23.01.2013 Views

References - Lehrstuhl Numerische Mathematik - TUM

References - Lehrstuhl Numerische Mathematik - TUM

References - Lehrstuhl Numerische Mathematik - TUM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

REFERENCES 346<br />

Hairer, E. and G. Wanner (1996). Solving Ordinary Differential Equations II: Stiff and<br />

Differential–Algebraic Problems (2nd ed.). New York, NY: Springer–Verlag.<br />

Hale, J. K. (1977). Theory of Functional Differential Equations. New York, NY: Springer–Verlag.<br />

Hall, C. A., X. Lei, and P. J. Rabier (1994). A nonstandard symmetry breaking phenomenon<br />

in sheet metal stretching. Int. J. Engrg. Sci. 32, 1381–1397.<br />

Hanke, M. (1988). On a least–squares collocation method for linear differential–algebraic equa-<br />

tions. Numer. Math. 54, 79–90.<br />

Hartman, P. (1964). Ordinary Differential Equations. New York, NY: Wiley.<br />

Haug, E. J. (1989). Computer Aided Kinematics and Dynamics of Mechanical Systems, Vol I.<br />

Boston, MA: Allyn and Bacon.<br />

Hautus, M. L. J. and L. M. Silverman (1983). System structure and singular control. Lin. Alg.<br />

and Appl. 50, 369–402.<br />

Hiller, M. and S. Frik (1991). Road vehicle benchmark 2: Five link suspension. In W. Kortüm,<br />

S. Sharp, and A. de Pater (Eds.), Applications of Multibody Computer Codes to Vehicle<br />

system dynamics. Lyon, France: IAVSD Symposium.<br />

Hindmarsh, A. C. (1983). ODEPACK, A systematized collection of ODE solvers. In R. S.<br />

Stepleman (Ed.), Scientific Computing, pp. 55–64. Amsterdam, The Netherlands: North–<br />

Holland.<br />

Holodnick, M. and M. Kubiček (1984). DERPAR–an algorithm for the continuation of periodic<br />

solutions in ordinary differential equations. J. Comput. Phys. 55, 254–267.<br />

Hopf, E. (1942). Abzweigung einer periodischen Lösung von einer stationären Lösung eines<br />

Differentialsystems. Ber. der Math–Phys. Klasse der Sächsischen Akademie der Wiss. zu<br />

Leipzig 94, 1–22.<br />

Hoppensteadt, F. C. (1971). Properties of solutions of ordinary differential equations with small<br />

parameters. Comm. Pure Appl. Math. 24, 807–840.<br />

Huilgol, R. R., M. A. Janus, R.and Lohe, and T. W. Sag (1983). On the application of a<br />

numerical algorithm for Hopf bifurcation to the hunting of a wheelset. J. Australian Math.<br />

Soc. Ser. B 25, 384–405.<br />

Husemoller, D. (1994). Fibre Bundles (3rd ed.). New York, NY: Springer–Verlag.<br />

Jackson, K. R. and R. Sacks-Davis (1980). An alternative implementation of variable step–size<br />

multistep formulas for stiff ODEs. ACM Trans. Math. Software 6, 295–318.<br />

Jepson, A. D. (1981). Numerical Hopf bifurcation. Ph. D. thesis, Calif. Inst. of Techn., Pasadena,<br />

CA.<br />

Jepson, A. D. and A. Spence (1985). Folds in solutions of two parameter systems and their<br />

calculation I. SIAM J. Numer. Anal. 22, 347–368.<br />

Kähler, E. (1949). Einführung in die Theorie der Systeme von Differentialgleichungen,. New<br />

York, NY: Chelsea Publ. Co.<br />

Kalachev, L. V. and R. E. O’Malley Jr. (1995). Boundary value problems for differential alge-<br />

braic equations. Num. Funct. Anal. and Optim. 16, 363–378.<br />

Kampowsky, W., P. Rentrop, and W. Schmidt (1992). Classification and numerical simulation<br />

of electrical circuits. Surv. on Math. in Industry 2, 23–65.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!