17.01.2013 Views

Effects of Glucose and Diabetes on Binding of Naloxone and ...

Effects of Glucose and Diabetes on Binding of Naloxone and ...

Effects of Glucose and Diabetes on Binding of Naloxone and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

NALOXONE AND DIHYDROMORPHINE BINDING<br />

TABLE 4<br />

Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose, 3-O-methylglucose, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

fructose <strong>on</strong> specific [ 3 H]nalox<strong>on</strong>e* binding to brain membranes<br />

from streptozocin-induced diabetic ICR mice<br />

Sugar (mg/dl) (nM) Bmax(pmol/g)<br />

N<strong>on</strong>e<br />

<str<strong>on</strong>g>Glucose</str<strong>on</strong>g> (400)<br />

3-O-methylglucose (431)<br />

Fructose (400)<br />

0.97 ± 0.05<br />

1.16 ± 0.05t<br />

1.04 ± 0.06<br />

1.09 ± 0.04<br />

8.21 ± 0.52<br />

8.56 ± 0.50<br />

8.52 ± 0.54<br />

8.21 ± 0.47<br />

Bmax, maximum binding.<br />

*Sp act = 60 Ci/mmol (batch 32).<br />

fSignificantly different from c<strong>on</strong>trol at 95% c<strong>on</strong>fidence level (Dunnett's<br />

test).<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interest to determine whether the membrane receptors<br />

from diabetic mice displayed a change in sensitivity to the<br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sugars to the incubati<strong>on</strong> medium. However, the<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose, fructose, <str<strong>on</strong>g>and</str<strong>on</strong>g> 3-O-methylglucose <strong>on</strong> nalox<strong>on</strong>e<br />

binding to membranes from STZ-D mice (Table 4)<br />

were not substantially different from their effects <strong>on</strong> the binding<br />

parameters for nalox<strong>on</strong>e in membranes from normal ICR<br />

mice (Table 2).<br />

DISCUSSION<br />

Opiate-receptor-binding studies have shown the presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> both high- <str<strong>on</strong>g>and</str<strong>on</strong>g> low-affinity binding sites for [ 3 H]nalox<strong>on</strong>e<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> [ 3 H]dihydromorphine in brain membranes (17,18). The<br />

in vivo administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> naloxaz<strong>on</strong>e was reported to selectively<br />

inhibit binding to the high-affinity sites <str<strong>on</strong>g>and</str<strong>on</strong>g> to markedly<br />

decrease the antinociceptive potency <str<strong>on</strong>g>of</str<strong>on</strong>g> morphine (19).<br />

Thus, it appeared that the high-affinity binding sites were<br />

primarily involved in mediating the analgesic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> morphine.<br />

Because diabetes or the acute administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose<br />

or fructose have also been shown to decrease the<br />

antinociceptive potency <str<strong>on</strong>g>of</str<strong>on</strong>g> morphine (2), it was <str<strong>on</strong>g>of</str<strong>on</strong>g> interest to<br />

determine whether diabetes or the direct additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> various<br />

sugars to the binding assay would affect binding parameters<br />

for the high-affinity opiate binding sites. In similar studies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the low-affinity binding site for [ 3 H]nalox<strong>on</strong>e, c<strong>on</strong>centrati<strong>on</strong>dependent<br />

increases in the Kd <str<strong>on</strong>g>and</str<strong>on</strong>g> Bmax caused by the additi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> glucose to incubati<strong>on</strong>s c<strong>on</strong>taining Na + were found<br />

(8).<br />

In the study <str<strong>on</strong>g>of</str<strong>on</strong>g> the low-affinity sites, Na + itself increased<br />

the affinity for [ 3 H]nalox<strong>on</strong>e without affecting the maximum<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> binding sites (8). Opposite effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Na + were<br />

observed in this study <str<strong>on</strong>g>of</str<strong>on</strong>g> the high-affinity sites, in which sodium<br />

increased the Bmax without affecting the K6 for nalox<strong>on</strong>e.<br />

A similar effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Na + (25 mM) <strong>on</strong> the high-affinity binding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nalox<strong>on</strong>e to rat brain membranes at 25°C has been reported<br />

(10). Thus, the high-affinity sites for nalox<strong>on</strong>e in<br />

mouse brain membranes appear to resp<strong>on</strong>d to Na + similarly<br />

to those in rat brain membranes, but differently from the<br />

lower-affinity binding sites in mouse brain membranes (8).<br />

Like the low-affinity binding sites for [ 3 H]nalox<strong>on</strong>e (8), the<br />

high-affinity sites displayed c<strong>on</strong>centrati<strong>on</strong>-dependent decreases<br />

in affinity with increasing c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose<br />

in vitro. However, glucose did not significantly affect the<br />

maximum number <str<strong>on</strong>g>of</str<strong>on</strong>g> high-affinity binding sites. Similar results<br />

were obtained with the high-affinity binding <str<strong>on</strong>g>of</str<strong>on</strong>g> the ag<strong>on</strong>ist<br />

[ 3 H]dihydromorphine, <str<strong>on</strong>g>and</str<strong>on</strong>g> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose <strong>on</strong> the<br />

binding <str<strong>on</strong>g>of</str<strong>on</strong>g> both lig<str<strong>on</strong>g>and</str<strong>on</strong>g>s appeared to be independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Na + .<br />

Although it was reported that brain membranes from diabetic<br />

(db/db) mice had a lower affinity for nalox<strong>on</strong>e than<br />

membranes from the corresp<strong>on</strong>ding c<strong>on</strong>trols (8), no difference<br />

in the high-affinity binding <str<strong>on</strong>g>of</str<strong>on</strong>g> nalox<strong>on</strong>e was observed<br />

between these two groups in this study. STZ-D also did not<br />

affect the high-affinity binding <str<strong>on</strong>g>of</str<strong>on</strong>g> nalox<strong>on</strong>e or significantly<br />

modify the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose, 3-O-methylglucose, or fructose<br />

<strong>on</strong> that binding. C<strong>on</strong>sequently, the previously reported decreased<br />

potency <str<strong>on</strong>g>of</str<strong>on</strong>g> morphine in diabetic animals does<br />

not appear to be due to an alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> opiate receptors by<br />

the diabetic state (2). The hyperglycemia associated with the<br />

diabetic state may c<strong>on</strong>tribute to the decreased potency<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> morphine observed in vivo (2). The glucose-induced<br />

decreases in opiate-receptor affinity were moderate, however,<br />

compared with the marked decrease in the antinociceptive<br />

potency <str<strong>on</strong>g>of</str<strong>on</strong>g> morphine previously observed in genetically<br />

diabetic mice (2). To account for the difference<br />

in magnitude between the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose in vitro <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

in vivo, the modest effect <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose <strong>on</strong> binding in vitro<br />

may be due solely to some physicochemical mechanism,<br />

whereas the more marked effect <str<strong>on</strong>g>of</str<strong>on</strong>g> hyperglycemia in vivo<br />

may also involve the metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose, an interacti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> glucose with i<strong>on</strong> transport, or an interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose<br />

with endogenous opioid peptides.<br />

The finding by Sim<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Dewey (2), that the n<strong>on</strong>metabolizable<br />

3-O-methylglucose did not significantly affect the<br />

potency <str<strong>on</strong>g>of</str<strong>on</strong>g> morphine in vivo lends support to the possibility<br />

that the significant effect <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose in vivo may involve its<br />

metabolism. Recent evidence that hyperglycemia significantly<br />

affects the transport <str<strong>on</strong>g>of</str<strong>on</strong>g> Na + into the central nervous<br />

system (20) indicates the possibility that the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose<br />

in vivo may be sec<strong>on</strong>dary to changes in the dispositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this i<strong>on</strong>. Changes in intracellular Na + c<strong>on</strong>centrati<strong>on</strong>s appear<br />

to regulate opiate ag<strong>on</strong>ist binding to cultured cells (21). In<br />

additi<strong>on</strong>, STZ-D has recently been reported to decrease pain<br />

tolerance <str<strong>on</strong>g>and</str<strong>on</strong>g> p-endorphin levels in rats (22), <str<strong>on</strong>g>and</str<strong>on</strong>g> it has been<br />

postulated that the attenuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the analgesic effect <str<strong>on</strong>g>of</str<strong>on</strong>g> morphine<br />

in diabetic rats may be related to reduced hypothalamic<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> p-endorphin (23). Diabetic C57BL/KsJ mice<br />

were reported to exhibit neur<strong>on</strong>al degenerati<strong>on</strong> in the arcuate<br />

nucleus <str<strong>on</strong>g>of</str<strong>on</strong>g> the hypothalamus (24), an area rich in p-endorphin-c<strong>on</strong>taining<br />

neur<strong>on</strong>s (25). In view <str<strong>on</strong>g>of</str<strong>on</strong>g> the hypothesis that<br />

at least part <str<strong>on</strong>g>of</str<strong>on</strong>g> the analgesic acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> morphine may be<br />

mediated by the release <str<strong>on</strong>g>of</str<strong>on</strong>g> endogenous opioid peptides,<br />

including p-endorphin (26), it is possible that part <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

decreased antinociceptive resp<strong>on</strong>se in diabetic animals<br />

could involve changes in p-endorphin. Other studies, however,<br />

have not found significant changes in hypothalamic pendorphin<br />

levels in STZ-D rats (27) or diabetic C57BL/KsJ<br />

mice (28). In additi<strong>on</strong>, studies in isolated tissues have dem<strong>on</strong>strated<br />

a direct inhibitory effect <str<strong>on</strong>g>of</str<strong>on</strong>g> hyperglycemia <strong>on</strong> opiate<br />

potency (4).<br />

In c<strong>on</strong>trast to glucose, fructose <str<strong>on</strong>g>and</str<strong>on</strong>g> 3-O-methylglucose<br />

failed to have a significant effect <strong>on</strong> high-affinity nalox<strong>on</strong>e<br />

binding, although previous studies in mice indicated that the<br />

intraperit<strong>on</strong>eal administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fructose produced a c<strong>on</strong>siderably<br />

greater attenuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> morphine-induced antinocicepti<strong>on</strong><br />

than glucose (2,29). Therefore, it is not likely that<br />

the fructose-induced decrease in opiate potency previously<br />

1176 DIABETES, VOL. 36, OCTOBER 1987

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!