07.02.2013 Views

Dissecting the Role of Glucocorticoids on Pancreas ... - Diabetes

Dissecting the Role of Glucocorticoids on Pancreas ... - Diabetes

Dissecting the Role of Glucocorticoids on Pancreas ... - Diabetes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Dissecting</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Role</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Glucocorticoids</str<strong>on</strong>g> <strong>on</strong> <strong>Pancreas</strong><br />

Development<br />

Emilie Gesina, 1 François Tr<strong>on</strong>che, 2 Pedro Herrera, 3 Belinda Duchene, 1 Willemène Tales, 1<br />

Paul Czernichow, 1 and Bernadette Breant 1<br />

To determine whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r glucocorticoids are involved in<br />

pancreas development, glucocorticoid treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> rat<br />

pancreatic buds in vitro was combined with <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> transgenic mice lacking <str<strong>on</strong>g>the</str<strong>on</strong>g> glucocorticoid receptor<br />

(GR) in specific pancreatic cells. In vitro treatment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

embry<strong>on</strong>ic pancreata with dexamethas<strong>on</strong>e, a glucocorticoid<br />

ag<strong>on</strong>ist, induced a decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> insulin-expressing<br />

cell numbers and a doubling <str<strong>on</strong>g>of</str<strong>on</strong>g> acinar cell area, indicating<br />

that glucocorticoids favored acinar differentiati<strong>on</strong>;<br />

in line with this, expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pdx-1, Pax-6, and Nkx6.1<br />

was downregulated, whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> mRNA levels <str<strong>on</strong>g>of</str<strong>on</strong>g> Ptf1p48<br />

and Hes-1 were increased. The selective inactivati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> GR gene in insulin-expressing �-cells in mice<br />

(using a RIP-Cre transgene) had no measurable c<strong>on</strong>sequences<br />

<strong>on</strong> �-or�-cell mass, whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> GR<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> expressi<strong>on</strong> domain <str<strong>on</strong>g>of</str<strong>on</strong>g> Pdx-1 (Pdx-Cre transgene)<br />

led to a tw<str<strong>on</strong>g>of</str<strong>on</strong>g>old increased �-cell mass, with increased<br />

islet numbers and size but normal �-cell mass in adults.<br />

These results dem<strong>on</strong>strate that glucocorticoids play an<br />

important role in pancreatic �-cell lineage, acting before<br />

horm<strong>on</strong>e gene expressi<strong>on</strong> <strong>on</strong>set and possibly also<br />

modulating <str<strong>on</strong>g>the</str<strong>on</strong>g> balance between endocrine and exocrine<br />

cell differentiati<strong>on</strong>. <strong>Diabetes</strong> 53:2322–2329, 2004<br />

Increasing evidence from epidemiological studies led<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> early-life origins <str<strong>on</strong>g>of</str<strong>on</strong>g> adult<br />

diseases, suggesting that late-<strong>on</strong>set disorders such<br />

as type 2 diabetes, glucose intolerance, or hypertensi<strong>on</strong><br />

may be programmed by nutriti<strong>on</strong>al inadequacy in<br />

utero (1–5). Excess glucocorticoids also retard fetal<br />

growth, and overexposure to <str<strong>on</strong>g>the</str<strong>on</strong>g>se horm<strong>on</strong>es during intrauterine<br />

life has been shown to play a role in fetal programming<br />

in both humans (6) and rodents (7). The link between<br />

glucocorticoid overexposure in utero and <str<strong>on</strong>g>the</str<strong>on</strong>g> occurrence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic diseases in adulthood has been well documented<br />

in rats. Maternal treatment with dexamethas<strong>on</strong>e<br />

(DEX), a glucocorticoid ag<strong>on</strong>ist, induces in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring<br />

growth retardati<strong>on</strong> at birth as well as hyperglycemia and<br />

increased systolic blood pressure at adult age (8–10).<br />

From <str<strong>on</strong>g>the</str<strong>on</strong>g> 1 Institut Nati<strong>on</strong>al de la Santé et de la Recherche Médicale (INSERM)<br />

U457, Hôpital Robert Debré, Paris, France; 2 Centre Nati<strong>on</strong>al de la Recherche<br />

Scientifique FRE 2401, Collège de France, Paris, France; and <str<strong>on</strong>g>the</str<strong>on</strong>g> 3 Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Morphology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Geneva Medical School, Geneva, Switzerland.<br />

Address corresp<strong>on</strong>dence and reprint requests to Bernadette Breant, IN-<br />

SERM U457, Hôpital Robert Debré, Paris F 75019, France. E-mail:<br />

bernadette.breant@rdebre.inserm.fr.<br />

Received for publicati<strong>on</strong> 15 March 2004 and accepted in revised form 11<br />

June 2004.<br />

F.T. and P.H. c<strong>on</strong>tributed equally to this work.<br />

BrdU, bromodeoxyuridine; DEX, dexamethas<strong>on</strong>e; E15.5, embry<strong>on</strong>ic day<br />

15.5; GR, glucocorticoid receptor.<br />

© 2004 by <str<strong>on</strong>g>the</str<strong>on</strong>g> American <strong>Diabetes</strong> Associati<strong>on</strong>.<br />

Similarly, inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> placental 11�-hydroxysteroid<br />

dehydrogenase type 2, <str<strong>on</strong>g>the</str<strong>on</strong>g> enzyme that protects <str<strong>on</strong>g>the</str<strong>on</strong>g> fetus<br />

from maternal glucocorticoids, induces intrauterine<br />

growth retardati<strong>on</strong> as well as glucose intolerance and<br />

hypertensi<strong>on</strong> in adults (11).<br />

We have previously shown that maternal general food<br />

restricti<strong>on</strong> during late pregnancy decreased <str<strong>on</strong>g>the</str<strong>on</strong>g> �-cell<br />

mass <str<strong>on</strong>g>of</str<strong>on</strong>g> newborn rats (12). This reducti<strong>on</strong> was irreversible<br />

and persisted in adults despite restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> normal<br />

nutriti<strong>on</strong> from weaning (13), ultimately leading to impaired<br />

glucose tolerance associated with aging (14) or<br />

pregnancy (15). These results sustain <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> that some<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> late alterati<strong>on</strong>s observed in humans born with<br />

intrauterine growth retardati<strong>on</strong> may result from altered<br />

�-cell development in utero, as initially suggested by Hales<br />

and Barker (2). Additi<strong>on</strong>ally, we have recently dem<strong>on</strong>strated<br />

that maternal general food restricti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> rat<br />

induced a rise in both maternal and fetal corticoster<strong>on</strong>e<br />

levels, which in turn was resp<strong>on</strong>sible for <str<strong>on</strong>g>the</str<strong>on</strong>g> decreased<br />

�-cell mass and islet numbers observed in <str<strong>on</strong>g>the</str<strong>on</strong>g> undernourished<br />

fetus (16). These data suggested that glucocorticoids<br />

might play a role in pancreas development.<br />

Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> pancreatic gene expressi<strong>on</strong> as well as genetically<br />

modified mice have identified a large number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transcripti<strong>on</strong> factors that c<strong>on</strong>trol <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

endocrine pancreas. Several homeodomain, paired-box,<br />

and helix-loop-helix transcripti<strong>on</strong> factors such as Nkx6.1,<br />

Pax4, Pax6, and Ngn3 are expressed at early stages <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

development, and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir absence leads to alterati<strong>on</strong>s in<br />

endocrine cell differentiati<strong>on</strong>. Besides, <str<strong>on</strong>g>the</str<strong>on</strong>g> bHLH transcripti<strong>on</strong><br />

factor Ptf1-p48, which is required for exocrine<br />

cell differentiati<strong>on</strong>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> homeodomain protein pancreas<br />

duodenum homeobox (Pdx)-1, <str<strong>on</strong>g>the</str<strong>on</strong>g> earliest marker <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pancreatic cells and whose absence results in pancreatic<br />

agenesis, are required for <str<strong>on</strong>g>the</str<strong>on</strong>g> early steps <str<strong>on</strong>g>of</str<strong>on</strong>g> pancreas<br />

development (17–19).<br />

The aims <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> present study were 1) to investigate<br />

whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> associati<strong>on</strong> between developmental injury <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> �-cells and type 2 diabetes may be attributed to a<br />

direct effect <str<strong>on</strong>g>of</str<strong>on</strong>g> glucocorticoids <strong>on</strong> fetal pancreatic tissue<br />

and, if so, 2) to decipher <str<strong>on</strong>g>the</str<strong>on</strong>g> cellular and molecular<br />

mechanisms by which glucocorticoids could modulate<br />

pancreatic development or differentiati<strong>on</strong>. We hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sized<br />

that glucocorticoids act directly <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pancreas and<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> transcripti<strong>on</strong> factors c<strong>on</strong>trolling its normal development<br />

and differentiati<strong>on</strong> could be <str<strong>on</strong>g>the</str<strong>on</strong>g> targets <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

horm<strong>on</strong>es. We addressed this hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis by combining in<br />

vitro and in vivo approaches. First, we used a model <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

embry<strong>on</strong>ic rat pancreas cultured in vitro in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2322 DIABETES, VOL. 53, SEPTEMBER 2004


DEX to study <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> glucocorticoids <strong>on</strong> pancreatic<br />

differentiati<strong>on</strong>. We <str<strong>on</strong>g>the</str<strong>on</strong>g>n analyzed <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

glucocorticoid receptor (GR) inactivati<strong>on</strong> <strong>on</strong> pancreas<br />

development and organizati<strong>on</strong>, in mice lacking <str<strong>on</strong>g>the</str<strong>on</strong>g> GR<br />

ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r in pancreatic precursor cells (Pdx-Cre GR lox/lox<br />

mice, denominated GR Pdx-Cre <str<strong>on</strong>g>the</str<strong>on</strong>g>reafter) or in cells transcribing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> insulin gene, whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r immature or fully differentiated<br />

�-cells (RIP-Cre GR lox/lox mice, denominated<br />

GR RIP-Cre <str<strong>on</strong>g>the</str<strong>on</strong>g>reafter).<br />

RESEARCH DESIGN AND METHODS<br />

Mice breeding. GR lox/lox animals (20,21) were maintained <strong>on</strong> a C57B/L6 and<br />

129Sve/V mixed genetic background. These animals were genotyped by PCR,<br />

using primers GR12 (5�-CATGCTGCTAGGCAAATGATCTTAAC) and GR30<br />

(5�-CTTCCACTGCTCTTTTAAA GAAGAC), which amplify a 280-bp fragment<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> wild-type allele and a 350-bp fragment for <str<strong>on</strong>g>the</str<strong>on</strong>g> floxed allele. RIP-Cre and<br />

Pdx-Cre lines (22) were originally obtained <strong>on</strong> a C57B/L6 and CBAJ mixed<br />

genetic background. Presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Cre transgene was detected by PCR using<br />

Cre1 (5�-CCTGTTTTGCACGTTCACCG) and Cre3 (5�-ATGCTTCTGTCCGTTT<br />

GCCG) primers (300-bp band). GR lox/lox Pdx-Cre and GR lox/lox RIP-Cre animals<br />

were obtained by mating adequate transgenic lines. To avoid any perturbati<strong>on</strong><br />

in maternal glucose homeostasis induced by gestati<strong>on</strong>, <strong>on</strong>ly c<strong>on</strong>trol females<br />

(GR lox/lox ) were used to obtain experimental animals.<br />

Dissecti<strong>on</strong> and culture <str<strong>on</strong>g>of</str<strong>on</strong>g> rat pancreatic buds at embry<strong>on</strong>ic day 15.5. Pancreatic<br />

buds from Wistar rats at embry<strong>on</strong>ic day 15.5 (E15.5) were dissected under<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> microscope. They were cultured for 3 days in RPMI 1640 (Invitrogen,<br />

Cergy P<strong>on</strong>toise, France) with 10% FCS in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence or absence <str<strong>on</strong>g>of</str<strong>on</strong>g> 100<br />

nmol/l DEX in multiwell culture plates equipped with a 0.4-�m filter insert<br />

(Millipore, Bedford, MA). For morphometrical and proliferati<strong>on</strong> rate measurements,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cultured buds were treated with bromodeoxyuridine (BrdU) (10<br />

�mol/l) during <str<strong>on</strong>g>the</str<strong>on</strong>g> last hour <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong>.<br />

The experiments <strong>on</strong> mice and rats were carried out according to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Principles <str<strong>on</strong>g>of</str<strong>on</strong>g> Laboratory Animal Care, Nati<strong>on</strong>al Institutes <str<strong>on</strong>g>of</str<strong>on</strong>g> Health, and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

French laws, authorizati<strong>on</strong> number 7612, delivered to B.B. by <str<strong>on</strong>g>the</str<strong>on</strong>g> French<br />

Agricultural Ministry.<br />

RNA extracti<strong>on</strong> and reverse transcripti<strong>on</strong>. RNA extracti<strong>on</strong> was performed<br />

<strong>on</strong> batches <str<strong>on</strong>g>of</str<strong>on</strong>g> eight rat embry<strong>on</strong>ic pancreata cultured as described above<br />

using Trizol Reagent (Invitrogen), according to <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacturer’s procedure.<br />

After spectrophotometry quantificati<strong>on</strong>, 2 �g total RNA was used for reverse<br />

transcripti<strong>on</strong> in a 20-�l final volume using Superscript II Rnase H � reverse<br />

transcriptase (Invitrogen). For each experiment, a negative c<strong>on</strong>trol without<br />

reverse transcriptase was performed. cDNA was diluted 10 times in sterile<br />

water, and PCR was performed <strong>on</strong> 1.5 �l <str<strong>on</strong>g>of</str<strong>on</strong>g> this diluti<strong>on</strong>.<br />

Semiquantitative radioactive duplex PCR. PCR was performed in 25 �l<br />

final volume c<strong>on</strong>taining 1.5 �l cDNA (15 ng RNA equivalent), 1.5 mmol/l<br />

MgCl 2,80�mol/l cold dNTP, 1.3 �Ci [�- 32 P]dCTP, 1� GeneAmp PCR Buffer II,<br />

and 1.25 U AmpliTaq Gold “hot start” polymerase (Applied Biosystems, Foster<br />

City, CA). The sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> primers were as follows: Ngn3 sense,<br />

5�-TGGCGCCTCATCCCTTGGATG; antisense, 5�-CAGTCACCCACTTCTGCT<br />

TCG; Hes1 sense, 5�-TCAACACGACACCGGACAAACC; antisense, 5�-GGTAC<br />

TTCCCCAACACGCTCG; Ptf1-p48 sense, 5�-ATTAACTTCCTCAGCGAGCT<br />

GGT; and antisense, 5�-GTTGAGTTTTCTGGGGTCCTCTG. Primer sequences<br />

for Pdx-1, Foxa2, Nkx6.1, Hnf1�, Pax6, cyclophilin, �-tubulin, TBP, and<br />

RRPPO were previously described (23). PCR was performed in triplicate by<br />

amplifying each transcripti<strong>on</strong> factor with an internal c<strong>on</strong>trol gene. Duplex<br />

PCR c<strong>on</strong>diti<strong>on</strong>s were set up for each couple <str<strong>on</strong>g>of</str<strong>on</strong>g> genes and c<strong>on</strong>sidered<br />

satisfactory when similar, and linear amplificati<strong>on</strong>s were obtained in simplex<br />

and duplex for both genes. PCR products were separated <strong>on</strong> a 6% acrylamide<br />

gel in Tris-borate EDTA buffer. The gel was dried, and <str<strong>on</strong>g>the</str<strong>on</strong>g> [�- 32 P]dCTP<br />

incorporated in each PCR product was measured <strong>on</strong> storage phosphor screens<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> Packard Cycl<strong>on</strong>e system and quantified by ImageQuant s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware. The<br />

radioactive background was quantified and subtracted from each measurement.<br />

The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> each transcripti<strong>on</strong> factor product was normalized to its<br />

specific internal c<strong>on</strong>trol gene, and this average ratio was <str<strong>on</strong>g>the</str<strong>on</strong>g>n expressed as a<br />

percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mean ratio obtained in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol group tested in <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

PCR.<br />

Fixati<strong>on</strong> and tissue processing for immunohistochemistry. Rat pancreatic<br />

buds or adult mice pancreata were fixed in 3.7% formalin soluti<strong>on</strong>, dehydrated,<br />

and embedded in paraffin. Tissues were entirely cut into 5-�m thick<br />

secti<strong>on</strong>s, which were collected <strong>on</strong> poly-L-lysin–coated slides. The slides were left<br />

at 37°C overnight and stored at 4°C until processed for immunohistochemistry.<br />

Immunohistochemistry. Tissue slides were submitted to a 10-min microwave<br />

treatment in a citrate buffer, permeabilized for 20 min with 0.1% Trit<strong>on</strong><br />

X-100 in Tris-buffered saline, and incubated 30 min with a blocking buffer<br />

E. GESINA AND ASSOCIATES<br />

(0.1% Tween20/3% BSA in Tris-buffered saline) before a 4°C overnight incubati<strong>on</strong><br />

with primary antibodies. Sec<strong>on</strong>dary antibodies (1:200) were incubated<br />

1–4 h at room temperature. Double immunohistochemistry was performed<br />

using fluorescent dye–coupled sec<strong>on</strong>dary antibodies visualized under a Leica<br />

DMB microscope or, alternatively, using enzyme-linked sec<strong>on</strong>dary antibodies<br />

revealed by diaminobenzidine (Vector Laboratories, Compiegne, France) or<br />

Fast Red (Dako, Carpinteria, CA) substrates. Antibodies used are described<br />

below.<br />

Primary antibodies were rabbit anti–Pdx-1 (a gift from Dr O.D. Madsen),<br />

mouse anti-insulin (Sigma, St. Louis, MO), mouse anti-BrdU (Amersham<br />

Pharmacia Biotech Europe, Saclay, France), rabbit anti-glucag<strong>on</strong> (Diasorin,<br />

Stillwater, MN), rabbit anti-amylase (Sigma), guinea pig anti-insulin (Dako),<br />

and rabbit anti-GR (Santa Cruz Biotechnology, Santa Cruz, CA). Sec<strong>on</strong>dary<br />

antibodies were fluorescein isothiocyanate anti–guinea pig, fluorescein<br />

isothiocyanate anti-rabbit, Texas Red anti-mouse, Texas Red anti-rabbit,<br />

peroxidase anti–guinea pig, biotin c<strong>on</strong>jugated anti-rabbit (Jacks<strong>on</strong> Immuno<br />

Research Laboratories, West Grove, PA), peroxidase-c<strong>on</strong>jugated anti-rabbit<br />

(Promega, Madis<strong>on</strong>, WI), alkaline phosphatase-c<strong>on</strong>jugated streptavidin (Bio-<br />

Genex, San Ram<strong>on</strong>, CA), and peroxidase-c<strong>on</strong>jugated streptavidin (Amersham<br />

Pharmacia Biotech Europe).<br />

Cell numbers, area, and morphometrical measurements. On E15.5 rat<br />

pancreatic buds treated or not treated with DEX, cells coexpressing Pdx-1 and<br />

insulin, and cells expressing <strong>on</strong>ly Pdx-1 were counted <strong>on</strong> every o<str<strong>on</strong>g>the</str<strong>on</strong>g>r secti<strong>on</strong><br />

throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> bud; amylase-positive area was morphometrically measured<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r secti<strong>on</strong>s. A total <str<strong>on</strong>g>of</str<strong>on</strong>g> four c<strong>on</strong>trol and five DEX-treated buds were<br />

analyzed. Acinar cell proliferati<strong>on</strong> was studied <strong>on</strong> 3,000–6,000 amylasepositive<br />

cells per bud.<br />

Amylase area <strong>on</strong> E15.5 rat pancreatic buds was determined by computerassisted<br />

measurements using a DMRB microscope (Leica, Deerfield, IL)<br />

equipped with a color video camera coupled with a Q500IW computer (screen<br />

magnificati<strong>on</strong>, �24), as previously described (13). Pancreatic tissue area and<br />

insulin-positive or glucag<strong>on</strong>-positive cell area <strong>on</strong> adult transgenic mice were<br />

similarly measured. Briefly, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> islets (defined as insulin-positive<br />

aggregates at least 25 �m in diameter) was scored and used to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

islet numerical density (number <str<strong>on</strong>g>of</str<strong>on</strong>g> islets per square centimeter <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue).<br />

Islets ranging from 25 to 100 �m in diameter were defined as small, those<br />

ranging from 101 to 150 �m as medium, and those �150 �m as large. The<br />

percent �-cell fracti<strong>on</strong> was measured as <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> insulin-positive cell<br />

area to <str<strong>on</strong>g>the</str<strong>on</strong>g> total tissue area <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> entire secti<strong>on</strong>. Mean �-cell fracti<strong>on</strong> per<br />

pancreas was calculated as <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> insulin-positive area to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sum <str<strong>on</strong>g>of</str<strong>on</strong>g> pancreatic tissue area. The �-cell mass was obtained by multiplying <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

�-cell fracti<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pancreas. �-Cell fracti<strong>on</strong> and mass were<br />

similarly measured. Morphometrical analysis was performed <strong>on</strong> eight secti<strong>on</strong>s<br />

throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> pancreas from four GR RIP-Cre mice or six GR lox/lox and six<br />

GR Pdx-Cre mice.<br />

Statistical analysis. All results are expressed as means � SE. The statistical<br />

significance <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong>s was evaluated with Statview 4.5 s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware. Transcripti<strong>on</strong><br />

factor mRNA levels were expressed as <str<strong>on</strong>g>the</str<strong>on</strong>g> percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir respective<br />

c<strong>on</strong>trol in each experiment and analyzed by a Wilcox<strong>on</strong>’s n<strong>on</strong>parametric test.<br />

Cell number, amylase cell area, cell proliferati<strong>on</strong>, �-cell and �-cell fracti<strong>on</strong> and<br />

mass, islet number, or repartiti<strong>on</strong> per size were tested by a Mann-Whitney<br />

n<strong>on</strong>parametric test. P values �0.05 were c<strong>on</strong>sidered significant.<br />

RESULTS<br />

GR is expressed in pancreatic epi<str<strong>on</strong>g>the</str<strong>on</strong>g>lial cells at<br />

E15.5. in <str<strong>on</strong>g>the</str<strong>on</strong>g> rat. To determine whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r GR protein is<br />

present in <str<strong>on</strong>g>the</str<strong>on</strong>g> developing pancreas, we performed immun<str<strong>on</strong>g>of</str<strong>on</strong>g>luorescence<br />

<strong>on</strong> E15.5 pancreatic paraffin secti<strong>on</strong>s. The<br />

GR was expressed in a subpopulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cytokeratinlabeled<br />

epi<str<strong>on</strong>g>the</str<strong>on</strong>g>lial cells (Fig. 1A). Because GR is already<br />

expressed in E15.5 pancreatic buds and because few cells<br />

coexpressing insulin and Pdx-1, i.e., differentiated �-cells,<br />

can be detected at this stage (Fig. 1B), we fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r used this<br />

tissue as a model to study <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> glucocorticoids <strong>on</strong><br />

�-cell development and differentiati<strong>on</strong>.<br />

DEX treatment decreases insulin- and-Pdx-1–expressing<br />

�-cell numbers but increases <str<strong>on</strong>g>the</str<strong>on</strong>g> area occupied by<br />

acinar cells. Rat pancreatic buds at E15.5 were cultured<br />

for 3 days in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence or absence <str<strong>on</strong>g>of</str<strong>on</strong>g> DEX (10 �7 mol/l),<br />

a GR ag<strong>on</strong>ist. DEX treatment induced a small (25%) but<br />

significant decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> total tissue area (P � 0.05). The<br />

DIABETES, VOL. 53, SEPTEMBER 2004 2323


GLUCOCORTICOIDS AND PANCREAS DEVELOPMENT<br />

c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> DEX treatment <strong>on</strong> exocrine and �<br />

endocrine cell differentiati<strong>on</strong> were analyzed by immunohistochemistry<br />

and RT-PCR. After 3 days <str<strong>on</strong>g>of</str<strong>on</strong>g> culture in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> DEX, all cells expressing insulin coexpressed<br />

Pdx-1 and were frequently found organized into<br />

small clusters, showing that <str<strong>on</strong>g>the</str<strong>on</strong>g> tissue had differentiated<br />

in culture. In striking c<strong>on</strong>trast, in DEX-treated buds,<br />

such �-cell clusters were absent and <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> cells<br />

coexpressing insulin and Pdx-1 was decreased, whereas<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> cells expressing <strong>on</strong>ly Pdx-1 remained<br />

unchanged (Fig. 2A). C<strong>on</strong>comitantly, DEX treatment led<br />

FIG. 1. GR is expressed in E15.5 rat pancreatic bud.<br />

A: GR (green) is detected in a subpopulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

epi<str<strong>on</strong>g>the</str<strong>on</strong>g>lial pan-cytokeratin (panCK)-positive cells<br />

(red). B: Few cells coexpressing insulin (red) and<br />

Pdx-1 (green) are found in E15.5 rat pancreatic<br />

buds. Scale bar � 25 �m.<br />

to a tw<str<strong>on</strong>g>of</str<strong>on</strong>g>old increase <str<strong>on</strong>g>of</str<strong>on</strong>g> amylase-c<strong>on</strong>taining cells, without<br />

altering <str<strong>on</strong>g>the</str<strong>on</strong>g> histological organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> acini<br />

(Fig. 2B). Experiments <str<strong>on</strong>g>of</str<strong>on</strong>g> BrdU incorporati<strong>on</strong> showed<br />

that acinar cell proliferati<strong>on</strong> was decreased after 3 days<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> treatment with DEX (Fig. 2C) but not after 1 day, at<br />

which time more amylase-expressing cells were already<br />

observed (Fig. 2D). Taken toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r, <str<strong>on</strong>g>the</str<strong>on</strong>g>se observati<strong>on</strong>s<br />

suggest that <str<strong>on</strong>g>the</str<strong>on</strong>g> increase in acinar cell area is a direct<br />

c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> glucocorticoid-mediated stimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

differentiati<strong>on</strong> and not acinar cell proliferati<strong>on</strong>. In both<br />

treated and untreated buds, �-cells as well as precursor<br />

FIG. 2. DEX favors in vitro pancreatic<br />

differentiati<strong>on</strong> into exocrine<br />

tissue and represses �-cell differentiati<strong>on</strong>.<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> a 3-day<br />

treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> E15.5 rat pancreatic<br />

buds with 10 �7 mol/l DEX <strong>on</strong> differentiati<strong>on</strong><br />

into �-cells or acinar<br />

cells is shown. A: Clusters <str<strong>on</strong>g>of</str<strong>on</strong>g> cells<br />

coexpressing insulin (red) and<br />

Pdx-1 (green) are abundant in c<strong>on</strong>trol<br />

buds (Co, C), but not in DEXtreated<br />

buds (DEX). Scale bar �<br />

25 �m. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> differentiated<br />

�-cells coexpressing Pdx-1<br />

and insulin was decreased up<strong>on</strong><br />

DEX treatment, whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> precursor cells expressing<br />

<strong>on</strong>ly Pdx-1 remained unchanged. B:<br />

Amylase cell area (brown) was increased<br />

tw<str<strong>on</strong>g>of</str<strong>on</strong>g>old in DEX-treated<br />

buds. Scale bar � 50 �m. C: BrdU �<br />

nuclei (red) were counted in amylase<br />

immunoreactive cells (green):<br />

acinar cell proliferati<strong>on</strong> was decreased<br />

in DEX-treated E15.5 embry<strong>on</strong>ic<br />

pancreas after 3 days. D:<br />

After 1 day <str<strong>on</strong>g>of</str<strong>on</strong>g> DEX treatment, acinar<br />

cell proliferati<strong>on</strong> was similar<br />

to that in untreated buds (Co), but<br />

amylase-expressing cell numbers<br />

were already increased. Scale<br />

bar � 50 �m. Results are expressed<br />

as means � SE; *P < 0.05<br />

compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> untreated<br />

group.<br />

2324 DIABETES, VOL. 53, SEPTEMBER 2004


cells were too few to allow any reliable quantificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir proliferati<strong>on</strong> rate.<br />

DEX affects <str<strong>on</strong>g>the</str<strong>on</strong>g> expressi<strong>on</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong><br />

factors involved in pancreas development. To fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

characterize <str<strong>on</strong>g>the</str<strong>on</strong>g> changes induced by glucocorticoids <strong>on</strong><br />

E15.5 rat pancreata, we determined <str<strong>on</strong>g>the</str<strong>on</strong>g> mRNA levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> transcripti<strong>on</strong> factors involved in pancreatic<br />

development and differentiati<strong>on</strong> using semiquantitative<br />

duplex RT-PCR analysis (Fig. 3). DEX treatment clearly<br />

decreased <str<strong>on</strong>g>the</str<strong>on</strong>g> mRNA levels <str<strong>on</strong>g>of</str<strong>on</strong>g> Pdx-1 (60% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol,<br />

P � 0.05) and Nkx6.1 (50% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol, P � 0.05). Pax6<br />

mRNA was almost undetectable in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> DEX.<br />

Up<strong>on</strong> DEX treatment, no changes could be detected in<br />

ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r Ngn3 mRNA levels (Fig. 3) or Foxa2 and Hnf1�<br />

(data not shown). In striking c<strong>on</strong>trast, <str<strong>on</strong>g>the</str<strong>on</strong>g> mRNA levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ptf1-p48 and Hes1, encoding transcripti<strong>on</strong> factors involved<br />

in exocrine cell differentiati<strong>on</strong>, were increased 5-fold (P �<br />

E. GESINA AND ASSOCIATES<br />

FIG. 3. DEX treatment modifies <str<strong>on</strong>g>the</str<strong>on</strong>g> expressi<strong>on</strong><br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong> factors involved<br />

in pancreas development. E15.5 rat pancreatic<br />

buds were similarly treated with 10 �7<br />

mol/l DEX. For each transcripti<strong>on</strong> factor, a<br />

representative gel <str<strong>on</strong>g>of</str<strong>on</strong>g> radioactive duplex<br />

RT-PCR is shown, <strong>on</strong> which <str<strong>on</strong>g>the</str<strong>on</strong>g> first three<br />

lanes are triplicates for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol group<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> three o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs are triplicates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

DEX-treated group in <str<strong>on</strong>g>the</str<strong>on</strong>g> same experiment.<br />

The ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> transcripti<strong>on</strong> factor<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> internal c<strong>on</strong>trol (tubulin, cyclophilin,<br />

RRPPO, and TBP) mRNA levels was<br />

calculated for each triplicate. The ratio for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> DEX-treated group (�) was expressed<br />

as a percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same ratio in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

untreated group (f). Results <str<strong>on</strong>g>of</str<strong>on</strong>g> five independent<br />

experiments are shown and expressed<br />

as means � SE; *P < 0.05 compared<br />

with c<strong>on</strong>trol group. C, c<strong>on</strong>trol.<br />

0.05) and 1.7-fold (P � 0.05), respectively, in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> DEX (Fig. 3).<br />

These data suggest that glucocorticoids modulate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

balance <str<strong>on</strong>g>of</str<strong>on</strong>g> pancreatic differentiati<strong>on</strong> into endocrine or<br />

exocrine cells in vitro. We next investigated whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

pancreas development would be disturbed in vivo, by<br />

studying <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> selective inactivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

GR in pancreatic cells.<br />

Disrupti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> GR in pancreatic precursor cells increases<br />

�-cell mass. Mice carrying <str<strong>on</strong>g>the</str<strong>on</strong>g> GR lox allele (21)<br />

were crossed with mice expressing <str<strong>on</strong>g>the</str<strong>on</strong>g> Cre recombinase<br />

ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r in pancreatic precursor cells (Pdx1-Cre) or specifically<br />

in cells expressing <str<strong>on</strong>g>the</str<strong>on</strong>g> insulin gene (rat insulin<br />

promoter, RIP-Cre). The efficiency and specificity <str<strong>on</strong>g>of</str<strong>on</strong>g> GR<br />

gene recombinati<strong>on</strong> (i.e., inactivati<strong>on</strong>) were assessed by<br />

immunohistochemistry with anti-GR antibodies <strong>on</strong> pancreatic<br />

secti<strong>on</strong>s (Fig. 4). In GR Pdx-Cre mice, GR staining was<br />

FIG. 4. Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> GR deleti<strong>on</strong> in<br />

c<strong>on</strong>trol GR lox/lox , GR Pdx-Cre , and GR RIP-Cre<br />

adult mice. Double immunohistochemistry<br />

was performed <strong>on</strong> pancreatic secti<strong>on</strong>s for<br />

GR (pink) and glucag<strong>on</strong> (brown). In c<strong>on</strong>trol<br />

mice, <str<strong>on</strong>g>the</str<strong>on</strong>g> GR was normally expressed in<br />

exocrine and endocrine cells (A). In GR Pdx-Cre<br />

mice, <str<strong>on</strong>g>the</str<strong>on</strong>g> GR was deleted in all exocrine<br />

cells and most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> �-cells (B). In GR RIP-Cre<br />

mice, <str<strong>on</strong>g>the</str<strong>on</strong>g> GR was specifically deleted in all<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> differentiated �-cells (C) but present in<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r pancreatic cells. D, E, and F are higher<br />

magnificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> boxed area shown in A,<br />

B, and C, respectively. Scale bar � 50 �m.<br />

DIABETES, VOL. 53, SEPTEMBER 2004 2325


GLUCOCORTICOIDS AND PANCREAS DEVELOPMENT<br />

TABLE 1<br />

Comparative analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> body weight, pancreas weight, and fasted glycemia in GR lox/lox ,GR Pdx-Cre , and GR RIP-Cre adult mice<br />

GR lox/lox<br />

almost totally absent in all pancreatic cell types, although<br />

a faint labeling was sometimes detected in islets (Fig. 4B<br />

and E). In GR RIP-Cre mice, <str<strong>on</strong>g>the</str<strong>on</strong>g> GR was specifically deleted<br />

in all differentiated �-cells but remained well expressed in<br />

all o<str<strong>on</strong>g>the</str<strong>on</strong>g>r pancreatic cell types, as expected (Fig. 4C and F).<br />

Female mice were analyzed at adult age (3–4 m<strong>on</strong>ths) and<br />

compared with age-matched c<strong>on</strong>trol females (Table 1). GR<br />

deleti<strong>on</strong> in �-cells did not alter body or pancreatic weight,<br />

but a tendency to decreased fasted glycemia was observed.<br />

GR deleti<strong>on</strong> in Pdx-1–expressing cells did not alter<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> glycemia or <str<strong>on</strong>g>the</str<strong>on</strong>g> body weight but slightly increased<br />

pancreatic weight (Table 1).<br />

Four to six females at 3–4 m<strong>on</strong>ths <str<strong>on</strong>g>of</str<strong>on</strong>g> age were used for<br />

morphometric analysis <strong>on</strong> immunostained paraffin secti<strong>on</strong>s.<br />

The �-cell fracti<strong>on</strong> increased nearly tw<str<strong>on</strong>g>of</str<strong>on</strong>g>old in<br />

GR Pdx-Cre mice (1.06 � 0.14 vs. 0.65 � 0.13% in c<strong>on</strong>trols,<br />

P � 0.01), in line with an increase in �-cell mass (2.82 �<br />

0.36 vs. 1.50 � 0.52 mg in c<strong>on</strong>trols, P � 0.01) (Fig. 5). In<br />

c<strong>on</strong>trast, �-cell fracti<strong>on</strong> and mass from GR Pdx-Cre animals<br />

were similar to those <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trols (Fig. 5C). Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r char-<br />

GR Pdx-Cre<br />

GR RIP-Cre<br />

n 5 6 4<br />

Body weight (g) 19.2 � 1.4 21.1 � 0.4 (0.14) 19.0 � 0.4 (0.90)<br />

<strong>Pancreas</strong> weight (mg) 225 � 21 277 � 10 (0.05) 217 � 10 (0.80)<br />

<strong>Pancreas</strong> weight (mg/g body wt) 11.7 � 0.4 13.1 � 0.5 (0.04) 11.4 � 0.7 (0.80)<br />

Fasted glycemia (mg/dl) 79 � 3 76� 3 (0.31) 68 � 4 (0.06)<br />

Data are means � SE or means � SE (P). Statistical differences between each mutant group and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol mice were assessed using <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Mann-Whitney n<strong>on</strong>parametric test.<br />

acterizati<strong>on</strong> showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> increased �-cell mass arose<br />

from increased islet numbers, mainly small and large islets<br />

(Fig. 6), and increased area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> large islets (giant islets<br />

�300 �m equivalent diameter were <str<strong>on</strong>g>of</str<strong>on</strong>g>ten observed) (Fig.<br />

5). Individual �-cell area was unchanged in GR Pdx-Cre mice<br />

(188 � 4 vs. 177 � 9 �m 2 in c<strong>on</strong>trols, P � 0.27), indicating<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> �-cells were not hypertrophied. The increased<br />

�-cell fracti<strong>on</strong> in GR Pdx-Cre mice was already present in<br />

ne<strong>on</strong>ates at 2.5 days <str<strong>on</strong>g>of</str<strong>on</strong>g> age (3.73 � 0.19 vs. 3.08 � 0.05% in<br />

c<strong>on</strong>trols, n � 4 in each group, P � 0.05). A mutati<strong>on</strong><br />

restricted to �-cells did not have any major c<strong>on</strong>sequences<br />

<strong>on</strong> pancreas morphology, and GR RIP-Cre mice were similar<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol group for all parameters analyzed (Figs. 5<br />

and 6), suggesting that glucocorticoids do not play a major<br />

role in differentiated �-cells.<br />

DISCUSSION<br />

In a previous study, we had shown that decreased �-cell<br />

mass was observed under c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> fetal overexposure<br />

FIG. 5. Increased �-cell mass in GR Pdx-Cre<br />

mice. A:GR Pdx-Cre mice have giant islets.<br />

B: �-Cell fracti<strong>on</strong> and �-cell mass are<br />

increased in GR Pdx-Cre adult female<br />

mice, whereas GR RIP-Cre mice are undistinguishable<br />

from c<strong>on</strong>trol mice. C:<br />

�-Cell fracti<strong>on</strong> and mass are unaffected<br />

in both mutants compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trols.<br />

Values are means � SE; *P < 0.05,<br />

**P < 0.01 compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol<br />

group.<br />

2326 DIABETES, VOL. 53, SEPTEMBER 2004


to glucocorticoids, such as that observed during fetal<br />

undernutriti<strong>on</strong>, whereas large �-cell numbers were associated<br />

with low corticoster<strong>on</strong>e levels (16). The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

work was to investigate whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r glucocorticoids were<br />

implicated directly in pancreatic development and to<br />

determine <str<strong>on</strong>g>the</str<strong>on</strong>g> cellular and molecular targets <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

horm<strong>on</strong>es. We hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sized that <str<strong>on</strong>g>the</str<strong>on</strong>g> horm<strong>on</strong>al steroid<br />

imbalance generated by undernutriti<strong>on</strong> would affect <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

developmental programming by modifying <str<strong>on</strong>g>the</str<strong>on</strong>g> balanced<br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong> factors modulating pancreas development.<br />

This hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis was investigated by in vitro<br />

studies <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment with glucocorticoids and by studying<br />

mouse models lacking <str<strong>on</strong>g>the</str<strong>on</strong>g> GR in specific pancreatic cell<br />

populati<strong>on</strong>s.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> present work, we show that in vitro treatment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> embry<strong>on</strong>ic rat pancreas with DEX did not affect <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> precursor cells but decreased <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

differentiated �-cells and increased <str<strong>on</strong>g>the</str<strong>on</strong>g> differentiated acinar<br />

cell area. These results suggest that glucocorticoids<br />

decreased <str<strong>on</strong>g>the</str<strong>on</strong>g> differentiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> embry<strong>on</strong>ic pancreas<br />

into �-cells while favoring its differentiati<strong>on</strong> into acinar<br />

cells. This c<strong>on</strong>clusi<strong>on</strong> was fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r sustained by <str<strong>on</strong>g>the</str<strong>on</strong>g> finding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> decreased proliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> amylase-expressing cells<br />

up<strong>on</strong> DEX treatment, a result suggesting that glucocorticoids<br />

could also c<strong>on</strong>trol <str<strong>on</strong>g>the</str<strong>on</strong>g> proliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> already differentiated<br />

acinar cells and <str<strong>on</strong>g>the</str<strong>on</strong>g>reby prevent <str<strong>on</strong>g>the</str<strong>on</strong>g>ir overgrowth.<br />

Taken toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r, our in vitro data suggest that <str<strong>on</strong>g>the</str<strong>on</strong>g> differentiati<strong>on</strong><br />

process from precursor to differentiated endocrine<br />

or exocrine cell is altered, suggesting that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

precursor cells but not <str<strong>on</strong>g>the</str<strong>on</strong>g> differentiated �-cells are potential<br />

targets for glucocorticoids. Whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r this in vitro<br />

situati<strong>on</strong> also applies in vivo remains to be fully investigated.<br />

In line with this idea, rats undernourished during<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir perinatal life and <str<strong>on</strong>g>the</str<strong>on</strong>g>reby exposed to increased<br />

corticoster<strong>on</strong>e levels in utero show increased pancreatic<br />

weight at adult age (14,15).<br />

The finding that �-cell differentiati<strong>on</strong> is impaired in<br />

glucocorticoid excess situati<strong>on</strong>s is reinforced in <str<strong>on</strong>g>the</str<strong>on</strong>g> mirror<br />

situati<strong>on</strong> found in c<strong>on</strong>diti<strong>on</strong>al mutant mice where <str<strong>on</strong>g>the</str<strong>on</strong>g> GR<br />

signaling is absent, such that <str<strong>on</strong>g>the</str<strong>on</strong>g> deleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> GR in<br />

Pdx-1–expressing precursor cells (GR Pdx-Cre ) led to a<br />

tw<str<strong>on</strong>g>of</str<strong>on</strong>g>old increase <str<strong>on</strong>g>of</str<strong>on</strong>g> �-cell mass, with increased islet numbers.<br />

This increased �-cell mass in GR Pdx-Cre animals was<br />

already observed in ne<strong>on</strong>ates, although to a lesser extent<br />

than in adults. Surprisingly, <str<strong>on</strong>g>the</str<strong>on</strong>g> decreased exocrine cell<br />

differentiati<strong>on</strong>, which would have been expected from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

in vitro data, was not observed in <str<strong>on</strong>g>the</str<strong>on</strong>g> GR Pdx-Cre mutants,<br />

since <str<strong>on</strong>g>the</str<strong>on</strong>g>ir pancreatic weight was <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary slightly<br />

increased. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r factors, coming ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r from maternal<br />

envir<strong>on</strong>ment or adjacent tissue interacti<strong>on</strong>s might modu-<br />

E. GESINA AND ASSOCIATES<br />

FIG. 6. Increased �-cell mass in GR Pdx-Cre mice arises from increased<br />

numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> small and large islets. Total islet numbers per centimeter<br />

squared as well as numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> large and small islets per<br />

centimeter squared are increased in GR Pdx-Cre mice. GR RIP-Cre mice<br />

are undistinguishable from c<strong>on</strong>trol mice. Data are means � SE; *P <<br />

0.05 compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol group.<br />

late this effect in vivo. Interestingly, while <str<strong>on</strong>g>the</str<strong>on</strong>g> deleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> GR in pancreatic precursor cells led to increased �-cell<br />

mass, �-cell mass remained unaffected, indicating that<br />

glucocorticoid acti<strong>on</strong> was restricted to <str<strong>on</strong>g>the</str<strong>on</strong>g> �-cell lineage.<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> specific GR deleti<strong>on</strong> in differentiated<br />

�-cells in GR RIP-Cre mice had no measurable c<strong>on</strong>sequences<br />

<strong>on</strong> �-cell or �-cell mass. Taken toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r, <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

findings support <str<strong>on</strong>g>the</str<strong>on</strong>g> idea that glucocorticoids act <strong>on</strong><br />

undifferentiated endocrine pancreatic cells having expressed<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> proendocrine marker Ngn3, but before insulin<br />

gene expressi<strong>on</strong> <strong>on</strong>set.<br />

During <str<strong>on</strong>g>the</str<strong>on</strong>g> last decade, cell lineage studies in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pancreas have shown <str<strong>on</strong>g>the</str<strong>on</strong>g> requirement <str<strong>on</strong>g>of</str<strong>on</strong>g> a group <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transcripti<strong>on</strong> factors for normal pancreatic development<br />

(19,24,25) even though <str<strong>on</strong>g>the</str<strong>on</strong>g>ir chr<strong>on</strong>ology <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> is not<br />

fully understood yet. Pdx-1 is acknowledged as <str<strong>on</strong>g>the</str<strong>on</strong>g> earliest,<br />

because Pdx-1–expressing cells give rise to all types <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

adult pancreatic cells (26,27) before being restricted to<br />

mature �-cells also expressing Nkx6.1, Pax6, and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

markers. Ngn3 is <str<strong>on</strong>g>the</str<strong>on</strong>g> comm<strong>on</strong> endocrine precursor cell<br />

marker (27,28), whereas Ptf1-p48, despite its early expressi<strong>on</strong><br />

in pancreatic precursor cells (29), is an absolute<br />

prerequisite to drive exocrine cell differentiati<strong>on</strong> (30).<br />

Moreover, Hes1 can also be c<strong>on</strong>sidered a proexocrine<br />

transcripti<strong>on</strong> factor because it inhibits Ngn3 in <str<strong>on</strong>g>the</str<strong>on</strong>g> delta/<br />

notch pathway (25,31,32).<br />

To fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r characterize <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanisms by which glucocorticoids<br />

act <strong>on</strong> pancreas development, and hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sizing<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> horm<strong>on</strong>al steroid imbalance affects <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

developmental programming by modifying <str<strong>on</strong>g>the</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

genes modulating pancreas development, we studied <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se transcripti<strong>on</strong> factors after in vitro<br />

treatment with DEX. Interestingly, <str<strong>on</strong>g>the</str<strong>on</strong>g> transcripti<strong>on</strong> factors<br />

implicated in �-cell differentiati<strong>on</strong>, such as Pdx-1,<br />

Pax6, and Nkx6.1, were downregulated, whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> exocrine-specific<br />

transcripti<strong>on</strong> factors Ptf1-p48 and Hes1 were<br />

upregulated up<strong>on</strong> glucocorticoid treatment. These results<br />

suggest that glucocorticoids impair �-cell development by<br />

favoring exocrine differentiati<strong>on</strong> and that transcripti<strong>on</strong><br />

factors could be <str<strong>on</strong>g>the</str<strong>on</strong>g>ir molecular targets.<br />

The modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exocrine/endocrine differentiati<strong>on</strong><br />

balance had already been suggested in older in vitro<br />

studies <str<strong>on</strong>g>of</str<strong>on</strong>g> rat pancreatic explants treated with corticoster<strong>on</strong>e,<br />

showing a decreased insulin secreti<strong>on</strong> and islet mass<br />

while exocrine enzyme c<strong>on</strong>tents and acinar mass were<br />

enhanced (33,34). Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> AR42J cell line, which<br />

shares some characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> multipotency with precursor<br />

cells, has been shown to differentiate into acinar cells<br />

when exposed to DEX (35). The decreased Pdx-1 mRNA<br />

levels we observed are also in good agreement with similar<br />

DIABETES, VOL. 53, SEPTEMBER 2004 2327


GLUCOCORTICOIDS AND PANCREAS DEVELOPMENT<br />

findings obtained after treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> mouse pancreatic<br />

buds with DEX (36). However, <str<strong>on</strong>g>the</str<strong>on</strong>g> latter work argues in<br />

favor <str<strong>on</strong>g>of</str<strong>on</strong>g> a transdifferentiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> �-cells into hepatocytes<br />

without any changes in exocrine tissue. The processes<br />

involved in <str<strong>on</strong>g>the</str<strong>on</strong>g> two studies appear quite different. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

experiments <str<strong>on</strong>g>of</str<strong>on</strong>g> Shen et al. (36), <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment begins<br />

earlier, when more undifferentiated cells are likely to<br />

maintain a multipotency, rendering <str<strong>on</strong>g>the</str<strong>on</strong>g>m more susceptible<br />

to de-differentiate into ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r tissue cell fate, whereas<br />

cells at a later stage, such as those used in our model, are<br />

more likely committed to a pancreatic cell fate.<br />

The mechanisms by which glucocorticoids modulate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> transcripti<strong>on</strong> factors remain to be determined.<br />

In HIT-T15 cells, it has been shown that glucocorticoids<br />

decreased <str<strong>on</strong>g>the</str<strong>on</strong>g> expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pdx-1 by inhibiting<br />

Hnf3� (37). In our cultured pancreatic buds, as well as in<br />

adult rat islets (E.G., unpublished data), DEX treatment<br />

decreased Pdx-1 without inducing any changes in Hnf3�<br />

mRNA levels, suggesting that <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanisms regulating<br />

Pdx-1 gene transcripti<strong>on</strong> could be slightly different between<br />

mature islets and �-cell lines. Alternatively, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

transcripti<strong>on</strong> factor or transactivator envir<strong>on</strong>ment could<br />

differ between precursor cells and mature �-cells, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby<br />

allowing a different transcripti<strong>on</strong>al c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Pdx-1<br />

gene. Surprisingly, <str<strong>on</strong>g>the</str<strong>on</strong>g> mRNA levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> proendocrine<br />

marker Ngn3 were unaffected by in vitro DEX treatment,<br />

despite increased Hes1 mRNA levels. It is possible that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

1.6-fold increase <str<strong>on</strong>g>of</str<strong>on</strong>g> Hes-1 was insufficient to inhibit Ngn3;<br />

alternatively, o<str<strong>on</strong>g>the</str<strong>on</strong>g>r still unknown transcripti<strong>on</strong> factors<br />

c<strong>on</strong>trolling Ngn3 transcripti<strong>on</strong> could also operate, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby<br />

interfering with <str<strong>on</strong>g>the</str<strong>on</strong>g> Hes-1 inhibitory effect. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>al GR Pdx-Cre and GR RIP-Cre mutants would<br />

help us understand how glucocorticoids affect �-cell lineage<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular level.<br />

The present study shows that glucocorticoids are important<br />

modulators <str<strong>on</strong>g>of</str<strong>on</strong>g> lineage commitment in <str<strong>on</strong>g>the</str<strong>on</strong>g> pancreas,<br />

acting during <str<strong>on</strong>g>the</str<strong>on</strong>g> differentiati<strong>on</strong> process ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than <strong>on</strong><br />

mature �-cells. The increased islet numbers and size<br />

observed in GR Pdx-Cre mice also shows that glucocorticoids<br />

repress signals that normally c<strong>on</strong>trol �-cell numbers<br />

or islet size. Despite normal �-cell mass in GR RIP-Cre mice,<br />

glucocorticoids could also play a role <strong>on</strong> differentiated<br />

�-cells or in postnatal life. Many reports have shown <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

importance <str<strong>on</strong>g>of</str<strong>on</strong>g> glucocorticoids <strong>on</strong> �-cell functi<strong>on</strong>: GLUT2<br />

protein has been shown to be decreased (38), glucosestimulated<br />

insulin release is also altered in adult islets<br />

treated with DEX (38–41), and a negative glucocorticoid<br />

resp<strong>on</strong>se element was identified <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> insulin promoter<br />

(42).<br />

Taken toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r, our data show that glucocorticoids have<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound effects <strong>on</strong> �-cell development and differentiati<strong>on</strong><br />

in vivo. Even though <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular mechanisms by which<br />

glucocorticoids mediate <str<strong>on</strong>g>the</str<strong>on</strong>g>ir effects are <strong>on</strong>ly partly elucidated<br />

at this time, <str<strong>on</strong>g>the</str<strong>on</strong>g>se results dem<strong>on</strong>strate that glucocorticoids<br />

play an important role <strong>on</strong> pancreatic �-cell lineage<br />

during specific developmental windows, acting before<br />

horm<strong>on</strong>e gene expressi<strong>on</strong> <strong>on</strong>set and possibly also modulating<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> balance between endocrine and exocrine cell<br />

differentiati<strong>on</strong>. Glucocorticoid horm<strong>on</strong>es should <str<strong>on</strong>g>the</str<strong>on</strong>g>refore<br />

be c<strong>on</strong>sidered as major horm<strong>on</strong>es involved in normal<br />

pancreatic development. These results, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

previously dem<strong>on</strong>strated associati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> altered �-cell<br />

development with impaired glucose tolerance at adult age,<br />

str<strong>on</strong>gly support <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cept that impaired glucose homeostasis<br />

in adulthood can be programmed by glucocorticoid-induced<br />

alterati<strong>on</strong>s in pancreas differentiati<strong>on</strong>.<br />

ACKNOWLEDGMENTS<br />

This work was supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> Institut Nati<strong>on</strong>al de la<br />

Santé et de la Recherche Médicale and in part by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

European c<strong>on</strong>tract QLK1–2000-00083 (E.G., B.D., W.T.,<br />

P.C., B.B.), <str<strong>on</strong>g>the</str<strong>on</strong>g> Centre Nati<strong>on</strong>al de la Recherche Scientifique<br />

(F.T.), and grants from <str<strong>on</strong>g>the</str<strong>on</strong>g> Swiss Nati<strong>on</strong>al Science<br />

Foundati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> Juvenile <strong>Diabetes</strong> Research Foundati<strong>on</strong>,<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Institutes <str<strong>on</strong>g>of</str<strong>on</strong>g> Health/Nati<strong>on</strong>al Institute <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>Diabetes</strong> and Digestive and Kidney Diseases’ Beta Cell<br />

Biology C<strong>on</strong>sortium (P.H.). E.G is a doctoral recipient <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Ministèredel’Educati<strong>on</strong> Nati<strong>on</strong>ale de la Recherche et<br />

de la Technologie.<br />

The authors are grateful to Dr. J.-C. J<strong>on</strong>as and Dr. L.<br />

Bankir for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir help in <str<strong>on</strong>g>the</str<strong>on</strong>g> semiquantitative PCR experiments<br />

and wish to thank Dr. O.D. Madsen for providing us<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> anti–Pdx-1 antibodies.<br />

REFERENCES<br />

1. Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osm<strong>on</strong>d C, Winter PD:<br />

Fetal and infant growth and impaired glucose tolerance at age 64. BMJ<br />

303:1019–1022, 1991<br />

2. Hales CN, Barker DJ: Type 2 (n<strong>on</strong>-insulin-dependent) diabetes mellitus:<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> thrifty phenotype hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis. Diabetologia 35:595–601, 1992<br />

3. Barker DJ, Hales CN, Fall CH, Osm<strong>on</strong>d C, Phipps K, Clark PM: Type 2<br />

(n<strong>on</strong>-insulin-dependent) diabetes mellitus, hypertensi<strong>on</strong> and hyperlipidaemia<br />

(syndrome X): relati<strong>on</strong> to reduced fetal growth. Diabetologia 36:62–<br />

67, 1993<br />

4. Valdez R, A<str<strong>on</strong>g>the</str<strong>on</strong>g>ns MA, Thomps<strong>on</strong> GH, Bradshaw BS, Stern MP: Birthweight<br />

and adult health outcomes in a biethnic populati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> USA. Diabetologia<br />

37:624–631, 1994<br />

5. Li<str<strong>on</strong>g>the</str<strong>on</strong>g>ll HO, McKeigue PM, Berglund L, Mohsen R, Li<str<strong>on</strong>g>the</str<strong>on</strong>g>ll UB, Le<strong>on</strong> DA:<br />

Relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> size at birth to n<strong>on</strong>-insulin dependent diabetes and insulin<br />

c<strong>on</strong>centrati<strong>on</strong>s in men aged 50–60 years. BMJ 312:406–410, 1996<br />

6. Reinisch JM, Sim<strong>on</strong> NG, Karow WG, Gandelman R: Prenatal exposure to<br />

prednis<strong>on</strong>e in humans and animals retards intrauterine growth. Science<br />

202:436–438, 1978<br />

7. Nyirenda MJ, Seckl JR: Intrauterine events and <str<strong>on</strong>g>the</str<strong>on</strong>g> programming <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

adulthood disease: <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> fetal glucocorticoid exposure (Review). Int<br />

J Mol Med 2:607–614, 1998<br />

8. Langley-Evans SC: Intrauterine programming <str<strong>on</strong>g>of</str<strong>on</strong>g> hypertensi<strong>on</strong> by glucocorticoids.<br />

Life Sci 60:1213–1221, 1997<br />

9. Langley-Evans SC, Gardner DS, Welham SJ: Intrauterine programming <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cardiovascular disease by maternal nutriti<strong>on</strong>al status. Nutriti<strong>on</strong> 14:39–47,<br />

1998<br />

10. Nyirenda MJ, Lindsay RS, Keny<strong>on</strong> CJ, Burchell A, Seckl JR: Glucocorticoid<br />

exposure in late gestati<strong>on</strong> permanently programs rat hepatic phosphoenolpyruvate<br />

carboxykinase and glucocorticoid receptor expressi<strong>on</strong> and<br />

causes glucose intolerance in adult <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring. J Clin Invest 101:2174–2181,<br />

1998<br />

11. Lindsay RS, Lindsay RM, Waddell BJ, Seckl JR: Prenatal glucocorticoid<br />

exposure leads to <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring hyperglycaemia in <str<strong>on</strong>g>the</str<strong>on</strong>g> rat: studies with <str<strong>on</strong>g>the</str<strong>on</strong>g> 11<br />

beta-hydroxysteroid dehydrogenase inhibitor carbenoxol<strong>on</strong>e. Diabetologia<br />

39:1299–1305, 1996<br />

12. Gar<str<strong>on</strong>g>of</str<strong>on</strong>g>ano A, Czernichow P, Breant B: In utero undernutriti<strong>on</strong> impairs rat<br />

beta-cell development. Diabetologia 40:1231–1234, 1997<br />

13. Gar<str<strong>on</strong>g>of</str<strong>on</strong>g>ano A, Czernichow P, Breant B: Beta-cell mass and proliferati<strong>on</strong><br />

following late fetal and early postnatal malnutriti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> rat. Diabetologia<br />

41:1114–1120, 1998<br />

14. Gar<str<strong>on</strong>g>of</str<strong>on</strong>g>ano A, Czernichow P, Breant B: Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> ageing <strong>on</strong> beta-cell mass<br />

and functi<strong>on</strong> in rats malnourished during <str<strong>on</strong>g>the</str<strong>on</strong>g> perinatal period. Diabetologia<br />

42:711–718, 1999<br />

15. Bl<strong>on</strong>deau B, Gar<str<strong>on</strong>g>of</str<strong>on</strong>g>ano A, Czernichow P, Breant B: Age-dependent inability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> endocrine pancreas to adapt to pregnancy: a l<strong>on</strong>g-term c<strong>on</strong>sequence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> perinatal malnutriti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> rat. Endocrinology 140:4208–4213, 1999<br />

16. Bl<strong>on</strong>deau B, Lesage J, Czernichow P, Dupouy JP, Breant B: Glucocorti-<br />

2328 DIABETES, VOL. 53, SEPTEMBER 2004


coids impair fetal beta-cell development in rats. Am J Physiol Endocrinol<br />

Metab 281:E592–E599, 2001<br />

17. Edlund H: Transcribing pancreas. <strong>Diabetes</strong> 47:1817–1823, 1998<br />

18. Sander M, German MS: The beta cell transcripti<strong>on</strong> factors and development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pancreas. J Mol Med 75:327–340, 1997<br />

19. Herrera PL, Nepote V, Delacour A: Pancreatic cell lineage analyses in mice.<br />

Endocrine 19:267–278, 2002<br />

20. Tr<strong>on</strong>che F, Kellend<strong>on</strong>k C, Reichardt HM, Schutz G: Genetic dissecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

glucocorticoid receptor functi<strong>on</strong> in mice. Curr Opin Genet Dev 8:532–538,<br />

1998<br />

21. Tr<strong>on</strong>che F, Kellend<strong>on</strong>k C, Kretz O, Gass P, Anlag K, Orban PC, Bock R,<br />

Klein R, Schutz G: Disrupti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> glucocorticoid receptor gene in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

nervous system results in reduced anxiety. Nat Genet 23:99–103, 1999<br />

22. Herrera PL: Adult insulin- and glucag<strong>on</strong>-producing cells differentiate from<br />

two independent cell lineages. Development 127:2317–2322, 2000<br />

23. J<strong>on</strong>as JC, Sharma A, Hasenkamp W, Ilkova H, Patane G, Laybutt R,<br />

B<strong>on</strong>ner-Weir S, Weir GC: Chr<strong>on</strong>ic hyperglycemia triggers loss <str<strong>on</strong>g>of</str<strong>on</strong>g> pancreatic<br />

beta cell differentiati<strong>on</strong> in an animal model <str<strong>on</strong>g>of</str<strong>on</strong>g> diabetes. J Biol Chem<br />

274:14112–14121, 1999<br />

24. Edlund H: Pancreatic organogenesis: developmental mechanisms and<br />

implicati<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g>rapy. Nat Rev Genet 3:524–532, 2002<br />

25. Murtaugh LC, Melt<strong>on</strong> DA: Genes, signals, and lineages in pancreas development.<br />

Annu Rev Cell Dev Biol 19:71–89, 2003<br />

26. J<strong>on</strong>ss<strong>on</strong> J, Carlss<strong>on</strong> L, Edlund T, Edlund H: Insulin-promoter-factor 1 is<br />

required for pancreas development in mice. Nature 371:606–609, 1994<br />

27. Gu G, Dubauskaite J, Melt<strong>on</strong> DA: Direct evidence for <str<strong>on</strong>g>the</str<strong>on</strong>g> pancreatic<br />

lineage: NGN3� cells are islet progenitors and are distinct from duct<br />

progenitors. Development 129:2447–2457, 2002<br />

28. Gradwohl G, Dierich A, LeMeur M, Guillemot F: Neurogenin3 is required<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> four endocrine cell lineages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pancreas.<br />

Proc Natl Acad Sci USA97:1607–1611, 2000<br />

29. Kawaguchi Y, Cooper B, Gann<strong>on</strong> M, Ray M, MacD<strong>on</strong>ald RJ, Wright CV: The<br />

role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> transcripti<strong>on</strong>al regulator Ptf1a in c<strong>on</strong>verting intestinal to<br />

pancreatic progenitors. Nat Genet 32:128–134, 2002<br />

30. Krapp A, Kn<str<strong>on</strong>g>of</str<strong>on</strong>g>ler M, Ledermann B, Burki K, Berney C, Zoerkler N,<br />

Hagenbuchle O, Wellauer PK: The bHLH protein PTF1-p48 is essential for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exocrine and <str<strong>on</strong>g>the</str<strong>on</strong>g> correct spatial organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

endocrine pancreas. Genes Dev 12:3752–3763, 1998<br />

E. GESINA AND ASSOCIATES<br />

31. Lammert E, Brown J, Melt<strong>on</strong> DA: Notch gene expressi<strong>on</strong> during pancreatic<br />

organogenesis. Mech Dev 94:199–203, 2000<br />

32. Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, Ishibashi M,<br />

Kageyama R, Guillemot F, Serup P, Madsen OD: C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> endodermal<br />

endocrine development by Hes-1. Nat Genet 24:36–44, 2000<br />

33. McEvoy RC, Hegre OD: Foetal rat pancreas in organ culture: effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

media supplementati<strong>on</strong> with various steroid horm<strong>on</strong>es <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> acinar and<br />

islet comp<strong>on</strong>ents. Differentiati<strong>on</strong> 6:105–111, 1976<br />

34. Rall L, Pictet R, Gi<str<strong>on</strong>g>the</str<strong>on</strong>g>ns S, Rutter WJ: <str<strong>on</strong>g>Glucocorticoids</str<strong>on</strong>g> modulate <str<strong>on</strong>g>the</str<strong>on</strong>g> in<br />

vitro development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> embry<strong>on</strong>ic rat pancreas. J Cell Biol 75:398–409,<br />

1977<br />

35. Logsd<strong>on</strong> CD, Moessner J, Williams JA, Goldfine ID: <str<strong>on</strong>g>Glucocorticoids</str<strong>on</strong>g><br />

increase amylase mRNA levels, secretory organelles, and secreti<strong>on</strong> in<br />

pancreatic acinar AR42J cells. J Cell Biol 100:1200–1208, 1985<br />

36. Shen CN, Seckl JR, Slack JM, Tosh D: <str<strong>on</strong>g>Glucocorticoids</str<strong>on</strong>g> suppress beta-cell<br />

development and induce hepatic metaplasia in embry<strong>on</strong>ic pancreas. Biochem<br />

J 375:41–50, 2003<br />

37. Sharma S, Jhala US, Johns<strong>on</strong> T, Ferreri K, Le<strong>on</strong>ard J, M<strong>on</strong>tminy M:<br />

Horm<strong>on</strong>al regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an islet-specific enhancer in <str<strong>on</strong>g>the</str<strong>on</strong>g> pancreatic homeobox<br />

gene STF-1. Mol Cell Biol 17:2598–2604, 1997<br />

38. Gremlich S, Roduit R, Thorens B: Dexamethas<strong>on</strong>e induces posttranslati<strong>on</strong>al<br />

degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> GLUT2 and inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> insulin secreti<strong>on</strong> in isolated<br />

pancreatic beta cells: comparis<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> fatty acids. J Biol<br />

Chem 272:3216–3222, 1997<br />

39. Lambillotte C, Gil<strong>on</strong> P, Henquin JC: Direct glucocorticoid inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

insulin secreti<strong>on</strong>: an in vitro study <str<strong>on</strong>g>of</str<strong>on</strong>g> dexamethas<strong>on</strong>e effects in mouse<br />

islets. J Clin Invest 99:414–423, 1997<br />

40. Davani B, Khan A, Hult M, Martenss<strong>on</strong> E, Okret S, Efendic S, Jornvall H,<br />

Oppermann UC: Type 1 11beta-hydroxysteroid dehydrogenase mediates<br />

glucocorticoid activati<strong>on</strong> and insulin release in pancreatic islets. J Biol<br />

Chem 275:34841–34844, 2000<br />

41. Weinhaus AJ, Bhagroo NV, Brelje TC, Sorens<strong>on</strong> RL: Dexamethas<strong>on</strong>e<br />

counteracts <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> prolactin <strong>on</strong> islet functi<strong>on</strong>: implicati<strong>on</strong>s for islet<br />

regulati<strong>on</strong> in late pregnancy. Endocrinology 141:1384–1393, 2000<br />

42. Goodman PA, Medina-Martinez O, Fernandez-Mejia C: Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

human insulin negative regulatory element as a negative glucocorticoid<br />

resp<strong>on</strong>se element. Mol Cell Endocrinol 120:139–146, 1996<br />

DIABETES, VOL. 53, SEPTEMBER 2004 2329

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!