L. Tykarski20 , E.C.v.d. Pijll19 , N.v. Eijndhoven19<br />

, G.J.v. Nieuwenhuizen3 , A. Vinogradov13 , Y.P.<br />

Viyogi2 , A. Vodopianov6 , S.Vörös7 , B. Wys̷louch3 ,andG.R.<br />

Young16 1Institute of Physics, Bhubaneswar 751005, India<br />

2Variable Energy Cyclotron Centre, Calcutta 700064, India<br />

3MIT Cambridge, MA 02139<br />

4University of Panjab, Chandigarh 160014, India<br />

5Gesellschaft für Schwerionenforschung (GSI), D-64220 Darmstadt, Germany<br />

6Joint Institute for Nuclear Research, RU-141980 Dubna, Russia<br />

7University of Geneva, CH-12<strong>11</strong> Geneva 4, Switzerland<br />

8KVI, University of Groningen, NL-9747 AA Groningen, The Netherlands<br />

9University of Rajasthan, Jaipur 302004, Rajasthan, India<br />

10University of Jammu, Jammu 180001, India<br />

<strong>11</strong>University of Tennessee, Knoxville, Tennessee 37966, USA<br />

12University of Lund, SE-221 00 Lund, Sweden<br />

13RRC “Kurchatov Institute”, RU-123182 Moscow<br />

14University of Münster, D-48149 Münster, Germany<br />

15SUBATECH, Ecole des Mines, Nantes, France<br />

16Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6372, USA<br />

17Nuclear Physics Institute, CZ-250 68 Rez, Czech Rep.<br />

18University of Tsukuba, Ibaraki 305, Japan<br />

19Universiteit Utrecht/NIKHEF, NL-3508 TA Utrecht, The Netherlands<br />

20Institute for Nuclear Studies, 00-681 Warsaw, Poland<br />

9405+9406+9701 Collaboration<br />

Ricardo Alarcon 1 , Wim van Amersfoort 2 , Thomas Bauer 3 ,<br />

Henk Blok 2,4 , David Boersma 3 , Tancredi Botto 2 , Jo van


den Brand 2,4 , Henk Bulten 2,4 , Laurens van Buuren 2 , Gail<br />

Dodge 5 , Rolf Ent 6,7 , Massi Ferro-Luzzi 2,8 , Dennis Geurts 2,4 ,<br />

David Groep 2 , Mark Harvey 6,7 , Peter Heimberg 2 , Willem<br />

Hesselink 2,4 , Doug Highinbotham 9 , Kees de Jager 2,6 , Eddy<br />

Jans 2 , Tjeerd Ketel 2,4 , P. Klimin 10 , Ivan Koop 10 , Frans Kroes 2 ,<br />

Sander Klous 2 , Hauke Kolster 2 , Jan van der Laan 2 , Juerg<br />

Lang 8 , Dirk Jan de Lange 2 , Louk Lapik’as 2 , Guy Luijckx 2 , A.<br />

Lysynko 10 , Boris Militsyn 2 , Ivan Nesterenko 2 , Jaap Noomen 2 ,<br />

Blaine Norum 9 , Igor Passchier 2 , Valeri Pugatch <strong>11</strong> , Mark<br />

van der Putte 2 , Hans Roeland Poolman 2,4 , Marcel van<br />

Sambeek 2,4 , Yuri Shatunov 10 , Chiara Simani 2 , Ed Six 1 , Martijn<br />

Steenbakkers 2 , Jos Steijger 2 , Dominique Szczerba 8 , L.<br />

Todor 5 , Paul Ulmer 5 , Hans de Vries 2 , Kevin Wang 9 ,andZi-Lu<br />

Zhou 2,12<br />

Collaborations<br />

1Arizona State University, Tempe, Arizona 85287<br />

2NIKHEF, P.O. Box 41882, 1009 DB Amsterdam the Netherlands<br />

3Rijks Universiteit Utrecht, 3508 TA Utrecht, The Netherlands<br />

4Vrije Universiteit, 1081 HV Amsterdam, The Netherlands<br />

5Old Dominion University, Norfolk, Virginia 23529<br />

6TJNAF, Newport News, Virginia 23606<br />

7Hampton University, Hampton, Virginia 23668<br />

8Eidgenossische Technische Hochshule, CH-8093 Zuerich, Switzerland<br />

9University of Virginia, Charlottesville, Virginia 22901<br />

10Budker Institut for Nuclear Physics, Novosibirsk, 630090, Russian Federation<br />

<strong>11</strong>Ukrainian academy of Sciences, Kiev, Ukraine<br />

12University of Wisconsin, Madison, Wisconsin 53705


9405+9406+9701 - Collaboration<br />

HK 22.2<br />

A1 - Collaboration ..........HK 12.30<br />

A2 - Collaboration . .HK 26.1, HK 26.4<br />

A4 - Collaboration HK 14.8, HK 14.9,<br />

HK 14.10, HK 14.12, HK 21.3<br />

Abdel-Bary, M. ..............HK 42.2<br />

Abdel-Samad, S. .............HK 42.2<br />

Ackermann, D. ...............HK 7.3<br />

Adam, H.-H. ...............HK 12.25<br />

Adamian, G. G. HK 10.18, HK 10.19,<br />

HK 17.6<br />

Adelberger, E. G. ............HK 25.1<br />

Adler, Clemens ......HK 6.4, HK 34.3<br />

Agakichiev, H. ...............HK 14.6<br />

Akimune, H. ..................HK 3.4<br />

ALADIN-INDRA - Collaboration<br />

HK 13.3, HK 13.4, HK 47.2<br />

ALICE TRD - Collaboration . . HK 34.2<br />

ALICE-TRD - Collaboration HK 14.26,<br />

HK 41.2<br />

Altarev, Igor ..........HK 7.1, HK 7.4<br />

Altenburg, Denis . ..........HK 12.15<br />

Alvarez-Pol, H. ..............HK 14.6<br />

Ames, F. ....................HK 17.2<br />

Amir Ahmadi, H. ...........HK 10.34<br />

Amir-Ahmadi, H. ...........HK 12.33<br />

Amro, H. ........HK 10.10, HK 10.<strong>11</strong><br />

Anagnostopoulos, D. F. ......HK 26.6<br />

Andrejtscheff, Ventseslav .....HK 10.7<br />

Andronic, A. ................HK 13.5<br />

Andronic, Anton .............HK 20.1<br />

Angerer, H. ................. HK 28.1<br />

ANKE - Collaboration . . . . HK 5.9,<br />

HK 12.22, HK 14.30, HK 22.1,<br />

HK 42.3, HK 46.3, HK 46.6<br />

Antiproton Physics Study Group -<br />

Collaboration HK 12.1, HK 12.4,<br />

HK 12.6, HK 12.7, HK 34.1<br />

AntiprotoPhysics Study Group -<br />

Collaboration ...........HK 12.5<br />

Antonenko, N. V. HK 10.18, HK 10.19,<br />

HK 17.6<br />

Aouissat, Zoheir .............HK 9.22<br />

Appelshaeuser, H. ..........HK 14.24<br />

Appelshäuser, Harald . . . .HK 33.5,<br />

HK 41.5<br />

Aprahamian, A. ..............HK 10.8<br />

Ardid, M. ...................HK 13.5<br />

Arellano, Hugo ..............HK 43.5<br />

Arenhövel, Hartmuth . . . .HK 9.26,<br />

HK 37.4<br />

Assunção, M. ................HK 25.5<br />

ATRAP - Collaboration ......HK 31.4<br />

Attallah, F. ...................HK 7.3<br />

Audi, G. .....................HK 17.2<br />

Augustinski, Gerd ............HK 41.1<br />

Axiotis, M. . . . HK 10.5, HK 10.<strong>11</strong>,<br />

HK 45.4<br />

Ay, C. ............HK 14.<strong>11</strong>, HK 21.4<br />

Azzam, A. .................HK 14.13<br />

BABAR - Collaboration . . HK 12.14,<br />

HK 12.15, HK 12.16, HK 19.1,<br />

HK 19.2, HK 49.2<br />

Babilon, M. . . HK 10.26, HK 10.27,<br />

HK 18.2, HK 18.3, HK 18.4<br />

Bacelar, J. .................HK 12.32<br />

Bacelar, J. C.S. . . HK 10.34, HK 12.33<br />

Backe, H. HK 7.3, HK 14.<strong>11</strong>, HK 21.4<br />

Bäumer, C. . . . .HK 7.7, HK 10.15,<br />

HK 10.16, HK 24.4<br />

Baeßler, S. .................HK 10.23<br />

Baeßler, S. .................HK 10.21<br />

Balabanski, Dimiter ..........HK 45.3<br />

Balanutsa, V. ..............HK 14.30<br />

Balewski, J. T. ..............HK 42.4<br />

Banerjee, P. ................HK 10.13<br />

Banu, A. ....................HK 13.5<br />

Baran, Virgil ................ HK 47.5<br />

Barneo, P. J. ................HK 32.4<br />

Barnes, T. ...................HK 12.3<br />

Barsov, S. ...................HK 46.3<br />

Barth, Jens ..................HK 32.5<br />

Barton, C. J. ................HK 10.8<br />

Barz, H. W. .................HK 13.9<br />

Bathe, Stefan .................HK 6.7<br />

Baunack, Sebastian ..........HK 14.8<br />

Bax, H. ....................HK 10.32<br />

Bayansan, Davaadorj .........HK 43.5<br />

Bayer, W. ..........HK 18.2, HK 18.4<br />

Bazzacco, D. . . . HK 3.3, HK 10.2,<br />

HK 10.<strong>11</strong>, HK 10.17, HK 39.4<br />

Beausang, C. W. . . HK 10.8, HK 10.27<br />

Beck, C. ...........HK 25.5, HK 45.4<br />

Beck, D. ............HK 7.3, HK 17.2<br />

Becker, F. ...................HK 30.4<br />

Becker, J. ..................HK 10.32<br />

Beijers, J. P.M. ..............HK 42.1<br />

Beinhauer, W. . . . . HK 14.35, HK 21.5<br />

Beisert, Niklas ...............HK 23.5<br />

Belic, D. HK 10.3, HK 10.4, HK 30.5,<br />

HK 39.3<br />

Bellemann, F. ................HK 5.7<br />

Bemmerer, Daniel ...........HK <strong>11</strong>.5<br />

Benczer-Koller, N. . .HK 30.3, HK 31.2<br />

Bender, M. ...................HK 3.8<br />

Bengtsson, R. ...............HK 39.4<br />

Berg, A. ......................HK 5.7<br />

Berg, G. P. .................HK 14.19<br />

Berger, Jens .........HK 6.4, HK 34.3<br />

Berlich, Rüdiger .............HK 34.4<br />

Betev, L. .HK 6.2, HK 13.6, HK 13.7,<br />

HK 33.2, HK 33.3, HK 41.4<br />

Betev, Latchezar .............HK 33.4<br />

Bettoni, D. ..................HK 12.3<br />

Beyer, Michael ..............HK 9.28<br />

Bhattacharya, S. . . HK 10.<strong>11</strong>, HK 39.2<br />

Bhowmik, R. ...............HK 10.<strong>11</strong><br />

Bieber, R. .......HK 10.16, HK 10.30<br />

Bielcik, Jaroslav .............HK 13.1<br />

Billmeier, A. HK 6.2, HK 13.6, HK 33.2<br />

Bisplinghoff, J. ......HK 5.7, HK 28.4<br />

Blaschke, David .............HK <strong>11</strong>.1<br />

Blasi, N. HK 3.4, HK 10.15, HK 10.16,<br />

HK 24.2, HK 39.1<br />

Blaum, K. ...................HK 17.2<br />

Blume, C. HK 6.2, HK 13.6, HK 13.7,<br />

HK 33.2, HK 33.3, HK 41.4<br />

Blume, Christoph ............HK 33.4<br />

Bödeker, Dietrich ............HK 35.2<br />

Börner, H. G. ................HK 45.5<br />

Bohlen, H. G. ...............HK 45.4<br />

Bohlscheid, G. ................HK 5.7<br />

Boie, Hans ..................HK 45.6<br />

Bollen, G. ...................HK 17.2<br />

Bolster, E. L. .................HK 7.7<br />

Bongers, Henning ...........HK 14.20<br />

Bonn, Jochen ....HK 4.2, HK 4.6,<br />

HK <strong>11</strong>.4<br />

Borasoy, Bugra . . . . . HK 19.6, HK 23.5<br />

Borasoy, Bu¯gra .......HK 9.7, HK 9.8<br />

Borghini, Nicolas ............HK 33.4<br />

Borgs, W. ..................HK 14.30<br />

Borisov, Y. .................HK 10.23<br />

Bornschein, Beate . . . HK 4.6, HK <strong>11</strong>.4<br />

Bornschein, Lutz ....HK 4.6, HK <strong>11</strong>.4<br />

borremans, dana .............HK 45.3<br />

Botvina, Alexandre ..........HK 47.6<br />

Bouhali, Othmane ...........HK 28.3<br />

Bramm, R. HK 6.2, HK 13.6, HK 13.7,<br />

HK 33.2, HK 41.4<br />

Bramm, Roland ....HK 33.3, HK 33.4<br />

Brandenburg, S. . HK 3.4, HK 10.14,<br />

HK 42.1<br />

Braun, Vladimir . . . . HK 29.1, HK 29.4<br />

Braun-Munzinger, Peter . . HK 20.1,<br />

HK 41.1<br />

Bravina, Larissa .............HK 27.1<br />

Breitschopf, J. ...............HK 46.5<br />

Breitschopf, Johannes ........HK 46.4<br />

Brentano, P. v. ..............HK 10.4<br />

Breunlich, W. ...............HK 26.6<br />

Bringel, P. ........HK 10.<strong>11</strong>, HK 39.2<br />

Brooke, J. A. .................HK 7.7<br />

Brose, Jens ..................HK 19.2<br />

Brunken, M. ......HK 14.35, HK 21.5<br />

Buballa, Michael . . . . HK 2.5, HK 16.6<br />

Bucher, Damian ............HK 14.26<br />

Buchmann, L. ...............HK 25.1<br />

Bürvenich, T. .................HK 3.8<br />

Bürvenich, Thomas ..........HK 29.5<br />

Büscher, M. . . HK 12.22, HK 14.30,<br />

HK 22.1<br />

Büsching, Henner .............HK 6.3<br />

Bukharov, A. ...............HK 14.30<br />

Bulten, Henk ................HK 22.2<br />

Buncic, P. HK 6.2, HK 13.6, HK 13.7,<br />

HK 33.2, HK 33.3, HK 41.4<br />

Buncic, Predrag .............HK 33.4<br />

Burau, Gerhard ..............HK <strong>11</strong>.1<br />

Busch, O. ...................HK 13.5<br />

Busch, Oliver ................HK 34.2<br />

Busch, P. .....................HK 7.7<br />

Byrne, J. ...................HK 10.21<br />

Calabrese, R. ................HK 12.3<br />

Camen, Marcus ..............HK 26.1<br />

Caprio, M. ..................HK 10.8<br />

Carrol, J. J. .................HK 39.3<br />

Carter, J. ..................HK 10.28<br />

Casandjian, J. M. ............HK 25.1<br />

Cassing, W. .................HK 12.3<br />

Cassing, Wolfgang ...........HK 9.15<br />

Castelijns, R. ....HK 10.34, HK 12.33<br />

Castelijns, Ralph ............HK 12.32<br />

Casten, R. F. ........HK 3.1, HK 10.8<br />

Casten, Richard F. ............HK 1.2<br />

Caurier, E. ..................HK 30.2<br />

CB-ELSA - Collaboration . HK 12.28,<br />

HK 12.29, HK 40.2, HK 40.3,<br />

HK 40.4<br />

CELSIUS/WASA - Collaboration<br />

HK 40.5<br />

CERES- Collaboration . . HK 14.24,<br />

HK 33.5<br />

CERES/NA45 - Collaboration HK 41.3,<br />

HK 47.3<br />

CERN-ISOLDE - Collaboration<br />

HK 10.22<br />

CHAOS- Collaboration ......HK 46.4<br />

Chernetsky, V. ..............HK 14.30<br />

Chernyshov, V. . . HK 12.22, HK 14.30<br />

Chiral dynamics Mainz Heidelberg -<br />

Collaboration ...........HK 38.3<br />

Chou, W.-T. ................HK 10.8<br />

Christ, Stefan ..............HK 12.14<br />

Christen, Sandra ............HK 10.31<br />

Chulkov, L. V. ...............HK 24.1<br />

Chumakov, M. .............HK 14.30<br />

Clark, R. ...................HK 10.10<br />

Clark, R. M. .................HK 10.8<br />

Clawiter, N. .......HK 14.<strong>11</strong>, HK 21.4<br />

Clement, H. ........HK 46.1, HK 46.5<br />

Clement, Heinz ..............HK 46.4<br />

Cline, D. ....................HK 10.8<br />

Coc, A. .....................HK 25.5<br />

Collaboration, ISOLDE .......HK 31.1<br />

Colonna, Maria ..............HK 47.5<br />

COMPASS - Collaboration HK 12.10,<br />

HK 12.<strong>11</strong>, HK 14.14, HK 14.16,<br />

HK 26.2, HK 26.3, HK 28.1,<br />

HK 28.2, HK 28.6<br />

COMPLIS- Collaboration . . . HK 10.22<br />

Conda, Fernando . . . . HK 4.6, HK <strong>11</strong>.4<br />

Cooper, J. R. .....HK 10.8, HK 10.27<br />

Cornelius, T. ................HK 29.5<br />

Cornelius, Thomas ............HK 3.8<br />

Corte Rodriguez, N. ..........HK <strong>11</strong>.2<br />

COSY-<strong>11</strong> - Collaboration . . HK 5.1,<br />

HK 5.5, HK 5.6, HK 12.21,<br />

HK 12.25<br />

COSY-13 - Collaboration ......HK 5.3<br />

COSY-TOF - Collaboration . HK 5.8,<br />

HK 12.18, HK 12.23, HK 12.24,<br />

HK 14.27, HK 14.37, HK 31.5,<br />

HK 42.2, HK 46.1<br />

Coulier, Nico ................HK 45.3<br />

Courtin, S. ..................HK 25.5<br />

Cowan, J. J. .................HK 18.1<br />

Cozma, Mircea Dan ..........HK 44.6<br />

Crater, Horace W. ...........HK 43.5<br />

Credé, Volker ................HK 40.2<br />

Cröni, M. ...................HK 46.5<br />

Cröni, Margit ................HK 46.4<br />

Cromaz, M. ................HK 10.10<br />

Crystal Barrel/TAPS- Collaboration<br />

HK 12.32<br />

Csatlós, M. ........HK 3.4, HK 10.14<br />

Curien, D. .........HK 17.3, HK 39.2<br />

Czerski, Konrad .............HK <strong>11</strong>.5<br />

Dababneh, Sa’ed ............HK 25.2<br />

Damjanovic, Sanja ...........HK 47.3<br />

Danasino, A. . .HK 12.10, HK 14.14,<br />

HK 14.25, HK 28.1<br />

Darwish, Eed .......HK 9.26, HK 37.4<br />

Daues, Heinz ................HK 41.1<br />

Daugas, Jean-Michel .........HK 45.3<br />

Davids, B. . . . HK 10.15, HK 25.4,<br />

HK 39.1<br />

Dax, A. .....................HK 9.27<br />

de Angelis, G. ...HK 3.3, HK 10.5,<br />

HK 10.17, HK 17.3, HK 45.4<br />

De Frenne, D. ..............HK 10.15<br />

de Huu, M. .........HK 3.4, HK 25.4<br />

de Huu, M. A. . . HK 7.7, HK 10.15,<br />

HK 10.16, HK 10.30, HK 24.2,<br />

HK 39.1<br />

de Huu, Mark ...............HK 20.6<br />

de Leo, R. ...................HK 24.2<br />

De Masi, Rita ......HK 28.2, HK 28.6<br />

de Oliveira, Francois .........HK 45.3<br />

De Poli, M. .................HK 45.4<br />

Debruyne, Dimitri ........... HK 37.2<br />

Demello, Martin .............HK 34.3<br />

Demirörs, L. .................HK 40.5<br />

Denschlag, J. O. ............HK 10.32<br />

Denz, H. ....................HK 46.5<br />

Denz, Holger ................HK 46.4<br />

Dermois, O. ................HK 14.19<br />

Deveraux, O. ................HK 39.2<br />

Dewald, A. HK 3.3, HK 10.1, HK 10.2<br />

Dewald, Alfred ..............HK 10.7<br />

Di Toro, Massimo ............HK 47.5<br />

Diaz Alonso, J. ..............HK <strong>11</strong>.2<br />

Diaz, J. .....................HK 13.5<br />

Dickopp, Martin ............HK 12.16<br />

Diefenbach, Jürgen .........HK 14.12<br />

Dietel, Thomas ......HK 6.4, HK 34.3<br />

Dinh, Phuong Mai ...........HK 33.4<br />

Dinkelacker, P. ...............HK 6.2<br />

Dinkelaker, P. . . HK 13.6, HK 33.2,<br />

HK 33.3, HK 41.4<br />

Dinkelaker, Peter . . . HK 13.7, HK 33.4<br />

Dönau, F. HK 10.4, HK 10.12, HK 30.4<br />

Döring, J. HK 3.2, HK 10.29, HK 30.2<br />

Döring, Michael .............HK 33.6<br />

Döring, Werner ..............HK 48.5<br />

Index of Authors<br />

Dohrmann, Frank . . HK 40.1, HK 48.3<br />

Domscheit, J. . HK 10.10, HK 10.<strong>11</strong>,<br />

HK 39.2, HK 39.4<br />

Dorochkevitch, E. ............HK 46.1<br />

Doskow, J. ..................HK 42.4<br />

Drechsel, Dieter ..............HK 2.6<br />

Dressler, Rugard .............HK 48.3<br />

Dretzke, A. ...................HK 7.3<br />

Drexler, Peter ...............HK 28.7<br />

Drochner, M. ...............HK 14.27<br />

Duennweber, Wolfgang .....HK 14.15<br />

Düren, M. ...................HK 12.3<br />

Düren, Michael ..............HK 49.1<br />

Duran, I. ....................HK 14.6<br />

Dymov, S. .........HK 5.9, HK 12.22<br />

Dzhioev, A. ................HK 10.20<br />

E91016 - Collaboration . ......HK 40.1<br />

Eberl, T. . HK 14.1, HK 14.3, HK 48.4<br />

Eberth, J. HK 7.6, HK 10.6, HK 17.3,<br />

HK 30.4<br />

Eckardt, Volker ......HK 6.5, HK 13.8<br />

EDDA - Collaboration .........HK 5.2<br />

Efremov, Anatoli ............HK 19.4<br />

Egelhof, P. ..................HK 9.27<br />

Eisermann, Yvonne .........HK 10.31<br />

El Ghazaly, M. ....HK 14.<strong>11</strong>, HK 21.4<br />

Elschenbroich, Ulrike ........HK 14.17<br />

Elster, Charlotte .............HK 9.30<br />

Eltaher, Atef ...............HK 14.13<br />

Emhofer, Stephan HK 14.20, HK 14.21<br />

Emmerich, Reinhard . . . .HK 14.31,<br />

HK 42.5<br />

Ender, C. ....................HK 30.4<br />

Engels, O. ....................HK 7.3<br />

Engels, R. ....................HK 5.9<br />

Engels, Ralf . . HK 14.29, HK 14.31,<br />

HK 42.5<br />

Enghardt, Wolfgang ....HK 14.33,<br />

HK 48.3, HK 48.7<br />

Erhardt, A. .......HK 14.27, HK 46.1<br />

Erhardt, Arthur ..............HK 46.4<br />

Ermisch, K. ......HK 10.34, HK 12.33<br />

Ermisch, Karsten ...........HK 10.30<br />

ERNA - Collaboration ........HK 18.6<br />

Ernst, J. ......................HK 5.7<br />

Ernst, R. ....................HK 30.3<br />

Euroball - Collaboration ......HK 17.3<br />

EuroSuperNova - Collaboration<br />

HK 7.7, HK 24.2, HK 24.4<br />

Eversheim, D. ...............HK 28.4<br />

Evtushenko, Pavel ..........HK 14.34<br />

Eyrich, W. HK 5.8, HK 12.24, HK 28.4<br />

Eyser, Oleg ...................HK 5.2<br />

Fabbietti, L. . . . HK 14.1, HK 14.3,<br />

HK 48.4<br />

Fabry, Imrich ...............HK 12.28<br />

Faessler, Amand . . HK 2.4, HK 23.1,<br />

HK 27.1<br />

Fallon, P. ..................HK 10.10<br />

Falter, Thomas .....HK 38.4, HK 44.5<br />

Farnea, E. HK 3.3, HK 10.17, HK 45.4<br />

Fearick, R. .................HK 10.28<br />

Fedorets, P. ......HK 12.22, HK 14.30<br />

Feldmeier, Hans .............HK 43.4<br />

Fey, Michael .................HK 25.5<br />

Fiedler, B. ...................HK 30.4<br />

Finck, Christian ..............HK 20.1<br />

Fiori, G. .....................HK 42.3<br />

Fischer, H. . . .HK 12.10, HK 14.14,<br />

HK 14.25, HK 28.1<br />

Fitting, Jörg .................HK 45.6<br />

Fitzler, A. ..........HK 10.1, HK 10.2<br />

Flatt, Björn HK 4.6, HK <strong>11</strong>.3, HK <strong>11</strong>.4<br />

Fleischer, P. ..................HK 3.8<br />

Fleischer, Patrick ............HK 9.18<br />

Flenéus, Magdalena .........HK 14.22<br />

Fleurot, F. .........HK 25.4, HK 25.5<br />

Fleurot, Fabrice ..............HK 20.6<br />

Flierl, Dominik ......HK 6.4, HK 34.3<br />

Förtsch, S. .................HK 10.28<br />

Fogelberg, Birger HK 10.33, HK 14.22<br />

FOPI - Collaboration HK 20.3, HK 20.5<br />

Forkel, Hilmar . . . . . . HK 9.19, HK 16.1<br />

fossion, ruben ......HK 17.5, HK 45.2<br />

Franchoo, S. ................HK 31.1<br />

Frankenfeld, Ulrich ...........HK 41.1<br />

Fransen, C. ....HK 10.3, HK 10.4,<br />

HK 30.1, HK 30.5<br />

Franz, J. ....HK 12.10, HK 14.14,<br />

HK 14.25, HK 28.1<br />

Frederico, Tobias ............HK 9.28<br />

Frei, Andreas .................HK 7.1<br />

Frekers, D. . . .HK 10.15, HK 10.16,<br />

HK 24.4<br />

Freund, A. ..................HK 38.6<br />

Freund, S. ...................HK 30.4<br />

Frick, Tobias ................HK 44.1<br />

Friedman, E. ................HK 46.5<br />

Friedrich, Jan . . HK 14.16, HK 26.3,<br />

HK 28.6<br />

Fries, R. J. ..................HK 23.6<br />

Fries, Rainer .................HK 44.2


Friese, J. . HK 14.1, HK 14.3, HK 48.4<br />

Friese, Volker . . . . . . HK 20.1, HK 33.1<br />

Friman, Bengt ...............HK 20.1<br />

Fritsch, M. .........HK 5.8, HK 12.24<br />

Fritsch, Stefan ...............HK 38.5<br />

Fritzsche, S. .................HK 9.27<br />

Fröhlich, I. .........HK 14.4, HK 14.5<br />

Froehlich, Ingo ..............HK 13.2<br />

Frömel, Frank ...............HK 16.3<br />

FRS/LAND - Collaboration . . HK 47.1<br />

Fuchs, Christian . . . . . HK 2.4, HK 27.1<br />

Fuchs, Michael .............HK 12.29<br />

Fuentes, B. ..................HK 14.6<br />

Fuhrmann, H. ...............HK 26.6<br />

Fujimura, H. ..................HK 3.4<br />

Fujita, M. ..................HK 12.20<br />

Fujita, Y. ..................HK 10.28<br />

Fujiwara, M. .......HK 3.4, HK 10.14<br />

Funk, Andreas ...............HK 43.5<br />

Gabriel, A. .........HK 14.4, HK 14.5<br />

Gabriel, Adrian ..............HK 13.2<br />

Gad, Khalaf .................HK 44.1<br />

Gade, A. HK 10.3, HK 30.1, HK 30.5,<br />

HK 39.3<br />

Gadea, A. HK 3.3, HK 10.5, HK 10.17,<br />

HK 45.4<br />

Gärtner, Andreas ....HK 6.5, HK 13.8<br />

Galanopoulos, E. ............ HK 25.5<br />

Galaviz, D. ........HK 14.32, HK 18.4<br />

Galindo, E. ..................HK 10.5<br />

Gall, B. J.P. .................HK 10.1<br />

Gallmeister, Kai .............HK 44.3<br />

Ganzhur, S. .................HK 12.3<br />

Ganzhur, Sergey .............HK 12.5<br />

Garabatos, Chilo .............HK 41.1<br />

garcia-ramos, jose-enrique . HK 17.5,<br />

HK 45.2<br />

Garg, U. ....................HK 39.1<br />

Garzon, J. A. ................HK 14.6<br />

Gasparyan , Achot M. ........HK 9.29<br />

Gast, W. ...........HK 3.3, HK 10.17<br />

Gast, Werner .................HK 7.8<br />

Gattringer, Christof ..........HK 16.4<br />

Gazdzicki, M. ................HK 33.3<br />

Ga´zdzicki, M. . . . HK 6.2, HK 13.6,<br />

HK 13.7, HK 33.2, HK 41.4<br />

Ga´zdzicki, Marek ............HK 33.4<br />

Gaˇsparić, I. ......HK 10.34, HK 12.33<br />

GDH-Collaboration - Collaboration<br />

HK 35.3<br />

GDH - Collaboration - Collaboration<br />

HK 12.31<br />

Gebauer, B. .................HK 45.4<br />

Geissel, H. .................HK 12.20<br />

Geithner, W. ................HK 31.1<br />

GEM - Collaboration HK 5.4, HK 5.4,<br />

HK 12.17, HK 12.17, HK 12.19,<br />

HK 12.19, HK 26.5, HK 26.5<br />

Gemmeke, Hartmut .........HK 14.36<br />

Georgiev, Georgi .............HK 45.3<br />

Gerasimov, A. ..............HK 14.30<br />

Gerber, J. ..........HK 10.9, HK 31.2<br />

Gerl, Jürgen .................HK 48.1<br />

Gernhäuser, R. . . HK 14.1, HK 14.3,<br />

HK 48.4<br />

Gersabeck, M. ...............HK 13.5<br />

Gersch, G. ...................HK 17.3<br />

Gilg, H. ....................HK 12.20<br />

Gillitzer, A. . . . HK 12.3, HK 12.18,<br />

HK 12.20<br />

Gillitzer, Albrecht . . . ..........HK 8.4<br />

Glässel, Peter ................HK 41.1<br />

Glöckle, W. ................HK 10.30<br />

Glück, F. ...................HK 10.21<br />

Gocke, Christian .............HK <strong>11</strong>.1<br />

Godo, Melitta ..............HK 12.31<br />

Godó, Melitta ..............HK 12.34<br />

Goeke, K. ...................HK 23.6<br />

Goeke, Klaus ................HK 19.4<br />

Gönnenwein, F. .............HK 10.32<br />

Görgen, A. ........HK 10.10, HK 39.4<br />

Görres, Joachim .............HK 25.2<br />

Götzen, Klaus ...............HK 19.1<br />

Golak, J. ...................HK 10.30<br />

Goncharova, N. .............HK 10.20<br />

Gopych, M. .......HK 14.35, HK 21.5<br />

Gorchtein, Michael ............HK 2.6<br />

Goriely, Stephane ............HK 36.3<br />

Goryachev, V. ..............HK 14.30<br />

Gotta, D. ...................HK 26.6<br />

Gottwald, Stefan ..............HK 2.8<br />

Grabmayr, P. .....HK 9.23, HK 14.28<br />

Gräf, H.-D. .......HK 14.35, HK 21.5<br />

Grama, C. ...................HK 25.5<br />

Graw, Gerhard ..............HK 10.31<br />

Grawe, H. ...................HK 30.2<br />

Gregorich, K. E. .............HK 10.8<br />

Greiff, J. ....................HK 40.5<br />

Greiner, C. ..................HK 37.1<br />

Greiner, Carsten . HK 9.14, HK 9.15,<br />

HK 27.3, HK 38.2, HK 38.4,<br />

HK 44.3<br />

Greiner, W. .........HK 3.8, HK 29.5<br />

Grewe, E. .........HK 10.15, HK 24.4<br />

Griesshammer, Harald ........HK 44.4<br />

Grießhammer, Harald W. . . HK 9.1,<br />

HK 9.4<br />

Grigorian, Hovik .............HK <strong>11</strong>.1<br />

Grinberg, M. ................HK 10.4<br />

Gröger, Stephan ......HK 7.1, HK 7.4<br />

Grosse, E. ...................HK 10.4<br />

Grosse, Eckart ...............HK 48.3<br />

Grube, B. ...................HK 28.1<br />

Grube, Boris . . HK 14.16, HK 28.2,<br />

HK 28.6<br />

Gruber, A. ..................HK 26.6<br />

Grünemaier, A. ....HK 14.14, HK 28.1<br />

Grünemeier, A. .............HK 12.10<br />

Grzonka, D. .................HK 31.4<br />

GSI-ISOL - Collaboration . . HK 3.2,<br />

HK 3.6, HK 10.24, HK 10.29,<br />

HK 45.1<br />

Günemeier, A. ..............HK 14.25<br />

Guliyev, E. ..................HK 17.4<br />

Gulyás, J. HK 3.4, HK 10.14, HK 39.1<br />

Gusev, L. .................. HK 14.30<br />

Gustafsson, Carolina ........HK 14.22<br />

Gutsmiedl, Erwin .............HK 7.4<br />

Górska, M. ..................HK 30.2<br />

Haas, F. .....................HK 25.5<br />

Haberer, Thomas ............HK 48.7<br />

Habs, D. .............HK 7.3, HK 7.5<br />

Habs, Dieter .....HK 14.20, HK 14.21<br />

HADES- Collaboration . . .HK 13.2,<br />

HK 14.1, HK 14.2, HK 14.4,<br />

HK 14.6, HK 14.7, HK 48.2,<br />

HK 48.3<br />

Haeberli, W. .................HK 42.4<br />

Hägler, Philipp . .............HK 38.1<br />

Härtlein, T. .................HK 30.4<br />

Hagemann, G. B. HK 10.10, HK 10.<strong>11</strong>,<br />

HK 39.2, HK 39.4<br />

Hagemann,M. ...HK3.4,HK7.7,<br />

HK 10.16, HK 10.30, HK 24.2<br />

Hagenbuck, F. ....HK 14.<strong>11</strong>, HK 21.4<br />

Haidenbauer, Johann ........HK 9.29<br />

Hambsch, F.-J. .............HK 10.32<br />

Hambsch, Franz-Josef ......HK 10.33<br />

Hamilton, J. H. ...............HK 3.8<br />

Hammache, F. ...............HK 25.5<br />

Hammel, Thorsten ...........HK 14.9<br />

Hammer, J. W. ..............HK 25.5<br />

Hanhart, Christoph . HK 9.29, HK 9.30<br />

Hannachi, F. .......HK 25.5, HK 39.2<br />

Hannen, V. .................HK 10.14<br />

Hannen, V. M. . . .HK 10.16, HK 10.30<br />

Hara, K. ......................HK 3.4<br />

Harakeh, M. N. . . .HK 3.4, HK 7.7,<br />

HK 10.14, HK 10.16, HK 10.30,<br />

HK 10.34, HK 12.33, HK 14.19,<br />

HK 24.2, HK 39.1<br />

Harissopulos, S. ............. HK 25.5<br />

Hartmann, F. J. ............HK 10.21<br />

Hartmann, F. Joachim HK 7.1, HK 7.4<br />

Hartmann, O. ...............HK 12.3<br />

Hartmann, Olaf N. . HK 12.1, HK 20.5<br />

Hartmann, T. . . HK 3.7, HK 10.25,<br />

HK 10.26, HK 10.27, HK 14.32,<br />

HK 14.35, HK 18.2, HK 18.3,<br />

HK 18.4, HK 21.5<br />

Haupt, Christian .............HK 43.2<br />

Hauschild, K. ................HK 30.2<br />

Hawranek, P. .........HK 5.4, HK 5.4<br />

Hayano, R. S. ..............HK 12.20<br />

Hecht, A. A. ................HK 10.8<br />

Hedicke, S. . . .HK 12.10, HK 14.14,<br />

HK 14.25, HK 28.1<br />

Hehl, T. ................... HK 14.28<br />

Hehner, Joerg ...............HK 41.1<br />

Heide, Peter .................HK <strong>11</strong>.5<br />

Heidel, Klaus ................HK 48.3<br />

Heil, Michael ................HK 25.2<br />

Heil, W. .........HK 10.21, HK 10.23<br />

Heim, J. ..........HK 12.9, HK 14.28<br />

Heinsius, F. H. . HK 12.10, HK 14.14,<br />

HK 14.25, HK 26.2, HK 28.1<br />

Hejny, V. ..........HK 12.3, HK 34.1<br />

Hejny, Volker ................HK 48.5<br />

Helariutta, K. ............... HK 30.2<br />

Helbing, Klaus ...............HK 35.3<br />

Hellmann, Vladimir ..........HK 9.24<br />

Hemmert, Thomas ...........HK 44.4<br />

Hemmert, Thomas R. HK 9.6, HK 15.2<br />

Hennebach, M. ..............HK 26.6<br />

Henneck, Reinhold . . . .HK 4.3, HK 7.2<br />

Henoch, Mark ...............HK 28.5<br />

Herfurth, F. ..................HK 7.3<br />

Herfurth, Frank ..............HK 17.2<br />

HERMES- Collaboration . HK 12.12,<br />

HK 12.13, HK 14.17, HK 14.18,<br />

HK 19.3, HK 28.3<br />

HERMEScollaboration - Collaboration<br />

HK 28.5<br />

HERMESKollaboration - Collaboration<br />

HK 49.1<br />

Herrmann, Norbert ..........HK 20.1<br />

Herskind, B. ......HK 10.10, HK 39.4<br />

Hertenberger, Ralf ..........HK 10.31<br />

Hertling, M. ......HK 14.35, HK 21.5<br />

Hessberger, F. ................HK 7.3<br />

heyde, kris .........HK 17.5, HK 45.2<br />

Heyse, J. . HK 7.7, HK 10.16, HK 24.2<br />

Hildebrandt, Robert ..........HK 44.4<br />

Hilligsoe, K.-M. ..............HK 31.1<br />

Hinterberger, F. ..............HK 5.7<br />

Hirenzaki, S. ...............HK 12.20<br />

Hodenberg, M. v. ...........HK 14.25<br />

Höhne, Claudia ..............HK 33.1<br />

Hoek, Matthias ..............HK 48.5<br />

Hoekstra, R. ...............HK 14.19<br />

Hoffmann, Roland ...........HK 16.2<br />

Hofmann, F. . . HK 10.16, HK 10.20,<br />

HK 17.4<br />

Hofmann, Ralf ................HK 9.5<br />

Hofmann, S. ..................HK 7.3<br />

Holden, J. ...................HK 30.3<br />

Holstein, Barry ...............HK 9.7<br />

Holzmann, Romain ..........HK 20.1<br />

Hommez, Brecht ............HK 19.5<br />

Homolka, J. . . . HK 14.1, HK 14.3,<br />

HK 48.4<br />

Hooft, Gerard ’t ..............HK 1.1<br />

Horiuchi, H. .................HK 16.7<br />

Horn, Igor ...................HK 40.4<br />

Horn, Roland ...............HK 10.22<br />

Hornidge, D. L. ..............HK 26.4<br />

Huber, Gerhard .............HK 10.22<br />

Hübel, H. . . . HK 10.10, HK 10.<strong>11</strong>,<br />

HK 39.2, HK 39.4<br />

Hunyadi, M. . . . HK 3.4, HK 10.15,<br />

HK 24.2, HK 25.4, HK 39.1<br />

Hutsch, Jochen ..............HK 48.3<br />

Hutter, C. ....HK 10.8, HK 10.27,<br />

HK 14.32, HK 18.2, HK 18.3,<br />

HK 18.4<br />

Hǒsek, Jǐri ....................HK 2.5<br />

Ibald, R. ......................HK 5.7<br />

Ihara, F. ...........HK 3.4, HK 10.14<br />

Ilyina, Y. ....................HK 40.5<br />

Imai, Yoshio .................HK 21.3<br />

Indelicato, P. ................HK 26.6<br />

Ishikawa, T. ..................HK 3.4<br />

ISOLDE - Collaboration ......HK 47.1<br />

Isselhorst, Carsten ...........HK 9.22<br />

Itahashi, K. ................HK 12.20<br />

Ivanov, Alexander ............HK 23.1<br />

Ivanov, Dmitry ..............HK 29.1<br />

Iwasaki, M. .................HK 12.20<br />

Jacobs, E. .......HK 10.15, HK 10.16<br />

Jäger, H. M. .......HK 3.3, HK 10.17<br />

Jahn, R. ......................HK 5.7<br />

Jakob, G. ...................HK 30.3<br />

Jakob, Rainer ................HK 50.1<br />

Jansen, P. ....................HK 5.9<br />

Janssen, Silke ...............HK 32.3<br />

Janssen, Stijn ...............HK 37.3<br />

Jarczyk, L. ...................HK 5.7<br />

Jensen, D. R. . HK 10.10, HK 10.<strong>11</strong>,<br />

HK 39.2<br />

Jentschel, M. ................HK 45.5<br />

Jesinger, P. ..................HK 46.5<br />

Jessen, K. ..........HK 10.1, HK 17.1<br />

Jolie,J. ..HK3.1,HK7.6,HK10.2,<br />

HK 30.1, HK 45.5<br />

Jolie, Jan ..................HK 10.31<br />

Jolos, R. V. .................HK 17.6<br />

Jones, Kate .................HK 24.6<br />

Jones, P. ....................HK 30.2<br />

Joosten, R. .........HK 5.7, HK 28.4<br />

Juchem, Sascha .............HK 9.15<br />

Julin, R. .................... HK 30.2<br />

Jungclaus, A. ......HK 10.5, HK 17.3<br />

Junghans, A. R. .............HK 25.1<br />

Jungmann, K. ..............HK 14.19<br />

Jungmann, Klaus ............HK 35.1<br />

Junk, B. ..........HK 10.15, HK 24.4<br />

Junkersfeld, Jörg ............HK 40.3<br />

Kacharava, A. ................HK 5.9<br />

Kämpfer, B. .................HK 13.9<br />

Kaempfer, Burkhard HK 6.8, HK 23.4,<br />

HK 48.3<br />

Käppeler, Franz .............HK 25.2<br />

Käubler, L. . . . HK 10.4, HK 10.12,<br />

HK 30.4<br />

Kaiser, K.-H. ......HK 14.<strong>11</strong>, HK 21.4<br />

Kaiser, Norbert ...HK 2.7, HK 9.9,<br />

HK 9.10, HK 9.<strong>11</strong>, HK 9.12,<br />

HK 9.13, HK 38.5<br />

Kalantar-Nayestanaki, N. . HK 10.30,<br />

HK 10.34, HK 12.33<br />

Kalantar-Nayestanaki, Nasser . . HK 8.2<br />

Kalinovsky, Yuri .............HK <strong>11</strong>.1<br />

Kalmykov, Y. . HK 10.16, HK 10.20,<br />

HK 10.25, HK 10.28<br />

Kamada, H. ................HK 10.30<br />

Kampert, Karl-Heinz ..........HK 4.1<br />

Index of Authors<br />

Kanaki, Kalliopi .............HK 48.3<br />

KaoS- Collaboration HK 6.8, HK 20.2,<br />

HK 47.4<br />

Kappertz, S. .................HK 31.1<br />

KARMEN - Collaboration .....HK 4.4<br />

Karsch, Leonhard ...........HK 14.37<br />

Karstens, F. . . HK 12.10, HK 14.14,<br />

HK 14.25, HK 28.1<br />

KASCADE - Collaboration ....HK 4.1<br />

Kasemann, S. ...............HK 30.4<br />

Kaskulov, M. M. .............HK 9.23<br />

Kastaun, W. . . HK 12.10, HK 14.14,<br />

HK 14.25, HK 28.1<br />

KATRIN - Collaboration . . . HK 4.2,<br />

HK <strong>11</strong>.3<br />

Keil, Ch. ....................HK 37.1<br />

Keim, M. ....................HK 31.1<br />

Kellerbauer, A. ..............HK 17.2<br />

Kemper, G. ..................HK 10.2<br />

Kenn, O. .......... HK 10.9, HK 31.2<br />

Kester, O. ..........HK 7.5, HK 49.4<br />

Kester, Oliver ....HK 14.20, HK 14.21<br />

Ketzer, Bernhard . . HK 14.16, HK 28.6<br />

Khorguashvili, Z. ...........HK 14.30<br />

Kiel, Henning .................HK 4.8<br />

Kiener, J. ...................HK 25.5<br />

Kienle, P. .........HK 12.3, HK 12.20<br />

Kilian, K. . ..................HK 42.2<br />

Kilian, W. ..................HK 10.23<br />

Kiptily, Dmitri ...............HK 29.2<br />

Kirschner, D. .......HK 14.4, HK 14.5<br />

Kirschner, Daniel ............HK 13.2<br />

Kirschner, Roland ............HK 38.1<br />

Kisselev, Oleg ................HK 3.5<br />

Kiˇs, M. HK 10.30, HK 10.34, HK 12.33<br />

Kleber, V. ...................HK 46.6<br />

Klehr, F. .....................HK 5.9<br />

Kleifges, Matthias ..........HK 14.36<br />

Klein, Frank .................HK 12.8<br />

Klein-Bösing, Christian ........HK 6.6<br />

Kleines, H. ...................HK 5.9<br />

KLOE - Collaboration ........HK 46.2<br />

Klug, T. .................... HK 10.1<br />

Kluge, H.-J. HK 7.3, HK 9.27, HK 17.2<br />

Kneissl, U. ....HK 10.3, HK 10.4,<br />

HK 30.5, HK 39.3<br />

Kneißl, U. ..................HK 10.12<br />

Knoll, Jörn ..................HK 23.3<br />

Koch, H. ....................HK 12.3<br />

Koch, Volker ................HK 33.6<br />

Köck, F. ....................HK 30.4<br />

Köck, Frank .................HK 45.6<br />

König, W. ...................HK 14.6<br />

Koenig, Wolfgang ...........HK 20.1<br />

Königsmann, K. HK 12.10, HK 14.14,<br />

HK 14.25, HK 28.1<br />

Körner, H.-J. . . . HK 14.1, HK 14.3,<br />

HK 48.4<br />

Kohl, M. ...................HK 12.30<br />

Kohstall, C. . . . HK 10.3, HK 10.4,<br />

HK 10.12, HK 30.5, HK 39.3<br />

Kojouharov, Ivan ............HK 48.1<br />

Kokalova, Tz. ...............HK 45.4<br />

Koll, Matthias ...............HK 9.24<br />

Kollegger, T. . . . HK 6.2, HK 13.6,<br />

HK 13.7, HK 33.2, HK 33.3,<br />

HK 41.4<br />

Kollegger, Thorsten ..........HK 33.4<br />

Kolomeitsev, Evgeni E. ........HK 2.2<br />

Komarov, V. .......HK 5.9, HK 12.22<br />

Konorov, I. ..................HK 28.1<br />

Konorov, Igor . . HK 14.16, HK 28.2,<br />

HK 28.6<br />

Kopatch, Juri ................HK 48.1<br />

Kopecky, S. ................HK 14.19<br />

Kopmann, Andreas .........HK 14.36<br />

Koptev, V. ...................HK 5.9<br />

Koptev, Vladimir ...........HK 14.31<br />

Korichi, A. ..................HK 25.5<br />

Korten, W. ..................HK 30.2<br />

Kossert, Karsten .............HK 26.1<br />

Kostial, S. ........HK 14.35, HK 21.5<br />

Kothe, Rainer ..............HK 14.10<br />

Kotte, R. ....................HK 14.6<br />

Kotte, Roland ...............HK 48.3<br />

Kotulla, Martin ..............HK 32.2<br />

Kowina, Piotr .................HK 5.5<br />

Kozela, A. ....................HK 5.7<br />

Krassilnikov, A. ..............HK 21.5<br />

Krasznahorkay, A. . . HK 3.4, HK 10.14<br />

Kratz, K. L. ................HK 14.13<br />

Kratz, K.-L. .................HK 18.1<br />

Kraus, Christine .....HK 4.6, HK <strong>11</strong>.4<br />

Kraus, I. . HK 6.2, HK 13.6, HK 13.7,<br />

HK 33.2, HK 33.3, HK 41.4<br />

Kraus, Ingrid ................HK 33.4<br />

Krauss, B. .................HK 14.18<br />

Kravchuk, Vladimir ..........HK 20.6<br />

Kravtsov, P. ..................HK 5.9<br />

Kravtsov, Peter . . HK 14.29, HK 14.31<br />

Kremers, H. R. ..............HK 42.1<br />

Kress, J. ....................HK 46.1


Kreutz, M. ........HK 10.3, HK 10.12<br />

Krewald, Siegfried . . HK 43.1, HK 43.6<br />

Kriembardis, G. ..............HK 25.5<br />

Krings, T. ...................HK 42.3<br />

Krivoruchenko, Mikhail ........HK 2.4<br />

Kröll, T. ....................HK 10.5<br />

Kröll, Th. ..................HK 10.<strong>11</strong><br />

Krok, Patrizia .......HK 6.5, HK 13.8<br />

Krücken, R. . . . HK 10.2, HK 10.8,<br />

HK 10.27<br />

Krüsemann, B. A.M. ........HK 10.16<br />

Kube, G. .........HK 14.<strong>11</strong>, HK 21.4<br />

Kuckei, Jan .........HK 4.7, HK 44.1<br />

Kuehl, T. ...................HK 9.27<br />

Kühn, W. HK 12.3, HK 14.4, HK 14.5<br />

Kuehn, Wolfgang ............HK 13.2<br />

Kuhn, Roland ...............HK 26.3<br />

Kukulin, V. I. ................HK 9.23<br />

Kulessa, Pawel ................HK 5.3<br />

Kuliev, A. A. ................HK 17.4<br />

Kulikov, A. ...................HK 5.9<br />

Kumbartzki, G. .....HK 30.3, HK 31.2<br />

Kunz, R. ....................HK 25.5<br />

Kurbatov, V. .................HK 5.9<br />

Kuro´s.- ˙ Zo̷lnierczuk, J. ......HK 10.30<br />

Lacroix, D. .................HK 10.28<br />

Laier, U. ..........HK 14.35, HK 21.5<br />

LAND - Collaboration ........HK 24.5<br />

LAND/S188/S233 - Collaboration<br />

HK 24.6<br />

Landgraf, Jeff ...............HK 34.3<br />

Langanke, Karlheinz .........HK 49.3<br />

Lange, Söeren ...............HK 34.3<br />

Lange, Sören .................HK 6.4<br />

Lassen, Jens ................HK 10.22<br />

Lauer, Martin ............... HK 45.6<br />

Lauth, W. HK 7.3, HK 14.<strong>11</strong>, HK 21.4<br />

Lawall, Ralf ................HK 12.26<br />

Lawrie, J. ..................HK 10.28<br />

Leberig, Mario ..............HK 12.<strong>11</strong><br />

Lee, Dean ....................HK 9.8<br />

Lee, I. Y. .........HK 10.10, HK 30.3<br />

Lefèbvre, A. .................HK 25.5<br />

Lehmann, I. .................HK 46.3<br />

Lehnert, J. .........HK 14.4, HK 14.5<br />

Lehnert, Joerg ...............HK 13.2<br />

Lehnert, Ulf .......HK 14.34, HK 21.2<br />

Lehr, Jürgen .......HK 29.3, HK 38.4<br />

Leino, M. ...................HK 30.2<br />

Lenhardt, A. ......HK 14.35, HK 21.5<br />

Lenske, H. ........HK 10.20, HK 37.1<br />

Lenske, Horst ................HK 29.3<br />

Lenz, Alexander .............HK 29.4<br />

Lenzi, S. M. .................HK 45.4<br />

Lenzi, Silvia .................HK 10.7<br />

LEPS- Collaboration ........HK 46.4<br />

Leske, J. ...........HK 10.9, HK 31.2<br />

Leupold, Stefan . . HK 2.3, HK 16.3,<br />

HK 29.3, HK 38.2<br />

LeVine, Micheal .............HK 34.3<br />

Lewis, Randy .................HK 9.7<br />

Lewitowitz, Marek ...........HK 45.3<br />

Ley, Jürgen .......HK 14.31, HK 42.5<br />

Lieb, K. P. ..................HK 17.3<br />

Lieder, R. M. .......HK 3.3, HK 10.17<br />

Lieder, Rainer ................HK 7.8<br />

Lievens, P. ..................HK 31.1<br />

Lindenberg, K. ..............HK 18.2<br />

Linnemann, A. . . HK 10.3, HK 10.4,<br />

HK 30.1, HK 30.5, HK 39.3,<br />

HK 45.5<br />

Lisetskiy, A. .................HK 30.5<br />

Lisetskiy, Alexander ..........HK 17.1<br />

Liu, Bin .....................HK 43.5<br />

Liu, Y.-W. .................. HK 26.6<br />

Ljubicic,Jr., Ante ............HK 34.3<br />

Lo Curto, Gaspare ...HK 6.5, HK 13.8<br />

Lobashev, V. ...............HK 10.23<br />

Löhner, H. . . . HK 10.34, HK 12.32,<br />

HK 12.33<br />

Loehner, Herbert . . . HK 20.6, HK 48.5<br />

Löring, Ulrich ......HK 37.5, HK 43.2<br />

Lommel, B. ...................HK 7.3<br />

Lopez-Martens, A. . .HK 25.5, HK 39.2<br />

Lorentz, B. ..........HK 5.9, HK 42.4<br />

Lorentz, Bernd . . . HK 14.29, HK 14.31<br />

Lorenz, Stefan ..............HK 14.31<br />

Lozeva, Radomira ............HK 48.1<br />

Lozhkin, Oleg ...............HK 47.6<br />

Lukasik, Jerzy ...............HK 47.2<br />

LUNA - Collaboration . . . HK 18.5,<br />

HK 25.3<br />

Lunardi, S. . . . . HK 3.3, HK 10.<strong>11</strong>,<br />

HK 10.17<br />

Lunney, D. . .................HK 17.2<br />

Lutz, Matthias .............. HK 20.1<br />

Lutz, Matthias F. M. ..........HK 2.2<br />

Lynen, U. ...................HK 12.3<br />

Ma, W. C. .................HK 10.10<br />

Macchiavelli, A. . . . ..........HK 30.3<br />

Macchiavelli, A. O. HK 10.8, HK 10.10<br />

Macharashvili, G. .............HK 5.9<br />

Machner, H. HK 5.4, HK 5.4, HK 5.7,<br />

HK 12.17, HK 12.17, HK 12.19,<br />

HK 12.19, HK 26.5, HK 26.5<br />

Madland, D. G. ..............HK 29.5<br />

Magiera, A. ..................HK 5.7<br />

Mahjour-Shafiei, M. ....HK 10.30,<br />

HK 10.34, HK 12.33<br />

Mahnke, Nils ................HK 29.4<br />

Maier, L. ...................HK 12.20<br />

Maier-Komor, P. .............HK 30.3<br />

Maier-Komor, Peter ...........HK 7.4<br />

Malcherek, D. ...............HK 25.5<br />

Mallion, S. .................HK 10.12<br />

Mandal, Samit ...............HK 48.1<br />

Manil, B. ....................HK 26.6<br />

Mannweiler, H. ....HK 14.<strong>11</strong>, HK 21.4<br />

Marco, Eugenio .....HK 9.5, HK 19.6<br />

Marginean, N. . . . . . .HK 10.5, HK 45.4<br />

Marin , A. ..................HK 14.24<br />

Marin, Ana ..................HK 20.4<br />

Marinova, K. ................HK 31.1<br />

Markert, C. HK 6.2, HK 13.6, HK 33.2<br />

Markushin, V. ...............HK 26.6<br />

Martemyanov, Boris ...........HK 2.4<br />

Martens, Gunnar . . . HK 38.2, HK 44.3<br />

Martin, I. ..................HK 14.28<br />

Martinez, T. . . . HK 10.5, HK 17.3,<br />

HK 45.4<br />

Maruhn, J. A. . ......HK 3.8, HK 29.5<br />

Marx, D. ....................HK 9.27<br />

Marx, G. .....................HK 7.3<br />

Maschuw, R. .................HK 5.7<br />

Matea, Iolanda ..............HK 45.3<br />

Mathes, Hermann-Josef .....HK 14.36<br />

Matos, M. .................HK 12.20<br />

Matschinsky, P. ..............HK 10.4<br />

Mattiello, Stefano ...........HK 9.28<br />

Mayer-Kuckuk, T. ............HK 5.7<br />

Mazzocchi, C. ......HK 3.6, HK 10.24<br />

McMahan, M. ...............HK 30.3<br />

Meier, R. ..........HK 12.3, HK 46.5<br />

Meier, Rudolf ................HK 46.4<br />

Menegazzo, R. . . . . . HK 3.3, HK 10.17<br />

Menshikov, Alexandre .......HK 14.36<br />

Mergel, E. ...................HK 39.2<br />

Merschmeyer, Markus ........HK 20.3<br />

Merten, Dirk .......HK 37.5, HK 43.2<br />

Mertler, G. ...................HK 5.7<br />

Mertzimekis, T. J. ...........HK 30.3<br />

Merzliakov, S. ...............HK 42.3<br />

Metag, V. ...................HK 12.3<br />

Metag, Volker ...............HK 48.5<br />

Metsch, Bernard . HK 9.24, HK 37.5,<br />

HK 43.2<br />

Metz, Andreas ................HK 2.6<br />

Meyer, H. O. ................HK 42.4<br />

Michel, P. ...................HK 21.5<br />

Michel, Peter . . . . . HK 14.34, HK 21.2<br />

Michel, Thilo ....HK 12.31, HK 12.34<br />

Micheletti, S. ................HK 24.2<br />

Micherdzińska, A. ..........HK 10.30<br />

Migura, Sascha ..............HK 37.5<br />

Mihailescu, L. ......HK 3.3, HK 10.17<br />

Mihailescu, Lucian ............HK 7.8<br />

Mikirtytchiants, M. ...........HK 5.9<br />

Mikirtytchiants, Maxim . . HK 14.29,<br />

HK 14.31, HK 42.5<br />

Milosevic, Jovan .............HK 41.3<br />

Miniball - Collaboration . . HK 10.6,<br />

HK 31.3<br />

Mischke, A. . . . HK 13.7, HK 33.2,<br />

HK 33.3, HK 41.4<br />

Mischke, André ......HK 6.2, HK 33.4<br />

Möller, O. ...................HK 10.1<br />

Möller, Oliver . . . . . HK 10.2, HK 10.31<br />

Mohr, P. ....HK 10.26, HK 10.27,<br />

HK 14.32, HK 18.2, HK 18.3,<br />

HK 18.4<br />

Mohrmann, E. C. ............HK 25.1<br />

MOMO - Collaboration .......HK 5.7<br />

Montani, Fernando ..........HK 44.1<br />

Moore, R. B. ................HK 17.2<br />

Mora, Maria .........HK 6.5, HK 13.8<br />

Morgenstern, R. ............HK 14.19<br />

Mornas, L. ..................HK <strong>11</strong>.2<br />

Mornas, Lysiane ..............HK 4.5<br />

Mos, Sander .................HK 28.3<br />

Mosel, Ulrich . . .HK 16.3, HK 29.3,<br />

HK 38.2, HK 38.4, HK 44.5<br />

Moskal, P. ...................HK 12.3<br />

Moskal, Pawe̷l ................HK 5.1<br />

Motzke, Andreas .............HK 9.30<br />

Mühlich, Pascal ..............HK 38.4<br />

Müller, Beatrix ......HK 4.6, HK <strong>11</strong>.4<br />

Müller, G. ..........HK 10.9, HK 31.2<br />

Müller, Stefan E. ............HK 46.2<br />

Münch, M. HK 14.1, HK 14.3, HK 48.4<br />

Muenstermann, Daniel ........HK 4.8<br />

Münzenberg, G. ....HK 7.3, HK 12.20<br />

Müther, Herbert .....HK 4.7, HK 44.1<br />

Mukherjee, M. ................HK 7.3<br />

Mukherjee, S. ..............HK 10.28<br />

Munkel, J. ....................HK 5.7<br />

muon g.-2. collaboration, on behalf of<br />

the .....................HK 35.1<br />

Mussgiller, A. . . ..............HK 42.3<br />

Muttere, M. .................HK 9.27<br />

Mutti, P. ....................HK 45.5<br />

Máté, Z. ...........HK 3.4, HK 10.14<br />

NA49 - Collaboration . . . .HK 13.6,<br />

HK 13.7, HK 33.1, HK 33.3,<br />

HK 33.4, HK 41.4<br />

Nähle, O. ...................HK 28.4<br />

Napoli, D. R. . . . HK 3.3, HK 10.5,<br />

HK 10.<strong>11</strong>, HK 10.17, HK 39.4,<br />

HK 45.4<br />

Napoli, Daniel R. ............HK 10.7<br />

Naumann, Lothar ............HK 48.3<br />

Navilliat Cuncic, Oscar .......HK 45.3<br />

Neff, Thomas ................HK 43.4<br />

Negret, A. ................. HK 10.15<br />

Nekipelov, M. ................HK 5.9<br />

Nekipelov, Mikhail ..........HK 14.31<br />

Nelms, N. ...................HK 26.6<br />

Nelson, John ................HK 34.3<br />

Nelyubin, V. ..................HK 5.9<br />

Nenoff, N. ...................HK 39.2<br />

Neugart, R. .................HK 31.1<br />

Neumaier, S. R. .............HK 9.27<br />

Neumayr, J. ..................HK 7.3<br />

Neusser, A. .......HK 10.<strong>11</strong>, HK 39.2<br />

Newman, R. ................HK 10.28<br />

Neyens, Gerda . . . . . .HK 45.3, HK 50.3<br />

Nieminen, A. .................HK 7.5<br />

Nijboer, T. ..................HK 42.1<br />

Noertershaeuser, W. .........HK 9.27<br />

Nogga, A. ..................HK 10.30<br />

Nord, A. ....................HK 10.4<br />

Nosser, A. ..................HK 14.13<br />

Novotny, Rainer .............HK 48.5<br />

Nowacki, F. .................HK 30.2<br />

Oberstedt, A. ..............HK 10.32<br />

Oberstedt, Andreas ....HK 10.33,<br />

HK 14.22<br />

Oberstedt, S. ...............HK 10.32<br />

Oberstedt, Stephan .........HK 10.33<br />

Oertel, Micaela ...............HK 2.5<br />

Ohtsubo, T. ................HK 12.20<br />

Okamura, H. ................HK 24.2<br />

Oldenburg, Markus . . HK 6.5, HK 13.8<br />

Ollitrault, Jean-Yves . . .......HK 33.4<br />

Oppermann, T. ..............HK 9.16<br />

Orth, H. ....................HK 12.3<br />

Ossmann, Jens ..............HK 9.21<br />

Otten, Ernst W. .............HK <strong>11</strong>.4<br />

Otten, Ernst Wilhelm .........HK 4.6<br />

Ouimet, Pierre ................HK 9.7<br />

Paetz gen. Schieck, H. ........HK 5.9<br />

Paetz gen. Schieck, Hans . HK 14.29,<br />

HK 14.31, HK 42.5<br />

Pätzold, J. ..................HK 46.1<br />

Pätzold, Jens ................HK 46.4<br />

Pakou, A. ...................HK 30.3<br />

Palit, R. .....................HK 24.5<br />

Pancella, P. V. ..............HK 42.4<br />

Pancholi, S. C. .............HK 10.<strong>11</strong><br />

Papka, P. ...................HK 45.4<br />

Paradellis, T. . . . .............HK 25.5<br />

Park, S. H. ..................HK 25.1<br />

Parodi, Katia ................HK 48.7<br />

Pascovici, G. ................HK 10.6<br />

Pasquini, Barbara .............HK 2.6<br />

Pasternak, A. A. . . . HK 3.3, HK 10.17<br />

Paul, S. .....................HK 12.3<br />

Paul, Stephan . . . HK 7.1, HK 7.4,<br />

HK 14.16, HK 26.3, HK 28.2,<br />

HK 28.6<br />

Pauly, C. ....................HK 40.5<br />

Pavlenko, Oleg ..............HK 23.4<br />

Pechenov, V. ................HK 14.6<br />

Peitzmann, Thomas ...........HK 1.3<br />

Penninga, T. D. .............HK 9.25<br />

Perez Garcia, M. A. ..........HK <strong>11</strong>.2<br />

Peters, K. ...................HK 12.3<br />

Petkov, Pavel ................HK 10.7<br />

Petrache, C. ................HK 10.<strong>11</strong><br />

Petri, M. ...........HK 14.4, HK 14.5<br />

Petri, Markus ................HK 13.2<br />

Petrus, A. ....................HK 5.9<br />

Petry, Herbert-R. . . . HK 37.5, HK 43.2<br />

Petzoldt, Gerd ........HK 7.1, HK 7.4<br />

Peusquens, R. ...............HK 10.1<br />

Pezoldt, G. .................HK 10.21<br />

Pfeiffer, B. ..................HK 18.1<br />

Pfeiffer, M. ..................HK 32.1<br />

Phair, L. ....................HK 30.3<br />

PHENIX - Collaboration . . . HK 6.1,<br />

HK 6.7<br />

Pickert, N. .................HK 14.18<br />

Pietralla, N. . . . HK 10.4, HK 10.8,<br />

HK 15.4, HK 17.1, HK 30.5<br />

Pietraszko, Jerzy ............HK 48.2<br />

pirner, hans juergen ..........HK 38.3<br />

Pitz, H. H. ....HK 10.3, HK 10.4,<br />

Index of Authors<br />

HK 10.12, HK 30.5, HK 39.3<br />

Platz, M. .........HK 14.35, HK 21.5<br />

Platzer, Klaus ..............HK 14.15<br />

Plettner, C. .................HK 45.1<br />

Pobylitsa, P. V. ...............HK 2.1<br />

Pochodzalla, J. .....HK 12.3, HK 12.7<br />

Podchasky, S. ..............HK 14.30<br />

Podsvirova, E. O. . . HK 3.3, HK 10.17<br />

Pönisch, Falk ...............HK 14.33<br />

Poghosyan, Gevorg ..........HK <strong>11</strong>.1<br />

Polachic, C. ..................HK 7.7<br />

Polasik, Marek ...............HK 20.6<br />

Polleri, Alberto ..............HK 27.2<br />

Pollock, R. E. ...............HK 42.4<br />

Polyakov, M. ................HK 23.6<br />

Polyakov, M. V. . . HK 2.1, HK 9.20,<br />

HK 29.2<br />

Pommerrenig, Dieter ........HK 14.23<br />

Ponomarev, V. .............HK 10.28<br />

Poskanzer, Art ...............HK 33.4<br />

Post, H. .....................HK 42.1<br />

Post, Marcus ................HK 38.4<br />

Prade, H. ...................HK 30.4<br />

Prasuhn, D. . . . ...............HK 5.9<br />

Prasuhn, Dieter ..............HK 21.1<br />

PROMICE/WASA - Collaboration<br />

HK 46.1<br />

Protic, D. ...................HK 42.3<br />

Przewoski, B. v. .............HK 42.4<br />

Pühlhofer, Falk ..............HK 33.1<br />

Putschke, Jörn ......HK 6.5, HK 13.8<br />

Pérez, Armando ..............HK 4.5<br />

Quin, P. A. ..................HK 42.4<br />

Quint, W. ....................HK 7.3<br />

Radyushkin, A. V. HK 9.16, HK 9.17,<br />

HK 38.6<br />

Rahaman, S. ................. HK 7.3<br />

Rainovski, G. ................HK 10.5<br />

Raiola, Francesco ............HK 18.5<br />

Rakers, S. . . . HK 10.15, HK 10.16,<br />

HK 24.4<br />

Rakow, P. E.L. ..............HK 16.4<br />

Ramachers, Yorck .............HK 4.8<br />

Raman, S. .................HK 10.32<br />

Ramström, Elisabet . . . . HK 10.33,<br />

HK 14.22<br />

Rangacharyulu, C. . . HK 7.7, HK 12.30<br />

Rathmann, F. .......HK 5.9, HK 42.4<br />

Rathmann, Frank HK 14.29, HK 14.31,<br />

HK 42.5<br />

Ratzinger, Ulrich ...........HK 14.21<br />

Reif, J. ......................HK 30.4<br />

Reifarth, Rene ...............HK 25.2<br />

Reinhard, P.-G. ......HK 3.8, HK 29.5<br />

Reinhard, Paul-Gerhard ......HK 9.18<br />

Reischl, Andreas .............HK 28.3<br />

Reiter, P. ....................HK 30.4<br />

Reitz, B. ........HK 10.16, HK 10.20<br />

Rejmund, M. . ...............HK 30.2<br />

Renfordt, R. . . . . HK 6.2, HK 13.6,<br />

HK 13.7, HK 33.2, HK 33.3,<br />

HK 41.4<br />

Renfordt, Rainer . . . HK 33.4, HK 41.1<br />

Renk, Thorsten . . HK 9.3, HK 27.2,<br />

HK 27.4<br />

REX-ISOLDE - Collaboration<br />

HK 14.21, HK 31.3, HK 49.4<br />

Reygers, Klaus ................HK 6.1<br />

Reymann, J. . . HK 12.10, HK 14.14,<br />

HK 14.25, HK 28.1<br />

Rhone-Neckar-Flow - Collaboration<br />

HK 23.2<br />

Richter, A. . . . HK 10.16, HK 10.20,<br />

HK 10.25, HK 10.28, HK 12.30,<br />

HK 14.35, HK 17.4, HK 21.5<br />

Ricken, Ralf .................HK 9.24<br />

Rinckel, T. ..................HK 42.4<br />

Rinneberg, H. ..............HK 10.23<br />

Ritman, J. . . . . HK 12.3, HK 12.4,<br />

HK 14.4, HK 14.5<br />

Ritman, James ..............HK 13.2<br />

Rochholz, H. ......HK 14.<strong>11</strong>, HK 21.4<br />

Rochman, D. ...............HK 10.32<br />

Rochow, W. ................HK 14.32<br />

Rodriguez, D. .................HK 7.3<br />

Rodriguez, Rayner ...........HK 23.1<br />

Rodrígez, D. .................HK 17.2<br />

Röhrich, Dieter ..............HK 34.3<br />

Röpke, G. ...................HK 16.7<br />

Rogachevskiy , A. ..........HK 14.19<br />

Rolfs, Claus .................HK 18.5<br />

Rombouts, Stefan ...........HK 22.3<br />

Rossen, P. v. .................HK 5.7<br />

Rossi Alvarez, C. . . . HK 3.3, HK 10.17<br />

Rossi-Alvarez, C. . . . HK 10.2, HK 39.4<br />

Roth, Robert ................HK 43.4<br />

Roth, Thomas ...............HK 16.6<br />

Rousseau, M. ......HK 25.5, HK 45.4<br />

Rowley, N. ..................HK 25.5<br />

Roy, B. ..........HK 12.17, HK 12.17<br />

Rummukainen, Kari ..........HK 44.2<br />

Ruprecht, Götz ..............HK <strong>11</strong>.5


Rusev, G. ..................HK 10.12<br />

Rusi El Hassani, A. J. ........HK 26.6<br />

Ryckebusch, Jan . . . HK 37.2, HK 37.3<br />

Ryde, H. ....................HK 39.4<br />

Ryezayeva, N. ..............HK 10.25<br />

Rz¸aca-Urban, T. . . . HK 3.3, HK 10.17<br />

S174 - Collaboration .HK 3.5, HK 24.1<br />

Sadovski, Alexandre HK 14.6, HK 48.3<br />

Saha, B. ....................HK 10.1<br />

Saha, Swapan K. ............HK 42.4<br />

Sailer, B. . HK 14.1, HK 14.3, HK 48.4<br />

Sako, Hiroyuki ...............HK 41.5<br />

Sanchez, M. .................HK 14.6<br />

Sandoval, A. . . . .HK 6.2, HK 13.6,<br />

HK 13.7, HK 33.2, HK 33.3<br />

Sandoval, Andres ............HK 33.4<br />

SAPHIR - Collaboration . .HK 12.26,<br />

HK 12.27, HK 32.5<br />

Sapojnikov, M. ..............HK 12.3<br />

Sarkadi, J. ....................HK 5.9<br />

Sassen, Felix ................HK 43.6<br />

Sato, M. ...................HK 12.20<br />

Sauli, Fabio ................HK 14.16<br />

Sauvan, E. ..................HK 17.2<br />

Schäfer, A. HK 9.16, HK 23.6, HK 38.6<br />

Schäfer, Andreas . HK 16.4, HK 29.1,<br />

HK 38.1, HK 44.2<br />

Schäfer, D. ........HK 14.4, HK 14.5<br />

Schaefer, Daniel .............HK 13.2<br />

Schall, Jean-Pierre . . .HK 4.6, HK <strong>11</strong>.4<br />

Schatz, H. ...................HK 18.1<br />

Scheck, M. . . . . HK 10.3, HK 10.4,<br />

HK 10.12, HK 30.5, HK 39.3<br />

Scheid, W. . . .HK 10.18, HK 10.19,<br />

HK 17.6<br />

Scheidenberger, C. . . HK 7.3, HK 17.2<br />

Scheinast, Werner ............HK 6.8<br />

Scheit, Heiko .......HK 31.3, HK 45.6<br />

Schempp, Alwin .............HK 21.6<br />

Scherer, Stefan ..............HK 35.4<br />

Schielke, S. ........HK 10.9, HK 31.2<br />

Schill, C. . ..................HK 12.13<br />

Schilling, K. D. . . HK 10.4, HK 10.5,<br />

HK 10.12<br />

Schleichert, R. ...............HK 42.3<br />

Schmid, Karl W. .............HK 23.1<br />

Schmidt, A. .................HK 17.1<br />

Schmidt, K. .................HK 30.2<br />

Schmidt, R. . . HK 10.15, HK 10.16,<br />

HK 24.4<br />

Schmidt, Rudolf .............HK 41.1<br />

Schmidt, T. . . HK 12.10, HK 14.14,<br />

HK 14.25<br />

Schmidt, Thomas ............HK 28.1<br />

Schmidt-Boecking, Horst . . . . . HK 21.6<br />

Schmitt, H. . . HK 12.10, HK 14.14,<br />

HK 14.25, HK 28.1<br />

Schmitt, L. ........HK 12.3, HK 28.1<br />

Schmitt, Lars ......HK 26.3, HK 28.6<br />

Schmitz, Norbert . . . . HK 6.5, HK 13.8<br />

Schnare, H. .................HK 30.4<br />

Schneider, I. . . . HK 10.1, HK 10.2,<br />

HK 17.1<br />

Schneider,RolandA. HK9.2,HK9.3,<br />

HK 16.5, HK 27.2, HK 27.4<br />

Schneider, Sonja .............HK 43.1<br />

Schnitker, H. .................HK 5.7<br />

Schönmeier, Peter ..........HK 12.23<br />

Schönwasser, G. ............HK 10.<strong>11</strong><br />

Schönwaßer, G. ..............HK 39.4<br />

Scholten, Olaf ...............HK 44.6<br />

Schott, Wolfgang .....HK 7.1, HK 7.4<br />

Schramm, S. ........HK 3.8, HK 29.5<br />

Schrieder, G. ......HK 12.30, HK 21.5<br />

Schroeder, W. . . . . . .HK 5.8, HK 12.24<br />

Schuck, P. .................. HK 16.7<br />

Schuck, Tanja ...............HK 47.4<br />

Schürmann, Daniel ..........HK 18.6<br />

Schüttauf, Andreas . . HK 6.5, HK 13.8<br />

Schulday, Inez ..............HK 12.27<br />

Schulte-Wissermann, Martin HK 14.37<br />

Schumacher, Martin .........HK 26.1<br />

Schwalm, D. ................HK 30.4<br />

Schwalm, Dirk ...............HK 45.6<br />

Schwamb, Michael . HK 9.26, HK 37.4<br />

Schwartz, B. ................HK 42.4<br />

Schwarz, C. . . . HK 12.3, HK 12.6,<br />

HK 13.3<br />

Schwarz, S. ................. HK 17.2<br />

Schwarz, Thomas M. ..........HK 2.7<br />

Schweda, K. ................HK 10.16<br />

Schweitzer, Peter ............HK 19.4<br />

Schweizer, B. .....HK 14.35, HK 21.5<br />

Schwengner, R. . .HK 10.4, HK 10.5,<br />

HK 10.12, HK 17.3, HK 30.4<br />

Schwenzer, kai .....HK 23.2, HK 38.3<br />

Scobel, W. ..................HK 40.5<br />

Sefzick, T. .................HK 14.27<br />

Segel, R. E. .................HK 25.4<br />

Seibert, Joachim .............HK 48.3<br />

Seifert, P. ..................HK 10.23<br />

Seitz, Björn .................HK 19.3<br />

Sendoval, A. .................HK 41.4<br />

Senger, Peter ................HK 20.1<br />

Servene, T. ..................HK 30.4<br />

Seth, K. .....................HK 12.3<br />

Sewtz, M. ....................HK 7.3<br />

Seyboth, Janet ......HK 6.5, HK 13.8<br />

Seyboth, Peter ......HK 6.5, HK 13.8<br />

Seyfarth, H. ..................HK 5.9<br />

Seyfarth, Hellmut HK 14.29, HK 14.31,<br />

HK 42.5<br />

Sharma, Hariprakash ........HK 10.13<br />

Shawcross, M. ...............HK 10.8<br />

Shevchenko, A. .HK 10.16, HK 10.25,<br />

HK 10.28<br />

Shin, Yanghwan .............HK 20.1<br />

Shindo, M. .................HK 12.20<br />

Shneidman, T. M. ....HK 10.18,<br />

HK 10.19, HK 17.6<br />

Sieber, T. ....................HK 7.5<br />

Sieber, Thomas . . HK 14.20, HK 14.21<br />

Siemssen, R. ................HK 25.4<br />

Sikler, G. ...........HK 7.3, HK 17.2<br />

Simon, Frank . . . HK 6.5, HK 13.8,<br />

HK 14.16, HK 28.6<br />

Simon, H. ...................HK 31.1<br />

Simon, Haik .................HK 47.1<br />

Simon, R. S. ................HK 13.5<br />

Simon, Reinhard .............HK 20.1<br />

Simons, L. M. ...............HK 26.6<br />

Singh, A. K. ......HK 10.<strong>11</strong>, HK 39.2<br />

Skibiński, R. ................HK 10.30<br />

Skoda, S. ...................HK 30.4<br />

Sletten, G. ..................HK 39.4<br />

Slivova, Jana ................HK 41.3<br />

Smit, F. ....................HK 10.28<br />

Smyrski, J. ...................HK 5.7<br />

Snover, K. A. ................HK 25.1<br />

Sobiella, Manfred ............HK 48.3<br />

Sobolev, Y. ................ HK 10.23<br />

Söldner, Wolfgang ...........HK 16.4<br />

Sohler, D. ...........HK 3.4, HK 39.1<br />

Sonnabend, K. . HK 14.32, HK 18.2,<br />

HK 18.3, HK 18.4<br />

Spanier, Stefan ..............HK 49.2<br />

Speidel, K.-H. . . HK 10.9, HK 30.3,<br />

HK 31.2<br />

Speth , Josef . . . HK 9.29, HK 9.30,<br />

HK 43.1, HK 43.6<br />

Spitzenberg, Thomas ........HK 38.3<br />

Stanoiu, Mihai ...............HK 45.3<br />

STAR - Collaboration .........HK 6.4<br />

Stascheck, A. . . . . . HK 14.35, HK 21.5<br />

Staudt, G. ...................HK 25.5<br />

Stedile, F. ....HK 10.3, HK 10.4,<br />

HK 10.12, HK 30.5, HK 39.3<br />

Stefanescu, I. ................HK 17.3<br />

Stefanova, E. ................HK 17.3<br />

Steffens, E. ...................HK 5.9<br />

Steffens, Erhard ............HK 14.31<br />

Steidl, Markus ................HK 4.4<br />

Steiger, T. D. ...............HK 25.1<br />

Stein, Eckart ................HK 29.4<br />

Steinhardt, T. ......HK 17.3, HK 30.4<br />

Stejiger, Jos .................HK 28.3<br />

Steltenkamp, S. ............HK 12.21<br />

Stelzer, Herbert .............HK 41.1<br />

Stinzing , F. . . . HK 5.8, HK 12.24,<br />

HK 28.4<br />

Stock, R. HK 6.2, HK 13.6, HK 13.7,<br />

HK 33.2, HK 33.3, HK 41.4<br />

Stock, Reinhard . HK 6.4, HK 14.23,<br />

HK 33.4, HK 34.3<br />

Stoyer, M. ...................HK 10.8<br />

Strieder, Frank .....HK 18.5, HK 25.3<br />

Strikman, M. I. ...............HK 2.1<br />

Ströbele, H. . . . . HK 6.2, HK 13.6,<br />

HK 33.2, HK 33.3, HK 41.4<br />

Ströbele, Herbert . . . HK 20.1, HK 33.4<br />

Ströebele, H. ................HK 13.7<br />

Ströher, H. ...................HK 5.9<br />

Ströher, Hans ....HK 14.29, HK 14.31<br />

Stroth, Joachim .............HK 20.1<br />

Struck, Christof .....HK 6.4, HK 34.3<br />

Strzalkowski, A. ..............HK 5.7<br />

Stuchbery, A. E. .............HK 30.3<br />

Sturm, Christian ..............HK 8.3<br />

Suarez Curieses, J. P. ........HK <strong>11</strong>.2<br />

Sulaksono, A. .......HK 3.8, HK 29.5<br />

SUNS colaboration - Collaboration<br />

HK 4.3<br />

SUNS collaboration - Collaboration<br />

HK 7.2<br />

Suzuki, K. ..................HK 12.20<br />

Suzuki, T. ..................HK 12.20<br />

Swanson, H. E. ..............HK 25.1<br />

Szerypo, J. ...................HK 7.5<br />

Szilner, S. ...................HK 25.5<br />

Szymanowski, Lech . HK 29.1, HK 38.1<br />

Tanihata, I. ................. HK 9.27<br />

TAPS- Collaboration . . . HK 20.4,<br />

HK 28.7<br />

TAPSand A2 - Collaboration HK 32.1<br />

TAPS- and A2 - Collaboration HK 12.2<br />

TAPS- und A2 - Collaboration HK 32.3<br />

TAPS/A2 - Collaboration ....HK 32.2<br />

Tarisien, M. ..................HK 7.3<br />

Tatischeff, V. ................HK 25.5<br />

Tcherniakhovski, Denis . . . . . HK 14.36<br />

Tchernov, Nikolay ..........HK 14.29<br />

Teichert, Jochen . . HK 14.34, HK 21.2<br />

Teryaev, O. V. .....HK 38.1, HK 38.6<br />

Teufel, A. ...................HK 28.4<br />

Teughels, Stephanie ..........HK 45.3<br />

the ISOLDE-Collaboration . . . .HK 17.2<br />

Thelen, O. HK 10.5, HK 17.3, HK 30.4<br />

Thibaud, J. P. ...............HK 25.5<br />

Thirolf, P. ....................HK 7.3<br />

Thoma, Ulrike ...............HK 36.2<br />

Thomas, H. G. ......HK 7.6, HK 30.4<br />

Thümmler, Thomas . HK 4.6, HK <strong>11</strong>.4<br />

Thummerer, S. ..............HK 45.4<br />

Tilsner, Heinz ...............HK 33.5<br />

Timmermans, R. ...........HK 14.19<br />

Timmermans, R. G.E. ........HK 9.25<br />

Timmermans, Rob ...........HK 44.6<br />

Titze, O. .........HK 14.35, HK 21.5<br />

Tjon, John ..................HK 44.6<br />

Tjø. m, P. O. ...............HK 39.4<br />

Tölle, R. .....................HK 5.7<br />

Tohsaki, A. ..................HK 16.7<br />

Toia, A. ...........HK 14.4, HK 14.5<br />

Toia, Alberica ...............HK 13.2<br />

Toman, R. ..................HK 39.3<br />

Tomaseli, M. ................HK 9.27<br />

Tonev, D. ...................HK 10.1<br />

Tonev, Dimitar . . . . HK 10.7, HK 10.31<br />

Torilov, S. ...................HK 45.4<br />

Tovesson, Fredrik ...........HK 10.33<br />

Trautmann, Wolfgang ........HK 47.6<br />

Traxler, M. .........HK 14.4, HK 14.5<br />

Traxler, Michael .............HK 13.2<br />

Trinks, Uwe ..........HK 7.1, HK 7.4<br />

Trnka, D. ...................HK 12.2<br />

Tsekhanovitsch, I. ..........HK 10.32<br />

Tumino, A. ..................HK 45.4<br />

Turzó, Ketel .................HK 13.4<br />

Tyminski, Zbigniew ..........HK 48.6<br />

Typel, Stefan ...... HK 18.7, HK 43.3<br />

Uhlig, Florian ................HK 20.2<br />

Ulicny, M. .......HK 12.19, HK 12.19<br />

University of Leuven, GANIL, University<br />

of Sofia, FLNR-JINR Dubna,<br />

University of Gottingen. -<br />

Collaboration ...........HK 50.3<br />

Ur, C. ............HK 10.<strong>11</strong>, HK 45.4<br />

Ur, C. A. ....................HK 10.5<br />

Urban, W. .........HK 3.3, HK 10.17<br />

Uusitalo, J. ..................HK 30.2<br />

Uzikov, Yu. ........HK 5.9, HK 12.22<br />

van Asselt, W. ...............HK 42.1<br />

van Beuzekom, Martin .......HK 28.3<br />

vandenBerg,A.M. HK3.4,HK7.7,<br />

HK 10.14, HK 10.15, HK 10.16,<br />

HK 10.30, HK 24.2, HK 25.4,<br />

HK 39.1<br />

van den Berg, Ad ............HK 20.6<br />

van der Grinten, M. G.D. . . . HK 10.21<br />

van der Veen, S. .............HK 42.1<br />

van der Werf, S. Y. ...........HK 3.4<br />

van Hees, Hendrik ...........HK 23.3<br />

Vanderhaeghen, Marc .........HK 2.6<br />

Varentsov, V. .................HK 7.3<br />

Vassiliev, A. ..................HK 5.9<br />

Vassiliev, Alexandre . . . . HK 14.29,<br />

HK 14.31, HK 42.5<br />

Vereshagin, V. V. ............HK 9.20<br />

Vidal, Michael .......HK 6.5, HK 13.8<br />

Vlassov, N. ..................HK 12.3<br />

Vogel, C. ...................HK 14.18<br />

Vogt, K. HK 3.7, HK 10.26, HK 14.32,<br />

HK 18.2, HK 18.3, HK 18.4<br />

Volz, S. . . . . HK 10.25, HK 10.26,<br />

HK 14.32, HK 18.2, HK 18.3,<br />

HK 18.4<br />

von Brentano, P. . .HK 3.1, HK 10.1,<br />

HK 10.2, HK 10.3, HK 17.1,<br />

HK 30.1, HK 30.5, HK 39.3<br />

von Brentano, Peter .........HK 10.7<br />

von Garrel, H. . . HK 10.3, HK 10.12,<br />

HK 30.5, HK 39.3<br />

von Geramb, Heinrich V. .....HK 43.5<br />

von Hodenberg, M. HK 14.14, HK 28.1<br />

von Hodenberg, Martin .....HK 12.10<br />

von Neumann-Cosel, P. . . HK 10.16,<br />

HK 10.20, HK 10.25, HK 10.28,<br />

HK 17.4<br />

von Oertzen, W. .............HK 45.4<br />

von Smekal, Lorenz ...........HK 8.1<br />

von Wrochem, Florian .......HK 46.4<br />

Vranic , D. HK 6.2, HK 13.7, HK 33.3,<br />

HK 41.4<br />

Vranic, Danilo ......HK 33.4, HK 41.1<br />

Vranić, D. .........HK 13.6, HK 33.2<br />

Vyvey, Katrien ...............HK 45.3<br />

Index of Authors<br />

WA98 - Collaboration .........HK 6.3<br />

Waasem, T. ..................HK 7.6<br />

Wagner, A. .......HK 10.5, HK 10.12<br />

Wagner, Boris ..............HK 14.23<br />

Wagner, G. J. ......HK 46.1, HK 46.5<br />

Wagner, Gerhard J. ..........HK 46.4<br />

Wagner, M. ........HK 5.8, HK 12.24<br />

Wagner, Robert ....HK 28.2, HK 28.6<br />

Walcher, Th. ................HK 21.4<br />

Walker, T. G. ...............HK 42.4<br />

Wambach, J. . .HK 10.20, HK 10.25,<br />

HK 10.28<br />

Wambach, Jochen HK 9.22, HK 16.6,<br />

HK 36.1<br />

Wang, H. ...................HK 9.27<br />

Ward, D. ...................HK 10.10<br />

Warr, N. . . .HK 7.6, HK 10.6, HK 17.3<br />

Watzlawik, S. . . . . . HK 14.35, HK 21.5<br />

Webb, R. ....................HK 28.4<br />

Weber, C. ...........HK 7.3, HK 17.2<br />

Weber, Hans J ..............HK 9.28<br />

Weber, T. ........HK 14.<strong>11</strong>, HK 21.4<br />

Weick, H. ..................HK 12.20<br />

Weidlich, U. .................HK 46.1<br />

Weigert, Heribert ............HK 44.2<br />

Weil, J. .....................HK 25.5<br />

Weiland, T. .................HK 21.5<br />

Weinheimer, Christian HK 4.6, HK <strong>11</strong>.4<br />

Weise, H. ...................HK 21.5<br />

Weise, W. ...................HK 12.3<br />

Weise, Wolfram . . .HK 2.7, HK 9.3,<br />

HK 9.5, HK 9.6, HK 16.5, HK 27.2,<br />

HK 27.4, HK 38.5<br />

Weiskopf, Christoph ........HK 12.12<br />

Weiss, C. HK 9.16, HK 9.17, HK 23.6,<br />

HK 38.6<br />

Weisshaar, D. ...............HK 17.3<br />

Weissman, L. ................HK 31.1<br />

Weißhaar, D. ........HK 7.6, HK 10.6<br />

Wellenstein, Hermann .......HK 14.15<br />

Wellinghausen, A. ...........HK 42.4<br />

Welsch, Carsten .............HK 21.6<br />

Werner, V. HK 3.1, HK 10.3, HK 10.4,<br />

HK 30.1, HK 30.5, HK 39.3<br />

Wessels, Johannes P. ........HK 41.2<br />

Wetzel, Stefan .....HK 19.6, HK 23.5<br />

Wetzlar, A. ...................HK 6.2<br />

Wetzler, A. . . . .HK 13.6, HK 13.7,<br />

HK 33.2, HK 33.3, HK 41.4<br />

Wetzler, Alexander ...........HK 33.4<br />

Widmann, Eberhard .........HK 24.3<br />

Wiedner, U. .................HK 12.3<br />

Wiescher, Michael ...........HK 25.2<br />

Wiese, Uwe-Jens .............HK 15.1<br />

Wiesmann, Michael .HK 28.2, HK 28.6<br />

Wilbert, S. ..................HK 31.1<br />

Wilfart, A. ....................HK 7.5<br />

Willmann, L. . . .............HK 14.19<br />

Wilms, Andrea ..............HK 31.5<br />

Wilschut, H. W. . . .HK 14.19, HK 25.4<br />

Wilschut, Hans ..............HK 20.6<br />

Wilson, J. N. . . . . . HK 10.10, HK 39.4<br />

Windelband, Bernd ..........HK 41.1<br />

Winkler, M. ................HK 12.20<br />

Winkler, S. HK 14.1, HK 14.3, HK 48.4<br />

Winter, G. ..................HK 30.4<br />

Winter, Peter .................HK 5.6<br />

Wirth, Hans-Friedrich .......HK 10.31<br />

Wirth, S. . HK 5.8, HK 12.24, HK 28.4<br />

Wise, T. ....................HK 42.4<br />

Wissmann, Frank ............HK 26.1<br />

Wita̷la, H. ................. HK 10.30<br />

Wörtche, H. J. . . HK 7.7, HK 10.15,<br />

HK 10.16, HK 10.30, HK 24.2,<br />

HK 25.4, HK 39.1<br />

Wörtche, Heinrich ...........HK 48.5<br />

Wolf, Gy. ....................HK 13.9<br />

Wolschin, Georg .............HK 27.5<br />

Wolter, Hermann . HK 18.7, HK 43.3,<br />

HK 47.5<br />

Worch, J. . . . HK 12.10, HK 14.14,<br />

HK 14.25, HK 28.1<br />

Wu, C. Y. ...................HK 10.8<br />

Wüstenfeld, Jörn ............HK 14.7<br />

Wuestner, P. ...............HK 14.27<br />

Xu, Zhe ...........HK 9.14, HK 44.3<br />

Yamazaki, T. ...............HK 12.20<br />

Yaschenko, S. .................HK 5.9<br />

Yepes, Pablo ................HK 34.3<br />

Yoneyama, T. ..............HK 12.20<br />

Zabrodin, Eugene ............HK 27.1<br />

Zalikhanov, B. ................HK 5.9<br />

Zamfir, N. V. ................HK 10.8<br />

Zaranek , J. ....HK 6.2, HK 13.6,<br />

HK 13.7, HK 33.2, HK 33.3<br />

Zaranek, Jacek .....HK 33.4, HK 41.4<br />

Zegers, R. ..................HK 10.14<br />

Zell, K. O. .........HK 10.1, HK 10.2<br />

Zetenyi, M. .................HK 13.9<br />

Ziegler, R. ...................HK 28.4<br />

Zielinska-Pfabe, Malgorzata . . HK 47.5<br />

Zilges, A. HK 3.7, HK 10.8, HK 10.25,


HK 10.26, HK 10.27, HK 14.32,<br />

HK 18.2, HK 18.3, HK 18.4<br />

Zilges, Andreas ..............HK 15.3<br />

Zimmer, O. ................HK 10.21<br />

Zimmer,Oliver ...HK7.1,HK7.4,<br />

HK 50.2<br />

Zmeskal, H. .................HK 26.6<br />

Zolnai, L. .....................HK 3.4<br />

Zschocke, Sven ..............HK 23.4<br />

Zuber, Kai ...................HK 4.8<br />

Zumbruch, P. ................HK 14.6<br />

Zumbruch, Peter ............ HK 14.2<br />

Index of Authors<br />

Zwoll, K. .....................HK 5.9<br />

Zyuzin, A. ...................HK 25.1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!