17.01.2013 Views

Effects of Glucose and Diabetes on Binding of Naloxone and ...

Effects of Glucose and Diabetes on Binding of Naloxone and ...

Effects of Glucose and Diabetes on Binding of Naloxone and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Glucose</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Diabetes</str<strong>on</strong>g><br />

<strong>on</strong> <strong>Binding</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nalox<strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Dihydromorphine to Opiate<br />

Receptors in Mouse Brain<br />

DAVID A. BRASE, YI-HONG HAN, AND WILLIAM L DEWEY<br />

SUMMARY<br />

The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose <str<strong>on</strong>g>and</str<strong>on</strong>g> diabetes <strong>on</strong> the high-affinity<br />

l<str<strong>on</strong>g>of</str<strong>on</strong>g>entanil-displaceable opiate-receptor binding in<br />

mouse brain membranes were studied to determine if<br />

the attenuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> opiate acti<strong>on</strong>s by hyperglycemia<br />

previously observed in our laboratory was due to a<br />

modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> receptor affinity or number. With<br />

membranes from normal ICR mice, glucose (100-400<br />

mg/dl) caused small but significant c<strong>on</strong>centrati<strong>on</strong>dependent<br />

decreases in receptor affinities for<br />

[ 3 H]nalox<strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> [ 3 H]dihydromorphine, both in the<br />

absence <str<strong>on</strong>g>and</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 mM NaCI, without<br />

changing the maximum number <str<strong>on</strong>g>of</str<strong>on</strong>g> binding sites.<br />

Fructose <str<strong>on</strong>g>and</str<strong>on</strong>g> the n<strong>on</strong>metabolizable sugar<br />

3-O-methylglucose had intermediate effects <strong>on</strong><br />

nalox<strong>on</strong>e affinity in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> NaCI that were not<br />

significantly different from c<strong>on</strong>trol or from the effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> glucose. Similar results were obtained with brain<br />

membranes from streptozocin-induced diabetic mice.<br />

The binding affinity for [ 3 H]nalox<strong>on</strong>e in the presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NaCI was not affected by the inducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diabetes<br />

in ICR mice via streptozocin or in sp<strong>on</strong>taneously<br />

diabetic (db/db) C57BL/KsJ mice compared with<br />

their n<strong>on</strong>diabetic (m + /m + ) litter mates. These results<br />

indicate that the previously observed attenuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

opiate effects by glucose may be partly due to a<br />

glucose-induced decrease in opiate-receptor affinity.<br />

However, the much greater attenuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> morphine<br />

by fructose in vivo cannot be explained by this<br />

mechanism. <str<strong>on</strong>g>Diabetes</str<strong>on</strong>g> 36:1173-77, 1987<br />

As recently reviewed, studies in our laboratory have<br />

dem<strong>on</strong>strated antag<strong>on</strong>istic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose <strong>on</strong><br />

opiate acti<strong>on</strong>s in vivo <str<strong>on</strong>g>and</str<strong>on</strong>g> in vitro (1). The antinociceptive<br />

potency <str<strong>on</strong>g>of</str<strong>on</strong>g> morphine was decreased<br />

in several rodent models <str<strong>on</strong>g>of</str<strong>on</strong>g> hyperglycemia, including a sp<strong>on</strong>taneously<br />

diabetic strain <str<strong>on</strong>g>of</str<strong>on</strong>g> mice, streptozocin-induced diabetes<br />

(STZ-D), <str<strong>on</strong>g>and</str<strong>on</strong>g> acute glucose loading (2). C<strong>on</strong>versely,<br />

the inducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hypoglycemia in mice by fasting plus insulin<br />

treatment increased the potency <str<strong>on</strong>g>of</str<strong>on</strong>g> morphine in the tail-flick<br />

DIABETES, VOL. 36, OCTOBER 1987<br />

test (2). The inducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> physical dependence <strong>on</strong> morphine<br />

was also significantly decreased in STZ-D rats <str<strong>on</strong>g>and</str<strong>on</strong>g> genetically<br />

diabetic mice (3). Increasing c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose<br />

in vitro were found to decrease the potency <str<strong>on</strong>g>of</str<strong>on</strong>g> normorphine<br />

in the electrically stimulated guinea pig ileum <str<strong>on</strong>g>and</str<strong>on</strong>g> mouse<br />

vas deferens preparati<strong>on</strong>s (4). Furthermore, glucose attenuated<br />

the development <str<strong>on</strong>g>of</str<strong>on</strong>g> acute dependence in vitro in the<br />

guinea pig ileum (4). In a clinical study, Morley et al. (5)<br />

showed a significantly decreased pain tolerance in diabetic<br />

patients <str<strong>on</strong>g>and</str<strong>on</strong>g> in normal subjects loaded with glucose compared<br />

with normal fasted subjects <str<strong>on</strong>g>and</str<strong>on</strong>g> suggested that the<br />

painful neuropathy experienced by some diabetic patients<br />

might involve an interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose with the acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

endogenous opioid peptides.<br />

The sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> animals to the opioid antag<strong>on</strong>ist nalox<strong>on</strong>e<br />

has also been reported to be changed by hyperglycemia<br />

(6,7). Levine et al. (6) reported that both STZ-D mice <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

genetically diabetic C57BL/KsJ mice were markedly more<br />

sensitive to the nalox<strong>on</strong>e-induced suppressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> food intake<br />

than n<strong>on</strong>diabetic c<strong>on</strong>trols. This observati<strong>on</strong> was later c<strong>on</strong>firmed<br />

in STZ-D rats when they were tested in a novel cage<br />

but not when tested in their home cages, indicating a significant<br />

influence <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>ment <strong>on</strong> sensitivity to this effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nalox<strong>on</strong>e (7).<br />

Am<strong>on</strong>g the possible mechanisms for these observati<strong>on</strong>s<br />

could be a glucose-induced alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> opiate-receptor affinity<br />

or number. Lending support to the former hypothesis<br />

was the report that glucose at c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

300 mg/dl caused a c<strong>on</strong>centrati<strong>on</strong>-dependent decrease in<br />

mouse brain opiate-receptor affinity for [ 3 H]nalox<strong>on</strong>e in the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> NaCI (8). In the same experiments, however,<br />

glucose also caused a c<strong>on</strong>centrati<strong>on</strong>-dependent increase in<br />

From the Central Nervous System Divisi<strong>on</strong>, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmacology <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Toxicology, Medical College <str<strong>on</strong>g>of</str<strong>on</strong>g> Virginia, Virginia Comm<strong>on</strong>wealth University,<br />

Richm<strong>on</strong>d, Virginia.<br />

Address corresp<strong>on</strong>dence <str<strong>on</strong>g>and</str<strong>on</strong>g> reprint requests to Dr. William L. Dewey, Box<br />

613, MCV Stati<strong>on</strong>, Richm<strong>on</strong>d, VA 23298.<br />

Received for publicati<strong>on</strong> 22 September 1986 <str<strong>on</strong>g>and</str<strong>on</strong>g> accepted in revised form<br />

13 March 1987.<br />

1173


B / F<br />

.10<br />

.09<br />

.08<br />

.07<br />

.06<br />

.05<br />

.04<br />

.03<br />

.02<br />

.01<br />

4 6 8<br />

BOUND ( pmoles / g)<br />

10 12<br />

FIG. 1. Scatchard plots <str<strong>on</strong>g>of</str<strong>on</strong>g> l<str<strong>on</strong>g>of</str<strong>on</strong>g>entanil-displaceable binding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

[ 3 H]nalox<strong>on</strong>e (circles) <str<strong>on</strong>g>and</str<strong>on</strong>g> [ 3 H]dihydromorphine (DHM) (squares) to<br />

particulate fracti<strong>on</strong> from ICR mouse brains in the absence (closed<br />

symbols) <str<strong>on</strong>g>and</str<strong>on</strong>g> presence (open symbols) <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 mM NaCI at 25°C. Points<br />

<strong>on</strong> each line represent means <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 separate experiments. B/F,<br />

bound-to-free ratio.<br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> binding sites for [ 3 H]nalox<strong>on</strong>e (8). It was <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

interest to reinvestigate the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose <strong>on</strong> opiatereceptor<br />

binding, because the 5-100 nM range <str<strong>on</strong>g>of</str<strong>on</strong>g> nalox<strong>on</strong>e<br />

c<strong>on</strong>centrati<strong>on</strong>s used in that study would not be expected to<br />

yield binding parameters for the high-affinity opiate binding<br />

site in isolated brain membranes, which has a dissocia-<br />

TABLE 1<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose <strong>on</strong> l<str<strong>on</strong>g>of</str<strong>on</strong>g>entanil-displaceable [ 3 H]nalox<strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> NaCI<br />

3 H-labeled lig<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Nalox<strong>on</strong>e*<br />

Dihydromorphine<br />

<str<strong>on</strong>g>Glucose</str<strong>on</strong>g> (mg/dl)<br />

0<br />

100<br />

200<br />

400<br />

0<br />

100<br />

200<br />

400<br />

Minus NaCI<br />

1.06 ± 0.06<br />

1.13 ± 0.08<br />

1.21 ± 0.02<br />

1.35 ± 0.06t<br />

0.85 ± 0.06<br />

0.94 ± 0.07<br />

0.99 ± 0.04<br />

1.16 ± 0.07f<br />

ti<strong>on</strong> c<strong>on</strong>stant (Kd) for nalox<strong>on</strong>e


Y -H HAN AND W L<br />

TABLE 2<br />

Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose, 3-O-methylglucose, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

fructose <strong>on</strong> specific [ 3 H]nalox<strong>on</strong>e* binding to normal ICR mouse<br />

brain membranes in presence <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 mM NaCI<br />

Sugar (mg/dl) (nM) Bmax(pmol/g)<br />

N<strong>on</strong>e<br />

<str<strong>on</strong>g>Glucose</str<strong>on</strong>g> (400)<br />

3-O-methylglucose (431)<br />

Fructose (400)<br />

1.23 ± 0.03<br />

1.39±0.05t<br />

1.33 ±0.04<br />

1.30 ±0.04<br />

10.9 ± 0.3<br />

11.1 ± 0.2<br />

11.4 ± 0.4<br />

11.4 ± 0.3<br />

Brnax, maximum binding.<br />

*Sp act = 58 Ci/mmol (batch 30).<br />

fSignificantly different from c<strong>on</strong>trol at 95% c<strong>on</strong>fidence level (Dunnett's<br />

test).<br />

7.4 at room temperature) c<strong>on</strong>taining 2 mM dithiothreitol<br />

(DTT), with a motor-driven Tefl<strong>on</strong>/glass homogenizer. After<br />

centrifugati<strong>on</strong> at 40,000 x g for 15 min, the supernatant<br />

fracti<strong>on</strong> was discarded <str<strong>on</strong>g>and</str<strong>on</strong>g> the pellet was rehomogenized<br />

in another 10 vol <str<strong>on</strong>g>of</str<strong>on</strong>g> buffer plus DTT <str<strong>on</strong>g>and</str<strong>on</strong>g> recentrifuged. The<br />

final pellet was resuspended in another 10 vol <str<strong>on</strong>g>of</str<strong>on</strong>g> buffer,<br />

equivalent to -100 mg brain/ml. To an aliquot <str<strong>on</strong>g>of</str<strong>on</strong>g> this particulate<br />

fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> brain was added 25 pmol/ml (final incubati<strong>on</strong><br />

c<strong>on</strong>centrati<strong>on</strong> 2.5 nM) <str<strong>on</strong>g>of</str<strong>on</strong>g> the extremely high-affinity<br />

opiate-receptor ag<strong>on</strong>ist l<str<strong>on</strong>g>of</str<strong>on</strong>g>entanil (14), for the determinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>specific binding. Incubati<strong>on</strong>s were carried out at 25°C<br />

for 30 min in a total volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.0 ml, c<strong>on</strong>taining 50 mM Tris-<br />

HCI (pH 7.4) plus 2 mM DTT, 0.2 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> the particulate fracti<strong>on</strong>,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the appropriate c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> [ 3 H]nalox<strong>on</strong>e (sp act<br />

58 or 60 Ci/mmol; Amersham, Arlingt<strong>on</strong> Heights, IL) or<br />

[ 3 H]dihydromorphine (sp act 83.3 Ci/mmol; New Engl<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Nuclear, Bost<strong>on</strong>, MA). Incubati<strong>on</strong>s were terminated by filtrati<strong>on</strong><br />

through 25-mm glass-fiber filters (#32; Schleicher <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Schuell, Keene, NH) <str<strong>on</strong>g>and</str<strong>on</strong>g> rapid washing with two 5-ml aliquots<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 50 mM Tris-HCI buffer without DTT (pH 7.4), under reduced<br />

pressure (-250mmHg) with a 40-place filtrati<strong>on</strong><br />

manifold. Each wet filter was allowed to st<str<strong>on</strong>g>and</str<strong>on</strong>g> overnight<br />

in 10 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> ACS scintillati<strong>on</strong> fluid (Amersham) <str<strong>on</strong>g>and</str<strong>on</strong>g> mixed<br />

before determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radioactivity by liquid scintillati<strong>on</strong><br />

spectrometry. Each incubati<strong>on</strong> was carried out in duplicate,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> binding parameters were calculated from 4 or 5 different<br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> [ 3 H]nalox<strong>on</strong>e (0.2-3.2 nM) or [ 3 H]dihydromorphine<br />

(0.25-4.0 nM), with a computer program for the<br />

Scatchard method (15).<br />

Statistics. Comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple treatment groups with a<br />

c<strong>on</strong>trol group were carried out with a computer program for<br />

Dunnett's test (15), with t tables for <strong>on</strong>e-sided comparis<strong>on</strong>s<br />

(16). Significant differences between two groups were de-,<br />

termined with a t test for grouped data (15). All data are<br />

expressed as means ± SE.<br />

RESULTS<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> NaCI <strong>on</strong> binding parameters. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

20 mM NaCI <strong>on</strong> the l<str<strong>on</strong>g>of</str<strong>on</strong>g>entanil-displaceable binding <str<strong>on</strong>g>of</str<strong>on</strong>g> [ 3 H]nalox<strong>on</strong>e<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> [ 3 H]dihydromorphine to the particulate fracti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mouse brain are illustrated in the Scatchard plots<br />

in Fig. 1. NaCI increased the number <str<strong>on</strong>g>of</str<strong>on</strong>g> binding sites for<br />

[ 3 H]nalox<strong>on</strong>e without significantly affecting its affinity. On the<br />

other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, NaCI decreased the affinity for [ 3 H]dihydromorphine<br />

without affecting the maximum number <str<strong>on</strong>g>of</str<strong>on</strong>g> binding<br />

sites (Bmax). As reported previously for rat brain (17), there<br />

were fewer high-affinity sites for [ 3 H]dihydromorphine than<br />

for [ 3 H]nalox<strong>on</strong>e binding in both the absence <str<strong>on</strong>g>and</str<strong>on</strong>g> presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NaCI.<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> sugars <strong>on</strong> binding parameters. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

glucose <strong>on</strong> the binding parameters for the l<str<strong>on</strong>g>of</str<strong>on</strong>g>entanil-displaceable<br />

binding <str<strong>on</strong>g>of</str<strong>on</strong>g> [ 3 H]nalox<strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> [ 3 H]dihydromorphine<br />

to the particulate fracti<strong>on</strong> from brains <str<strong>on</strong>g>of</str<strong>on</strong>g> normal ICR mice in<br />

the absence <str<strong>on</strong>g>and</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 mM NaCI are summarized<br />

in Table 1. <str<strong>on</strong>g>Glucose</str<strong>on</strong>g> caused c<strong>on</strong>centrati<strong>on</strong>-dependent increases<br />

in the Kd values for both 3 H-labeled lig<str<strong>on</strong>g>and</str<strong>on</strong>g>s in the<br />

absence <str<strong>on</strong>g>and</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> NaCI but did not significantly affect<br />

the maximum number <str<strong>on</strong>g>of</str<strong>on</strong>g> binding sites. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> NaCI appeared to be independent <str<strong>on</strong>g>of</str<strong>on</strong>g> each other.<br />

Because previous in vivo studies indicated a greater effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fructose loading than glucose loading but no significant<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> 3-O-methylglucose loading <strong>on</strong> the ED50 for morphine<br />

in the mouse tail-flick test (2), it was <str<strong>on</strong>g>of</str<strong>on</strong>g> interest to compare<br />

the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> these three sugars <strong>on</strong> opiate-receptor binding<br />

in vitro (Table 2). Although somewhat higher c<strong>on</strong>trol values<br />

for the nalox<strong>on</strong>e K6 <str<strong>on</strong>g>and</str<strong>on</strong>g> Bmaxwere obtained in this series <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experiments, glucose (400 mg/dl) again caused a significant<br />

increase in the K6 for [ 3 H]nalox<strong>on</strong>e. Intermediate values for<br />

the nalox<strong>on</strong>e Kd were obtained in incubati<strong>on</strong>s with equimolar<br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 3-O-methylglucose <str<strong>on</strong>g>and</str<strong>on</strong>g> fructose, which<br />

were not significantly different from either c<strong>on</strong>trol incubati<strong>on</strong>s<br />

or incubati<strong>on</strong>s in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose.<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> diabetes <strong>on</strong> nalox<strong>on</strong>e binding. At death, the<br />

STZ-D ICR mice all had blood glucose levels >400 mg/dl,<br />

the maximum c<strong>on</strong>centrati<strong>on</strong> measurable by the Glucometer.<br />

The c<strong>on</strong>trol ICR mice pretreated with vehicle had a mean<br />

(±SE) blood glucose level <str<strong>on</strong>g>of</str<strong>on</strong>g> 180 ± 9 mg/dl (n = 8).<br />

As indicated in Table 3, the inducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diabetes with STZ<br />

had no significant effect <strong>on</strong> the binding parameters for<br />

[ 3 H]nalox<strong>on</strong>e in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 mM NaCI.<br />

The diabetic {db/db) C57BL/KsJ mice had a mean (±SE)<br />

blood glucose c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 318 ± 25 mg/dl (n = 8),<br />

compared to a c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly 83 ± 5 mg/dl (n = 8)<br />

for their n<strong>on</strong>diabetic {m + /m + ) littermates. There was no difference<br />

between these two groups in opiate-receptor affinity<br />

for [ 3 H]nalox<strong>on</strong>e in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 mM NaCI (Table 3).<br />

The diabetic mice had a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 14.4% more binding sites<br />

per gram <str<strong>on</strong>g>of</str<strong>on</strong>g> brain than the n<strong>on</strong>diabetic mice (Table 3). However,<br />

the brains <str<strong>on</strong>g>of</str<strong>on</strong>g> the diabetic mice weighed a mean <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

8.6% less (P < .01, n = 4 pairs) than the brains <str<strong>on</strong>g>of</str<strong>on</strong>g> their<br />

n<strong>on</strong>diabetic littermates, so the number <str<strong>on</strong>g>of</str<strong>on</strong>g> binding sites per<br />

brain was probably the same for both groups.<br />

Although these results indicated that the diabetic state did<br />

not affect the affinity <str<strong>on</strong>g>of</str<strong>on</strong>g> opiate receptors for nalox<strong>on</strong>e, it was<br />

TABLE 3<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> sp<strong>on</strong>taneous <str<strong>on</strong>g>and</str<strong>on</strong>g> streptozocin-induced diabetes <strong>on</strong><br />

binding <str<strong>on</strong>g>of</str<strong>on</strong>g> [ 3 H]nalox<strong>on</strong>e* to brain membranes in presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

20 mM NaCI<br />

Strain Treatment or c<strong>on</strong>diti<strong>on</strong> K6 (nM) Bmax(pmol/g)<br />

ICR Vehicle 1.13 ±0.07 9.51 ± 0.60<br />

ICR Streptozocin 1.21 ±0.10 9.93 ± 0.54<br />

C57BL/KsJ N<strong>on</strong>diabetic (m + /m + ) 1.09 ±0.15 9.12 ±0.91<br />

C57BL/KsJ Diabetic (db/db) 1.11 ±0.14 10.43 ±1.16<br />

Values are means ± SE <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 experiments, each with membranes<br />

prepared from 2 brains. Bmax, maximum binding.<br />

*Sp act = 58 Ci/mmol (batch 30).<br />

DIABETES, VOL. 36, OCTOBER 1987 1175


NALOXONE AND DIHYDROMORPHINE BINDING<br />

TABLE 4<br />

Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose, 3-O-methylglucose, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

fructose <strong>on</strong> specific [ 3 H]nalox<strong>on</strong>e* binding to brain membranes<br />

from streptozocin-induced diabetic ICR mice<br />

Sugar (mg/dl) (nM) Bmax(pmol/g)<br />

N<strong>on</strong>e<br />

<str<strong>on</strong>g>Glucose</str<strong>on</strong>g> (400)<br />

3-O-methylglucose (431)<br />

Fructose (400)<br />

0.97 ± 0.05<br />

1.16 ± 0.05t<br />

1.04 ± 0.06<br />

1.09 ± 0.04<br />

8.21 ± 0.52<br />

8.56 ± 0.50<br />

8.52 ± 0.54<br />

8.21 ± 0.47<br />

Bmax, maximum binding.<br />

*Sp act = 60 Ci/mmol (batch 32).<br />

fSignificantly different from c<strong>on</strong>trol at 95% c<strong>on</strong>fidence level (Dunnett's<br />

test).<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interest to determine whether the membrane receptors<br />

from diabetic mice displayed a change in sensitivity to the<br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sugars to the incubati<strong>on</strong> medium. However, the<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose, fructose, <str<strong>on</strong>g>and</str<strong>on</strong>g> 3-O-methylglucose <strong>on</strong> nalox<strong>on</strong>e<br />

binding to membranes from STZ-D mice (Table 4)<br />

were not substantially different from their effects <strong>on</strong> the binding<br />

parameters for nalox<strong>on</strong>e in membranes from normal ICR<br />

mice (Table 2).<br />

DISCUSSION<br />

Opiate-receptor-binding studies have shown the presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> both high- <str<strong>on</strong>g>and</str<strong>on</strong>g> low-affinity binding sites for [ 3 H]nalox<strong>on</strong>e<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> [ 3 H]dihydromorphine in brain membranes (17,18). The<br />

in vivo administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> naloxaz<strong>on</strong>e was reported to selectively<br />

inhibit binding to the high-affinity sites <str<strong>on</strong>g>and</str<strong>on</strong>g> to markedly<br />

decrease the antinociceptive potency <str<strong>on</strong>g>of</str<strong>on</strong>g> morphine (19).<br />

Thus, it appeared that the high-affinity binding sites were<br />

primarily involved in mediating the analgesic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> morphine.<br />

Because diabetes or the acute administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose<br />

or fructose have also been shown to decrease the<br />

antinociceptive potency <str<strong>on</strong>g>of</str<strong>on</strong>g> morphine (2), it was <str<strong>on</strong>g>of</str<strong>on</strong>g> interest to<br />

determine whether diabetes or the direct additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> various<br />

sugars to the binding assay would affect binding parameters<br />

for the high-affinity opiate binding sites. In similar studies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the low-affinity binding site for [ 3 H]nalox<strong>on</strong>e, c<strong>on</strong>centrati<strong>on</strong>dependent<br />

increases in the Kd <str<strong>on</strong>g>and</str<strong>on</strong>g> Bmax caused by the additi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> glucose to incubati<strong>on</strong>s c<strong>on</strong>taining Na + were found<br />

(8).<br />

In the study <str<strong>on</strong>g>of</str<strong>on</strong>g> the low-affinity sites, Na + itself increased<br />

the affinity for [ 3 H]nalox<strong>on</strong>e without affecting the maximum<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> binding sites (8). Opposite effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Na + were<br />

observed in this study <str<strong>on</strong>g>of</str<strong>on</strong>g> the high-affinity sites, in which sodium<br />

increased the Bmax without affecting the K6 for nalox<strong>on</strong>e.<br />

A similar effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Na + (25 mM) <strong>on</strong> the high-affinity binding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nalox<strong>on</strong>e to rat brain membranes at 25°C has been reported<br />

(10). Thus, the high-affinity sites for nalox<strong>on</strong>e in<br />

mouse brain membranes appear to resp<strong>on</strong>d to Na + similarly<br />

to those in rat brain membranes, but differently from the<br />

lower-affinity binding sites in mouse brain membranes (8).<br />

Like the low-affinity binding sites for [ 3 H]nalox<strong>on</strong>e (8), the<br />

high-affinity sites displayed c<strong>on</strong>centrati<strong>on</strong>-dependent decreases<br />

in affinity with increasing c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose<br />

in vitro. However, glucose did not significantly affect the<br />

maximum number <str<strong>on</strong>g>of</str<strong>on</strong>g> high-affinity binding sites. Similar results<br />

were obtained with the high-affinity binding <str<strong>on</strong>g>of</str<strong>on</strong>g> the ag<strong>on</strong>ist<br />

[ 3 H]dihydromorphine, <str<strong>on</strong>g>and</str<strong>on</strong>g> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose <strong>on</strong> the<br />

binding <str<strong>on</strong>g>of</str<strong>on</strong>g> both lig<str<strong>on</strong>g>and</str<strong>on</strong>g>s appeared to be independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Na + .<br />

Although it was reported that brain membranes from diabetic<br />

(db/db) mice had a lower affinity for nalox<strong>on</strong>e than<br />

membranes from the corresp<strong>on</strong>ding c<strong>on</strong>trols (8), no difference<br />

in the high-affinity binding <str<strong>on</strong>g>of</str<strong>on</strong>g> nalox<strong>on</strong>e was observed<br />

between these two groups in this study. STZ-D also did not<br />

affect the high-affinity binding <str<strong>on</strong>g>of</str<strong>on</strong>g> nalox<strong>on</strong>e or significantly<br />

modify the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose, 3-O-methylglucose, or fructose<br />

<strong>on</strong> that binding. C<strong>on</strong>sequently, the previously reported decreased<br />

potency <str<strong>on</strong>g>of</str<strong>on</strong>g> morphine in diabetic animals does<br />

not appear to be due to an alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> opiate receptors by<br />

the diabetic state (2). The hyperglycemia associated with the<br />

diabetic state may c<strong>on</strong>tribute to the decreased potency<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> morphine observed in vivo (2). The glucose-induced<br />

decreases in opiate-receptor affinity were moderate, however,<br />

compared with the marked decrease in the antinociceptive<br />

potency <str<strong>on</strong>g>of</str<strong>on</strong>g> morphine previously observed in genetically<br />

diabetic mice (2). To account for the difference<br />

in magnitude between the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose in vitro <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

in vivo, the modest effect <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose <strong>on</strong> binding in vitro<br />

may be due solely to some physicochemical mechanism,<br />

whereas the more marked effect <str<strong>on</strong>g>of</str<strong>on</strong>g> hyperglycemia in vivo<br />

may also involve the metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose, an interacti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> glucose with i<strong>on</strong> transport, or an interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose<br />

with endogenous opioid peptides.<br />

The finding by Sim<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Dewey (2), that the n<strong>on</strong>metabolizable<br />

3-O-methylglucose did not significantly affect the<br />

potency <str<strong>on</strong>g>of</str<strong>on</strong>g> morphine in vivo lends support to the possibility<br />

that the significant effect <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose in vivo may involve its<br />

metabolism. Recent evidence that hyperglycemia significantly<br />

affects the transport <str<strong>on</strong>g>of</str<strong>on</strong>g> Na + into the central nervous<br />

system (20) indicates the possibility that the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose<br />

in vivo may be sec<strong>on</strong>dary to changes in the dispositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this i<strong>on</strong>. Changes in intracellular Na + c<strong>on</strong>centrati<strong>on</strong>s appear<br />

to regulate opiate ag<strong>on</strong>ist binding to cultured cells (21). In<br />

additi<strong>on</strong>, STZ-D has recently been reported to decrease pain<br />

tolerance <str<strong>on</strong>g>and</str<strong>on</strong>g> p-endorphin levels in rats (22), <str<strong>on</strong>g>and</str<strong>on</strong>g> it has been<br />

postulated that the attenuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the analgesic effect <str<strong>on</strong>g>of</str<strong>on</strong>g> morphine<br />

in diabetic rats may be related to reduced hypothalamic<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> p-endorphin (23). Diabetic C57BL/KsJ mice<br />

were reported to exhibit neur<strong>on</strong>al degenerati<strong>on</strong> in the arcuate<br />

nucleus <str<strong>on</strong>g>of</str<strong>on</strong>g> the hypothalamus (24), an area rich in p-endorphin-c<strong>on</strong>taining<br />

neur<strong>on</strong>s (25). In view <str<strong>on</strong>g>of</str<strong>on</strong>g> the hypothesis that<br />

at least part <str<strong>on</strong>g>of</str<strong>on</strong>g> the analgesic acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> morphine may be<br />

mediated by the release <str<strong>on</strong>g>of</str<strong>on</strong>g> endogenous opioid peptides,<br />

including p-endorphin (26), it is possible that part <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

decreased antinociceptive resp<strong>on</strong>se in diabetic animals<br />

could involve changes in p-endorphin. Other studies, however,<br />

have not found significant changes in hypothalamic pendorphin<br />

levels in STZ-D rats (27) or diabetic C57BL/KsJ<br />

mice (28). In additi<strong>on</strong>, studies in isolated tissues have dem<strong>on</strong>strated<br />

a direct inhibitory effect <str<strong>on</strong>g>of</str<strong>on</strong>g> hyperglycemia <strong>on</strong> opiate<br />

potency (4).<br />

In c<strong>on</strong>trast to glucose, fructose <str<strong>on</strong>g>and</str<strong>on</strong>g> 3-O-methylglucose<br />

failed to have a significant effect <strong>on</strong> high-affinity nalox<strong>on</strong>e<br />

binding, although previous studies in mice indicated that the<br />

intraperit<strong>on</strong>eal administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fructose produced a c<strong>on</strong>siderably<br />

greater attenuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> morphine-induced antinocicepti<strong>on</strong><br />

than glucose (2,29). Therefore, it is not likely that<br />

the fructose-induced decrease in opiate potency previously<br />

1176 DIABETES, VOL. 36, OCTOBER 1987


observed in our laboratory can be explained by a direct<br />

physicochemical effect <str<strong>on</strong>g>of</str<strong>on</strong>g> fructose <strong>on</strong> opiate-receptor affinity<br />

or number.<br />

We c<strong>on</strong>clude that, although glucose decreases the affinity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the high-affinity opiate receptors in brain, the magnitude<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this decrease is not sufficient to account totally for the<br />

reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> opiate potency observed in vivo in various<br />

models <str<strong>on</strong>g>of</str<strong>on</strong>g> hyperglycemia. In additi<strong>on</strong>, the opiate antag<strong>on</strong>ism<br />

by fructose in vivo does not appear to be mediated through<br />

an alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> opiate-receptor-binding parameters.<br />

ACKNOWLEDGMENTS<br />

We thank Dr. Fred Lux for the blood glucose measurements.<br />

This research was supported in part by USPHS Grants<br />

DA-01647 <str<strong>on</strong>g>and</str<strong>on</strong>g> T32-DA-07027.<br />

REFERENCES<br />

1. Brase DA, Dewey WL: <str<strong>on</strong>g>Glucose</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> morphine-induced analgesia. In Nutriti<strong>on</strong>al<br />

Modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Neur<strong>on</strong>al Functi<strong>on</strong>. Morley JE, Walsh J, Sterman<br />

B, Eds. New York, Academic. In press<br />

2. Sim<strong>on</strong> GS, Dewey WL: Narcotics <str<strong>on</strong>g>and</str<strong>on</strong>g> diabetes. I. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> streptozotocin-induced<br />

diabetes <strong>on</strong> the antinociceptive potency <str<strong>on</strong>g>of</str<strong>on</strong>g> morphine.<br />

J Pharmacol Exp Ther 218:318-23, 1981<br />

3. Shook JE, Dewey WL: Morphine dependence <str<strong>on</strong>g>and</str<strong>on</strong>g> diabetes. I. The development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> morphine dependence in streptozotocin-diabetic rats <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

sp<strong>on</strong>taneously diabetic C57BL/KsJ mice. J Pharmacol Exp Ther 237:<br />

841-47, 1986<br />

4. Shook JE, Kachur JF, Brase DA, Dewey WL: Morphine dependence <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

diabetes. II. Alterati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> normorphine potency in the guinea pig ileum<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> mouse vas deferens <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ileal morphine dependence by changes<br />

in glucose c<strong>on</strong>centrati<strong>on</strong>. J Pharmacol Exp Ther 237:848-52, 1986<br />

5. Morley GK, Mooradian AD, Levine AS, Morley JE: Mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> pain in<br />

diabetic peripheral neuropathy: the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose <strong>on</strong> pain percepti<strong>on</strong><br />

in humans. Am J Med 77:79-83, 1984<br />

6. Levine AS, Morley JE, Brown DM, H<str<strong>on</strong>g>and</str<strong>on</strong>g>werger BS: Extreme sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

diabetic mice to nalox<strong>on</strong>e-induced suppressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> food intake. Physiol<br />

Behav 28:987-89, 1982<br />

7. Levine AS, Morley JE, Kneip J, Grace M, Brown DM: Envir<strong>on</strong>ment modulates<br />

nalox<strong>on</strong>e's suppressive effect <strong>on</strong> feeding in diabetic <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>diabetic<br />

rats. Physiol Behav 34:391-93, 1985<br />

8. Morley JE, Levine AS, Hess SA, Brown DB, H<str<strong>on</strong>g>and</str<strong>on</strong>g>werger BS: Evidence<br />

for in vivo <str<strong>on</strong>g>and</str<strong>on</strong>g> in vitro modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the opiate receptor by glucose. Soc<br />

Neurosci Abstr 7:854, 1981<br />

9. Pert CB, Snyder SH: Opiate receptor binding <str<strong>on</strong>g>of</str<strong>on</strong>g> ag<strong>on</strong>ists <str<strong>on</strong>g>and</str<strong>on</strong>g> antag<strong>on</strong>ists<br />

affected differentially by sodium. Mol Pharmacol 10:868-79, 1974<br />

10. Creese I, Pasternak GW, Pert CB, Snyder SH: Discriminati<strong>on</strong> by temperature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> opiate ag<strong>on</strong>ist <str<strong>on</strong>g>and</str<strong>on</strong>g> antag<strong>on</strong>ist receptor binding. Life Sci 16:1837-<br />

42, 1975<br />

11. Simantov R, Snowman AM, Snyder SH: Temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> i<strong>on</strong>ic influences<br />

<strong>on</strong> opiate receptor binding. Mol Pharmacol 12:977-86, 1976<br />

12. Jacobs<strong>on</strong> W, Wilkins<strong>on</strong> M: Opiate ([ 3 H]-nalox<strong>on</strong>e) binding to hypothalamic<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> cerebral cortical slices <str<strong>on</strong>g>of</str<strong>on</strong>g> mouse brain. Brain Res Bull 13:481-85,<br />

1984<br />

13. Pasternak GW: High <str<strong>on</strong>g>and</str<strong>on</strong>g> low affinity opioid binding sites: relati<strong>on</strong>ship to<br />

mu <str<strong>on</strong>g>and</str<strong>on</strong>g> delta sites. Life Sci 31:1303-306, 1982<br />

14. Gommeren W, Leysen JE: <strong>Binding</strong> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 H-l<str<strong>on</strong>g>of</str<strong>on</strong>g>entanil at the opiate<br />

receptor. Arch Int Pharmacodyn Ther 258:171-73, 1982<br />

15. Tallarida RJ, Murray RB: Manual <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmacologic Calculati<strong>on</strong>s With<br />

Computer Programs. New York, Springer-Verlag, 1981<br />

16. Dunnett CW: A multiple comparis<strong>on</strong> procedure for comparing several<br />

treatments with a c<strong>on</strong>trol. J Am Stat Assoc 50:1096-121, 1955<br />

17. Childers SR, Snyder SH: Differential regulati<strong>on</strong> by guanine nucleotides<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> opiate ag<strong>on</strong>ist <str<strong>on</strong>g>and</str<strong>on</strong>g> antag<strong>on</strong>ist receptor interacti<strong>on</strong>s. J Neurochem<br />

34:583-93, 1980<br />

18. Pasternak GW, Snyder SH: Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> novel high affinity opiate receptor<br />

binding in rat brain. Nature (L<strong>on</strong>d) 253:563-65, 1975<br />

19. Pasternak GW, Childers SR, Snyder SH: Naloxaz<strong>on</strong>e, a l<strong>on</strong>g-acting opiate<br />

antag<strong>on</strong>ist: effects <strong>on</strong> analgesia in intact animals <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong> opiate receptor<br />

binding in vitro. J Pharmacol Exp Ther 214:455-62, 1980<br />

20. Knudsen GM, Jakobsen J, Juhler M, Pauls<strong>on</strong> OB: Decreased blood-brain<br />

barrier permeability to sodium in early experimental diabetes. <str<strong>on</strong>g>Diabetes</str<strong>on</strong>g><br />

35:1371-73, 1986<br />

21. Puttfarcken PS, Werling LL, Cox BM: The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> sodium <strong>on</strong> opioid<br />

binding in NG108-15 neuroblastoma x glioma cells <str<strong>on</strong>g>and</str<strong>on</strong>g> 7315c pituitary<br />

tumor cells (Abstract). Pharmacologist 28:97, 1986<br />

22. Forman LJ, Estilow S, Lewis M, Vasilenko P: Streptozocin diabetes alters<br />

immunoreactive p-endorphin levels <str<strong>on</strong>g>and</str<strong>on</strong>g> pain percepti<strong>on</strong> after 8 wk in<br />

female rats. <str<strong>on</strong>g>Diabetes</str<strong>on</strong>g> 35:1309-13, 1986<br />

23. Locatelli V, Petraglia F, Tirl<strong>on</strong>i N, Muller EE: p-Endorphin c<strong>on</strong>centrati<strong>on</strong>s<br />

in the hypothalamus, pituitary <str<strong>on</strong>g>and</str<strong>on</strong>g> plasma <str<strong>on</strong>g>of</str<strong>on</strong>g> streptozotocin-diabetic rats<br />

with <str<strong>on</strong>g>and</str<strong>on</strong>g> without insulin substituti<strong>on</strong> therapy. Life Sci 38:379-86, 1986<br />

24. Garris DR, West RL, Coleman DL: Morphometric analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> medial basal<br />

hypothalamic neur<strong>on</strong>al degenerati<strong>on</strong> in diabetes {db/db) mutant<br />

C57BL/KsJ mice: relati<strong>on</strong> to age <str<strong>on</strong>g>and</str<strong>on</strong>g> hyperglycemia. Dev Brain Res<br />

20:161-68, 1985<br />

25. Bloom F, Battenberg E, Rossier J, Ling N, Guillemin R: Neur<strong>on</strong>s c<strong>on</strong>taining<br />

p-endorphin in rat brain exist separately from those c<strong>on</strong>taining enkephalin:<br />

immunocytochemical studies. Proc Natl Acad Sci USA 75:1591 -<br />

95, 1978<br />

26. Adams ML, Brase DA, Welch SP, Dewey WL: The role <str<strong>on</strong>g>of</str<strong>on</strong>g> endogenous<br />

peptides in the acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> opioid analgesics. Ann Emerg Med 15:1030-<br />

35,1986<br />

27. Gibs<strong>on</strong> MJ, DeNicola AF, Krieger DT: Streptozotocin-induced diabetes<br />

is associated with reduced immunoreactive beta-endorphin c<strong>on</strong>centrati<strong>on</strong>s<br />

in neurointermediate pituitary lobe <str<strong>on</strong>g>and</str<strong>on</strong>g> with disrupted circadian<br />

periodicity <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma corticoster<strong>on</strong>e levels. Neuroendocrinology 41:64-<br />

71, 1985<br />

28. Greenberg J, Ellyin F, Pullen G, Ehrenpreis S, Singh SP, Cheng J: Methi<strong>on</strong>ine-enkephalin<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> p-endorphin levels in brain, pancreas, <str<strong>on</strong>g>and</str<strong>on</strong>g> adrenals<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> db/db mice. Endocrinology 116:328-31, 1985<br />

29. Lux F, Dewey WL: Interrelati<strong>on</strong>ships between percutaneous spinally administered<br />

morphine <str<strong>on</strong>g>and</str<strong>on</strong>g> plasma glucose levels in mice (Abstract). Pharmacologist<br />

28:96, 1986<br />

DIABETES, VOL. 36, OCTOBER 1987 1177

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!