16.01.2013 Views

Columbia River Project Water Use Plan - BC Hydro

Columbia River Project Water Use Plan - BC Hydro

Columbia River Project Water Use Plan - BC Hydro

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Columbia</strong> <strong>River</strong> <strong>Project</strong> <strong>Water</strong> <strong>Use</strong> <strong>Plan</strong><br />

Kinbasket and Revelstoke Reservoirs Ecological<br />

Productivity Monitoring – Progress Report Year 2<br />

Reference: CLBMON-3<br />

<strong>Columbia</strong> <strong>River</strong> <strong>Water</strong> <strong>Use</strong> <strong>Plan</strong> Monitoring Program:<br />

Kinbasket and Revelstoke Reservoirs Ecological Productivity<br />

Monitoring<br />

Study Period: 2009<br />

<strong>BC</strong> <strong>Hydro</strong><br />

<strong>Water</strong> Licence Requirements<br />

January 2011


Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

Progress Report Year 2 (2009)<br />

Wood <strong>River</strong> near confluence with Kinbasket Reservoir, July 8, 2009.<br />

Prepared by:<br />

Karen Bray, M.Sc., R.P.Bio.<br />

<strong>Water</strong> Licence Requirements<br />

Revelstoke, B.C.


This is a progress report for a long term monitoring program and, as such, contains preliminary data.<br />

Conclusions are subject to change and any use or citation of this report or the information herein<br />

should note this status.<br />

Suggested Citation for Progress Report:<br />

<strong>BC</strong> <strong>Hydro</strong>. 2011. Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring. Progress<br />

Report Year 2 (2009). <strong>BC</strong> <strong>Hydro</strong>, <strong>Water</strong> Licence Requirements. Study No. CLBMON-3. 4pp.<br />

+ appendices.<br />

Suggested Citation for Individual Reports contained within:<br />

Harris, S. 2011. Primary Productivity in Kinbasket and Revelstoke Reservoirs, 2009. Prepared for<br />

<strong>BC</strong> <strong>Hydro</strong>, <strong>Water</strong> Licence Requirements. 21 pp.. Appendix 5 in <strong>BC</strong> <strong>Hydro</strong>. 2011.<br />

Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring. Progress Report<br />

Year 2 (2009). <strong>BC</strong> <strong>Hydro</strong>, <strong>Water</strong> Licence Requirements. Study No. CLBMON-3. 4pp. +<br />

appendices.


CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

2009 Progress Report<br />

Acknowledgements<br />

The successful implementation of such a large and complex project is due to the continuing efforts of<br />

many people and they are gratefully acknowledged for their valuable contributions.<br />

Field Crew<br />

Beth Manson, <strong>BC</strong> <strong>Hydro</strong><br />

Pierre Bourget, <strong>BC</strong> <strong>Hydro</strong><br />

Greg Andrusak, Redfish Consulting<br />

Study Team<br />

Dr. Ken Ashley, Ashley and Associates<br />

Dr. Roger Pieters, U<strong>BC</strong><br />

Dale Sebastian, Ministry of Environment<br />

Eva Schindler, Ministry of Environment<br />

Shannon Harris, Ministry of Environment<br />

Specialised Analyses<br />

Darren Brandt, TG Eco-Logic<br />

Dr. John Stockner, TG Eco-Logic<br />

Dr. Lidlija Vidmanic, Limno Lab<br />

Erland MacIsaac, Department of Fisheries and Oceans, Cultus Lake<br />

Kerry Parrish, Department of Fisheries and Oceans, Cultus Lake<br />

<strong>BC</strong> <strong>Hydro</strong> Personnel<br />

Judy Bennett, <strong>BC</strong> <strong>Hydro</strong>, Mica<br />

Pat Vonk, <strong>BC</strong> <strong>Hydro</strong>, WLR<br />

John Kelly, <strong>BC</strong> <strong>Hydro</strong>, WLR<br />

Jim Van Denbrand, Fleet Services<br />

<strong>BC</strong> <strong>Hydro</strong><br />

<strong>Water</strong> Licence Requirements<br />

i


CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

2009 Progress Report<br />

<strong>BC</strong> <strong>Hydro</strong><br />

<strong>Water</strong> Licence Requirements<br />

Table of Contents<br />

ACKNOWLEDGEMENTS........................................................................................................................ I<br />

1.0 INTRODUCTION .........................................................................................................................1<br />

1.1 MANAGEMENT QUESTIONS..............................................................................................................1<br />

1.2 OBJECTIVES ...................................................................................................................................1<br />

2.0 STUDY TEAM..............................................................................................................................2<br />

3.0 REFERENCES ................................................................................................................................4<br />

APPENDICES<br />

Appendix 1<br />

<strong>Hydro</strong>logy of Kinbasket and Revelstoke Reservoirs, 2009<br />

Appendix 2<br />

Tributary <strong>Water</strong> Quality<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Appendix 3<br />

CTD Surveys<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Appendix 4<br />

Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Appendix 5<br />

Primary Productivity<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Appendix 6<br />

Phytoplankton<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Appendix 7<br />

Zooplankton<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

List of Tables<br />

Table 1: Study team members and affiliation, 2009..............................................................................2<br />

Table 2. Roles and responsibilities for implementation of CLBMON-3 in 2009. ...................................2<br />

Table 3. Summary of Kinbasket and Revelstoke Reservoirs field sampling program 2009. ................3<br />

ii


CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

2009 Progress Report<br />

1.0 Introduction<br />

This report summarises the Year 2 (2009) implementation of CLBMON-3 Kinbasket and Revelstoke<br />

Reservoirs Ecological Productivity Monitoring project (“the study”). This report contains preliminary<br />

data and conclusions are subject to change. Any citations of this report or the data contained herein<br />

must note this status.<br />

The <strong>Columbia</strong> <strong>River</strong> <strong>Water</strong> <strong>Use</strong> <strong>Plan</strong> (WUP) (<strong>BC</strong> <strong>Hydro</strong> 2007a) was concluded in 2004 following four<br />

years of public consultation (<strong>BC</strong> <strong>Hydro</strong> 2005). <strong>Water</strong> <strong>Use</strong> <strong>Plan</strong>s were developed for each of <strong>BC</strong><br />

<strong>Hydro</strong>’s facilities to achieve optimal balance among operations and environmental and social values.<br />

A lack of basic ecological data and information on Kinbasket and Revelstoke Reservoirs impeded<br />

informed decisions for any operational changes in the upper <strong>Columbia</strong> <strong>River</strong> system. The WUP<br />

Consultative Committee acknowledged the importance of understanding reservoir limnology and the<br />

influence of current operations on ecosystem processes for planning future water management<br />

activities. Therefore, a monitoring program was recommended to provide long-term data on reservoir<br />

limnology and the productivity of pelagic communities. This study is conducted in conjunction with<br />

CLBMON-2 Kinbasket and Revelstoke Reservoirs Kokanee Population Monitoring and is scheduled<br />

for implementation over twelve years (2008-2019).<br />

1.1 Management Questions<br />

A Terms of Reference (TOR) (<strong>BC</strong> <strong>Hydro</strong> 2007b) for this study outlines the rationale, approach, and<br />

primary management questions to be addressed. The TOR also provides a framework for<br />

implementation. The study is to focus on:<br />

i) Reservoir trophic web mechanisms and dynamics;<br />

ii) Obtaining measurements of aquatic productivity that can be used as parameters for<br />

system modeling; and<br />

iii) Determining key indicators of change in pelagic production that would ultimately affect<br />

food availability and, thus, growth of kokanee.<br />

The management questions to be addressed by this study are as follows:<br />

i) What are the long-terms trends in nutrient availability and how are lower trophic levels<br />

affected by these trends?<br />

ii) What are the interactions between nutrient availability, productivity at lower trophic levels<br />

and reservoir operations?<br />

iii) Is pelagic productivity, as measured by primary production, changing significantly over<br />

the course of the monitoring period?<br />

iv) If changes in pelagic productivity are detected, are the changes affecting kokanee<br />

populations?<br />

v) Is there a link between reservoir operation and pelagic productivity? What are the best<br />

predictive tools for forecasting reservoir productivity?<br />

vi) How do pelagic productivity trends in Kinbasket and Revelstoke reservoirs compare with<br />

similar large reservoir/lake systems (e.g., Arrow Lakes Reservoir, Kootenay Lake,<br />

Okanagan Lake, Williston Reservoir)?<br />

vii) Are there operational changes that could be implemented to improve pelagic productivity<br />

in Kinbasket Reservoir?<br />

1.2 Objectives<br />

The study objectives are to conduct reservoir pelagic productivity monitoring and establish long term<br />

sampling sites and consistent methodologies and analyses for comparison with other <strong>Columbia</strong><br />

reservoir monitoring programs (e.g. Arrow Lakes Reservoir, Kootenay Lake).<br />

<strong>BC</strong> <strong>Hydro</strong><br />

<strong>Water</strong> Licence Requirements<br />

1


CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

2009 Progress Report<br />

2.0 Study Team<br />

The study team (Table 1) met on November 6, 2009, to discuss progress on the management<br />

questions and evaluate the sampling program and initial results from 2008 and 2009. The monitoring<br />

program is being implemented in a phased approach in conjunction with the Kinbasket-Revelstoke<br />

Reservoirs Kokanee Population Monitoring program (CLBMON-2). Sampling is planned on a 4-year<br />

cycle, thereby taking advantage of information gained in each sampling period to define the data<br />

needs for future years. Each phase will conclude with a synthesis report with an annual progress<br />

report prepared in intervening years. The first phase of the study is focussing on the hydrology and<br />

nutrient budget and general biological data. Reservoir sampling stations were selected based on<br />

previous work, information needs, and logistical considerations.<br />

Table 1: Study team members and affiliation, 2009.<br />

Study Team Member Affiliation<br />

Karen Bray, <strong>Project</strong> Manager/Biologist <strong>BC</strong> <strong>Hydro</strong>, <strong>Water</strong> Licence Requirements<br />

Dr. Ken Ashley, Principal Ashley and Associates<br />

Dr. Roger Pieters, Associate Professor<br />

<strong>BC</strong> <strong>Hydro</strong><br />

<strong>Water</strong> Licence Requirements<br />

University of British <strong>Columbia</strong>, Dept. of Earth and<br />

Ocean Sciences<br />

Dale Sebastian, Ecosystems Biologist Ministry of Environment, Ecosystems Branch<br />

Eva Schindler, Fertilization Limnologist<br />

Ministry of Environment, Environmental<br />

Stewardship, Fish and Wildlife<br />

Shannon Harris, Limnologist Ministry of Environment, Ecosystems Branch<br />

Implementation of this study continues to follow the approach of using a combination of in house and<br />

external resources. Overall project management and field work is conducted using in house <strong>BC</strong><br />

<strong>Hydro</strong> resources and external expertise is secured to provide analysis and reporting for specific<br />

components (Table 2). In 2009, analysis of primary production was assumed by the Ministry of<br />

Environment under a Collaborative Agreement with <strong>BC</strong> <strong>Hydro</strong> and Shannon Harris joined the Study<br />

Team.<br />

Table 2. Roles and responsibilities for implementation of CLBMON-3 in 2009.<br />

Component Personnel Affiliation<br />

<strong>Project</strong> Management<br />

Field Program Supervision<br />

Karen Bray <strong>BC</strong> <strong>Hydro</strong><br />

Field Sampling Beth Manson, Pierre Bourget, <strong>BC</strong> <strong>Hydro</strong><br />

<strong>Hydro</strong>logy and Nutrient Budget Dr. Roger Pieters<br />

U<strong>BC</strong>, Earth and Ocean<br />

Sciences<br />

Primary Production<br />

Shannon Harris<br />

Greg Andrusak (field)<br />

Ministry of Envrionment<br />

Redfish Consulting<br />

Phytoplankton/Picoplankton<br />

Darren Brandt and Dr. John<br />

Stockner<br />

TG Eco-Logic<br />

Zooplankton Dr. Lidlija Vidmanic Limno Lab<br />

In Year 2 (2009) monthly sampling was started in May and concluded in October (Table 3). Depth<br />

profile data for May 2009 were not collected as the equipment had not yet been returned from<br />

calibration by the manufacturer (Table 3). This progress report presents a study overview followed by<br />

individual progress reports for the hydrology, water quality, and biological components of the 2009<br />

sampling year. More specific information is contained in these reports. A synthesis report is<br />

scheduled for Year 4 (2012).<br />

2


CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

2009 Progress Report<br />

Table 3. Summary of Kinbasket and Revelstoke Reservoirs field sampling program 2009.<br />

Stations<br />

Tribs<br />

REV<br />

Forebay<br />

REV<br />

Middle<br />

REV<br />

Upper<br />

KIN Mid<br />

Pool<br />

KIN<br />

Col<br />

Reach<br />

KIN<br />

Wood<br />

Arm<br />

KIN<br />

Canoe<br />

Method Depths KIN<br />

Forebay<br />

Sampling<br />

Frequency<br />

Parameter<br />

(Parameter)<br />

Rev<br />

Dam<br />

crest<br />

Mica<br />

dam<br />

crest<br />

Fixed data<br />

logger<br />

Hourly/Daily<br />

Weather<br />

(temp, ppt, bp,<br />

RH, PAR, wind<br />

√ √ √ √ √ √ √ √<br />

0 to 60m+<br />

(to within 5 m of<br />

bottom)<br />

Seabird<br />

Jun-Oct<br />

Monthly (5)<br />

(missed May)<br />

√ √ √ √ √ √ √<br />

2,5,10,15,20,<br />

60m and 5m off<br />

bottom<br />

Bottle,<br />

integrated<br />

tube<br />

May-Oct<br />

Monthly (6)<br />

0-20m for Si<br />

Surface grab √<br />

Bucket,<br />

bottle<br />

One freshet<br />

sampling in July.<br />

Five reference<br />

tribs once in<br />

A/S/O/N and twice<br />

speed, direction)<br />

Profiles<br />

(DO, temp, cond,<br />

chl a, PAR,<br />

turbidity)<br />

<strong>Water</strong> Chem -<br />

Reservoir<br />

(TP, SRP, TDP,<br />

cond, NO2+NO3,<br />

alk, pH, turb)<br />

(silica on<br />

integrated)<br />

Secchi disk<br />

<strong>Water</strong> Chem -<br />

Tributary<br />

(TP, SRP, TDP,<br />

cond, NO2+NO3,<br />

pH, alk, turb,<br />

temp)<br />

0-20m √ √ √ √ √ √ √<br />

Integrated<br />

tube<br />

in M/J/J<br />

May-Oct<br />

Monthly (6)<br />

Chl a<br />

√ √ √ √ √ √ √<br />

0-10m (2,5,10) &<br />

10-20m<br />

(12,15,20)<br />

Composites<br />

AND<br />

Bottle<br />

May-Oct<br />

Monthly (6)<br />

Phytoplankton<br />

2,5,10,15,20m<br />

May-Oct<br />

0-10m &10-20m<br />

Bacteria<br />

Bottle<br />

√ √ √ √ √ √ √<br />

Monthly (6)<br />

composites<br />

May-Oct<br />

Wisconsin<br />

Zooplankton<br />

0-30m √ √ √ √ √ √ √<br />

Monthly (6) net 3 hauls<br />

Primary<br />

June-Sep<br />

3 size 2,5,10,15,20m<br />

√* √ √<br />

Production Monthly (4) fractions TBD on site<br />

*Note that station for PP is farther out towards the main pool than the regular sampling station in the forebay.<br />

3<br />

<strong>BC</strong> <strong>Hydro</strong><br />

<strong>Water</strong> Licence Requirements


CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

2009 Progress Report<br />

3.0 References<br />

<strong>BC</strong> <strong>Hydro</strong>. 2007a. <strong>Columbia</strong> <strong>River</strong> <strong>Project</strong>s <strong>Water</strong> <strong>Use</strong> <strong>Plan</strong>. Revised for Acceptance by the<br />

Comptroller of <strong>Water</strong> Rights. <strong>BC</strong> <strong>Hydro</strong>. 41 pp + appendix.<br />

<strong>BC</strong> <strong>Hydro</strong>. 2007b. CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity<br />

Monitoring Terms of Reference. <strong>BC</strong> <strong>Hydro</strong> dated October 24, 2007.<br />

<strong>BC</strong> <strong>Hydro</strong>. 2005. <strong>Columbia</strong> <strong>River</strong> <strong>Project</strong> <strong>Water</strong> <strong>Use</strong> <strong>Plan</strong> Consultative Committee Report. Volumes<br />

1 and 2. Prepared on behalf of the Consultative Committee for the <strong>Columbia</strong> <strong>River</strong> <strong>Water</strong><br />

<strong>Use</strong> <strong>Plan</strong>. July 2005.<br />

<strong>BC</strong> <strong>Hydro</strong><br />

<strong>Water</strong> Licence Requirements<br />

4


CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

2009 Progress Report<br />

Appendix 1<br />

<strong>Hydro</strong>logy of Kinbasket and Revelstoke Reservoirs, 2009<br />

<strong>BC</strong> <strong>Hydro</strong><br />

<strong>Water</strong> Licence Requirements<br />

Roger Pieters, Dan Robb, and Greg Lawrence<br />

University of British <strong>Columbia</strong>


<strong>Hydro</strong>logy of Kinbasket and Revelstoke Reservoirs, 2009<br />

Roger Pieters 1,2 , Dan Robb 2 , and Greg Lawrence 2<br />

1 Department of Earth and Ocean Sciences, University of British <strong>Columbia</strong>, Vancouver,<br />

B.C. V6T 1Z4<br />

2 Department of Civil Engineering, University of British <strong>Columbia</strong>, Vancouver, B.C.<br />

V6T 1Z4<br />

Revelstoke National Park, 23 Aug 2010<br />

Prepared for<br />

Karen Bray<br />

Biritsh <strong>Columbia</strong> <strong>Hydro</strong> and Power Authority<br />

1200 Powerhouse Road<br />

Revelstoke B.C. V0E 2S0<br />

January 26, 2011


Contents<br />

1. Introduction......................................................................................................................1<br />

2. Annual <strong>Water</strong> Balance .....................................................................................................1<br />

3. <strong>Columbia</strong> <strong>River</strong> at Donald ...............................................................................................4<br />

4. <strong>Columbia</strong> <strong>River</strong> at Mica Dam .........................................................................................5<br />

5. <strong>Columbia</strong> <strong>River</strong> at Revelstoke Dam ................................................................................6<br />

6. Local Metered Flows .......................................................................................................6<br />

7. Kinbasket Reservoir <strong>Water</strong> Level....................................................................................7<br />

8. Revelstoke Reservoir <strong>Water</strong> Level ..................................................................................8<br />

9. Summer 2009...................................................................................................................8<br />

Appendix 1 Gauging Stations in the Kinbasket/Revelstoke Drainage<br />

Appendix 2 Reference Elevations for the Mica and Revelstoke <strong>Project</strong>s<br />

List of Figures<br />

Figure 1.1 Upper <strong>Columbia</strong> <strong>River</strong> Basin<br />

Figure 1.2 Kinbasket Reservoir<br />

Figure 1.3 Revelstoke Reservoir<br />

Figure 3.1 <strong>Columbia</strong> <strong>River</strong> at Donald<br />

Figure 3.2 <strong>Columbia</strong> <strong>River</strong> at Donald, 2003-2009<br />

Figure 4.1 <strong>Columbia</strong> <strong>River</strong> at Mica Dam<br />

Figure 4.2 <strong>Columbia</strong> <strong>River</strong> at Mica Dam, 2003-2009<br />

Figure 5.1 <strong>Columbia</strong> <strong>River</strong> at Revelstoke Dam<br />

Figure 5.2 <strong>Columbia</strong> <strong>River</strong> at Revelstoke Dam, 2003-2009<br />

Figure 6.1 Beaver <strong>River</strong><br />

Figure 6.2 Gold <strong>River</strong><br />

Figure 6.3 Goldstream <strong>River</strong><br />

Figure 6.4 Illecillewaet <strong>River</strong><br />

Figure 6.5 Comparison of 2008 river flows<br />

Figure 6.6 Comparison of 2009 river flows<br />

Figure 7.1 <strong>Water</strong> Level: Kinbasket Reservoir at Mica Dam<br />

Figure 7.2 <strong>Water</strong> Level: Kinbasket Reservoir at Mica Dam, 2003-2009<br />

Figure 8.1 <strong>Water</strong> Level: Revelstoke Reservoir<br />

Figure 8.2 <strong>Water</strong> Level: Revelstoke Reservoir, 2003-2009<br />

i


1. Introduction<br />

The hydrology of Kinbasket and Revelstoke Reservoirs is described, focusing on<br />

observed flows in 2009. This report provides context for the ongoing <strong>BC</strong> <strong>Hydro</strong> project<br />

entitled “Kinbasket and Revelstoke Ecological Productivity Monitoring (CLBMON-3)”.<br />

The upper <strong>Columbia</strong> <strong>River</strong> is defined in Figure 1.1 as the flow of the <strong>Columbia</strong> <strong>River</strong><br />

near the Canada-US border, excluding the Pend Oreille <strong>River</strong> which joins the <strong>Columbia</strong><br />

just above the border. Also excluded are the Kettle, Okanagan and Similkameen <strong>River</strong>s<br />

which join the <strong>Columbia</strong> in Washington State. The upper <strong>Columbia</strong> accounts for only<br />

13% of the area of the <strong>Columbia</strong> <strong>River</strong>, but contributes 27% of the total flow. Kinbasket<br />

and Revelstoke reservoirs account for 4% of the area of the <strong>Columbia</strong>, and contribute<br />

11% of the flow, Table 1.1.<br />

Table 1.1 Drainage area, mean flow and yield of selected regions of the <strong>Columbia</strong> <strong>River</strong><br />

Kinbasket and Revelstoke Reservoirs<br />

(WSC 08ND011 1955-1986)<br />

Upper <strong>Columbia</strong>, Figure 1.1<br />

(WSC 08NE058 minus 08NE010)<br />

<strong>Columbia</strong> <strong>River</strong><br />

(Kammerer, 1990)<br />

1<br />

Drainage<br />

(km 2 )<br />

Flow<br />

(m 3 /s)<br />

Yield<br />

(m)<br />

26,400 796 0.95<br />

89,700 2,047 0.72<br />

668,000 7,500 0.35<br />

The headwater of the <strong>Columbia</strong> <strong>River</strong> begins in wetlands adjoining <strong>Columbia</strong> Lake,<br />

Figure 1.1. The <strong>Columbia</strong> <strong>River</strong> flows north-west through Windermere Lake and into<br />

Kinbasket Reservoir. Just before Mica Dam the <strong>Columbia</strong> <strong>River</strong> turns almost 180<br />

degrees and flows south into Revelstoke Reservoir and then into the Arrow Lakes<br />

Reservoir.<br />

Basic characteristics of Kinbasket and Revelstoke reservoirs are compared to other major<br />

lakes and reservoirs from the Upper <strong>Columbia</strong> in Table 1.2. Kinbasket and Revelstoke<br />

reservoirs are shown in greater detail in Figures 1.2 and 1.3, respectively. The length of<br />

the reservoirs and their reaches are given in Table 1.3. Data in italics are approximate<br />

and will be updated as detailed drainage and bathymetry data become available.<br />

2. Annual <strong>Water</strong> Balance<br />

Kinbasket Reservoir<br />

Kinbasket Reservoir is shown in Figure 1.2. To the southwest, the <strong>Columbia</strong> <strong>River</strong> enters<br />

the <strong>Columbia</strong> Reach about 20 km downstream of Donald Station. To the east, the Canoe<br />

<strong>River</strong> enters the Canoe Reach near the town of Valemount. These two long, narrow<br />

reaches join near Mica Dam.


Table 1.2 Characteristics of major lakes and reservoirs of the Upper <strong>Columbia</strong><br />

Dam Dam<br />

Completed<br />

(year)<br />

Dam<br />

Height<br />

(m)<br />

2<br />

Max.<br />

Depth<br />

(m)<br />

Max. Res.<br />

Area<br />

(km 2 )<br />

Mean<br />

Outflow<br />

(m 3 /s)<br />

Kinbasket Mica 1973 244 ~185 425 590<br />

Revelstoke Revelstoke 1984 175 ~125 115 750<br />

Arrow Keenleyside 1968 52 290/190 520 1,080<br />

Koocanusa Libby 1973 95 107 186 350<br />

Duncan Duncan 1967 39 147 75 90<br />

Kootenay Cora Linn 1931 38 154 390 780<br />

Drawdown<br />

(m)<br />

Drawdown<br />

Area<br />

(km 2 )<br />

Drawdown<br />

Area<br />

(% full)<br />

Kinbasket 47 220 50%<br />

Revelstoke 1.5 2.4 2%<br />

Arrow 20 159 30%<br />

Koocanusa 52<br />

Duncan 28<br />

Kootenay 3<br />

The water balance for Kinbasket Reservoir is given in Table 2.1. Also given is the<br />

annual water yield from the drainage. The yield is the average annual outflow divided by<br />

the drainage area and represents the average depth of net annual precipitation over the<br />

drainage. The local inflow to Kinbasket Reservoir has about twice the yield as the<br />

<strong>Columbia</strong> <strong>River</strong> above Donald, indicating increased precipitation in the local drainage.<br />

Table 1.3 Length of reservoirs *<br />

Reservoir Length (km)<br />

Kinbasket Reservoir 190<br />

<strong>Columbia</strong> Reach 100<br />

Canoe Reach 90<br />

Revelstoke Reservoir 130<br />

Upper Revelstoke 80<br />

Lower Revelstoke 50<br />

Arrow Lakes Reservoir 240<br />

Revelstoke Reach 55<br />

Upper Arrow 70<br />

Narrows 25<br />

Lower Arrow 90<br />

Kootenay Lake* 107<br />

* Table 3.1, Pieters et al. (2003); values in italics are approximate


Local inflow to Kinbasket dominates the water balance contributing 66% of the inflow.<br />

In contrast, the Canoe <strong>River</strong>, while having a high yield contributes only 3% due to its<br />

relatively small drainage.<br />

Table 2.1 Annual water balance for Kinbasket Reservoir<br />

Area (km 2 )<br />

Flow<br />

(m 3 /s)<br />

Yield<br />

(m/yr)<br />

Qin <strong>Columbia</strong> R. at Donald Station 9,710 172 0.56<br />

Qin Canoe <strong>River</strong> near Valemount 368 (2%) 19* (3%) 1.6*<br />

Qloc Local Flow into Kinbasket 11,422 (53%) 376 (66%) 1.0<br />

Qout<br />

<strong>Columbia</strong> <strong>River</strong> at Nagle Creek<br />

(Mica Dam Outflow)<br />

21,500 567 0.83<br />

*Estimated from partial data for 1966-1967.<br />

Prior to Mica Dam, most of Kinbasket Reservoir was river, with the exception of<br />

Kinbasket Lake which was approximately 10 km long, located near Kinbasket Creek on<br />

the <strong>Columbia</strong> Reach. <strong>Water</strong> Survey Canada had gauges at several sites along what would<br />

become Kinbasket Reservoir, shown in Figure 1.2. The data from these sites (Appendix<br />

1) allow the division of Kinbasket Reservoir into the regions given in Table 2.2. The<br />

inflow of the Upper <strong>Columbia</strong> Reach is particularly large, matching the inflow of the<br />

<strong>Columbia</strong> <strong>River</strong> at Donald.<br />

Table 2.2 Drainage, flow and yield of regions in Kinbasket Reservoir<br />

Canoe<br />

<strong>River</strong><br />

Canoe<br />

Reach<br />

Wood<br />

Arm<br />

3<br />

Lower<br />

<strong>Columbia</strong><br />

Reach 1<br />

Upper<br />

<strong>Columbia</strong><br />

Reach 2<br />

<strong>Columbia</strong><br />

<strong>River</strong><br />

Above<br />

Donald<br />

Drainage (km 2 ) 368 2,922 956 3,250 4,290 9,710<br />

Inflow (m 3 /s) ~19 86 40 85 165 172<br />

Yield (m) ~1.6 0.93 1.3 0.82 1.2 0.56<br />

% of outflow 3% 15% 7% 15% 29% 30%<br />

1 Between Mica Dam and the <strong>Columbia</strong> <strong>River</strong> at Surprise Rapids<br />

2 Between the <strong>Columbia</strong> <strong>River</strong> at Surprise Rapids and <strong>Columbia</strong> <strong>River</strong> at Donald<br />

Revelstoke Reservoir<br />

Revelstoke Reservoir is shown in Figure 1.3. The entire length was formerly a river and<br />

the resulting reservoir is very narrow. The water balance for Revelstoke Reservoir is<br />

given in Table 2.3. For Revelstoke, the outflow from Mica Dam is the dominant (71%)<br />

inflow to the reservoir. While the local drainage to Revelstoke Reservoir is relatively<br />

small (19%), the higher yield of this drainage means that the local inflow still contributes<br />

29% to the total outflow.


Table 2.3 Annual water balance for Revelstoke Reservoir<br />

Area (km 2 ) Flow (m 3 /s)<br />

Yield<br />

(m/yr)<br />

<strong>Columbia</strong> <strong>River</strong> at Nagle Creek<br />

(Mica Dam Outflow)<br />

21,500 567 0.83<br />

Local Flow into Revelstoke 4,900 (19%) 229 (29%) 1.47<br />

<strong>Columbia</strong> <strong>River</strong> above Steamboat Rapids<br />

(Revelstoke Outflow)<br />

26,400 796 0.95<br />

Unlike Kinbasket Reservoir, no WSC data was available for the <strong>Columbia</strong> <strong>River</strong> along<br />

what would become Revelstoke Reservoir. While WSC lists a station “<strong>Columbia</strong> <strong>River</strong><br />

above Downie Creek” (08ND010), no data was available at this site. We divide<br />

Revelstoke Reservoir just above Downie Creek (Figure 1.3) into upper and lower reaches<br />

assuming the same yield to each, see Table 2.4. Note the drainage to the lower<br />

Revelstoke reach is relatively small.<br />

Table 2.4 Drainage, flow and yield of regions in Revelstoke Reservoir<br />

Mica Outflow<br />

(<strong>Columbia</strong><br />

above Nagle)<br />

4<br />

Upper<br />

Revelstoke<br />

Reach 1<br />

Lower<br />

Revelstoke<br />

Reach<br />

Drainage (km 2 ) 21,500 3,300 1,600<br />

Inflow (m 3 /s) 567 155 75<br />

Yield (m) 0.83 1.5 1.5<br />

Of outflow (%) 71% 19% 9%<br />

1 The boundary between upper and lower was chosen above Downie Creek.<br />

Values in italics are approximate.<br />

3. <strong>Columbia</strong> <strong>River</strong> at Donald<br />

Data<br />

Daily flow data were available for 1944-2009 from <strong>Water</strong> Survey of Canada (WSC)<br />

station 08NB005, entitled “<strong>Columbia</strong> <strong>River</strong> at Donald”. This station is located roughly<br />

20 km upstream of Kinbasket Reservoir.<br />

Results<br />

Figure 3.1(a) shows the daily flows for 1944-2009. The mean daily hydrograph shown in<br />

Figure 3.1(b) peaks from early June to mid-July at roughly 550 m 3 /s, tapering through the<br />

summer and fall to a base flow in the winter of approximately 35 m 3 /s. The mean annual<br />

flow for 1944-2009 was 171 m 3 /s.<br />

For 2003-2009, the daily flows are shown in Figure 3.2 along with the daily mean flow<br />

for 1944-2009. The flows for 2003-2009 generally followed the mean with a few


exceptions: in late fall of 2003 the flow rose to about 4 times the seasonal average; in<br />

2006 and 2007 the flows in the late spring were above average; in 2004 and 2009 the<br />

summer flows were below average.<br />

4. <strong>Columbia</strong> <strong>River</strong> at Mica Dam<br />

Data<br />

Data were available for 1947-1983 from WSC station 08ND007, entitled “<strong>Columbia</strong><br />

<strong>River</strong> above Nagle Creek”. This station is located approximately 3 km downstream of<br />

Mica Dam. Data for the Mica Dam Outflow were available for 1971-2009 from <strong>BC</strong><br />

<strong>Hydro</strong>. The data from “<strong>Columbia</strong> <strong>River</strong> above Nagle Creek” was used for 1947-1975<br />

and the <strong>BC</strong> <strong>Hydro</strong> data was used for 1976-2009.<br />

Results<br />

Pre- and post-impoundment flows are shown in Figure 4.1(a). The change in flow after<br />

completion of Mica Dam in 1973 is evident. Before impoundment, the hydrograph<br />

shown in Figure 4.1(b) had a large single peak of roughly 1600 m 3 /s from early June to<br />

mid-July. The flow gradually declined in the summer and fall until it reached a low base<br />

flow in the winter of around 120 m 3 /s. After Mica Dam was completed, the spring peak<br />

flow is reduced and replaced with a more variable flow throughout the year, Figure<br />

4.1(c). After impoundment, flow is retained during snowmelt in the spring, but once the<br />

impoundment fills, the tail of the freshet results in an increase in flow during the late<br />

summer. A second peak occurs as water is released during the winter for hydroelectric<br />

generation.<br />

The discharge from Mica Dam for 2003-2009 is shown in Figure 4.2, and generally<br />

followed the mean with the following notable exceptions: in most years outflow was<br />

below average from mid-May to mid-July; in 2004 the outflow was below average from<br />

August to October; and in 2008 flow was below average not only in early summer but in<br />

August and September as well. In 2009, outflow was slightly below average from mid<br />

July to mid August.<br />

5


5. <strong>Columbia</strong> <strong>River</strong> at Revelstoke Dam<br />

Data<br />

Daily flow data from two WSC stations were used for the <strong>Columbia</strong> <strong>River</strong> near<br />

Revelstoke Dam. For 1955-1985, data were available from WSC station 08ND011,<br />

entitled “<strong>Columbia</strong> <strong>River</strong> above Steamboat Rapids”. This station is located roughly 1.5<br />

km downstream of Revelstoke Dam. For 1986-2009, data was available from WSC<br />

station 08ND025, entitled “Revelstoke <strong>Project</strong> Outflow”.<br />

Results<br />

The daily discharge for 1955-2009 is shown in Figure 5.1(a). The change in flow due to<br />

the completion of the upstream Mica Dam in 1973 is evident. There is no obvious<br />

change in the flow upon the completion of Revelstoke Dam in 1984 as it is operated run<br />

of the river. The mean daily pre-impoundment hydrograph given by the data from the<br />

<strong>Columbia</strong> <strong>River</strong> above Steamboat Rapids is shown in Figure 5.1(b). The postimpoundment<br />

hydrograph given by the data from the Revelstoke <strong>Project</strong> Outflow is<br />

shown in Figure 5.1(c).<br />

Similar to that seen for the pre-impoundment flow at Mica Dam, the pre-impoundment<br />

outflow at Revelstoke showed a dramatic spring peak of about 2800 m 3 /s which declined<br />

through the summer and fall until it reached a low winter baseline of around 300 m 3 /s.<br />

Post-impoundment outflow shows the flow distributed more evenly throughout the year<br />

with minor peaks in the summer and winter.<br />

The Revelstoke discharge for 2003-2009 is shown in Figure 5.2, and generally followed<br />

the mean post-impoundment hydrograph.<br />

6. Local Metered Inflow<br />

Data<br />

Of the rivers and streams in the Kinbasket and Revelstoke drainage, few have been<br />

gauged by <strong>Water</strong> Survey Canada. Those that have been gauged are listed in Appendix 1.<br />

Beaver <strong>River</strong>, Gold <strong>River</strong>, and Goldstream <strong>River</strong> are all currently gauged and will serve<br />

as examples of tributary inputs. Although the Illecillewaet <strong>River</strong> enters the <strong>Columbia</strong><br />

<strong>River</strong> about 10 km downstream of Revelstoke Dam, it is included as an example of a<br />

gauged tributary because of its proximity, size, and long record of water quality data.<br />

6


Results<br />

Daily flow data for the four tributaries are summarized in Table 6.1. Figures 6.1-6.4(a)<br />

show the (a) daily and (b) mean flow for each tributary. The hydrographs for 2008 and<br />

2009 are compared in Figures 6.5 and 6.6, respectively, along with those of the <strong>Columbia</strong><br />

<strong>River</strong> at Donald and the <strong>Columbia</strong> <strong>River</strong> at Revelstoke. The hydrographs for the gauged<br />

tributaries are very similar, and generally resemble the flow of the uncontrolled <strong>Columbia</strong><br />

<strong>River</strong> at Donald.<br />

Table 6.1 Gauged tributaries flowing into the <strong>Columbia</strong> <strong>River</strong><br />

Station # Station Name Year<br />

Drainage<br />

Area<br />

(km 2 )<br />

Mean<br />

Flow<br />

(m 3 /s)<br />

Yield<br />

(m/yr)<br />

08NB019 Beaver <strong>River</strong> near the Mouth 1985-2009 1150 41.5 1.15<br />

08NB014 Gold <strong>River</strong> above Palmer Creek 1973-2009 427 18.2 1.35<br />

Goldstream <strong>River</strong> below Old<br />

08ND012<br />

Camp Creek<br />

1954-2009 938 38.9 1.31<br />

08ND013 Illecillewaet <strong>River</strong> at Greeley 1963-1994 1170 52.6 1.42<br />

7. Kinbasket Reservoir <strong>Water</strong> Level<br />

Data<br />

Daily water level data were available for 1974-2009 from WSC station 08ND017,<br />

entitled “Kinbasket Lake at Mica Dam”. This station is located in Kinbasket Reservoir<br />

near Mica Dam.<br />

Daily water level data were also available for 1980-2009 from WSC station 08NB017,<br />

entitled “Kinbasket Lake below Garrett Creek”. This station is located about 55 km<br />

southeast of Mica Dam in the <strong>Columbia</strong> Reach. Since both stations are on Kinbasket<br />

Reservoir, the water levels are expected to be comparable. The difference between the<br />

two stations was generally less than 0.5 m (std 0.2 m), except for April 2-30, 2007, when<br />

data at Kinbasket Lake at Mica Dam had a large (3 m) offset; this data was replaced with<br />

that from Kinbasket Lake below Garrett Creek.<br />

Results<br />

Figure 7.1(a) shows the daily water level of Kinbasket Lake for 1974-2009. Note the<br />

change in water level due to the completion of the dam in 1973. Figure 7.1(b) shows the<br />

mean daily post-impoundment water level for 1977-2009.<br />

7


The Kinbasket Lake water level for 2003-2009 is given in Figure 7.2 and generally<br />

followed the post-impoundment mean level with a few exceptions: in 2003 the water<br />

level was below average for the entire year; in 2004, the water level was below average<br />

from January to September; in 2008 the water level was slightly below average from<br />

January to August and then above average for the rest of the year.<br />

8. Revelstoke <strong>Water</strong> Level<br />

Data<br />

Daily water level data were available for 1984-2009 from the <strong>BC</strong> <strong>Hydro</strong> station located in<br />

the Revelstoke forebay.<br />

Results<br />

Figure 8.1(a) shows the water level of Revelstoke Reservoir for 1984-2009. Note the<br />

change in water level due to the completion of the dam in 1984. Figure 7.1(b) shows the<br />

mean daily post-impoundment water level averaged from 1988-2009. The water level<br />

varies by only a few meters, as the reservoir is operated run of the river.<br />

The annual water levels for 2003-2009 are shown in Figure 7.2, together with the mean<br />

post-impoundment level averaged from 1988-2009. The water levels for 2003-2009<br />

generally followed the post-impoundment mean levels. The largest change in water level<br />

was a drop of 1.5 m in February of 2003.<br />

9. Summer 2008 and 2009<br />

The summer, including those of 2008 and 2009, can be divided into two periods. From<br />

May to mid-July inflow to Kinbasket Reservoir is stored resulting in a rapid increase in<br />

water level (Figure 7.2f,g) and little outflow (Figure 4.2f,g). For the downstream<br />

Revelstoke Reservoir, this means that the major inflow from May to mid-July is freshet<br />

inflow from its local drainage. Because Revelstoke Reservoir is operated as run of the<br />

river (Figure 8.2f,g), the outflow from Revelstoke Reservoir is driven by local freshet<br />

inflow during this period. In 2008, the freshet peaked in mid May and again in early July<br />

(Figure 6.5). In 2009, freshet peaked in May and June (Figure 6.6).<br />

The second period is mid-July to September, when Kinbasket Reservoir has almost filled<br />

and the tail of the freshet is discharged from Mica Dam (Figure 4.2f,g). This increased<br />

flow from Kinbasket to Revelstoke makes up for the decline in local freshet inflow to<br />

Revelstoke and as a consequence the discharge from Revelstoke is similar in both periods<br />

(Figure 5.2f,g).<br />

8


Acknowledgements<br />

We gratefully acknowledge funding provided by B.C. <strong>Hydro</strong> and the assistance of A.<br />

Akkerman in preparation of the figures and tables.<br />

References<br />

Kammerer, J.C. 1990. Largest rivers in the United States. USGS <strong>Water</strong> Fact Sheet,<br />

Open File Report 87-242. http://pubs.usgs.gov/of/1987/ofr87-242/<br />

Pieters, R., L.C. Thompson, L. Vidmanic, S. Harris, J. Stockner, H. Andrusak, M. Young,<br />

K. Ashley, B. Lindsay, G. Lawrence, K. Hall, A. Eskooch, D. Sebastian, G.<br />

Scholten and P.E. Woodruff. 2003. Arrow Reservoir fertilization experiment,<br />

year 2 (2000/2001) report. RD 87, Fisheries Branch, Ministry of <strong>Water</strong>, Land and<br />

Air Protection, Province of British <strong>Columbia</strong>.<br />

<strong>Water</strong> Survey Canada. 2009. Hydat National <strong>Water</strong> Data Archive. Accessed at<br />

http://www.wsc.ec.gc.ca/products/hydat/main_e.cfm?cname=archive_e.cfm.<br />

9


Figure 1.1. Upper <strong>Columbia</strong> <strong>River</strong> Basin


Figure 1.2 Kinbasket Reservoir with gauging stations (RED) and<br />

sampled tributaries (YELLOW).


Figure 1.3 Revelstoke Reservoir with gauging stations (RED) and<br />

sampled tributaries (YELLOW).


Figure 3.1. (a) WSC station 08NB005, “<strong>Columbia</strong> <strong>River</strong> at Donald”, 1944-2009. (b) Mean flow for<br />

the years indicated. Mean (heavy line), maximum and minimum (medium lines) and mean ± one<br />

standard deviation (light lines).


Figure 3.2. WSC station 08NB005, “<strong>Columbia</strong> <strong>River</strong> at Donald”, 2003-2009 (heavy line). Mean flow<br />

for 1944-2009 (light line) is shown for comparison.


Figure 4.1. (a) WSC station 08ND007, “<strong>Columbia</strong> <strong>River</strong> above Nagle Creek”, 1947-1975 and <strong>BC</strong><br />

<strong>Hydro</strong> station “<strong>Columbia</strong> <strong>River</strong> at Mica Dam Outflow”, 1976-2009. (b) Mean pre-impoundment flow<br />

for the years indicated. (c) Mean post-impoundment flow for the years indicated. Mean (heavy line),<br />

maximum and minimum (medium lines) and mean ± one standard deviation (light lines).


Figure 4.2. <strong>BC</strong> <strong>Hydro</strong> station “<strong>Columbia</strong> <strong>River</strong> at Mica Dam Outflow”, 2003-2009 (heavy line).<br />

Mean flow for 1976-2009 (light line) is shown for comparison.


Figure 5.1. (a) WSC station 08ND011, “<strong>Columbia</strong> <strong>River</strong> above Steamboat Rapids”, 1955-1985 and<br />

WSC station 08ND025, “Revelstoke <strong>Project</strong> Outflow”, 1986-2009. (b) Mean pre-impoundment flow<br />

for the years indicated. (c) Mean post-impoundment flow for the years indicated. Mean (heavy line),<br />

maximum and minimum (medium lines) and mean ± one standard deviation (light lines).


Figure 5.2. WSC station 08ND025, “Revelstoke <strong>Project</strong> Outflow”, 2003-2009 (heavy line). Mean<br />

flow for 1986-2009 (light line) is shown for comparison.


Figure 6.1. (a) WSC station 08NB019, “'Beaver <strong>River</strong> near the Mouth”, 1985-2009. (b) Mean flow<br />

for the years indicated. Mean (heavy line), maximum and minimum (medium lines) and mean ± one<br />

standard deviation (light lines).


Figure 6.2. (a) WSC station 08NB014, “Gold <strong>River</strong> above Palmer Creek”, 1973-2009. (b) Mean flow<br />

for the years indicated. Mean (heavy line), maximum and minimum (medium lines) and mean ± one<br />

standard deviation (light lines).


Figure 6.3. (a) WSC station 08ND012, “Goldstream <strong>River</strong> below Old Camp Creek”, 1954-2009. (b)<br />

Mean flow for the years indicated. Mean (heavy line), maximum and minimum (medium lines) and<br />

mean ± one standard deviation (light lines).


Figure 6.4. (a) WSC station 08ND013, “Illecillewaet <strong>River</strong> at Greeley”, 1963-2009. (b) Mean flow<br />

for the years indicated. Mean (heavy line), maximum and minimum (medium lines) and mean ± one<br />

standard deviation (light lines).


Figure 6.5. Comparison of flows in 2008 for the stations indicated (heavy line). Mean flows for<br />

a) 1944-2009 b) 1985-2009 c) 1973-2009 d) 1954-2009 e) 1963-2009 f) 1986-2009 (light line).


Figure 6.6. Comparison of flows in 2009 for the stations indicated (heavy line). Mean flows for a)<br />

1944-2009 b) 1985-2009 c) 1973-2009 d) 1954-2009 e) 1963-2009 f) 1986-2009 (light line).


Figure 7.1. (a) WSC station 08ND017 “Kinbasket Lake at Mica Dam”, 1974-2009. (b) Mean daily<br />

water level for 1977-2009. Mean (heavy line), maximum and minimum (medium lines) and mean ±<br />

one standard deviation (light lines).


Figure 7.2. <strong>Water</strong> levels for WSC station 08ND017 “Kinbasket Lake at Mica Dam”, 2003-2009<br />

(heavy line). Mean daily water level for 1977-2009 (light line) is shown for comparison. Data for 2-30<br />

April 2007 replaced with that from Kinbasket Lake below Garrett Creek.


Figure 8.1. (a) <strong>BC</strong> <strong>Hydro</strong> station “Revelstoke Lake Forebay”, 1984-2009. (b) Mean daily water level<br />

for 1988-2009. Mean (heavy line), maximum and minimum (medium lines) and mean ± one standard<br />

deviation (light lines).


Figure 8.2. <strong>BC</strong> <strong>Hydro</strong> station “Revelstoke Lake Forebay”, 2003-2009 (heavy line). Mean daily water<br />

level for 1988-2009 (light line) is shown for comparison.


Appendix 1 Gauging Stations in the Kinbasket/ Revelstoke Drainage<br />

Type* Station #<br />

<strong>Columbia</strong> <strong>River</strong><br />

Abbr Station Name Year<br />

Drainage<br />

Area 1<br />

(km 2 )<br />

Mean<br />

Flow 1<br />

(m 3 /s)<br />

Yield<br />

(m/yr)<br />

Q 08NA045 <strong>Columbia</strong> <strong>River</strong> near Fairmont Hot Springs 1944-1996 891 10.4 0.37<br />

WL 08NA004 <strong>Columbia</strong> <strong>River</strong> at Athalmer 1944-1984 1340 - -<br />

ND 08NA027 <strong>Columbia</strong> <strong>River</strong> near Athalmer - - - -<br />

Q 08NA052 <strong>Columbia</strong> <strong>River</strong> near Edgwater 1950-1956 3550 58.7 0.52<br />

Q 08NA002 <strong>Columbia</strong> <strong>River</strong> at Nicholson 1903-2008 6660 107 0.51<br />

Q 08NB005 coldo <strong>Columbia</strong> <strong>River</strong> at Donald<br />

<strong>Columbia</strong> <strong>River</strong> at Calamity Curve near<br />

1944-2008 9710 172 0.56<br />

ND 08NB008 Beavermouth - - - -<br />

Q 08NB006 colsu <strong>Columbia</strong> <strong>River</strong> at Surprise Rapids 1948-1966 14000 337 0.76<br />

WL 08NB017 lking Kinbasket Lake below Garrett Creek<br />

<strong>Columbia</strong> <strong>River</strong> at Big Bend Highway<br />

1980-2008 - - -<br />

Q 08NB011 colbb Crossing 1944-1949 16800 472 0.89<br />

WL 08ND017 lkinm Kinbasket Lake at Mica Dam 1974-2008 - - -<br />

Q 08ND007 colna <strong>Columbia</strong> <strong>River</strong> above Nagle Creek 1947-1983 21500 567 0.83<br />

ND 08ND010 <strong>Columbia</strong> <strong>River</strong> above Downie Creek - - - -<br />

Q 08ND025 revpo Revelstoke <strong>Project</strong> Outflow 1986-2008 - 773 -<br />

Q 08ND011 colsr <strong>Columbia</strong> <strong>River</strong> above Steamboat Rapids 1955-1986 26400 796 0.95<br />

Q 08ND002 <strong>Columbia</strong> <strong>River</strong> at Revelstoke 1912-1989 26700 854 1.01<br />

WL - lreff Revelstoke Reservoir 1984-2008 - - -<br />

Local Flow in Kinbasket Lake<br />

Q 08NB019 beavr Beaver <strong>River</strong> near the Mouth 1985-2008 1150 41.9 1.15<br />

Q 08NB014 goldr Gold <strong>River</strong> above Palmer Creek 1973-2008 427 18.3 1.35<br />

Q 08NC001 woodd Wood <strong>River</strong> near Donald 1948-1972 956 40.1 1.32<br />

Q 08NC003 canva Canoe <strong>River</strong> at Valemont 1966-1967 368 18.7 1.60<br />

Q 08NC002 cando Canoe <strong>River</strong> near Donald 1947-1967 3290 105 1.01<br />

Local Flow in Revelstoke Lake<br />

Q 08ND015 micac Mica Creek near Revelstoke 1964-1965 82.4 4.0 1.53<br />

Q 08ND012 golds Goldstream <strong>River</strong> below Old Camp Creek 1954-2008 938 39.0 1.31<br />

Q 08ND019 kirby Kirbyville Creek near the Mouth 1973-2005 112 6.14 1.73<br />

Q 08ND009 downi Downie Creek near Revelstoke 1953-1983 655 30.2 1.45<br />

Other<br />

Q 08ND013 illgr Illecillewaet <strong>River</strong> at Greeley 1963-2008 1170 53.5 1.44<br />

* Q - Flow, WL - <strong>Water</strong> Level, ND - No Data<br />

1 From <strong>Water</strong> Survey of Canada, values in italics were estimated


Appendix 2 Reference Elevations for the Mica and Revelstoke <strong>Project</strong>s<br />

Kinbasket Reservoir Elevations<br />

Elevation<br />

(ft)<br />

Elevation<br />

(m)<br />

Storage<br />

(Mm 3 )<br />

Area<br />

(km 2 ) Comments<br />

2500.0 762.0 Crest of dam<br />

2486.5 757.9 26306.1<br />

DSI, Dam Safety Incident level when spill<br />

446.4<br />

gates are open<br />

Expected maximum reservoir level during<br />

2484.9 757.4 26083.5 444.2 the PMF inflow event (11,780 m 3 /s,<br />

246,000 cfs)<br />

Nmax, Normal maximum operating<br />

2475.0 754.4 24770.7 431.0 elevation. WLU, <strong>Water</strong> License Upper<br />

Limit<br />

2319.4 707.0 9875.8<br />

Nmin, Normal minimum pool level<br />

206.9<br />

WLL, Calculated water license limit<br />

2275.0 693.4<br />

Sill elevation of 3.0 m W x 5.49 m H (10'<br />

W x 18' H) outlet gates (2)<br />

2274.0 693.1 Top of intake conduit<br />

2252.0 686.4<br />

Sill elevation of power intakes (6) (Bottom<br />

of intake conduit)<br />

Revelstoke Reservoir Elevations<br />

Elevation<br />

(ft)<br />

Elevation<br />

(m)<br />

Storage<br />

(Mm 3 )<br />

Area<br />

(km 2 ) Comments<br />

1894.0 577.6 Crest of dam<br />

1885.0 574.6 5449.4 118.2<br />

DSI, Dam Safety Incident level when spill<br />

gates are open. Expected maximum<br />

reservoir level during the PMF inflow<br />

event (7100 m3/s, 250,000 cfs)<br />

1880.0 573.0 5264.8 116.0<br />

Nmax, Normal maximum operating<br />

elevation. WLU, <strong>Water</strong> License Upper<br />

Limit<br />

1875.0 571.5 5089.9 113.6 Nmin, Normal minimum pool level<br />

1830.0 557.8 3692.7 88.7 Minimum pool level (power intake limit)<br />

1820.0 554.7<br />

Minimum pool level (water license storage<br />

limit)<br />

1772.6 540.3 Sill elevation of power intakes (6)


CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

2009 Progress Report<br />

Appendix 2<br />

Tributary <strong>Water</strong> Quality<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Roger Pieters, Hannah Keller, Greg Lawrence<br />

University of British <strong>Columbia</strong>


Tributary <strong>Water</strong> Quality<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Roger Pieters 1,2 , Hannah Keller 2 and Greg Lawrence 2<br />

1 Department of Earth and Ocean Sciences, University of British <strong>Columbia</strong>, Vancouver,<br />

B.C. V6T 1Z4<br />

2 Department of Civil Engineering, University of British <strong>Columbia</strong>, Vancouver, B.C.<br />

V6T 1Z4<br />

Revelstoke National Park, 23 Aug 2010<br />

Prepared for<br />

Karen Bray<br />

Biritsh <strong>Columbia</strong> <strong>Hydro</strong> and Power Authority<br />

1200 Powerhouse Road<br />

Revelstoke B.C. V0E 2S0<br />

January 26, 2011


Contents<br />

1. Introduction......................................................................................................................1<br />

2. Methods............................................................................................................................1<br />

3. Results..............................................................................................................................4<br />

4. Discussion........................................................................................................................8<br />

5. Conclusions......................................................................................................................8<br />

Appendix 1 Summary of methods<br />

Appendix 2 Tributaries sampled<br />

Appendix 3 Tributary data<br />

List of Figures<br />

Figure 1 pH of tributaries to Kinbasket Reservoir, 2008 & 2009<br />

Figure 2 Conductivity of tributaries to Kinbasket Reservoir, 2008 & 2009<br />

Figure 3 Nitrate and nitrite of tributaries to Kinbasket Reservoir, 2008 & 2009<br />

Figure 4 Total dissolved phosphorus of tributaries to Kinbasket Reservoir, 2008 & 2009<br />

Figure 5 Total phosphorus of tributaries to Kinbasket Reservoir, 2008 & 2009<br />

Figure 6 pH of tributaries to Revelstoke Reservoir, 2008 & 2009<br />

Figure 7 Conductivity of tributaries to Revelstoke Reservoir, 2008 & 2009<br />

Figure 8 Nitrate and nitrite of tributaries to Revelstoke Reservoir, 2008 & 2009<br />

Figure 9 Total dissolved phosphorus of tributaries to Revelstoke R., 2008 & 2009<br />

Figure 10 Total phosphorus of tributaries to Revelstoke Reservoir, 2008 & 2009<br />

Figure 11 <strong>Water</strong> quality data, reference tributaries, 2009<br />

Figure 12 <strong>Water</strong> quality data, <strong>Columbia</strong> <strong>River</strong>, 2009<br />

Figure 13 <strong>Water</strong> quality data, Illecillewaet <strong>River</strong>, 1997-2001<br />

Figure 14 Flow, C25 and Nitrate in the Illecillewaet <strong>River</strong>, 1997-2001<br />

i


1. Introduction<br />

We report on water quality data collected from tributaries of Kinbasket and Revelstoke<br />

reservoirs in 2009. This is the second year of tributary sampling as part of the ongoing<br />

B.C. <strong>Hydro</strong> project entitled “CLBMON-3 Kinbasket and Revelstoke Ecological<br />

Productivity Monitoring”. * Sampling consisted of (1) a survey of tributaries on 7-8 Jul<br />

2009 and (2) monitoring of the <strong>Columbia</strong> <strong>River</strong> and reference tributaries from May to<br />

Nov 2009.<br />

2. Methods<br />

All tributaries were sampled once on 7-8 Jul 2009. Four reference tributaries were<br />

sampled biweekly from May to July, and once a month from Aug to Nov.<br />

Samples were collected (1) by helicopter on 8 Jul 2009, or (2) from the point at which the<br />

tributary crossed a road. Tributaries entering the east side of Revelstoke Reservoir were<br />

sampled at Highway 23. The <strong>Columbia</strong> <strong>River</strong> at Donald was sampled near the Highway<br />

1 bridge. <strong>Water</strong> samples were either collected directly into sample bottles (helicopter) or<br />

collected first into a bucket and then into sample bottles. Filtration was done later the<br />

same day. Sampling and laboratory methods are summarized in Appendix 1.<br />

Temperature was measured with a handheld thermometer. <strong>Water</strong> samples were either<br />

frozen or kept on ice and shipped within 48 hours to the Department of Fisheries and<br />

Oceans, Cultus Lake Salmon Research Laboratory, 4222 <strong>Columbia</strong> Valley Highway<br />

Cultus Lake, British <strong>Columbia</strong>.<br />

Samples from Beaver <strong>River</strong> were collected and analyzed by Environment Canada. The<br />

Beaver <strong>River</strong> was sampled at the east gate of Glacier National Park, representing about<br />

half of the total drainage of the Beaver <strong>River</strong>.<br />

The samples were analyzed for the water quality parameters listed in Table 1. The<br />

tributaries samples in 2009 are listed in Appendix 2. Also given in Appendix 2 is the<br />

drainage area for each tributary. The drainage area was available from <strong>Water</strong> Survey<br />

Canada for a few of the tributaries, while for most the drainage area is a rough estimate.<br />

Drainage areas have been requested from B.C. <strong>Hydro</strong> and these values will be updated<br />

when they become available.<br />

We can use these approximate drainage areas to estimate the percentage of the local and<br />

total drainage that was sampled (Tables 2 and 3). For Kinbasket Reservoir, ~39% of the<br />

local drainage was sampled. Kinbasket Reservoir can be divided into three regions,<br />

<strong>Columbia</strong> Reach, Canoe Reach and Wood Arm. Of these approximately 1/3 of the<br />

drainage area was sampled in both the <strong>Columbia</strong> Reach and Wood Arm drainage, and<br />

approximately ½ sampled from the drainage of the Canoe Reach (Table 2). The total<br />

*<br />

In 2003, eight tributaries to Revelstoke Reservoir were sampled as part of an embayment study (K. Bray,<br />

personal communication).<br />

1


drainage for Kinbasket Reservoir includes not only the local inflow but the flow from the<br />

<strong>Columbia</strong> <strong>River</strong> at Donald Station. Of the total drainage to Kinbasket Reservoir 67%<br />

was sampled (Table 3).<br />

Table 1 Parameters measured<br />

Parameter Units Symbol<br />

Detection<br />

Limit<br />

pH pH<br />

Conductivity μS/cm Cond<br />

Nitrate and Nitrite μg/L N NN 1 ug/L<br />

Soluble Reactive Phosphorus μg/L P SRP 0.5 ug/L<br />

Total Dissolved Phosphorus μg/L P TDP<br />

Total Phosphorus μg/L P TP 0.5 ug/L<br />

Total Phosphorus with<br />

color/turbidity correction<br />

μg/L P TP Turb<br />

Turbidity NTU Turb<br />

Alkalinity<br />

<strong>Water</strong> Temperature<br />

mgCaCO3/L<br />

o<br />

C<br />

Alk<br />

T<br />

For Revelstoke Reservoir, ~67% of the local drainage area was sampled. Revelstoke<br />

Reservoir can be divided into Upper and Lower Revelstoke of which approximately 73%<br />

and 50% were sampled, respectively (Table 2). Of the total drainage to Revelstoke<br />

Reservoir, which includes the outflow from Mica Dam, 94% was sampled (Table 3).<br />

Table 2 Percentage of the local drainage sampled<br />

KINBASKET RESERVOIR<br />

Drainage area local to Kinbasket Reservoir 11,790 km 2<br />

Drainage area of all sampled tributaries<br />

(except <strong>Columbia</strong> at Donald) ~4,600 km 2<br />

Percent Sampled 39%<br />

Drainage area local to <strong>Columbia</strong> Reach 7,540 km 2<br />

Drainage area of all sampled tributaries to <strong>Columbia</strong> Reach ~2,700 km 2<br />

Percent Sampled 36%<br />

Drainage area local to Canoe Reach 3,290 km 2<br />

Drainage area of all Sampled tributaries to Canoe Reach ~1,550 km 2<br />

Percent Sampled 47%<br />

Drainage area local to Wood Arm 956 km 2<br />

Drainage area of all Sampled tributaries to Wood Arm 360 km 2<br />

Percent Sampled 38%<br />

2


Table 2 con’t Percentage of the local drainage sampled<br />

REVELSTOKE RESERVOIR<br />

Drainage area local to Revelstoke Reservoir 4,900 km 2<br />

Drainage area of all sampled tributaries (except <strong>Columbia</strong><br />

<strong>River</strong> at Mica Outflow) ~3,300 km 2<br />

Percent Sampled 67%<br />

Drainage area local to Upper Revelstoke Reservoir ~3,300 km 2<br />

Drainage of all Sampled tributaries to Upper ~2,500 km 2<br />

Percent Sampled 76%<br />

Drainage area local to Lower Revelstoke Reservoir ~1,600 km 2<br />

Drainage of all Sampled tributaries to Lower ~800 km 2<br />

Percent Sampled 50%<br />

Table 3 Percentage of the total drainage sampled<br />

KINBASKET RESERVOIR<br />

<strong>Columbia</strong> <strong>River</strong> at Donald 9,710 km 2<br />

Drainage area of all sampled tributaries ~4,600 km 2<br />

Total sampled ~14,310 km 2<br />

Drainage area of Kinbasket Reservoir 21,500 km 2<br />

Percent sampled 67%<br />

REVELSTOKE RESERVOIR<br />

<strong>Columbia</strong> <strong>River</strong> at Mica Dam 21,500 km 2<br />

Drainage area of all sampled tributaries ~3,300 km 2<br />

Total sampled ~24,800 km 2<br />

Drainage area of Revelstoke Reservoir 26,400 km 2<br />

Percent Sampled 94%<br />

3


3. Results<br />

The tributary chemistry data is given in Appendix 3. We first discuss the survey data<br />

collected on 7-8 Jul 2009 and then data from the <strong>Columbia</strong> <strong>River</strong> and reference tributaries<br />

for May to Nov.<br />

Survey of tributaries to Kinbasket Reservoir<br />

The pH ranged from slightly acidic (6.58, Bulldog Creek) to slightly alkaline (7.91,<br />

Wood <strong>River</strong>), Figure 1. As in 2008, the tributaries of Canoe Reach generally had lower<br />

pH than those of the other regions. Not including the slightly lower values in the Canoe<br />

Reach, the range of pH in the tributaries to Kinbasket Reservoir was comparable to that<br />

of the tributaries entering the Arrow Reservoir, 7.2 to 8.1 (Pieters et al. 2003).<br />

The alkalinity of the tributaries to Kinbasket Reservoir ranged from a low of 9.5 mg/L<br />

(Bulldog Cr) to 181 mg/L (Prattle Cr). During the survey, the alkalinity of the <strong>Columbia</strong><br />

<strong>River</strong> at Donald Station was 152 mg/L. As with pH, the alkalinity was generally lower in<br />

Canoe Reach.<br />

The conductivity at 25º (C25) varied from 24 μS/cm (Bulldog Creek) to 121 μS/cm (Bush<br />

<strong>River</strong>), Figure 2. The conductivity of the <strong>Columbia</strong> <strong>River</strong> at Donald Station was 130<br />

μS/cm. Similar to the pH and alkalinity, the conductivity was generally lower in Canoe<br />

Reach and higher in tributaries to Wood Arm and to the east side of the <strong>Columbia</strong> Reach.<br />

The range of conductivity was similar to that observed in tributaries to the Arrow<br />

Reservoir, 36 to 203 μS/cm (Pieters et al. 2003).<br />

The concentration of nitrate and nitrite (NN) was low to moderate ranging from 25 μg/L<br />

(Chatter Creek) to 113 μg/L (Windy Creek), Figure 3. The NN concentration of the<br />

<strong>Columbia</strong> <strong>River</strong> at Donald Station was 52 μg/L. The range of NN values was similar to<br />

the range in tributaries to Lower Arrow Reservoir (including the Narrows) of 3 to 133<br />

ug/L. However, the Upper Arrow received higher values of NN from several large<br />

tributaries such as the Illecillewaet (260 μg/L) and Incomappleux (280 μg/L), along with<br />

140 μg/L from the <strong>Columbia</strong> <strong>River</strong> at Revelstoke (Pieters et al. 2003).<br />

Concentrations of soluble reactive phosphorus (SRP, also known as orthophosphate)<br />

were low, ranging from 0.7 μg/L (Kinbasket <strong>River</strong> and Bulldog Creek) to 2.5 μg/L<br />

(Molson Creek). SRP in the <strong>Columbia</strong> <strong>River</strong> at Donald Station was 3.5 μg/L. This is<br />

very similar to the range of SRP observed in 2008 (0.8 to 2.6 μg/L) and comparable to<br />

that observed in tributaries to Arrow Reservoir (1 to 6.8 μg/L).<br />

Total dissolved phosphorus (TDP) concentrations were moderate in all areas of the<br />

reservoir, ranging from 1.6 μg/L (Yellowjacket and Ptarmigan Creeks) to 8.8 μg/L<br />

(Kinbasket <strong>River</strong>), Figure 4. This range of TDP concentration was similar to that in 2008<br />

(1.5 to 6.3 μg/L). TDP in the <strong>Columbia</strong> <strong>River</strong> at Donald Station was at the higher end of<br />

4


the range at 7.2 μg/L. These values are comparable to the range of average TDP<br />

concentrations for tributaries to Arrow Reservoir, 2.8 to 16 μg/L (Pieters et al. 2003).<br />

Total phosphorus (TP) was highly variable, with concentrations ranging from 4.0 μg/L<br />

(Molson Creek) to 130 μg/L (Windy Creek), Figure 5. During the survey, the TP<br />

concentration in the <strong>Columbia</strong> <strong>River</strong> at Donald Station was 25 μg/L. These values are<br />

slightly larger than the range of average TP concentrations of tributaries to Arrow<br />

Reservoir, 7.4 to 52 μg/L (Pieters et al. 2003).<br />

For total phosphorus (TP), a correction was also provided for turbidity and colour. Both<br />

turbidity and colour can absorb light in the colorimeter, increasing the readings. A<br />

correction was determined by running the sample with the reducing reagent and<br />

ammonium molybdate solution replaced with distilled water. The correction was then<br />

subtracted from TP to give the corrected TP reading, Appendix 3. For many of the<br />

tributaries, the corrections were modest, ranging from 0 to 50% and averaging 20% of<br />

uncorrected TP. This was lower than the average correction of 50% in 2008. The<br />

corrected TP in 2009 ranged from 4.0 μg/L (Molson Creek) to 116 μg/L (Foster Creek).<br />

Particulate phosphorus can be estimated as the difference between total and total<br />

dissolved phosphorus, PP = TP - TDP. In glacially dominated systems, with high<br />

turbidity, much of the total phosphorus may be extracted from the particulate minerals<br />

(e.g. apatite) by the digestion. As a result, for tributaries with high PP, it is likely that<br />

much of this phosphorus is of low biological availability.<br />

Turbidity varied significantly, from very clear (0.43 NTU, Chatter Creek) to extremely<br />

turbid (96 NTU, Bush <strong>River</strong>). The turbidity in 2009 was higher than in 2008, when the<br />

upper limit was 21 NTU (Sullivan <strong>River</strong>). The turbidity of the <strong>Columbia</strong> <strong>River</strong> at Donald<br />

station was also high, 22 NTU. Turbidity was high for many of the tributaries entering<br />

the eastern side of the <strong>Columbia</strong> Reach, especially Wood <strong>River</strong>, Sullivan Creek, and<br />

Kinbasket <strong>River</strong>.<br />

The temperature of the tributaries sampled 7-8 Jul 2009 ranged from 6.0 to 8.0 ºC, with<br />

the <strong>Columbia</strong> <strong>River</strong> at Donald much warmer at 15 ºC. Other than the <strong>Columbia</strong> at<br />

Donald, the tributaries were cooler than those in the Arrow Reservoir, which ranged from<br />

8 to 15 ºC in July (Pieters et al. 2003).<br />

5


Survey of tributaries to Revelstoke Reservoir<br />

Revelstoke Reservoir can be divided into two reaches: Upper Revelstoke, that part of the<br />

Reservoir above Downie Creek, and Lower Revelstoke including Downie Creek. The<br />

creeks were sampled on 7-8 Jul 2009.<br />

The pH of tributaries to Revelstoke Reservoir was close to neutral and ranged from<br />

slightly acidic (6.34, Soards Creek) to slightly alkaline (7.66 in Downie Creek), Figure 6.<br />

During the survey, the pH of the <strong>Columbia</strong> <strong>River</strong> at Mica Dam was 7.37. As in 2008, the<br />

range of pH in the tributaries to Revelstoke Reservoir was slightly lower than that for<br />

Kinbasket.<br />

The alkalinity of the tributaries flowing into Revelstoke Reservoir ranged from 6.1 mg/L<br />

(Soards Creek) to 102.0 mg/L (Downie Creek). The alkalinity of the <strong>Columbia</strong> <strong>River</strong> at<br />

Mica Dam outflow was 86 mg/L. These values were slightly lower than the range of<br />

alkalinity values for Kinbasket tributaries.<br />

The conductivity (C25) of tributaries to the Revelstoke Reservoir ranged from 10 μS/cm<br />

(Bourne Creek) to 83 μS/cm (Downie Creek), Figure 7. The <strong>Columbia</strong> <strong>River</strong> at Mica<br />

Dam had a conductivity of 72 μS/cm. This range in conductivity was also slightly lower<br />

than that seen in both the Kinbasket and Arrow reservoirs.<br />

The concentration of nitrate and nitrite (NN) ranged from 1.6 μg/L (Martha Creek) to 146<br />

μg/L (Horne Creek), Figure 8. The NN concentration of the <strong>Columbia</strong> <strong>River</strong> at Mica<br />

Dam was 95 μg/L. Carnes and Martha creeks on the east side of the Lower Reach were<br />

particularly low, with NN concentrations of 3 and 1.6 μg/L, respectively. The<br />

concentrations of NN in tributaries to the Revelstoke Reservoir were more varied than<br />

those from Kinbasket, and were generally lower than those from Arrow Reservoir.<br />

Soluble reactive phosphorus (SRP) concentrations were low ranging from 0.9 μg/L<br />

(Goldstream <strong>River</strong>) to 5.7 μg/L (Scrip Creek). The SRP concentration of the <strong>Columbia</strong><br />

<strong>River</strong> at Mica Dam was 1.5 μg/L during the tributary survey and averaged 2.3 μg/L from<br />

May to Nov, 2009.<br />

Total dissolved phosphorus (TDP) concentrations ranged from 2.0 μg/L (Soards Creek)<br />

to 13 μg/L (Scrip Creek), Figure 7. The TDP concentration in the <strong>Columbia</strong> <strong>River</strong> at the<br />

Mica Dam outflow was 3.5 μg/L. As in 2008, the range of TDP concentrations in<br />

tributaries to Revelstoke Reservoir was slightly higher than that to Kinbasket Reservoir.<br />

Total phosphorus (TP) ranged from 2.9 μg/L (Pitt and Martha creeks) to 78 μg/L (Big<br />

Eddy Creek), Figure 8. The TP concentration in the <strong>Columbia</strong> <strong>River</strong> at Mica Dam was<br />

5.7 μg/L. The TP correction is also shown in Appendix 3. The correction was slightly<br />

smaller for Revelstoke Reservoir, averaging ~16% compared to ~20% for Kinbasket<br />

Reservoir, suggesting less effect of turbidity and colour. The corrected values of TP<br />

6


anged from 2.5 (Soards Creek) to 49 (Big Eddy Creek), slightly lower than for<br />

Kinbasket.<br />

Turbidity was highly variable, ranging from exceptionally clear (0.14 NTU, Martha<br />

Creek) to very turbid (68 NTU, Big Eddy Creek). The turbidity of the <strong>Columbia</strong> <strong>River</strong> at<br />

Mica Dam was low, 0.42 NTU. There were fewer tributaries with high turbidity in<br />

Revelstoke Reservoir than in Kinbasket Reservoir.<br />

The temperature of the tributaries ranged from 6.0 – 10.5 ºC from 6-8 July 2009. The<br />

range of temperature in August was a little warmer than that in Kinbasket Reservoir and<br />

similar to that observed in the Arrow Reservoir.<br />

<strong>Columbia</strong> <strong>River</strong> and reference tributaries<br />

The <strong>Columbia</strong> <strong>River</strong> and two reference tributaries were sampled biweekly from May to<br />

Jul, and monthly from Aug to Nov (Appendix 3). Consider first the natural flows of the<br />

<strong>Columbia</strong> <strong>River</strong> at Donald, and the Beaver and Goldstream rivers; the flow for each is<br />

shown in Figure 11a. Note the flow for Beaver <strong>River</strong> is gauged near the mouth while the<br />

water quality sampling by Environment Canada was at the east gate of Glacier National<br />

Park, reporting about half the drainage. Freshet peaked in late May and mid Jun 2009<br />

and the hydrograph at all three locations had a similar shape. The <strong>Columbia</strong> at Donald,<br />

having wound its way through the Rocky Mountain Trench, was relatively warm peaking<br />

at 18 ºC in late Jul, Figure 11b. In contrast the Beaver and Goldstream rivers were<br />

relatively cold, with Jul temperatures of only 10-12 ºC. The conductivity of all three<br />

declined through the freshet to less than half by mid-summer, Figure 11c. Turbidity was<br />

highly variable (Figure 11d) while pH remained slightly alkaline (Figure 11e).<br />

Even more than conductivity, nitrate and nitrite (NN) concentrations declined by 3 to 10<br />

times from May to mid-summer, Figure 11f. On 19 May 2009, the Beaver <strong>River</strong> had 419<br />

μg/L NN which dropped to 39 μg/L on 4 Aug 2009. The concentrations of SRP were<br />

low (Figure 11g), with concentrations in the Beaver <strong>River</strong> at or below detection. While<br />

TDP was not available for Beaver <strong>River</strong>, TDP concentrations for the <strong>Columbia</strong> at Donald<br />

and Goldstream were low (2-7 μg/L) and relatively constant (Figure 11h). TP was highly<br />

variable (Figure 11i), likely reflecting phosphorus from particulate minerals typical of<br />

glacial fed systems and of low biological availability. The NN:TDP ratio (by weight)<br />

was > 10 through most of the year suggesting tributary nutrients are phosphorus limited,<br />

except for summer when the decline in tributary NN can reduce the NN:TDP ratio to just<br />

under 10 suggesting nitrogen and phosphorus co-limitation (Figure 11j).<br />

In Figure 12, the water quality parameters for the <strong>Columbia</strong> <strong>River</strong> at Donald are shown<br />

again along with the outflow from Kinbasket Reservoir (<strong>Columbia</strong> <strong>River</strong> at Mica) and the<br />

outflow from Revelstoke Reservoir (<strong>Columbia</strong> <strong>River</strong> above Jordan). The flow is variable<br />

(Figure 12a), and the temperature is cold (


Mica and Revelstoke was very low, < 2 NTU and averaging 0.6 and 0.7 NTU,<br />

respectively. Like the tributaries, the pH was relatively constant and slightly alkaline<br />

(Figure 12e).<br />

While nitrate and nitrite concentrations (NN) dropped from approximately 200 to 100<br />

μg/L in the outflow from Mica, the concentrations did not drop as low as in the reference<br />

tributaries. In the outflow from Revelstoke, NN was relatively constant, at approximately<br />

100 μg/L (Figure 12f). SRP concentrations were close to the detection limit (Figure 12g)<br />

and TDP and TP were low and relatively constant (Figures 12h,i). The NN:TDP ratio for<br />

the Mica and Revelstoke outflows was > 10 throughout the year, suggesting nutrients<br />

from these sources are phosphorus limited (Figure 12j).<br />

4. Discussion<br />

Caution should be applied to the survey results as they are based on only one sample.<br />

Most of the tributaries to Kinbasket and Revelstoke Reservoirs are remote and difficult to<br />

access, making it prohibitive to collect enough samples from each site to show the<br />

seasonal variation. An indication of seasonal variability is provided by the reference<br />

tributaries.<br />

Seasonal variability is also seen in the long record of water quality data available for the<br />

Illecillewaet <strong>River</strong>, which is located just south of the Revelstoke Reservoir. The<br />

Illecillewaet is the largest local inflow to the Arrow Reservoir, drains 1170 km 2 and<br />

includes flow of glacial origin. <strong>Water</strong> quality data for 1997 to 2001 are shown in Figure<br />

13. Also shown in grey is the flow from WSC Station 08ND013, Illecillewaet at Greeley.<br />

For C25 and NN there is a clear seasonal cycle, with concentrations high during the start<br />

of freshet and then decreasing rapidly to lower values during the summer. In late August<br />

the values increase again. Also shown for reference are SRP, TDP, TP, pH, NH3 and<br />

water temperature.<br />

Figure 14 compares the seasonal evolution of the flow, C25 and NN for five years, 1997-<br />

2001. The onset of freshet occurred between early and mid May. For example, in 1998 a<br />

large peak in freshet flow began at the start of May while freshet was delayed toward the<br />

end of May in 2001. There is a corresponding variation in the timing of the decline in<br />

C25 (Figure 14b). The decline in NN occurs more gradually through May and June to<br />

very low values in July and August (Figure 14c). Overall, NN declined from 420-480<br />

μg/L in May to 50-100 μg/L in mid-summer. A similar decline in NN is seen in other<br />

tributaries to the Arrow Reservoir (not shown).<br />

8


5. Conclusions<br />

Based on limited data, the tributaries to both Kinbasket and Revelstoke reservoirs are low<br />

in nutrients. Soluble reactive phosphorus (SRP) was very low in both basins, close to the<br />

detection limit. Total dissolved phosphorus (TDP) was also low, averaging about 5 μg/L.<br />

Total phosphorus (TP) was highly variable, reflecting the glacial origin of many of the<br />

tributaries. While correction of TP for colour and turbidity resulted in a modest reduction<br />

in TP concentrations, much of the corrected TP is likely of inorganic origin with low<br />

biological availability. With glacial inflow, TDP is preferred over TP as a measure of<br />

available phosphorus.<br />

In the presence of oxygen, concentrations of nitrate and nitrite (NN) are typically<br />

dominated by nitrate. Despite limited data, there appears to be a trend of increasing<br />

nitrate along the system from Kinbasket Reservoir (≈ 70 μg/L), Revelstoke Reservoir (≈<br />

75 μg/L) to Arrow Reservoir (≈ 200 μg/L, Pieters et al. 2003). Further data, updated<br />

estimates of the drainage areas and flow weighted averages are the next steps to<br />

substantiating this trend.<br />

For an N:P ratio > 10 (by weight) phosphorus is expected to limit phytoplankton<br />

productivity (Horne and Goldman, 1994). The N:P ratio, based on nitrate and TDP, is<br />

greater than 10 for most of the tributaries which suggests phosphorus limitation. There<br />

are some exceptions such as the <strong>Columbia</strong> <strong>River</strong> at Donald in summer (NO3:TDP < 10),<br />

and smaller tributaries at the south end of Revelstoke Reservoir, the significance of which<br />

awaits further data and analysis.<br />

Acknowledgements<br />

Samples were collected by Beth Manson, Pierre Bourget and Karen Bray. We thank A.<br />

Akkerman and A. Baysheva for preparation of tables and figures. Funding was gratefully<br />

provided by B.C. <strong>Hydro</strong>. We acknowledge support for A. Akkerman from the U<strong>BC</strong><br />

Work-Study program. G. Lawrence is grateful for the support of the Canada Research<br />

Chair program.<br />

References<br />

Pieters, R., L.C. Thompson, L. Vidmanic, S. Harris, J. Stockner, H. Andrusak, M. Young,<br />

K. Ashley, B. Lindsay, G. Lawrence, K. Hall, A. Eskooch, D. Sebastian, G.<br />

Scholten and P.E. Woodruff. 2003. Arrow Reservoir fertilization experiment,<br />

year 2 (2000/2001) report. RD 87, Fisheries Branch, Ministry of <strong>Water</strong>, Land and<br />

Air Protection, Province of British <strong>Columbia</strong>.<br />

Horne A. and C. Goldman, 1994. Limnology 2 nd Edition. McGraw Hill Inc., New York.<br />

9


6.80<br />

7.30<br />

Figure 1 pH of Tributaries to Kinbasket R., 2008, 2009<br />

6.94<br />

6.58<br />

7.23<br />

6.65<br />

6.97<br />

6.89<br />

7.42<br />

7.02<br />

8.11<br />

7.91<br />

7.34<br />

7.84<br />

7.79<br />

8.07<br />

7.72<br />

7.36<br />

7.34<br />

7.06<br />

6.91<br />

7.89<br />

8.13<br />

7.85<br />

7.86<br />

8.16<br />

7.66<br />

7.03<br />

7.29<br />

8.06<br />

7.83<br />

7.28<br />

7.72<br />

7.53<br />

7.81


33<br />

79<br />

42<br />

Figure 2 Conductivity (μs/cm) of Tributaries to Kinbasket R., 2008, 2009<br />

24<br />

45<br />

29<br />

77<br />

38<br />

65<br />

37<br />

119<br />

94<br />

53<br />

80<br />

85<br />

102<br />

69<br />

52<br />

51<br />

40<br />

36<br />

110<br />

118<br />

99<br />

121<br />

143<br />

78<br />

35<br />

49<br />

160<br />

130<br />

72<br />

76<br />

73


44.8<br />

39.9<br />

Figure 3 Nitrate and Nitrite (μg/L) of Tributaries to Kinbasket R., 2008, 2009<br />

33.0<br />

95.5<br />

39.1<br />

84.1<br />

73.5<br />

46.9<br />

39.4<br />

41.3<br />

63.9<br />

66.0<br />

57.0<br />

65.4<br />

89.5<br />

92.9<br />

52.0<br />

51.5<br />

52.2<br />

59.1<br />

87.5<br />

87.7<br />

61.3<br />

64.7<br />

105.9<br />

99.0<br />

24.8<br />

112.9<br />

104.8<br />

63.2<br />

51.8<br />

68.5<br />

68.5<br />

62.6<br />

57.0


1.6<br />

1.5<br />

2.5<br />

Figure 4 Total Dissolved Phosphorus (μg/L) of Tributaries to Kinbasket R., 2008, 2009<br />

5.0<br />

2.4<br />

1.6<br />

1.6<br />

3.9<br />

2.5<br />

2.8<br />

4.2<br />

3.0<br />

2.9<br />

4.0<br />

2.8<br />

6.3<br />

4.7<br />

2.6<br />

8.8<br />

3.4<br />

3.5<br />

4.2<br />

4.2<br />

3.1<br />

7.5<br />

5.2<br />

5.9<br />

4.5<br />

5.5<br />

10.7<br />

7.2<br />

5.0<br />

5.0<br />

5.2


Figure 5 Total Phosphorus (μg/L) of Tributaries to Kinbasket R., 2008, 2009<br />

17.5<br />

6.7<br />

3.6<br />

8.0<br />

29.9<br />

5.1<br />

15.5<br />

4.5<br />

11.0<br />

9.5<br />

53.2<br />

123.9<br />

5.3<br />

5.8<br />

4.0<br />

27.9<br />

13.5<br />

26.8<br />

15.6<br />

47.0<br />

39.4<br />

55.8<br />

31.5<br />

101<br />

90.9<br />

29.4<br />

6.9<br />

129.6<br />

47.4<br />

43.0<br />

25.4<br />

51.1<br />

27.1<br />

21.3


6.39<br />

6.50<br />

6.34 7.16<br />

6.97<br />

6.97<br />

Figure 6 pH of Tributaries to Revelstoke R., 2008, 2009<br />

7.21<br />

7.23<br />

8.7<br />

7.25<br />

7.25<br />

6.99<br />

7.38, 7.38<br />

6.78 7.31<br />

7.07<br />

7.73, 7.69<br />

7.09<br />

7.56<br />

7.37<br />

6.67<br />

6.95<br />

6.69<br />

6.94<br />

6.84<br />

6.74<br />

6.99<br />

7.92, 7.97<br />

7.66<br />

7.06<br />

7.57<br />

7.94<br />

6.93<br />

7.22, 7.64<br />

7.08<br />

6.92


12<br />

24<br />

22<br />

12<br />

17<br />

Figure 7 Conductivity (μS/cum) of Tributaries to Revelstoke R., 2008, 2009<br />

30<br />

34<br />

35<br />

27<br />

16<br />

26<br />

47<br />

72<br />

108<br />

10<br />

15<br />

11<br />

39<br />

33<br />

15<br />

32<br />

38<br />

31<br />

83<br />

32<br />

106, 108<br />

48, 58<br />

42<br />

94<br />

118<br />

56<br />

75, 78<br />

16<br />

40, 67<br />

16<br />

39


100.1<br />

133.8<br />

146.4<br />

99.2<br />

65.4<br />

46.3<br />

135.5<br />

144.9<br />

39.4<br />

Figure 8 Nitrate and Nitrite (μg/L) of Tributaries to Revelstoke R., 2008, 2009<br />

146.3<br />

53.9<br />

40.6<br />

95.1<br />

114.0<br />

71.5<br />

56.7<br />

84.9<br />

107.1<br />

75.0<br />

68.5<br />

57.6<br />

44.7<br />

92.9<br />

39.3<br />

140.5, 102.9<br />

93.2<br />

99.2, 76.5<br />

134.9<br />

144.3<br />

79.7<br />

81.2<br />

71.8<br />

6.8<br />

2.2, 3.8<br />

1.6<br />

3.0


Figure 9 Total Dissolved Phosphorus (μg/L) of Tributaries to Revelstoke R., 2008, 2009<br />

2.0<br />

13.0<br />

3.5<br />

3.3<br />

2.7<br />

3.0<br />

2.9<br />

2.6<br />

2.5<br />

2.4<br />

9.6<br />

2.3<br />

3.5<br />

5.8<br />

8.1<br />

10.1<br />

10.2<br />

7.1<br />

4.2<br />

6.3<br />

7.2<br />

3.4<br />

5.2<br />

3.8<br />

5.2<br />

8.7, 4.7<br />

4.8, 7.1<br />

4.8<br />

6.7<br />

8.6<br />

3.8<br />

18.3, 0.0<br />

5.8<br />

4.2, 4.5<br />

3.8<br />

6.7


3.5<br />

3.8<br />

4.8<br />

12.1<br />

5.3<br />

Figure 10 Total Phosphorus (μg/L) of Tributaries to Revelstoke R., 2008, 2009<br />

27.5<br />

6.3<br />

9.2<br />

8.7<br />

7.2<br />

6.9<br />

19.1, 25.1<br />

6.5 13.1<br />

4.8<br />

22.9, 20.8<br />

12.9<br />

4.4<br />

5.7<br />

77.6<br />

48.3<br />

78.1<br />

8.4<br />

27.2<br />

10.0<br />

6.7<br />

2.9<br />

25.9<br />

34.6, 29.8<br />

27.8<br />

5.2<br />

8.2<br />

9.2<br />

6.1, 3.4<br />

5.6<br />

2.9


Flow (m 3 /s)<br />

T (°C)<br />

C25 (μS/cm)<br />

Turb (NTU)<br />

pH<br />

600<br />

400<br />

200<br />

Figure 11 Flow and water quality of reference tributaries, 2009<br />

<strong>Columbia</strong> R at Donald<br />

Beaver R at East Park Gate<br />

Goldstream R<br />

(a)<br />

0<br />

May01 Jun01 Jul01 Aug01 Sep01 Oct01 Nov01 Dec01<br />

20<br />

10<br />

2008<br />

2009<br />

(b)<br />

0<br />

May01 Jun01 Jul01 Aug01 Sep01 Oct01 Nov01 Dec01<br />

300<br />

200<br />

100<br />

(c)<br />

0<br />

May01 Jun01 Jul01 Aug01 Sep01 Oct01 Nov01 Dec01<br />

200<br />

100<br />

(d)<br />

0<br />

May01 Jun01 Jul01 Aug01 Sep01 Oct01 Nov01 Dec01<br />

8.5<br />

8<br />

7.5<br />

(e)<br />

7<br />

May01 Jun01 Jul01 Aug01 Sep01 Oct01 Nov01 Dec01<br />

/ocean/rpieters/kr/chem/trib/plot/plotreftrib09.m fig= 1 2011−Jan−25


NN (μg/L)<br />

SRP (μg/L)<br />

TDP (μg/L)<br />

TP (μg/L)<br />

NN:TDP (by weight)<br />

400<br />

200<br />

Figure 11 con’t Flow and water quality of reference tributaries, 2009<br />

2008<br />

2009<br />

<strong>Columbia</strong> R at Donald<br />

Beaver R at East Park Gate<br />

Goldstream R<br />

(f)<br />

0<br />

May01 Jun01 Jul01 Aug01 Sep01 Oct01 Nov01 Dec01<br />

6<br />

4<br />

2<br />

0<br />

(g)<br />

May01 Jun01 Jul01 Aug01 Sep01 Oct01 Nov01 Dec01<br />

15<br />

10<br />

5<br />

(h)<br />

0<br />

May01 Jun01 Jul01 Aug01 Sep01 Oct01 Nov01 Dec01<br />

200<br />

100<br />

(i)<br />

0<br />

May01 Jun01 Jul01 Aug01 Sep01 Oct01 Nov01 Dec01<br />

60<br />

40<br />

20<br />

(j)<br />

0<br />

May01 Jun01 Jul01 Aug01 Sep01 Oct01 Nov01 Dec01<br />

/ocean/rpieters/kr/chem/trib/plot/plotreftrib09.m fig= 2 2011−Jan−25


Flow (m 3 /s)<br />

T (°C)<br />

C25 (μS/cm)<br />

1500<br />

1000<br />

Turb (NTU)<br />

pH<br />

500<br />

Figure 12 Flow and water quality of <strong>Columbia</strong> <strong>River</strong>, 2009<br />

<strong>Columbia</strong> R at Donald<br />

<strong>Columbia</strong> R at Mica<br />

<strong>Columbia</strong> R above Jordan<br />

(a)<br />

0<br />

May01 Jun01 Jul01 Aug01 Sep01 Oct01 Nov01 Dec01<br />

20<br />

10<br />

2008<br />

2009<br />

(b)<br />

0<br />

May01 Jun01 Jul01 Aug01 Sep01 Oct01 Nov01 Dec01<br />

300<br />

200<br />

100<br />

(c)<br />

0<br />

May01 Jun01 Jul01 Aug01 Sep01 Oct01 Nov01 Dec01<br />

60<br />

40<br />

20<br />

0<br />

(d)<br />

May01 Jun01 Jul01 Aug01 Sep01 Oct01 Nov01 Dec01<br />

8.5<br />

8<br />

7.5<br />

(e)<br />

7<br />

May01 Jun01 Jul01 Aug01 Sep01 Oct01 Nov01 Dec01<br />

/ocean/rpieters/kr/chem/trib/plot/plotreftrib09.m fig= 3 2011−Jan−25


NN (μg/L)<br />

200<br />

Figure 12 con’t Flow and water quality of <strong>Columbia</strong> <strong>River</strong>, 2009<br />

100<br />

2008<br />

<strong>Columbia</strong> R at Donald<br />

2009<br />

<strong>Columbia</strong> R at Mica<br />

(f)<br />

<strong>Columbia</strong> R above Jordan<br />

0<br />

May01 Jun01 Jul01 Aug01 Sep01 Oct01 Nov01 Dec01<br />

SRP (μg/L)<br />

TDP (μg/L)<br />

TP (μg/L)<br />

NN:TDP (by weight)<br />

6<br />

4<br />

2<br />

0<br />

(g)<br />

May01 Jun01 Jul01 Aug01 Sep01 Oct01 Nov01 Dec01<br />

15<br />

10<br />

5<br />

(h)<br />

0<br />

May01 Jun01 Jul01 Aug01 Sep01 Oct01 Nov01 Dec01<br />

15<br />

10<br />

5<br />

(i)<br />

0<br />

May01 Jun01 Jul01 Aug01 Sep01 Oct01 Nov01 Dec01<br />

60<br />

40<br />

20<br />

(j)<br />

0<br />

May01 Jun01 Jul01 Aug01 Sep01 Oct01 Nov01 Dec01<br />

/ocean/rpieters/kr/chem/trib/plot/plotreftrib09.m fig= 4 2011−Jan−25


NN (μg/L)<br />

C25 (μS/cm)<br />

TP (μg/L)<br />

Figure 13 <strong>Water</strong> quality of Illecillewaet <strong>River</strong>, 1997−2001<br />

200<br />

(a) C25<br />

100<br />

0<br />

J97 M97 S97 J98 M98 S98 J99 M99 S99 J00 M00 S00 J01 M01 S01<br />

1000 (b) NO and NO<br />

3 2<br />

SRP (μg/L)<br />

TDP (μg/L)<br />

500<br />

0<br />

J97 M97 S97 J98 M98 S98 J99 M99 S99 J00 M00 S00 J01 M01 S01<br />

10<br />

(c) SRP<br />

5<br />

0<br />

J97 M97 S97 J98 M98 S98 J99 M99 S99 J00 M00 S00 J01 M01 S01<br />

10<br />

(d) TDP<br />

5<br />

0<br />

J97 M97 S97 J98 M98 S98 J99 M99 S99 J00 M00 S00 J01 M01 S01<br />

100<br />

(e) TP ↑163 ↑135<br />

50<br />

0<br />

J97 M97 S97 J98 M98 S98 J99 M99 S99 J00 M00 S00 J01 M01 S01<br />

/ocean/rpieters/al97/chem/stream/plotillKINREV08.m fig= 1 2009−Apr−25


pH<br />

NH3 (μg/L)<br />

T (°C)<br />

8.5<br />

(f) pH<br />

8<br />

7.5<br />

Figure 13 <strong>Water</strong> quality of Illecillewaet <strong>River</strong>, 1997−2001<br />

7<br />

J97 M97 S97 J98 M98 S98 J99 M99 S99 J00 M00 S00 J01 M01 S01<br />

(g) NH<br />

3<br />

20<br />

10<br />

0<br />

J97 M97 S97 J98 M98 S98 J99 M99 S99 J00 M00 S00 J01 M01 S01<br />

15<br />

(h) Temperature<br />

10<br />

5<br />

0<br />

J97 M97 S97 J98 M98 S98 J99 M99 S99 J00 M00 S00 J01 M01 S01<br />

/ocean/rpieters/al97/chem/stream/plotillKINREV08p2.m fig= 1 2009−Apr−25


Flow (m 3 /s)<br />

C25 (μS/cm)<br />

NN (μS/cm)<br />

(a) Flow<br />

300<br />

200<br />

100<br />

Figure 14 Flow, C25 and NN in the Illecillewaet <strong>River</strong>, 1997−2001<br />

1997<br />

1998<br />

1999<br />

2000<br />

2001<br />

0<br />

91 121 152 182 213 244 274 305<br />

l A l M l J l J l A l S l O l<br />

200<br />

(b) C25<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

400<br />

200<br />

91 121 152 182 213 244 274 305<br />

l A l M l J l J l A l S l O l<br />

(c) NO +NO<br />

2 3<br />

600<br />

0<br />

91 121 152 182 213 244 274 305<br />

l A l M l J l J l A l S l O l<br />

/ocean/rpieters/al97/chem/stream/plotillKINREV08p3.m fig= 1 2009−Apr−25


Appendix 1<br />

Summary of Methods<br />

A summary of selected laboratory methods is given as follows. Samples for NO3+NO2,<br />

SRP and TDP required filtration. Filtration was done using a 47 mm Swinnex holder with<br />

60 cc syringe. Filters were 0.8 μm glass-fiber (GFF), ashed and washed with distilled/<br />

deionized water before use. The samples for NO3+NO2 and SRP were frozen.<br />

Nitrate and Nitrite<br />

This method was developed from the sea water technique of P. G. Brewer and J. P. Riley<br />

1965, and is similar to that described in APHA (1975). The buffered sample is passed<br />

through a cadmium column, which reduces nitrates to nitrites. The reduced sample is<br />

reacted with sulphanilamide and N-(1-Naphthyl)ethylenediamine Dihydrochloride<br />

(N.N.E.D.) to form a coloured azodye. The intensity of the colour produced is measured.<br />

The range of detection of this method is 1 to 224 μg NO2.N / litre.<br />

Soluble Reactive Phosphorus<br />

Orthophosphates are reacted with ammonium molybdate and stannous chloride and<br />

determined as the blue phospho-molybdenum complex. The range of detection of this<br />

method is 0.5 to 50 μg P / litre.<br />

Total and Total Dissolved Phosphorus<br />

The methods for total phosphorus (TP) and total dissolved phosphorus (TDP) are the same<br />

except for the filtration of the TDP sample. The sample is digested with a persulphatesulphuric<br />

acid mixture. Polyphosphates and organically bound phosphorus are converted to<br />

orthophosphate. Orthophosphates are reacted with ammonium molybdate and stannous<br />

chloride and determined as the blue phospho-molybdenum complex. The range of detection<br />

of this method is 0.5 to 50 μg P / litre. The values shown are not corrected for<br />

colour/turbidity.<br />

Total Phosphorus Colour/Turbidity Correction<br />

Colour or turbidity in the samples interferes with the determination. A correction of Total<br />

Phosphorus (TP) can be made for low levels of turbidity or colour by repeating the analysis<br />

of samples but replacing the reducing reagent and ammonium molybdate solution with<br />

distilled deionized water (DDW). These corrections are given in Appendix 3. Subtract<br />

these corrections from TP to obtain TP corrected for colour or turbidity. This correction is<br />

appropriate for use in coastal and glacial setting with fine sediments in which both colour<br />

and turbidity contributes to the absorption.<br />

Alkalinity<br />

A sulphuric acid titration was added incrementally to lower the sample’s pH. Relating the<br />

quantity and normality of sulphuric acid to a given change in pH provides the total alkalinity<br />

of the sample, presented here in mg of CaCO3/L.


References<br />

Appendix 1<br />

Summary of Methods (con’t)<br />

Brewer, P. G. and J. P. Riley 1965. The automatic determination of nitrate in sea water.<br />

Deep-Sea Research, v. 12, 765-772.<br />

APHA 1975. Standard Methods for the examination of <strong>Water</strong> and Wastewater. 14 th edn.<br />

American Public Health Association APHA-AWWA-WPCF. John D. Lucas Co.<br />

Baltimore.


Appendix 2<br />

Tributaries Sampled<br />

Table A2-1 Tributaries to Kinbasket Reservoir sampled in 2009<br />

Drainage<br />

Area<br />

Name Lat (N)/Long (W)<br />

1<br />

(km 2 ) Date Sampled<br />

<strong>Columbia</strong> R. at<br />

Donald Station 51 o 29.0 117 o 10.5 9710 7-Jul-09 R<br />

Beaver <strong>River</strong> 51º 23 117º 27 600 3<br />

Table A3-6<br />

Gold <strong>River</strong> 51 o 41.5 117 o Bush Arm<br />

42.5 427 8-Jul-09<br />

Bush <strong>River</strong> 51 o 47.5 117 o 22.4 660 8-Jul-09<br />

Prattle Creek 3<br />

51 o 47.3 117 o 25.4 160 8-Jul-09<br />

Chatter Creek 3<br />

51 o 47.1 117 o <strong>Columbia</strong> Reach<br />

26.3 40 8-Jul-09<br />

Windy Creek 51 o 52.5 118 o 01.2 150 8-Jul-09<br />

Sullivan <strong>River</strong> 51 o 57.2 117 o 51.4 280 8-Jul-09<br />

Kinbasket Creek 51 o 58.5 117 o 57.5 160 8-Jul-09<br />

Cummins 52 o 03.1 118 o Wood Arm<br />

09.5 250 8-Jul-09<br />

Wood Creek 52 o 12.2 118 o Canoe Reach<br />

10.3 360 8-Jul-09<br />

Canoe <strong>River</strong> 52 o 46.4 119 o 09.6 368 8-Jul-09<br />

Dave Henry Creek 52 o 44.4 119 o 05.6 100 8-Jul-09<br />

Yellowjacket Creek 3<br />

52 o 42.1 119 o 03.1 60 8-Jul-09<br />

Bulldog Creek 3<br />

52 o 38.4 118 o 58.5 60 8-Jul-09<br />

Ptarmigan Creek 52 o 35.0 118 o 39.5 250 8-Jul-09<br />

Hugh Allan Creek 52 o 26.4 118 o 39.5 450 8-Jul-09<br />

Foster Creek 52 o 15.2 118 o 38.1 75 8-Jul-09<br />

Dawson Creek 3<br />

52 o 15.6 118 o 29.5 110 8-Jul-09<br />

Molson Creek 52 o 10.4 118 o 21.8 75 8-Jul-09<br />

1<br />

From <strong>Water</strong> Survey Canada; estimated values in italics<br />

2 2<br />

Beaver <strong>River</strong> near the mouth (WSC 08NB019 at 51º 30.58 N and 117º 27.70 W) drains 1,150 km .<br />

Tributary sampling by Environment Canada was upstream at Beaver <strong>River</strong> near East Park Gate<br />

(<strong>BC</strong>08NB00002) with approximately half the drainage.<br />

3<br />

New in 2009.<br />

R<br />

Reference tributary; see Table A3-3 for additional sampling dates.


Table A2-2 Tributaries to Revelstoke Reservoir sampled in 2009<br />

Name Lat Long 2<br />

Drainage<br />

Area 1,2<br />

(km 2 )<br />

Date<br />

Sampled<br />

Upper<br />

<strong>Columbia</strong> <strong>River</strong> at Mica<br />

Outflow 52 o 02.6 118 o 35.3 21500 8-Jul-09 R<br />

Nagle Creek 52 o 03.1 118 o 35.4 200 8-Jul-09<br />

Soards Creek 52 o 03.5 118 o 37.3 150 8-Jul-09<br />

Mica Creek 52 o 00.4 118 o 34.0 75 8-Jul-09<br />

Pitt Creek 51 o 57.3 118 o 33.5 5 8-Jul-09<br />

Birch Creek 51 o 55.2 118 o 33.5 20 8-Jul-09<br />

Bigmouth Creek 51 o 49.4 118 o 32.4 600 8-Jul-09<br />

Scrip Creek 51 o 49.4 118 o 39.2 150 8-Jul-09<br />

Horne Creek 51 o 46.4 118 o 41.2 100 8-Jul-09<br />

Hoskins Creek 51 o 41.6 118 o 40.1 100 8-Jul-09<br />

Goldstream <strong>River</strong> 51 o 40.0 118 o 38.6 1000 8-Jul-09 R<br />

Kirbyville Creek 51 o 39.1 118 o 38.3 100 8-Jul-09<br />

Lower<br />

Downie Creek 51 o 30.1 118 o 22.1 550 7-Jul-09<br />

Bourne Creek 51 o 23.5 118 o 27.5 35 8-Jul-09<br />

Big Eddy Creek 51 o 19.5 118 o 23.2 20 8-Jul-09<br />

Carnes Creek 51 o 18.1 118 o 17.1 150 7-Jul-09<br />

Martha Creek 51 o 09.2 118 o 12.0 50 7-Jul-09<br />

<strong>Columbia</strong> R. above Jordan 51 o 01.0 118 o 13.3 26700 7-Jul-09 R<br />

1 From <strong>Water</strong> Survey Canada; estimated values in italics<br />

R Reference tributary; see Table A3-3 for additional sampling dates.


Appendix 3<br />

Tributary Data<br />

Table A3-1 Tributaries to Kinbasket Reservoir, 2008<br />

Table A3-2 Tributaries to Revelstoke Reservoir, 2008<br />

Table A3-3 Tributaries to Kinbasket Reservoir, 7-8 Jul 2009<br />

Table A3-4 Tributaries to Revelstoke Reservoir, 7-8 Jul 2009<br />

Table A3-5 <strong>Columbia</strong> <strong>River</strong> and reference tributaries, 2009<br />

Table A3-6 Sampling location, water temperature and clarity, 7-8 Jul 2009<br />

Table A3-7 Sampling location, water temperature and clarity, reference tributaries, 2009<br />

Table A3-8 Beaver <strong>River</strong>, 2009


*Reference tributary, additional data in Table A3-5<br />

¹ TP corrected for color and turbidity, TPc = TP – TP Turb<br />

Table A3-3 Tributaries to Kinbasket Reservoir sampled in 2009<br />

Site Date pH<br />

Cond<br />

(uhoms)<br />

NN<br />

(ug/L)<br />

SRP<br />

(ug/L)<br />

TDP<br />

(ug/L)<br />

TP<br />

(ug/L)<br />

TP Turb<br />

(ug/L)<br />

TPc¹<br />

(ug/L)<br />

Turb<br />

(NTU)<br />

Alk<br />

(mgCaCO3/L)<br />

<strong>Columbia</strong> <strong>River</strong> at Donald* 7-Jul-09 7.83 130 51.8 3.5 7.2 25.4 5.8 19.6 19.20 151.7<br />

Gold <strong>River</strong> 8-Jul-09 7.28 53 68.5 1.4 5.0 51.1 7.5 43.6 13.4 53.9<br />

Bush Arm<br />

Bush <strong>River</strong> 8-Jul-09 7.86 121 105.9 1.4 7.5 90.9 34.7 56.2 95.9 161.2<br />

Prattle Creek 8-Jul-09 7.89 118 87.7 1.7 4.2 55.8 26.4 29.4 60.3 181.0<br />

Chatter Creek 8-Jul-09 7.66 78 24.8 2.3 5.9 6.9 0.2 6.7 0.43 101.0<br />

<strong>Columbia</strong> Reach<br />

Windy Creek 8-Jul-09 7.03 35 112.9 1.7 4.5 129.6 14.1 115.5 17.2 27.9<br />

Sullivan Creek 8-Jul-09 7.85 99 64.7 1.0 3.1 101.1 47.0 54.1 71.8 158.7<br />

Kinbasket <strong>River</strong> 8-Jul-09 7.79 85 89.5 0.7 8.8 26.8 7.0 19.8 29.2 112.5<br />

Cummins <strong>River</strong> 8-Jul-09 7.36 52 51.5 1.5 4.7 15.6 6.1 9.5 12.4 69.3<br />

Wood Arm<br />

Wood <strong>River</strong> 8-Jul-09 7.91 94 66.0 0.9 3.0 123.9 61.9 62.0 44.4 147.0<br />

Canoe Reach<br />

Canoe <strong>River</strong> 8-Jul-09 6.97 38 46.9 1.0 3.9 15.5 5.0 10.5 6.53 28.8<br />

Dave Henry Creek 8-Jul-09 6.94 42 33.0 0.9 2.5 6.7 0.8 5.9 2.58 23.0<br />

Yellowjacket Creek 8-Jul-09 6.80 33 44.8 0.9 1.6 17.5 2.4 15.1 1.38 15.2<br />

Bulldog Creek 8-Jul-09 6.58 24 95.5 0.7 5.0 8.0


Site Date pH<br />

* Reference tributary, additional data in Table A3-5<br />

¹ TP corrected for color and turbidity, TPc = TP – TP Turb<br />

Table A3-4 Tributaries to Revelstoke Reservoir sampled in 2009<br />

Cond<br />

(uhoms)<br />

NN<br />

(ug/L)<br />

SRP<br />

(ug/L)<br />

TDP<br />

(ug/L)<br />

TP<br />

(ug/L)<br />

TP Turb<br />

(ug/L)<br />

TPc¹<br />

(ug/L)<br />

Turb<br />

(NTU)<br />

Alk<br />

(mgCaCO3/L)<br />

Upper<br />

<strong>Columbia</strong> <strong>River</strong><br />

at Mica Outflow*<br />

8-Jul-09 7.37 72 95.1 1.5 3.5 5.7


Table A3-5 <strong>Columbia</strong> <strong>River</strong> and reference tributaries sampled in 2009<br />

Site Date pH<br />

Cond<br />

(uhoms)<br />

NN<br />

(ug/L)<br />

SRP<br />

(ug/L)<br />

TDP<br />

(ug/L)<br />

TP<br />

(ug/L)<br />

TP Turb<br />

(ug/L)<br />

TPc¹<br />

(ug/L)<br />

Turb<br />

(NTU)<br />

Alk<br />

(mgCaCO3/L)<br />

<strong>Columbia</strong> at Donald 12-May-09 8.26 220 142.3 3.2 6 12.8 3.1 9.7 6.08 261<br />

28-May-09 8.14 156 191.9 4.6 6.4 9.7 3.7 6 28 196.6<br />

9-Jun-09 8.05 135 100.6 2.6 7.2 46.5 na na 15.8 162.9<br />

30-Jun-09 7.78 135 48 2.5 6.8 18 3.4 14.6 3.8 156.1<br />

7-Jul-09 7.83 130 51.8 3.5 7.2 25.4 5.8 19.6 19.2 151.7<br />

27-Jul-09 7.97 112 44.3 2.3 6.1 68.3 41.6 26.7 59 147.6<br />

10-Aug-09 7.77 115 49.1 1.9 6.5 60.6 33.8 26.8 38.1 142.4<br />

8-Sep-09 7.83 127 60 1.7 6.3 28 17 11 29.6 153.8<br />

6-Oct-09 8 164 99.6 1.4 Tube empty 9.5 5.8 3.7 3.31 204.7<br />

2-Nov-09 8.06 190 83.7 1.9 2.5 4.8 1.9 2.9 1.7 226<br />

<strong>Columbia</strong> at Mica Outflow 11-May-09 7.83 108 183.2 4.8 6.1 5.9


Table A3-5 con’t <strong>Columbia</strong> <strong>River</strong> and reference tributaries sampled in 2009<br />

Date pH<br />

Cond NN SRP TDP TP<br />

TP<br />

Turb<br />

TPc¹ Turb Alk<br />

Site<br />

(uhoms) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (NTU) (mgCaCO3/L)<br />

Goldstream <strong>River</strong> 11-May-09 7.88 102 357.1 3.4 6.1 11.2 0.7 10.5 0.76 123.9<br />

27-May-09 7.72 69 380.7 4 7.8 46.6 3.1 43.5 9.26 87.5<br />

8-Jun-09 7.77 73 247.7 2.3 4.4 9.1 0.6 8.5 1.86 89.4<br />

29-Jun-09 7.28 61 104.2 1.6 4.7 10.4 0.8 9.6 1.38 77.7<br />

8-Jul-09 7.31 56 81.2 0.9 3.8 13.1 1.6 11.5 4.11 73.1<br />

28-Jul-09 7.64 65 57.2 2.2 9 177.3 116 61.3 189 78.6<br />

11-Aug-09 7.23 52 72.5 1 2.6 91.9 33 58.9 45.6 67.5<br />

9-Sep-09 7.58 79 100.8 1.2 2.5 13.3 3.7 9.6 2.55 99.9<br />

5-Oct-09 7.76 100 193.4 1.4 4.9 3.6 0.6 3 1.72 126.8<br />

3-Nov-09 7.81 103 138.6 1.6 1.6 2.2


Table A3-6 Sampling location, water temperature and clarity, survey 7-8 Jul, 2009<br />

<strong>Water</strong> T<br />

Sampled<br />

Date Site GPS<br />

(°C) <strong>Water</strong> Clarity by:<br />

6-Jul-09 <strong>Columbia</strong> @ Donald na 15 Turbid Brown/Whitish Road<br />

7-Jul-09 Martha Creek 51°09.163 118°12.040 10 Clear Road<br />

7-Jul-09 Carnes Creek 51°18.103 118°17.086 10.5 Clear Road<br />

7-Jul-09 Downie Creek 51°30.064 118°22.145 8 Turbid Milky Road<br />

7-Jul-09 <strong>Columbia</strong> Above Jordan 51°01.023 118°13.138 7 Clear Road<br />

8-Jul-09 Mica Creek 52°00.435 118°34.020 7.5 Turbid Milky Road<br />

8-Jul-09 Soards Creek 52°03.539 118°37.285 6.5 Clear Road<br />

8-Jul-09 Nagle Creek 52°03.135 118°35.372 7 Clear Road<br />

8-Jul-09 Mica Outflow 52°02.591 118°35.349 n/a n/a Road<br />

8-Jul-09 Pitt Creek 51°57.259 118°33.542 8 Clear Road<br />

8-Jul-09 Birch Creek 51°55.157 118°33.468 8 Clear Road<br />

8-Jul-09 Bigmouth Creek 51°49.413 118°32.360 7.5 Turbid Milky Road<br />

8-Jul-09 Goldstream 51°40.003 118°38.581 8 Clear Road<br />

8-Jul-09 Scrip Creek 51°49.42 118°39.20 6 Clear Helicopter<br />

8-Jul-09 Horne Creek 51°46.42 118°41.16 6 Clear Helicopter<br />

8-Jul-09 Hoskins Creek 51°41.58 118°40.06 6 Clear/Algae Helicopter<br />

8-Jul-09 Kirbyville Creek 51°39.14 118°38.27 7.5-8 Clear Helicopter<br />

8-Jul-09 Bourne Creek 51°23.47 118°27.53 6.5 Turbid Grey Helicopter<br />

8-Jul-09 Big Eddy Creek 51°19.54 118°23.22 63 Turbid Grey Helicopter<br />

8-Jul-09 Gold <strong>River</strong> 51°41.48 117°42.54 7 Turbid Grey Helicopter<br />

8-Jul-09 Bush <strong>River</strong> 51°47.45 117°22.37 6.5 Turbid Grey/white Helicopter<br />

8-Jul-09 Prattle Creek 51°47.28 117°25.43 6 Turbid Grey Helicopter<br />

8-Jul-09 Chatter Creek 51°47.12 117°26.27 6.5 Clear Helicopter<br />

8-Jul-09 Sullivan Creek 51°57.22 117°51.41 6.5 Grey/White/Green Helicopter<br />

8-Jul-09 Windy Creek 51°52.52 118°01.16 6 Turbid Gray Helicopter<br />

8-Jul-09 Kinbasket <strong>River</strong> 51°58.48 117°57.53 7 Turbid Greenish Grey Helicopter<br />

8-Jul-09 Cummins <strong>River</strong> 52°03.11 118°09.52 8 Turbid Grey/Green Helicopter<br />

8-Jul-09 Wood <strong>River</strong> 52°12.18 118°10.26 7.5-8 Very Turbid Milky Grey Helicopter<br />

8-Jul-09 Molson Creek 52°10.36 118°21.75 6.5 Clear Helicopter<br />

8-Jul-09 Hugh Allan Creek 52°26.41 118°39.46 7 Clear Lightly Turbid Helicopter<br />

8-Jul-09 Ptarmigan Creek 52°35.01 118°50.02 7 Clear Lightly Turbid Helicopter<br />

8-Jul-09 Dave Henry Creek 52°44.35 119°05.56 7 Clear very light turbidity Helicopter<br />

8-Jul-09 Canoe <strong>River</strong> 52°46.41 119°09.59 7 Helicopter<br />

8-Jul-09 Foster Creek 52°15.24 118°38.12 6.5 Turbid Grey Helicopter<br />

8-Jul-09 Bulldog Creek 52°38.41 118°58.46 6.5 Clear Helicopter<br />

8-Jul-09 Yellowjacket Creek 52°42.12 119°03.14 7 Clear Helicopter<br />

8-Jul-09 Dawson Creek 52°15.58 118°29.48 6.5 Clear Helicopter


Table A3-7 Sampling location, water temperature and clarity, reference tributaries, 2009<br />

<strong>Water</strong> T<br />

Sampled<br />

Date Site GPS<br />

(°C) <strong>Water</strong> Clarity by:<br />

11-May-09 Mica Outflow 52°02.757 118°37.137 3.5 Clear Road<br />

25-May-09 Mica Outflow 52°02.513 118°35.363 7 Clear Road<br />

8-Jun-09 Mica Outflow 52°02.590 118°35.340 6 Turbid Brown Road<br />

29-Jun-09 Mica Outflow 52°02.584 118°35.335 9 Clear Road<br />

8-Jul-09 Mica Outflow 52°02.591 118°35.349 n/a n/a Road<br />

28-Jul-09 Mica Outflow 52°02.586 118°35.337 7 Clear Road<br />

11-Aug-09 Mica Outflow 52°02.575 118°35.305 7 Clear Road<br />

9-Sep-09 Mica Outflow na 6 Clear Road<br />

5-Oct-09 Mica Outflow na 6.5 Clear Road<br />

3-Nov-09 Mica Outflow 52°02.586 118°35.337 6.5 Clear Road<br />

11-May-09 Goldstream 51°38.866 118°36.293 6.5 Clear Road<br />

27-May-09 Goldstream 51°40.001 118°36.502 6 Turbid Brown Road<br />

8-Jun-09 Goldstream 52°40.001 118°36.582 11 Turbid Brown Road<br />

29-Jun-09 Goldstream 51°40.003 118°36.582 10 Turbid Brownish Road<br />

8-Jul-09 Goldstream 51°40.003 118°38.581 8 Clear Road<br />

28-Jul-09 Goldstream 51°40.002 118°36.582 14 Turbid Brown Road<br />

11-Aug-09 Goldstream 51°39.591 118°36.573 10 Turbid Brown Road<br />

9-Sep-09 Goldstream na 8 Clear Road<br />

5-Oct-09 Goldstream na 4.5 Clear Road<br />

3-Nov-09 Goldstream 51°39.590 118°36.578 2 Clear Road<br />

12-May-09 <strong>Columbia</strong> @ Donald 51°29.014 117°10.832 10 Turbid Milky Road<br />

28-May-09 <strong>Columbia</strong> @ Donald 51°29.037 117°10.547 12 Turbid Brown Road<br />

9-Jun-09 <strong>Columbia</strong> @ Donald 51°29.036 117°10.549 11 Turbid Brown Road<br />

30-Jun-09 <strong>Columbia</strong> @ Donald na 14 Turbid Brown Road<br />

6-Jul-09 <strong>Columbia</strong> @ Donald na 15 Brown/Whitish Road<br />

27-Jul-09 <strong>Columbia</strong> @ Donald 51°29.042 117°10.568 17.5 Turbid Milky Road<br />

10-Aug-09 <strong>Columbia</strong> @ Donald 51°29.047 117°10.568 15 Turbid Milky Road<br />

8-Sep-09 <strong>Columbia</strong> @ Donald na 11 Milky/Brown Road<br />

6-Oct-09 <strong>Columbia</strong> @ Donald na 5.5 Clear Road<br />

2-Nov-09 <strong>Columbia</strong> @ Donald na 3 Clear Road<br />

12-May-09 <strong>Columbia</strong> Above Jordan 51°01.035 118°13.227 4 Clear Road<br />

28-May-09 <strong>Columbia</strong> Above Jordan 51°01.023 118°13.135 7 Clear Road<br />

9-Jun-09 <strong>Columbia</strong> Above Jordan 51°00.594 118°12.577 7 Clear Road<br />

30-Jun-09 <strong>Columbia</strong> Above Jordan na 10 Clear Road<br />

7-Jul-09 <strong>Columbia</strong> Above Jordan 51°01.023 118°13.138 7 Clear Road<br />

27-Jul-09 <strong>Columbia</strong> Above Jordan 51°01.020 118°13.135 9.5 Clear Road<br />

10-Aug-09 <strong>Columbia</strong> Above Jordan na 8 Clear Road<br />

8-Sep-09 <strong>Columbia</strong> Above Jordan na 9 Clear Road<br />

6-Oct-09 <strong>Columbia</strong> Above Jordan na 10.5 Clear Road<br />

2-Nov-09 <strong>Columbia</strong> Above Jordan na 5 Clear Road


Table A3-8 <strong>Water</strong> Quality For Beaver <strong>River</strong><br />

Station: Beaver <strong>River</strong> near East Park Gate (<strong>BC</strong>08NB0002)<br />

Description: At Highway 1 bridge near east gate of Glacier National Park<br />

Latitude: 51.38338 Longitude: -117.45035<br />

SPECIFIC<br />

CONDUCT-<br />

ANCE<br />

NITROGEN<br />

DISSOLVED<br />

NITRATE<br />

PHOSPHORUS<br />

DISSOLVED<br />

ORTHO<br />

ALKALINITY<br />

TOTAL<br />

CACO3<br />

AMMONIA NITROGEN<br />

COLOUR<br />

PHOSPHORUS<br />

Sample Time PH<br />

DISSOLVED NITRITE<br />

TRUE<br />

TOTAL TURBIDITY<br />

Units pH units uS/cm mg/L mg/L mg/L Rel Units mg/L mg/L NTU mg/L C<br />

1/5/2009 10:44 7.97 207 0.019 0.158 7.5


CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

2009 Progress Report<br />

Appendix 3<br />

CTD Surveys<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Roger Pieters and Greg Lawrence<br />

University of British <strong>Columbia</strong>


CTD Surveys<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Roger Pieters 1,2 and Greg Lawrence 2<br />

1 Department of Earth and Ocean Sciences, University of British <strong>Columbia</strong>, Vancouver,<br />

B.C. V6T 1Z4<br />

2 Department of Civil Engineering, University of British <strong>Columbia</strong>, Vancouver, B.C.<br />

V6T 1Z4<br />

Revelstoke Reservoir, 23 Aug 2010<br />

Prepared for<br />

Karen Bray<br />

Biritsh <strong>Columbia</strong> <strong>Hydro</strong> and Power Authority<br />

1200 Powerhouse Road<br />

Revelstoke B.C. V0E 2S0<br />

January 26, 2011


Contents<br />

1. Introduction......................................................................................................................1<br />

2. Methods............................................................................................................................1<br />

3. Results..............................................................................................................................4<br />

4. Discussion........................................................................................................................7<br />

Appendix 1 Station names<br />

Appendix 2 List of profiles collected<br />

Appendix 3 Casts collected during primary production<br />

i


List of Figures<br />

Figure A1 Map showing approximate location of profile stations<br />

Figure A2 <strong>Water</strong> levels in Kinbasket and Revelstoke reservoirs, 2009<br />

Figure A3 Temperature and conductivity of the <strong>Columbia</strong> <strong>River</strong> at Donald, 1984-1995<br />

Figure A4 Secchi depth and 1% light level<br />

Figures B Line plots in Kinbasket Reservoir<br />

B1 15-16 Jun 2009<br />

B2 13-14 Jul 2009<br />

B3 17-18 Sep 2009<br />

B4 31 Aug – 01 Sep 2009<br />

B5 31 14-15 Sep 2009<br />

B6 31 19-20 Oct 2009<br />

B7 Forebay K1<br />

B8 Middle K2<br />

B9 <strong>Columbia</strong> K3<br />

B10 Canoe Kca1<br />

B11 Wood Kwo1<br />

Figures C Contour plots in Kinbasket Reservoir<br />

C1 15-16 Jun 2009<br />

C2 13-14 Jul 2009<br />

C3 17-18 Sep 2009<br />

C4 31 Aug – 01 Sep 2009<br />

C5 31 14-15 Sep 2009<br />

C6 31 19-20 Oct 2009<br />

Figures D Line plots in Revelstoke Reservoir<br />

D1 23-24 Jun 2009<br />

D2 21-22 Jul 2009<br />

D3 25-26 Aug 2009<br />

D4 2 Sep 2009<br />

D5 22-23 Sep 2009<br />

D6 13-14 Oct 2009<br />

D7 Forebay R1<br />

D8 Middle R2<br />

D9 Upper R3<br />

Figures E Contour plots in Revelstoke Reservoir<br />

E1 23-24 Jun 2009<br />

E2 21-22 Jul 2009<br />

E3 25-26 Aug 2009<br />

E4 2 Sep 2009<br />

E5 22-23 Sep 2009<br />

E6 13-14 Oct 2009<br />

Figure F1 Line plot of all Kinbasket and Revelstoke profile data, 2009<br />

Figure A3 Casts collected during primary production<br />

ii


1. Introduction<br />

We report on CTD (conductivity-temperature-depth) profiles collected from Kinbasket<br />

and Revelstoke reservoirs in 2009. * This is the second year of data collected for the B.C.<br />

<strong>Hydro</strong> project “CLBMON-3 Kinbasket and Revelstoke Ecological Productivity<br />

Monitoring”.<br />

2. Methods<br />

Sampling stations<br />

Sampling was conducted in both reservoirs monthly from May to Oct, 2009. Due to a<br />

delay in the return of the CTD from calibration, it was not available in May and monthly<br />

CTD surveys began in Jun, 2009. In order to sample more of the reservoir, a CTD survey<br />

was conducted on 31 Aug – 2 Sep 2009 with additional stations.<br />

Sampling Kinbasket and Revelstoke reservoirs is a challenge because of their size. The<br />

<strong>Columbia</strong> and Canoe reaches of Kinbasket Reservoir stretch over 190 km long (Figure<br />

A1). Revelstoke Reservoir is not quite as long with 130 km from Mica to Revelstoke<br />

dam. Kinbasket is particularly difficult to sample because of limited road access, the<br />

frequency and severity of wind storms, and the absence of sheltered locations along much<br />

of the lake.<br />

The approximate location of the sampling stations is shown in Figure A1. Production of<br />

a more accurate map awaits shoreline and bathymetry data from B.C. <strong>Hydro</strong>. Station<br />

names are also provisional with stations numbered either from the dam or from the mouth<br />

of an arm. In Kinbasket there are five main stations: Forebay (K1fb), Middle (K2mi),<br />

<strong>Columbia</strong> Reach (K3co), Canoe Arm (Kca1), and Wood Arm (Kwo1). In Revelstoke<br />

there are three main stations: Forebay (R1fb), Middle (R2mi) and Upper (R3up). The<br />

main stations are marked with a heavy symbol in Figure A1. All stations sampled are<br />

given in Appendix 1.<br />

A list of all profiles is given in Appendix 2, and summarized in Tables 2.1 and 2.2. In<br />

addition to the main stations, casts were collected at additional stations during 31 Aug – 2<br />

Sep to provide a more detailed picture of the reservoir. Unlike 2008, when high wind,<br />

waves and excessive debris permitted only sampling of the south end of Canoe Reach, in<br />

2009 much of Canoe reach was accessible. Some regions of both reservoirs were not<br />

sampled, including the uppermost part of Canoe Reach, upstream of K4 in the <strong>Columbia</strong><br />

Reach and the region in Revelstoke Reservoir below Mica Dam. (Figure A1).<br />

* Previous data include profiles from Revelstoke Reservoir and the Mica Forebay (Watson 1984; Fleming<br />

and Smith 1988). Monthly profiles at four stations in Kinbasket Reservoir (2003, 2004 and 2005) and three<br />

stations in Revelstoke Reservoir (2003) were collected with an YSI multiparameter probe (K. Bray,<br />

personal communication).<br />

1


Additional casts were also collected during measurement of primary production, and<br />

these data are shown in Appendix 3.<br />

Profiler<br />

Profiles were collected using a Sea-Bird Electronics SBE 19plus V2 profiler with the<br />

following additional sensors:<br />

• Turner SCUFA II fluorometer and optical back scatter (OBS) sensor,<br />

• Biospherical QSP-2300L (4 pi) photosynthetically active radiation (PAR) sensor,<br />

• Sea-Bird SBE 43 dissolved oxygen sensor, and<br />

• Wetlabs CStar transmissometer (red with 25 cm path).<br />

Secchi depths were collected with a 20 cm black and white disk, lowered from the side of<br />

the boat away from the sun. The Secchi depth is given as the average of the depths at<br />

which the disk disappeared going down and reappeared going up. Multiplying the Secchi<br />

depth by 2.5 provides an estimate of the 1% light level (Figure A4).<br />

2


Date<br />

Table 2.1 Kinbasket surveys, 2009<br />

FB<br />

k1<br />

k1.5<br />

3<br />

MI<br />

k2<br />

CO<br />

k3<br />

CA<br />

kca1<br />

WO<br />

Kwo1<br />

15-16 Jun � � �x2 � �<br />

22 Jun* �<br />

13-14 Jul � � � � �<br />

20 Jul* �<br />

17-18 Aug � � � � �<br />

24 Aug* �<br />

31 Aug – 01 Sep** � � �+6 �+5 �+2<br />

14-15 Sep � � � � �<br />

21 Sep* �<br />

19-20 Oct � � � � �<br />

* Collected during measurement of primary production (see Appendix 3)<br />

** Additional casts<br />

Table 2.2 Revelstoke surveys, 2009<br />

Date FB MI UP<br />

23-24 Jun �* �* �<br />

21-22 Jul �* �*x2 �<br />

25-26 Aug �* �* �<br />

2 Sep** �+4 �+2 �<br />

22-23 Sep �* �* �<br />

13-14 Oct � � �<br />

* Primary production (see Appendix 3)<br />

** Additional casts


3. Results<br />

Before examining Kinbasket and Revelstoke reservoirs, we first examine the water level<br />

during 2009 and the characteristics of the main inflow to Kinbasket Reservoir. The water<br />

level for both reservoirs is given in Figure A2. The first two surveys, on 15-16 Jun and<br />

13-14 Jul 2009, occurred at a time when Kinbasket Reservoir was filling (Figure A2a).<br />

The remaining surveys from Aug to Oct occur at relatively high water level. In<br />

Revelstoke Reservoir there is normally little variation in water level (< 1.5 m, Figure<br />

A2b).<br />

The main inflow to the Kinbasket Reservoir is the <strong>Columbia</strong> <strong>River</strong>. At Donald, about 20<br />

km upstream of Kinbasket Reservoir, water quality parameters were measured under the<br />

Canada - British <strong>Columbia</strong> <strong>Water</strong> Quality Monitoring Agreement. Data were collected<br />

every two weeks from 1984-1995 including during ice-cover in winter. <strong>Water</strong><br />

temperature, conductivity and flow for this period are shown in Figure A3. <strong>Water</strong><br />

temperature varied from 12 to 18 ºC in summer and cooled to 0-5 ºC in winter.<br />

The conductivity of the <strong>Columbia</strong> <strong>River</strong> at Donald varied significantly over the year. In<br />

winter the flow was more saline with a conductivity of 300-350 μS/cm. At the start of<br />

freshet in spring, the conductivity decreased rapidly to 150-200 μS/cm, about half of the<br />

winter value. During freshet, the contribution of more saline groundwater to the river is<br />

diluted by fresh snowmelt and rain. In the fall the conductivity gradually increased as the<br />

freshet flow declined. A similar pattern was seen for the Beaver, Goldstream and<br />

Illecillewaet rivers (Pieters et al. 2011a). This seasonal change in the conductivity of the<br />

inflow will assist in identifying water masses as discussed below.<br />

3.1 Kinbasket Reservoir<br />

Jun 2009 Line plots for the five monthly surveys of Kinbasket Reservoir plus the<br />

additional survey at the end of August are given in Figures B1-6. In Jun 2009, the<br />

surface temperature was 13-17 ºC, Figure B1b. There was no clearly defined surface<br />

mixed layer; instead there was a broad thermocline, which extended from the surface to<br />

30 m. During this time, the outlet from Kinbasket reservoir was 47 m below the surface,<br />

as marked in Figure B1.<br />

The conductivity varied from ~160 μS/cm near the surface to ~190 μS/cm at depth<br />

through most of the reservoir except for the <strong>Columbia</strong> reach (black, Stn K3co), which had<br />

a higher conductivity of ~200 μS/cm, Figure B1c. The station at K3co is located at the<br />

former Kinbasket Lake along the <strong>Columbia</strong> <strong>River</strong> and the conductivity of the deep water<br />

will remain distinctly different through Oct. In Canoe Reach (green, Stn Kca1), layers of<br />

reduced conductivity in the top 30 m suggest low-conductivity inflow.<br />

Dissolved oxygen is high (>9 mg/L) throughout the reservoir (Figure B1e). The<br />

solubility of oxygen is sensitive to temperature, decreasing as temperature increases. As<br />

4


a result, the concentration of oxygen in the warm surface layer is slightly lower. To<br />

remove the effect of temperature, dissolved oxygen is plotted as percent saturation in<br />

Figure B1f. Dissolved oxygen is close to 100% at the surface and decreases to 70% at<br />

depth, indicating that the water is well oxygenated as would be expected for an<br />

oligotrophic system.<br />

Below 20 m the reservoir was relatively clear, while in the top 20 m the turbidity was<br />

slightly higher especially in Wood Arm (Figure B1d). The nominal concentration of<br />

chlorophyll was generally low (< 2 ug/L) and confined to the top 20 m (Figure B1g).<br />

The 1% light level determined from PAR is marked with dashed lines. The 1% light<br />

level varied from 10 to 20 m, just below the chlorophyll layer.<br />

July 2009 In July, surface temperature varied from 15 to 17 ºC (Figure B2b). As in Jun,<br />

there was a broad thermocline extending from the surface now to 40 m, as the reservoir<br />

was 8 m deeper. The thermocline extended a little deeper in Canoe Reach. The<br />

stratification is reduced in the top 10 m suggesting some surface mixing. The average<br />

conductivity in the top 40 m is slightly reduced from that in Jun at all stations (Figures<br />

B2c, B7-11c).<br />

In Jul, turbidity remained similar to that in Jun except for a high turbidity layer around 30<br />

m in both Wood Arm and the <strong>Columbia</strong> Reach. Oxygen remained high (Figure B2e,f)<br />

and chlorophyll values were slightly reduced from Jun (Figure B2g).<br />

Aug 2009 While the temperature structure remains much the same as in Jul (Figure<br />

B3b), the conductivity of the top 40 m continued to decline (Figure B3c). The decline<br />

was generally small, except in the <strong>Columbia</strong> Reach where a large reduction in the<br />

conductivity of the top 40 m made it similar to that in the rest of the reservoir. Layers of<br />

turbidity, likely the result of inflow, continued in Wood Arm and Canoe Reach around 40<br />

m depth.<br />

31 Aug – 1 Sep 2009 While the surface temperature increased slightly by 1 or 2 ºC, the<br />

broad thermocline extends to 60 m depth and the temperature is remarkably similar<br />

across the reservoir (Figure B4b). The conductivity shows a strong gradient across<br />

Canoe Reach with lower conductivity further up the Reach (Figure B4c).<br />

Sep 2009 The temperature and conductivity structure remains little changed from that at<br />

the start of September (Figure B5b,c).<br />

October 2009 In October, a surface mixed layer extends to almost 50 m as the reservoir<br />

cools (Figure B6b). The water is clearing with reduced turbidity (Figure B6d), a 1% light<br />

level reaching almost 30 m (Figure B6g), and nominal chlorophyll concentrations around<br />

0.5 μg/L (Figure B6g).<br />

Contour plots The profiles along the length of Kinbasket Reservoir are shown as contour<br />

plots in Figures C1-6. Each contour shows Canoe Reach (Kca1), the main pool (K2mi)<br />

5


and <strong>Columbia</strong> Arm (K3co), with additional profiles for the 31 Aug – 01 Sep surveys<br />

(Figure C4). Contour plots highlight variations along the reservoir; however, care must<br />

be taken when interpreting features between the stations marked.<br />

The most detailed contour plot was that for 31 Aug – 1 Sep 2009 when additional casts<br />

were collected (Figure C4); this figure will be the focus of the discussion as follows. As<br />

already noted, the temperature stratification was relatively uniform along the length of<br />

the reservoir at this time (Figure C4a).<br />

The conductivity shows a surface layer with reduced conductivity (0-50 m, Figure C4b).<br />

The conductivity of the surface layer is slightly lower at the north end, consistent with the<br />

lower conductivity of tributaries to the Canoe Reach (Pieters et al. 2011a). Also note the<br />

increased conductivity of the deep water in the <strong>Columbia</strong> Reach.<br />

Low light transmission shows regions of high turbidity, and several regions of high<br />

turbidity can be seen in the <strong>Columbia</strong> Reach (Figure C4c). These lenses of turbidity may<br />

have originated from the <strong>Columbia</strong> <strong>River</strong> at Donald, or from local tributaries. Dissolved<br />

oxygen is high throughout the reservoir, with a slight reduction at the surface due to<br />

warmer temperatures (Figure C4d). Chlorophyll is generally low, with a peak of 0.7-1.2<br />

μg/L from 10 to 20 m, just above the 1% light level (marked by black bars).<br />

Seasonal changes Seasonal changes at the Forebay (K1fb), Middle (K2mi), <strong>Columbia</strong><br />

(K3co), Canoe (Kca1) and Wood (Kwo1) stations, are shown in Figures B7 to 11,<br />

respectively. To account for the increase in the water level, the casts are plotted relative<br />

to full pool, 754.4 mASL. In each case, changes in temperature and conductivity below<br />

60 m are small. Oxygen below 60 m declines only slightly (~0.5 mg/L) over the summer.<br />

3.2 Revelstoke Reservoir<br />

Jun 2009 On 15 Jun 2009 the surface temperature was 12 to 15 ºC, below which a broad<br />

thermocline extended to about 40 m (Figure D1b). The conductivity of the top 40 m was<br />

less than that of the water below (Figure D1c), while the turbidity was slightly higher in<br />

the top 40 m than at depth (Figure D1d), likely the result of freshet river inflow.<br />

Dissolved oxygen was high with 70 to 90% saturation throughout (Figure D1f).<br />

Chlorophyll fluorescence shows small peaks just over 1 μg/L around the depth of the one<br />

percent light level (Figure D1g).<br />

July to October 2009<br />

In Jul, Aug and early Sep, the surface temperature was 17 to 18 ºC (Figure 4Db) and the<br />

conductivity of the top 10 m remained < 100 μS/cm throughout this time. In Jul, water<br />

with increased conductivity (~130 μS/cm) was seen between 20 and 35 m at the upper<br />

station, R3up (Figure D2c). In Aug, the influence of this higher conductivity water is<br />

seen between 20 and 50 m at the mid (R2mi) and forebay (R1fb) stations (Figure D3c).<br />

6


This higher conductivity water is likely outflow from Mica dam, forming an interflow.<br />

The interflow can be seen in the layer of relatively uniform temperature between 20 and<br />

50 m (Figure D3b). This layer of high conductivity and relatively uniform temperature<br />

was also observed in early Sep (Figure D4b,c) and mid Sep (Figure D5b,c). By Oct,<br />

however, surface cooling has mixed the surface layer to 40 m (Figure D6).<br />

The interflow can also be seen in the contour plots. In Jul, Figure E2b, the top 50 m of<br />

Revelstoke reservoir is fresher, with only a small increase in conductivity around 30 m at<br />

the upper station. In mid-Aug, early Sep and mid-Sep, higher conductivity water at 30 m<br />

can be seen all the way to the outlet (Figures E3b, E4b and E5b). It appears that the<br />

inflow from Mica short circuits through Revelstoke Reservoir.<br />

Comparison of casts in the forebay (Figure D7) indicate slight changes to the deep water<br />

(> 60 m) through the summer, with a slight increase in temperature and a decrease in<br />

conductivity, likely due to a small degree of exchange with overlying water. The<br />

decrease in oxygen over the summer was larger than in Kinbasket, ~1 mg/L.<br />

4. Discussion<br />

Trophic Status<br />

As an indicator of trophic status, Wetzel (2001) gives the following general ranges for<br />

chlorophyll concentrations:<br />

• 0.05-0.5 μg/L ultraoliogotrophic;<br />

• 0.3-3 μg/L oligotrophic; and<br />

• 2-15 μg/L mesotrophic.<br />

The low concentrations of chlorophyll in both Kinbasket and Revelstoke Reservoirs (


The variation in the conductivity of the tributary inflows provides a tracer to identify<br />

water masses. Both Kinbasket and Revelstoke Reservoirs have a surface layer of reduced<br />

conductivity, which suggests surface waters are composed largely of freshet inflow.<br />

Based on the given data we can tentatively sketch the circulation of Kinbasket and<br />

Revelstoke Reservoirs and speculate on the supply of nitrate. As described in Pieters et<br />

al. (2011b), late spring and summer can be broken into two periods based on flow: May<br />

to mid-Jul and mid-Jul to Sep. In the first period of May to mid-Jul, the top 30 m of<br />

Kinbasket Reservoir is filled with freshet inflow and there is little outflow from Mica<br />

Dam. The lack of outflow from Mica Dam means that the circulation in Revelstoke<br />

Reservoir is dominated by local inflow during this time. During the second period of<br />

mid-Jul to Sep, the tail of the freshet is passed through Mica and this water appears to<br />

short circuit through Revelstoke Reservoir as an interflow directly to the outlet. Nutrients<br />

from Mica may pass below the photic zone until fall cooling mixes the interflow into the<br />

surface layer in Oct.<br />

At the start of freshet, inflow nutrients such as nitrate are higher and this, along with<br />

nutrients in the lake may feed spring productivity, if not create a bloom. However, the<br />

nutrient concentrations in the freshet inflows decline rapidly at the same time as the<br />

reservoir fills. The low conductivity of the water above the photic zone in Jul suggests<br />

that nutrient supply will be reduced through much of the first period. At the start of the<br />

second period, deep cold water is released from Kinbasket Reservoir. Based on<br />

conductivity, the initial water released from Mica may have relatively higher nutrient<br />

concentrations (cf. Figure B2c 40-50 m). However, this cold water plunges, and appears<br />

to short circuit to the outlet of Revelstoke Dam (cf Figure E3b).<br />

Also of interest is the way in which higher conductivity, and potentially higher nutrient<br />

water is mixed through the reservoir in winter, and to what degree this provides for the<br />

initial productivity in spring.<br />

Acknowledgements<br />

Profiles were collected by Beth Manson, Pierre Bourget and Karen Bray. We are grateful<br />

to A. Akkerman, H. Keller and T. Moser for assistance with data processing. We<br />

gratefully acknowledge funding provided by B.C. <strong>Hydro</strong>. Salary subsidy was provided to<br />

A. Akkerman and H. Keller through the U<strong>BC</strong> Work Study program.<br />

8


References<br />

Fleming, J.O. and H.A. Smith. 1988. Revelstoke Reservoir aquatic monitoring program,<br />

1986, progress report. B.C. <strong>Hydro</strong> Report No. ER 88-03.<br />

Pieters, R., L.C. Thompson, L. Vidmanic, S. Harris, J. Stockner, H. Andrusak, M. Young,<br />

K. Ashley, B. Lindsay, G. Lawrence, K. Hall, A. Eskooch, D. Sebastian, G.<br />

Scholten and P.E. Woodruff. 2003. Arrow Reservoir fertilization experiment,<br />

year 2 (2000/2001) report. RD 87, Fisheries Branch, Ministry of <strong>Water</strong>, Land and<br />

Air Protection, Province of British <strong>Columbia</strong>.<br />

Pieters, R., H. Keller and G. Lawrence. 2011a. Tributary water quality, Kinbasket and<br />

Revelstoke Reservoirs, 2009. Prepared for B.C. <strong>Hydro</strong>, Revelstoke, Jan 2011.<br />

42pp.<br />

Pieters, R. D. Robb, and G. Lawrence. 2011b. <strong>Hydro</strong>logy of Kinbasket and Revelstoke<br />

Reservoirs, 2009. Prepared for B.C. <strong>Hydro</strong>, Revelstoke, Jan 2011. 30pp.<br />

Watson, T.A. 1985. Revelstoke <strong>Project</strong> <strong>Water</strong> Quality Studies 1978-1984. B.C. <strong>Hydro</strong><br />

Report No. ESS-108, Jul 1985. 237pp.<br />

Wetzel, R.G. 2001. Limnology. Academic Press, San Diego.<br />

9


Figure A1 Map showning approximate location of profile stations<br />

Kca5<br />

Kca4<br />

Kca3<br />

Kca1<br />

K2mi<br />

K1fb Kwo1<br />

K2.6<br />

K3co<br />

K2.3<br />

Kca2<br />

Kca0 Kwo0 Kwo2<br />

K1.5→<br />

↑<br />

K2.1<br />

R3up<br />

R2.7<br />

R2.4<br />

R2.1<br />

R2mi<br />

R1.8<br />

R1.6<br />

R1.4<br />

R1.2<br />

R1fb<br />

K3.4<br />

K3.7<br />

K4bu<br />

l l l l l l<br />

0 1020304050<br />

km<br />

/ocean/rpieters/kr/bathy/map/map1REP09.m fig= 1 2011−Jan−26


Figure A2 <strong>Water</strong> level in Kinbasket and Revesltoke Reservoirs, 2009<br />

760<br />

(a) Kinbasket<br />

750<br />

740<br />

730<br />

720<br />

710<br />

700<br />

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan<br />

573.5 (b) Revelstoke<br />

573<br />

572.5<br />

572<br />

571.5<br />

571<br />

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan<br />

/ocean/rpieters/kr/sbe/info/krwlctd.m fig= 1 2011−Jan−24


T (°C)<br />

C25 (μS/cm)<br />

T (°C)<br />

C25 (μS/cm)<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Figure A3 <strong>Columbia</strong> <strong>River</strong> at Donald, T and C25, 1984−1995<br />

−5<br />

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996<br />

400<br />

300<br />

200<br />

Flow<br />

(m 3 /s)<br />

100<br />

−0<br />

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996<br />

20<br />

15<br />

10<br />

5<br />

0<br />

−5<br />

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec<br />

400<br />

300<br />

200<br />

100<br />

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec<br />

/ocean/rpieters/kr/flow/ecan/plot/plotcoldo.m fig= 1 2009−Jun−01<br />

−500<br />

Mean flow (m −500<br />

−0<br />

3 /s)


1% Light level (m)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Figure A4 1% Light Level = 2.5 X Secchi Depth, 2008(BLK) 2009(BLU)<br />

0<br />

0 2 4 6<br />

Secchi depth (m)<br />

8 10 12


km<br />

10<br />

5<br />

0<br />

−5<br />

−10<br />

−15<br />

Kca1<br />

K1fb<br />

Kwo1<br />

K2mi<br />

K3co<br />

−20<br />

−20 0 20 40<br />

km<br />

(b)<br />

(e)<br />

5 10 15 20<br />

Temperature<br />

( o C)<br />

Figure B1 Kinbasket Reservoir, 15−16 Jun 2009<br />

Outlet 47m<br />

8 10 12<br />

Dissolved oxygen<br />

(mg/l)<br />

(c)<br />

(f)<br />

100 150 200<br />

Specific Conductance<br />

(μS/cm)<br />

60 80 100<br />

O 2 (% saturation)<br />

(d)<br />

0 50<br />

% Transmission<br />

180<br />

100<br />

DASH line marks 1% light<br />

(g)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

06 K1fb 16−Jun<br />

05 K2mi 16−Jun<br />

04 Kca1 16−Jun<br />

01 K3co 15−Jun<br />

02 K3co 15−Jun<br />

03 Kwo1 15−Jun<br />

140<br />

160<br />

180<br />

0 1<br />

Chla (Nominal μg/l)<br />

2<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

Depth (m)<br />

Depth (m)


km<br />

10<br />

5<br />

0<br />

−5<br />

−10<br />

−15<br />

Kca1<br />

K1fb<br />

Kwo1<br />

K2mi<br />

K3co<br />

−20<br />

−20 0 20 40<br />

km<br />

(b)<br />

(e)<br />

5 10 15 20<br />

Temperature<br />

( o C)<br />

Figure B2 Kinbasket Reservoir, 13−14 Jul 2009<br />

Outlet 55m<br />

8 10 12<br />

Dissolved oxygen<br />

(mg/l)<br />

(c)<br />

(f)<br />

100 150 200<br />

Specific Conductance<br />

(μS/cm)<br />

60 80 100<br />

O 2 (% saturation)<br />

(d)<br />

0 50<br />

% Transmission<br />

180<br />

100<br />

DASH line marks 1% light<br />

(g)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

15 K1fb 14−Jul<br />

14 K2mi 14−Jul<br />

12 Kca1 13−Jul<br />

11 K3co 13−Jul<br />

13 Kwo1 14−Jul<br />

140<br />

160<br />

180<br />

0 1<br />

Chla (Nominal μg/l)<br />

2<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

Depth (m)<br />

Depth (m)


km<br />

10<br />

5<br />

0<br />

−5<br />

−10<br />

−15<br />

Kca1<br />

K1fb<br />

Kwo1<br />

K2mi<br />

K3co<br />

−20<br />

−20 0 20 40<br />

km<br />

(b)<br />

(e)<br />

5 10 15 20<br />

Temperature<br />

( o C)<br />

Figure B3 Kinbasket Reservoir, 17−18 Aug 2009<br />

Outlet 60m<br />

8 10 12<br />

Dissolved oxygen<br />

(mg/l)<br />

(c)<br />

(f)<br />

100 150 200<br />

Specific Conductance<br />

(μS/cm)<br />

60 80 100<br />

O 2 (% saturation)<br />

(d)<br />

0 50<br />

% Transmission<br />

180<br />

100<br />

DASH line marks 1% light<br />

(g)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

31 K1fb 18−Aug<br />

30 K2mi 18−Aug<br />

28 Kca1 17−Aug<br />

27 K3co 17−Aug<br />

29 Kwo1 18−Aug<br />

140<br />

160<br />

180<br />

0 1<br />

Chla (Nominal μg/l)<br />

2<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

Depth (m)<br />

Depth (m)


km<br />

50<br />

Kca5<br />

40<br />

Kca4<br />

30<br />

20<br />

10<br />

0<br />

−10<br />

−20<br />

−30<br />

Kca3<br />

Kca2.5<br />

Kca1.5<br />

Kca0 Kwo2<br />

Kwo0<br />

K2mi Kwo1<br />

K1fb K2.1<br />

K2.4<br />

K2.8<br />

K3.1<br />

K3.5<br />

K3.7<br />

−40<br />

K4<br />

−50 0 50<br />

km<br />

100<br />

(b)<br />

(e)<br />

Figure B4 Kinbasket Reservoir, 31 Aug − 01 Sep 2009<br />

5 10 15 20<br />

Temperature<br />

( o C)<br />

Outlet 61m<br />

8 10 12<br />

Dissolved oxygen<br />

(mg/l)<br />

(c)<br />

(f)<br />

100 150 200<br />

Specific Conductance<br />

(μS/cm)<br />

60 80 100<br />

O 2 (% saturation)<br />

(d)<br />

0 50<br />

% Transmission<br />

180<br />

100<br />

DASH line marks 1% light<br />

(g)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

54 K1fb 01−Sep<br />

53 K2mi 01−Sep<br />

37 Kca0 31−Aug<br />

38 Kca1.5 31−Aug<br />

39 Kca2.5 31−Aug<br />

40 Kca3 31−Aug<br />

41 Kca4 31−Aug<br />

42 Kca5 31−Aug<br />

43 K2.1 01−Sep<br />

44 K2.4 01−Sep<br />

45 K2.8 01−Sep<br />

46 K3.1 01−Sep<br />

47 K3.5 01−Sep<br />

48 K3.7 01−Sep<br />

49 K4 01−Sep<br />

52 Kwo0 01−Sep<br />

51 Kwo1 01−Sep<br />

50 Kwo2 01−Sep<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

180<br />

0 1<br />

Chla (Nominal μg/l)<br />

2<br />

0<br />

20<br />

40<br />

Depth (m)<br />

Depth (m)


km<br />

10<br />

5<br />

0<br />

−5<br />

−10<br />

−15<br />

Kca1<br />

K1fb<br />

Kwo1<br />

K2mi<br />

K3co<br />

−20<br />

−20 0 20 40<br />

km<br />

(b)<br />

(e)<br />

5 10 15 20<br />

Temperature<br />

( o C)<br />

Figure B5 Kinbasket Reservoir, 14−15 Sep 2009<br />

Outlet 62m<br />

8 10 12<br />

Dissolved oxygen<br />

(mg/l)<br />

(c)<br />

(f)<br />

100 150 200<br />

Specific Conductance<br />

(μS/cm)<br />

60 80 100<br />

O 2 (% saturation)<br />

(d)<br />

0 50<br />

% Transmission<br />

180<br />

100<br />

DASH line marks 1% light<br />

(g)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

68 K1fb 15−Sep<br />

65 K2mi 14−Sep<br />

66 Kca1 14−Sep<br />

64 K3co 14−Sep<br />

67 Kwo1 15−Sep<br />

140<br />

160<br />

180<br />

0 1<br />

Chla (Nominal μg/l)<br />

2<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

Depth (m)<br />

Depth (m)


km<br />

10<br />

5<br />

0<br />

−5<br />

−10<br />

−15<br />

Kca1<br />

K1fb<br />

Kwo1<br />

K2mi<br />

K3co<br />

−20<br />

−20 0 20 40<br />

km<br />

(b)<br />

(e)<br />

5 10 15 20<br />

Temperature<br />

( o C)<br />

Figure B6 Kinbasket Reservoir, 19−20 Oct 2009<br />

Outlet 62m<br />

8 10 12<br />

Dissolved oxygen<br />

(mg/l)<br />

(c)<br />

(f)<br />

100 150 200<br />

Specific Conductance<br />

(μS/cm)<br />

60 80 100<br />

O 2 (% saturation)<br />

(d)<br />

0 50<br />

% Transmission<br />

180<br />

100<br />

DASH line marks 1% light<br />

(g)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

80 K1fb 20−Oct<br />

79 K2mi 20−Oct<br />

78 Kca1 20−Oct<br />

76 K3co 19−Oct<br />

77 Kwo1 19−Oct<br />

140<br />

160<br />

180<br />

0 1<br />

Chla (Nominal μg/l)<br />

2<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

Depth (m)<br />

Depth (m)


km<br />

−3.8<br />

−3.85<br />

−3.9<br />

−3.95<br />

−4<br />

K1fb<br />

K1fb K1fb<br />

K1fb<br />

K1fb K1fb<br />

−7.7 −7.6 −7.5 −7.4<br />

km<br />

(b)<br />

(e)<br />

Figure B7 Kinbasket Reservoir, Forebay, K1fb, 2009<br />

5 10 15 20<br />

Temperature<br />

( o C)<br />

Outlet 65m<br />

8 10 12<br />

Dissolved oxygen<br />

(mg/l)<br />

(c)<br />

(f)<br />

100 150 200<br />

Specific Conductance<br />

(μS/cm)<br />

60 80 100<br />

O 2 (% saturation)<br />

(d)<br />

0 50<br />

% Transmission<br />

180<br />

100<br />

DASH line marks 1% light<br />

(g)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

06 K1fb 16−Jun<br />

15 K1fb 14−Jul<br />

31 K1fb 18−Aug<br />

54 K1fb 01−Sep<br />

68 K1fb 15−Sep<br />

80 K1fb 20−Oct<br />

140<br />

160<br />

180<br />

0 1<br />

Chla (Nominal μg/l)<br />

2<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

Depth from full pool (m)<br />

Depth from full pool (m)


km<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

−0.02<br />

K2mi<br />

K2mi<br />

K2mi<br />

K2mi<br />

K2mi<br />

K2mi<br />

−0.04<br />

−0.2 0<br />

km<br />

0.2<br />

(b)<br />

(e)<br />

Figure B8 Kinbasket Reservoir, Middle, K2mi, 2009<br />

5 10 15 20<br />

Temperature<br />

( o C)<br />

Outlet 65m<br />

8 10 12<br />

Dissolved oxygen<br />

(mg/l)<br />

(c)<br />

(f)<br />

100 150 200<br />

Specific Conductance<br />

(μS/cm)<br />

60 80 100<br />

O 2 (% saturation)<br />

(d)<br />

0 50<br />

% Transmission<br />

180<br />

100<br />

DASH line marks 1% light<br />

(g)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

05 K2mi 16−Jun<br />

14 K2mi 14−Jul<br />

30 K2mi 18−Aug<br />

53 K2mi 01−Sep<br />

65 K2mi 14−Sep<br />

79 K2mi 20−Oct<br />

140<br />

160<br />

180<br />

0 1<br />

Chla (Nominal μg/l)<br />

2<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

Depth from full pool (m)<br />

Depth from full pool (m)


km<br />

−17.5<br />

K3co<br />

K3co<br />

−18<br />

K3co<br />

−18.5<br />

K3co<br />

K3co<br />

−19<br />

−19.5<br />

−20<br />

−20.5<br />

K3.1<br />

24 26<br />

km<br />

28<br />

(b)<br />

(e)<br />

Figure B9 Kinbasket Reservoir, <strong>Columbia</strong>, K3co, 2009<br />

5 10 15 20<br />

Temperature<br />

( o C)<br />

Outlet 65m<br />

8 10 12<br />

Dissolved oxygen<br />

(mg/l)<br />

(c)<br />

(f)<br />

100 150 200<br />

Specific Conductance<br />

(μS/cm)<br />

60 80 100<br />

O 2 (% saturation)<br />

(d)<br />

0 50<br />

% Transmission<br />

180<br />

100<br />

DASH line marks 1% light<br />

(g)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

01 K3co 15−Jun<br />

11 K3co 13−Jul<br />

27 K3co 17−Aug<br />

46 K3.1 01−Sep<br />

64 K3co 14−Sep<br />

76 K3co 19−Oct<br />

140<br />

160<br />

180<br />

0 1<br />

Chla (Nominal μg/l)<br />

2<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

Depth from full pool (m)<br />

Depth from full pool (m)


km<br />

15<br />

14<br />

13<br />

12<br />

11<br />

10<br />

Kca1.5<br />

9<br />

Kca1<br />

Kca1<br />

Kca1<br />

8<br />

−6 −4<br />

km<br />

−2<br />

(b)<br />

(e)<br />

Figure B10 Kinbasket Reservoir, Canoe, Kca1, 2009<br />

5 10 15 20<br />

Temperature<br />

( o C)<br />

Outlet 65m<br />

8 10 12<br />

Dissolved oxygen<br />

(mg/l)<br />

(c)<br />

(f)<br />

100 150 200<br />

Specific Conductance<br />

(μS/cm)<br />

60 80 100<br />

O 2 (% saturation)<br />

(d)<br />

0 50<br />

% Transmission<br />

180<br />

100<br />

DASH line marks 1% light<br />

(g)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

04 Kca1 16−Jun<br />

12 Kca1 13−Jul<br />

28 Kca1 17−Aug<br />

38 Kca1.5 31−Aug<br />

66 Kca1 14−Sep<br />

78 Kca1 20−Oct<br />

140<br />

160<br />

180<br />

0 1<br />

Chla (Nominal μg/l)<br />

2<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

Depth from full pool (m)<br />

Depth from full pool (m)


km<br />

0.67<br />

0.66<br />

0.65<br />

0.64<br />

0.63<br />

0.62<br />

0.61<br />

0.6<br />

0.59<br />

0.58<br />

Kwo1<br />

Kwo1<br />

Kwo1<br />

Kwo1<br />

Kwo1<br />

Kwo1<br />

8.5 9 9.5 10<br />

km<br />

(b)<br />

(e)<br />

Figure B11 Kinbasket Reservoir, Wood, Kwo1, 2009<br />

5 10 15 20<br />

Temperature<br />

( o C)<br />

Outlet 65m<br />

8 10 12<br />

Dissolved oxygen<br />

(mg/l)<br />

(c)<br />

(f)<br />

100 150 200<br />

Specific Conductance<br />

(μS/cm)<br />

60 80 100<br />

O 2 (% saturation)<br />

(d)<br />

0 50<br />

% Transmission<br />

180<br />

100<br />

DASH line marks 1% light<br />

(g)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

03 Kwo1 15−Jun<br />

13 Kwo1 14−Jul<br />

29 Kwo1 18−Aug<br />

51 Kwo1 01−Sep<br />

67 Kwo1 15−Sep<br />

77 Kwo1 19−Oct<br />

140<br />

160<br />

180<br />

0 1<br />

Chla (Nominal μg/l)<br />

2<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

Depth from full pool (m)<br />

Depth from full pool (m)


depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

Kca1<br />

Figure C1 Kinbasket Reservoir Jun 15−16, 2009<br />

(a) Temperature ( o C)<br />

K2mi<br />

−5 0 5 10 15 20 25<br />

(b) Specific conductance<br />

−5 0 5 10 15 20 25<br />

(c) Transmissivity<br />

−5 0 5 10 15 20 25<br />

(d) Dissolved oxygen<br />

−5 0 5 10 15 20 25<br />

(e) Chla fluoresence (black bars mark 1% light)<br />

−5 0 5 10 15 20 25<br />

Distance between stations (km)<br />

K3co<br />

20<br />

15<br />

10<br />

5<br />

T (°C)<br />

250<br />

200<br />

150<br />

100<br />

40<br />

70<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

C25 (μS/cm)<br />

Transmission (%)<br />

100<br />

8<br />

10<br />

12<br />

O 2 (mg/L)<br />

F (mg/L)


depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

Kca1<br />

(a) Temperature ( o C)<br />

Figure C2 Kinbasket Reservoir Jul 13−14, 2009<br />

K2mi<br />

−5 0 5 10 15 20 25<br />

(b) Specific conductance<br />

(c) Transmissivity<br />

−5 0 5 10 15 20 25<br />

−5 0 5 10 15 20 25<br />

(d) Dissolved oxygen<br />

−5 0 5 10 15 20 25<br />

(e) Chla fluoresence (black bars mark 1% light)<br />

−5 0 5 10 15 20 25<br />

Distance between stations (km)<br />

K3co<br />

20<br />

15<br />

10<br />

5<br />

T (°C)<br />

250<br />

200<br />

150<br />

100<br />

40<br />

70<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

C25 (μS/cm)<br />

Transmission (%)<br />

100<br />

8<br />

10<br />

12<br />

O 2 (mg/L)<br />

F (mg/L)


depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

Kca1<br />

Figure C3 Kinbasket Reservoir Aug 17−18, 2009<br />

(a) Temperature ( o C)<br />

K2mi<br />

−5 0 5 10 15 20 25<br />

(b) Specific conductance<br />

−5 0 5 10 15 20 25<br />

(c) Transmissivity<br />

−5 0 5 10 15 20 25<br />

(d) Dissolved oxygen<br />

−5 0 5 10 15 20 25<br />

(e) Chla fluoresence (black bars mark 1% light)<br />

−5 0 5 10 15 20 25<br />

Distance between stations (km)<br />

K3co<br />

20<br />

15<br />

10<br />

5<br />

T (°C)<br />

250<br />

200<br />

150<br />

100<br />

40<br />

70<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

C25 (μS/cm)<br />

Transmission (%)<br />

100<br />

8<br />

10<br />

12<br />

O 2 (mg/L)<br />

F (mg/L)


depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

Kca5<br />

Figure C4 Kinbasket Reservoir Aug 31 − Sep 01, 2009<br />

Kca4<br />

Kca3<br />

(a) Temperature ( o C)<br />

Kca2.5<br />

Kca1.5<br />

Kca0<br />

K2mi<br />

K2.1<br />

−40 −20 0 20 40 60<br />

(b) Specific conductance<br />

(c) Transmissivity<br />

−40 −20 0 20 40 60<br />

−40 −20 0 20 40 60<br />

(d) Dissolved oxygen<br />

−40 −20 0 20 40 60<br />

(e) Chla fluoresence (black bars mark 1% light)<br />

−40 −20 0 20 40 60<br />

Distance between stations (km)<br />

K2.4<br />

K2.8<br />

K3.1<br />

K3.5<br />

K3.7<br />

K4<br />

20<br />

15<br />

10<br />

5<br />

T (°C)<br />

250<br />

200<br />

150<br />

100<br />

40<br />

70<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

C25 (μS/cm)<br />

Transmission (%)<br />

100<br />

8<br />

10<br />

12<br />

O 2 (mg/L)<br />

F (mg/L)


depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

Kca1<br />

Figure C5 Kinbasket Reservoir Sep 14−15, 2009<br />

(a) Temperature ( o C)<br />

K2mi<br />

−5 0 5 10 15 20 25<br />

(b) Specific conductance<br />

−5 0 5 10 15 20 25<br />

(c) Transmissivity<br />

−5 0 5 10 15 20 25<br />

(d) Dissolved oxygen<br />

−5 0 5 10 15 20 25<br />

(e) Chla fluoresence (black bars mark 1% light)<br />

−5 0 5 10 15 20 25<br />

Distance between stations (km)<br />

K3co<br />

20<br />

15<br />

10<br />

5<br />

T (°C)<br />

250<br />

200<br />

150<br />

100<br />

40<br />

70<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

C25 (μS/cm)<br />

Transmission (%)<br />

100<br />

8<br />

10<br />

12<br />

O 2 (mg/L)<br />

F (mg/L)


depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

Kca1<br />

Figure C6 Kinbasket Reservoir Oct 19−20, 2009<br />

(a) Temperature ( o C)<br />

K2mi<br />

−5 0 5 10 15 20 25<br />

(b) Specific conductance<br />

−5 0 5 10 15 20 25<br />

(c) Transmissivity<br />

−5 0 5 10 15 20 25<br />

(d) Dissolved oxygen<br />

−5 0 5 10 15 20 25<br />

(e) Chla fluoresence (black bars mark 1% light)<br />

−5 0 5 10 15 20 25<br />

Distance between stations (km)<br />

K3co<br />

20<br />

15<br />

10<br />

5<br />

T (°C)<br />

250<br />

200<br />

150<br />

100<br />

40<br />

70<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

C25 (μS/cm)<br />

Transmission (%)<br />

100<br />

8<br />

10<br />

12<br />

O 2 (mg/L)<br />

F (mg/L)


km<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

R3up<br />

R2mi<br />

R1fb<br />

0<br />

−40 −20 0 20<br />

km<br />

(b)<br />

5 10 15 20<br />

(e)<br />

Temperature<br />

( o C)<br />

Figure D1 Revelstoke Reservoir, 23−24 Jun 2009<br />

Outlet 36m<br />

6 8 10 12<br />

Dissolved oxygen<br />

(mg/l)<br />

(c)<br />

50 100 150<br />

Specific Conductance<br />

(μS/cm)<br />

(f)<br />

60 80 100<br />

O 2 (% saturation)<br />

(d)<br />

0 50<br />

% Transmission<br />

120<br />

100<br />

DASH line marks 1% light<br />

(g)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

10 R1fb 24−Jun<br />

08 R2mi 23−Jun<br />

09 R3up 23−Jun<br />

100<br />

120<br />

0 1<br />

Chla (Nominal μg/l)<br />

2<br />

0<br />

20<br />

40<br />

60<br />

80<br />

Depth (m)<br />

Depth (m)


km<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

R3up<br />

R2mi<br />

R1fb<br />

0<br />

−40 −20 0 20<br />

km<br />

(b)<br />

5 10 15 20<br />

(e)<br />

Temperature<br />

( o C)<br />

Figure D2 Revelstoke Reservoir, 21−22 Jul 2009<br />

Outlet 36m<br />

6 8 10 12<br />

Dissolved oxygen<br />

(mg/l)<br />

(c)<br />

50 100 150<br />

Specific Conductance<br />

(μS/cm)<br />

(f)<br />

60 80 100<br />

O 2 (% saturation)<br />

(d)<br />

0 50<br />

% Transmission<br />

120<br />

100<br />

DASH line marks 1% light<br />

(g)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

20 R1fb 22−Jul<br />

17 R2mi 21−Jul<br />

19 R2mi 21−Jul<br />

18 R3up 21−Jul<br />

100<br />

120<br />

0 1<br />

Chla (Nominal μg/l)<br />

2<br />

0<br />

20<br />

40<br />

60<br />

80<br />

Depth (m)<br />

Depth (m)


km<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

R3up<br />

R2mi<br />

R1fb<br />

0<br />

−40 −20 0 20<br />

km<br />

(b)<br />

5 10 15 20<br />

(e)<br />

Temperature<br />

( o C)<br />

Figure D3 Revelstoke Reservoir, 25−26 Aug 2009<br />

Outlet 36m<br />

6 8 10 12<br />

Dissolved oxygen<br />

(mg/l)<br />

(c)<br />

50 100 150<br />

Specific Conductance<br />

(μS/cm)<br />

(f)<br />

60 80 100<br />

O 2 (% saturation)<br />

(d)<br />

0 50<br />

% Transmission<br />

120<br />

100<br />

DASH line marks 1% light<br />

(g)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

36 R1fb 26−Aug<br />

34 R2mi 25−Aug<br />

35 R3up 25−Aug<br />

100<br />

120<br />

0 1<br />

Chla (Nominal μg/l)<br />

2<br />

0<br />

20<br />

40<br />

60<br />

80<br />

Depth (m)<br />

Depth (m)


km<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

R3up<br />

R2.7<br />

R2.5<br />

R2.1<br />

R1.9<br />

R1.6<br />

R1.4<br />

R1.2<br />

R1fb<br />

0<br />

−40 −20 0 20<br />

km<br />

(b)<br />

5 10 15 20<br />

(e)<br />

Temperature<br />

( o C)<br />

Figure D4 Revelstoke Reservoir, 02 Sep 2009<br />

Outlet 36m<br />

6 8 10 12<br />

Dissolved oxygen<br />

(mg/l)<br />

(c)<br />

50 100 150<br />

Specific Conductance<br />

(μS/cm)<br />

(f)<br />

60 80 100<br />

O 2 (% saturation)<br />

(d)<br />

0 50<br />

% Transmission<br />

120<br />

100<br />

DASH line marks 1% light<br />

(g)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

55 R1fb 02−Sep<br />

56 R1.2 02−Sep<br />

57 R1.4 02−Sep<br />

60<br />

58 R1.6 02−Sep<br />

59 R1.9 02−Sep<br />

60 R2.1 02−Sep<br />

80<br />

61 R2.5 02−Sep<br />

62 R2.7 02−Sep<br />

63 R3up 02−Sep<br />

100<br />

120<br />

0 1<br />

Chla (Nominal μg/l)<br />

2<br />

0<br />

20<br />

40<br />

Depth (m)<br />

Depth (m)


km<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

R3up<br />

R2mi<br />

R1fb<br />

0<br />

−40 −20 0 20<br />

km<br />

(b)<br />

5 10 15 20<br />

(e)<br />

Temperature<br />

( o C)<br />

Figure D5 Revelstoke Reservoir, 22−23 Sep 2009<br />

Outlet 36m<br />

6 8 10 12<br />

Dissolved oxygen<br />

(mg/l)<br />

(c)<br />

50 100 150<br />

Specific Conductance<br />

(μS/cm)<br />

(f)<br />

60 80 100<br />

O 2 (% saturation)<br />

(d)<br />

0 50<br />

% Transmission<br />

120<br />

100<br />

DASH line marks 1% light<br />

(g)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

72 R1fb 23−Sep<br />

70 R2mi 22−Sep<br />

71 R3up 22−Sep<br />

100<br />

120<br />

0 1<br />

Chla (Nominal μg/l)<br />

2<br />

0<br />

20<br />

40<br />

60<br />

80<br />

Depth (m)<br />

Depth (m)


km<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

R3up<br />

R2mi<br />

R1fb<br />

0<br />

−40 −20 0 20<br />

km<br />

(b)<br />

5 10 15 20<br />

(e)<br />

Temperature<br />

( o C)<br />

Figure D6 Revelstoke Reservoir, 13−14 Oct 2009<br />

Outlet 36m<br />

6 8 10 12<br />

Dissolved oxygen<br />

(mg/l)<br />

(c)<br />

50 100 150<br />

Specific Conductance<br />

(μS/cm)<br />

(f)<br />

60 80 100<br />

O 2 (% saturation)<br />

(d)<br />

0 50<br />

% Transmission<br />

120<br />

100<br />

DASH line marks 1% light<br />

(g)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

75 R1fb 14−Oct<br />

74 R2mi 13−Oct<br />

73 R3up 13−Oct<br />

100<br />

120<br />

0 1<br />

Chla (Nominal μg/l)<br />

2<br />

0<br />

20<br />

40<br />

60<br />

80<br />

Depth (m)<br />

Depth (m)


km<br />

3.1<br />

3.05<br />

R1fb<br />

3<br />

2.95<br />

2.9<br />

R1fb<br />

R1fb<br />

R1fb<br />

R1fb<br />

R1fb<br />

2.85<br />

0.8 0.9<br />

km<br />

1<br />

(b)<br />

5 10 15 20<br />

(e)<br />

Temperature<br />

( o C)<br />

Figure D7 Revelstoke Reservoir, Forebay 2009<br />

Outlet 36m<br />

6 8 10 12<br />

Dissolved oxygen<br />

(mg/l)<br />

(c)<br />

50 100 150<br />

Specific Conductance<br />

(μS/cm)<br />

(f)<br />

60 80 100<br />

O 2 (% saturation)<br />

(d)<br />

0 50<br />

% Transmission<br />

120<br />

100<br />

DASH line marks 1% light<br />

(g)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

10 R1fb 24−Jun<br />

20 R1fb 22−Jul<br />

36 R1fb 26−Aug<br />

80<br />

55 R1fb 02−Sep<br />

72 R1fb 23−Sep<br />

75 R1fb 14−Oct<br />

100<br />

120<br />

0 1<br />

Chla (Nominal μg/l)<br />

2<br />

0<br />

20<br />

40<br />

60<br />

Depth (m)<br />

Depth (m)


km<br />

49<br />

R2.1<br />

48.5<br />

48<br />

47.5<br />

47<br />

46.5<br />

46<br />

45.5<br />

45<br />

44.5<br />

R2mi<br />

R2mi<br />

R2mi<br />

R2mi R2mi<br />

44<br />

−19.5 −19 −18.5<br />

km<br />

−18<br />

(b)<br />

5 10 15 20<br />

(e)<br />

Temperature<br />

( o C)<br />

Figure D8 Revelstoke Reservoir, Downie 2009<br />

Outlet 36m<br />

6 8 10 12<br />

Dissolved oxygen<br />

(mg/l)<br />

(c)<br />

50 100 150<br />

Specific Conductance<br />

(μS/cm)<br />

(f)<br />

60 80 100<br />

O 2 (% saturation)<br />

(d)<br />

0 50<br />

% Transmission<br />

120<br />

100<br />

DASH line marks 1% light<br />

(g)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

08 R2mi 23−Jun<br />

19 R2mi 21−Jul<br />

34 R2mi 25−Aug<br />

80<br />

60 R2.1 02−Sep<br />

70 R2mi 22−Sep<br />

74 R2mi 13−Oct<br />

100<br />

120<br />

0 1<br />

Chla (Nominal μg/l)<br />

2<br />

0<br />

20<br />

40<br />

60<br />

Depth (m)<br />

Depth (m)


km<br />

76.5<br />

76.45 R3up<br />

76.4<br />

76.35<br />

76.3<br />

76.25<br />

76.2<br />

76.15<br />

76.1<br />

76.05<br />

R3up<br />

R3up<br />

R3up<br />

R3up R3up<br />

76<br />

−31 −30.95 −30.9<br />

km<br />

−30.85<br />

(b)<br />

5 10 15 20<br />

(e)<br />

Temperature<br />

( o C)<br />

Figure D9 Revelstoke Reservoir, Upper 2009<br />

Outlet 36m<br />

6 8 10 12<br />

Dissolved oxygen<br />

(mg/l)<br />

(c)<br />

50 100 150<br />

Specific Conductance<br />

(μS/cm)<br />

(f)<br />

60 80 100<br />

O 2 (% saturation)<br />

(d)<br />

0 50<br />

% Transmission<br />

120<br />

100<br />

DASH line marks 1% light<br />

(g)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

09 R3up 23−Jun<br />

18 R3up 21−Jul<br />

35 R3up 25−Aug<br />

80<br />

63 R3up 02−Sep<br />

71 R3up 22−Sep<br />

73 R3up 13−Oct<br />

100<br />

120<br />

0 1<br />

Chla (Nominal μg/l)<br />

2<br />

0<br />

20<br />

40<br />

60<br />

Depth (m)<br />

Depth (m)


depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

R3up<br />

Figure E1 Revelstoke Reservoir 23−24 Jun, 2009<br />

(a) Temperature ( o C)<br />

R2mi<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

(b) Specific conductance<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

(c) Transmissivity<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

(d) Dissolved oxygen<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

(e) Chla fluoresence (black bars mark 1% light)<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

Distance between stations (km)<br />

R1fb<br />

20<br />

15<br />

10<br />

5<br />

50<br />

T (°C)<br />

150<br />

100<br />

40<br />

70<br />

3<br />

2<br />

1<br />

0<br />

C25 (μS/cm)<br />

Transmission (%)<br />

100<br />

8<br />

10<br />

12<br />

O 2 (mg/L)<br />

F (mg/L)


depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

R3up<br />

Figure E2 Revelstoke Reservoir 21−22 Jul, 2009<br />

(a) Temperature ( o C)<br />

R2mi<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

(b) Specific conductance<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

(c) Transmissivity<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

(d) Dissolved oxygen<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

(e) Chla fluoresence (black bars mark 1% light)<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

Distance between stations (km)<br />

R1fb<br />

20<br />

15<br />

10<br />

5<br />

50<br />

T (°C)<br />

150<br />

100<br />

40<br />

70<br />

3<br />

2<br />

1<br />

0<br />

C25 (μS/cm)<br />

Transmission (%)<br />

100<br />

8<br />

10<br />

12<br />

O 2 (mg/L)<br />

F (mg/L)


depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

R3up<br />

Figure E3 Revelstoke Reservoir 25−26 Aug, 2009<br />

(a) Temperature ( o C)<br />

R2mi<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

(b) Specific conductance<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

(c) Transmissivity<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

(d) Dissolved oxygen<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

(e) Chla fluoresence (black bars mark 1% light)<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

Distance between stations (km)<br />

R1fb<br />

20<br />

15<br />

10<br />

5<br />

50<br />

T (°C)<br />

150<br />

100<br />

40<br />

70<br />

3<br />

2<br />

1<br />

0<br />

C25 (μS/cm)<br />

Transmission (%)<br />

100<br />

8<br />

10<br />

12<br />

O 2 (mg/L)<br />

F (mg/L)


depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

R3up<br />

R2.7<br />

(a) Temperature ( o C)<br />

Figure E4 Revelstoke Reservoir Sep 02, 2009<br />

R2.5<br />

R2.1<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

(b) Specific conductance<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

(c) Transmissivity<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

(d) Dissolved oxygen<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

Distance between stations (km)<br />

R1.9<br />

(e) Chla fluoresence (black bars mark 1% light)<br />

R1.6<br />

R1.4<br />

R1.2<br />

R1fb<br />

20<br />

15<br />

10<br />

5<br />

50<br />

T (°C)<br />

150<br />

100<br />

40<br />

70<br />

3<br />

2<br />

1<br />

0<br />

C25 (μS/cm)<br />

Transmission (%)<br />

100<br />

8<br />

10<br />

12<br />

O 2 (mg/L)<br />

F (mg/L)


depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

R3up<br />

Figure E5 Revelstoke Reservoir Sep 22−23, 2009<br />

(a) Temperature ( o C)<br />

R2mi<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

(b) Specific conductance<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

(c) Transmissivity<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

(d) Dissolved oxygen<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

(e) Chla fluoresence (black bars mark 1% light)<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

Distance between stations (km)<br />

R1fb<br />

20<br />

15<br />

10<br />

5<br />

50<br />

T (°C)<br />

150<br />

100<br />

40<br />

70<br />

3<br />

2<br />

1<br />

0<br />

C25 (μS/cm)<br />

Transmission (%)<br />

100<br />

8<br />

10<br />

12<br />

O 2 (mg/L)<br />

F (mg/L)


depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

depth (m)<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

R3up<br />

Figure E6 Revelstoke Reservoir Oct 13−14, 2009<br />

(a) Temperature ( o C)<br />

R2mi<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

(b) Specific conductance<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

(c) Transmissivity<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

(d) Dissolved oxygen<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

(e) Chla fluoresence (black bars mark 1% light)<br />

−80 −70 −60 −50 −40 −30 −20 −10<br />

Distance between stations (km)<br />

R1fb<br />

20<br />

15<br />

10<br />

5<br />

50<br />

T (°C)<br />

150<br />

100<br />

40<br />

70<br />

3<br />

2<br />

1<br />

0<br />

C25 (μS/cm)<br />

Transmission (%)<br />

100<br />

8<br />

10<br />

12<br />

O 2 (mg/L)<br />

F (mg/L)


0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

180<br />

(a)<br />

(g)<br />

5 10 15 20<br />

Temperature<br />

( o C)<br />

5 10<br />

Dissolved oxygen<br />

(mg/l)<br />

180<br />

15<br />

Figure F1 All Kinbasket (BLU) and Revesltoke (RED) Data, 2009<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

depth (m)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

(c)<br />

180<br />

50 100 150 200<br />

Specific Conductance<br />

(μS/cm)<br />

(h)<br />

180<br />

0 0.5 1 1.5 2<br />

Chla (Nominal μg/l)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

Depth (m)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

(e)<br />

180<br />

0 50<br />

% Transmission<br />

100<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

10 0


Appendix 1<br />

Provisional Station Names<br />

Name* Description Approximate<br />

Location<br />

Kinbasket-<strong>Columbia</strong> Arm<br />

K1fb Forebay 52°05.673 118°32.902<br />

K1.5 Kin-PP 52°06.889 118°30.501<br />

K2mi Middle 52°07.858 118°26.363<br />

K2.1 Kin-Mouth of <strong>Columbia</strong> to Kinbasket 52°06.044 118°24.264<br />

K2.4 10 km from mouth of <strong>Columbia</strong> 52°03.246 118°16.766<br />

K2.8 20 km from mouth of <strong>Columbia</strong> 52°00.219 118°09.401<br />

K3co <strong>Columbia</strong> Reach 51°58.438 118°05.030<br />

K3.1 30 km from mouth of <strong>Columbia</strong> 51°57.067 118°02.334<br />

K3.5 40 km from mouth of <strong>Columbia</strong> 51°53.595 117°55.577<br />

K3.7 50 km from mouth of <strong>Columbia</strong> 51°50.381 117°48.576<br />

K4 60 km from mouth of <strong>Columbia</strong> 51°47.010 117°41.750<br />

Kinbasket-Wood Arm<br />

Kwo0 Mouth of Wood to Kinbasket 52°09.004 118°22.994<br />

Kwo1 Wood Arm 52°08.269 118°18.024<br />

Kwo2 End of Wood Arm 52°10.738 118°10.020<br />

Kinbasket-Canoe Arm<br />

Kca0 Mouth of Canoe to Kinbasket 52°10.631 118°27.049<br />

Kca1 Canoe Reach 52°12.547 118°28.516<br />

Kca1.5 10 km from mouth of Canoe 52°15.509 118°31.235<br />

Kca2.5 20 km from mouth of Canoe 52°20.025 118°35.804<br />

Kca3 30 km from mouth of Canoe 52°24.198 118°41.857<br />

Kca4 40 km from mouth of Canoe 52°28.714 118°46.355<br />

Kca5 50 km from mouth of Canoe 52°33.452 118°50.709<br />

Revelstoke<br />

R1fb Rev-Forebay 51°04.584 118°10.929<br />

R1.2 Rev-10 km from Forebay 51°09.988 118°12.677<br />

R1.4 Rev-20 km from Forebay 51°15.179 118°14.332<br />

R1.6 Rev-30 km from Forebay 51°19.593 118°20.842<br />

R1.9 Rev-40 km from Forebay 51°23.852 118°26.552<br />

R2mi Rev-Mid 51°26.612 118°27.939<br />

R2.1 Rev-50 km from Forebay 51°29.082 118°29.093<br />

R2.5 Rev-60 km from Forebay 51°33.778 118°33.541<br />

R2.7 Rev-70 km from Forebay 51°38.586 118°37.338<br />

R3up Rev-Upper 51°43.891 118°39.633<br />

* Main stations are bold


Appendix 2<br />

List of profiles<br />

No Date Location Time On Time<br />

Off<br />

GPS<br />

Depth<br />

(m)<br />

1 15/Jun/2009 Kin - <strong>Columbia</strong> Reach 11:33 11:49 51°58.438 118°05.030 160 K3co<br />

2 15/Jun/2009 Kin - <strong>Columbia</strong> Reach 11:52 12:08 51°58.438 118°05.030 115 K3co<br />

3 15/Jun/2009 Kin - Wood Arm 02:58 03:04 52°08.266 118°18.676 46 Kwo1<br />

4 16/Jun/2009 Kin - Canoe Reach 07:46 07:58 52°12.423 118°28.440 115 Kca1<br />

5 16/Jun/2009 Kin - Middle 09:11 09:24 52°07.889 118°26.441 120 K2mi<br />

6 16/Jun/2009 Kin - Forebay 10:44 11:00 52°05.664 118°32.906 153 K1fb<br />

7 22/Jun/2009 Kin - PP 08:28 08:42 52°06.894 118°30.074 135 K1.5<br />

8 23/Jun/2009 Rev - Middle & Downie PP 08:40 08:49 51°26.649 118°28.110 78 R2mi<br />

9 23/Jun/2009 Rev - Upper 11:00 11:06 51°43.697 118°39.548 33 R3up<br />

10 24/Jun/2009 Rev - Forebay and PP 10:20 10:30 51°04.619 118°10.828 90 R1fb<br />

11 13/Jul/2009 Kin - <strong>Columbia</strong> Reach 10:43 11:00 51°58.472 118°05.149 160 K3co<br />

12 13/Jul/2009 Kin - Canoe Reach 02:23 02:35 52°12.547 118°28.516 115 Kca1<br />

13 14/Jul/2009 Kin - Wood Arm 08:07 08:14 52°08.300 118°18.683 55 Kwo1<br />

14 14/Jul/2009 Kin - Middle 10:17 10:33 52°07.829 118°26.540 150 K2mi<br />

15 14/Jul/2009 Kin - Forebay 10:56 11:13 52°05.707 118°32.878 160 K1fb<br />

16 20/Jul/2009 Kin - PP 07:56 08:13 52°06.899 118°30.121 160 K1.5<br />

17 21/Jul/2009 Rev - Downie PP 08:26 08:36 51°26.650 118°28.092 80 R2mi<br />

18 21/Jul/2009 Rev - Upper 10:11 10:17 51°43.782 118°39.583 35 R3up<br />

19 21/Jul/2009 Rev - Middle 12:54 01:02 51°26.598 118°28.111 75 R2mi<br />

20 22/Jul/2009 Rev - Forebay and PP 09:35 09:47 51°04.594 118°10.913 110 R1fb<br />

27 17/Aug/2009 Kin - <strong>Columbia</strong> Reach 11:00 11:17 51°57.982 118°04.843 170 K3co<br />

28 17/Aug/2009 Kin - Canoe Reach 01:46 01:58 52°12.431 118°28.446 115 Kca1<br />

29 18/Aug/2009 Kin - Wood Arm 07:52 08:00 52°08.267 118°18.682 60 Kwo1<br />

30 18/Aug/2009 Kin - Middle 09:01 09:15 52°07.858 118°26.363 135 K2mi<br />

31 18/Aug/2009 Kin - Forebay 10:29 10:46 52°05.594 118°33.067 170 K1fb<br />

33 24/Aug/2009 Kin - PP 07:34 07:50 52°06.889 118°30.501 165 K1.5<br />

34 25/Aug/2009 Rev - Downie PP & Middle 08:48 08:57 51°26.689 118°28.181 80 R2mi<br />

35 25/Aug/2009 Rev - Upper 10:32 10:38 51°43.696 118°39.573 35 R3up<br />

36 26/Aug/2009 Rev - Forebay and PP 08:38 08:51 51°04.584 118°10.929 110 R1fb<br />

37 31/Aug/2009 Kin - Mouth of Canoe 10:15 10:29 52°10.631 118°27.049 145 Kca0<br />

38 31/Aug/2009 Kin - 10km from mouth of Canoe 10:47 10:58 52°15.509 118°31.235 100 Kca1.5<br />

39 31/Aug/2009 Kin - 20Km from mouth of Canoe 11:19 11:26 52°20.025 118°35.804 66 Kca2.5<br />

40 31/Aug/2009 Kin - 30km from mouth of Canoe 11:45 11:53 52°24.198 118°41.857 60 Kca3<br />

41 31/Aug/2009 Kin - 40km from mouth of Canoe 12:10 12:17 52°28.714 118°46.355 55 Kca4<br />

42 31/Aug/2009 Kin - 50km from mouth of Canoe 01:25 01:32 52°33.452 118°50.709 55 Kca5<br />

43 01/Sep/2009 Kin - Mouth of <strong>Columbia</strong> 07:49 08:01 52°06.044 118°24.264 115 K2.1<br />

44 01/Sep/2009 Kin - 10km from mouth of <strong>Columbia</strong> 08:17 08:28 52°03.246 118°16.766 90 K2.4<br />

45 01/Sep/2009 Kin - 20Km from mouth of <strong>Columbia</strong> 09:04 09:14 52°00.219 118°09.401 99 K2.8<br />

46 01/Sep/2009 Kin - 30km from mouth of <strong>Columbia</strong> 09:30 09:42 51°57.067 118°02.334 120 K3.1<br />

47 01/Sep/2009 Kin - 40km from mouth of <strong>Columbia</strong> 09:59 10:07 51°53.595 117°55.577 70 K3.5<br />

48 01/Sep/2009 Kin - 50km from mouth of <strong>Columbia</strong> 10:24 10:31 51°50.381 117°48.576 60 K3.7<br />

49 01/Sep/2009 Kin - 60km from mouth of <strong>Columbia</strong> 10:55 11:01 51°47.010 117°41.750 38 K4<br />

50 01/Sep/2009 Kin - End of Wood Arm 01:21 01:25 52°10.738 118°10.020 20 Kwo2<br />

51 01/Sep/2009 Kin - 10km from end of Wood Arm 01:40 01:47 52°08.269 118°18.024 60 Kwo1<br />

Stn


52 01/Sep/2009 Kin - Mouth of Wood Arm 01:59 02:05 52°09.004 118°22.994 45 Kwo0<br />

53 01/Sep/2009 Kin - Middle 02:13 02:27 52°07.905 118°26.377 130 K2mi<br />

54 01/Sep/2009 Kin - Forebay 02:43 02:59 52°05.664 118°32.939 165 K1fb<br />

55 02/Sep/2009 Rev - Forebay 09:22 09:34 51°04.538 118°10.953 110 R1fb<br />

56 02/Sep/2009 Rev - 10km from Rev Forebay 09:48 09:59 51°09.988 118°12.677 100 R1.2<br />

57 02/Sep/2009 Rev - 20km from Rev Forebay 10:17 10:27 51°15.179 118°14.332 100 R1.4<br />

58 02/Sep/2009 Rev - 30km from Rev Forebay 10:44 10:54 51°19.593 118°20.842 85 R1.6<br />

59 02/Sep/2009 Rev - 40km from Rev Forebay 11:08 11:16 51°23.852 118°26.552 70 R1.9<br />

60 02/Sep/2009 Rev - 50km from Rev Forebay 11:30 11:38 51°29.082 118°29.093 70 R2.1<br />

61 02/Sep/2009 Rev - 60km from Rev Forebay 11:52 11:59 51°33.778 118°33.541 50 R2.5<br />

62 02/Sep/2009 Rev - 70km from Rev Forebay 12:14 12:20 51°38.586 118°37.338 41 R2.7<br />

63 02/Sep/2009 Rev - 80km from Rev Forebay 12:34 12:40 51°43.891 118°39.633 33 R3up<br />

64 14/Sep/2009 Kin - <strong>Columbia</strong> Reach 10:23 10:41 51°58.011 118°04.896 170 K3co<br />

65 14/Sep/2009 Kin - Middle 01:09 01:22 52°07.859 118°26.394 130 K2mi<br />

66 14/Sep/2009 Kin - Canoe Reach 01:37 01:50 52°12.425 118°28.450 125 Kca1<br />

67 15/Sep/2009 Kin - Wood Arm 07:43 07:51 52°08.269 118°18.673 69 Kwo1<br />

68 15/Sep/2009 Kin - Forebay 09:33 09:51 52°05.672 118°32.928 170 K1fb<br />

69 21/Sep/2009 Kin - PP 10:07 10:22 52°06.810 118°30.205 150 K1.5<br />

70 22/Sep/2009 Rev - Downie PP & Middle 08:23 08:31 51°26.612 118°27.939 70 R2mi<br />

71 22/Sep/2009 Rev - Upper 11:41 11:46 51°43.765 118°39.597 37 R3up<br />

72 23/Sep/2009 Rev - Forebay and PP 09:10 09:21 51°04.533 118°10.918 100 R1fb<br />

73 13/Oct/2009 Rev - Upper 09:36 09:42 51°43.759 118°39.586 35 R3up<br />

74 13/Oct/2009 Rev - Middle 11:58 12:06 51°26.729 118°28.167 53 R2mi<br />

75 14/Oct/2009 Rev - Forebay 08:40 08:52 51°04.631 118°10.981 100 R1fb<br />

76 19/Oct/2009 Kin - <strong>Columbia</strong> Reach 10:32 10:50 51°58.119 118°05.063 167 K3co<br />

77 19/Oct/2009 Kin - Wood Arm 01:25 01:33 52°08.250 118°18.884 60 Kwo1<br />

78 20/Oct/2009 Kin - Canoe Reach 08:40 08:52 52°12.482 118°28.455 110 Kca1<br />

79 20/Oct/2009 Kin - Middle 09:57 10:11 52°07.909 118°26.494 150 K2mi<br />

80 20/Oct/2009 Kin - Forebay 11:14 11:31 52°05.673 118°32.902 170 K1fb


Appendix 3<br />

Additional Profiles<br />

Profiles collected during measurement of primary production, see Tables 2.1 and 2.2.


km<br />

−1.66<br />

−1.68<br />

−1.7<br />

−1.72<br />

−1.74<br />

−1.76<br />

−1.78<br />

−1.8<br />

−1.82<br />

−1.84<br />

K1.5<br />

K1.5<br />

K1.5<br />

K1.5<br />

−1.86<br />

−5 −4.5<br />

km<br />

−4<br />

(b)<br />

(e)<br />

5 10 15 20<br />

Temperature<br />

( o C)<br />

8 10 12<br />

Dissolved oxygen<br />

(mg/l)<br />

Figure A3 Kinbasket Reservoir, K1.5, 2009<br />

(c)<br />

(f)<br />

100 150 200<br />

Specific Conductance<br />

(μS/cm)<br />

60 80 100<br />

O 2 (% saturation)<br />

(d)<br />

0 50<br />

% Transmission<br />

180<br />

100<br />

DASH line marks 1% light<br />

(g)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

07 K1.5 22−Jun<br />

16 K1.5 20−Jul<br />

33 K1.5 24−Aug<br />

69 K1.5 21−Sep<br />

140<br />

160<br />

180<br />

0 1<br />

Chla (Nominal μg/l)<br />

2<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

Depth (m)<br />

Depth (m)


CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

2009 Progress Report<br />

Appendix 4<br />

Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Karen Bray<br />

<strong>BC</strong> <strong>Hydro</strong>


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

<strong>BC</strong> <strong>Hydro</strong> Research Vessel NAIAD and field crew on Kinbasket Reservoir<br />

Prepared By:<br />

Karen Bray<br />

<strong>Water</strong> Licence Requirements<br />

Revelstoke, B.C.<br />

January 2011


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Table of Contents<br />

1. INTRODUCTION.......................................................................................................................................2<br />

2. METHODS ................................................................................................................................................2<br />

3. RESULTS .................................................................................................................................................3<br />

3.1 KINBASKET RESERVOIR..........................................................................................................................3<br />

3.2 REVELSTOKE RESERVOIR.......................................................................................................................4<br />

4. DISCUSSION............................................................................................................................................6<br />

5. REFERENCES..........................................................................................................................................7<br />

ACKNOWLEDGEMENTS.............................................................................................................................7<br />

List of Figures<br />

Figure 1. Location of reservoir sampling stations on Kinbasket and Revelstoke Reservoirs, 2009............8<br />

Figure 2. Kinbasket Reservoir elevation and sampling dates, 2009. Elevations for 2007 and 2008 shown<br />

for comparison. .............................................................................................................................................9<br />

Figure 3. Discrete depth nitrate and nitrite (µg/L) at Kinbasket Reservoir stations, 2009. ........................10<br />

Figure 4. Discrete depth total phosphorus (µg/L) at Kinbasket Reservoir stations, 2009. ........................11<br />

Figure 5. Discrete depth total dissolved phosphorus (µg/L) at Kinbasket Reservoir stations, 2009. ........12<br />

Figure 6. Discrete depth soluble reactive phosphorus (µg/L) at Kinbasket Reservoir stations, 2009. ......13<br />

Figure 7. DIN:TDP ratios at Kinbasket Reservoir stations, 2009...............................................................14<br />

Figure 8. Average nitrate and nitrite (µg/L) in epilimnion (0-20m) at Kinbasket Reservoir stations, 2009.15<br />

Figure 9. Average total phosphorus (µg/L) in epilimnion (0-20m) at Kinbasket Reservoir stations, 2009.15<br />

Figure 10. Average total dissolved phosphorus (µg/L) in epilimnion (0-20m) at Kinbasket Reservoir<br />

stations, 2009..............................................................................................................................................15<br />

Figure 11. Average soluble reactive phosphorus (µg/L) in epilimnion (0-20m) at Kinbasket Reservoir<br />

stations, 2009..............................................................................................................................................16<br />

Figure 12. Average DIN:TDP in epilimnion (0-20m) at Kinbasket Reservoir stations, 2009. ....................16<br />

Figure 13. Silica (mg/L) from a 0-20m integrated tube sample at Kinbasket Reservoir stations, 2009.....17<br />

Figure 14. Secchi disk (m) readings at Kinbasket Reservoir stations, 2009. ............................................17<br />

Figure 15 Discrete depth nitrite and nitrate (µg/L) at Revelstoke Reservoir stations, 2009. .....................18<br />

Figure 16. Discrete depth total phosphorus (µg/L) at Revelstoke Reservoir stations, 2009. ....................19<br />

Figure 17. Discrete depth soluble reactive phosphorus (µg/L) at Revelstoke Reservoir stations, 2009. ..20<br />

Figure 18. DIN:TDP ratios at Revelstoke Reservoir stations, 2009...........................................................21<br />

Figure 19. Average nitrate and nitrite (µg/L) in epilimnion (0-20m) at Revelstoke Reservoir stations, 2009.<br />

....................................................................................................................................................................22<br />

Figure 20. Average total phosphorus (µg/L) in epilimnion (0-20m) at Revelstoke Reservoir stations, 2009.<br />

....................................................................................................................................................................22<br />

Figure 21. Average soluble reactive phosphorus (µg/L) in epilimnion (0-20m) at Revelstoke Reservoir<br />

stations, 2009..............................................................................................................................................22<br />

Figure 22. Average DIN:TDP in epilimnion (0-20m) at Revelstoke Reservoir stations, 2009. ..................23<br />

Figure 23. Silica (mg/L) from a 0-20m integrated tube sample at Revelstoke Reservoir stations, 2009...23<br />

Figure 24. Secchi disk (m) readings at Revelstoke Reservoir stations, 2009. ..........................................23<br />

List of Tables<br />

Table 1: Summary of Kinbasket Reservoir station coordinates, maximum sampled depths, and dates of<br />

2009 sampling...............................................................................................................................................2<br />

Table 2: Summary of Revelstoke Reservoir station coordinates, maximum sampled depths, and dates of<br />

2009 sampling sessions................................................................................................................................2<br />

Table 3. Average water chemistry values at four stations and all depths on Kinbasket Reservoir sampled<br />

May to October, 2009. Range of values shown in parentheses. .................................................................4<br />

Table 4. Average water chemistry values at three stations and all depths on Revelstoke Reservoir<br />

sampled May to October, 2009. Range of values shown in parentheses. ..................................................6<br />

CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

<strong>BC</strong> <strong>Hydro</strong> <strong>Water</strong> Licence Requirements<br />

i


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

1. Introduction<br />

This report summarises Year 2 (2009) water chemistry information from Kinbasket and Revelstoke<br />

Reservoir sampling. These results are a component of the study CLBMON-3 Kinbasket and Revelstoke<br />

Reservoirs Ecological Productivity conducted by <strong>BC</strong> <strong>Hydro</strong> under the <strong>Columbia</strong> <strong>Water</strong> <strong>Use</strong> <strong>Plan</strong>.<br />

2. Methods<br />

<strong>Water</strong> samples were collected at four stations in Kinbasket Reservoir (Table 1, Figure 1) and three<br />

stations in Revelstoke Reservoir (Table 2) once a month from May to October, 2009. Five litre Niskin<br />

bottles were lowered by cable in series to collect discrete depth samples at 2, 5, 10, 15, 20, and 60m. An<br />

additional sample at 5m above bottom was collected at all stations except for REV Upper as it is


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

3. Results<br />

3.1 Kinbasket Reservoir<br />

Stations were sampled at reservoir elevations between 730.6m and 752.1m; full pool is 754m (Figure 2).<br />

The reservoir reached its minimum level (730.4m) for the year on May 9, 2009, and its maximum level<br />

(752.1m) on September 26, 2009. The range of elevation in 2009 was 21.7m whereas the maximum<br />

range possible is 47m.<br />

Nitrite and Nitrate (NO2 +NO3) – Average concentrations of NO2+NO3 were similar across stations in<br />

Kinbasket Reservoir (105-110µg/L), with values ranging from a low of 57µg/L in <strong>Columbia</strong> Reach to a<br />

high of 180µg/L in Wood Arm (Table 3, Figure 3). In the epilimnion, nitrite and nitrates generally declined<br />

throughout the sampling season (Figure 8) while in the hypolimnion (60+m) the reverse occurred.<br />

Total Phosphorus (TP) – Average concentration of TP was similar across Kinbasket Reservoir stations<br />

(4.6-5.7 µg/L) with total values ranging from 2.1µg/L in Wood Arm to 10.1µg/L at the Forebay (Table 3,<br />

Figure 4). Concentrations of TP were also quite similar throughout the epilimnion and hypolimnion across<br />

the months, reaching their peak in July (Figure 9), with the exception of a noticeable spike in <strong>Columbia</strong><br />

Reach in October. Correcting for colour and turbidity was in most instances very minor at


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Silica (Si) – Silica concentrations across all stations were very similar and showed a downward trend<br />

through the sampling season (Figure 13). The average concentration across the season ranged from<br />

1.13 to 1.20 mg/L (Table 3) and the greatest range of values, between 0.97 and 1.71 mg/L, occurring in<br />

<strong>Columbia</strong> Reach.<br />

Secchi – Secchi depths averaged from 7.0 - 8.2 m across the four Kinbasket Reservoir stations in 2009<br />

(Table 3). Lowest values occurred in June with then increasing values which peaked in September.<br />

October generally showed a decreased Secchi depth (Figure 14).<br />

Table 3. Average water chemistry values at four stations and all depths on Kinbasket Reservoir sampled<br />

May to October, 2009. Range of values shown in parentheses.<br />

STATIONS<br />

Parameter Units<br />

NO2+NO3 (NN) µg/L<br />

TP µg/L<br />

TP (corrected) µg/L<br />

TDP* µg/L<br />

SRP µg/L<br />

NN:TDP**<br />

Alkalinity mgCaCO3/L<br />

pH<br />

Conductivity µohms<br />

Turbidity NTU<br />

Silica*** mg/L<br />

Secchi m<br />

KIN Forebay<br />

107<br />

(76 – 156)<br />

4.6<br />

(2.7 – 10.1)<br />

4.5<br />

(2.7 – 10.1)<br />

4.1<br />

(2.5 – 5.5)<br />

1.3<br />

(0.5 – 2.7)<br />

27.0<br />

(17.5 – 45.0)<br />

136<br />

(118 – 167)<br />

7.8<br />

(7.5 – 8.0)<br />

107<br />

(88 – 131)<br />

0.7<br />

(0.04 – 3.27)<br />

1.13<br />

(0.97 – 1.29)<br />

8.2<br />

(4.4 – 12.2)<br />

Canoe<br />

Reach<br />

109<br />

(75 – 146)<br />

5.2<br />

(2.2 – 9.5)<br />

5.1<br />

(2.2 – 9.5)<br />

4.4<br />

(2.1 – 7.0)<br />

1.4<br />

(0.6 – 3.2)<br />

26.6<br />

(13.4 – 57.2)<br />

130<br />

(106 – 162)<br />

7.8<br />

(7.5 – 8.1)<br />

103<br />

(87 – 127)<br />

0.7<br />

(0.04 – 4.7)<br />

1.18<br />

(1.02 – 1.35)<br />

7.4<br />

(4.5 – 10.5)<br />

*Some values of TDP removed.<br />

**NN:TP(corrected) used where TDP values were removed.<br />

***Silica values are from a single 0-20 integrated sample per month.<br />

3.2 Revelstoke Reservoir<br />

Wood Arm<br />

105<br />

(73 – 180)<br />

4.9<br />

(2.1 – 8.9)<br />

4.7<br />

(1.6 – 8.3)<br />

4.1<br />

(2.0 – 5.9)<br />

1.4<br />

(0.6 – 2.8)<br />

29.2<br />

(16.8 – 72.8)<br />

134<br />

(121 – 150)<br />

7.9<br />

(7.7 – 8.1)<br />

104<br />

(90 – 115)<br />

0.9<br />

(0.23 – 2.2)<br />

1.13<br />

(0.94 – 1.34)<br />

7.3<br />

(3.0 -12.4)<br />

<strong>Columbia</strong><br />

Reach<br />

110<br />

(57 – 160)<br />

5.7<br />

(3.3 – 9.1)<br />

5.5<br />

(3.3 – 8.7)<br />

4.6<br />

(2.8 – 6.0)<br />

1.5<br />

(0.4 – 2.9)<br />

23.7<br />

(12.3 – 43.2)<br />

156<br />

(125 – 193)<br />

7.9<br />

(7.6 – 8.2)<br />

122<br />

(91 – 162)<br />

0.8<br />

(0.17 – 2.1)<br />

1.20<br />

(0.91 – 1.71)<br />

7.0<br />

(4.9 -12.0)<br />

Revelstoke Reservoir daily average elevations ranged by 1.3m between 571.6m and 572.9m in 2009.<br />

Full pool is 573m and while larger drawdowns can occur in certain circumstances (e.g. extreme weather<br />

events), the normal operating range is within 1.5m (to 571.5m).<br />

Nitrite and Nitrate (NO2+NO3) – Average concentration of NO2+NO3 were similar across stations in<br />

Revelstoke Reservoir, but ranged in a decreasing gradient along the reservoir from a low of 120 µg/L at<br />

the REV Forebay station to a high of 125 µg/L at the REV Upper station (Table 4). Spring (May/June)<br />

values were generally highest with August/September values usually the lowest (Figure 15). In the<br />

CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

<strong>BC</strong> <strong>Hydro</strong> <strong>Water</strong> Licence Requirements<br />

4


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

epilimnion, NN peaked in June at all three stations, declined into the summer months and increased<br />

slightly in fall (Figure 19). The high degree of mixing in the more riverine and shallow REV Upper station<br />

is evident in the more uniform profile.<br />

Total Phosphorus (TP) – Average concentrations of TP were very similar across the three stations,<br />

ranging from 4.3 to 4.8 µg/L (Table 4, Figure 16). Colour and turbidity corrections were


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Table 4. Average water chemistry values at three stations and all depths on Revelstoke Reservoir<br />

sampled May to October, 2009. Range of values shown in parentheses.<br />

STATIONS<br />

Parameter Units<br />

REV Forebay REV Middle REV Upper<br />

NO2+NO3 (NN) µg/L<br />

TP µg/L<br />

TP (corrected) µg/L<br />

TDP* µg/L<br />

SRP µg/L<br />

NN:TDP**<br />

Alkalinity mgCaCO3/L<br />

pH<br />

Conductivity µohms<br />

Turbidity NTU<br />

Silica*** mg/L<br />

Secchi m<br />

120<br />

(88 – 165)<br />

4.3<br />

(2.1 – 7.6)<br />

4.2<br />

(2.1 – 7.6)<br />

3.6<br />

(1.9 – 6.3)<br />

1.6<br />

(0.4 – 2.8)<br />

36.5<br />

(16.1 – 68.1)<br />

104<br />

(77 – 140)<br />

7.6<br />

(7.4 – 7.9)<br />

83<br />

(60 – 108)<br />

0.6<br />

(0.09 – 2.57)<br />

1.55<br />

(1.40 – 1.69)<br />

7.7<br />

(6.5 – 8.5)<br />

121<br />

(82 – 166)<br />

4.7<br />

(2.4 – 10.9)<br />

4.5<br />

(2.4 – 10.9)<br />

3.7<br />

(2.2 – 7.4)<br />

1.4<br />

(0.3 – 2.6)<br />

35.2<br />

(12.6 – 53.7)<br />

102<br />

(63 – 140)<br />

7.6<br />

(7.3 – 8.0)<br />

82<br />

(51 – 109)<br />

1.1<br />

(0.11- 3.9)<br />

1.52<br />

(1.33 – 1.99)<br />

6.2<br />

(4.0 – 7.9)<br />

*TDP means and ranges based on limited dataset.<br />

**NN:TP used where TDP values were removed.<br />

***Silica values are from a single 0-20 integrated sample per month.<br />

4. Discussion<br />

125<br />

(66 – 185)<br />

4.8<br />

(2.3 – 10.9)<br />

4.2<br />

(1.6 – 9.8)<br />

4.0<br />

(2.5 – 5.8)<br />

1.5<br />

(0.4 – 2.5)<br />

38.2<br />

(21.2 – 76.4)<br />

97<br />

(49 – 128)<br />

7.6<br />

(7.2 – 7.9)<br />

79<br />

(43 – 103)<br />

1.3<br />

(0.24 – 2.7)<br />

1.76<br />

(1.25 – 2.30)<br />

4.9<br />

(2.5 – 6.8)<br />

The 2009 results represent the first full sampling session on Kinbasket and Revelstoke Reservoirs and<br />

adds to the dataset begun in 2008. Total phosphorus in all samples ranged from 2.1 to 10.9 µg/L and<br />

confirms the ultra-oligotrophic status of both reservoirs (Wetzel 2001). All P fractions were generally<br />

higher in Kinbasket Reservoir than in Revelstoke Reservoir. Nitrates and nitrites were normally greater in<br />

Revelstoke Reservoir and it exhibited a greater degree of P limitation throughout the sampling season,<br />

although both showed increasing P limitation into the fall.<br />

Methods for field filtration of TDP will be reconsidered in light of the frequency of TDP values in excess of<br />

TP and may involve changing filtering systems provided no continuity in the data is lost.<br />

Future years of sampling will provide more information on seasonal and annual variability of pelagic water<br />

chemistry parameters. Several years of monitoring data are required to begin analysing for trends and it<br />

is expected this reservoir sampling program will continue as part of the project plan for several more<br />

years.<br />

CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

<strong>BC</strong> <strong>Hydro</strong> <strong>Water</strong> Licence Requirements<br />

6


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

5. References<br />

K.I. Ashley and J.G. Stockner. 2003. Protocol for applying limiting nutrients to inland waters. Pages 245-260.<br />

In: J.G. Stockner, editor. Nutrients in salmonid ecosystems: sustaining production and biodiversity.<br />

American Fisheries Society, Symposium 34, Bethesda, Maryland:<br />

Pieters, R., A. Akkerman, and G. Lawrence. 2010a. Tributary <strong>Water</strong> Quality Kinbasket and Revelstoke<br />

Reservoirs, 2008. University of British <strong>Columbia</strong>. Prepared for <strong>BC</strong> <strong>Hydro</strong> <strong>Water</strong> Licence<br />

Requirements. 8 pp. + figures and appendices. Appendix 2 In <strong>BC</strong> <strong>Hydro</strong>. 2009. Kinbasket and<br />

Revelstoke Reservoirs Ecological Productivity Monitoring. Progress Report Year 1 (2008). <strong>BC</strong><br />

<strong>Hydro</strong>, <strong>Water</strong> Licence Requirements. Study No. CLBMON-3. 4pp. + appendices.<br />

Pieters, R. and G. Lawrence. 2010b. CTD Surveys Kinbasket and Revelstoke Reservoirs, 2008.<br />

University of British <strong>Columbia</strong>. Prepared for <strong>BC</strong> <strong>Hydro</strong> <strong>Water</strong> Licence Requirements. 8 pp. +<br />

figures and appendices. Appendix 3 In <strong>BC</strong> <strong>Hydro</strong>. 2009. Kinbasket and Revelstoke<br />

Reservoirs Ecological Productivity Monitoring. Progress Report Year 1 (2008). <strong>BC</strong> <strong>Hydro</strong>,<br />

<strong>Water</strong> Licence Requirements. Study No. CLBMON-3. 4pp. + appendices.<br />

Wetzel, R. 2001. Limnology. Third Edition. Academic Press, San Diego, USA.<br />

Acknowledgements<br />

Beth Manson and Pierre Bourget collected, field processed, and shipped water samples. The Cultus<br />

Lake Laboratory performed all the water chemistry analyses. Roger Pieters and Eva Schindler provided<br />

many helpful discussions on reservoir dynamics.<br />

CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

<strong>BC</strong> <strong>Hydro</strong> <strong>Water</strong> Licence Requirements<br />

7


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Figure 1. Location of reservoir sampling stations on Kinbasket and Revelstoke Reservoirs, 2009.<br />

Canoe Reach<br />

KIN Forebay<br />

REV Upper<br />

REV Forebay<br />

Wood Arm<br />

REV Middle<br />

<strong>Columbia</strong> Reach<br />

CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

<strong>BC</strong> <strong>Hydro</strong> <strong>Water</strong> Licence Requirements<br />

8


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Figure 2. Kinbasket Reservoir elevation and sampling dates, 2009. Elevations for 2007 and 2008 shown<br />

for comparison.<br />

Elevation (m)<br />

760<br />

755<br />

750<br />

745<br />

740<br />

735<br />

730<br />

725<br />

720<br />

715<br />

710<br />

705<br />

Maximum Elevation 754m<br />

2009<br />

2007<br />

2008<br />

Minimum Elevation 707m<br />

700<br />

1-Jan 31-Jan 1-Mar 31-Mar 30-Apr 30-May 29-Jun 29-Jul 28-Aug 27-Sep 27-Oct 26-Nov 26-Dec<br />

CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

<strong>BC</strong> <strong>Hydro</strong> <strong>Water</strong> Licence Requirements<br />

Day<br />

2009 Sampling Dates<br />

9


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Figure 3. Discrete depth nitrate and nitrite (µg/L) at Kinbasket Reservoir stations, 2009.<br />

Depth (m)<br />

Depth (m)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

180<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

KIN Forebay<br />

Nitrate&Nitrite (ug/L)<br />

0 50 100 150 200<br />

KIN Wood<br />

Nitrate&Nitrite (ug/L)<br />

0 50 100 150 200<br />

26-May-09<br />

16-Jun-09<br />

14-Jul-09<br />

18-Aug-09<br />

15-Sep-09<br />

20-Oct-09<br />

26-May-09<br />

15-Jun-09<br />

14-Jul-09<br />

18-Aug-09<br />

15-Sep-09<br />

19-Oct-09<br />

Depth (m)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

180<br />

KIN Canoe<br />

Nitrate&Nitrite (ug/L)<br />

0 50 100 150 200<br />

KIN <strong>Columbia</strong><br />

Nitrate&Nitrite (ug/L)<br />

0 50 100 150 200<br />

CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

<strong>BC</strong> <strong>Hydro</strong> <strong>Water</strong> Licence Requirements<br />

Depth (m)<br />

25-May-09<br />

16-Jun-09<br />

13-Jul-09<br />

17-Aug-09<br />

14-Sep-09<br />

20-Oct-09<br />

25-May-09<br />

15-Jun-09<br />

13-Jul-09<br />

17-Aug-09<br />

14-Sep-09<br />

19-Oct-09<br />

10


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Figure 4. Discrete depth total phosphorus (µg/L) at Kinbasket Reservoir stations, 2009.<br />

Depth (m)<br />

Depth (m)<br />

KIN Forebay<br />

0 5 10 15<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

180<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

TP (ug/L)<br />

KIN Wood<br />

TP (ug/L)<br />

0 5 10 15<br />

26-May-09<br />

16-Jun-09<br />

14-Jul-09<br />

18-Aug-09<br />

15-Sep-09<br />

20-Oct-09<br />

26-May-09<br />

15-Jun-09<br />

14-Jul-09<br />

18-Aug-09<br />

15-Sep-09<br />

19-Oct-09<br />

Depth (m)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

KIN Canoe<br />

TP (ug/L)<br />

0 5 10 15<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

180<br />

KIN <strong>Columbia</strong><br />

TP (ug/L)<br />

0 5 10 15<br />

CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

<strong>BC</strong> <strong>Hydro</strong> <strong>Water</strong> Licence Requirements<br />

Depth (m)<br />

25-May-09<br />

16-Jun-09<br />

13-Jul-09<br />

17-Aug-09<br />

14-Sep-09<br />

20-Oct-09<br />

25-May-09<br />

15-Jun-09<br />

13-Jul-09<br />

17-Aug-09<br />

14-Sep-09<br />

19-Oct-09<br />

11


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Figure 5. Discrete depth total dissolved phosphorus (µg/L) at Kinbasket Reservoir stations, 2009.<br />

Depth (m)<br />

Depth (m)<br />

KIN Forebay<br />

0 2 4 6 8 10<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

180<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

TDP (ug/L)<br />

KIN Wood<br />

TDP (ug/L)<br />

0 2 4 6 8 10<br />

26-May-09<br />

16-Jun-09<br />

14-Jul-09<br />

18-Aug-09<br />

15-Sep-09<br />

20-Oct-09<br />

26-May-09<br />

15-Jun-09<br />

14-Jul-09<br />

18-Aug-09<br />

15-Sep-09<br />

19-Oct-09<br />

Depth (m)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

180<br />

KIN Canoe<br />

TDP (ug/L)<br />

0 2 4 6 8 10<br />

KIN <strong>Columbia</strong><br />

TDP (ug/L)<br />

0 2 4 6 8 10<br />

CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

<strong>BC</strong> <strong>Hydro</strong> <strong>Water</strong> Licence Requirements<br />

Depth (m)<br />

25-May-09<br />

16-Jun-09<br />

13-Jul-09<br />

17-Aug-09<br />

14-Sep-09<br />

20-Oct-09<br />

25-May-09<br />

15-Jun-09<br />

13-Jul-09<br />

17-Aug-09<br />

14-Sep-09<br />

19-Oct-09<br />

12


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Figure 6. Discrete depth soluble reactive phosphorus (µg/L) at Kinbasket Reservoir stations, 2009.<br />

Depth (m)<br />

Depth (m)<br />

KIN Forebay<br />

0.0 1.0 2.0 3.0 4.0<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

180<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

SRP (ug/L)<br />

KIN Wood<br />

SRP (ug/L)<br />

0.0 1.0 2.0 3.0 4.0<br />

26-May-09<br />

16-Jun-09<br />

14-Jul-09<br />

18-Aug-09<br />

15-Sep-09<br />

20-Oct-09<br />

26-May-09<br />

15-Jun-09<br />

14-Jul-09<br />

18-Aug-09<br />

15-Sep-09<br />

19-Oct-09<br />

KIN Canoe<br />

CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

<strong>BC</strong> <strong>Hydro</strong> <strong>Water</strong> Licence Requirements<br />

Depth (m)<br />

Depth (m)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

SRP (ug/L)<br />

0.0 1.0 2.0 3.0 4.0<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

180<br />

KIN <strong>Columbia</strong><br />

0.0 1.0<br />

SRP (ug/L)<br />

2.0 3.0 4.0<br />

25-May-09<br />

16-Jun-09<br />

13-Jul-09<br />

17-Aug-09<br />

14-Sep-09<br />

20-Oct-09<br />

25-May-09<br />

15-Jun-09<br />

13-Jul-09<br />

17-Aug-09<br />

14-Sep-09<br />

19-Oct-09<br />

13


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Figure 7. DIN:TDP ratios at Kinbasket Reservoir stations, 2009.<br />

Depth (m)<br />

Depth (m)<br />

KIN Forebay<br />

0 10 20 30 40 50 60<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

180<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

NN:TDP<br />

KIN Wood<br />

NN:TDP<br />

0 10 20 30 40 50 60 70 80<br />

26-May-09<br />

16-Jun-09<br />

14-Jul-09<br />

18-Aug-09<br />

15-Sep-09<br />

20-Oct-09<br />

26-May-09<br />

15-Jun-09<br />

14-Jul-09<br />

18-Aug-09<br />

15-Sep-09<br />

19-Oct-09<br />

KIN Canoe<br />

CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

<strong>BC</strong> <strong>Hydro</strong> <strong>Water</strong> Licence Requirements<br />

Depth (m)<br />

Depth (m)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

NN:TDP<br />

0 10 20 30 40 50 60<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

180<br />

KIN <strong>Columbia</strong><br />

0 10 20<br />

NN:TDP<br />

30 40 50 60<br />

25-May-09<br />

16-Jun-09<br />

13-Jul-09<br />

17-Aug-09<br />

14-Sep-09<br />

20-Oct-09<br />

25-May-09<br />

15-Jun-09<br />

13-Jul-09<br />

17-Aug-09<br />

14-Sep-09<br />

19-Oct-09<br />

14


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Figure 8. Average nitrate and nitrite (µg/L) in epilimnion (0-20m) at Kinbasket Reservoir stations, 2009.<br />

Nitrate and Nitrite (ug/L)<br />

150<br />

125<br />

100<br />

75<br />

50<br />

25<br />

0<br />

May<br />

June<br />

July<br />

August<br />

Month<br />

September<br />

October<br />

KIN Forebay<br />

KIN Canoe Reach<br />

KIN Wood Arm<br />

KIN <strong>Columbia</strong> Reach<br />

Figure 9. Average total phosphorus (µg/L) in epilimnion (0-20m) at Kinbasket Reservoir stations, 2009.<br />

Total Phophorus (ug/L)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

May<br />

June<br />

July<br />

August<br />

Month<br />

September<br />

October<br />

KIN Forebay<br />

KIN Canoe Reach<br />

KIN Wood Arm<br />

KIN <strong>Columbia</strong> Reach<br />

Figure 10. Average total dissolved phosphorus (µg/L) in epilimnion (0-20m) at Kinbasket Reservoir<br />

stations, 2009.<br />

Total Dissolved Phophorus<br />

(ug/L)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

May<br />

June<br />

July<br />

August<br />

Month<br />

September<br />

October<br />

KIN Forebay<br />

KIN Canoe Reach<br />

KIN Wood Arm<br />

KIN <strong>Columbia</strong> Reach<br />

CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

<strong>BC</strong> <strong>Hydro</strong> <strong>Water</strong> Licence Requirements<br />

15


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Figure 11. Average soluble reactive phosphorus (µg/L) in epilimnion (0-20m) at Kinbasket Reservoir<br />

stations, 2009.<br />

Soluble Reactive Phophorus<br />

(ug/L)<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

May<br />

June<br />

July<br />

August<br />

Month<br />

September<br />

October<br />

KIN Forebay<br />

KIN Canoe Reach<br />

KIN Wood Arm<br />

KIN <strong>Columbia</strong> Reach<br />

Figure 12. Average DIN:TDP in epilimnion (0-20m) at Kinbasket Reservoir stations, 2009.<br />

NN:TDP<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

May<br />

June<br />

July<br />

August<br />

Month<br />

S<br />

eptember<br />

October<br />

KIN Forebay<br />

KIN Canoe Reach<br />

KIN Wood Arm<br />

KIN <strong>Columbia</strong> Reach<br />

CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

<strong>BC</strong> <strong>Hydro</strong> <strong>Water</strong> Licence Requirements<br />

16


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Figure 13. Silica (mg/L) from a 0-20m integrated tube sample at Kinbasket Reservoir stations, 2009.<br />

Silica (mgSi/L)<br />

2.0<br />

1.8<br />

1.5<br />

1.3<br />

1.0<br />

0.8<br />

0.5<br />

May<br />

June<br />

July<br />

August<br />

Month<br />

September<br />

October<br />

KIN Forebay<br />

KIN Canoe Reach<br />

KIN Wood Arm<br />

Figure<br />

14. Secchi disk (m) readings at Kinbasket Reservoir stations, 2009.<br />

Secchi Depth (m)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

May<br />

June<br />

July<br />

August<br />

Month<br />

September<br />

October<br />

KIN <strong>Columbia</strong> Reach<br />

KIN Forebay<br />

KIN Canoe Reach<br />

KIN Wood Arm<br />

KIN <strong>Columbia</strong> Reach<br />

CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

<strong>BC</strong> <strong>Hydro</strong> <strong>Water</strong> Licence Requirements<br />

17


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Figure 15 Discrete depth nitrite and nitrate (µg/L) at Revelstoke Reservoir stations, 2009.<br />

Depth (m)<br />

Depth (m)<br />

REV Forebay<br />

0 50 100 150 200<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

Nitrate&Nitrite (ug/L)<br />

REV Upper<br />

Nitrate &Nitrite (ug/L)<br />

0 50 100 150 200<br />

0<br />

5<br />

10<br />

15<br />

20<br />

25<br />

30<br />

35<br />

40<br />

20-May-09<br />

24-Jun-09<br />

22-Jul-09<br />

26-Aug-09<br />

23-Sep-09<br />

14-Oct-09<br />

19-May-09<br />

23-Jun-09<br />

21-Jul-09<br />

25-Aug-09<br />

22-Sep-09<br />

13-Oct-09<br />

REV Middle<br />

CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

<strong>BC</strong> <strong>Hydro</strong> <strong>Water</strong> Licence Requirements<br />

Depth (m)<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

80<br />

90<br />

Nitrate&Nitrite (ug/L)<br />

0 50 100 150 200<br />

19-May-09<br />

23-Jun-09<br />

21-Jul-09<br />

25-Aug-09<br />

22-Sep-09<br />

13-Oct-09<br />

18


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Figure 16. Discrete depth total phosphorus (µg/L) at Revelstoke Reservoir stations, 2009.<br />

Depth (m)<br />

Depth (m)<br />

REV Forebay<br />

0 2 4 6 8 10 12<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

TP (ug/L)<br />

REV Upper<br />

0 2 4<br />

TP (ug/L)<br />

6 8 10 12<br />

0<br />

5<br />

10<br />

15<br />

20<br />

25<br />

30<br />

35<br />

40<br />

20-May-09<br />

24-Jun-09<br />

22-Jul-09<br />

26-Aug-09<br />

23-Sep-09<br />

14-Oct-09<br />

19-May-09<br />

23-Jun-09<br />

21-Jul-09<br />

25-Aug-09<br />

22-Sep-09<br />

13-Oct-09<br />

REV Middle<br />

CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

<strong>BC</strong> <strong>Hydro</strong> <strong>Water</strong> Licence Requirements<br />

Depth (m)<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

80<br />

90<br />

0 2 4<br />

TP (ug/L)<br />

6 8 10 12<br />

19-May-09<br />

23-Jun-09<br />

21-Jul-09<br />

25-Aug-09<br />

22-Sep-09<br />

13-Oct-09<br />

19


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Figure 17. Discrete depth soluble reactive phosphorus (µg/L) at Revelstoke Reservoir stations, 2009.<br />

Depth (m)<br />

Depth (m)<br />

REV Forebay<br />

0.0 1.0 2.0 3.0<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

SRP (ug/L)<br />

REV Upper<br />

0.0<br />

SRP (ug/L)<br />

1.0 2.0 3.0<br />

0<br />

5<br />

10<br />

15<br />

20<br />

25<br />

30<br />

35<br />

40<br />

20-May-09<br />

24-Jun-09<br />

22-Jul-09<br />

26-Aug-09<br />

23-Sep-09<br />

14-Oct-09<br />

19-May-09<br />

23-Jun-09<br />

21-Jul-09<br />

25-Aug-09<br />

22-Sep-09<br />

13-Oct-09<br />

REV Middle<br />

CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

<strong>BC</strong> <strong>Hydro</strong> <strong>Water</strong> Licence Requirements<br />

Depth (m)<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

80<br />

90<br />

SRP (ug/L)<br />

0.0 1.0 2.0 3.0<br />

19-May-09<br />

23-Jun-09<br />

21-Jul-09<br />

25-Aug-09<br />

22-Sep-09<br />

13-Oct-09<br />

20


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Figure 18. DIN:TDP ratios at Revelstoke Reservoir stations, 2009.<br />

Depth (m)<br />

Depth (m)<br />

REV Forebay<br />

0 20 40 60 80<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

NN:TDP<br />

REV Upper<br />

NN:TDP<br />

0 20 40 60<br />

0<br />

5<br />

10<br />

15<br />

20<br />

25<br />

30<br />

35<br />

40<br />

20-May-09<br />

24-Jun-09<br />

22-Jul-09<br />

26-Aug-09<br />

23-Sep-09<br />

14-Oct-09<br />

19-May-09<br />

23-Jun-09<br />

21-Jul-09<br />

25-Aug-09<br />

22-Sep-09<br />

13-Oct-09<br />

REV Middle<br />

CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

<strong>BC</strong> <strong>Hydro</strong> <strong>Water</strong> Licence Requirements<br />

Depth (m)<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

80<br />

90<br />

NN:TDP<br />

0 20 40 60<br />

19-May-09<br />

23-Jun-09<br />

21-Jul-09<br />

25-Aug-09<br />

22-Sep-09<br />

13-Oct-09<br />

21


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Figure 19. Average nitrate and nitrite (µg/L) in epilimnion (0-20m) at Revelstoke Reservoir stations, 2009.<br />

Nitrate and Nitrite (ug/L)<br />

200<br />

150<br />

100<br />

50<br />

0<br />

May<br />

June<br />

July<br />

August<br />

Month<br />

September<br />

October<br />

REV Forebay<br />

REV Middle<br />

REV Upper<br />

Figure 20. Average total phosphorus (µg/L) in epilimnion (0-20m) at Revelstoke Reservoir stations, 2009.<br />

Total Phophorus (ug/L)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

May June July August September October<br />

Month<br />

REV Forebay<br />

REV Middle<br />

REV Upper<br />

Figure 21. Average soluble reactive phosphorus (µg/L) in epilimnion (0-20m) at Revelstoke Reservoir<br />

stations, 2009.<br />

Soluble Reactive Phophorus<br />

(ug/L)<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

May<br />

June<br />

July<br />

August<br />

Month<br />

September<br />

October<br />

REV Forebay<br />

REV Middle<br />

REV Upper<br />

CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

<strong>BC</strong> <strong>Hydro</strong> <strong>Water</strong> Licence Requirements<br />

22


Reservoir <strong>Water</strong> Chemistry<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Figure 22. Average DIN:TDP in epilimnion (0-20m) at Revelstoke Reservoir stations, 2009.<br />

NN:TDP<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

May June July August September October<br />

Month<br />

REV Forebay<br />

REV Middle<br />

REV Upper<br />

Figure 23. Silica (mg/L) from a 0-20m integrated tube sample at Revelstoke Reservoir stations, 2009.<br />

Silica (mgSi/L)<br />

2.5<br />

2.3<br />

2.0<br />

1.8<br />

1.5<br />

1.3<br />

1.0<br />

May June July August September October<br />

Month<br />

Figure 24. Secchi disk (m) readings at Revelstoke Reservoir stations, 2009.<br />

Secchi Depth (m)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

May June July August September October<br />

Month<br />

REV Forebay<br />

REV Middle<br />

REV Upper<br />

REV Forebay<br />

REV Middle<br />

REV Upper<br />

CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

<strong>BC</strong> <strong>Hydro</strong> <strong>Water</strong> Licence Requirements<br />

23


CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

2009 Progress Report<br />

Appendix 5<br />

Primary Productivity<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Shannon Harris<br />

Ministry of Environment


PRIMARY PRODUCTIVITY IN KINBASKET AND REVELSTOKE RESERVOIRS,<br />

2009<br />

by<br />

Shannon Harris<br />

Ministry of Environment<br />

Vancouver, <strong>BC</strong>


Copyright Notice<br />

No part of the content of this document may be reproduced in any form or by any means, including<br />

storage, reproduction, execution, or transmission without the prior written permission of the province of<br />

British <strong>Columbia</strong>.<br />

Limited Exemption to Non-reproduction<br />

Permission to copy and use this publication in part, or in its entirety, for non-profit purposes within British<br />

<strong>Columbia</strong>, is granted <strong>BC</strong> <strong>Hydro</strong>; and<br />

Permission to distribute this publication, in its entirety, is granted to <strong>BC</strong> <strong>Hydro</strong> for non-profit purposes of<br />

posting the publication on a publically accessible area of the <strong>BC</strong> <strong>Hydro</strong> website<br />

Primary productivity in Kinbasket and Revelstoke Reservoirs, 2009 Report pg. 2


Acknowledgements<br />

Thanks to Pierre Bourget and Beth Manson of <strong>BC</strong> <strong>Hydro</strong> and Greg Andrusak of Redfish<br />

Consulting Ltd. for delivery of the field component of the project. Many thanks to Eva Schindler<br />

of the <strong>BC</strong> Ministry of Environment-Nelson office who provided field supervision and training<br />

during the first sampling trip and who provided critical logistical support throughout the field<br />

season. Thanks to Marley Bassett who also provided support during the September sampling<br />

session. Emma Jane Johnson of <strong>BC</strong> Ministry of Environment-U<strong>BC</strong> was responsible for arranging<br />

for the construction of the necessary field equipment and for sample preparation. Our gratitude<br />

is extended to Ming Guo of U<strong>BC</strong> for scintillation counting of the primary productivity samples.<br />

Thanks to Harvey Andrusak and Eva Schindler for review of this report. Funding was provided<br />

by the <strong>Columbia</strong> <strong>River</strong> <strong>Water</strong> <strong>Use</strong> <strong>Plan</strong>-Kinbasket Reservoir Fish and Wildlife Information <strong>Plan</strong><br />

– Monitoring Program – study number: CLBMON-3, Kinbasket and Revelstoke Reservoirs<br />

Ecological Productivity Monitoring Program to MOE by a contribution agreement (#0046004).<br />

Primary productivity in Kinbasket and Revelstoke Reservoirs, 2009 Report pg. 3


Introduction<br />

This report summarizes primary productivity studies carried out on Kinbasket and Revelstoke<br />

Reservoirs in 2009 and reports on the size structure of the phytoplankton community. This work<br />

is a component of the study CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological<br />

Productivity Monitoring conducted by <strong>BC</strong> <strong>Hydro</strong> under the <strong>Columbia</strong> <strong>Water</strong> <strong>Use</strong> <strong>Plan</strong> (WUP).<br />

The purpose of this monitoring program is to improve our understanding of the pelagic<br />

productivity of Kinbasket and Revelstoke reservoirs by obtaining a long-term primary<br />

production dataset to describe trophic web mechanisms and dynamics. The study of productivity<br />

is critical to understanding trophic web dynamics because all trophic levels in aquatic systems<br />

depend directly or indirectly on primary production, which is the production of organic<br />

compounds through the process of photosynthesis. In many aquatic systems phytoplankton are<br />

primarily responsible for the majority of production particularly in Kinbasket and Revelstoke<br />

reservoirs where the functionality of the littoral zone is compromised by large reservoir<br />

fluctuations (Wetzel 2001).<br />

Primary productivity is typically measured by the incorporation of inorganic carbon-14 into<br />

particulate organic carbon over a given period of time (Steemann Nielsen, 1952). This<br />

methodology is highly sensitive which is of particular importance in ultra-oligotrophic reservoirs<br />

such as Kinbasket and Revelstoke. Many factors limit primary productivity but generally light<br />

and nutrients set the upper limits of production. The photic zone, the relatively thin upper<br />

portion of the water column where there is sufficient light for photosynthesis to occur is typically<br />

defined by the depth at which light reaches 1% of its surface value. The availability of light is<br />

influenced by dissolved and particulate organic matter and changes from one water body to<br />

another based on differing geology and varies seasonally based on heterogeneous physical,<br />

chemical and biological properties. This current study involves collection of data from the<br />

photic zone and examines the likelihood of light limitation in the two reservoirs. A separate<br />

study involves collecting physical and chemical data which will be analyzed in the final<br />

synthesis report on the interaction of nutrient availability and productivity.<br />

Ultimately, the performance measure of interest to the <strong>BC</strong> <strong>Hydro</strong> WUP consultative committee is<br />

the sustainability of fish populations under the current operating regimes (<strong>BC</strong> <strong>Hydro</strong>, 2007).<br />

Successful recruitment of fish depends partly on sufficient food supply (Beauchamp, 2004) and<br />

on food quality (Danielsdotter et al. 2007). Kokanee populations are studied in the two<br />

reservoirs because they are the key ecosystem driver for top predators as well as an important<br />

local sport fish species. The preferred food source for kokanee is Daphnia, a herbivorous<br />

zooplankton species (Thompson 1999). Daphnia sp. mainly ingest nanoplankton, phytoplankton<br />

that range in size from 2.0-20.0 µm hence the study and understanding of the phytoplankton<br />

community structure is key to our understanding of trophic web mechanisms and dynamics.<br />

This study examines three commonly studied fractions-the picoplankton (0.2-2 µm),<br />

nanoplankton (2.0-20 µm) and microplankton (>20 µm).<br />

Primary productivity in Kinbasket and Revelstoke Reservoirs, 2009 Report pg. 4


Methods<br />

Field Sampling<br />

Primary productivity was measured each month during the growing season (June-September<br />

2009) on Kinbasket Reservoir at the Forebay station and on Revelstoke Reservoir at the Forebay<br />

station and Downie station. <strong>Water</strong> samples were collected between 8:00 and 9:00 am using<br />

Niskin bottles. Samples were collected from the surface to the 1% light depth as determined<br />

with a Licor LI-185A quantum sensor and meter. Two light and one dark 300 ml acid-cleaned<br />

BOD bottles were rinsed three times with lake water before filling. Disposable latex gloves were<br />

used for all sampling to avoid contamination. Care was taken to eliminate contact with latex<br />

since latex is toxic to phytoplankton (Price et al. 1986). The samples were maintained under low<br />

light conditions during all manipulations until the start of the incubation. Samples were<br />

inoculated with 0.185 MBq (5 µCi) of NaH 14 CO3 New England Nuclear (NEC-086H). The BOD<br />

bottles were attached to acrylic plates and were suspended in situ for 3-4 h, generally between 9<br />

am and 2 pm. Alkalinity samples were collected from the surface and the deepest sample depth<br />

in 125 ml polycarbonate bottles. Table 1 provides field and incubation information for the 2009<br />

study.<br />

Table 1. Field observations and incubation information for the 2009 primary productivity study.<br />

KB=Kinbasket-Forebay, RD=Revelstoke-Downie (also called middle), RF=Revelstoke-Forebay<br />

and AC=attenuation coefficient calculated from vertical profiles of photosynthetically active<br />

radiation.<br />

Date Stn Weather AC<br />

(cm -1 )<br />

Primary productivity in Kinbasket and Revelstoke Reservoirs, 2009 Report pg. 5<br />

Inc.<br />

start<br />

Inc.<br />

end<br />

Total<br />

Inc Time<br />

(hr)<br />

Incubation<br />

depths (m)<br />

22 June 2009 KB overcast 0.27 10:50 14:50 4.0 0,1,2,5,10,15,20<br />

20 July 2009 KB sunny no clouds 0.31 9:10 12:15 3.08 0,1,2,5,10,15<br />

24 Aug 2009 KB sunny 0.27 9:10 12:20 3.17 0,1,2,5,10,15<br />

21 Sept 2009 KB overcast 0.22 11:49 15:05 3.27 0,1,2,5,10,15,20<br />

23 June 2009 RD overcast/light showers 0.43 9:50 14:00 4.17 0,1,2,5,10<br />

21 July 2009 RD Sunny no clouds 0.38 9:15 12:30 3.25 0,1,2,5,10,12<br />

25 Aug 2009 RD overcast 0.31 9:45 13:55 4.17 0,1,2,5,10<br />

22 Sept 2009 RD overcast/fog 0.33 9:18 14:41 5.38 0,1,2,5,10,15<br />

24 June 2009 RF breaking clouds 0.35 10:00 14:00 4.0 0,1,2,5,10,15<br />

22 July 2009 RF sunny but smoky 0.33 9:10 12:20 3.17 0,1,2,5,10,15<br />

26 Aug 2009 RF overcast/smoky 0.29 9:45 12:55 3.17 0,1,2,5,10,12<br />

23 Sept 2009 RF overcast/clearing 0.32 8:40 12:40 4.0 0,5,10,15<br />

Laboratory Analysis<br />

Alkalinity<br />

A Beckman 44 pH meter and electrode were used to determine total alkalinity according to the<br />

standard potentiometric method of APHA (1995). Each sample was titrated with 0.02 N H2SO4<br />

to pH 4.5. All samples had an initial pH of less than 8.3. Titrations were performed in duplicate<br />

or triplicate to check the analytical precision of the results.


Chlorophyll a<br />

Chl a corrected for phaeopigments was determined by in vitro fluorometry (Yentsch and Menzel,<br />

1963). It is important to correct for phaopigment concentrations which may equal or exceed<br />

functional pigment. <strong>Water</strong> samples (0.15-0.75 L) were filtered using parallel filtration onto 47mm<br />

diameter 0.2, 2.0 and 20.0 �m polycarbonate Nuclepore filters using a vacuum pressure<br />

differential of


eadings at Kinbasket Forebay and at Revelstoke Forebay in June and at Kinbasket Forebay in<br />

September (Figure 1). The low PAR measurements of


average, chlorophyll was 21.3 µg/m 2 in Kinbasket compared to 14.7 mg/m 2 and 19.3 mg/m 2 at<br />

Revelstoke Downie and Revelstoke Forebay respectively. The August 2002 study on Kinbasket<br />

by Stockner and Korman (2002) found depth integrated biomass concentrations of 14.8 mg/m 2 ,<br />

very similar to the concentrations found in the current study. The concentrations measured in<br />

Kinbasket and Revelstoke were all low compared to those found in Kootenay Lake where<br />

summer concentrations can reach 143.8 mg/m 2 and mean summer concentrations were 90.5<br />

mg/m 2 (Wright, 2002) but were 2-3 fold higher than concentrations of 7.5 µg/m 2 found in<br />

Williston Reservoir (Stockner et al. 2001).<br />

On average, picoplankton sized cells (0.2-2 µm) accounted for 44% of the total phytoplankton<br />

biomass, followed closely by nanoplankton (2.0-20 µm) at 41% and microplankton (>20 µm)<br />

accounted for 15% (Figure 4). The size structure was relatively static with one notable exception<br />

in July when the relative importance of nanoplankton, the size fraction that is mainly consumed<br />

by herbivorous zooplankton, declined at all three stations. In turn the predominance of<br />

picoplankton increased at all stations and microplankton increased slightly at Kinbasket Forebay<br />

in July. Microplankton (>20 µm) accounted for the smallest proportion of biomass possibly due<br />

to the competitive advantage smaller cells have in low nutrient conditions (Stockner 1981), rapid<br />

sinking of larger sized cells or alternatively grazing pressure may explain the low contribution of<br />

microplankton.<br />

Depth (m)<br />

0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0<br />

0<br />

5<br />

10<br />

15<br />

20<br />

Chlorophyll a (mg/m 3 )<br />

KB RD RF<br />

June July Aug Sept.<br />

Figure 2. Vertical profiles of chlorophyll a (mg/m 3 ) for Kinbasket Forebay and Revelstoke<br />

Downie and Revelstoke Forebay in 2009.<br />

Primary productivity in Kinbasket and Revelstoke Reservoirs, 2009 Report pg. 8


Chlorophyll a (mg/m 2 )<br />

40<br />

30<br />

20<br />

10<br />

0<br />

June July Aug Sept<br />

Kinbasket Revelstoke Downie Revelstoke Forebay<br />

Figure 3. Integrated chlorophyll a (mg Chl a/m 2 ) in Kinbasket and Revelstoke in 2009.<br />

% contribution of each fraction<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

47% 23% 47% 47% 47% 34% 46% 43% 44% 33% 40% 42%<br />

June July Aug Sept June July Aug Sept June July Aug Sept<br />

Kinbasket Revelstoke Downie<br />

Microplankton<br />

Nanoplankton<br />

Picoplankton<br />

Revelstoke Forebay<br />

Figure 4. Relative contribution of picoplankton (0.2-2 µm), nanoplankton (2.0-20 µm), and<br />

microplankton (>20 µm) to chlorophyll in Kinbasket and Revelstoke in 2009.<br />

Primary productivity in Kinbasket and Revelstoke Reservoirs, 2009 Report pg. 9


Primary Productivity<br />

Total primary production of all algal size fractions, measure as the radioactive carbon retained on<br />

the 0.2 µm filter, was highest at Kinbasket Forebay at 17.5 mg C m -2 d -1 followed by Revelstoke<br />

Forebay at 16.2 mg C m -2 d -1 . The lowest productivity was measured in Revelstoke Downie at<br />

11.7 mg C m -2 d -1 (Table 2). This spatial productivity pattern mimicked the pattern observed for<br />

light attenuation where Kinbasket had the highest water transparency and highest productivity<br />

and where Revelstoke had the least transparent water and the lowest primary productivity. The<br />

highest rates of 29.5 and 29.8 mg C m -2 d -1 were observed in June at Kinbasket and in July at<br />

Revelstoke Forebay respectively (Figure 5). These slightly elevated production rates resulted in<br />

elevated concentrations of chlorophyll as shown in Figure 3. The rates measured for Kinbasket<br />

in 2009 are 2 fold lower than those found in 2002 or 2008 (Table 2), whereas the rates measured<br />

for Revelstoke in 2009 were similar to those measured in 2008. Further examination of the<br />

interannual differences in the physical and chemical properties of Kinbasket may explain the<br />

differences. Regardless of the differences amongst study years, these rates are all extremely low<br />

and are indicative of ultraoligotrophic conditions (Wetzel, 2001).<br />

In order to put these rates in perspective, it is informative to examine primary productivity rates<br />

obtained for other watersheds. Primary productivity is an order of magnitude higher on Upper<br />

Arrow Reservoir with a pre-fertilized rate of 131 mg C m -2 d -1 which increased 1.5 fold after<br />

fertilization to 196.5 mg C m -2 d -1 (Pieters et al. 2003). On Kootenay Lake, a fertilized system<br />

in the <strong>Columbia</strong> watershed, primary productivity rates of 353.3 mg C m -2 d -1 were found<br />

(Schindler et al. 2010). The rates in Kinbasket and Revelstoke Reservoir are also substantially<br />

lower than mean values of 150-180 mg C m -2 d -1 measured in fertilized coastal lakes (Stockner,<br />

1987) but they are similar to those found by Stockner et al. (2001) for the pelagic region of<br />

Williston Reservoir in 2000. Primary productivity in Kinbasket and Revelstoke Reservoir were<br />

also similar to those found on Elsie Reservoir, which located on Vancouver Island, and is<br />

classified an ultra-oligotrophic fast flushing reservoir (Perrin and Harris 2005). Low rates of<br />

productivity are frequently determined by low availability of light or nutrients and an<br />

examination of limnological data should shed some light onto the control of the ecological<br />

dynamics of these two reservoirs.<br />

Table 2. Total daily primary productivity (mg C/m 2 /d) in Kinbasket and Revelstoke in<br />

2009, 2008 and 2002. *value not used in calculation of mean due to the sampling problems<br />

discussed in the methods section.<br />

2009 2008 2002<br />

Month KB RD RF KB RD RF KB<br />

June 29.5 11.6 6.9 - - - -<br />

July 11.0 12.1 29.8 84.4 33.6 51.8 -<br />

Aug. 16.5 12.6 11.9 42.2 9.6 13.4 77.6<br />

Sept. 13.1 10.4 0.5* 25.3 11.0 18.8 -<br />

Mean 17.5 11.7 16.2 50.6 6.04 9.32 77.6<br />

Primary productivity in Kinbasket and Revelstoke Reservoirs, 2009 Report pg. 10


Primary Productivity (mg C/m 2 /d)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

June July Aug Sept<br />

Kinbasket Revelstoke Downie Revelstoke Forebay<br />

Figure 5. Primary productivity (mg C/m 2 /d) in Kinbasket and Revelstoke in 2009.<br />

Nanoplankton was the most productive size fraction of phytoplankton, accounting for an average<br />

of 51% of the total primary production across all dates and stations (Figure 6). The contribution<br />

of nanoplankton was relatively consistently high across all stations and months with some<br />

variation observed at Revelstoke Forebay which varied from a low of 42% to a high of 63%.<br />

Generally there was less variation in the relative contribution of nanoplankton at Kinbasket<br />

Forebay which varied by only 8% and Revelstoke Downie which varied by 13%. It is important<br />

to remember that production measurements are free of grazing or sinking effects and measure the<br />

instantaneous uptake of carbon over a given time period.<br />

The second most common producer in Kinbasket and Revelstoke were microplankton which<br />

accounted for 31% of the total production. Microplankton are large and not easily grazeable and<br />

therefore they tend to either sink out of the euphotic zone or accumulate in the community. An<br />

accumulation of microplankton sized cells was not observed in the chlorophyll data (Figure 4)<br />

which suggests the cells are either sinking rapidly or are consumed by large macrozooplankton.<br />

Picoplankton production was the least productive fraction, accounting for 18% of the total<br />

production across all dates and stations (Figure 6). Picoplankton production ranged from a low<br />

of 5% in August to a high of 28% at Kinbasket Reservoir. On average, picoplankton production<br />

was the highest at Revelstoke Forebay, accounting for 20% of total production while at<br />

Revelstoke Downie and Kinbasket picoplankton accounted for 18% and 15% respectively, of<br />

total production.<br />

Primary productivity in Kinbasket and Revelstoke Reservoirs, 2009 Report pg. 11


Size distribution of production<br />

(%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

55% 47% 55% 49% 51% 50% 59% 46% 42% 48%<br />

June July Aug Sept June July Aug Sept June July Aug Sept<br />

Kinbasket Revelstoke Downie Revelstoke Forebay<br />

Microplankton<br />

Nanoplankton<br />

Picoplankton<br />

Figure 6. Relative contribution of picoplankton (0.2-2 µm), nanoplankton (2.0-20 µm), and<br />

microplankton (>20 µm) to primary productivity in Kinbasket and Revelstoke in 2009.<br />

Table 3. Depth integrated chlorophyll a and daily primary productivity for various lakes and<br />

reservoirs in <strong>BC</strong>. The shaded cells indicate fertilized systems.<br />

Chlorophyll a<br />

Reference<br />

(mg m -2 Primary<br />

Productivity<br />

) (mg C m -2 d -1 )<br />

Elsie Reservoir, ancouver 8.1 13.9 Perrin and Harris 2005<br />

Kinbasket Forebay 21.3 17.5 Current study<br />

Revelstoke Downie 14.7 11.7 Current study<br />

Revelstoke Forebay 19.3 16.2 Current study<br />

Williston, embayment 10.3 32.6 Harris et al. 2005<br />

Williston, pelagic 7.6 34.3 Stockner et al. 2001<br />

Slocan 26.3 59.3 Harris 2002<br />

Okanagan 27.2 72.2 Andrusak et al. 2004<br />

Alouette Reservoir 36.8 139.6 Wilson et al. 2003<br />

Arrow Reservoir 48.8 196.5 Pieters et al. 2003<br />

Kootenay Lake 90.5 353.3 Schindler et al. 2010<br />

Primary productivity in Kinbasket and Revelstoke Reservoirs, 2009 Report pg. 12<br />

63%


Discussion<br />

Given that primary productivity and fish productivity are highly correlated (Nelson 1958;<br />

Shortreed et al. 1998), it appears that the extremely low rates of productivity measured in<br />

Kinbasket and Revelstoke reservoirs may only support limited productive capacity. The rates<br />

measured in the current study are lower than those found in 2002 and 2008 despite similar<br />

attenuation coefficients in the three studies. It appears that light conditions have remained<br />

somewhat similar over the three study periods which suggests that light is not controlling the<br />

lower production measured in 2009. A close examination of the physical and chemical<br />

conditions is necessary to determine what is controlling the ecosystem productivity of these two<br />

reservoirs.<br />

The size structure of the phytoplankton community is fundamentally important to the productive<br />

capacity of lakes and reservoirs (Malone, 1980). Food chains are relatively inefficient where<br />

only 10% of the carbon is “passed on” or assimilated in the next level of the food chain (Wetzel,<br />

2001). As such, lakes with short food chains are more efficient systems, as a higher proportion of<br />

the food chain base, the phytoplankton, are incorporated into biomass of the end consumer,<br />

kokanee salmon, in this case. At all stations, nanoplankton accounted for the greatest proportion<br />

of primary production in Kinbasket and Revelstoke reservoirs which is encouraging because,<br />

although the rates of production are extremely low, the size class most easily grazed by<br />

herbivorous zooplankton is in fact the growing and available for consumption by higher trophic<br />

levels. These results are similar to those found in the 2008 study although due to changes in the<br />

study design (use of different filters) it is impossible to directly compare the two study results.<br />

Unfortunately the 2002 study did not complete size fractionation of primary productivity. It is<br />

somewhat puzzling that nanoplankton and microplankton were the most dominant producers<br />

since generally in low nutrient systems, picoplankton are the dominant producer due to their<br />

small surface area to volume ratios which allow for extremely efficient uptake of scarce<br />

nutrients.<br />

Wetzel (2001) lists ranges of primary productivity and related characteristics such as chlorophyll<br />

concentrations to classify different trophic categories ranging from ultraoligotrophic to<br />

hypertrophic types. Using this approach, the chlorophyll and primary productivity data clearly<br />

classify Kinbasket and Revelstoke Reservoirs as ultraoligotrophic. Among measurements to<br />

date, Kinbasket/Revelstoke Reservoirs supports the some of the lowest phytoplankton biomass<br />

and the lowest primary production among comparable lakes and reservoirs in British <strong>Columbia</strong><br />

(Table 3). The high relative contribution of nanoplankton suggests efficient transfer of carbon up<br />

to higher trophic levels but it is important to stress that the extremely low productivity will<br />

ultimately determine the upper limit of productive capacity in Kinbasket and Revelstoke.<br />

Primary productivity in Kinbasket and Revelstoke Reservoirs, 2009 Report pg. 13


References Cited<br />

Andrusak, H, S. Matthews, I. McGregor, K.Ashley, R.Rae, A. Wilson, D. Sebastian, G.<br />

Scholten, P Woodruff, L. Vidmanic, J. Stockner, G. Wilson, B. Jantz, J. Webster, H.<br />

Wright, C. Walters, and J. Korman. 2004. Okanagan Lake Action <strong>Plan</strong> Year 8 (2004). RD<br />

108. Biodiversity Branch, Ministry of <strong>Water</strong>, Land and Air Protection, Province of<br />

British <strong>Columbia</strong>.<br />

APHA. 1985. Standard Methods for the Examination of <strong>Water</strong> and Wastewater. 16th ed.<br />

American Public Health Association, Washington, DC.<br />

<strong>BC</strong> <strong>Hydro</strong>. 2007. CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity<br />

Monitoring Terms of Reference. <strong>BC</strong> <strong>Hydro</strong> dated October 24, 2007.<br />

Beauchamp, D.A., C.J. Sergeant, M.M. Mazur, J.M. Scheuerell, D.E. Schindler, M.D.<br />

Scheuerell, K.L. Fresh, D.E. Seiler and T.P. Quinn. 2004. Spatial-temporal dynamics of<br />

early feeding demand and food supply for sockeye salmon fry in Lake Washington. Trans.<br />

Am. Fish. Soc. 133:1014-1032.<br />

Danielsdottir, M. G., M. T. Brett and G.B. Arhonditsis. 2007. Phytoplankton food quality control<br />

of planktonic food web processes. <strong>Hydro</strong>biologia 589: 29-41.<br />

Harris, S.L. 2002. Slocan Lake Primary Productivity Monitoring Program, 2000 & 2001. Report<br />

prepared for Redfish Consulting Ltd. Nelson, B.C. 32p<br />

Harris, S.L., A.R. Langston, J.G. Stockner and L. Vidmanic. 2005. A limnological assessment<br />

of four Williston Reservoir embayments, 2004. 2005. Prepared for the Peace/Williston<br />

Fish and Wildlife Compensation Program Report. Prince George, <strong>BC</strong>. 55p.<br />

Ichimura, S., T.R. Parsons, M.Takahashi and H.Seki. 1980. A comparison of four methods for<br />

integrating 14 C-primary productivity measurements per unit area. J. Oceanogr. Soc. Jap.<br />

36: 259-262.<br />

Joint, I.R. and A.J. Pomroy.1983. Production of picoplankton and small nanoplankton in the<br />

Celtic Sea. Mar. Biol. 77(1): 19-27.<br />

Malone TC (1980) Size-fractionated primary productivity of marine phytoplankton. In:<br />

Falkowski PG (ed) Primary productivity in the sea. Plenum Press, New York, p 301–319<br />

Nelson, P.R. 1958. Relationship between rate of photosynthesis and growth of juvenile red<br />

salmon. Science, New Series, 128: 205-206.<br />

Parsons, T.K., Y. Maita and C.M. Lalli. 1984. A Manual of Chemical and Biological Methods<br />

for Seawater Analysis. Pergamon Press, Oxford. 173 pp.<br />

Perrin, C.J. and S. Harris. 2006. Trophic status of Elsie Lake Reservoir, 2005. Report prepared<br />

by Limnotek Research and Development Inc. and Hupacasath First Nation for Bridge<br />

Coastal Restoration Program. 41p.<br />

Pieters, R. S. Harris, L.C. Thompson, J.G. Stockner, H. Andrusak, K.I Ashley, B. Lindsay, K.<br />

Hall, and D. Lombard. 2003. Restoration of Kokanee Salmon in the Arrow Lakes<br />

Reservoir, British <strong>Columbia</strong>: Preliminary results of a fertilization experiment, p. 177–<br />

196. In Stockner J.G. [ed.], Nutrients in salmonid ecosystems: Sustaining production<br />

and biodiversity. American Fisheries Society.<br />

Price, N.M., P.J. Harrison, M.R Landry, F. Azam, and K.J.F. Hall. 1986. Toxic effects of latex<br />

and Tygon tubing on marine phytoplankton, zooplankton and bacteria. Mar. Ecol. Prog.<br />

Ser. 34: 41-49.<br />

Schindler, E.U., D. Sebastian, H. Andrusak L. Vidmanic, S. Harris, G.F. Andrusak, F. Pick, L.M.<br />

Ley, P.B. Hamilton, D. Johner, P. Woodruff, M. Bassett and K.I. Ashley. 2010. Kootenay<br />

Lake Nutrient Restoration Program, Year 16 (North Arm) and Year 4 (South Arm)<br />

Primary productivity in Kinbasket and Revelstoke Reservoirs, 2009 Report pg. 14


(2007) Report. Fisheries <strong>Project</strong> Report No. RD 127, Ministry of Environment, Province<br />

of British <strong>Columbia</strong>.<br />

Shortreed, K.S., J.M.B. Hume, K.F. Morton and S.G. MacLellan. 1998. Trophic status and<br />

rearing capacity of smaller sockey lakes in the Skeena <strong>River</strong> system. Can. Tech. Rep.<br />

Fish. Aquat. Sci. 2240.<br />

Steemann Nielsen, E. 1952. The use of radioactive carbon ( 14 C) for measuring organic<br />

production in the sea. J. Cons. Int. Explor. Mer. 18:117-140.<br />

Stockner, J.G. 1981 Whole lake fertilization for the enhancement of sockeye salmon<br />

(Oncorhynchus merka) in British <strong>Columbia</strong>, Canada. Int. Ver. Theor. Angew. Limnol.<br />

Vert. 21L 293-299.<br />

Stockner, J.G. 1987. Lake fertilization: The enrichment cycle and lake sockeye salmon<br />

Stockner, J.G. and J. Korman. 2002. Pelagic carbon production in Kinbasket, Revelstoke and<br />

Arrow Lakes Reservoirs. Report prepared for <strong>BC</strong> <strong>Hydro</strong><br />

Stockner J.G., A.R. Langston, and G. Wilson. 2001. The Limnology of Williston Reservoir.<br />

Peace/Williston Fish and Wildlife Compensation report No. 242. 51pp +appendices.<br />

Thompson, L.C. 1999. Abundance and production of zooplankton and kokanee salmon<br />

(Oncorhynchus nerka) in Kootenay Lake, British <strong>Columbia</strong> during artificial fertilization.<br />

Ph.D. thesis, Department of Zoology, University of British <strong>Columbia</strong>, Vancouver, British<br />

<strong>Columbia</strong>, 252 p.<br />

Wetzel, R.G. 2001. Limnology. 3 rd Ed, Academic Press, San Diego.<br />

Wilson, G., K. Ashley, M. McCusker, R. Land, J. Stockner, D. Dolecki, G. Scholten and D.<br />

Sebastian. 2003. The Alouette Reservoir Fertilization <strong>Project</strong>: Years 2000 and 2001<br />

Experiment, Whole Reservoir Fertilization. Fisheries <strong>Project</strong> Report No. RD 99.<br />

Wright, M.E., K.I. Ashley, H. Andrusak, H. Manson, R. Lindsay, R.J. Hammond, F.R. Pick,<br />

L.M. Ley, P.B. Hamilton, S.L. Harris, L.C. Thompson, L. Vidmanic, D. Sebastian, G.<br />

Scholten, M. Young and D. Miller. 2002. Kootenay Lake Fertilization Experiment Year 9<br />

(2000/2001) Report, Fisheries <strong>Project</strong> Report No. 105, Ministry of <strong>Water</strong>, Land and Air<br />

Protection, Province of British <strong>Columbia</strong>.<br />

Yentsch, C.S. and V.W. Menzel. 1963. A method for the determination of phytoplankton<br />

chlorophyll and phaeophytin by fluorescence. Deep-Sea Res. 10: 221-231.<br />

Primary productivity in Kinbasket and Revelstoke Reservoirs, 2009 Report pg. 15


Appendix A Raw chlorophyll and primary productivity data for 2009.<br />

Station Date Fraction Depth Chl<br />

(µm) (m) (mg/m 3 PP<br />

) mg/C/m 3 PP<br />

/hr mgC/m 3 /day<br />

KB 22 June 2009 0.2 0 1.07 0.35 8.15<br />

KB 22 June 2009 0.2 1 1.07 0.12 2.74<br />

KB 22 June 2009 0.2 2 1.13 0.11 2.47<br />

KB 22 June 2009 0.2 5 0.74 0.09 2.16<br />

KB 22 June 2009 0.2 10 1.23 0.05 1.27<br />

KB 22 June 2009 0.2 15 1.60 0.02 0.36<br />

KB 22 June 2009 0.2 20 1.49 0.02 0.36<br />

KB 22 June 2009 2 0 0.63 0.13 3.05<br />

KB 22 June 2009 2 1 0.59 0.08 1.98<br />

KB 22 June 2009 2 2 0.54 0.10 2.41<br />

KB 22 June 2009 2 5 0.56 0.08 1.99<br />

KB 22 June 2009 2 10 0.67 0.04 1.05<br />

KB 22 June 2009 2 15 0.88 0.02 0.47<br />

KB 22 June 2009 2 20 0.82 0.01 0.24<br />

KB 22 June 2009 20 0 0.09 0.06 1.29<br />

KB 22 June 2009 20 1 0.10 0.03 0.72<br />

KB 22 June 2009 20 2 0.11 0.04 0.95<br />

KB 22 June 2009 20 5 0.08 0.03 0.63<br />

KB 22 June 2009 20 10 0.13 0.01 0.30<br />

KB 22 June 2009 20 15 0.20 0.01 0.19<br />

KB 22 June 2009 20 20 0.21 0 0<br />

KB 20 July 2009 0.2 0 1.29 0.12 0.8<br />

KB 20 July 2009 0.2 1 1.06 0.10 0.7<br />

KB 20 July 2009 0.2 2 1.05 0.12 0.8<br />

KB 20 July 2009 0.2 5 1.22 0.14 1.0<br />

KB 20 July 2009 0.2 10 1.36 0.10 0.7<br />

KB 20 July 2009 0.2 15 1.53 0.05 0.3<br />

KB 20 July 2009 2 0 0.55 0.08 0.54<br />

KB 20 July 2009 2 1 0.56 0.09 0.65<br />

KB 20 July 2009 2 2 0.52 0.08 0.57<br />

KB 20 July 2009 2 5 0.60 0.11 0.74<br />

KB 20 July 2009 2 10 0.63 0.07 0.50<br />

KB 20 July 2009 2 15 0.70 0.04 0.25<br />

KB 20 July 2009 20 0 1.30 0.02 0.13<br />

KB 20 July 2009 20 1 0.12 0.03 0.18<br />

KB 20 July 2009 20 2 0.12 0.03 0.21<br />

KB 20 July 2009 20 5 0.09 0.04 0.29<br />

KB 20 July 2009 20 10 0.13 0.02 0.17<br />

KB 20 July 2009 20 15 0.16 0.02 0.12<br />

KB 24 Aug 2009 0.2 0 1.45 0.20 1.4<br />

KB 24 Aug 2009 0.2 1 1.26 0.17 1.1<br />

KB 24 Aug 2009 0.2 2 1.18 0.16 1.1<br />

KB 24 Aug 2009 0.2 5 1.03 0.16 1.1<br />

KB 24 Aug 2009 0.2 10 1.40 0.16 1.1<br />

KB 24 Aug 2009 0.2 15 1.86 0.16 1.1<br />

Primary productivity in Kinbasket and Revelstoke Reservoirs, 2009 Report pg. 16


KB 24 Aug 2009 2 0 0.67 0.14 0.98<br />

KB 24 Aug 2009 2 1 0.84 0.16 1.07<br />

KB 24 Aug 2009 2 2 0.68 0.14 0.93<br />

KB 24 Aug 2009 2 5 0.66 0.14 0.98<br />

KB 24 Aug 2009 2 10 0.70 0.16 1.11<br />

KB 24 Aug 2009 2 15 1.04 0.16 1.10<br />

KB 24 Aug 2009 20 0 0.12 0.06 0.39<br />

KB 24 Aug 2009 20 1 0.13 0.07 0.48<br />

KB 24 Aug 2009 20 2 0.16 0.06 0.43<br />

KB 24 Aug 2009 20 5 0.07 0.06 0.41<br />

KB 24 Aug 2009 20 10 0.14 0.07 0.47<br />

KB 24 Aug 2009 20 15 0.19 0.06 0.44<br />

KB 21 Sept 2009 0.2 0 1.62 0.17 0.79<br />

KB 21 Sept 2009 0.2 1 1.42 0.19 0.89<br />

KB 21 Sept 2009 0.2 2 1.48 0.18 0.83<br />

KB 21 Sept 2009 0.2 5 1.29 0.18 0.84<br />

KB 21 Sept 2009 0.2 10 1.52 0.16 0.75<br />

KB 21 Sept 2009 0.2 15 1.57 0.09 0.44<br />

KB 21 Sept 2009 0.2 20 0.96 0.07 0.35<br />

KB 21 Sept 2009 2 0 0.81 0.14 0.67<br />

KB 21 Sept 2009 2 1 0.71 0.14 0.66<br />

KB 21 Sept 2009 2 2 0.84 0.15 0.69<br />

KB 21 Sept 2009 2 5 1.27 0.18 0.84<br />

KB 21 Sept 2009 2 10 0.66 0.14 0.67<br />

KB 21 Sept 2009 2 15 0.86 0.08 0.36<br />

KB 21 Sept 2009 2 20 0.63 0.05 0.24<br />

KB 21 Sept 2009 20 0 0.09 0.05 0.24<br />

KB 21 Sept 2009 20 1 0.13 0.07 0.32<br />

KB 21 Sept 2009 20 2 0.20 0.06 0.30<br />

KB 21 Sept 2009 20 5 0.17 0.07 0.32<br />

KB 21 Sept 2009 20 10 0.21 0.07 0.31<br />

KB 21 Sept 2009 20 15 0.24 0.03 0.16<br />

KB 21 Sept 2009 20 20 0.21 0.03 0.13<br />

RD 28 June 2009 0.2 0 0.95 0.07 0.84<br />

RD 28 June 2009 0.2 1 0.95 0.11 1.36<br />

RD 28 June 2009 0.2 2 0.43 0.09 1.08<br />

RD 28 June 2009 0.2 5 0.63 0.13 1.65<br />

RD 28 June 2009 0.2 10 0.76 0.04 0.44<br />

RD 28 June 2009 2 0 0.74 0.05 0.66<br />

RD 28 June 2009 2 1 0.33 0.10 1.21<br />

RD 28 June 2009 2 2 0.27 0.08 0.97<br />

RD 28 June 2009 2 5 0.36 0.11 1.32<br />

RD 28 June 2009 2 10 0.48 0.02 0.28<br />

RD 28 June 2009 20 0 0.15 0.02 0.22<br />

RD 28 June 2009 20 1 0.07 0.03 0.39<br />

RD 28 June 2009 20 2 0.04 0.03 0.41<br />

RD 28 June 2009 20 5 0.08 0.04 0.50<br />

RD 28 June 2009 20 10 0.10 0.01 0.07<br />

Primary productivity in Kinbasket and Revelstoke Reservoirs, 2009 Report pg. 17


RD 21 July 2009 0.2 0 1.19 0.11 0.86<br />

RD 21 July 2009 0.2 1 1.36 0.09 0.76<br />

RD 21 July 2009 0.2 2 1.08 0.10 0.78<br />

RD 21 July 2009 0.2 5 1.13 0.12 0.95<br />

RD 21 July 2009 0.2 10 2.20 0.11 0.93<br />

RD 21 July 2009 0.2 15 1.23 0.04 0.37<br />

RD 21 July 2009 2 0 0.51 0.07 0.56<br />

RD 21 July 2009 2 1 0.59 0.08 0.68<br />

RD 21 July 2009 2 2 0.53 0.09 0.70<br />

RD 21 July 2009 2 5 0.65 0.10 0.78<br />

RD 21 July 2009 2 10 1.10 0.10 0.80<br />

RD 21 July 2009 2 15 0.84 0.03 0.25<br />

RD 21 July 2009 20 0 0.15 0.03 0.27<br />

RD 21 July 2009 20 1 0.17 0.03 0.26<br />

RD 21 July 2009 20 2 0.11 0.04 0.31<br />

RD 21 July 2009 20 5 0.17 0.03 0.28<br />

RD 21 July 2009 20 10 0.46 0.04 0.34<br />

RD 21 July 2009 20 15 0.38 0.01 0.09<br />

RD 25 Aug 2009 0.2 0 0.82 0.14 0.85<br />

RD 25 Aug 2009 0.2 1 0.53 0.20 1.21<br />

RD 25 Aug 2009 0.2 2 0.65 0.17 1.07<br />

RD 25 Aug 2009 0.2 5 0.71 0.20 1.23<br />

RD 25 Aug 2009 0.2 10 1.39 0.26 1.58<br />

RD 25 Aug 2009 2 0 0.41 0.12 0.72<br />

RD 25 Aug 2009 2 1 0.37 0.14 0.83<br />

RD 25 Aug 2009 2 2 0.31 0.15 0.93<br />

RD 25 Aug 2009 2 5 0.48 0.18 1.09<br />

RD 25 Aug 2009 2 10 0.80 0.25 1.57<br />

RD 25 Aug 2009 20 0 0.07 0.04 0.24<br />

RD 25 Aug 2009 20 1 0.08 0.05 0.31<br />

RD 25 Aug 2009 20 2 0.06 0.04 0.28<br />

RD 25 Aug 2009 20 5 0.10 0.04 0.23<br />

RD 25 Aug 2009 20 10 0.21 0.13 0.79<br />

RD 22 Sept 2009 0.2 0 1.37 0.05 0.33<br />

RD 22 Sept 2009 0.2 1 0.75 0.10 0.66<br />

RD 22 Sept 2009 0.2 2 0.70 0.07 0.47<br />

RD 22 Sept 2009 0.2 5 0.53 0.14 0.87<br />

RD 22 Sept 2009 0.2 10 1.30 0.11 0.70<br />

RD 22 Sept 2009 0.2 15 0.54 0.10 0.65<br />

RD 22 Sept 2009 2 0 0.46 0.05 0.35<br />

RD 22 Sept 2009 2 1 0.46 0.09 0.57<br />

RD 22 Sept 2009 2 2 0.29 0.06 0.38<br />

RD 22 Sept 2009 2 5 0.39 0.12 0.76<br />

RD 22 Sept 2009 2 10 0.74 0.09 0.60<br />

RD 22 Sept 2009 2 15 0.32 0.01 0.05<br />

RD 22 Sept 2009 20 0 0.07 0.01 0.09<br />

RD 22 Sept 2009 20 1 0.07 0.03 0.19<br />

Primary productivity in Kinbasket and Revelstoke Reservoirs, 2009 Report pg. 18


RD 22 Sept 2009 20 2 0.07 0.02 0.11<br />

RD 22 Sept 2009 20 5 0.06 0.03 0.19<br />

RD 22 Sept 2009 20 10 0.20 0.05 0.34<br />

RD 22 Sept 2009 20 15 0.08 0.00 0.02<br />

RF 24 June 2009 0.2 0 0.69 0.13 0.96<br />

RF 24 June 2009 0.2 1 0.43 0.10 0.78<br />

RF 24 June 2009 0.2 2 0.39 0.08 0.59<br />

RF 24 June 2009 0.2 5 0.56 0.06 0.44<br />

RF 24 June 2009 0.2 10 1.05 0.07 0.48<br />

RF 24 June 2009 0.2 15 0.42 0.01 0.10<br />

RF 24 June 2009 2 0 0.45 0.09 0.69<br />

RF 24 June 2009 2 1 0.28 0.08 0.57<br />

RF 24 June 2009 2 2 0.26 0.07 0.49<br />

RF 24 June 2009 2 5 0.38 0.08 0.56<br />

RF 24 June 2009 2 10 0.46 0.04 0.29<br />

RF 24 June 2009 2 15 0.32 0.01 0.05<br />

RF 24 June 2009 20 0 0.06 0.04 0.28<br />

RF 24 June 2009 20 1 0.09 0.03 0.25<br />

RF 24 June 2009 20 2 0.06 0.02 0.17<br />

RF 24 June 2009 20 5 0.09 0.04 0.31<br />

RF 24 June 2009 20 10 0.18 0.02 0.15<br />

RF 24 June 2009 20 15 0.15 0.00 0.03<br />

RF 22 July 2009 0.2 0 1.86 0.09 0.72<br />

RF 22 July 2009 0.2 1 1.66 0.07 0.58<br />

RF 22 July 2009 0.2 2 1.01 0.06 0.50<br />

RF 22 July 2009 0.2 5 1.51 0.35 2.88<br />

RF 22 July 2009 0.2 10 1.42 0.35 2.82<br />

RF 22 July 2009 0.2 15 1.13 0.11 0.91<br />

RF 22 July 2009 2 0 0.79 0.06 0.48<br />

RF 22 July 2009 2 1 0.73 0.05 0.44<br />

RF 22 July 2009 2 2 0.69 0.04 0.34<br />

RF 22 July 2009 2 5 0.89 0.28 2.30<br />

RF 22 July 2009 2 10 0.57 0.22 1.79<br />

RF 22 July 2009 2 15 0.77 0.09 0.75<br />

RF 22 July 2009 20 0 0.27 0.02 0.15<br />

RF 22 July 2009 20 1 0.25 0.02 0.14<br />

RF 22 July 2009 20 2 0.22 0.01 0.12<br />

RF 22 July 2009 20 5 0.25 0.09 0.74<br />

RF 22 July 2009 20 10 0.30 0.07 0.60<br />

RF 22 July 2009 20 15 0.27 0.04 0.32<br />

RF 26 Aug 2009 0.2 0 2.31 0.09 0.54<br />

RF 26 Aug 2009 0.2 1 1.11 0.10 0.62<br />

RF 26 Aug 2009 0.2 2 1.22 0.10 0.75<br />

RF 26 Aug 2009 0.2 5 1.15 0.12 1.38<br />

RF 26 Aug 2009 0.2 10 0.72 0.22 1.95<br />

RF 26 Aug 2009 0.2 15 0.55 0.32 0.49<br />

RF 26 Aug 2009 2 0 0.97 0.08 0.59<br />

Primary productivity in Kinbasket and Revelstoke Reservoirs, 2009 Report pg. 19


RF 26 Aug 2009 2 1 na 0.10 0.58<br />

RF 26 Aug 2009 2 2 0.74 0.09 0.77<br />

RF 26 Aug 2009 2 5 0.49 0.12 1.04<br />

RF 26 Aug 2009 2 10 0.53 0.17 1.40<br />

RF 26 Aug 2009 2 15 1.22 0.23 0.49<br />

RF 26 Aug 2009 20 0 0.30 0.03 0.18<br />

RF 26 Aug 2009 20 1 0.19 0.03 0.17<br />

RF 26 Aug 2009 20 2 0.22 0.02 0.15<br />

RF 26 Aug 2009 20 5 0.18 0.03 0.17<br />

RF 26 Aug 2009 20 10 0.31 0.04 0.27<br />

RF 26 Aug 2009 20 15 0.58 0.07 0.43<br />

RF 23 Sept 2009 0.2 0 1.21 0.003 0.02<br />

RF 23 Sept 2009 0.2 1 1.54 na na<br />

RF 23 Sept 2009 0.2 2 0.65 na na<br />

RF 23 Sept 2009 0.2 5 0.69 0.003 0.02<br />

RF 23 Sept 2009 0.2 10 0.59 0.006 0.04<br />

RF 23 Sept 2009 0.2 15 1.47 0.008 0.05<br />

RF 23 Sept 2009 2 0 0.41 0.001 0.01<br />

RF 23 Sept 2009 2 1 0.41 na na<br />

RF 23 Sept 2009 2 2 0.27 na na<br />

RF 23 Sept 2009 2 5 0.52 0.002 0.01<br />

RF 23 Sept 2009 2 10 0.47 0.004 0.02<br />

RF 23 Sept 2009 2 15 1.00 0.003 0.02<br />

RF 23 Sept 2009 20 0 0.10 0.005 0.03<br />

RF 23 Sept 2009 20 1 0.06 na na<br />

RF 23 Sept 2009 20 2 0.06 na na<br />

RF 23 Sept 2009 20 5 0.06 0.004 0.03<br />

RF 23 Sept 2009 20 10 0.11 0.000 0.00<br />

RF 23 Sept 2009 20 15 0.15 0.003 0.02<br />

Primary productivity in Kinbasket and Revelstoke Reservoirs, 2009 Report pg. 20


Appendix B Integrated Chl a for Kinbasket and Revelstoke in 2009.<br />

Table B1 Integrated chlorophyll a for Kinbasket and Revelstoke reservoir in 2009.<br />

Chlorophyll a (mg Chl a/m 3 )<br />

Month KB RD RF<br />

June<br />

24.7 10.1 10.3<br />

July<br />

19.3 23.5 37.1<br />

Aug 20.1 11.7 16.0<br />

Sept 28.2 14.8 14.0<br />

Mean 23.1 15.0 19.3<br />

Primary productivity in Kinbasket and Revelstoke Reservoirs, 2009 Report pg. 21


CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

2009 Progress Report<br />

Appendix 6<br />

Phytoplankton<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Darren Brandt<br />

TG-EcoLogic


PHYTOPLANKTON POPULATIONS IN KINBASKET<br />

AND REVELSTOKE RESERVOIRS, UPPER<br />

COLUMBIA BASIN,<br />

BRITISH COLUMBIA – 2009<br />

PREPARED FOR:<br />

<strong>BC</strong> <strong>Hydro</strong><br />

1200 Powerhouse Rd.<br />

Revelstoke, <strong>BC</strong><br />

V0E 2S0<br />

By<br />

TG Eco-Logic LLC.<br />

10905 East Montgomery, Suite 3<br />

Spokane Valley, WA 99206<br />

April 2010


This page intentionally left blank.<br />

ii


TABLE OF CONTENTS<br />

SECTION 1.0 INTRODUCTION............................................................................1<br />

1.1 Background & Study Purpose .....................................................................1<br />

SECTION 2.0 METHODS .....................................................................................2<br />

2.1 Sampling Protocol and Station Locations....................................................2<br />

2.2 Enumeration Protocol..................................................................................2<br />

SECTION 3.0 RESULTS ......................................................................................4<br />

3.1 Study Limitations .........................................................................................4<br />

3.2 Phytoplankton Abundance and Biovolume by Class – 2009 .......................4<br />

3.3 Vertical Distribution- Phytoplankton Abundance and Biovolume – 2009 ...15<br />

3.4 Phytoplankton in 2008 and 2009 ...............................................................17<br />

3.5 Bacteria and Pico-cyanobacteria Abundance in 2009 ...............................18<br />

SECTION 4.0 DISCUSSION...............................................................................24<br />

SECTION 5.0 RECOMMENDATIONS................................................................25<br />

REFERENCES ...................................................................................................26<br />

TABLE OF TABLES<br />

Table 1 Kinbasket Reservoir phytoplankton abundance (Cells/mL) by group and<br />

month for a 0-10 meter composite sample in 2009................................5<br />

Table 2 Kinbasket Reservoir phytoplankton biovolume (mm 3 /L) by group and<br />

month for a 0-10 meter composite sample in 2009................................6<br />

Table 3 Revelstoke Reservoir phytoplankton abundance (Cells/mL) by group<br />

and month for a 0-10 meter composite sample in 2009.........................8<br />

Table 4 Revelstoke Reservoir phytoplankton biovolume (mm 3 /L) by group and<br />

month for a 0-10 meter composite sample in 2009................................8<br />

Table 5 Kinbasket Reservoir phytoplankton abundance (Cells/mL) by group and<br />

month for a 10-20 meter composite sample in 2009............................10<br />

Table 6 Kinbasket Reservoir phytoplankton biovolume (mm 3 /L) by group and<br />

month for a 10-20 meter composite sample in 2009............................11<br />

Table 7 Revelstoke Reservoir phytoplankton abundance (Cells/mL) by group<br />

and month for a 10-20 meter composite sample in 2009 .....................13<br />

Table 8 Revelstoke Reservoir phytoplankton biovolume (mm 3 /L) by group and<br />

month for a 10-20 meter composite sample in 2009............................13<br />

Table 9 Average seasonal phytoplankton abundance and biomass in Kinbasket<br />

Reservoir for July – October of 2008 and 2009 ...................................18<br />

Table 10 Average seasonal phytoplankton abundance and biomass in<br />

Revelstoke Reservoir for July through October of 2008 and 2009.......18<br />

iii


TABLE OF FIGURES<br />

Figure 1 Average phytoplankton abundance (Cells/mL) in Kinbasket Reservoir<br />

between May - October 2009 derived from 0–10 meter composite<br />

samples .................................................................................................6<br />

Figure 2 Average phytoplankton biovolume (mm 3 /L) in Kinbasket Reservoir<br />

between May - October 2009 derived from 0–10 meter composite<br />

samples .................................................................................................7<br />

Figure 3 Average phytoplankton abundance (Cells/mL) in Revelstoke Reservoir<br />

between May - October 2009 derived from 0–10 meter composite<br />

samples .................................................................................................9<br />

Figure 4 Average phytoplankton biovolume (mm 3 /L) in Revelstoke Reservoir<br />

between May - October 2009 derived from 0–10 meter composite<br />

samples .................................................................................................9<br />

Figure 5 Average phytoplankton abundance (Cells/mL) in Kinbasket Reservoir<br />

between May - October 2009 derived from 10–20 meter composite<br />

samples ...............................................................................................11<br />

Figure 6 Average phytoplankton biovolume (mm 3 /L) in Kinbasket Reservoir<br />

between May - October 2009 derived from 10–20 meter composite<br />

samples ...............................................................................................12<br />

Figure 7 Average phytoplankton abundance (Cells/mL) in Revelstoke Reservoir<br />

between May - October 2009 derived from 10–20 meter composite<br />

samples ...............................................................................................14<br />

Figure 8 Average phytoplankton biovolume (mm 3 /L) in Revelstoke Reservoir<br />

between May - October 2009 derived from 10–20 meter composite<br />

samples ...............................................................................................14<br />

Figure 9 Average phytoplankton abundance (Cells/mL), by depth, in Kinbasket<br />

Reservoir between May - October 2009 ..............................................15<br />

Figure 10 Average phytoplankton biovolume (mm 3 /L), by depth, in Kinbasket<br />

Reservoir between May - October 2009 ..............................................16<br />

Figure 11 Average phytoplankton abundance (Cells/mL), by depth, in<br />

Revelstoke Reservoir between May - October 2009............................16<br />

Figure 12 Average phytoplankton biovolume (mm 3 /L), by depth, in Revelstoke<br />

Reservoir between May - October 2009 ..............................................17<br />

Figure 13 Average abundance (Cells/mL) of heterotrophic bacteria at four<br />

sampling stations in Kinbasket Reservoir between the months of May<br />

through October 2009 ..........................................................................19<br />

Figure 14 Kinbasket Reservoir monthly average abundance (Cells/mL) of<br />

epilimnetic heterotrophic bacteria at four sampling stations in 2009....20<br />

Figure 15 Average abundance (Cells/mL) of heterotrophic bacteria at three<br />

sampling stations in Revelstoke Reservoir between the months of May<br />

through October 2009 ..........................................................................20<br />

Figure 16 Revelstoke Reservoir monthly average abundance (Cells/mL) of<br />

epilimnetic heterotrophic bacteria at three sampling stations in 2009..21<br />

iv


Figure 17 Average abundance (Cells/mL) of pico-cyanobacteria at four sampling<br />

stations in Kinbasket Reservoir between the months of May through<br />

October 2009 .......................................................................................22<br />

Figure 18 Average monthly abundance (Cells/mL) of epilimnetic picocyanobacteria<br />

at four sampling stations in Kinbasket Reservoir ..........22<br />

Figure 19 Average abundance (Cells/mL) of pico-cyanobacteria at three<br />

sampling stations in Revelstoke Reservoir between the months of May<br />

through October 2009 ..........................................................................23<br />

Figure 20 Average monthly abundance (Cells/mL) of epilimnetic picocyanobacteria<br />

at three sampling stations in Revelstoke Reservoir ......23<br />

v


SECTION 1.0 INTRODUCTION<br />

1.1 Background & Study Purpose<br />

Kinbasket is the first of 3 large reservoirs on the upper reaches of the <strong>Columbia</strong> <strong>River</strong><br />

Basin in Canada. It was created upon completion of the Mica Dam over 30 years ago<br />

and its discharge flows directly to the Upper reaches of Revelstoke Reservoir, the<br />

second in the series. Revelstoke Reservoir discharges to a short section of free-flowing<br />

<strong>Columbia</strong> <strong>River</strong> that enters the Upper Arrow Lakes Reservoir, the third in the series at<br />

the city of Revelstoke, <strong>BC</strong>. Both Kinbasket and Revelstoke Reservoirs are assumed to<br />

be oligotrophic, with low concentrations of total dissolved phosphorus (TDP), low<br />

phytoplankton and zooplankton biomass, and low fish production as is the case in the<br />

Arrow Lake Reservoirs which are immediate downstream of Kinbasket and Revelstoke<br />

Reservoirs (Pieters et al., 1998). It is hypothesized that one of the factors leading to the<br />

low production status of both ecosystems is ‘oligotrophication,’ or ‘nutrient depletion’,<br />

caused by reservoir aging; i.e. increased water retention increases rates of nutrient<br />

utilization within the reservoir as well as increased rates of sedimentation of organic and<br />

inorganic particulate carbon (C), i.e. nutrient trapping (Stockner et al. 2000, Pieters et al.<br />

1998, 1999).<br />

This study, is part of CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological<br />

Productivity Monitoring under <strong>BC</strong> <strong>Hydro</strong>’s <strong>Columbia</strong> <strong>River</strong> <strong>Water</strong> <strong>Use</strong> <strong>Plan</strong>. Results from<br />

2008 and 2009 in addition to the data from previous studies will permit further<br />

commentary on observed changes in phytoplankton abundance and biomass among<br />

depths, stations (sectors) and between years.<br />

1


SECTION 2.0 METHODS<br />

2.1 Sampling Protocol and Station Locations<br />

Samples were collected from discrete depths from four stations in Kinbasket Reservoir<br />

(Canoe, <strong>Columbia</strong>, Wood, and Forebay) and three stations in Revelstoke Reservoir<br />

(Revelstoke-Forebay, Revelstoke-Mid and Revelstoke-Upper) monthly from May to<br />

October in 2009. Phytoplankton communities and abundance change with depth. Due<br />

to this characteristic, discrete samples were taken at depths of 2, 5, 10, 15, and 20<br />

meters. An aliquot of each of these samples was preserved with Lugols for identification<br />

and enumeration. In addition to the discrete depth samples, a composite was created by<br />

mixing equal amounts of the 2, 5, and 10 meter samples. This was labeled as a 0-10<br />

meter sample. An additional sample was taken from 12 meters deep and was combined<br />

with equal amounts from the 15 and 20 meter samples to create a 10-20 meter<br />

composite sample. The composite samples were handled and analyzed identically to<br />

the discrete samples.<br />

Composite depth samples were used in the phytoplankton abundance and biovolume<br />

analysis. Two depth strata were assessed, the epilimnion and hypolimnion. The<br />

epilimnion was considered to be the samples taken from 0-10 meter while the<br />

hypolimnion was considered to be samples taken from 10-20 meter.<br />

At each station an aliquot of composited water was taken for bacterial and picocyanobacterial<br />

enumeration. Bacteria samples were preserved with three drops of 25%<br />

glutaraldehyde and placed in a small, brown polyethylene bottle. Bacterial and picocyanobacterial<br />

densities from composited water samples from the epilimnion (0-10<br />

meters) and hypolimnion (10-20 meters) were compared in the results.<br />

2.2 Enumeration Protocol<br />

2.2.1 Phytoplankton<br />

Phytoplankton samples were preserved in the field in acid Lugol’s iodine preservative<br />

and shipped to Eco-Logic Ltd. in West Vancouver, <strong>BC</strong> for enumeration. The samples<br />

were gently shaken for 60 seconds and poured into 25 mL settling chambers and<br />

allowed to settle for a minimum of 8 hrs prior to quantitative enumeration using the<br />

Utermohl Method (Utermohl 1958). Counts were done using a Carl Zeiss© inverted<br />

phase-contrast plankton microscope. Counting followed a 2-step process: first, several<br />

(5 to10) random fields were examined at low power (250X magnification) for large microphytoplankton<br />

(20-200 μ), e.g. colonial diatoms, dinoflagellates, filamentous blue-greens;<br />

and secondly, all cells within a random transect ranging from 10 to 15 mm were counted<br />

at high power (1560X magnification) that permitted a semi-quantitative enumeration of<br />

minute (


cells were enumerated in each sample to assure counting consistency and statistical<br />

accuracy (Lund et al. 1958). The compendium of Canter-Lund and Lund (1995) was<br />

used as a taxonomic reference.<br />

2.2.2 Bacteria and Pico-cyanobacteria<br />

Fifteen milliliters of sample water was filtered for pico-cyano bacteria density<br />

determination. A second aliquot of 5 mL was inoculated with a fluorescent dye (DAPI) for<br />

autotrophic picoplankton (heterotrophic bacteria) determination. Both of these subsamples<br />

were then filtered through pre-stained Irgalen black 0.2 polycarbonate<br />

Nuclepore filters. The bacteria become trapped on the surface of the filters. The number<br />

of cells in a given filter area was then used to determine bacteria densities. Pico-cyano<br />

bacteria densities were determined using direct count epiflourescence method described<br />

by MacIsaac et al. (1981) and heterotrophic bacteria was enumerated using the<br />

epiflourescence method described by MacIsaac and Stockner (1993). Eight to 32<br />

random fields on each of the filters were counted at 1000x magnification using either<br />

blue-band excitation filter (450-490nm) for pico-cyano bacteria or a UV wide-band<br />

excitation filter (397-560nm) for heterotrophic bacteria density determination.<br />

Heterotrophic bacteria and pico-cyanobacterial densities are reported as cells/mL.<br />

Densities of pico-cyanobacteria were not added to the total phytoplankton counts. The<br />

total density of autotrophs can be calculated by summing the phytoplankton and<br />

picoplankton.<br />

3


SECTION 3.0 RESULTS<br />

3.1 Study Limitations<br />

As a caveat, it should be noted that the number of stations sampled (four in Kinbasket,<br />

and three in Revelstoke), sampling frequency (monthly) provides only an approximation<br />

of phytoplankton population abundance, biomass, diversity, and spatiotemporal<br />

variability in two of the largest Upper <strong>Columbia</strong> Basin’s reservoirs. Interpretations in this<br />

report are made on observed patterns of only two variables, Abundance (cells/mL) of<br />

groups and their respective taxonomic Classes, and Biovolume (mm 3<br />

/L) or biomass of<br />

groups and Classes. Thus, this report should essentially be considered more as an<br />

‘overview’ of the current status of phytoplankton populations in Kinbasket and<br />

Revelstoke rather than a comprehensive ‘synthesis’ of phytoplankton community<br />

dynamics. We have attempted to provide our ‘best’ interpretation of the most notable of<br />

seasonal population trends without the support of additional data, e.g. zooplankton,<br />

primary production, physicochemical variables, etc., and therefore, interpretations within<br />

the discussion section of the report must, by necessity, remain preliminary and<br />

somewhat speculative.<br />

3.2 Phytoplankton Abundance and Biovolume by Class – 2009<br />

3.2.1 Epilimnion<br />

Kinbasket<br />

In Kinbasket Reservoir bacillariophytes were the most abundant group in the epilimnion,<br />

followed by chryso/cryptophytes, and cyanophytes, with chlorophytes and dinophytes<br />

the least numerous (Table 1 and Figure 1). In terms of biovolume, the major<br />

contributors throughout the season were bacillariophytes, chryso/cryptophytes, and<br />

cyanophytes, with dinophytes and chlorophytes only minor contributors (Figure 2). Peak<br />

phytoplankton abundance occurred at the <strong>Columbia</strong> Arm Station in June (3102<br />

cells/mL). The <strong>Columbia</strong> Arm Station also had the lowest phytoplankton density at 1308<br />

cells/mL during July, making the <strong>Columbia</strong> Arm Station the most variable of the sample<br />

locations in Kinbasket Reservoir. On a seasonal average the Forebay and Wood<br />

Stations had the highest mean phytoplankton abundance; however, the difference is<br />

very minimal. The Forebay Station had the highest seasonal mean biomass of the four<br />

stations (Table 2). This is due to a larger fraction of the phytopklankton community<br />

consisting of the flagellate groups, chrysophytes, and cryptophytes in the Forebay<br />

Station. Again, the differences in means between stations are unlikely to be statistically<br />

significant.<br />

4


Table 1 Kinbasket Reservoir phytoplankton abundance (Cells/mL) by group and month for<br />

a 0-10 meter composite sample in 2009<br />

Seasonal<br />

Station Group May June July August September October Average<br />

Bacillariophyte 426 1419 426 1308 943 1044 928<br />

Chryso- & Cryptophyte 689 750 699 568 750 608 677<br />

Kin- Chlorophyte 101 253 101 71 142 152 137<br />

Forebay Dinophyte 81 61 51 51 81 30 59<br />

Cyanophyte 345 223 314 862 375 365 414<br />

Sum of all Groups 1642 2707 1591 2859 2291 2200 2218<br />

Bacillariophyte 426 1156 335 1075 608 841 740<br />

Chryso- & Cryptophyte 568 568 669 345 345 669 527<br />

Canoe<br />

Chlorophyte<br />

Dinophyte<br />

112<br />

71<br />

81<br />

81<br />

152<br />

30<br />

162<br />

81<br />

51<br />

20<br />

122<br />

51<br />

113<br />

56<br />

Cyanophyte 365 416 172 730 1196 902 630<br />

Sum of all Groups 1541 2301 1358 2392 2220 2585 2066<br />

Bacillariophyte 314 841 862 1784 679 527 835<br />

Chryso- & Cryptophyte 730 892 628 446 497 395 598<br />

Wood<br />

Chlorophyte<br />

Dinophyte<br />

132<br />

71<br />

142<br />

61<br />

71<br />

51<br />

274<br />

61<br />

61<br />

10<br />

61<br />

41<br />

124<br />

49<br />

Cyanophyte 395 710 395 466 862 791 603<br />

Sum of all Groups 1642 2646 2007 3031 2108 1815 2208<br />

Bacillariophyte 1135 1267 882 1247 710 750 999<br />

Chryso- & Cryptophyte 497 872 253 405 355 405 465<br />

<strong>Columbia</strong><br />

Chlorophyte<br />

Dinophyte<br />

142<br />

41<br />

345<br />

71<br />

61<br />

10<br />

101<br />

71<br />

112<br />

20<br />

51<br />

20<br />

135<br />

39<br />

Cyanophyte 375 547 101 1237 213 365 473<br />

Sum of all Groups 2190 3102 1308 3061 1409 1591 2110<br />

5


Table 2 Kinbasket Reservoir phytoplankton biovolume (mm 3 /L) by group and month for a<br />

0-10 meter composite sample in 2009<br />

Seasonal<br />

Station Group May June July August September October Average<br />

Bacillariophyte 0.073 0.168 0.052 0.166 0.163 0.128 0.125<br />

Chryso- & Cryptophyte 0.049 0.079 0.055 0.054 0.096 0.083 0.069<br />

Kin- Chlorophyte 0.017 0.039 0.009 0.013 0.008 0.011 0.016<br />

Forebay Dinophyte 0.049 0.038 0.034 0.034 0.058 0.025 0.040<br />

Cyanophyte 0.004 0.003 0.005 0.008 0.005 0.005 0.005<br />

Sum of all Groups 0.193 0.327 0.155 0.275 0.329 0.251 0.255<br />

Bacillariophyte 0.061 0.12 0.062 0.17 0.098 0.109 0.103<br />

Chryso- & Cryptophyte 0.039 0.043 0.066 0.024 0.037 0.087 0.049<br />

Canoe<br />

Chlorophyte<br />

Dinophyte<br />

0.016<br />

0.044<br />

0.004<br />

0.059<br />

0.013<br />

0.014<br />

0.011<br />

0.056<br />

0.002<br />

0.009<br />

0.016<br />

0.034<br />

0.010<br />

0.036<br />

Cyanophyte 0.004 0.004 0.002 0.004 0.007 0.008 0.005<br />

Sum of all Groups 0.164 0.231 0.157 0.265 0.153 0.254 0.204<br />

Bacillariophyte 0.042 0.082 0.119 0.232 0.103 0.066 0.107<br />

Chryso- & Cryptophyte 0.052 0.078 0.058 0.037 0.042 0.04 0.051<br />

Wood<br />

Chlorophyte<br />

Dinophyte<br />

0.011<br />

0.054<br />

0.007<br />

0.049<br />

0.003<br />

0.034<br />

0.066<br />

0.038<br />

0.008<br />

0.005<br />

0.012<br />

0.029<br />

0.018<br />

0.035<br />

Cyanophyte 0.006 0.008 0.006 0.007 0.007 0.007 0.007<br />

Sum of all Groups 0.165 0.225 0.221 0.379 0.164 0.154 0.218<br />

Bacillariophyte 0.186 0.137 0.128 0.198 0.132 0.128 0.152<br />

Chryso- & Cryptophyte 0.038 0.07 0.018 0.036 0.033 0.047 0.040<br />

<strong>Columbia</strong><br />

Chlorophyte<br />

Dinophyte<br />

0.007<br />

0.03<br />

0.032<br />

0.054<br />

0.008<br />

0.005<br />

0.004<br />

0.053<br />

0.012<br />

0.009<br />

0.005<br />

0.02<br />

0.011<br />

0.029<br />

Cyanophyte 0.004 0.008 0.001 0.008 0.003 0.005 0.005<br />

Sum of all Groups 0.266 0.301 0.16 0.299 0.189 0.205 0.237<br />

Figure 1 Average phytoplankton abundance (Cells/mL) in Kinbasket Reservoir between<br />

May - October 2009 derived from 0–10 meter composite samples<br />

Phytoplankton Abundance (Cells/mL)<br />

Bacillariophyte Chryso- & Cryptophyte Chlorophyte Dinophyte Cyanophyte<br />

2,500<br />

2,000<br />

1,500<br />

1,000<br />

500<br />

0<br />

Kin-Forebay Canoe Wood <strong>Columbia</strong><br />

6


Figure 2 Average phytoplankton biovolume (mm 3 /L) in Kinbasket Reservoir between May -<br />

October 2009 derived from 0–10 meter composite samples<br />

Phytoplankton Biovolume (mm 3 /L)<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

Revelstoke<br />

Bacillariophyte Chryso- & Cryptophyte Chlorophyte Dinophyte Cyanophyte<br />

Kin-Forebay Canoe Wood <strong>Columbia</strong><br />

The dominant taxonomic group in Revelstoke is chryso/cryptophytes rather than<br />

bacillariophytes. The density of the chryso/cryptophytes in Revelstoke Reservoir are not<br />

higher in Revelstoke than Kinbasket, but are dominant due to the lower abundance of<br />

bacillariophytes. Another dominant taxonomic group within Revelstoke Reservoir are<br />

the cyanophytes (Table 3 and Figure 3). Their abundance is similar to levels observed<br />

in Kinbasket, but due to the overall lower phytoplankton community density, they make<br />

up a larger fraction of the phytoplankton community than observed within Kinbasket<br />

Reservoir; however, the cyanophytes remain a small fraction of the phytoplankton<br />

community biovolume due to their small cell size. The community composition on a<br />

biovolume basis appears similar to the community observed in Kinbasket Reservoir with<br />

bacillariophytes making up the largest fraction of the biovolume followed by<br />

chryso/cryptophytes and dinophytes (Table 4 and Figure 4).<br />

On a density basis, the three monitoring locations within Revelstoke Reservoir have<br />

similar total abundance with the Forebay Station having the greatest density on a<br />

seasonal basis followed by the Upper Reservoir Station and the Middle Reservoir<br />

Station. When one looks at the data based on biovolume, there appears to be a<br />

gradient from higher productivity in the Forebay Station to the lowest productivity<br />

occurring in the Upper Reservoir Station. This is due to the fact that the taxa making up<br />

the community in the Upper Reservoir Station have a greater proportion of small sized<br />

taxa such as chrysophytes, cryptophytes, and cyanophytes compared to the Forebay<br />

and Middle Reservoir Stations.<br />

7


Table 3 Revelstoke Reservoir phytoplankton abundance (Cells/mL) by group and month<br />

for a 0-10 meter composite sample in 2009<br />

Seasonal<br />

Station Group May June July August September October Average<br />

Bacillariophyte 628 527 1693 476 497 436 710<br />

Chryso- & Cryptophyte 466 497 710 882 476 487 586<br />

Forebay<br />

Chlorophyte<br />

Dinophyte<br />

132<br />

10<br />

193<br />

41<br />

284<br />

51<br />

142<br />

71<br />

182<br />

61<br />

132<br />

30<br />

177<br />

44<br />

Cyanophyte 335 395 2017 872 446 1328 899<br />

Sum of all Groups 1571 1652 4754 2443 1662 2413 2416<br />

Bacillariophyte 1216 426 679 669 456 304 625<br />

Chryso- & Cryptophyte 598 740 618 598 436 466 576<br />

Middle<br />

Chlorophyte<br />

Dinophyte<br />

142<br />

71<br />

162<br />

61<br />

122<br />

41<br />

81<br />

112<br />

91<br />

61<br />

101<br />

30<br />

117<br />

63<br />

Cyanophyte 395 405 385 791 284 862 520<br />

Sum of all Groups 2423 1794 1845 2250 1328 1764 1901<br />

Bacillariophyte 507 547 314 345 274 213 367<br />

Chryso- & Cryptophyte 618 1034 598 304 831 324 618<br />

Upper<br />

Chlorophyte<br />

Dinophyte<br />

324<br />

71<br />

193<br />

91<br />

132<br />

61<br />

51<br />

30<br />

101<br />

51<br />

51 142<br />

61<br />

Cyanophyte 365 497 416 335 710 710 505<br />

Sum of all Groups 1885 2362 1521 1064 1967 1298 1693<br />

Table 4 Revelstoke Reservoir phytoplankton biovolume (mm 3 /L) by group and month for a<br />

0-10 meter composite sample in 2009<br />

Seasonal<br />

Station Group May June July August September October Average<br />

Bacillariophyte 0.096 0.077 0.249 0.069 0.082 0.059 0.105<br />

Chryso- & Cryptophyte 0.034 0.036 0.048 0.074 0.046 0.039 0.046<br />

Forebay<br />

Chlorophyte<br />

Dinophyte<br />

0.012<br />

0.005<br />

0.014<br />

0.029<br />

0.062<br />

0.068<br />

0.011<br />

0.054<br />

0.076<br />

0.085<br />

0.015<br />

0.025<br />

0.032<br />

0.044<br />

Cyanophyte 0.005 0.005 0.016 0.008 0.006 0.009 0.008<br />

Sum of all Groups 0.152 0.161 0.442 0.216 0.295 0.148 0.236<br />

Bacillariophyte 0.177 0.066 0.109 0.086 0.059 0.054 0.092<br />

Chryso- & Cryptophyte 0.04 0.079 0.056 0.059 0.041 0.05 0.054<br />

Middle<br />

Chlorophyte<br />

Dinophyte<br />

0.018<br />

0.056<br />

0.016<br />

0.038<br />

0.011<br />

0.017<br />

0.013<br />

0.093<br />

0.019<br />

0.039<br />

0.009<br />

0.025<br />

0.014<br />

0.045<br />

Cyanophyte 0.005 0.006 0.006 0.007 0.004 0.006 0.006<br />

Sum of all Groups 0.296 0.205 0.199 0.258 0.162 0.144 0.211<br />

Bacillariophyte 0.081 0.072 0.035 0.053 0.037 0.043 0.054<br />

Chryso- & Cryptophyte 0.04 0.103 0.058 0.025 0.098 0.037 0.060<br />

Upper<br />

Chlorophyte<br />

Dinophyte<br />

0.019<br />

0.044<br />

0.017<br />

0.051<br />

0.045<br />

0.026<br />

0.007<br />

0.014<br />

0.005<br />

0.034<br />

0.003 0.016<br />

0.034<br />

Cyanophyte 0.004 0.007 0.004 0.005 0.005 0.006 0.005<br />

Sum of all Groups 0.188 0.25 0.168 0.104 0.179 0.088 0.163<br />

8


Figure 3 Average phytoplankton abundance (Cells/mL) in Revelstoke Reservoir between<br />

May - October 2009 derived from 0–10 meter composite samples<br />

Phytoplankton Abundance (Cells/mL)<br />

Bacillariophyte Chryso- & Cryptophyte Chlorophyte Dinophyte Cyanophyte<br />

2,500<br />

2,000<br />

1,500<br />

1,000<br />

500<br />

0<br />

Forebay Mid Upper<br />

Figure 4 Average phytoplankton biovolume (mm 3 /L) in Revelstoke Reservoir between May<br />

- October 2009 derived from 0–10 meter composite samples<br />

Phytoplankton Biovolume (mm 3 /L)<br />

Bacillariophyte Chryso- & Cryptophyte Chlorophyte Dinophyte Cyanophyte<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

3.2.2 Hypolimnion<br />

Kinbasket<br />

Forebay Mid Upper<br />

Hypolimnetic phytoplankton abundances in Kinbasket Reservoir were comparable to<br />

epilimnetic abundances, in terms of dominant groups. Bacillariophytes were the most<br />

abundant group, followed by chryso/cryptophytes, and cyanophytes. The most minor<br />

9


contributors to phytoplankton abundance were chlorophytes and dinophytes,<br />

respectively (Table 5 and Figure 5). In terms of biovolume, bacillariophytes and<br />

chryso/cryptophytes contributed the most. Dinophytes also contributed significantly to<br />

biovolume; chlorophytes and dinophytes contributed the least to biovolume (Table 6 and<br />

Figure 6). The Canoe Arm had the highest seasonal average phytoplankton abundance<br />

(2350 Cells/mL); however, Kin-Forebay had the highest seasonal average of biovolume<br />

(0.258 mm 3 /L). The month in which peak abundances and biovolumes occurred varied<br />

from station to station throughout the course of the sampling season.<br />

When results between the epilimnion and hypolimnion are compared, similarities are<br />

evident. The most abundant groups and those contributing the greatest biovolume are<br />

the same between the depth strata. In the hypolimnion there appears to be more<br />

variation between the stations than there was in the epilimnion.<br />

Table 5 Kinbasket Reservoir phytoplankton abundance (Cells/mL) by group and month for<br />

a 10-20 meter composite sample in 2009<br />

Seasonal<br />

Station Group May June July August September October Average<br />

Bacillariophyte 973 902 578 953 1247 770 904<br />

Chryso- & Cryptophyte 628 274 456 497 608 416 480<br />

Kin- Chlorophyte 162 223 142 112 112 91 140<br />

Forebay Dinophyte 101 61 41 81 71 20 63<br />

Cyanophyte 284 395 314 355 882 405 439<br />

Sum of all Groups 2149 1855 1531 1997 2919 1703 2026<br />

Bacillariophyte 649 1450 385 831 730 639 781<br />

Chryso- & Cryptophyte 628 781 598 426 466 608 585<br />

Canoe<br />

Chlorophyte<br />

Dinophyte<br />

193<br />

91<br />

142<br />

81<br />

122<br />

41<br />

132<br />

41<br />

172<br />

41<br />

152<br />

59<br />

Cyanophyte 274 446 1034 1318 801 774<br />

Sum of all Groups 1835 2899 983 2453 2686 2261 2350<br />

Bacillariophyte 1206 781 679 1409 1044 426 924<br />

Chryso- & Cryptophyte 730 568 487 365 456 436 507<br />

Wood<br />

Chlorophyte<br />

Dinophyte<br />

152<br />

81<br />

61<br />

71<br />

243<br />

30<br />

91<br />

41<br />

162<br />

41<br />

101<br />

30<br />

135<br />

49<br />

Cyanophyte 436 395 233 385 345 902 449<br />

Sum of all Groups 2605 1875 1673 2291 2048 1896 2065<br />

Bacillariophyte 284 689 385 1085 436 862 623<br />

Chryso- & Cryptophyte 324 466 253 264 253 314 313<br />

<strong>Columbia</strong><br />

Chlorophyte<br />

Dinophyte<br />

41<br />

30<br />

203<br />

41<br />

61<br />

30<br />

264<br />

41<br />

91<br />

20<br />

71<br />

20<br />

122<br />

30<br />

Cyanophyte 264 253 274 659 1379 355 530<br />

Sum of all Groups 943 1652 1004 2311 2179 1622 1619<br />

10


Table 6 Kinbasket Reservoir phytoplankton biovolume (mm 3 /L) by group and month for a<br />

10-20 meter composite sample in 2009<br />

Seasonal<br />

Station Group May June July August September October Average<br />

Bacillariophyte 0.142 0.109 0.093 0.136 0.200 0.093 0.129<br />

Chryso- & Cryptophyte 0.053 0.022 0.037 0.063 0.070 0.048 0.049<br />

Kin- Chlorophyte 0.018 0.016 0.011 0.016 0.008 0.029 0.016<br />

Forebay Dinophyte 0.080 0.049 0.029 0.115 0.054 0.020 0.058<br />

Cyanophyte 0.004 0.006 0.005 0.006 0.009 0.005 0.006<br />

Sum of all Groups 0.297 0.201 0.175 0.337 0.341 0.197 0.258<br />

Bacillariophyte 0.113 0.164 0.056 0.125 0.111 0.083 0.109<br />

Chryso- & Cryptophyte 0.058 0.067 0.054 0.048 0.052 0.077 0.059<br />

Canoe<br />

Chlorophyte<br />

Dinophyte<br />

0.034<br />

0.064<br />

0.017<br />

0.059<br />

0.008<br />

0.019<br />

0.011<br />

0.030<br />

0.025<br />

0.030<br />

0.019<br />

0.041<br />

Cyanophyte 0.004 0.005 0.007 0.009 0.007 0.006<br />

Sum of all Groups 0.274 0.311 0.111 0.206 0.213 0.223 0.223<br />

Bacillariophyte 0.171 0.099 0.117 0.189 0.162 0.052 0.132<br />

Chryso- & Cryptophyte 0.052 0.053 0.043 0.030 0.043 0.056 0.046<br />

Wood<br />

Chlorophyte<br />

Dinophyte<br />

0.022<br />

0.059<br />

0.003<br />

0.044<br />

0.019<br />

0.014<br />

0.019<br />

0.029<br />

0.022<br />

0.030<br />

0.019<br />

0.024<br />

0.017<br />

0.033<br />

Cyanophyte 0.007 0.004 0.003 0.006 0.005 0.008 0.006<br />

Sum of all Groups 0.310 0.203 0.196 0.273 0.263 0.159 0.234<br />

Bacillariophyte 0.055 0.080 0.052 0.156 0.081 0.115 0.090<br />

<strong>Columbia</strong><br />

Chryso- & Cryptophyte 0.023 0.030 0.017 0.020 0.022 0.029 0.024<br />

Chlorophyte 0.002 0.015 0.003 0.148 0.043 0.006 0.036<br />

Dinophyte 0.014 0.029 0.014 0.030 0.020 0.020 0.021<br />

Cyanophyte 0.004 0.009 0.004 0.005 0.010 0.004 0.006<br />

Sum of all Groups 0.097 0.163 0.090 0.360 0.177 0.175 0.177<br />

Figure 5 Average phytoplankton abundance (Cells/mL) in Kinbasket Reservoir between<br />

May - October 2009 derived from 10–20 meter composite samples<br />

Phytoplankton Abundance (Cells/mL)<br />

Bacillariophyte Chryso- & Cryptophyte Chlorophyte Dinophyte Cyanophyte<br />

2,500<br />

2,000<br />

1,500<br />

1,000<br />

500<br />

0<br />

Kin-Forebay Canoe Wood <strong>Columbia</strong><br />

11


Figure 6 Average phytoplankton biovolume (mm 3 /L) in Kinbasket Reservoir between May -<br />

October 2009 derived from 10–20 meter composite samples<br />

Phytoplankton Biovolume (mm 3 /L)<br />

0.300<br />

0.250<br />

0.200<br />

0.150<br />

0.100<br />

0.050<br />

0.000<br />

Revelstoke<br />

Bacillariophyte Chryso- & Cryptophyte Chlorophyte Dinophyte Cyanophyte<br />

Kin-Forebay Canoe Wood <strong>Columbia</strong><br />

The most abundant group in the hypolimnion of Revelstoke Reservoir varied between<br />

station as either bacillariophyte or cyanophyte. Chryso/cryptophytes also contributed a<br />

substantial amount to abundance at all stations. The least abundant groups present<br />

were chlorophytes and dinophytes (Table 7 and Figure 7). The greatest contributors to<br />

biovolume at all stations were bacillariophytes followed by chryso/cryptophytes.<br />

Chlorophytes, dinophytes and cyanophytes contributed the least to biovloume (Table 8<br />

and Figure 8). Particularly high abundances of bacillariophytes and cyanophytes in the<br />

Forebay Station are likely responsible for that station having the highest seasonal<br />

average abundance and biovolume. Abundance of bacillariophytes in the Middle and<br />

Upper Stations were approximately half of what they were in the Forebay Station, giving<br />

the Middle Station the second highest abundance and biovolume, followed by the Upper<br />

Station.<br />

As with the epilimnion, a gradient in abundances appears in the hypolimnion with higher<br />

abundance at the Forebay Station to lower abundances occurring in the Upper Reservoir<br />

Station. Epilimnetic abundances and biovolumes at the Middle Reservoir and Upper<br />

Reservoir Stations are greater than those of the hypolimnion. The Forebay Station<br />

hypolimnion has a higher seasonal average abundance than the epilimnion, yet the<br />

seasonal average hypolimnetic biovolume is less than the epilimnetic. Larger taxa in the<br />

epilimnion are likely responsible for the increased biovolume.<br />

12


Table 7 Revelstoke Reservoir phytoplankton abundance (Cells/mL) by group and month<br />

for a 10-20 meter composite sample in 2009<br />

Seasonal<br />

Station Group May June July August September October Average<br />

Bacillariophyte 811 395 1277 1135 497 355 745<br />

Chryso- & Cryptophyte 385 335 527 416 355 416 405<br />

Forebay<br />

Chlorophyte<br />

Dinophyte<br />

51<br />

51<br />

81<br />

41<br />

142<br />

30<br />

203<br />

41<br />

112<br />

41<br />

101<br />

41<br />

115<br />

41<br />

Cyanophyte 243 223 811 1703 710 760 742<br />

Sum of all Groups 1541 1075 2788 3497 1713 1673 2048<br />

Bacillariophyte 507 466 314 547 375 274 414<br />

Chryso- & Cryptophyte 628 760 294 385 294 375 456<br />

Middle<br />

Chlorophyte<br />

Dinophyte<br />

142<br />

41<br />

122<br />

41<br />

51<br />

20<br />

71<br />

51<br />

51<br />

10<br />

112<br />

10<br />

91<br />

29<br />

Cyanophyte 365 324 213 405 750 770 471<br />

Sum of all Groups 1683 1713 892 1460 1480 1541 1461<br />

Bacillariophyte 598 365 203 730 264 274 414<br />

Chryso- & Cryptophyte 436 487 304 284 264 264 310<br />

Upper<br />

Chlorophyte<br />

Dinophyte<br />

101<br />

41<br />

162<br />

51<br />

41<br />

20<br />

122<br />

30<br />

71<br />

30<br />

81<br />

10<br />

83<br />

26<br />

Cyanophyte 294 284 213 233 294 345 276<br />

Sum of all Groups 1470 1349 781 1399 922 973 1149<br />

Table 8 Revelstoke Reservoir phytoplankton biovolume (mm 3 /L) by group and month for a<br />

10-20 meter composite sample in 2009<br />

Seasonal<br />

Station Group May June July August September October Average<br />

Bacillariophyte 0.120 0.088 0.166 0.144 0.069 0.044 0.105<br />

Chryso- & Cryptophyte 0.025 0.020 0.042 0.042 0.051 0.055 0.039<br />

Forebay<br />

Chlorophyte<br />

Dinophyte<br />

0.007<br />

0.035<br />

0.003<br />

0.029<br />

0.036<br />

0.014<br />

0.041<br />

0.019<br />

0.017<br />

0.030<br />

0.017<br />

0.029<br />

0.020<br />

0.026<br />

Cyanophyte 0.003 0.002 0.007 0.011 0.005 0.005 0.006<br />

Sum of all Groups 0.191 0.142 0.265 0.258 0.174 0.149 0.196<br />

Bacillariophyte 0.091 0.064 0.054 0.077 0.057 0.035 0.063<br />

Chryso- & Cryptophyte 0.047 0.060 0.019 0.031 0.025 0.039 0.037<br />

Middle<br />

Chlorophyte<br />

Dinophyte<br />

0.018<br />

0.030<br />

0.008<br />

0.029<br />

0.007<br />

0.009<br />

0.008<br />

0.034<br />

0.002<br />

0.005<br />

0.021<br />

0.005<br />

0.011<br />

0.019<br />

Cyanophyte 0.004 0.005 0.003 0.007 0.005 0.005 0.005<br />

Sum of all Groups 0.191 0.166 0.091 0.157 0.094 0.106 0.134<br />

Bacillariophyte 0.087 0.052 0.032 0.101 0.031 0.040 0.057<br />

Chryso- & Cryptophyte 0.035 0.031 0.015 0.021 0.016 0.020 0.023<br />

Upper<br />

Chlorophyte<br />

Dinophyte<br />

0.016<br />

0.019<br />

0.006<br />

0.032<br />

0.001<br />

0.009<br />

0.020<br />

0.025<br />

0.010<br />

0.025<br />

0.026<br />

0.005<br />

0.013<br />

0.019<br />

Cyanophyte 0.003 0.004 0.003 0.004 0.005 0.003 0.004<br />

Sum of all Groups 0.159 0.125 0.061 0.171 0.087 0.094 0.116<br />

13


Figure 7 Average phytoplankton abundance (Cells/mL) in Revelstoke Reservoir between<br />

May - October 2009 derived from 10–20 meter composite samples<br />

Phytoplankton Abundance (Cells/mL)<br />

Bacillariophyte Chryso- & Cryptophyte Chlorophyte Dinophyte Cyanophyte<br />

2,500<br />

2,000<br />

1,500<br />

1,000<br />

500<br />

0<br />

Forebay Middle Upper<br />

Figure 8 Average phytoplankton biovolume (mm 3 /L) in Revelstoke Reservoir between May<br />

- October 2009 derived from 10–20 meter composite samples<br />

Phytoplankton Biovolume (mm 3 /L)<br />

Bacillariophyte Chryso- & Cryptophyte Chlorophyte Dinophyte Cyanophyte<br />

0.300<br />

0.250<br />

0.200<br />

0.150<br />

0.100<br />

0.050<br />

0.000<br />

Forebay Middle Upper<br />

14


3.3 Vertical Distribution- Phytoplankton Abundance and<br />

Biovolume – 2009<br />

Average abundance (Cells/mL) and average biovolume (mm 3 /L) of phytoplankton groups<br />

were calculated for individual depth strata for both Kinbasket and Revelstoke Reservoirs.<br />

The averages were based on every sample collected at each station within the<br />

respective reservoirs during the 2009 sampling season.<br />

Kinbasket<br />

In Kinbasket Reservoir, between May through October, the 5 meter depth category had<br />

the highest community density. Bacillariophytes were the group with the highest<br />

average abundance at all depths. The 2 meter depth category had the next highest<br />

community density. The community densities for the remaining depths decreased as<br />

depth increased. In general, chryso/cryptophytes were the second most abundant<br />

groups, followed by cyanophytes, chlorophytes, and lastly dinophytes. At 2 meters of<br />

depth cyanophytes appeared to be slightly more abundant than chryso/cryptophytes<br />

(Figure 9).<br />

Figure 9 Average phytoplankton abundance (Cells/mL), by depth, in Kinbasket Reservoir<br />

between May - October 2009<br />

Average Abundance (Cells/mL)<br />

2,500<br />

2,000<br />

1,500<br />

1,000<br />

500<br />

0<br />

Community<br />

Density<br />

2M 5M 10M 15M 20M<br />

Bacillariophyte<br />

Chlorophyte<br />

Chryso- &<br />

Cryptophyte<br />

Results for average biovolume were similar to that of the average abundance. The 5<br />

meter depth category had the greatest community biovolume. The 2 meter and 10<br />

meter categories had very similar biovolumes and were the second greatest; 15 meter<br />

and 20 meter had the two lowest average biovolumes, respectively. Bacillariophyte was<br />

the group with the highest average biovolume at all depths. Chryso/cryptophytes were<br />

the groups with the second highest average biovolume, followed by dinophytes,<br />

chlorophytes, and lastly cyanophytes (Figure 10).<br />

Cyanophyte<br />

Dinophyte<br />

15


Figure 10 Average phytoplankton biovolume (mm 3 /L), by depth, in Kinbasket Reservoir<br />

between May - October 2009<br />

Average Biovolume (mm 3 /L)<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

Revelstoke<br />

Community<br />

Biovolume<br />

2M 5M 10M 15M 20M<br />

Bacillariophyte<br />

Chlorophyte<br />

Chryso- &<br />

Cryptophyte<br />

In Revelstoke Reservoir the depth category with the highest community density and<br />

average abundance was 10 meters, followed by 5, 15, and 2 meters. The 20 meter<br />

depth had the lowest community density and average abundance. There was no one<br />

groups that dominated communities at all depths. Bacillariophytes, chryso/cryptophytes,<br />

and cyanophytes had very similar abundances to each other at each depth.<br />

Chlorophytes and dinophytes were the least abundant groups (Figure 11).<br />

Figure 11 Average phytoplankton abundance (Cells/mL), by depth, in Revelstoke<br />

Reservoir between May - October 2009<br />

Average Abundance (Cells/mL)<br />

2,500<br />

2,000<br />

1,500<br />

1,000<br />

500<br />

0<br />

Community<br />

Density<br />

Cyanophyte<br />

2M 5M 10M 15M 20M<br />

Bacillariophyte<br />

Chlorophyte<br />

Chryso- &<br />

Cryptophyte<br />

Cyanophyte<br />

Dinophyte<br />

Dinophyte<br />

16


The depths with the greatest average biovolume in Revelstoke Reservoir were 10<br />

meters, followed by 5 meters. Very similar average community biovolumes were<br />

observed for the 2 and 15 meter depths; and the 20 meter depth had the lowest average<br />

community biovolume. Bacillariophyte was the group with the highest average<br />

biovolume at all depths. Generally, chryso/cryptophytes, followed by dinophytes, were<br />

the groups with the second and third highest average biovolumes, respectively.<br />

Chlorophytes and cyanophytes were the groups with the lowest average biovolumes,<br />

respectively (Figure 12).<br />

Figure 12 Average phytoplankton biovolume (mm 3 /L), by depth, in Revelstoke Reservoir<br />

between May - October 2009<br />

Average Biovolume (mm 3 /L)<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

Community<br />

Biovolume<br />

Bacillariophyte<br />

Chlorophyte<br />

3.4 Phytoplankton in 2008 and 2009<br />

2M 5M 10M 15M 20M<br />

Chryso- &<br />

Cryptophyte<br />

To compare the 2008 and 2009 sampling seasons, phytoplankton cell counts and<br />

biovolume data from every sampling event at each station and depth were compiled.<br />

Since data collection on Kinbasket and Revelstoke Reservoirs did not commence until<br />

July, the May and June 2009 data from both Kinbasket and Revelstoke Reservoirs were<br />

omitted from the between year comparisons.<br />

Kinbasket<br />

Inter-annual comparison of the average total abundance and total biovolume of<br />

phytoplankton suggest that there was an increase in phytoplankton standing stock in<br />

2009. Every station sampled had an increase in average total phytoplankton abundance<br />

by at least 18%. Biovolume also appears to have increased at all stations, except for the<br />

<strong>Columbia</strong> Station in Kinbasket Reservoir where biovolume was unchanged between<br />

years (Table 9).<br />

Cyanophyte<br />

Dinophyte<br />

17


Table 9 Average seasonal phytoplankton abundance and biomass in Kinbasket Reservoir<br />

for July – October of 2008 and 2009<br />

Kinbasket Year<br />

Kin-<br />

Forebay<br />

Canoe Wood <strong>Columbia</strong> Reservoir<br />

Average<br />

Average Abundance 2008 1672 1284 1276 1238 1368<br />

(Cells/mL) 2009 1982 1930 1849 1838 1900<br />

Biovolume (mm<br />

2008 0.19 0.13 0.16 0.16 0.16<br />

3 /L)<br />

2009 0.23 0.22 0.20 0.16 0.20<br />

Revelstoke<br />

Comparison of the average total abundance of phytoplankton between 2008 and 2009 in<br />

Revelstoke Reservoir yielded irregular results. The Middle Reservoir Station was the<br />

only station that exhibited an increase in average abundance from 2008 to 2009. Both<br />

the Forebay and Upper Reservoir Stations exhibited lower mean abundance in 2009<br />

(Table 6).<br />

The total biovolume also varied irregularly between the 2008 and 2009 seasons.<br />

Although the Forebay Station experienced a decrease in average abundance in 2009,<br />

an increase in biovolume occurred. This can be explained by increased densities of<br />

larger-sized groups in 2009. The Middle and Upper Reservoir Stations biovolumes were<br />

consistent with the abundance results, with the Middle Reservoir Station exhibiting a<br />

slight increase in both abundance and biovolume between 2008 and 2009. The Upper<br />

Reservoir Station decreased in both abundance and biovolume (Table 10). The between<br />

year differences for all stations were relatively small.<br />

Table 10 Average seasonal phytoplankton abundance and biomass in Revelstoke<br />

Reservoir for July through October of 2008 and 2009<br />

Revelstoke Year Forebay Mid Upper Reservoir Average<br />

Average Abundance 2008 2604 1829 1544 1992<br />

(Cells/mL) 2009 2267 1973 1434 1891<br />

Biovolume (mm<br />

2008 0.16 0.15 0.13 0.15<br />

3 /L)<br />

2009 0.21 0.19 0.12 0.18<br />

3.5 Bacteria and Pico-cyanobacteria Abundance in 2009<br />

3.5.1 Bacteria.<br />

Kinbasket<br />

All stations sampled had relatively similar average abundances for epilimnetic<br />

heterotrophic bacteria. Of the four stations, Wood Arm had the highest average<br />

abundance, at over 500,000 Cells/mL. The Forebay, Canoe Arm, and <strong>Columbia</strong> Arm<br />

Stations had the most similar abundances, all of which were approximately 485,000<br />

Cells/mL (Figure 9).<br />

18


Hypolimnetic heterotrophic bacterial abundances between the sampling stations also<br />

showed little variation. The Canoe Arm and <strong>Columbia</strong> Arm Stations had the two greatest<br />

abundances, respectively. Canoe Arm and <strong>Columbia</strong> Arm also exhibited the greatest<br />

difference between epilimnetic and hypolimnetic abundances. The Wood Arm and Kin-<br />

Forebay stations had very similar abundances to each other, both with approximately<br />

500,000 Cells/mL (Figure 13).<br />

Figure 13 Average abundance (Cells/mL) of heterotrophic bacteria at four sampling<br />

stations in Kinbasket Reservoir between the months of May through October 2009<br />

Average Abundance (Cells/mL)<br />

600,000<br />

500,000<br />

400,000<br />

300,000<br />

200,000<br />

100,000<br />

0<br />

Epilimnion Hypolimnion<br />

Kin-Forebay Canoe Wood <strong>Columbia</strong><br />

Monthly average abundance of epilimnetic heterotrophic bacteria in Kinbasket Reservoir<br />

showed a general increasing trend during the sampling season. Abundance increased<br />

consistently from June to August. A slight decrease in average abundance occurred<br />

early in the sampling season between the months of May and June. Between August<br />

and September stations Kin-Forebay and Canoe Arm experienced declines in average<br />

abundance, while Wood Arm remained relatively constant; <strong>Columbia</strong> Arm experienced a<br />

slight increase. A decline occurred at all sampling stations between September and<br />

October (Figure 14).<br />

19


Figure 14 Kinbasket Reservoir monthly average abundance (Cells/mL) of epilimnetic<br />

heterotrophic bacteria at four sampling stations in 2009<br />

Average Abundance (Cells/mL)<br />

900,000<br />

800,000<br />

700,000<br />

600,000<br />

500,000<br />

400,000<br />

300,000<br />

200,000<br />

100,000<br />

0<br />

Revelstoke<br />

Kin-Forebay Canoe Wood <strong>Columbia</strong><br />

May June July Aug Sept Oct<br />

All sample stations had very similar epilimnetic average heterotrophic bacteria<br />

abundances. The Middle Reservoir Station had the highest abundance, closely followed<br />

by Forebay. Upper Reservoir Station had the lowest abundance; however, it should be<br />

noted that the stations vary in abundance by fewer than 50,000 Cells/mL (Figure 11).<br />

Hypolimnetic heterotrophic bacterial abundances between the sampling stations were<br />

also very similar. Again, Middle Reservoir Station had the highest average heterotrophic<br />

bacterial abundance followed by the Forebay and Upper Reservoir Stations. The<br />

hypolimnetic average abundance of Upper Reservoir Station was nearly identical to that<br />

of the station’s epilimnetic abundance (Figure 15).<br />

Figure 15 Average abundance (Cells/mL) of heterotrophic bacteria at three sampling<br />

stations in Revelstoke Reservoir between the months of May through October 2009<br />

Average Abundance (Cells/mL)<br />

600,000<br />

500,000<br />

400,000<br />

300,000<br />

200,000<br />

100,000<br />

0<br />

Epilimnion Hypolimnion<br />

Forebay Mid Upper<br />

20


Monthly average abundance of epilimnetic heterotrophic bacteria in Revelstoke<br />

Reservoir showed a general increasing trend throughout the summer. All stations<br />

increased in average abundance between June through August or September. All<br />

stations also experienced a slight decrease in average abundance at the beginning of<br />

the season between May and June, as well as at the end of the season between<br />

September and October (Figure 16).<br />

Figure 16 Revelstoke Reservoir monthly average abundance (Cells/mL) of epilimnetic<br />

heterotrophic bacteria at three sampling stations in 2009<br />

Average Abundance (Cells/mL)<br />

900,000<br />

800,000<br />

700,000<br />

600,000<br />

500,000<br />

400,000<br />

300,000<br />

200,000<br />

100,000<br />

0<br />

3.5.2 Pico-cyanobacteria.<br />

Kinbasket<br />

Forebay Mid Upper<br />

May June July Aug Sept Oct<br />

Total seasonal average abundance of epilimnetic pico-cyanobacteria in Kinbasket<br />

Reservoir ranged between approximately 12,000 Cells/mL and 18,000 Cells/mL. Most<br />

stations had relatively similar average abundances. Wood Arm had the lowest average<br />

abundance of all stations (Figure 13).<br />

Hypolimnetic total seasonal average abundance of pico-cyanobacteria also had little<br />

variation, between approximately 19,000 Cells/mL and 21,000 Cells/mL. The <strong>Columbia</strong><br />

sampling station had the lowest average abundance out of the four stations, which was<br />

very close to the abundance in Kin-Forebay (Figure 13).<br />

Average pico-cyanobactera abundance varied greatly between the epilimnion and<br />

hypolimnion. At all stations the hypolimnion had higher average abundances than the<br />

epilimnion. The <strong>Columbia</strong> Arm Station had the highest epilimnetic average abundance<br />

as well as the lowest hypolimnetic, while the Wood Arm Station had the lowest<br />

epilimnetic abundance and highest hypolimnetic abundance (Figure 17).<br />

21


Figure 17 Average abundance (Cells/mL) of pico-cyanobacteria at four sampling stations<br />

in Kinbasket Reservoir between the months of May through October 2009<br />

Average Abundance (Cells/mL)<br />

25,000<br />

20,000<br />

15,000<br />

10,000<br />

5,000<br />

0<br />

Epilimnion Hypolimnion<br />

Kin-Forebay Canoe Wood <strong>Columbia</strong><br />

All sites in Kinbasket Reservoir showed a similar seasonal trend of pico-cyanobacterial<br />

abundance. Except for a slight decline in average abundance in June, abundance<br />

increased during the sampling season and peaked in August or September. A gradual<br />

decline in abundance followed this peak as fall progressed (Figure 18).<br />

Figure 18 Average monthly abundance (Cells/mL) of epilimnetic pico-cyanobacteria at<br />

four sampling stations in Kinbasket Reservoir<br />

Average Abundance (Cells/mL)<br />

40,000<br />

35,000<br />

30,000<br />

25,000<br />

20,000<br />

15,000<br />

10,000<br />

5,000<br />

0<br />

Revelstoke<br />

Kin-Forebay Canoe Wood <strong>Columbia</strong><br />

May June July Aug Sept Oct<br />

The average abundance in the epilimnion ranged from approximately 15,000 Cells/mL to<br />

18,000 Cells/mL across sampling stations in Revelstoke Reservoir. In the hypolimnion<br />

the average abundance had a greater range, between approximately 15,000 Cells/mL<br />

22


and 21,000 Cells/mL. The Forebay Station had the highest average abundance in both<br />

the hypolimnion and epilimnion, followed by the Middle Reservoir Station; the Upper<br />

Reservoir Station had the lowest average abundance. The Upper Reservoir Station was<br />

also the only station in which the epilimnetic average abundance was greater than the<br />

hypolimnetic (Figure 19).<br />

Figure 19 Average abundance (Cells/mL) of pico-cyanobacteria at three sampling stations<br />

in Revelstoke Reservoir between the months of May through October 2009<br />

Average Abundance (Cells/mL)<br />

25,000<br />

20,000<br />

15,000<br />

10,000<br />

5,000<br />

0<br />

Epilimnion Hypolimnion<br />

Forebay Mid Upper<br />

Average abundance increased during the season and peaked in August or September.<br />

There was a slight decline in average abundance between May and June, then again in<br />

the fall from September to October (Figure 20).<br />

Figure 20 Average monthly abundance (Cells/mL) of epilimnetic pico-cyanobacteria at<br />

three sampling stations in Revelstoke Reservoir<br />

Average Abundance (Cells/mL)<br />

40,000<br />

35,000<br />

30,000<br />

25,000<br />

20,000<br />

15,000<br />

10,000<br />

5,000<br />

0<br />

Forebay Mid Upper<br />

May June July Aug Sept Oct<br />

23


SECTION 4.0 DISCUSSION<br />

4.1 Phytoplankton<br />

In Kinbasket Reservoir phytoplankton was most abundant in August. Communities were<br />

dominated by bacillariophytes and cyanophytes. Out of all groups present,<br />

bacillariophytes also contributed the most biovolume. Phytoplankton abundance and<br />

biovolume was highest at the 5 meter depth strata. Again, at this depth bacillariophytes<br />

were dominant in abundance and biovolume. In general, as depth increased,<br />

phytoplankton abundance and biovolume decreased. When 2008 data is compared to<br />

2009 it appears that phytoplankton abundance and biovolume was slightly higher in<br />

Kinbasket in 2009.<br />

In Revelstoke Reservoir phytoplankton communities peaked in September.<br />

Communities were dominated by cyanophytes and chryso/cryptophytes. In terms of<br />

biovolume, bacillariophytes and chryso/cryptophytes contributed the most.<br />

Phytoplankton was most abundant between 5 and 10 meters of depth. Bacillariophytes<br />

were more abundant at 5 than at 10 meters; however, at 10 meters the biovolume of<br />

bacillariophytes was greater than that at 5 meters. In general, the deeper depths had<br />

lower phytoplankton abundance and biovolume. However, differences in abundances<br />

and biovolumes between the depth strata were not drastically distinct. Taking an<br />

additional phytoplankton sample from 25 meters could help explain how deep substantial<br />

phytoplankton densities like those found in 10 to 20 meters of water could be found in<br />

the reservoirs. A more refined determination of the vertical distribution of phytoplankton<br />

should allow for better characterization of the overall reservoir productivity.<br />

An inter-annual comparison between the 2008 and 2009 sampling seasons suggests<br />

that phytoplankton abundance may have decreased in Revelstoke Reservoir in 2009.<br />

Yet at the same time, the average biovolume of phytoplankton within Revelstoke<br />

Reservoir increased. This can occur when the abundance of smaller taxa decrease,<br />

while there is an increase in abundance of larger taxa.<br />

4.2 Heterotrophic Bacteria & Pico-cyanobacteria<br />

Trends in abundance of heterotrophic bacteria and pico-cyanobacteria appeared not<br />

only within each reservoir, but between the reservoirs. In Kinbasket and Revelstoke<br />

Reservoirs, both heterotrophic bacteria and pico-cyanobacteria were slightly more<br />

abundant in the hypolimnion than the epilimnion. This is most true for picocyanobacteria<br />

in Kinbasket Reservoir, where the greatest difference in abundance was<br />

seen between the epilimnion and hypolimnion.<br />

Abundances in both heterotrophic bacteria and pico-cyanobacteria increased throughout<br />

the course of the summer, peaked in August and September, then declined in the fall.<br />

Early in the sampling season, a decrease in both heterotrophic bacteria and picocyanobacteria<br />

abundances occurred at every sampling station in both Kinbasket and<br />

Revelstoke Reservoirs. Peak spring runoff, which occurred in late May and early June,<br />

likely flushes these reservoirs resulting in lower picoplankton densities. After the spring<br />

freshet the water column stabilizes and should allow for an increase in densities of<br />

planktonic organisms including the picoplankton.<br />

24


SECTION 5.0 RECOMMENDATIONS<br />

� Due to the similarity of information gathered from the composited samples and<br />

discrete depth sampling, we recommend that the compositing of samples for<br />

analysis be discontinued in 2010. This will reduce the sample analysis cost with<br />

no loss of data. The discrete samples can be electronically composited post<br />

analysis if <strong>BC</strong> <strong>Hydro</strong> desires to make comparison between this study and<br />

previous studies that collected composited samples.<br />

� We also recommend that an additional sample be taken at 25 meters. The<br />

phytoplankton community seen in the 20 meter samples contains a substantial<br />

phytoplankton community. In order to better ascertain the total phytoplankton<br />

productivity of the reservoirs, it would be advisable to collect an additional<br />

sample at greater depth. We are concerned that there could be a significant<br />

amount of production occurring deeper than 20 meters. An additional sample at<br />

25 meters would help determine the total productivity of the systems.<br />

25


REFERENCES<br />

Canter-Lund, H. and J.W.G. Lund. 1995. Freshwater Algae – their microscopic world<br />

explored. BioPress Ltd., Bristol, UK, 360p.<br />

Lund J.G., C. Kipling, and E.D. LeCren. 1958. The Inverted Microscope Method of<br />

Estimating Algal Numbers and the Statistical Basis of Estimations by Counting.<br />

<strong>Hydro</strong>biologia. 11: 143-170.<br />

MacIsaac, E.R., K. S. Shortreed, and J.G. Stockner. 1981. Seasonal distribution of<br />

bacterioplankton numbers and activities in eight fertilized and untreated oligotrophic<br />

British <strong>Columbia</strong> lakes. Can. Tech. Rep. Fish. Aquat. Sci. 924.<br />

MacIsaac, E.R. and J.G. Stockner. 1993. Enumeration of phototrophic picoplankton by<br />

auto-fluorescence microscopy, p. 187-197. In: B. Sherr and E. Sherr [Eds.], The<br />

handbook of methods in aquatic microbial ecology, CRC Press, Boca Raton, Fl..<br />

Pieters, R., L.C. Thompson, L. Vidmanic, S. Pond, J. Stockner, P. Hamblin, M. Young,<br />

K. Ashley, B. Lindsay, G. Lawrence, D. Sebastian, G. Scholten and D.L. Lombard.<br />

1998. Arrow Reservoir Limnology and Trophic Status - Year 1 (1997/98) Report.<br />

Fisheries <strong>Project</strong> Report No. RD 67. Ministry of Environment, Lands and Parks, Province<br />

of British <strong>Columbia</strong>.<br />

Pieters, R., L.C. Thompson, L. Vidmanic, M. Roushorne, J. Stockner, K. Hall, M. Young,<br />

S. Pond, M. Derham, K. Ashley, B. Lindsay, G. Lawrence, D. Sebastian, G. Scholten, F.<br />

McLaughlin, A. Wüest, A. Matzinger and E. Carmack. 1999. Arrow Reservoir Limnology<br />

and Trophic Status Report, Year 2 (1998/99). RD 72, Fisheries Branch, Ministry of<br />

Environment, Lands and Parks, Province of British <strong>Columbia</strong>.<br />

Stockner, J. G., E. Rydin, and P. Hyehstrand. 2000. Cultural oligotrophication: Causes<br />

and consequences for fisheries resources. Fisheries 25(5):7-14.<br />

Utermohl, H. 1958. Zur Vervollkommnung der Quantitativen Phytoplankton Methodik.<br />

Int. Verein. theor. angew. Limnologie, Mitteilung 9.<br />

26


CLBMON-3 Kinbasket and Revelstoke Reservoirs Ecological Productivity Monitoring<br />

2009 Progress Report<br />

Appendix 7<br />

Zooplankton<br />

Kinbasket and Revelstoke Reservoirs, 2009<br />

Dr. Lidija Vidmanic<br />

Limno Lab


Kinbasket and Revelstoke Reservoirs<br />

Zooplankton, 2009<br />

Dr. Lidija Vidmanic<br />

Limno Lab<br />

Vancouver, B.C.<br />

March 2010


Table of Contents<br />

1. Introduction.........................................................................................................................................1<br />

2. Methods..............................................................................................................................................1<br />

3. Results – Kinbasket Reservoir ...........................................................................................................1<br />

3.1 Species Present...........................................................................................................................1<br />

3.2 Density and Biomass ...................................................................................................................2<br />

3.3 Zooplankton Fecundity.................................................................................................................4<br />

4. Results – Revelstoke Reservoir ........................................................................................................4<br />

4.2 Species Present...........................................................................................................................4<br />

4.2 Density and Biomass ...................................................................................................................5<br />

4.3 Seasonal and Along-Lake Patterns .............................................................................................7<br />

4.4 Zooplankton Fecundity.................................................................................................................7<br />

5. Comparison to other <strong>BC</strong> lakes...........................................................................................................8<br />

6. Conclusions ......................................................................................................................................10<br />

7. References .......................................................................................................................................10<br />

List of Figures<br />

Figure 1. Zooplankton density 1977-2009 at Mica Forebay in Kinbasket Reservoir............................12<br />

Figure 2. Seasonal average zooplankton density in Kinbasket Reservoir 2003-2009.........................13<br />

Figure 3. Density of cladoceran and copepod zooplankton in Kinbasket Reservoir in 2003-2009....14<br />

Figure 4. Seasonal average % of zooplankton density composition at four stations in Kinbasket<br />

Reservoir in 2003-2009. .......................................................................................................................15<br />

Figure 5. Seasonal average zooplankton biomass in Kinbasket Reservoir 2003-2009......................16<br />

Figure 6. Biomass of cladoceran and copepod zooplankton in Kinbasket Reservoir in 2003-2009...17<br />

Figure 7. Seasonal average % of zooplankton biomass composition at four stations in Kinbasket<br />

Reservoir in 2003-2009. .......................................................................................................................18<br />

Figure 8. Fecundity features of Diacyclops bicuspidatus in Kinbasket Reservoir in 2003-2009.........19<br />

Figure 9. Fecundity features of Daphnia spp. in Kinbasket Reservoir in 2003-2009..........................20<br />

Figure 10. Zooplankton density 1977- 2009 at Rev Forebay in Revelstoke Reservoir.......................21<br />

Figure 11. Seasonal average composition of zooplankton density in Revelstoke Reservoir in 2003,<br />

2008 and 2009......................................................................................................................................22<br />

Figure 12. Seasonal average composition of zooplankton biomass in Revelstoke Reservoir in 2003,<br />

2008 and 2009......................................................................................................................................23<br />

i


Figure 13. Monthly average zooplankton density (top) and biomass (bottom) in Revelstoke Reservoir<br />

in 2003, 2008 and 2009........................................................................................................................24<br />

Figure 14. Zooplankton density at three stations in Revelstoke Reservoir 2003, 2008 and 2009......25<br />

Figure 15. Zooplankton biomass at three stations in Revelstoke Reservoir 2003, 2008 and 2009....26<br />

Figure 16. Fecundity features of Diacyclops bicuspidatus in Revelstoke Reservoir in 2003, 2008 and<br />

2009......................................................................................................................................................27<br />

Figure 17. Fecundity features of Daphnia spp. in Revelstoke Reservoir in 2003, 2008 and 2009. ....28<br />

Figure 18. Seasonal average total zooplankton and Daphnia density and biomass in some <strong>BC</strong> Lakes<br />

in 2008. .................................................................................................................................................29<br />

Figure 19. Percentage of Daphnia density and biomass in total zooplankton in some <strong>BC</strong> Lakes in<br />

2008......................................................................................................................................................30<br />

Figure 20. Seasonal average total zooplankton and Daphnia density and biomass in some <strong>BC</strong> Lakes<br />

in 2008. .................................................................................................................................................31<br />

Figure 21. Percentage of Daphnia density and biomass in total zooplankton in some <strong>BC</strong> Lakes in<br />

2008......................................................................................................................................................32<br />

List of Tables<br />

Table 1. List of zooplankton species identified in Kinbasket Reservoir in 2003-2009. .........................2<br />

Table 2. Seasonal average zooplankton density at four sampling stations in Kinbasket Reservoir in<br />

2009. Density is in units of individuals/L; biomass is in units of µg/L.....................................................3<br />

Table 3. Monthly average density and biomass of zooplankton in Kinbasket Reservoir in 2009.<br />

Density is in units of individuals/L, and biomass is in units of µg/L........................................................3<br />

Table 4. Fecundity data for D. bicuspidatus thomasi in Kinbasket Reservoir in 2003-2009. Values are<br />

seasonal averages, calculated for samples collected between May - October 2003, 2005, 2009 May –<br />

December 2004 and July – October 2008..............................................................................................4<br />

Table 5. Fecundity data for Daphnia spp. in Kinbasket Reservoir in 2003-2009. Values are seasonal<br />

averages, calculated for samples collected between May - October 2003, 2005, 2009, May –<br />

December 2004 and July – October 2008..............................................................................................4<br />

Table 6. List of zooplankton species identified in Revelstoke Reservoir in 2003-2009. “+” indicates a<br />

consistently present species and “r” indicates a rarely present species. ...............................................5<br />

Table 7. Annual average zooplankton abundance and biomass in Revelstoke Reservoir in 2003,<br />

2008 and 2009. Data are averaged for May to October in 2003 and 2009, and July to October in<br />

2008........................................................................................................................................................6<br />

Table 8. Monthly average density and biomass of zooplankton in Revelstoke Reservoir in 2009.<br />

Density is in units of individuals/L, and biomass is in units of µg/L........................................................7<br />

ii


Table 9. Fecundity data for D. bicuspidatus thomasi in Revelstoke Reservoir in 2003-2009. Values<br />

are seasonal averages, calculated for samples collected between July and October in 2008 and May<br />

to October in 2003 and 2009. .................................................................................................................8<br />

Table 10. Fecundity data for Daphnia spp. in Revelstoke Reservoir 2003-2009. Values are seasonal<br />

averages, calculated for samples collected between May and October in 2008 and May to October in<br />

2003 and 2009........................................................................................................................................8<br />

Table 11. Seasonal average zooplankton density and biomass in Kinbasket and Revelstoke<br />

Reservoirs in 2009. Values from other lakes are shown for comparison. Values are seasonal<br />

averages, calculated for samples collected between May and October in Revelstoke and Kinbasket<br />

Reservoir, April and November in Arrow and Kootenay Lake, April and October in Alouette and June<br />

and October in Wahleach. Biomass is in units of µg/L...........................................................................9<br />

iii


1. Introduction<br />

This report summarises the zooplankton data collected in 2009, with comparisons to available<br />

data from previous years and other <strong>BC</strong> lakes as well as some historical data. The study of<br />

Kinbasket and Revelstoke Reservoirs macrozooplankton (length >150 µm), including their<br />

composition, abundance, and biomass helps to determine the current status of the reservoir.<br />

These results are a component of the study CLBMON-3 Kinbasket and Revelstoke Reservoirs<br />

Ecological Productivity conducted by <strong>BC</strong> <strong>Hydro</strong> under the <strong>Columbia</strong> <strong>Water</strong> <strong>Use</strong> <strong>Plan</strong>.<br />

2. Methods<br />

Samples were collected monthly at four stations in Kinbasket Reservoir during the highest<br />

production season. The Kinbasket sampling stations are located at Mica Forebay, Canoe Reach,<br />

Wood Arm and <strong>Columbia</strong> Reach.<br />

Samples were collected at three stations in Revelstoke Reservoir. The stations Rev Upper, Rev<br />

Middle, and Rev Forebay are located along the length of the main body in Revelstoke Reservoir.<br />

Samples were collected from May to October in 2009, with a vertically hauled 153 µm mesh<br />

Wisconsin net with a 0.2 m throat diameter. The depth of each haul was 30 m. Duplicate samples<br />

were taken at each site of the reservoir.<br />

Collected zooplankton samples were rinsed from the dolphin bucket and preserved in 70%<br />

ethanol. Zooplankton samples were analyzed for species density, biomass (estimated from<br />

empirical length-weight regressions, McCauley 1984), and fecundity. Samples were resuspended<br />

in tap water filtered through a 74 µm mesh and sub-sampled using a four-chambered<br />

Folsom-type plankton splitter. Splits were placed in gridded plastic petri dishes and stained with<br />

Rose Bengal to facilitate viewing with a Wild M3B dissecting microscope (at up to 400X<br />

magnification). For each replicate, organisms were identified to species level and counted until<br />

up to 200 organisms of the predominant species were recorded. If 150 organisms were counted<br />

by the end of a split, a new split was not started. The lengths of up to 30 organisms of each<br />

species were measured for use in biomass calculations, using a mouse cursor on a live television<br />

image of each organism. Lengths were converted to biomass (µg dry-weight) using empirical<br />

length-weight regression from McCauley (1984). The number of eggs carried by gravid females<br />

and the lengths of these individuals were recorded for use in fecundity estimations. Zooplankton<br />

species were identified with reference to taxonomic keys (Sandercock and Scudder 1996,<br />

Pennak 1989, Wilson 1959, Brooks 1959).<br />

3. Results – Kinbasket Reservoir<br />

3.1 Species Present<br />

Four calanoid copepod species were identified in the samples from the Kinbasket Reservoir<br />

(Table 1). Leptodiaptomus sicilis (Forbes) and Epischura nevadensis (Lillj.) were present in<br />

samples during each sampling season, while Leptodiaptomus ashlandi (Marsh) and<br />

Aglaodiaptomus leptopus (Forbes) were observed rarely. One cyclopoid copepod species,<br />

Diacyclops bicuspidatus thomasi (Forbes), was seen in samples during the study period.<br />

1


Table 1. List of zooplankton species identified in Kinbasket Reservoir in 2003-2009.<br />

2003 2004 2005 2008 2009<br />

Cladocera<br />

Bosmina longirostris + + + + +<br />

Chydorus sphaericus + +<br />

Daphnia galeata mendotae + + + + +<br />

Daphnia rosea + + + + +<br />

Daphnia schoedleri + + + + +<br />

Diaphanosoma brachiurum + + +<br />

Holopedium gibberum + + +<br />

Leptodora kindtii + + + +<br />

Macrothrix sp. +<br />

Scapholeberis mucronata + + + + +<br />

Copepoda<br />

Aglaodiaptomus leptopus + +<br />

Diacyclops bicuspidatus + + + + +<br />

Epischura nevadensis + + + + +<br />

Leptodiaptomus ashlandi + + +<br />

Leptodiaptomus sicilis + + + + +<br />

Nine species of Cladocera were present in 2009 (Table 1). Daphnia galeata mendotae (Birge),<br />

Daphnia schoedleri (Sars), Daphnia rosea (Sars) and Bosmina longirostris (O.F.M.) were<br />

common, while other species such as Scapholeberis mucronata (O.F.M.) and Holopedium<br />

gibberum (Zaddach), were observed sporadically. Daphnia spp. were not identified to species for<br />

density counts.<br />

The predominant copepods D. bicuspidatus thomasi and E. nevadensis, and cladocerans<br />

Daphnia spp., and B. longirostris were common during study years.<br />

3.2 Density and Biomass<br />

For comparison with historical data the average at Mica Forebay station in Kinbasket was used.<br />

Zooplankton density values in 2003-2009 are significantly higher then those reported by the<br />

Division of Applied Biology, <strong>BC</strong> Research in 1977, Watson 1985 and Fleming and Smith 1988<br />

(Fig. 1).<br />

The seasonal average zooplankton density observed in Kinbasket Reservoir decreased in 2009<br />

to 11.11 individuals/L from 16.77 individuals/L in 2008 (Fig. 2). The zooplankton density was<br />

numerically dominated by copepods, which averaged 78% of the 2009 community. Daphnia spp<br />

comprised 11%, the same as cladocerans other than Daphnia. Copepods were the most<br />

abundant zooplankton at all four stations. They numerically prevailed during the whole sampling<br />

season, with populations peaking in July (Fig. 3). The number of Cladocerans varied by season<br />

as well as along the reservoir. Cladocerans other than Daphnia were the most numerous in July<br />

at Canoe Reach and Mica Forebay (8.56 individuals/L), while at two other stations their number<br />

was lower (4.16 individuals/L at <strong>Columbia</strong> Reach and 2.04 individuals/L at Wood Arm). Monthly<br />

averaged density of Daphnia for the whole reservoir increased gradually during the sampling<br />

season reaching its peak in October with 2.62 individuals/L (Fig. 2). The highest density of<br />

Daphnia was found in September at Mica Forebay with 3.57 individuals/L. The proportion of<br />

Daphnia density was the highest at Mica Forebay (14%), while at other stations it varied between<br />

7 and 12%. (Fig. 6, Table 2)<br />

2


Table 2. Seasonal average zooplankton density at four sampling stations in Kinbasket<br />

Reservoir in 2009. Density is in units of individuals/L; biomass is in units of µg/L.<br />

Canoe Mica <strong>Columbia</strong> Wood<br />

Reach Forebay Reach Arm<br />

Density Copepoda 11.29 7.94 6.86 8.60<br />

Daphnia 1.03 1.57 1.12 1.06<br />

Other Cladocera 1.65 1.63 1.14 0.56<br />

Total 13.97 11.14 9.13 10.22<br />

Biomass Copepoda 18.02 14.81 14.06 16.54<br />

Daphnia 12.69 16.73 13.39 15.98<br />

Other Cladocera 2.12 2.27 1.87 0.72<br />

Total 32.83 33.81 29.31 33.24<br />

Seasonal average total zooplankton biomass in 2009 was 32.30 µg/L (Fig. 5). Copepods had the<br />

highest proportion of the total biomass in the whole reservoir 49%. Daphnia spp. made up 46%,<br />

while Cladocerans other than Daphnia comprised only 5% of the total zooplankton biomass. The<br />

highest total zooplankton biomass 88.76 µg/L was found at Wood Arm in September, when<br />

Daphnia comprised 68% of total biomass with 60.12 µg/L (Figs. 6, 7). Although Daphnia spp. was<br />

present in samples during the entire season, it made up a great proportion of the biomass in<br />

September and October, 68% and 81% respectively. Among the stations the highest Daphnia<br />

biomass was found at Wood Arm in September with 60.12 µg/L. Annual average biomass of<br />

Daphnia spp. counted 14.70 µg/L, copepods 15.86 µg/L, while Cladocera other than Daphnia<br />

were present with 1.74 µg/L (Fig. 7). The most stable zooplankton community was at Canoe<br />

Reach, where both density and biomass of all three zooplankton groups did not change much<br />

during the study years 2003-2009. Contrary to that, zooplankton composition, density, and<br />

biomass fluctuated along a great range during the study period at the other three stations (Fig. 7).<br />

In 2009 peak total zooplankton density occurred in July at 27.59 individuals/L while highest<br />

biomass was found in September at 52.82 µg/L (Table 3). Daphnia was the most numerous in<br />

September with 2.46 individuals/L and the highest biomass in the season with 35.84 µg/L.<br />

Table 3. Monthly average density and biomass of zooplankton in Kinbasket Reservoir in<br />

2009. Density is in units of individuals/L, and biomass is in units of µg/L.<br />

Density May June July Aug. Sept. Oct.<br />

Copepoda 3.55 5.89 20.95 9.97 7.66 4.02<br />

Daphnia 0.05 0.05 0.81 1.18 2.46 2.62<br />

Other Cladocera* 0.02 0.08 5.83 0.55 0.37 0.62<br />

Total Zooplankton 3.62 6.03 27.59 11.69 10.49 7.27<br />

Biomass May June July Aug. Sept. Oct.<br />

Copepoda 9.91 9.18 32.81 20.56 16.31 6.37<br />

Daphnia 1.18 0.76 7.06 12.74 35.84 30.60<br />

Other Cladocera** 0.05 0.16 7.78 1.04 0.67 0.78<br />

Total Zooplankton 11.14 10.10 47.65 34.33 52.82 37.75<br />

*Values do not include Daphnia spp. density.<br />

**Values do not include Daphnia spp. biomass.<br />

In comparison to data from previous years, total zooplankton densities decreased as a result of a<br />

significant decrease of numbers of copepods. Total zooplankton biomass also decreased in 2009,<br />

although Daphnia biomass slightly increased. Daphnia did not develop strong and numerous<br />

populations as in 2005, which would be mirrored in a significant biomass increase (Figs. 2, 5).<br />

3


3.3 Zooplankton Fecundity<br />

Fecundity features of two most common zooplankton species D. bicuspidatus thomasi and<br />

Daphnia spp. were studied during the sampling season.<br />

In Kinbasket Reservoir D. bicuspidatus thomasi females were gravid throughout the sampling<br />

period (Fig. 8). From May to October 2009 the proportion of gravid females averaged 0.17. The<br />

highest proportions have been found at Canoe Reach 0.47 in May. On average, gravid female<br />

carry 13.86 eggs. The number of eggs per water volume averaged 1.68 eggs/L, and the number<br />

of eggs per capita averaged 0.48 eggs/individual (Table 4).<br />

Table 4. Fecundity data for D. bicuspidatus thomasi in Kinbasket Reservoir in 2003-2009.<br />

Values are seasonal averages, calculated for samples collected between May - October<br />

2003, 2005, 2009 May – December 2004 and July – October 2008.<br />

2003 2004 2005 2008 2009<br />

Proportion of gravid females 0.12 0.05 0.08 0.11 0.17<br />

# Eggs per gravid Female 12.42 12.42 9.67 11.17 13.86<br />

# Eggs per Litre 1.42 0.29 0.47 2.58 1.68<br />

# Eggs per Capita 0.25 0.25 0.1 0.18 0.48<br />

In Kinbasket Reservoir gravid Daphnia spp. females were present during the entire sampling<br />

season at all four stations, with the highest numbers in June (Fig. 9). The proportion of gravid<br />

females averaged 0.19 May-October 2009 (Table 5). The seasonal average number of eggs per<br />

gravid female was 2.04. Across the sampling season the number of eggs per water volume<br />

averaged 0.18 eggs/L and the number of eggs per capita averaged 0.48 eggs/individual.<br />

Table 5. Fecundity data for Daphnia spp. in Kinbasket Reservoir in 2003-2009. Values are<br />

seasonal averages, calculated for samples collected between May - October 2003, 2005,<br />

2009, May – December 2004 and July – October 2008.<br />

2003 2004 2005 2008 2009<br />

Proportion of gravid females 0.07 0.03 0.03 0.19 0.19<br />

# Eggs per gravid Female 1.80 2.11 1.59 1.91 2.04<br />

# Eggs per Litre 0.16 0.03 0.1 0.13 0.18<br />

# Eggs per Capita 0.15 0.05 0.05 0.37 0.48<br />

4. Results – Revelstoke Reservoir<br />

4.2 Species Present<br />

Three calanoid copepod species were identified in the samples from Revelstoke Reservoir (Table<br />

6). Leptodiaptomus sicilis (Forbes) and Epischura nevadensis (Lillj.) were present in samples<br />

during the whole season while Leptodiaptomus ashlandi (Marsh) were observed rarely. One<br />

cyclopoid copepod species, Diacyclops bicuspidatus thomasi (Forbes), was seen in samples from<br />

the Revelstoke Reservoirs.<br />

Eight species of Cladocera were present in Revelstoke Reservoir during the study period in 2009<br />

(Table 6). Daphnia galeata mendotae (Birge), Daphnia pulex (Leydig), Daphnia longispina<br />

(O.F.M.), Bosmina longirostris (O.F.M.), Holopedium gibberum (Zaddach) and Leptodora kindti<br />

(Focke) were common. Other species such as Scapholeberis mucronata (O.F.M.), and<br />

Diaphanosoma brachiurum (Lievin) were observed sporadically. Daphnia spp. were not identified<br />

to species for density counts.<br />

4


The predominant copepod was D. bicuspidatus thomasi and among the cladocerans Daphnia<br />

spp. and B. longirostris were most common.<br />

Table 6. List of zooplankton species identified in Revelstoke Reservoir in 2003-2009. “+”<br />

indicates a consistently present species and “r” indicates a rarely present species.<br />

2003 2008 2009<br />

Cladocera<br />

Acroperus harpae r<br />

Alona sp. r<br />

Biapertura affinis r r<br />

Bosmina longirostris + + +<br />

Ceriodaphnia sp. r<br />

Chydorus sp. r<br />

Chydorus sphaericus r r<br />

Daphnia galeata + + +<br />

Daphnia rosea + + +<br />

Daphnia pulex + + +<br />

Diaphanosoma brachiurum r<br />

Holopedium gibberum + + +<br />

Leptodora kindtii + + +<br />

Scapholeberis mucronata r r r<br />

Copepoda<br />

Diacyclops bicuspidatus + + +<br />

Epischura nevadensis + + +<br />

Leptodiaptomus ashlandi + + +<br />

Leptodiaptomus sicilis + + +<br />

4.2 Density and Biomass<br />

The seasonal mean zooplankton densities observed in 2003, 2008 and 2009 were much higher<br />

then those reported for years 1984 and 1986 by Watson 1985 and Fleming and Smith 1988 (Fig.<br />

10). For comparison with historical data the average at Rev Forebay in Revelstoke was used.<br />

The zooplankton community was primarily composed of copepods, which made up 77% of the<br />

zooplankton density and 33% of the zooplankton biomass during the studied period in 2009.<br />

Daphnia accounted for 11% of the density and 50% of the biomass during the same time period,<br />

while other cladocerans comprised 11% of density and only 17% of zooplankton biomass (Fig. 11<br />

and 12).<br />

The seasonal average zooplankton density in 2009 (May to October) was 6.41 individuals/L.<br />

Copepods were the most abundant with 4.96 individuals/L. Annual average density of Daphnia<br />

was 0.72 individuals/L, while density of other Cladocerans (mainly Bosmina and Holopedium)<br />

was 0.73 individual/L. (Table 7, Fig. 11). Total zooplankton biomass, averaged for the whole<br />

reservoir, was 24.54 µg/L, which was mainly made up of Daphnia which contributed 50% of the<br />

total zooplankton biomass with annual average biomass of 12.30 µg/L. Copepods made up 33%<br />

with 12.30 µg/L, while other cladocerans made up 17% with 4.22 µg/L of the total zooplankton<br />

biomass (Table. 7; Fig. 12).<br />

5


Table 7. Annual average zooplankton abundance and biomass in Revelstoke Reservoir in<br />

2003, 2008 and 2009. Data are averaged for May to October in 2003 and 2009, and July to<br />

October in 2008.<br />

Density<br />

ind/L<br />

2003 2008 2009<br />

Copepoda 5.49 7.08 4.96<br />

Daphnia 2.64 0.77 0.72<br />

other Cladocera 2.12 1.00 0.73<br />

Total 10.25 8.85 6.41<br />

Biomass<br />

µg/L<br />

2003 2008 2009<br />

Copepoda 10.79 17.32 8.02<br />

Daphnia 51.56 14.75 12.30<br />

other Cladocera 6.61 4.69 4.22<br />

Total 68.96 36.76 24.54<br />

The seasonal average zooplankton densities in Revelstoke Reservoir decreased over the course<br />

of the study period, from 8.85 individuals/L in 2008 to 6.41 individuals/L in 2009. Zooplankton<br />

density increased during the study season in 2009 from May to October. Densities averaged 1.19<br />

individuals/L at the beginning of the season in May, and then gradually increased to 10.51<br />

individuals/L by September (Fig. 13). Seasonal average zooplankton biomass also decreased in<br />

2009 in comparison to 2008. During the sampling season in 2009 zooplankton biomass increased<br />

from 3.77 µg/L in May to 46.37 µg/L in October (Fig. 13). The highest total zooplankton density<br />

was seen in October at Rev Middle station (14.03 individuals/L), while biomass was the highest at<br />

the Rev Upper station also in October with 62.90 µg/L (Fig. 14 and 15).<br />

An increase of copepod abundance was observed during the season in 2009. The number of<br />

Copepoda ranged between 0.27 individuals/L and 11.04 individuals/L consisting mainly of D.<br />

bicuspidatus thomasi. They numerically prevailed during the whole sampling season, with<br />

populations peaking in September-October at stations in Rev Upper and Rev Middle, while at Rev<br />

Forebay peaks were recorded in June and September (Fig. 14).<br />

The pattern of seasonal changes of density and biomass of other cladocerans was similar in 2008<br />

and 2009 sampling season. Numbers of Cladocerans changed during the season as well as<br />

along the reservoir. After a late spring peak a decrease of cladoceran density was recorded<br />

during the summer, followed by a slight increase in October (Fig. 14). Other cladocerans were<br />

composed mainly of Holopedium and Bosmina, averaging 0.38 and 0.34 individuals/L<br />

respectively, in the whole reservoir. At the beginning of the season, in June 2009, at station Rev<br />

Forebay the number of other cladocerans was the highest in the season due to a peak of<br />

Holopedium with 2.99 individuals/L. In terms of biomass, regarding to their small size, other<br />

cladocerans contributed only 17% to the total zooplankton biomass. Their biomass was less then<br />

7.5 µg/L at each station during the whole sampling season, except in June at Rev Forebay when<br />

the biomass of other cladocerans was 21.10 µg/L, and in July at Rev Middle station when the<br />

biomass of other cladocerans was 16.61 µg/L (Fig. 15).<br />

Numbers of Daphnia showed steady increase in Revelstoke Reservoir during the sampling<br />

season in 2009. Although Daphnia were present in samples during the entire season, they<br />

accounted for 1 to 32% of the zooplankton community from May to October. Its density was<br />

relatively low averaging 0.02 to 2.63 individual/L at all three stations from May to October (Fig.<br />

6


14). Daphnia biomass was also relatively low averaging 12.30 µg/L (Fig. 15). The highest<br />

Daphnia biomass during the study season was found at Rev Upper station with 53.64 µg/L in<br />

October, when Daphnia accounted for 85% of the total zooplankton biomass (Fig. 15).<br />

4.3 Seasonal and Along-Lake Patterns<br />

The seasonal development of zooplankton density and biomass in Revelstoke Reservoir follow<br />

the usual pattern of increasing copepods from spring toward the end of the season, and a<br />

cladoceran increase in the spring and early fall (Fig. 13). Copepods dominated numerically from<br />

May to October. Cladocerans were present in significant numbers in June and July, while<br />

Daphnia spp. density and biomass reached their peak in September and October. Although<br />

Daphnia spp. was present in samples during the whole season, it made up the majority of the<br />

biomass at the end of the sampling season.<br />

During 2009 peak total zooplankton density occurred in September with 10.51 individuals/L<br />

(Table 8, Fig. 13). The peak total zooplankton biomass occurred in October with 46.37 µg/L,<br />

when Daphnia spp. biomass reached its peak with 33.49 µg/L comprising 72% of the total<br />

zooplankton biomass.<br />

Along the length of Revelstoke Reservoir zooplankton densities as well as biomass tended to be<br />

higher in the southern part of the basin in June, while in July and October both zooplankton<br />

density and biomass was higher in the mid and the upper part of the reservoir (Fig. 14 and 15).<br />

Table 8. Monthly average density and biomass of zooplankton in Revelstoke Reservoir in<br />

2009. Density is in units of individuals/L, and biomass is in units of µg/L.<br />

Density May June July Aug. Sept. Oct.<br />

Copepoda 0.81 4.01 2.85 6.58 8.50 6.98<br />

Daphnia 0.02 0.09 0.16 0.73 1.61 1.73<br />

Other Cladocera* 0.36 1.56 1.02 0.12 0.40 0.91<br />

Total Zooplankton 1.19 5.66 4.03 7.44 10.51 9.61<br />

Biomass May June July Aug. Sept. Oct.<br />

Copepoda 2.32 8.75 5.24 9.32 12.52 9.98<br />

Daphnia 0.31 1.22 2.91 10.04 25.86 33.49<br />

Other Cladocera** 1.14 10.26 8.35 0.36 2.32 2.90<br />

Total Zooplankton 3.77 20.22 16.49 19.72 40.70 46.37<br />

*Values do not include Daphnia spp. density.<br />

**Values do not include Daphnia spp. biomass.<br />

4.4 Zooplankton Fecundity<br />

Fecundity features of two most common zooplankton species D. bicuspidatus thomasi and<br />

Daphnia spp. were studied during the sampling season.<br />

D. bicuspidatus thomasi females were gravid throughout the sampling period in 2009. Gravid<br />

females in Revelstoke Reservoir comprise 0-62% of the female population in 2009 (Fig. 16).<br />

From May to October the proportion of gravid females averaged 0.15. The highest proportions<br />

have been found at the Rev Upper station 0.62. On average, gravid female carry up to about<br />

15.17 eggs (Table 9). Across the sampling season the number of eggs per water volume<br />

averaged 1.06 eggs/L. The number of eggs per capita averaged 0.89 eggs/individual.<br />

7


Table 9. Fecundity data for D. bicuspidatus thomasi in Revelstoke Reservoir in 2003-2009.<br />

Values are seasonal averages, calculated for samples collected between July and October<br />

in 2008 and May to October in 2003 and 2009.<br />

2003 2008 2009<br />

Proportion of gravid females 0.19 0.18 0.15<br />

# Eggs per gravid Female 15.64 11.18 15.17<br />

# Eggs per Litre 3.18 1.54 1.06<br />

# Eggs per Capita 0.88 0.54 0.89<br />

Daphnia spp. gravid females were observed in Revelstoke Reservoir throughout the sampling<br />

season. The proportion of females that were gravid was variable across the season and along the<br />

reservoir. At the Rev Upper station and at the Rev Forebay it tended to be higher in early<br />

summer, while at Rev Middle station a higher proportion of gravid females was in September (Fig.<br />

17). The proportion of gravid females averaged 0.13 in 2009 (Table 10). The seasonal average<br />

number of eggs per gravid female was 2.00. Across the sampling season the number of eggs per<br />

water volume averaged 0.15 eggs/L, and the number of eggs per capita averaged 0.28<br />

eggs/individual over the study period in 2009.<br />

Table 10. Fecundity data for Daphnia spp. in Revelstoke Reservoir 2003-2009. Values are<br />

seasonal averages, calculated for samples collected between May and October in 2008<br />

and May to October in 2003 and 2009.<br />

2003 2008 2009<br />

Proportion of gravid females 0.11 0.20 0.13<br />

# Eggs per gravid Female 2.67 2.66 2.00<br />

# Eggs per Litre 0.32 0.16 1.15<br />

# Eggs per Capita 0.35 0.46 0.28<br />

5. Comparison to other <strong>BC</strong> lakes<br />

We compared zooplankton data of Kinbasket and Revelstoke Reservoirs with the zooplankton<br />

from few other <strong>BC</strong> Lakes and Reservoirs. It is important to emphasise that all four reservoirs:<br />

Arrow, Kootenay, Alouette, and Wahleach are fertilised during the growing season (spring to fall),<br />

while Kinbasket and Revelstoke are not. Also, an important difference of Arrow and Kootenay<br />

Reservoirs is that they have dense mysid populations, which plays an important role in the food<br />

chain in those reservoirs. Kinbasket and Revelstoke Reservoirs do not contain Mysis.<br />

Kinbasket Reservoir has a moderate zooplankton density in comparison to several other<br />

oligotrophic <strong>BC</strong> lakes and reservoirs. From May to October in 2009, zooplankton density in<br />

Kinbasket Reservoir averaged 11.12 individuals/L. Zooplankton density in the Upper Arrow has<br />

similar value with 12.93 individuals/L, while in Lower Arrow zooplankton density was twice than<br />

that in Kinbasket Reservoir, and in Kootenay Lake three times more than that (Table 11, Fig. 18).<br />

The case is similar with the biomass. Seasonal average zooplankton biomass in Kinbasket<br />

Reservoir is at a similar level as in Upper Arrow Lake and more than twice lower than in Lower<br />

Arrow, or the North and South Arms of Kootenay Lake. Both Arrow and Kootenay Lakes are<br />

considered to be at the more productive end of oligotrophy since nutrient addition programs<br />

resulted in zooplankton community increases (Schindler et al. 2007a, 2007b). Although Kootenay<br />

Lake Daphnia density and biomass are much higher than in Kinbasket Reservoir, the percentage<br />

of Daphnia in total zooplankton density and biomass are numerically at a lower level. In the North<br />

and South Arm of Kootenay Lake Daphnia comprised 6% and 8% of density and 34% and 42% of<br />

8


iomass, while in Kinbasket reservoir Daphnia comprised 11% and 45% of the total zooplankton<br />

density and biomass respectively (Table 11, Fig.19).<br />

Table 11. Seasonal average zooplankton density and biomass in Kinbasket and<br />

Revelstoke Reservoirs in 2009. Values from other lakes are shown for comparison. Values<br />

are seasonal averages, calculated for samples collected between May and October in<br />

Revelstoke and Kinbasket Reservoir, April and November in Arrow and Kootenay Lake,<br />

April and October in Alouette and June and October in Wahleach. Biomass is in units of<br />

µg/L.<br />

Density<br />

(ind/L)<br />

Biomass<br />

µg/L<br />

Reservoir Total Daphnia spp. Daphnia<br />

%<br />

Fertilised Mysids<br />

Revelstoke 6.41 0.72 11<br />

Kinbasket 11.12 1.20 11<br />

Upper Arrow 12.93 1.05 8 + +<br />

Lower Arrow 23.18 2.08 9 +<br />

Kootenay North 37.15 2.12 6 + +<br />

Kootenay South 28.94 2.28 8 + +<br />

Alouette 25.03 2.51 10 +<br />

Wahleach 9.67 4.95 51 +<br />

Revelstoke 24.54 12.30 50<br />

Kinbasket 32.30 14.70 46<br />

Upper Arrow 38.63 19.02 49 + +<br />

Lower Arrow 79.11 46.58 59 +<br />

Kootenay North 84.76 28.54 34 + +<br />

Kootenay South 78.84 32.89 42 + +<br />

Alouette 142.89 64.30 45 +<br />

Wahleach 104.40 72.80 70 +<br />

Revelstoke Reservoir has a moderate zooplankton density in comparison to several other<br />

oligotrophic <strong>BC</strong> lakes and reservoirs (Fig. 20). May-October zooplankton density in Revelstoke<br />

Reservoir averaged 6.41 individuals/L. This is two times lower than in Kinbasket or the Upper<br />

Arrow Lake with average densities of 11.12 individuals/L and 12.93 individuals/L respectively, and<br />

almost four times less than in the Lower Arrow or Alouette Lake with 23.18 individuals/L and<br />

25.03 individuals/L respectively. In both the North and South Arm of Kootenay Lake total<br />

zooplankton density was more than five folds higher than in Revelstoke Reservoir with 37.15<br />

individuals/L and 28.94 individuals/L (Table 11, Fig. 20). In 2009 among the studied lakes and<br />

reservoirs total zooplankton density was the lowest in Revelstoke Reservoir, however the<br />

percentage of total zooplankton density accounted for by Daphnia in the Revelstoke Reservoir<br />

was the highest among those lakes (11%) except in Wahleach Reservoir where Daphnia made<br />

up 51% of the total zooplankton density (Fig. 21). There is a similar pattern with the biomass. In<br />

2009 Daphnia biomass in Revelstoke Reservoir was the lowest among the studied lakes, but at<br />

the same time Daphnia biomass in Revelstoke Reservoir comprised 50% of the total zooplankton<br />

biomass, which was higher than in the other lakes except in Wahleach Reservoir and Lower<br />

Arrow where it comprised 70% and 59% respectively (Table 11, Fig. 21).<br />

9


6. Conclusions<br />

Kinbasket Reservoir is oligotrophic with a moderate zooplankton density in comparison to several<br />

other oligotrophic <strong>BC</strong> lakes and reservoirs. The zooplankton community is diverse and has a<br />

relatively stable cladoceran population with a moderate proportion of Daphnia spp., considered as<br />

a favourable food for kokanee. Density and biomass of Daphnia spp. increased slightly in 2009 in<br />

comparison to the previous year. Zooplankton composition is more or less uniform and overall<br />

total zooplankton density and biomass, as well as that of copepods, cladocerans, and Daphnia do<br />

not differ much from station to station.<br />

In comparison to historical data it is notable that zooplankton abundance in Kinbasket Reservoir<br />

has increased over the time period. These changes have likely been due to combination of<br />

climatic changes, predation, nutrients availability, grazeable algae and shifting from riverine<br />

(before impoundment) toward the lake habitat.<br />

Revelstoke Reservoir is also oligotrophic with a moderate zooplankton density in comparison to<br />

several other oligotrophic <strong>BC</strong> lakes and reservoirs. The zooplankton community is diverse and<br />

has a relatively stable cladoceran population. Density and biomass of Daphnia spp. did not<br />

change much during the 2009 season.<br />

In comparison to historical data it is notable that zooplankton abundance in Revelstoke Reservoir<br />

has increased over the time period in comparison to data from 1984 and 1986. On the other<br />

hand, a decrease of total zooplankton and Daphnia density and biomass was noticed in the<br />

period from 2003 to 2009. These changes have likely been due to combination of climatic<br />

changes, predation, nutrients availability, grazeable algae and especially of shifting from riverine<br />

(before impoundment) toward lake habitat.<br />

7. References<br />

Brooks, J.L. 1959. Cladocera. pp. 586-656. In Edmondson, W.T. (Ed.) Fresh-<strong>Water</strong> Biology, 2nd<br />

Ed. John Wiley and Sons, New York.<br />

Division of Applied Biology, <strong>BC</strong> Research, 1977. Limnology of Arrow, McNaughton, Upper<br />

Campbell and Williston Lakes. <strong>BC</strong> <strong>Hydro</strong>, <strong>Project</strong> No. 1-05-807.<br />

Fleming, J.O. and H.A. Smith, 1988. Revelstoke Reservoir Aquatic Monitoring Program, 1986<br />

Progress Report. <strong>BC</strong> <strong>Hydro</strong>, Report No. ER 88-03.<br />

McCauley, E. 1984. The estimation of the abundance and biomass of zooplankton in samples. In:<br />

A Manual on Methods for the Assessment of Secondary Productivity in Fresh <strong>Water</strong>s.<br />

Pennak, R.W. 1989. Fresh-<strong>Water</strong> Invertebrates of the United States: Protozoa to Mollusca. 3rd<br />

Ed., John Wiley and Sons, New York, 628 p.<br />

Sandercock, G.A. and Scudder, G.G.E. 1996. Key to the Species of Freshwater Calanoid<br />

Copepods of British <strong>Columbia</strong>. Department of Zoology, U<strong>BC</strong> Vancouver, <strong>BC</strong>.<br />

Schindler, E.U., H. Andrusak, K.I. Ashley, G.F. Andrusak, L. Vidmanic, D. Sebastian, G. Scholten,<br />

P. Woodruff, J. Stockner, F. Pick, L.M. Ley and P.B. Hamilton. 2007a. Kootenay Lake<br />

Fertilization Experiment, Year 14 (North Arm) and Year 2 (South Arm) (2005) Report.<br />

Fisheries <strong>Project</strong> Report No. RD 122, Ministry of Environment, Province of British<br />

<strong>Columbia</strong>.<br />

10


Schindler, E.U., L. Vidmanic, D. Sebastian, H. Andrusak, G. Scholten, P. Woodruff, J. Stockner,<br />

K.I. Ashley and G.F. Andrusak. 2007b. Arrow Lakes Reservoir Fertilization Experiment,<br />

Year 6 and 7 (2004 and 2005) Report. Fisheries <strong>Project</strong> Report No. RD 121, Ministry of<br />

Environment, Province of British <strong>Columbia</strong>.<br />

Watson, T.A. 1985. Revelstoke <strong>Project</strong>, <strong>Water</strong> Quality Studies 1978-1984. <strong>BC</strong> <strong>Hydro</strong>, Report No.<br />

ESS-108.<br />

Wilson, M.S. 1959. Free-living copepoda: Calanoida. pp. 738-794. In Edmondson, W.T. (Ed.)<br />

Fresh-<strong>Water</strong> Biology, 2nd Ed. John Wiley and Sons, New York.<br />

11


density (#/L)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1972<br />

Mica Dam<br />

1973<br />

1974<br />

1975<br />

1976<br />

1977<br />

Kinbasket Reservoir (Mica Forebay)<br />

1978<br />

1979<br />

1980<br />

1981<br />

1982<br />

Figure 1. Zooplankton density 1977-2009 at Mica Forebay in Kinbasket Reservoir.<br />

1983<br />

1984<br />

1985<br />

1986<br />

1990<br />

2003<br />

2004<br />

2005<br />

2006<br />

2007<br />

2008<br />

2009<br />

12


density (ind/L)<br />

density %<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

other Cladocera<br />

Daphnia<br />

Copepoda<br />

2003 2004 2005 2008 2009<br />

Copepoda Daphnia other Cladocera<br />

2003 2004 2005 2008 2009<br />

Figure 2. Seasonal average zooplankton density in Kinbasket Reservoir 2003-2009.<br />

13


density (#/L)<br />

density (#/L)<br />

density (#/L)<br />

density (#/L)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

40<br />

30<br />

20<br />

10<br />

0<br />

40<br />

30<br />

20<br />

10<br />

0<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Jun-03<br />

Jun-03<br />

Jun-03<br />

Jun-03<br />

Canoe Reach<br />

Aug-03<br />

Aug-03<br />

Oct-03<br />

Mica Forebay<br />

Oct-03<br />

May-04<br />

May-04<br />

Colombia Reach<br />

Aug-03<br />

Oct-03<br />

Wood Arm<br />

Aug-03<br />

Oct-03<br />

May-04<br />

May-04<br />

Jul-04<br />

Jul-04<br />

Jul-04<br />

Jul-04<br />

Sep-04<br />

Sep-04<br />

Sep-04<br />

Sep-04<br />

Jun-05<br />

Jun-05<br />

Jun-05<br />

Jun-05<br />

Aug-05<br />

Aug-05<br />

Aug-05<br />

Aug-05<br />

Oct-05<br />

Oct-05<br />

Oct-05<br />

May-08<br />

May-08<br />

May-08<br />

other Cladocera<br />

Daphnia<br />

Copepoda<br />

Figure 3. Density of cladoceran and copepod zooplankton in Kinbasket Reservoir in 2003-<br />

2009.<br />

Oct-05<br />

May-08<br />

Jul-08<br />

Jul-08<br />

Jul-08<br />

Jul-08<br />

Sep-08<br />

Sep-08<br />

Sep-08<br />

Sep-08<br />

Jun-09<br />

Jun-09<br />

Jun-09<br />

Jun-09<br />

Aug-09<br />

Aug-09<br />

Aug-09<br />

Aug-09<br />

Oct-09<br />

Oct-09<br />

Oct-09<br />

Oct-09<br />

14


composition %<br />

composition %<br />

composition %<br />

composition %<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Canoe Reach<br />

Copepoda Daphnia Other Cladocera<br />

2003 2004 2005 2008 2009<br />

Mica Forebay<br />

2003 2004 2005 2008 2009<br />

Colombia Reach<br />

2003 2004 2005 2008 2009<br />

Wood Arm<br />

2003 2004 2005 2008 2009<br />

Figure 4. Seasonal average % of zooplankton density composition at four stations in<br />

Kinbasket Reservoir in 2003-2009.<br />

15


iomass (ug/L)<br />

biomass %<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

2003 2004 2005 2008 2009<br />

Copepoda Daphnia other Cladocera<br />

2003 2004 2005 2008 2009<br />

Figure 5. Seasonal average zooplankton biomass in Kinbasket Reservoir 2003-2009.<br />

16


iomass (�g/L)<br />

biomass (�g/L)<br />

biomass (�g/L)<br />

biomass (�g/L)<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Jun-03<br />

Jun-03<br />

Jun-03<br />

Jun-03<br />

Canoe Reach<br />

Aug-03<br />

Aug-03<br />

Oct-03<br />

Mica Forebay<br />

Oct-03<br />

May-04<br />

May-04<br />

Colombia Reach<br />

Aug-03<br />

Oct-03<br />

Wood Arm<br />

Aug-03<br />

Oct-03<br />

May-04<br />

May-04<br />

Jul-04<br />

Jul-04<br />

Jul-04<br />

Jul-04<br />

Sep-04<br />

Sep-04<br />

Sep-04<br />

Sep-04<br />

Jun-05<br />

Jun-05<br />

Jun-05<br />

Jun-05<br />

other Cladocera<br />

Daphnia<br />

Copepoda<br />

Figure 6. Biomass of cladoceran and copepod zooplankton in Kinbasket Reservoir in<br />

2003-2009.<br />

Aug-05<br />

Aug-05<br />

Aug-05<br />

Aug-05<br />

Oct-05<br />

Oct-05<br />

Oct-05<br />

Oct-05<br />

May-08<br />

May-08<br />

May-08<br />

May-08<br />

Jul-08<br />

Jul-08<br />

Jul-08<br />

Jul-08<br />

Sep-08<br />

Sep-08<br />

Sep-08<br />

Sep-08<br />

Jun-09<br />

Jun-09<br />

Jun-09<br />

Jun-09<br />

Aug-09<br />

Aug-09<br />

Aug-09<br />

Aug-09<br />

Oct-09<br />

Oct-09<br />

Oct-09<br />

Oct-09<br />

17


composition %<br />

composition %<br />

composition %<br />

composition %<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Canoe Reach<br />

Mica Forebay<br />

Copepoda Daphnia Other Cladocera<br />

2003 2004 2005 2008 2009<br />

2003 2004 2005 2008 2009<br />

Colombia Reach<br />

Wood Arm<br />

2003 2004 2005 2008 2009<br />

2003 2004 2005 2008 2009<br />

Figure 7. Seasonal average % of zooplankton biomass composition at four stations in<br />

Kinbasket Reservoir in 2003-2009.<br />

18


# of eggs per gravid female<br />

# of eggs per gravid female<br />

# of eggs per gravid female<br />

# of eggs per gravid female<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Jun-03<br />

Jun-03<br />

Jun-03<br />

Jun-03<br />

Canoe Reach<br />

Aug-03<br />

Aug-03<br />

Oct-03<br />

Mica Forebay<br />

Oct-03<br />

May-04<br />

May-04<br />

Colombia Reach<br />

Aug-03<br />

Wood Arm<br />

Aug-03<br />

Oct-03<br />

Oct-03<br />

May-04<br />

May-04<br />

Jul-04<br />

Jul-04<br />

Jul-04<br />

Jul-04<br />

Sep-04<br />

Sep-04<br />

Sep-04<br />

Sep-04<br />

Jun-05<br />

Jun-05<br />

Jun-05<br />

Jun-05<br />

# of eggs/grav.fem.<br />

prop.grav.fem.<br />

Figure 8. Fecundity features of Diacyclops bicuspidatus in Kinbasket Reservoir in 2003-<br />

2009.<br />

Aug-05<br />

Aug-05<br />

Aug-05<br />

Aug-05<br />

Oct-05<br />

Oct-05<br />

Oct-05<br />

Oct-05<br />

May-08<br />

May-08<br />

May-08<br />

May-08<br />

Jul-08<br />

Jul-08<br />

Jul-08<br />

Jul-08<br />

Sep-08<br />

Sep-08<br />

Sep-08<br />

Sep-08<br />

Jun-09<br />

Jun-09<br />

Jun-09<br />

Jun-09<br />

Aug-09<br />

Aug-09<br />

Aug-09<br />

Aug-09<br />

Oct-09<br />

Oct-09<br />

Oct-09<br />

Oct-09<br />

0<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

proportion of gavid female<br />

proportion of gavid female<br />

proportion of gavid female<br />

proportion of gavid female<br />

19


# of eggs per gravid female<br />

# of eggs per gravid female<br />

# of eggs per gravid female<br />

# of eggs per gravid female<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Jun-03<br />

Jun-03<br />

Jun-03<br />

Jun-03<br />

Canoe Reach<br />

Aug-03<br />

Aug-03<br />

Aug-03<br />

Wood Arm<br />

Aug-03<br />

Oct-03<br />

Mica Forebay<br />

Oct-03<br />

Oct-03<br />

Oct-03<br />

May-04<br />

May-04<br />

Colombia Reach<br />

May-04<br />

May-04<br />

Jul-04<br />

Jul-04<br />

Jul-04<br />

Jul-04<br />

Sep-04<br />

Sep-04<br />

Sep-04<br />

Sep-04<br />

# of eggs/grav.fem.<br />

prop.grav.fem.<br />

Jun-05<br />

Jun-05<br />

Jun-05<br />

Jun-05<br />

Figure 9. Fecundity features of Daphnia spp. in Kinbasket Reservoir in 2003-2009.<br />

Aug-05<br />

Aug-05<br />

Aug-05<br />

Aug-05<br />

Oct-05<br />

Oct-05<br />

Oct-05<br />

Oct-05<br />

May-08<br />

May-08<br />

May-08<br />

May-08<br />

Jul-08<br />

Jul-08<br />

Jul-08<br />

Jul-08<br />

Sep-08<br />

Sep-08<br />

Sep-08<br />

Sep-08<br />

Jun-09<br />

Jun-09<br />

Jun-09<br />

Jun-09<br />

Aug-09<br />

Aug-09<br />

Aug-09<br />

Aug-09<br />

Oct-09<br />

Oct-09<br />

Oct-09<br />

Oct-09<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

proportion of gavid female<br />

proportion of gavid female<br />

proportion of gavid female<br />

proportion of gavid female<br />

20


density (#/L)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

1982<br />

Revelstoke Dam<br />

1983<br />

1984<br />

Revelstoke Reservoir (Dam Forebay)<br />

1985<br />

1986<br />

Figure 10. Zooplankton density 1977- 2009 at Rev Forebay in Revelstoke Reservoir.<br />

1990<br />

2003<br />

2004<br />

2005<br />

2006<br />

2007<br />

2008<br />

2009<br />

21


density (ind/L)<br />

density %<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Copepoda Daphnia other Cladocera<br />

2003 2008 2009<br />

2003 2008 2009<br />

Figure 11. Seasonal average composition of zooplankton density in Revelstoke Reservoir<br />

in 2003, 2008 and 2009.<br />

22


iomass (ug/L)<br />

biomass %<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Copepoda Daphnia other Cladocera<br />

2003 2008 2009<br />

2003 2008 2009<br />

Figure 12. Seasonal average composition of zooplankton biomass in Revelstoke<br />

Reservoir in 2003, 2008 and 2009.<br />

23


iomass (�g/L)<br />

density (#/L)<br />

12<br />

10<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0<br />

May-03<br />

May-03<br />

Jun-03<br />

Jun-03<br />

Jul-03<br />

Jul-03<br />

Aug-03<br />

Aug-03<br />

Daphnia Other Cladocera Copepoda<br />

Sep-03<br />

Sep-03<br />

Oct-03<br />

Oct-03<br />

May-08<br />

May-08<br />

Jun-08<br />

Jun-08<br />

Figure 13. Monthly average zooplankton density (top) and biomass (bottom) in Revelstoke<br />

Reservoir in 2003, 2008 and 2009.<br />

Jul-08<br />

Jul-08<br />

Aug-08<br />

Aug-08<br />

Sep-08<br />

Sep-08<br />

Oct-08<br />

Oct-08<br />

May-09<br />

May-09<br />

Jun-09<br />

Jun-09<br />

Jul-09<br />

Jul-09<br />

Aug-09<br />

Aug-09<br />

Sep-09<br />

Sep-09<br />

Oct-09<br />

Oct-09<br />

24


density (#/L)<br />

density (#/L)<br />

density (#/L)<br />

20<br />

15<br />

10<br />

5<br />

0<br />

20<br />

15<br />

10<br />

5<br />

0<br />

20<br />

15<br />

10<br />

5<br />

0<br />

May-03<br />

May-03<br />

May-03<br />

Rev Upper<br />

Jun-03<br />

Jul-03<br />

Aug-03<br />

Rev Middle<br />

Jun-03<br />

Jul-03<br />

Aug-03<br />

Rev Forebay<br />

Jun-03<br />

Jul-03<br />

Aug-03<br />

Sep-03<br />

Sep-03<br />

Sep-03<br />

Oct-03<br />

Oct-03<br />

Oct-03<br />

May-08<br />

May-08<br />

May-08<br />

Jun-08<br />

Jun-08<br />

Jun-08<br />

Jul-08<br />

Jul-08<br />

Aug-08<br />

Aug-08<br />

Sep-08<br />

Sep-08<br />

Oct-08<br />

Oct-08<br />

May-09<br />

May-09<br />

other Cladocera<br />

Daphnia<br />

Copepoda<br />

Figure 14. Zooplankton density at three stations in Revelstoke Reservoir 2003, 2008 and<br />

2009.<br />

Jul-08<br />

Aug-08<br />

Sep-08<br />

Oct-08<br />

May-09<br />

Jun-09<br />

Jun-09<br />

Jun-09<br />

Jul-09<br />

Jul-09<br />

Jul-09<br />

Aug-09<br />

Aug-09<br />

Aug-09<br />

Sep-09<br />

Sep-09<br />

Sep-09<br />

Oct-09<br />

Oct-09<br />

Oct-09<br />

25


iomass (�/L)<br />

biomass (�/L)<br />

biomass (�/L)<br />

150<br />

100<br />

50<br />

0<br />

150<br />

100<br />

50<br />

0<br />

150<br />

100<br />

50<br />

0<br />

May-03<br />

May-03<br />

May-03<br />

Rev Upper<br />

Jun-03<br />

Jul-03<br />

Rev Middle<br />

Jun-03<br />

Jul-03<br />

Rev Forbay<br />

Jun-03<br />

Jul-03<br />

Aug-03<br />

Aug-03<br />

Aug-03<br />

Sep-03<br />

Sep-03<br />

Sep-03<br />

Oct-03<br />

Oct-03<br />

Oct-03<br />

May-08<br />

May-08<br />

May-08<br />

Jun-08<br />

Jun-08<br />

Jun-08<br />

Jul-08<br />

Jul-08<br />

Aug-08<br />

Aug-08<br />

Sep-08<br />

Sep-08<br />

Oct-08<br />

Oct-08<br />

May-09<br />

May-09<br />

other Cladocera<br />

Daphnia<br />

Copepoda<br />

Figure 15. Zooplankton biomass at three stations in Revelstoke Reservoir 2003, 2008 and<br />

2009.<br />

Jul-08<br />

Aug-08<br />

Sep-08<br />

Oct-08<br />

May-09<br />

Jun-09<br />

Jun-09<br />

Jun-09<br />

Jul-09<br />

Jul-09<br />

Jul-09<br />

Aug-09<br />

Aug-09<br />

Aug-09<br />

Sep-09<br />

Sep-09<br />

Sep-09<br />

Oct-09<br />

Oct-09<br />

Oct-09<br />

26


# of eggs per gravid female<br />

# of eggs per gravid female<br />

# of eggs per gravid female<br />

40<br />

30<br />

20<br />

10<br />

0<br />

40<br />

30<br />

20<br />

10<br />

0<br />

40<br />

30<br />

20<br />

10<br />

0<br />

May-03<br />

Rev Upper<br />

Jun-03<br />

Jul-03<br />

Rev Middle<br />

May-03<br />

Jun-03<br />

Jul-03<br />

Rev Forebay<br />

May-03<br />

Jun-03<br />

Jul-03<br />

Aug-03<br />

Aug-03<br />

Aug-03<br />

Sep-03<br />

Sep-03<br />

Sep-03<br />

Oct-03<br />

Oct-03<br />

Oct-03<br />

May-08<br />

May-08<br />

May-08<br />

Jun-08<br />

Jun-08<br />

Jun-08<br />

#of eggs/grav.fem.<br />

prop.grav.fem.<br />

Jul-08<br />

Jul-08<br />

Jul-08<br />

Aug-08<br />

Aug-08<br />

Figure 16. Fecundity features of Diacyclops bicuspidatus in Revelstoke Reservoir in 2003,<br />

2008 and 2009.<br />

Aug-08<br />

Sep-08<br />

Sep-08<br />

Sep-08<br />

Oct-08<br />

Oct-08<br />

Oct-08<br />

May-09<br />

May-09<br />

May-09<br />

Jun-09<br />

Jun-09<br />

Jun-09<br />

Jul-09<br />

Jul-09<br />

Jul-09<br />

Aug-09<br />

Aug-09<br />

Aug-09<br />

Sep-09<br />

Sep-09<br />

Sep-09<br />

Oct-09<br />

Oct-09<br />

Oct-09<br />

0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

proportio of gravid female<br />

proportio of gravid female<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

proportio of gravid female<br />

27


# of eggs per gravid female<br />

# of eggs per gravid female<br />

# of eggs per gravid female<br />

8<br />

6<br />

4<br />

2<br />

0<br />

8<br />

6<br />

4<br />

2<br />

0<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Rev Upper<br />

May-03<br />

May-03<br />

Jun-03<br />

Jul-03<br />

Rev Middle<br />

Jun-03<br />

Jul-03<br />

Rev Forebay<br />

May-03<br />

Jun-03<br />

Jul-03<br />

Aug-03<br />

Aug-03<br />

Aug-03<br />

Sep-03<br />

Sep-03<br />

Sep-03<br />

Oct-03<br />

Oct-03<br />

Oct-03<br />

May-08<br />

May-08<br />

May-08<br />

Jun-08<br />

Jun-08<br />

Jun-08<br />

Jul-08<br />

Jul-08<br />

Jul-08<br />

Aug-08<br />

Aug-08<br />

Sep-08<br />

Sep-08<br />

Oct-08<br />

Oct-08<br />

May-09<br />

May-09<br />

#of eggs/grav.fem.<br />

prop.grav.fem.<br />

Figure 17. Fecundity features of Daphnia spp. in Revelstoke Reservoir in 2003, 2008 and<br />

2009.<br />

Aug-08<br />

Sep-08<br />

Oct-08<br />

May-09<br />

Jun-09<br />

Jun-09<br />

Jun-09<br />

Jul-09<br />

Jul-09<br />

Jul-09<br />

Aug-09<br />

Aug-09<br />

Aug-09<br />

Sep-09<br />

Sep-09<br />

Sep-09<br />

Oct-09<br />

Oct-09<br />

Oct-09<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

proportio of gravid female<br />

proportio of gravid female<br />

proportio of gravid female<br />

28


density (ind/L)<br />

biomass (ug/L)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Upper Arrow<br />

Lower Arrow<br />

total Daphnia<br />

Kootenay North<br />

Kootenay South<br />

Kinbasket<br />

total Daphnia<br />

Figure 18. Seasonal average total zooplankton and Daphnia density and biomass in some<br />

<strong>BC</strong> Lakes in 2008.<br />

29


% - Daphnia density<br />

% - Daphnia biomass<br />

15<br />

10<br />

5<br />

0<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Upper Arrow<br />

Upper Arrow<br />

Lower Arrow<br />

Lower Arrow<br />

Kootenay<br />

North<br />

Kootenay North<br />

Kootenay<br />

South<br />

Kootenay<br />

South<br />

Figure 19. Percentage of Daphnia density and biomass in total zooplankton in some <strong>BC</strong><br />

Lakes in 2008.<br />

Kinbasket<br />

Kinbasket<br />

30


density (ind/L)<br />

biomass (ug/L)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

total Daphnia<br />

total Daphnia<br />

Upper Arrow<br />

Lower Arrow<br />

Kootenay North<br />

Kootenay South<br />

Alouette<br />

Wahleach<br />

Coquitlam<br />

Kinbasket<br />

Revelstoke<br />

Figure 20. Seasonal average total zooplankton and Daphnia density and biomass in some<br />

<strong>BC</strong> Lakes in 2008.<br />

31


% - Daphnia density<br />

% - Daphnia biomass<br />

40<br />

30<br />

20<br />

10<br />

0<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Upper Arrow<br />

Upper Arrow<br />

Lower Arrow<br />

Lower Arrow<br />

Kootenay North<br />

Kootenay North<br />

Kootenay South<br />

Kootenay South<br />

Figure 21. Percentage of Daphnia density and biomass in total zooplankton in some <strong>BC</strong><br />

Lakes in 2008.<br />

Alouette<br />

Alouette<br />

Wahleach<br />

Wahleach<br />

Coquitlam<br />

Coquitlam<br />

Kinbasket<br />

Kinbasket<br />

Revelstoke<br />

Revelstoke<br />

32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!