23.01.2013 Views

References - Lehrstuhl Numerische Mathematik - TUM

References - Lehrstuhl Numerische Mathematik - TUM

References - Lehrstuhl Numerische Mathematik - TUM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>References</strong><br />

Abraham, R., J. E. Marsden, and T. Ratiu (1988). Manifolds, Tensor Analysis, and Applications<br />

(2nd ed.). New York, NY: Springer–Verlag.<br />

Alexander, R. (1977). Diagonally implicit Runge–Kutta methods for stiff ODEs. SIAM J. Nu-<br />

mer. Anal. 14, 1006–1021.<br />

Alishenas, T. and O. Olafson (1994). Modelling and velocity stabilization of constrained me-<br />

chanical systems. BIT 34, 455–483.<br />

Alligood, K. T. and J. A. Yorke (1986). Hopf bifurcation: The appearance of virtual periods in<br />

cases of resonance. J. Diff. Equations 64, 375–394.<br />

Arevalo, C. (1993). Matching the structure of DAEs and Multistep methods. Ph. D. thesis, Lund<br />

Univ., Lund, Sweden.<br />

Arnold, V. I. (1983). Geometrical Methods in the Theory of Ordinary Differential Equations,<br />

Volume 250 of Grundlehren Mathem. Wiss. New York, NY: Springer–Verlag.<br />

Arnold, V. I., S. M. Gusein-Zade, and A. N. Varchenko (1985). Singularities of Differentiable<br />

Maps, Vol. I. Boston, MA: Birkhäuser Verlag. Translation from the Russian.<br />

Ascher, U. M., H. Chin, L. R. Petzold, and S. Reich (1995). Stabilization of constrained mechan-<br />

ical systems with DAEs and invariant manifolds. J. Mech. Struct. Machines 23, 135–158.<br />

Ascher, U. M., H. Chin, and S. Reich (1994). Stabilization of DAEs and invariant manifolds.<br />

Numer. Math. 67, 131–149.<br />

Ascher, U. M., J. Christiansen, and R. D. Russell (1979). A collocation solver for a mixed order<br />

boundary value ODE solver. Math. of Comp. 33, 659–679.<br />

Ascher, U. M., R. M. M. Mattheij, and R. D. Russell (1995). Numerical Solution of Boundary<br />

Value Problems for Ordinary Differential Equations, Volume 13 of Classics in Appl. Mathem.<br />

Philadelphia, PA: SIAM Publications.<br />

Ascher, U. M. and L. R. Petzold (1991). Projected implicit Runge–Kutta methods for<br />

differential–algebraic equations. SIAM J. Numer. Anal. 28, 1097–1120.<br />

Ascher, U. M. and L. R. Petzold (1998). Computer Methods for Ordinary Differential Equations<br />

and Differential–Algebraic Equations. Philadelphia, PA: SIAM Publications.<br />

Ascher, U. M. and S. Reich (1998). On some difficulties in integrating highly oscillatory Hamil-<br />

tonian systems. In Lect. Notes in Comp. Sci. and Eng., Volume 4, pp. 281–296. New York,<br />

NY: Springer–Verlag.<br />

Ascher, U. M. and R. Spiteri (1994). Collocation software for boundary value differential–<br />

algebraic equations. SIAM J. Sci. Stat. Comp. 15, 938–952.<br />

339


REFERENCES 340<br />

Bader, G. and U. Ascher (1987). A new basis implementation for a mixed order boundary value<br />

ODE solver. SIAM J. Sci. Stat. Comp. 8, 483–500.<br />

Bauer, I., H. G. Bock, S. Körkel, and J. P. Schlöder (1999). Numerical methods for initial<br />

value problems and derivative generation for DAE models with application to optimum<br />

experimental design of chemical processes. In Proc. Int. Workshop on Scient. Comput. in<br />

Chem. Engin., Volume II. TU Hamburg Harburg, Germany.<br />

Bauer, I., H. G. Bock, D. B. Leineweber, and J. P. Schlöder (1999). Direct multiple shooting<br />

methods for control and optimization of DAEs in chemical engineering. In Proc. Int. Work-<br />

shop on Scient. Comput. in Chem. Engin., Volume II. TU Hamburg Harburg, Germany.<br />

Baumgarte, J. (1972). Stabilization of constraints and integrals of motion in dynamical systems.<br />

Comp. Meth. Appl. Mech. Eng. 1, 11–16.<br />

Beardmore, R. E. (1998). Stability and bifurcation properties of index–1 DAEs. Numer. Algo-<br />

rithms 19, 43–53.<br />

Becker, T. and V. Weispfenning (1993). Gröbner Bases, a Computational Approach to Commu-<br />

tative Algebra, Volume 141 of Grad. Texts in Mathem. New York, NY: Springer–Verlag.<br />

Berzins, M. and R. M. Furzeland (1985). A user’s manual for SPRINT – a versatile software<br />

package for solving systems of algebraic, ordinary, and partial differential equations. Tech-<br />

nical Report TNER.85.058, Thornton Res. Centre, Shell Research Ltd.<br />

Biegler, L. T. and J. J. Damiano (1986). Nonlinear parameter estimation: A case study. AIChE<br />

Journal 32, 29–45.<br />

Bishop, R. L. and R. J. Crittenden (1964). Geometry of Manifolds. New York, NY: Academic<br />

Press.<br />

Blajer, W. (1997). A geometric unification of constrained system dynamics. Multibody Syst.<br />

Dynam. 1, 3–21.<br />

Blajer, W. and A. Markiewicz (1995). The effect of friction on multibody dynamics. European<br />

J. Mech. Solids 14, 807–825.<br />

Bock, H. G., E. Eich, and J. P. Schlöder (1988). Numerical solution of constrained least squares<br />

boundary value problems in differential–algebraic equations. In K. Strehmel (Ed.), Numer-<br />

ical Treatment of Differential Equations. Leipzig, Germany: Teubner Verlag.<br />

Bock, H. G. and K. J. Plitt (1984). A multiple shooting algorithm for direct solution of con-<br />

strained optimal control problems. In Proc. 9th IFAC World Congress, Budapest, Hungary,<br />

pp. 242–247. Pergamon Press.<br />

Bock, H. G., J. P. Schlöder, M. C. Steinbach, and H. Wörn (1997). Schnelle Roboter am<br />

Fliessband: Mathematische Bahnoptimierung in Praxis. In K. H. Hoffmann, W. Jäger,<br />

T. Lohmann, and H. Schunck (Eds.), <strong>Mathematik</strong> Schlüsseltechnologie für die Zukunft, pp.<br />

539–550. Berlin, Germany: Springer–Verlag.<br />

Bornemann, F. A. (1998). Homogenization in Time of Singularly Perturbed Conservative Me-<br />

chanical Systems, Volume 1687 of Lect. Notes in Math. New York, NY: Springer–Verlag.<br />

Bremer, H. and P. Pfeiffer (1992). Elastische Mehrkörpersysteme. Stuttgart, Germany: Teubner<br />

Verlag.<br />

Brenan, K. E. (1983). Stability and convergence of difference approximations for higher index<br />

differential algebraic systems with applications in trajectory control. Ph. D. thesis, Univ. of<br />

Calif. at Los Angeles, Los Angeles, CA.


REFERENCES 341<br />

Brenan, K. E., S. L. Campbell, and L. R. Petzold (1989). Numerical Solution of Initial–Value<br />

Problems in Differential–Algebraic Equations. New York, NY: Elsevier Science Publ.<br />

Brenan, K. E., S. L. Campbell, and L. R. Petzold (1996). Numerical Solution of Initial–Value<br />

Problems in Differential–Algebraic Equations, Volume 14 of Classics in Appl. Math. Philadel-<br />

phia, PA: SIAM Publications.<br />

Brenan, K. E. and B. E. Enquist (1988). Backward differentiation approximations of nonlinear<br />

differential/algebraic equations. Math. of Comp. 51, 659–676.<br />

Brenan, K. E. and L. R. Petzold (1989). The numerical solution of higher index differen-<br />

tial/algebraic equations by implicit Runge–Kutta methods. SIAM J. Numer. Anal. 26,<br />

976–996.<br />

Brown, P. N., A. C. Hindmarsh, and L. R. Petzold (1994). Using Krylov methods in the solution<br />

of large–scale differential algebraic systems. SIAM J. Sci. Stat. Comp. 15, 1467–1488.<br />

Burkardt, J. and W. C. Rheinboldt (1983). A locally parametrized continuation process. ACM<br />

Trans. Math. Softw. 9, 215–235.<br />

Burrage, K. and L. R. Petzold (1990). On order reduction for Runge–Kutta methods applied<br />

to differential/algebraic systems and to stiff systems of ODEs. SIAM J. Numer. Anal. 27,<br />

447–456.<br />

Butcher, J. C. (1964). Implicit Runge–Kutta processes. Math. of Comp. 18, 50–64.<br />

Byrne, G. D. and A. C. Hindmarsh (1987). Stiff ODE solvers: A review of current and coming<br />

attractions. J. Comput. Phys. 70, 1–62.<br />

Cameron, I. T. (1983). Solution of differential–algebraic systems using diagonally–implicit<br />

Runge–Kutta methods. IMA J. Numer. Anal. 3, 273–289.<br />

Campbell, S. L. (1980). Singular Systems of Differential Equations, I. London, UK: Pitman<br />

Publ. Ltd.<br />

Campbell, S. L. (1982). Singular Systems of Differential Equations, II. London, UK: Pitman<br />

Publ. Ltd.<br />

Campbell, S. L. (1985). The numerical solution of higher index linear time varying singular<br />

systems of differential equations. SIAM J. Sci. Stat. Comp. 6, 334–348.<br />

Campbell, S. L. (1987). A general form for solvable linear time varying singular systems of<br />

differential equations. SIAM J. Math. Anal. 18, 1101–1115.<br />

Campbell, S. L. and C. W. Gear (1995). The index of general nonlinear DAEs. Numer. Math. 72,<br />

173–196.<br />

Campbell, S. L. and E. Griepentrog (1995). Solvability of general differential algebraic equations.<br />

SIAM J. Sci. Stat. Comp. 16, 257–270.<br />

Campbell, S. L. and L. Petzold (1983). Canonical forms and solvable singular systems of diff-<br />

erential equations. SIAM J. Alg. Disc. Meth. 4, 517–521.<br />

Caracotsios, M. and W. E. Stewart (1985). Sensitivity analysis of initial value problems with<br />

mixed ODEs and algebraic equations. Comp. and Chem. Eng. 9, 359–365.<br />

Cartan, E. (1945). Les Systèmes Différentiels Extérieurs et Leurs Applications Géométriques.<br />

Paris, France: Hermann.<br />

Cash, J. R. (1980). On the integration of stiff systems of ODEs using extended backward<br />

differentiation formulas. Numer. Math. 34, 235–246.


REFERENCES 342<br />

Cavendish, J., C. A. Hall, W. C. Rheinboldt, and M. L. Wenner (1986). DEM: A new compu-<br />

tational approach to sheet metal forming problems. Int. J. Num. Meth. Eng. 23, 847–862.<br />

Chaperon, M. (1986). Géometrie Différentielle et Singularités de Systèmes Dynamiques, Volume<br />

138–139 of Astérisque. Paris, France: Soc. Math. France.<br />

Choquet-Bruhat, Y., C. De Witt-Morette, and M. Dillard-Bleick (1982). Analysis, Manifolds<br />

and Physics, Part I. Amsterdam, The Netherlands: North–Holland.<br />

Chua, L. O. and A.-C. Deng (1989a). Impasse points. Part I: Numerical aspects. Int. J. Circ.<br />

Theor. and Appl. 17, 213–235.<br />

Chua, L. O. and A.-C. Deng (1989b). Impasse points. Part II: Analytical aspects. Int. J. Circ.<br />

Th. and Appl. 17, 271–282.<br />

Chua, L. O. and H. Oka (1988). Normal forms for constrained nonlinear differential equations,<br />

Part I: Theory. IEEE Trans. Circ. and Syst. 35, 881–901.<br />

Chua, L. O. and H. Oka (1989). Normal forms for constrained nonlinear differential equations,<br />

Part II: Bifurcation. IEEE Trans. Circ. and Syst. 36, 71–88.<br />

Chua, L. O. and Y. Yu (1983). Negative resistance devices. Int. J. Circ. Theor. and Appl. 11,<br />

162–186.<br />

Clark, K. D. and L. R. Petzold (1989). Numerical solution of boundary value problems for<br />

differential–algebraic systems. SIAM J. Sci. Stat. Comp. 10, 915–936.<br />

Cobb, D. (1982). On the solutions of linear differential equations with singular coefficients. J.<br />

Diff. Equations 42, 311–323.<br />

Corduneanu, C. (1977). Principles of Differential and Integral Equations. New York, NY:<br />

Chelsea Publ. Co.<br />

Crandall, M. G. and P. H. Rabinowitz (1977). The Hopf bifurcation theorem in infinite dimen-<br />

sions. Arch. Rat. Mech. Anal. 67, 53–72.<br />

Crouch, P. E. and R. Grossman (1993). Numerical integration of ordinary differential equations<br />

on manifolds. J. Nonlin. Sci. 3, 1–33.<br />

Curtis, A. R. (1980). The FACSIMILE numerical integrator for stiff initial value problems. In<br />

I. Gladwell and D. K. Sayers (Eds.), Computational Techniques for Ordinary Differential<br />

Equations, pp. 47–82. London, UK: Academic Press.<br />

Curtis, C. F. and J. O. Hirschfelder (1952). Integration of stiff equations. Proc. Nat. Acad.<br />

Sci. 38, 235–243.<br />

Dahlquist, G. (1956). Convergence and stability in the numerical integration of ordinary diff-<br />

erential equations. Math. Scand. 4, 33–53.<br />

Dahlquist, G. (1983). On one–leg multistep methods. SIAM J. Numer. Anal. 20, 1130–1138.<br />

Darboux, G. (1873). Sur les solutions singulières des équations aux dérivées ordinaires du pre-<br />

mier ordre. Bull. Sc. Math. Astron. 4, 158–176.<br />

De Hoog, F. R. and R. M. M. Mattheij (1987). On dichotomy and well conditioning in BVP.<br />

SIAM J. Numer. Anal. 24, 89–105.<br />

Desoer, C. A. and F. F. Wu (1974). Nonlinear networks. SIAM J. Appl. Math. 26, 315–333.<br />

Deuflhard, P. (1983). Order and stepsize control in extrapolation methods. Numer. Math. 41,<br />

399–422.


REFERENCES 343<br />

Deuflhard, P. (1985). Recent progress in extrapolation methods for ordinary differential equa-<br />

tions. SIAM Rev. 27, 505–535.<br />

Deuflhard, P., E. Hairer, and J. Zugck (1987). One–step and extrapolation methods for<br />

differential–algebraic equations. Numer. Math. 51, 501–516.<br />

Deuflhard, P. and U. Nowak (1987). Extrapolation integrators for quasilinear implicit ODEs. In<br />

P. Deuflhard and B. Engquist (Eds.), Large–Scale Scientific Computing, pp. 37–50. Basel,<br />

Switzerland: Birkhäuser Verlag.<br />

Dieudonné, J. (1970). Eléments d’Analyse, Volume 3. Paris, France: Gauthier–Villars.<br />

Doedel, E., H. B. Keller, and J. P. Kernevez (1991). Numerical analysis and control of bifurcation<br />

problems: II Bifurcation in infinite dimensions. Int J. Bifurcation Chaos 1, 745–772.<br />

Dolezal, V. (1964). The existence of a continuous basis of certain linear subspaces of Er which<br />

depends on a parameter. Čas. Pro. Peˇst. Mat. 89, 466–468.<br />

Duff, I. and C. W. Gear (1986). Computing the structural index. SIAM J. Alg. Disc. Meth. 7,<br />

594–603.<br />

Eich, E. (1991). Projizierende Mehrschrittverfahren zur Lösung der Bewegungsgleichungen tech-<br />

nischer Mehrkörpersysteme mit Zwangsbedingungen und Unstetigkeiten. Ph. D. thesis, Inst.<br />

f. Mathem., Univ. Augsburg, Augsburg, Germany.<br />

Eich, E. (1993). Convergence results for a coordinate projection method applied to mechanical<br />

systems with algebraic constraints. SIAM J. Numer. Anal. 30, 1467–1482.<br />

Eich, E., C. Führer, B. Leimkuhler, and S. Reich (1990). Stabilization and projection methods<br />

for multibody dynamics. Technical Report A281, Inst. f. Mathem., Helsinki Univ. of Techn.,<br />

Espoo, Finland.<br />

Eich-Soellner, E. and C. Führer (1998). Numerical Methods in Multibody Dynamics. Stuttgart,<br />

Germany: B. G. Teubner.<br />

Eich-Soellner, E., P. Lory, P. Burr, and A. Kroner (1997). Stationary and dynamic flowsheeting<br />

in the chemical engineering industry. Surveys Math. Indust. 7, 1–28.<br />

Endo, T. and L. O. Chua (1988). Chaos from phase–locked loops. IEEE Trans. Circ. and<br />

Syst. 35, 987–1003.<br />

Engl, G. (1996). The modeling and numerical simulation of gas flow networks. Numer. Math. 72,<br />

349–366.<br />

Ernsthausen, J. M. (2001). On the numerical solution of DAE–boundary value problems. Ph. D.<br />

thesis, Dept. of Mathem., Univ. of Pittsburgh, Pittsburgh, PA. in preparation.<br />

Fliess, M., J. Lévine, and P. Rouchon (1992). Index of a general differential–algebraic implicit<br />

system. In S. Kimura and S. Kodama (Eds.), Recent Advances in Mathematical Theory of<br />

Systems, Control, Network and Signal Processing I, pp. 289–294. Kobe, Japan: Mita Press.<br />

Fliess, M., J. Lévine, and P. Rouchon (1993). Index of an implicit time–varying linear differential<br />

equation: A noncommutative algebraic approach. Lin. Alg. and Applic. 186, 59–71.<br />

Frank, R., F. J. Schneid, and C. W. Ueberhuber (1981). The concept of B–convergence. SIAM<br />

J. Numer. Anal. 18, 753–780.<br />

Frank, R., F. J. Schneid, and C. W. Ueberhuber (1985a). Order results for implicit Runge–Kutta<br />

methods applied to stiff systems. SIAM J. Numer. Anal. 22, 515–534.


REFERENCES 344<br />

Frank, R., F. J. Schneid, and C. W. Ueberhuber (1985b). Stability properties of implicit Runge–<br />

Kutta methods. SIAM J. Numer. Anal. 22, 497–514.<br />

Friedrich, K. O. (1965). Advanced Ordinary Differential Equations. New York, NY: Gordon and<br />

Breach.<br />

Führer, C. (1988). Differential – algebraische Gleichungssysteme in mechanischen Mehrkörper-<br />

systemen. Ph. D. thesis, Mathem. Inst., Techn. Univ. München, München, Germany.<br />

Führer, C. and B. J. Leimkuhler (1990). A new class of generalized inverses for the solution<br />

of discretized Euler–Lagrange equations. In E. J. Haug and R. C. Deyo (Eds.), Real–Time<br />

Integration Methods for Mechanical System Simulation, Volume F 69 of NATO ASI Series,<br />

pp. 143–154. New York, NY: Springer–Verlag.<br />

Führer, C. and B. J. Leimkuhler (1991). Numerical solution of differential–algebraic equations<br />

for constrained mechanical motion. Numer. Math. 59, 55–69.<br />

Gantmacher, F. R. (1953). Teorya Matrits, Vol I, II. Moscow, Russia: Gos. Izdat. Techn.-Teor.<br />

Lit, Moscva. English translation, Chelsea Publ. Co., New York, NY, 1956.<br />

Gärtner, W. W. (1960). Transistors: Principles, Design and Applications. Toronto, Canada:<br />

Van Nostrand.<br />

Gauss, K. F. (1829). Über ein neues allgemeines Grundgesetz der Mechanik. J. f. d. reine und<br />

angew. Mathem. (Crelle) 4, 25–28.<br />

Gear, C. W. (1971). The simultaneous numerical solution of differential–algebraic equations.<br />

IEEE Trans. Circ. Theory CT–18, 89–95.<br />

Gear, C. W. (1986). Maintaining solution invariants in the numerical solution of ODEs. SIAM<br />

J. Sci. Stat. Comp. 7, 734–743.<br />

Gear, C. W. (1988). Differential–algebraic equation index transformations. SIAM J. Sci. Stat.<br />

Comp. 9, 39–48.<br />

Gear, C. W. (1990). DAE indices and integral algebraic equation. SIAM J. Numer. Anal. 27,<br />

1527–1534.<br />

Gear, C. W., G. Gupta, and B. Leimkuhler (1985). Automatic integration of the Euler–Lagrange<br />

equations with constraints. J. Comp. Appl. Math. 12/13, 77–90.<br />

Gear, C. W. and L. R. Petzold (1983). Differential/algebraic systems and matrix pencils. In<br />

B. Kagstrom and A. Ruhe (Eds.), Matrix Pencils, Volume 973 of Lect. Notes in Mathem.,<br />

pp. 75–89. New York, NY: Springer–Verlag.<br />

Gear, C. W. and L. R. Petzold (1984). ODE methods for the solution of differential/algebraic<br />

systems. SIAM J. Numer. Anal. 21, 716–728.<br />

Geerts, T. (1993). Solvability conditions, consistency and weak consistency for linear differen-<br />

tial –algebraic equations and time–invariant singular systems: The general case. Lin. Alg.<br />

Appl. 181, 111–130.<br />

Goldschmidt, H. (1967a). Existence theorems for analytic linear partial differential equations.<br />

Ann. Math. 86, 246–270.<br />

Goldschmidt, H. (1967b). Integrability criteria for systems of non–linear partial differential<br />

equations. J. Diff. Geom. 1, 269–307.<br />

Golubitsky, M. and V. Guillemin (1973). Stable Mappings and their Singularities, Volume 14 of<br />

Grad. Texts in Mathem. New York, NY: Springer–Verlag.


REFERENCES 345<br />

Gràcia, X. and J. M. Pons (1992). A generalized geometric framework for constrained systems.<br />

Diff. Geom. Appl. 2, 223–247.<br />

Green, M. M. and A. N. Willson Jr. (1992). How to identify unstable dc operating points. IEEE<br />

Trans. Circ. and Syst. 39, 820–832.<br />

Gresho, P. M., S. T. Chan, R. L. Lee, and C. D. Upson (1984). A modified finite element method<br />

for solving the time–dependent incompressible Navier Stokes equations. Part I: Theory. Int.<br />

J. Num. Meth. in Fluids 4, 557–598.<br />

Griepentrog, E. and R. März (1986). Differential–Algebraic Equations and their Numerical<br />

Treatment, Volume 88 of Teubner Texte zur Mathem. Leipzig, Germany: B.G. Teubner<br />

Verlag.<br />

Griepentrog, E. and R. März (1989). Basic properties of some differential–algebraic equations.<br />

Z. Anal. Anwend. 8, 25–40.<br />

Griewank, A. (2000). Evaluating derivatives: Principles and Techniques of Algorithmic Differ-<br />

entiation. Philadelphia, PA: SIAM Publications.<br />

Griewank, A. and G. F. Corliss (Eds.) (1992). Automatic Differentiation of Algorithms. Philadel-<br />

phia, PA: SIAM Publications.<br />

Griewank, A. and G. W. Reddien (1983). The calculation of Hopf points by a direct method.<br />

IMA J. Numer. Anal. 3, 295–303.<br />

Griewank, A. and G. W. Reddien (1984). Characterization and computation of generalized<br />

turning points. SIAM J. Numer. Anal. 21, 176–185.<br />

Griewank, A. and G. W. Reddien (1989). Computation of cusp singularities for operator equa-<br />

tions and their discretizations. J. Comput. Appl. Math. 26, 133–153.<br />

Gritsis, D., C. C. Pantelides, and R. W. H. Sargent (1995). Optimal control of systems described<br />

by index two differential–algebraic equations. SIAM J. Sci. Stat. Comp. 16, 1349–1366.<br />

Guckenheimer, J. and M. Myers (1996). Computing Hopf bifurcations II: Three examples from<br />

neurophysiology. SIAM J. Sci. Stat. Comp. 17, 1275–1301.<br />

Guckenheimer, J., M. Myers, and B. Sturmfels (1997). Computing Hopf bifurcations I. SIAM<br />

J. Numer. Anal. 34, 1–21.<br />

Günther, M. and U. Feldmann (1999a). CAD based electric circuit modeling in industry I.<br />

mathematical structure and index of network equations. Surv. Math. Ind. 8, 97–129.<br />

Günther, M. and U. Feldmann (1999b). CAD based electric circuit modeling in industry II.<br />

impact of circuit configurations and parameters. Surv. Math. Ind. 8, 131–157.<br />

Günther, M. and M. Hoschek (1997). ROW methods adapted to electric circuit simulation<br />

packages. Comp. and Appl. Math. 82, 159–170.<br />

Hachtel, G. D., R. K. Brayton, and F. G. Gustavson (1971). The sparse tableau approach to<br />

network analysis and design. IEEE Trans. Circ. Theory CT–18, 101–113.<br />

Hairer, E. (1999). Symmetric projection methods for differential equations on manifold. preprint.<br />

Hairer, E., C. Lubich, and M. Roche (1989). The Numerical Solution of Differential–Algebraic<br />

Systems by Runge–Kutta Methods, Volume 1409 of Lect. Notes in Mathem. New York, NY:<br />

Springer–Verlag.<br />

Hairer, E., S. P. Norsett, and G. Wanner (1993). Solving Ordinary Differential Equations I:<br />

Nonstiff Problems (2nd ed.). New York, NY: Springer–Verlag.


REFERENCES 346<br />

Hairer, E. and G. Wanner (1996). Solving Ordinary Differential Equations II: Stiff and<br />

Differential–Algebraic Problems (2nd ed.). New York, NY: Springer–Verlag.<br />

Hale, J. K. (1977). Theory of Functional Differential Equations. New York, NY: Springer–Verlag.<br />

Hall, C. A., X. Lei, and P. J. Rabier (1994). A nonstandard symmetry breaking phenomenon<br />

in sheet metal stretching. Int. J. Engrg. Sci. 32, 1381–1397.<br />

Hanke, M. (1988). On a least–squares collocation method for linear differential–algebraic equa-<br />

tions. Numer. Math. 54, 79–90.<br />

Hartman, P. (1964). Ordinary Differential Equations. New York, NY: Wiley.<br />

Haug, E. J. (1989). Computer Aided Kinematics and Dynamics of Mechanical Systems, Vol I.<br />

Boston, MA: Allyn and Bacon.<br />

Hautus, M. L. J. and L. M. Silverman (1983). System structure and singular control. Lin. Alg.<br />

and Appl. 50, 369–402.<br />

Hiller, M. and S. Frik (1991). Road vehicle benchmark 2: Five link suspension. In W. Kortüm,<br />

S. Sharp, and A. de Pater (Eds.), Applications of Multibody Computer Codes to Vehicle<br />

system dynamics. Lyon, France: IAVSD Symposium.<br />

Hindmarsh, A. C. (1983). ODEPACK, A systematized collection of ODE solvers. In R. S.<br />

Stepleman (Ed.), Scientific Computing, pp. 55–64. Amsterdam, The Netherlands: North–<br />

Holland.<br />

Holodnick, M. and M. Kubiček (1984). DERPAR–an algorithm for the continuation of periodic<br />

solutions in ordinary differential equations. J. Comput. Phys. 55, 254–267.<br />

Hopf, E. (1942). Abzweigung einer periodischen Lösung von einer stationären Lösung eines<br />

Differentialsystems. Ber. der Math–Phys. Klasse der Sächsischen Akademie der Wiss. zu<br />

Leipzig 94, 1–22.<br />

Hoppensteadt, F. C. (1971). Properties of solutions of ordinary differential equations with small<br />

parameters. Comm. Pure Appl. Math. 24, 807–840.<br />

Huilgol, R. R., M. A. Janus, R.and Lohe, and T. W. Sag (1983). On the application of a<br />

numerical algorithm for Hopf bifurcation to the hunting of a wheelset. J. Australian Math.<br />

Soc. Ser. B 25, 384–405.<br />

Husemoller, D. (1994). Fibre Bundles (3rd ed.). New York, NY: Springer–Verlag.<br />

Jackson, K. R. and R. Sacks-Davis (1980). An alternative implementation of variable step–size<br />

multistep formulas for stiff ODEs. ACM Trans. Math. Software 6, 295–318.<br />

Jepson, A. D. (1981). Numerical Hopf bifurcation. Ph. D. thesis, Calif. Inst. of Techn., Pasadena,<br />

CA.<br />

Jepson, A. D. and A. Spence (1985). Folds in solutions of two parameter systems and their<br />

calculation I. SIAM J. Numer. Anal. 22, 347–368.<br />

Kähler, E. (1949). Einführung in die Theorie der Systeme von Differentialgleichungen,. New<br />

York, NY: Chelsea Publ. Co.<br />

Kalachev, L. V. and R. E. O’Malley Jr. (1995). Boundary value problems for differential alge-<br />

braic equations. Num. Funct. Anal. and Optim. 16, 363–378.<br />

Kampowsky, W., P. Rentrop, and W. Schmidt (1992). Classification and numerical simulation<br />

of electrical circuits. Surv. on Math. in Industry 2, 23–65.


REFERENCES 347<br />

Kaps, P. and P. Rentrop (1979). Generalized Runge–Kutta methods of order for with stepsize<br />

control for stiff ordinary differential equations. Numer. Math. 33, 55–68.<br />

Kaps, P. and G. Wanner (1981). A study of Rosenbrock–type methods of high order. Numer.<br />

Math. 38, 279–298.<br />

Kato, T. (1950). On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Jap. 5, 435–439.<br />

Kato, T. (1980). Perturbation Theory for Linear Operators. New York, NY: Springer–Verlag.<br />

Kato, T. (1982). A Short Introduction to Perturbation Theory for Linear Operators. New York,<br />

NY: Springer–Verlag.<br />

Keller, H. B. (1992). Numerical Methods for Two Point Boundary Value Problems. New York,<br />

NY: Dover Publ.<br />

Kielhöfer, H. (1992). Hopf bifurcation from a differentiable viewpoint. J. Diff. Equations 97,<br />

189–232.<br />

Krogh, F. T. (1974). Changing step sizes in the intergation of differential equations using mod-<br />

ified divided differences. In Proc. Conf. Numer. Sol. of ODEs, Volume 362 of Lect. Notes in<br />

Mathem., pp. 22–71. New York, NY: Springer–Verlag.<br />

Kronecker, L. (1890). Algebraische Reduktion der Scharen bilinearer Formen. In L. Kronecker,<br />

Gesammelte Werke, Volume III, pp. 141–155. Berlin, Germany: Akad. d. Wiss. Berlin.<br />

Kubiček, M. (1980). Algorithm for evaluation of complex bifurcation points in ordinary diff-<br />

erential equations. SIAM J. Appl. Math. 38, 103–107.<br />

Kunkel, P. and V. Mehrmann (1995). Canonical forms for linear differential–algebraic with<br />

variable coefficients. J. Comp. Appl. Math. 56, 225–251.<br />

Kunkel, P. and V. Mehrmann (1996). A new class of discretization methods for the solution of<br />

linear differential–algebraic equations with variable coefficients. SIAM J. Numer. Anal. 33,<br />

1941–1961.<br />

Kunkel, P., V. Mehrmann, W. Rath, and J. Weickert (1997). A new software package for linear<br />

differential algebraic equations. SIAM J. Sci. Stat. Comp. 18, 115–138.<br />

Kuranishi, M. (1967). Lectures on Involutive Systems of Partial Differential Equations. São<br />

Paulo, Brazil: Publ. Sociedad Mat. São Paulo.<br />

Lagrange, J. L. (1967). Oeuvres, 14 volumes. Paris, France: Gauthier–Villars.<br />

LakDara (1975). Singularités génériques des équations différentielles multiformes. Bol. Soc.<br />

Brasil. Mat. 6, 95–128.<br />

Lamour, R. (1991). Shooting methods for transferable DAEs. Numer. Math. 59, 815–829.<br />

Lamour, R. (1997). A shooting method for fully implicit index-two differential algebraic equa-<br />

tions. SIAM J. Sci. Stat.Comp. 18, 94–114.<br />

Lamour, R., R. März, and R. Winkler (1998). How Floquet theory applies to index one diff-<br />

erential algebraic equations. J. Math. Anal. Appl. 217, 372–394.<br />

Lei, X. (1995). Singularities of a Sheet Metal Stretching Problem and Quasilinear Second Order<br />

Ordinary Differential Equations. Ph. D. thesis, Dept. of Mathem., Univ. of Pittsburgh,<br />

Pittsburgh, PA.<br />

Leimkuler, B., L. R. Petzold, and C. W. Gear (1991). Approximation methods for the consistent<br />

initialization of differential algebraic equations. SIAM J. Numer. Anal. 28, 205–226.


REFERENCES 348<br />

Leineweber, D. B. (1996). The theory of MUSCOD in a nutshell. Technical Report IWR 96–19,<br />

Int. Zent. f. Wiss. Rechn., Univ. Heidelberg, Heidelberg, Germany.<br />

Leineweber, D. B. (1998). Efficient reduced SQP methods for the optimization of chemical pro-<br />

cesses described by large sparse DAE models. Ph. D. thesis, Nat.-Math. Fakult., Univ. Hei-<br />

delberg, Heidelberg, Germany.<br />

Lentini, M. and R. März (1990a). The condition of boundary value problems in transferable<br />

differential–algebraic equations. SIAM J. Numer. Anal. 27, 1001–1015.<br />

Lentini, M. and R. März (1990b). Conditioning and dichotomy for differential algebraic equa-<br />

tions. SIAM J. Numer. Anal. 27, 1519–1526.<br />

LeVey, G. (1994). Differential algebraic equations, a new look at the index. Technical Report<br />

2239, INRIA, Rennes, France.<br />

LeVey, G. (1998). Some remarks on solvability and various indices for implicit differential equa-<br />

tions. Numer. Algorithms 19, 127–145.<br />

Lötstedt, P. and L. Petzold (1986a). Numerical solution of nonlinear differential equations with<br />

algebraic constraints I: Convergence results for backward differentiation formulas. Math. of<br />

Comp. 46, 491–516.<br />

Lötstedt, P. and L. Petzold (1986b). Numerical solution of nonlinear differential equations with<br />

algebraic constraints II: Practical implications. SIAM J. Sci. Stat. Comp. 7, 720–733.<br />

Lubich, C. (1989a). h 2 –extrapolation methods for differential–algebraic systems of index two.<br />

Impact Comp. Sci. Eng. 1, 260–268.<br />

Lubich, C. (1989b). Linearly implicit extrapolation methods for differential–algebraic systems.<br />

Numer. Math. 55, 197–211.<br />

Lubich, C. (1991). Extrapolation integrators for constrained multibody systems. Impact Comp.<br />

Sci. Eng. 3, 213–234.<br />

Lubich, C. (1993). Integration of stiff mechanical systems by Runge–Kutta methods. ZAMP 44,<br />

1022–1053.<br />

Lubich, C., U. Nowak, U. Pöhle, and C. Engstler (1992). MEXX – numerical software for the<br />

integration of constrained mechanical multibody systems. Technical Report SC 92–12, K.<br />

Zuse Zentrum f. Inf.–technik, Berlin, Germany.<br />

Lucht, W., K. Strehmel, and C. Eichler-Liebenow (1997a). Linear partial differential algebraic<br />

equations, Part I: Indexes, consistent boundary/initial conditions. Technical Report 17, Inst.<br />

f. Numer. Math., Martin Luther Univ., Halle, Germany.<br />

Lucht, W., K. Strehmel, and C. Eichler-Liebenow (1997b). Linear partial differential algebraic<br />

equations, Part II: Numerical solution. Technical Report 18, Inst. f Numer. Math., Martin<br />

Luther Univ., Halle, Germany.<br />

Mahony, R. E. and I. M. Mareels (1995). Global solutions for differential/algebraic systems and<br />

implications for Lyapunov direct stability methods. J. Math. Syst. Estim. Control 57, 26<br />

(electronic).<br />

Mansfield, E. (1991). Differential Gröbner bases. Ph. D. thesis, Univ. of Sydney, Sydney, Aus-<br />

tralia.<br />

Marmo, G., G. Mendella, and W. M. Tulcczijew (1992). Symmetries and constant of the motion<br />

for dynamics in implicit forms. Ann. Inst. H. Poincaré A 57, 147–166.


REFERENCES 349<br />

Marmo, G., G. Mendella, and W. M. Tulcczijew (1995). Integrability of implicit differential<br />

equations. J. Phys. A 28, 149–163.<br />

Marmo, G., G. Mendella, and W. M. Tulcczijew (1997). Constrained hamiltonian systems as<br />

implicit differential equations. J. Phys. A 30, 277–293.<br />

Marsden, J. E. and M. F. McCracken (1976). The Hopf Bifurcation and its Applications, Vol-<br />

ume 19 of Appl. Mathem. Sci. New York, NY: Springer–Verlag.<br />

März, R. (1989a). Index 2 differential–algebraic equations. Results in Math. 15, 149–171.<br />

März, R. (1989b). On boundary value problems in differential–algebraic equations. Appl. Math.<br />

Comp. 31, 517–537.<br />

März, R. (1989c). Some new results concerning index–3 differential–algebraic equations. J. Math.<br />

Anal. Appl. 140, 177–199.<br />

März, R. (1990). Higher index differential–algebraic equations: Analysis and numerical treat-<br />

ment. In Numer. Anal. and Math. Modelling, Volume 24, pp. 199–222. Warsaw, Poland:<br />

Banach Center.<br />

März, R. (1992). Numerical methods for differential–algebraic equations. In A. Iserles (Ed.),<br />

Acta Numerica 1992, pp. 141–198. Cambridge, UK: Cambridge Univ. Press.<br />

März, R. (1994). Practical Lyapunov stability criteria for differential algebraic equations. In<br />

Numer. Anal. and Math. Modelling, Volume 29, pp. 245–266. Warsaw, Poland: Banach<br />

Center.<br />

März, R. and C. Tischendorf (1994). Solving more general index–2 differential algebraic equa-<br />

tions. Computers Math. Appl. 28, 77–105.<br />

März, R. and E. Weinmüller (1993). Solvability of boundary value problems for systems of<br />

singular differential–algebraic equations. SIAM J. Math. Anal. 24, 200–215.<br />

Mattson, S. E. and G. Söderlind (1993). Index reduction in differential–algebraic equations<br />

using dummy derivatives. SIAM J. Sci. Stat. Comp. 14, 677–692.<br />

Medved, M. (1991). Normal forms of implicit and observed implicit differential equations. Riv.<br />

Mat. Pura Appl. 4, 95–107.<br />

Medved, M. (1994). Qualitative properties of generalized vector. Riv. Mat. Pura Appl. 15, 7–31.<br />

Meerbergen, K., A. Spence, and D. Roose (1994). Shift–invert and Cayley transforms for de-<br />

tection of rightmost eigenvalues of nonsymmetric matrices. BIT 34, 409–423.<br />

Moore, G., T. J. Garrat, and A. Spence (1990). The numerical detection of Hopf bifurcation<br />

points. In Continuation and Bifurcation: Numerical Techniques and Applications, NATO<br />

ASI Series, pp. 227–259. Dordrecht, The Netherlands: Kluwer Acad. Publ.<br />

Munthe-Kaas, H. (1999). High order Runge–Kutta methods on manifolds. Appl. Numer.<br />

Math. 29, 115–127.<br />

Murota, K. (1995). Structural approach in systems analysis by mixed matrices, an exposition<br />

for index of DAEs. In K. Kirchgássner, O. Mahrenholtz, and R. Mennicken (Eds.), Proc.<br />

ICIAM 95, pp. 257–259. Akademie Verlag.<br />

Neimark, J. I. and N. A. Fufaev (1972). Dynamics of Nonholonomic Systems, Volume 33 of<br />

Transl. Math. Monogr. Providencs, R.I.: Amer. Math. Society.<br />

Neumaier, A. (1996). Molecular modeling of proteins and mathematical prediction of protein<br />

structure. SIAM Rev. 39, 407–460.


REFERENCES 350<br />

Nichols, N. K. (1994). Differential–algebraic equations and control system design. In Pitman<br />

Res. Notes Math. Ser., Volume 303, pp. 208–224. Longman Sci. Tech.<br />

Norsett, S. P. and P. Thomsen (1986). Local error control in SDIRK–methods. BIT 26, 100–113.<br />

Oden, J. T. and J. A. C. Martins (1985). Models and computational methods for dynamic<br />

friction phenomena. Comput. Meth. Appl. Mech. Engng. 85, 527–634.<br />

O’Malley Jr., R. E. (1991). Singular Perturbation Methods for Ordinary Differential Equations,<br />

Volume 89 of Appl. Mathem. Sci. New York, NY: Springer–Verlag.<br />

Pantelides, C. C. (1988). The consistent initialization of differential–algebraic systems. SIAM<br />

J. Sci. Stat. Comp. 9, 213–231.<br />

Pereia, M. and J. Ambrosio (1994). Computer Aided Analysis of Rigid and Flexible Mechanical<br />

Systems. Dordrecht, The Netherlands: Kluwer Acad. Publ.<br />

Petzold, L. R. (1982). Differential/algebraic equations are not ODEs. SIAM J. Sci. Stat.<br />

Comp. 3, 367–384.<br />

Petzold, L. R. (1986). Order results for implicit Runge–Kutta methods applied to differen-<br />

tial/algebraic systems. SIAM J. Numer. Anal. 23, 837–852.<br />

Petzold, L. R. and F. A. Potra (1992). ODAE methods for the numerical solution of Euler–<br />

Lagrange equations. Appl. Num. Math. 10, 397–413.<br />

Piirilä, O.-P. and J. Tuomela (1993). Differential–algebraic systems and formal integrability.<br />

Technical Report A326, Inst. of Mathem., Helsinki Univ. of Techn., Helsinki, Finnland.<br />

Pommaret, J. (1978). Systems of Partial Differential Equations and Lie Pseudogroups. New<br />

York, NY: Gordon and Breach.<br />

Pommaret, J. (1988). Lie Pseudogroups and Mechanics. New York, NY: Gordon and Breach.<br />

Porsching, T. A. (1985). A network model for two–fluid, two–phase flow. Num. Meth. Partial<br />

Diff. Equ. 1, 295–313.<br />

Potra, F. A. (1993). Implementation of linear multistep methods for solving constrained equa-<br />

tions of motion. SIAM J. Numer. Anal. 30, 774–789.<br />

Potra, F. A. and W. C. Rheinboldt (1989). Differential–geometric techniques for solving<br />

differential–algebraic equations. In E. Haug and R. Deyo (Eds.), Real–Time Integration<br />

Methods for Mech. System Simulation, Volume F 69 of NATO ASI Series, pp. 155–191.<br />

New York, NY: Springer–Verlag.<br />

Potra, F. A. and W. C. Rheinboldt (1991). On the numerical solution of the Euler–Lagrange<br />

equations. Mech. Struct. and Mach. 19, 1–18.<br />

Powell, M. J. D. (1978). A fast algorithm for nonlinearly constrained optimization calculations.<br />

In G. A. Watson (Ed.), Numerical Analysis, Dundee 1977, Volume 630 of Lect. Notes in<br />

Math., pp. 144–157. Berlin, Germany: Springer–Verlag.<br />

Prothero, A. and A. Robinson (1974). On the stability and accuracy of one–step methods for<br />

solving stiff systems of ordinary differential equations. Math. of Comp. 28, 145–162.<br />

Quéré, M.-P. (1994). Une forme normale pour les daes linéaires. Technical Report RT 122,<br />

LMC–IMAG, Grenoble, France.<br />

Quillen, D. (1964). Formal properties of overdetermined systems of linear partial differential<br />

equations. Ph. D. thesis, Harvard Univ., Cambridge, MA.


REFERENCES 351<br />

Rabier, P. J. (1989). Implicit differential equations near a singular point. J. Math. Anal.<br />

Appl. 144, 425–449.<br />

Rabier, P. J. (1999). The Hopf bifurcation theorem for quasilinear differential–algebraic equa-<br />

tions. Comp. Meth. Appl. Mech. Engrg. 170, 355–371.<br />

Rabier, P. J. and G. W. Reddien (1986). Characterization and computation of singular points<br />

with maximum rank deficiency. SIAM J. Numer. Anal. 23, 1040–1051.<br />

Rabier, P. J. and W. C. Rheinboldt (1990). On a computational method for the second funda-<br />

mental tensor and its application to bifurcation problems. Numer. Math. 57, 681–694.<br />

Rabier, P. J. and W. C. Rheinboldt (1991). A general existence and uniqueness theory for<br />

implicit differential–algebraic equations. Diff. and Integral Equations 4, 563–582.<br />

Rabier, P. J. and W. C. Rheinboldt (1994a). Finite difference methods for time–dependent,<br />

linear differential algebraic equations. Appl. Math. Letters 7, 29–34.<br />

Rabier, P. J. and W. C. Rheinboldt (1994b). A geometric treatment of implicit differential–<br />

algebraic equations. J. Diff. Equations 109, 110–146.<br />

Rabier, P. J. and W. C. Rheinboldt (1994c). On impasse points of quasilinear differential–<br />

algebraic equations. J. Math. Anal. Appl. 181, 429–454.<br />

Rabier, P. J. and W. C. Rheinboldt (1994d). On the computation of impasse points of quasilinear<br />

differential–algebraic equations. Math. of Comp. 62, 133–154.<br />

Rabier, P. J. and W. C. Rheinboldt (1995). On the numerical solution of the Euler–Lagrange<br />

equations. SIAM J. Numer. Anal. 32, 318–329.<br />

Rabier, P. J. and W. C. Rheinboldt (1996a). Classical and generalized solutions of time–<br />

dependent linear DAEs. Lin. Alg. Appl. 245, 259–293.<br />

Rabier, P. J. and W. C. Rheinboldt (1996b). Discontinuous solutions of semilinear differential–<br />

algebraic equations. Part I: Distribution solutions. Nonlin. Anal.: Theory, Meth., Applic. 27,<br />

1241–1256.<br />

Rabier, P. J. and W. C. Rheinboldt (1996c). Discontinuous solutions of semilinear differential–<br />

algebraic equations. Part II: P–consistency. Nonlin. Anal.: Theory, Meth., Applic. 27, 1257–<br />

1280.<br />

Rabier, P. J. and W. C. Rheinboldt (1996d). Time–dependent linear DAEs with discontinuous<br />

inputs. Lin. Alg. Appl. 247, 1–29.<br />

Rabier, P. J. and W. C. Rheinboldt (2000). Nonholonomic Motion of Rigid Mechanical Systems<br />

from a DAE Viewpoint. Philadelphia, PA: SIAM Publications.<br />

Rath, W. (1995). Canonical forms for linear descriptor systems with variable coefficients. Tech-<br />

nical Report SPC 95–16, Sci. Parall. Comp., Techn. Univ. Chemnitz–Zwickau, Chemnitz,<br />

Germany.<br />

Reich, S. (1989). Beitrag zur Theorie der Algebrodifferentialgleichungen. Ph. D. thesis, Fakult.<br />

Elektrotech., Univ. Dresden, Dresden, Germany.<br />

Reich, S. (1990a). On a geometric characterization of differential–algebraic equations. Math.<br />

Res. 59, 105–113.<br />

Reich, S. (1990b). On a geometric interpretation of differential–algebraic equations. Circ. Syst.<br />

Signal Process. 9, 367–382.


REFERENCES 352<br />

Reich, S. (1991). On an existence and uniqueness theory for nonlinear differential–algebraic<br />

equations. Circ. Syst. Signal Process. 10, 343–359. Erratum ibid. 11, 1992.<br />

Reiszig, G. (1996). Differential–algebraic equations and impasse points. IEEE Trans. Circ. and<br />

Syst. 43, 122–133.<br />

Reiszig, G. (1997). Beiträge zu Theorie and Anwendungen von Differentialgleichungen. Ph. D.<br />

thesis, Fakult. Elektrotech., Univ. Dresden, Dresden, Germany.<br />

Reiszig, G. and H. Boche (1998). Singularities of implicit ordinary differential equations. In<br />

Proc. 1998 ISCAS.<br />

Rentrop, P., M. Roche, and G. Steinebach (1989). The application of Rosenbrock–Wanner type<br />

methods with stepsize control in differential–algebraic equations. Numer. Math. 55, 545–563.<br />

Rheinboldt, W. C. (1988). On the computation of multi–dimensional solution manifolds of<br />

parametrized equations. Numer. Math. 53, 165–181.<br />

Rheinboldt, W. C. (1996). MANPACK: A set of algorithms for computations on implicitly<br />

defined manifolds. Comp. Math. w. Appl. 27, 15–28.<br />

Rheinboldt, W. C. (1997). Solving algebraically explicit DAEs with the MANPACK manifold<br />

algorithms. Comp. Math. w. Appl. 27, 31–43.<br />

Rheinboldt, W. C. and B. Simeon (1995). Performance analysis of some methods for solving<br />

Euler Lagrange equations. Appl. Math. Letters 8, 77–82.<br />

Rheinboldt, W. C. and B. Simeon (1999). Computing smooth solutions of DAEs for elastic<br />

multibody systems. Comp. Math. w. Appl. 37, 69–83.<br />

Riaza, R. and P. J. Zufiria (1999). Stability of singular equilibria in linearly implicit differential<br />

equations. preprint.<br />

Riquier, C. (1910). Les Systèmes d’Equations aux Dérivées Partielles. Paris, France: Gauthiers–<br />

Villars.<br />

Roche, M. (1988). Rosenbrock methods for differential–algebraic systems. Numer. Math. 52,<br />

45–63.<br />

Roose, D. and V. Hlavaček (1985). A direct method for the computation of Hopf bifurcation<br />

points. SIAM J. Appl. Math. 45, 879–894.<br />

Rosenbrock, H. H. (1962/63). Some general implicit processes for the numerical solution of<br />

differential equations. Computer J. 5, 329–330.<br />

Rulka, W. (1989). SIMPACK, Ein Rechenprogram zur Simulation von Mehrkörpersystemen mit<br />

grossen Bewegungen. In Proc. Finite Elem. der Praxis, Computergestütztes Berechnen und<br />

Konstruieren, pp. 206–245. Reutlingen, Germany: T–PROGRAMM GMBH.<br />

Sastry, S. S. and C. A. Desoer (1981). Jump behavior of circuits and systems. IEEE Trans.<br />

Circ. and Syst. 28, 1109–1124.<br />

Sattinger, D. H. (1973). Topics in Stability and Bifurcation Theory, Volume 309 of Lect. Notes<br />

Math. New York, NY: Springer–Verlag.<br />

Schulz, V. (1996). Reduced SQP methods for large–scale optimal control problems in DAE with<br />

application to path planning problems for satellite mounted robots. Ph. D. thesis, Nat.-Math.<br />

Fakult., Univ. Heidelberg, Heidelberg, Germany.


REFERENCES 353<br />

Schulz, V. H., H. G. Bock, and M. C. Steinbach (1998). Exploiting invariants in the numerical<br />

solution of multipoint boundary value problems for DAEs. SIAM J. Numer. Anal. 19, 440–<br />

487.<br />

Schwartz, L. (1966). Théorie des Distributions. Paris, France: Hermann.<br />

Seshu, S. and H. Reed (1961). Linear Graphs and Electrical Networks. Reading, MA: Addison–<br />

Wesley Publ. Co.<br />

Shampine, L. F. (1986). Conservation laws and the numerical solution of ODEs. Comp. and<br />

Math. w. Appl. Part B 12, 1287–1296.<br />

Shampine, L. F. and M. K. Gordon (1975). Computer Solution of Ordinary Differential Equa-<br />

tions. San Francisco, CA: W. H. Freeman and Co.<br />

Silverman, L. M. and R. S. Bucy (1970). Generalizations of a theorem of Dolezal. Math. Syst.<br />

Theory 4, 334–339.<br />

Simeon, B. (1994). <strong>Numerische</strong> Integration mechanischer Mehrkörpersysteme: Algorithmen und<br />

Rechenprogramme. Ph. D. thesis, Mathem. Inst., Techn. Univ. München, München, Ger-<br />

many.<br />

Simeon, B. (1996). Modelling a flexible slider crank mechanism by a mixed system of DAEs and<br />

PDEs. Mathem. Modelling of Syst. 2, 1–18.<br />

Simeon, B. (1999). <strong>Numerische</strong> Simulation gekoppelter Systeme von partiellen und differential–<br />

algebraischen Gleichungen in der Mehrkörperdynamik. Habilitationsschrift, Math. Fakult.,<br />

Univ. Karlsruhe, Karlsruhe, Germany.<br />

Simeon, B., C. Führer, and P. Rentrop (1991). Differential–algebraic equations in vehicle system<br />

dynamics. Surv. Math. Ind. 1, 1–37.<br />

Simeon, B., C. Führer, and P. Rentrop (1993). The Drazin inverse in multibody system dynam-<br />

ics. Numer. Math. 64, 521–539.<br />

Simeon, B., F. Grupp, C. Führer, and P. Rentrop (1992). A nonlinear truck model and its<br />

treatment as a multibody system. Technical Report <strong>TUM</strong>–M9204, Math. Inst., Tech. Univ<br />

München, München, Germany.<br />

Sincovec, R. F., A. M. Erisman, E. L. Yip, and M. A. Epton (1981). Analysis of descriptor<br />

systems using numerical algorithms. IEEE Trans. Autom. Contr. AC–26, 139–147.<br />

Slepian, P. (1968). Mathematical Foundations of Network Analysis, Volume 16 of Tracts in Nat.<br />

Philos. New York, NY: Springer–Verlag.<br />

Smale, S. (1972). On the mathematical foundation of electrical networks. J. Diff. Geom. 1,<br />

193–210.<br />

Spencer, D. (1969). Overdetermined systems of linear partial differential equations. Bull. Am.<br />

Math. Soc. 75, 179–239.<br />

Spivak, M. (1979). A Comprehensive Introduction to Differential Geometry, Five Volumes (2nd<br />

ed.). Berkeley, CA: Publish or Perish, Inc.<br />

Steenrod, N. (1951). The Topology of Fibre Bundles. Princeton, NJ: Princeton Univ. Press.<br />

Szatkowski, A. (1992). Geometric characterization of singular differential algebraic equations.<br />

Int. J. Syst. Sci. 23, 167–186.


REFERENCES 354<br />

Takens, F. (1976). Constrained equations: A study of implicit differential equations and their<br />

discontinuous solutions. In Lecture Notes in Math., Volume 525, pp. 143–234. New York,<br />

NY: Springer–Verlag.<br />

Thom, R. (1972). Sur les équations différentielles multiformes et leurs intégrales singulières.<br />

Bol. Soc. Brasil. Mat. 3, 1–11.<br />

Thomas, G. (1995a). Algebraic approach for quasi–linear differential algebraic equations. Tech-<br />

nical Report RT 135, LMC–IMAG, Grenoble, France.<br />

Thomas, G. (1995b). Symbolic computation of the index of quasilinear differential–algebraic<br />

equations. Technical Report preprint, LMC–IMAG, Grenoble, France.<br />

Thomas, G. (1997). The problem of defining the singular points of quasi–linear differential–<br />

algebraic systems. Theoret. Comput. Sci. 187, 49–79.<br />

Thompson, J. M. T. and H. B. Stewart (1986). Nonlinear Dynamics and Chaos. Chichester,<br />

UK: J. Wiley.<br />

Tischendorf, C. (1995). Feasibility and stability behaviour of the BDF applied to index–2<br />

differential–algebraic equations. Z. Angew. Math. Mech. 75, 927–946.<br />

Topunov, V. (1989). Reducing systems of partial differential equations to a passive form.<br />

In A. M. Vinogradov (Ed.), Symmetries of partial differential equations. Dordrecht, The<br />

Netherlands: Kluwer Acad. Publ.<br />

Trajkovic, I. and A. N. Willson Jr. (1988). Behavior of nonlinear transistor one–ports: Things<br />

are not always as simple as might be expected. In Proc. 30th Midwest Symposium on Circuits,<br />

Syracuse, NY.<br />

Tuomela, J. (1997). On singular points of quasilinear differential and differential–algebraic equa-<br />

tions. BIT 37, 968–977.<br />

Venkatasubramanian, V. (1994). Singularity induced bifurcation in the Van der Pol oscillator.<br />

IEEE Trans. Circ. and Syst. 41, 765–769.<br />

Venkatasubramanian, V., H. Schättler, and J. Zaborsky (1991). A taxonomy of the dynamics of<br />

the large power system with emphasis on its voltage stability. In Proc. NSF Int. Workshop<br />

on Bulk Power System Voltage phenomena– II, pp. 9–52.<br />

Verghese, G. C., B. C. Levy, and T. Kailath (1981). A generalized state-space for singular<br />

systems. IEEE Trans. Autom. Contr. AC–26, 811–831.<br />

vonSchwerin, R. (1995). Numerical Methods, Algorithms, and Software for Higher Index Non-<br />

linear Differential–Algebraic Equations in Multibody System Simulation. Ph. D. thesis, Nat.-<br />

Math. Fakult., Univ. of Heidelberg, Heidelberg, Germany.<br />

vonSosen, H. (1994). Folds and bifurcations in the solutions of semi–explicit differential–algebraic<br />

equations. Ph. D. thesis, Calif. Inst. of Techn., Pasadena, CA.<br />

Wehage, R. A. and E. J. Haug (1982). Generalized coordinate partitioning for dimension reduc-<br />

tion in analysis of constrained dynamic systems. J. Mech. Design 104, 247–255.<br />

Weierstrass, K. (1868). Zur Theorie der bilinearen und quadratischen Formen. In K. Weier-<br />

strass, Gesammelte Werke, Bd. II,, pp. 19–44. Berlin, Germany: Akad. d. Wiss. Berlin.<br />

Winkler, R. (1994). On simple impasse points and their numerical computation. Technical<br />

Report 94–15, Inst. f. Mathem., Humboldt Univ. zu Berlin, Berlin, Germany.


REFERENCES 355<br />

Wosle, M. and F. Pfeiffer (1996). Dynamics of multibody systems containing dependent unilat-<br />

eral constraints with friction. J. Vibration and Control 2, 161–192.<br />

Wulff, C., A. Hohman, and P. Deuflhard (1994). Numerical continuation of periodic orbits with<br />

symmetry. Technical Report SC 94–12, K. Zuse Zentrum f. Inf.–technik, Berlin, Germany.<br />

Yan, X. (1993). Singularly perturbed differential algebraic equations. Ph. D. thesis, Dept. of<br />

Mathem., Univ. of Pittsburgh, Pittsburgh, PA.<br />

Yen, J. (1993). Constrained equations of motion in multibody dynamics as ODEs on manifolds.<br />

SIAM J. Numer. Anal. 30, 553–568.<br />

Zeidler, E. (1989). Nonlinear Functional Analysis and its Applications, Vol III. New York, NY:<br />

Springer–Verlag.<br />

Zheng, Q. (1990). Hopf bifurcation in differential–algebraic equations and applications to circuit<br />

simulations. Int. Series Num. Math. 93, 45–58.<br />

Zheng, Q. and R. Neubert (1997). Computation of periodic solutions of differential-algebraic<br />

equations in the neighborhood of Hopf bifurcation points. Int. J. Bifurcation Chaos 7, 2773–<br />

2787.<br />

Ziesse, M. W., H. G. Bock, J. V. Galitzendoerfer, and J. P. Schloeder (1996). Parameter estima-<br />

tion in multispecies transport reaction systems using parallel algorithms. In J. Gottlieb and<br />

P. DuChateau (Eds.), Parameter Identification and Inverse Problems in Hydrology, Geology,<br />

and Ecology, pp. 273–282. Dordrecht, The Netherlands: Kluwer Acad. Publ.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!