29.01.2013 Views

Annual report Chair on Drinking Water Engineering 2008 - TU Delft

Annual report Chair on Drinking Water Engineering 2008 - TU Delft

Annual report Chair on Drinking Water Engineering 2008 - TU Delft

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> <str<strong>on</strong>g>Chair</str<strong>on</strong>g> <strong>on</strong> <strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong><br />

<strong>2008</strong><br />

Faculty of Civil <strong>Engineering</strong><br />

Department of <strong>Water</strong>management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

<str<strong>on</strong>g>Chair</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong>


This <str<strong>on</strong>g>report</str<strong>on</strong>g> is produced by the <str<strong>on</strong>g>Chair</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong><br />

For actual informati<strong>on</strong> about educti<strong>on</strong> and research of the <str<strong>on</strong>g>Chair</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong> visit our<br />

webpage: www.drinkwater.tudelft.nl<br />

or c<strong>on</strong>tact the secretary of the secti<strong>on</strong> Sanitary <strong>Engineering</strong> Mrs Mieke Hubert<br />

teleph<strong>on</strong>e: +31 15 2784732<br />

fascilime: +31 15 2784918<br />

email: m.a.j.hubert@tudelft.nl


Introducti<strong>on</strong> 2<br />

Highlights 4<br />

Research 7<br />

Research missi<strong>on</strong> and objective 8<br />

Research themes 10<br />

Overview PhD dissertati<strong>on</strong>s since 1991 15<br />

Academic staff 17<br />

Research collaborati<strong>on</strong> 18<br />

Research exchange 24<br />

C<strong>on</strong>ferences and journals 26<br />

Awards 28<br />

Scientific output 30<br />

<strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong> and Science 40<br />

Research projects 42<br />

Educati<strong>on</strong> 116<br />

General 118<br />

Open Course Ware 120<br />

MSc theses 122<br />

Overview MSc theses since 1991 126<br />

BSc theses 129<br />

Mid-careers 133<br />

Internships 134<br />

Secundary schools 136<br />

Other activities 138<br />

<strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong> in the media 140<br />

table of c<strong>on</strong>tents<br />

1


Introducti<strong>on</strong><br />

Since three years we publish an annual <str<strong>on</strong>g>report</str<strong>on</strong>g> of the <str<strong>on</strong>g>Chair</str<strong>on</strong>g> <strong>on</strong> <strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong>. The previous versi<strong>on</strong>s<br />

can be found <strong>on</strong> our web site. We have received many positive comments from the Dutch drinking water<br />

sector and also from academics around the world. Like last year we have used the “Vakantiecursus” as a<br />

deadline for our annual <str<strong>on</strong>g>report</str<strong>on</strong>g>, so we can hand it over to all participants.<br />

The annual <str<strong>on</strong>g>report</str<strong>on</strong>g> describes the progress in educati<strong>on</strong> and research of the chair <strong>on</strong> <strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong><br />

of <strong>Delft</strong> University of Technology. Our objectives are (1) to achieve practical breakthroughs in the drinking water<br />

research by a coordinated research approach in close cooperati<strong>on</strong> with the Dutch drinking water sector and<br />

the internati<strong>on</strong>al scientific community and (2) to educate students in drinking water science and technology.<br />

We have always maintained a str<strong>on</strong>g focus <strong>on</strong> the following research niches:<br />

1. Emerging technologies (MF/UV/H O /IEX) and emerging threats (pharmaceuticals, EDCs , Legi<strong>on</strong>ella)<br />

2 2<br />

2. Modeling, sensoring and automati<strong>on</strong> (Stimela, virtual drinking water plant)<br />

3. Integrated soluti<strong>on</strong>s for the water cycle (crossing the boundaries of disciplines)<br />

In the past years we managed to expand our scope with 2 new niches:<br />

4. Technologies for an optimal design and operati<strong>on</strong> of distributi<strong>on</strong> networks (limit particle load, self cleaning<br />

networks)<br />

5. Technologies for the 3rd world (Arsenic removal Bangladesh) and arid areas (drinking with the wind, drinking<br />

with the sun)<br />

In <strong>2008</strong> our research group welcomed again several new PhD students. Their research projects together with<br />

all other research projects and even some PhD projects of waste water treatment and sewerage can be found<br />

in the individual research paragraph of this annual <str<strong>on</strong>g>report</str<strong>on</strong>g>. Presently, more than 20 PhD students are working<br />

<strong>on</strong> drinking water related research projects. Several of the PhD researchers and supervisors have also an<br />

appointment at a water company, research institute or engineering c<strong>on</strong>sultant. In this way we maintain good<br />

c<strong>on</strong>tact with the drinking water industry. It also results in a dynamic, young and enthusiastic group.<br />

In <strong>2008</strong> Patrick Smeets and Arne Verliefde completed and successfully defended their PhD thesis. The high<br />

level of our research is reflected by the fact that Arne was awarded the PhD degree cum laude (with h<strong>on</strong>ours)<br />

which is the highest distincti<strong>on</strong> within <strong>TU</strong> <strong>Delft</strong>. Moreover our research output in terms of peer-reviewed papers<br />

increased again significantly and now exceeds our peer groups. Furthermore, the research group is developing<br />

all kind of new initiatives like the bi-annual workshops <strong>on</strong> “High Quality <strong>Drinking</strong> <strong>Water</strong>”, the new <strong>on</strong> line<br />

journal “<strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong> and Science” and the <strong>Delft</strong> Academic Press publisher.<br />

In <strong>2008</strong> we saw a further strengthening of the collaborati<strong>on</strong> with UNESCO-IHE into a comm<strong>on</strong> <strong>Delft</strong> drinking<br />

water group. Every m<strong>on</strong>th research colloquia are organised. MSc and PhD researchers from both organisati<strong>on</strong>s<br />

update each other <strong>on</strong> their progress by giving presentati<strong>on</strong>s and participating in discussi<strong>on</strong>s. These colloquia<br />

are open to the public and announced <strong>on</strong> our web site. Also in the educati<strong>on</strong>al field the relati<strong>on</strong> with<br />

UNESCO-IHE has become str<strong>on</strong>ger.<br />

2 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


The inflow of students in our MSc is still not as high as desired. The sector needs more stu-<br />

dents than we deliver at the moment. Therefore we are actively involved in several acti<strong>on</strong>s to<br />

increase the number of drinking water engineers. Examples are (1) the development of our<br />

part-time MSc for water professi<strong>on</strong>als, which has already attracted some 10 students from the<br />

water industry (2) the transformati<strong>on</strong> of the Faculty of Civil <strong>Engineering</strong> into the Faculty of Civil<br />

and Envir<strong>on</strong>mental <strong>Engineering</strong> in order to attract more envir<strong>on</strong>mental focused students, (3)<br />

the development of a NLT module “drinking water” for students in sec<strong>on</strong>dary school to attract<br />

students already at a young age, (4) the development of an internati<strong>on</strong>al masters <strong>on</strong> <strong>Drinking</strong><br />

<strong>Water</strong> <strong>Engineering</strong> and an exchange program with Australia. Another initiative is the Open<br />

Course Ware (OCW / OpenER) pilot project of <strong>Delft</strong> University of Technology in which we participate.<br />

In this pilot project all our lecturing material has been made available freely <strong>on</strong> the<br />

internet. All lecture notes, presentati<strong>on</strong>s but also video recordings of the lectures are available<br />

<strong>on</strong> our web site, www.drinkwater.tudelft.nl. Just click <strong>on</strong> the “OCW drinking water” butt<strong>on</strong> <strong>on</strong><br />

the right side of the screen.<br />

Our web site plays a very important role in our communicati<strong>on</strong> with the water sector. All MSc<br />

theses and PhD dissertati<strong>on</strong>s, as well as some oldies like the Huisman filtrati<strong>on</strong> and sedimentati<strong>on</strong><br />

lecture notes, are available <strong>on</strong> our web site. And of course the descripti<strong>on</strong>s of all research<br />

projects and our bim<strong>on</strong>thly newsletter can be found <strong>on</strong> this web site. So check the web site<br />

frequently if you want to stay up to date <strong>on</strong> drinking water research and educati<strong>on</strong>.<br />

I hope you will enjoy reading this annual <str<strong>on</strong>g>report</str<strong>on</strong>g> of our young,<br />

enthusiastic and bustling drinking water research group.<br />

Professor Hans van Dijk<br />

<str<strong>on</strong>g>Chair</str<strong>on</strong>g> <strong>on</strong> <strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong><br />

Head of Sanitary <strong>Engineering</strong> Secti<strong>on</strong><br />

<str<strong>on</strong>g>Chair</str<strong>on</strong>g>man of Department of <strong>Water</strong>management<br />

introducti<strong>on</strong><br />

3


Highlights in <strong>2008</strong><br />

More than 400 people participated in the annual “Vakantiecursus” in the sec<strong>on</strong>d week of January. The theme<br />

of the “Vakantiecursus” was “<strong>Water</strong> and Sanitati<strong>on</strong> for All”. Several well known nati<strong>on</strong>al and internati<strong>on</strong>al water<br />

researchers gave presentati<strong>on</strong>s about water related topics <strong>on</strong> this day.<br />

Patrick Smeets defended his PhD thesis “Stochastic modeling of drinking water treatment in quantitative<br />

microbial risk assessment ” successfully in the spring of <strong>2008</strong>. Arne Verliefde defended his thesis “Rejecti<strong>on</strong><br />

of organic micropollutants with high pressure membranes (NF/RO) ” at the end of <strong>2008</strong>.<br />

Several internati<strong>on</strong>al researchers visited our research group to work <strong>on</strong> collaborative research projects. Zhiping<br />

Li (China), Rusnandi Garsadi (Ind<strong>on</strong>esia), Megan McC<strong>on</strong>ville (USA) and D<strong>on</strong>glei Zou (China) worked during<br />

some time together with some of our researchers. Arne Verliefde is currently doing a sec<strong>on</strong>dment at the membrane<br />

research group at University of New South Wales in Sydney, Australia.<br />

In <strong>2008</strong> six new PhD projects were initiated. Our research group welcomed Javier Sanchez, David de Ridder,<br />

Zahira Herrera Rivera, Lamber Paping, Marco Casola and Gang Liu as new PhD students (see also secti<strong>on</strong><br />

“Individual Research Projects”).<br />

Karin Teunissen received a Casimir grant from NWO (Dutch Scientific Research Council) for her PhD project.<br />

This grant is aimed to stimulate knowledge exchange between universities and companies. In <strong>2008</strong> three<br />

Innowator grants were awarded: FilterXpert for developing a tool to measure how clean a sand filter bed is,<br />

DIPOOL for developing the c<strong>on</strong>cept of a chlorine free swimming pool and DemiFlush to back wash UF membranes<br />

with RO permeate.<br />

In <strong>2008</strong> strategic collaborati<strong>on</strong>s were signed with the water companies <strong>Water</strong>net and Oasen. With <strong>Water</strong>net<br />

innovati<strong>on</strong>s in the water cycle will be investigated. The focus <strong>on</strong> the research with Oasen is <strong>on</strong> improvements<br />

in water quality during distributi<strong>on</strong> of drinking water to the c<strong>on</strong>sumers. Further collaborati<strong>on</strong>s with other water<br />

companies are being discussed.<br />

PhD defense dr. ir. P.W.M.H. Smeets PhD defense dr. ir. A.R.D. Verliefde<br />

4 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


A grant from the European Uni<strong>on</strong> and the Australian government with a value of over 500,000<br />

euro was awarded to train the next generati<strong>on</strong> of specialists in the field of sustainable water<br />

resources. Five Australian universities (all founding partners of the Internati<strong>on</strong>al Centre of<br />

Excellence in <strong>Water</strong> Resources Management – ICE WaRM) and three European leading water<br />

universities (<strong>Delft</strong>, Dresden and Dundee) will exchange 90 post graduate students in the coming<br />

three years.<br />

To attract more pupils to study engineering and more specifically drinking water engineering a<br />

NLT module for sec<strong>on</strong>dary schools (5 VWO) has been developed. In this module the necessity<br />

of clean drinking water is discussed, followed by the different drinking water processes. To<br />

finish the module students have to do simple drinking water experiments in which they apply<br />

simple theory from physics, mathematics and chemistry.<br />

The project <strong>Drinking</strong> with the Wind attracted a huge amount of media attenti<strong>on</strong>. This c<strong>on</strong>cept<br />

of desalinating sea water with reverse osmosis membranes directly powered by wind energy<br />

has been tested successfully at Curacao, Dutch Antilles.<br />

The amount of scientific publicati<strong>on</strong>s increased again in <strong>2008</strong>. Besides more publicati<strong>on</strong>s a<br />

shift towards journals with a higher impact factor can be observed.<br />

In <strong>2008</strong> <strong>Delft</strong> University of Technology and UNESCO-IHE have started a new journal <strong>on</strong> drinking<br />

water research. This journal is an open-access journal, meaning that all issues are freely<br />

available for the public. The title of the journal is “<strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong> and Science”<br />

and the aim is <strong>on</strong> papers discussing applied drinking water research. Four papers have been<br />

accepted for publicati<strong>on</strong> in <strong>2008</strong> and eight were in the review processes at the end of <strong>2008</strong>.<br />

Our researchers gave presentati<strong>on</strong>s in many c<strong>on</strong>ferences all over the world. For example at<br />

the IWA biannual c<strong>on</strong>ference in Vienna, WQTC in Cincinnati, the IWA NOM c<strong>on</strong>ference in Bath,<br />

the <strong>Water</strong> and Sanitati<strong>on</strong> c<strong>on</strong>ference in Edinburgh, the IWA Membrane c<strong>on</strong>ference in Toulouse,<br />

WISA in South Africa and many more c<strong>on</strong>ferences our researchers presented their research.<br />

A full lecture hall during the Vakantiecursus” Networking during the coffee break<br />

highlights<br />

5


6 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


c.<br />

a.<br />

d.<br />

b.<br />

a. Field work in Bangladesh<br />

b. Flow field around a UV lamp<br />

c. Pilot plant nitrificati<strong>on</strong><br />

d. Volume flow meters<br />

research<br />

7


Missi<strong>on</strong> statement chair <strong>on</strong> <strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong><br />

The Dutch water sector is characterised by a well developed and large scale infrastructure and organisati<strong>on</strong>.<br />

The primary goal of the sector is to provide high quality drinking water at acceptable costs and with minimal<br />

impact <strong>on</strong> the envir<strong>on</strong>ment. Future developments that will challenge this goal include water polluti<strong>on</strong> and<br />

increased expectati<strong>on</strong>s from clients and government.<br />

The focus of the <str<strong>on</strong>g>Chair</str<strong>on</strong>g> <strong>on</strong> <strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong> is well attuned to the goals of the Dutch drinking water<br />

sector. As a result of this, the group focuses <strong>on</strong> the following research questi<strong>on</strong>s:<br />

• How should we deal with emerging threats to the water quality such as endocrine disrupting compounds<br />

(EDCs), pharmaceuticals and Legi<strong>on</strong>ella and how should we develop emerging technologies such as membrane<br />

filtrati<strong>on</strong> and UV/H O to this end?<br />

2 2<br />

• How can we improve water quality and reduce costs and envir<strong>on</strong>mental impact by modeling and improved<br />

operati<strong>on</strong> of the infrastructure?<br />

• How will we take care that the water produced at a treatment plant will not deteriorate in the distributi<strong>on</strong><br />

system?<br />

• How do we safe guard the drinking water supply for all people. Not <strong>on</strong>ly at the moment, but also in the<br />

future?<br />

The missi<strong>on</strong> of the research programme is to achieve practical breakthroughs in these niches by a coordinated<br />

approach in close cooperati<strong>on</strong> with the Dutch water sector and the internati<strong>on</strong>al scientific community. By working<br />

together within a well-developed network with the stake holders from science and industry, we aim to cover<br />

the complete innovati<strong>on</strong> cycle, from the initial brain wave, through research planning, funding and executi<strong>on</strong>,<br />

to implementati<strong>on</strong> in practice and sometimes also valorisati<strong>on</strong>/commercialisati<strong>on</strong>.<br />

Research approach<br />

We believe in challenging our PhD students. We ask them to present their work frequently at our m<strong>on</strong>thly colloquia,<br />

meetings with project steering committees, at nati<strong>on</strong>al workshops and at internati<strong>on</strong>al c<strong>on</strong>gresses. They<br />

are also required to publish their results, both in Dutch and internati<strong>on</strong>al journals. The research projects are<br />

defined and executed in cooperati<strong>on</strong> with partners from the Dutch water sector. All projects are co funded by<br />

these partners, which ensures that the projects are well prepared and supported. Many experiments are carried<br />

out at water and waste water treatment plants and the results are applied directly in practice. This provides<br />

a highly stimulating envir<strong>on</strong>ment for our PhD students. Some experiments are carried out in the Laboratory<br />

of Sanitary <strong>Engineering</strong> or in cooperati<strong>on</strong> with the Laboratory of Fluid Mechanics or other laboratories of <strong>Delft</strong><br />

University of Technology, such as ChemTech and Biotechnology.<br />

Our research philosophy includes obtaining a mixture of desk-top research, laboratory experiments, pilot-plant<br />

experiments and full-scale experiments. Computer modeling is very important as it enables us to understand<br />

the complex reality and limit the number of experiments to achieve an optimal result. We use laboratory experiments<br />

to test our initial hypothesis <strong>on</strong> synthetic water. We also need pilot-plant experiments at treatment plant<br />

as well because of the specific water quality aspects that cannot easily be simulated in the lab. Moreover, we<br />

carry out full-scale investigati<strong>on</strong>s at treatment plants and pipe networks in order to study the effect of large<br />

scale hydraulic (mal-) distributi<strong>on</strong>. Our work can also be characterised as a mixture of water quality/process<br />

technology and hydraulics.<br />

8 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


<strong>Water</strong> treatment processes are based <strong>on</strong> physical-chemical-biological processes, but hydraulic<br />

aspects such as turbulence, mixing and uneven flow patterns determine the feasibility in large<br />

scale plants. It is our experience that these mixtures of scales and sciences provide a total<br />

view <strong>on</strong> the issue that stimulates new ideas and approaches.<br />

The professors have a down-to-earth approach and practice ‘management by participati<strong>on</strong>’.<br />

They stimulate discussi<strong>on</strong>s between PhD students, staff members and experts from science<br />

and industry. Moreover, they frequently participate in nati<strong>on</strong>al and internati<strong>on</strong>al meetings <strong>on</strong><br />

the research agenda for the water sector, such as the Global <strong>Water</strong> Research Coaliti<strong>on</strong>, providing<br />

additi<strong>on</strong>al stimuli to the research. The processes of improvement and innovati<strong>on</strong> functi<strong>on</strong><br />

primarily through the interacti<strong>on</strong> with the experts from science and industry. Frequent external<br />

visitors are invited to participate in meetings and colloquia.<br />

Our research is carried out in an internati<strong>on</strong>al framework of the IWA and in co-operati<strong>on</strong> with<br />

foreign universities (Aachen, Müllheim, Duisburg, Karlsruhe, Leuven, Sheffield, New South<br />

Wales, Johannesburg, Boulder, <strong>Water</strong>loo, Tr<strong>on</strong>dheim, Dresden, Poitiers and Zürich).<br />

Next to papers and <str<strong>on</strong>g>report</str<strong>on</strong>g>s, our research is communicated through a newsletter. In additi<strong>on</strong>,<br />

many ideas are disseminated at our annual ‘Vakantiecursus’ which is acknowledged as the<br />

leading Dutch c<strong>on</strong>ference <strong>on</strong> sanitary engineering. Finally, we have published a state-of-theart<br />

handbook <strong>on</strong> the Dutch drinking water know-how.<br />

Ambiti<strong>on</strong><br />

The programme was started ten years ago and has been developed gradually and in close<br />

c<strong>on</strong>tact with the leading organisati<strong>on</strong>s in the Dutch water sector. The research programme is<br />

closely attuned to the research visi<strong>on</strong>s and needs of the Dutch drinking water sector.<br />

We aim at achieving a balanced combinati<strong>on</strong> of societal and industrial pull and scientific<br />

push. We believe that this is in the best interest of both science and industry.<br />

The university benefits not <strong>on</strong>ly from the scientific and professi<strong>on</strong>al publicati<strong>on</strong>s<br />

and PhD dissertati<strong>on</strong>s, but also from patents, from c<strong>on</strong>crete applicati<strong>on</strong>s in practice,<br />

from the use of results in teaching and from the increased recogniti<strong>on</strong> in the industry.<br />

Our research is carried out in an internati<strong>on</strong>al framework of the IWA and in co-operati<strong>on</strong> with<br />

foreign universities. We aim to translate internati<strong>on</strong>al research results to the Dutch water situati<strong>on</strong><br />

and to c<strong>on</strong>tribute to the internati<strong>on</strong>al research.<br />

In the research themes, at the time of writing of this annual <str<strong>on</strong>g>report</str<strong>on</strong>g> 19 students carry out their<br />

PhD research in drinking water engineering. It is the ambiti<strong>on</strong> to broaden the scope in the coming<br />

five years. This means in practice:<br />

• Permanently 20 PhD students <strong>on</strong> <strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong><br />

• Highly fundamental research in processes in drinking water treatment and distributi<strong>on</strong><br />

• Innovati<strong>on</strong>s and breakthroughs in technology<br />

• Internati<strong>on</strong>al recognised Centre of Excellence in drinking water treatment and distributi<strong>on</strong><br />

• Internati<strong>on</strong>al network in research and educati<strong>on</strong><br />

• Internati<strong>on</strong>al Masters programme <strong>on</strong> Envir<strong>on</strong>mental or <strong>Water</strong> <strong>Engineering</strong><br />

• Publish all our lecture material <strong>on</strong> the world wide web by Open Course Ware<br />

research<br />

research Missi<strong>on</strong> and objective<br />

9


Introducti<strong>on</strong> research themes<br />

The Dutch water companies maintain high technical standards as a result of which safe drinking water is supplied<br />

at all times and at an acceptable price. Their so-called ‘Dutch secret’ includes the c<strong>on</strong>cept of producing<br />

and distributing drinking water of a high quality. No chemical disinfectant is used during drinking water<br />

producti<strong>on</strong>, which is possible because the multiple barrier treatment systems produce water that is biologically<br />

stable. Moreover, the drinking water is soft, has a pleasant taste and colour and pipeline leakages<br />

are virtually zero. As a result of this, the c<strong>on</strong>fidence and government in drinking water quality is high. The<br />

Dutch drink water from the tap and they do not feel the need for using bottled water or point-of-use filters.<br />

However, this good drinking water quality is threatened by new emerging substances in the source waters, biological<br />

growth (for example Legi<strong>on</strong>ella) in the distributi<strong>on</strong> system and in-house installati<strong>on</strong>s and water quality<br />

deteriorati<strong>on</strong> in the distributi<strong>on</strong> system. These threats and soluti<strong>on</strong>s for these threats are covered in the research<br />

themes “emerging technologies” and “integrated soluti<strong>on</strong>s for the water cycle”. Furthermore water quality<br />

improvement is obtained in the theme “modeling, sensoring and automati<strong>on</strong>”. This theme aims to optimise the<br />

treatment plant performance by an integrated modeling approach. In the research theme “optimal design and<br />

operati<strong>on</strong> of distributi<strong>on</strong> networks” the water quality in the distributi<strong>on</strong> system is investigated. The research<br />

theme “sustainable drinking water soluti<strong>on</strong>s” focuses <strong>on</strong> improving the drinking water quality in developing<br />

countries.<br />

Research is executed in collaborati<strong>on</strong> with different partners in the water sector and for most of the research<br />

projects external funding is mainly obtained from SenterNovem. Other partners, TTI Wetsus or the European<br />

Uni<strong>on</strong>. Special agreements for research collaborati<strong>on</strong> are made with <strong>Water</strong>net, water cycle company for Amsterdam<br />

and surrounding areas and Oasen water company. The focus of the research with <strong>Water</strong>net is <strong>on</strong> innovati<strong>on</strong> in<br />

the water cycle and <strong>on</strong>e of the major topics is the occurrence, fate and removal of emerging substances in the<br />

water system and treatment. The research collaborati<strong>on</strong> with Oasen is mainly focusing <strong>on</strong> improvements in water<br />

quality during distributi<strong>on</strong> of drinking water to the c<strong>on</strong>sumers.<br />

Theme 1: Emerging technologies<br />

In recent years it has become clear that the polluti<strong>on</strong><br />

of water sources has become so widespread that<br />

traces of compounds such as endocrine disputers,<br />

polar pesticides and pharmaceuticals can even be<br />

found in Dutch drinking water. Only a few of these<br />

emerging substances are known and measured in<br />

our drinking water. To face these new substances<br />

applicati<strong>on</strong> of advanced water treatment is required.<br />

Moreover, due to the scientific progress we have come<br />

to understand that also microbiological threats still cannot<br />

be ignored, the most relevant being Legi<strong>on</strong>alla and<br />

Cryptosporidium. Fortunately, in recent years we have<br />

also seen major breakthroughs in new technologies<br />

such as membrane filtrati<strong>on</strong> and disinfecti<strong>on</strong>/oxidati<strong>on</strong><br />

10 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

Theme leaders: Bas Heijman & Jasper Verberk


with oz<strong>on</strong>e/UV/H 2O 2. These technologies can be used both <strong>on</strong> the drinking water as well as <strong>on</strong><br />

the waste water side and an integrated approach has to be developed. Our research in this theme<br />

deals with the further development of these technologies and in particular the determinati<strong>on</strong> of<br />

the practical feasibility including such aspects as efficiency, costs and operati<strong>on</strong>al aspects. In<br />

several PhD projects the effectiveness of different treatment technologies and treatment combinati<strong>on</strong>s<br />

in removing these emerging substances is investigated. Also a modeling approach will<br />

be developed to predict the removal of new emerging substances and to assess the plant performance<br />

toward pathogens and organic micro pollutants.<br />

Research projects:<br />

New treatment c<strong>on</strong>cepts for drinking water producti<strong>on</strong> Bas Heijman<br />

Safe drinking water from the river Meuse Bram van der Veer<br />

DIPOOL: advanced UV-based technology for pool water treatment Maarten Keuten<br />

Nitrificati<strong>on</strong> in unsaturated drinking water filters Weren de Vet<br />

Ultrafiltrati<strong>on</strong> fouling c<strong>on</strong>trol: back washing with demineralised water Sheng Li<br />

Behaviour and removal Natural Organic Matter in treatment processes Anke Grefte<br />

Theme 2: Integrated soluti<strong>on</strong>s for the water cycle<br />

Theme leader: Luuk Rietveld<br />

<strong>Drinking</strong> water technology is part of the urban and global water cycle. After being c<strong>on</strong>sumed the<br />

waste water is transported, treated and discharged to water bodies that can, again, serve as a<br />

source for drinking water producti<strong>on</strong>. When the entire cycle is c<strong>on</strong>sidered, synergetic advantages<br />

can be obtained and innovative soluti<strong>on</strong>s can be developed. The research in this field is new<br />

and stimulated by <strong>Water</strong>net, the first water cycle company in the Netherlands. In <strong>2008</strong> special<br />

attenti<strong>on</strong> was given to the emerging substances, like endocrine disrupting compounds and pharmaceuticals,<br />

in the water cycle. These compounds enter the water cycle through human activity<br />

(e.g. domestic waste water, agriculture, hospitals and industry). Some of them are small and<br />

polar and are difficult to be removed. Research is carried out to characterize the compounds<br />

and predict their behaviour in treatment processes (adsorpti<strong>on</strong>, biodegradati<strong>on</strong>, oxidati<strong>on</strong>,<br />

retenti<strong>on</strong>) and their<br />

effect <strong>on</strong> aquatic flora<br />

and fauna. In this way<br />

it is not needed study<br />

every compound individually,<br />

but will it be<br />

possible to develop<br />

efficient treatment<br />

technologies that are<br />

needed to guarantee<br />

the water quality in<br />

water systems and<br />

drinking water.<br />

research<br />

research theMes<br />

11


Research projects:<br />

Removal of trace organic pollutants by membrane filtrati<strong>on</strong> in water reuse applicati<strong>on</strong>s Arne Verliefde<br />

AOP and artificial recharge and recovery: a synergistic hybrid for micro pollutants Karin Teunissen<br />

QSARs in drinking water treatment David de Ridder<br />

Degradati<strong>on</strong> products in drinking water due to oxidative water treatment processes Zahira Herrera Rivera<br />

Microbial degradati<strong>on</strong> of micro pollutants in drinking water Marco Casola<br />

Multiple water reuse: sustainable design without precipitati<strong>on</strong> based <strong>on</strong> a new P-index Lamber Paping<br />

Theme 3: Modeling, sensoring and automati<strong>on</strong><br />

Theme leader: Luuk Rietveld<br />

<strong>Drinking</strong> water treatment plants c<strong>on</strong>sists of numerous treatment processes in series and in parallel. The operati<strong>on</strong><br />

of the present-day infrastructure is d<strong>on</strong>e by operators that mainly focus <strong>on</strong> providing the required flow at all times.<br />

It is obvious that it is possible to achieve better results at lower costs and with less impact <strong>on</strong> the envir<strong>on</strong>ment by<br />

utilising available opti<strong>on</strong>s such as buffer tanks, equal flow distributi<strong>on</strong> over filters, flow c<strong>on</strong>trol and process c<strong>on</strong>trol.<br />

By using computer models it is now also possible to improve the water quality leaving the treatment plant while<br />

delivering the required flow. Focus of this theme is <strong>on</strong> an optimised process and flow c<strong>on</strong>trol by mass balance<br />

based modeling and by more sophisticated computati<strong>on</strong>al fluid dynamics. Also stochastic data models are used<br />

to assess the efficiency of treatment processes. We aim to achieve the c<strong>on</strong>cept of a ‘virtual treatment plant’, that<br />

is a model of the plant that can functi<strong>on</strong> as a simulator to assist the operator in finding the optimal settings.<br />

Research projects:<br />

Developing and modeling of oxidati<strong>on</strong> processes for water treatment Alex van der Helm<br />

Modeling of biological activated carb<strong>on</strong> filtrati<strong>on</strong> René van der Aa<br />

Simulati<strong>on</strong> of drinking water treatment plants Ignaz Worm<br />

Grey-box modeling and plant-wide integrated c<strong>on</strong>trol of water purificati<strong>on</strong> processes Kim van Schagen<br />

CFD in drinking water treatment Bas Wols<br />

Microbial risk analysis framework Patrick Smeets<br />

Modeling and m<strong>on</strong>itoring of drinking water treatment processes Petra Ross<br />

Integrated modeling of c<strong>on</strong>venti<strong>on</strong>al drinking water treatment Javier Sanchez<br />

12 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Theme 4: Optimal design and operati<strong>on</strong> of distributi<strong>on</strong> networks<br />

After water is treated to drinking water it is transported to the customers in large<br />

underground distributi<strong>on</strong> systems. In the distributi<strong>on</strong> systems the water quality<br />

deteriorates in time due to several complex interrelated processes. The objective<br />

of this research theme is to understand the water quality processes in the distributi<strong>on</strong><br />

network, to develop new (<strong>on</strong>-line) tools to assess the water quality in the<br />

distributi<strong>on</strong> system and to propose innovati<strong>on</strong>s and guidelines to prevent future<br />

water quality deteriorati<strong>on</strong>. Focus will be <strong>on</strong> the effect of natural organic matter<br />

(NOM), the hydraulic behaviour of sediment in the distributi<strong>on</strong> system, the chemical<br />

interacti<strong>on</strong> between water and the piping material, the design of self cleaning<br />

networks and the predicti<strong>on</strong> of .<br />

Theme leader: Jasper Verberk & Jan Vreeburg<br />

Research projects:<br />

<strong>Water</strong> quality in distributi<strong>on</strong> systems Jasper Verberk<br />

Particles in drinking water networks Jan Vreeburg<br />

Hardness and pH in drinking water Peter de Moel<br />

Stochastic demand patterns in hydraulic models Mirjam Blokker<br />

<strong>Water</strong> quality deteriorati<strong>on</strong> and c<strong>on</strong>trol policy in drinking water distributi<strong>on</strong> systems Gang Liu<br />

Theme 5: Sustainable drinking water soluti<strong>on</strong>s<br />

Theme leader: Bas Heijman<br />

Safe drinking water is at present not available for every human being <strong>on</strong> earth. The current knowledge <strong>on</strong> low-cost<br />

drinking water treatment is often insufficient to provide safe water in remote and underdeveloped areas. Either<br />

soluti<strong>on</strong>s do not fit within the targeted envir<strong>on</strong>ment or a scientific approach is not at hand. Research to develop<br />

and improve treatment systems for the poor is the main objective of the work d<strong>on</strong>e within this new research theme.<br />

The (upcoming) projects in this theme aim at critically evaluating existing treatment opti<strong>on</strong>s and the development<br />

of new innovative technologies. The current research focuses <strong>on</strong> low-cost ceramic filtrati<strong>on</strong>, subsurface arsenic<br />

removal, and utilizati<strong>on</strong> of renewable energy.<br />

Research project:<br />

Subsurface arsenic removal from groundwater Doris van Halem<br />

research<br />

13


Unesco-IHE affiliated drinking water PhD projects<br />

14 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

Theme leader: Gary Amy<br />

Development of an envir<strong>on</strong>mental impact assessment and decisi<strong>on</strong> support system<br />

for seawater desalinati<strong>on</strong> plants Sabine Latteman<br />

Micro pollutant removal by river bank filtrati<strong>on</strong><br />

Rejecti<strong>on</strong> of pharmaceutically active and endocrine disrupting compounds by low and high<br />

Andrew Maeng<br />

pressure membranes: interacti<strong>on</strong>s between solute and fouled membranes Victor Yangali Quintanilla<br />

Decisi<strong>on</strong> support system for managing underground water related assets Yi Zhou<br />

PhD projects waste water treatment<br />

Theme leader: Jaap van der Graaf & Jules van Lier<br />

Comparis<strong>on</strong> of operati<strong>on</strong>al processes of three full scale MBRs Pawel Krzeminski<br />

Optimizati<strong>on</strong> of membrane bio reactors Maria Lousada-Feireira<br />

DFCM <strong>on</strong> tour: activated sludge filterability assessment of European large-scale<br />

MBR plants through activated sludge quality Adrian Moreau<br />

PhD projects sewerage<br />

Theme leader: Francois Clemens<br />

Sewer systems are underground structures that transport a small and slightly varying amount of wastewater<br />

and a large, str<strong>on</strong>gly varying amount of rainwater. This poses several challenges to the design, operati<strong>on</strong> and<br />

c<strong>on</strong>trol of these systems. The research activities of the <str<strong>on</strong>g>Chair</str<strong>on</strong>g> sewerage focus <strong>on</strong>: interacti<strong>on</strong>s between the<br />

sewer system and the treatment plant processes, capacity reducing gas pockets in wastewater mains, efficient<br />

m<strong>on</strong>itoring for c<strong>on</strong>trol and maintenance of sewers, probabilistic design methods for sewer systems.<br />

CAPWAT II: Capacity reducing gas pockets in downward slopes of wastewater mains Ivo Pothof<br />

Dynamic m<strong>on</strong>itoring of in-sewer processes Remy Schilperoort<br />

Urban flood risk quantificati<strong>on</strong> Marie-Claire ten Veldhuis


PhD dissertati<strong>on</strong>s completed at <strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong><br />

Researcher Title Dissertati<strong>on</strong><br />

Arne Verliefde Rejecti<strong>on</strong> of organic micro pollutants with high pres-<br />

sure membranes (NF/RO)<br />

Patrick Smeets Stochastic modeling of drinking water treatment in<br />

quantitative microbial risk assessment<br />

Alex van der Helm Integrated modeling of oz<strong>on</strong>ati<strong>on</strong> for optimizati<strong>on</strong> of<br />

drinking water treatment<br />

Jan Vreeburg Discolourati<strong>on</strong> in drinking water systems: a particu-<br />

lar approach<br />

<strong>2008</strong><br />

<strong>2008</strong><br />

2007<br />

2007<br />

Jasper Verberk Applicati<strong>on</strong> of air in membrane filtrati<strong>on</strong> 2005<br />

Luuk Rietveld Improving operati<strong>on</strong> of drinking water treatment plants<br />

through modeling<br />

Walter van der Meer Mathematical modeling of NF and RO filtrati<strong>on</strong> plants<br />

and modules<br />

2005<br />

2003<br />

All dissertati<strong>on</strong>s can be downloaded from www.drinkwater.tudelft.nl (=> research, => PhD<br />

research completed)<br />

research<br />

overview Phd dissertati<strong>on</strong>s since 1991<br />

15


Group photo of staff members and PhD researchers at yearly Xmas dinner<br />

Traditi<strong>on</strong>al Easter brunch<br />

16 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Professors and lecturers<br />

The research is performed by our PhD students. Detailed descripti<strong>on</strong>s of all PhD projects are<br />

given in the secti<strong>on</strong> “Individual research projects” of this <str<strong>on</strong>g>report</str<strong>on</strong>g>. All PhD students are supervised<br />

<strong>on</strong> the l<strong>on</strong>g term by the professors and <strong>on</strong> a daily basis by associate/assistant professors<br />

and lecturers.<br />

prof.ir. j.c. van dijk<br />

dr. ir. l.c. rietveld<br />

dr. ir. j.h.g. vreeburg<br />

ir. P.j. de Moel<br />

dr.ir. a.r.d. verliefde<br />

Professor drinking water engineering<br />

Head secti<strong>on</strong> sanitary engineering<br />

Head department watermanagement<br />

Room 4.51<br />

J.C.vanDijk@<strong>TU</strong><strong>Delft</strong>.nl<br />

+31 15 27 85 227<br />

Associate professor<br />

Room 4.69<br />

L.C.Rietveld@<strong>TU</strong><strong>Delft</strong>.nl<br />

+31 15 27 84 732<br />

Research topics:<br />

- modeling, sensoring and automati<strong>on</strong><br />

- integrated soluti<strong>on</strong>s for the water cycle<br />

- emerging technologies<br />

Assistant professor<br />

Room 4.65<br />

J.H.G.Vreeburg@<strong>TU</strong><strong>Delft</strong>.nl<br />

+31 15 27 87 894<br />

Research topics:<br />

- design & operati<strong>on</strong> of distributi<strong>on</strong> systems<br />

Researcher<br />

Room 4.54<br />

P.J.deMoel@<strong>TU</strong><strong>Delft</strong>.nl<br />

+31 15 27 83 347<br />

Research topics:<br />

- design & operati<strong>on</strong> of distributi<strong>on</strong> systems<br />

Post-doc<br />

Room 4.55<br />

A.R.D.Verliefde@tudelft.nl<br />

+31 15 278 33 47<br />

Research topics:<br />

- emerging technologies<br />

- integrated soluti<strong>on</strong>s for the water cycle<br />

prof.dr. g.l. amy<br />

dr. ir. j.Q.j.c. verberk<br />

dr. ir. s.g.j. heijman<br />

dr. ir. a.w.c. van der<br />

helm<br />

Professor of Urban <strong>Water</strong> Supply and<br />

Sanitati<strong>on</strong><br />

G.Amy@unesco-ihe.org<br />

+31 15 21 51 781<br />

Assistant professor<br />

Room 4.48<br />

J.Q.J.C.Verberk@<strong>TU</strong><strong>Delft</strong>.nl<br />

+31 15 27 85 838<br />

Research topics:<br />

- design & operati<strong>on</strong> of distributi<strong>on</strong> systems<br />

- emerging technologies<br />

- sustainable drinking water soluti<strong>on</strong>s<br />

Lecturer<br />

Room 4.51<br />

S.G.J.Heijman@<strong>TU</strong><strong>Delft</strong>.nl<br />

+31 15 27 83 347<br />

Research topics:<br />

- emerging technologies<br />

- sustainable drinking water soluti<strong>on</strong>s<br />

Researcher<br />

Room 4.69<br />

A.W.C.vanderHelm@<strong>TU</strong><strong>Delft</strong>.nl<br />

+31 6 15 09 33 13<br />

Research topics:<br />

- modeling, sensoring and automati<strong>on</strong><br />

- integrated soluti<strong>on</strong>s for the water cycle<br />

- emerging technologies<br />

research<br />

acadeMic staff<br />

17


Research collaborati<strong>on</strong><br />

Our researchers collaborate in many nati<strong>on</strong>al and internati<strong>on</strong>al research projects. All projects are defined in close<br />

cooperati<strong>on</strong> with water companies and boards, ensuring short lines to the field practice. The research is per-<br />

formed by PhD students in close supervisi<strong>on</strong> by our staff members and experts from science and industry.<br />

The research can be characterised as innovative but public accessible. All results are applicable to the public<br />

water sector and are published in scientific journals and presented <strong>on</strong> internati<strong>on</strong>al c<strong>on</strong>ferences. Furthermore<br />

the research is fundamental but at the same time applied.<br />

Our researchers collaborate with more than 40 companies, research groups, governmental instituti<strong>on</strong>s and<br />

c<strong>on</strong>sultants. Our research is multi disciplinary and our researchers act like a spider in the water web.<br />

The following collaborati<strong>on</strong>s have been established in the different projects:<br />

Research groups and research instituti<strong>on</strong>s<br />

Our researchers are actively participating in multi disciplinary nati<strong>on</strong>al collaborative research programmes like<br />

<strong>Delft</strong> Cluster and <strong>Water</strong> Research Centre <strong>Delft</strong>. Furthermore we participate in different projects in the 6th framework<br />

research programme of the European Uni<strong>on</strong>, e.g.: TECHNEAU and Microrisk. In other projects there is a<br />

close collaborati<strong>on</strong> with the leading water research organisati<strong>on</strong>s like TZW, IWW and CRC WQ&T.<br />

Collaborati<strong>on</strong> with: <strong>Delft</strong> Cluster, <strong>Water</strong> Research Centre <strong>Delft</strong>, Kiwa <strong>Water</strong> Research, <strong>Delft</strong> Hydraulics, TTI<br />

Wetsus, Cooperative Research Centre of <strong>Water</strong> Quality and Treatment (Australia), Global <strong>Water</strong> Research<br />

Coaliti<strong>on</strong>, Swedish Institute for Infectious Disease C<strong>on</strong>trol (Sweden), School of Civil and Envir<strong>on</strong>mental<br />

<strong>Engineering</strong> (Australia), Anjou Recherche (France), <strong>Water</strong> Research Centre-NSF (United Kingdom), Institute<br />

of hygiene and public health (Germany), Suez Envir<strong>on</strong>ment (France), DVGW Technologiezentrum Wasser<br />

(Germany), IWW (Germany)<br />

Universities<br />

We work together with different research groups within the <strong>Delft</strong> University of Technology and with research<br />

groups of other universities. For example, within the faculty of Civil <strong>Engineering</strong> and Geosciences the fundamental<br />

knowledge of the department of Fluid Mechanics and the applied knowledge <strong>on</strong> water treatment<br />

processes is combined in the PhD project <strong>on</strong> CFD in drinking water treatment. Furthermore these is a close<br />

collaborati<strong>on</strong> with professor Olsthoorn of Geohydrology and professor Bruining form Geosiences<br />

Within the <strong>Delft</strong> University of Technology there are combined PhD projects with the faculty of ITS, group of<br />

professor Babushka and the faculty of TNW, group of professor van Loosdrecht.<br />

On nati<strong>on</strong>al level there is a very intensive collaborati<strong>on</strong> with the Department of Municipal Infrastructure of<br />

UNESCO-IHE, group professor Amy. On a m<strong>on</strong>thly basis researchers from UNESCO-IHE and <strong>TU</strong> <strong>Delft</strong> organise<br />

research colloquia to inform each other of the <strong>on</strong>going project and to have discussi<strong>on</strong>s with each other. Also with<br />

the Catholic University of Leuven, group of professor van der Bruggen, an intensive collaborati<strong>on</strong> exists.<br />

Collaborati<strong>on</strong> with: Wageningen University, Unesco-IHE, Catholic University Leuven (Belgium), RWTH Aachen<br />

(Germany), INSA Toulouse (France), University of Johannesburg (South Africa), University of Woll<strong>on</strong>g<strong>on</strong>g<br />

(Australia), University of Barcel<strong>on</strong>a (Spain), University of East Anglia (United Kingdom)<br />

18 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Commercial companies<br />

Collaborati<strong>on</strong> with commercial companies focuses <strong>on</strong> the development of innovative products.<br />

The results of this research will be protected by patents and will be commercialised by the commercial<br />

companies. Some recent patents and products developed in the research projects of our<br />

group are: Optiflux, DOPFR, OPIR, Stimela. Collaborati<strong>on</strong> with engineering c<strong>on</strong>sultants results<br />

in direct applicati<strong>on</strong> of the outcomes of the research in engineering and design projects.<br />

Collaborati<strong>on</strong> with: Norit, ABB, DHV, Hellebrekers, Hatenboer, UReas<strong>on</strong>, AKZO NOBEL<br />

<strong>Drinking</strong> water companies<br />

Most of our practical applied research projects are performed at actual water treatment plants<br />

and pipe networks in the Netherlands. In these plants for example the effects of the natural<br />

variati<strong>on</strong> of water quality <strong>on</strong> treatment effectiveness is investigated. In the pipe networks the<br />

dynamic behaviour of sediment in sewerage systems is m<strong>on</strong>itored.<br />

Collaborati<strong>on</strong> with: <strong>Water</strong>net, Vitens, Evides, DZH, PWN, Oasen, Brabant <strong>Water</strong>, VEWIN<br />

Governmental instituti<strong>on</strong>s<br />

Several projects are funded by governmental organisati<strong>on</strong>s. In order to obtain funding for these<br />

projects we have to apply for grants. The grant proposals are reviewed by internati<strong>on</strong>al experts<br />

and <strong>on</strong>ly the best proposals have been selected for funding. Examples of granted projects are:<br />

Microrisk, PROMICIT, BAKF, IS-NOM and several Innovator projects. Moreover, we will participate<br />

actively in TTI Wetsus.<br />

Collaborati<strong>on</strong> with: RIVM, VROM, European Uni<strong>on</strong> (6th framework), Techneau, Aqua for All, NWO,<br />

SenterNovem<br />

Partners <strong>TU</strong><strong>Delft</strong><br />

research<br />

research collaborati<strong>on</strong><br />

19


<strong>Water</strong>net and <strong>TU</strong> <strong>Delft</strong> investigate innovati<strong>on</strong> in water cycle<br />

On May 27 <strong>2008</strong> ir. Roelof Kruize, CEO of <strong>Water</strong>net, and prof.ir. Louis de Quelerij, dean of the faculty of Civil<br />

<strong>Engineering</strong> and Geosciences of <strong>TU</strong> <strong>Delft</strong> signed a strategic collaborati<strong>on</strong> c<strong>on</strong>tract. The collaborati<strong>on</strong> focuses<br />

<strong>on</strong> research in innovati<strong>on</strong> in the water cycle, particularly <strong>on</strong> the sectors drinking water, waste water and water<br />

systems.<br />

<strong>Water</strong>net is the first water cycle company in the Netherlands. <strong>Water</strong>net takes care of the entire water cycle:<br />

from drinking water, sewerage and treatment of waste water to discharge of waste water effluent into surface<br />

water. Furthermore, maintenance of ditches, lakes and p<strong>on</strong>ds, advice during high ground water levels and dike<br />

supervisi<strong>on</strong> are part of the tasks of <strong>Water</strong>net. <strong>Water</strong>net has been assigned to perform these tasks by waterboard<br />

Amstel, Gooi en Vecht and the city of Amsterdam.<br />

From left to right Jan Peter van der Hoek, Hans van Dijk, Roelof Kruize, Louis de Quelerij,<br />

T<strong>on</strong> Rosenhart<br />

With <strong>Water</strong>net’s ambiti<strong>on</strong> to shape the innovati<strong>on</strong> in the water cycle and the expertise of <strong>TU</strong> <strong>Delft</strong> in the sectors<br />

of the water cycle, this collaborati<strong>on</strong> is a logical next step. The durati<strong>on</strong> of the collaborati<strong>on</strong> is, in first<br />

instance, four years. The collaborati<strong>on</strong> will c<strong>on</strong>sist of MSc work of <strong>TU</strong> <strong>Delft</strong> students at <strong>Water</strong>net, PhD research<br />

of employees of <strong>TU</strong> <strong>Delft</strong> and <strong>Water</strong>net, post doc research by employees of <strong>TU</strong> <strong>Delft</strong> at <strong>Water</strong>net, employees<br />

of <strong>Water</strong>net doing their MSc (in part time) at <strong>TU</strong> <strong>Delft</strong> and the use of the pilot installati<strong>on</strong> at Leiduin as a “water<br />

cycle laboratory”.<br />

20 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Collaborati<strong>on</strong> Oasen <strong>Water</strong> company and <strong>TU</strong> <strong>Delft</strong><br />

In the coming years Oasen water company and <strong>TU</strong> <strong>Delft</strong> will collaborate in research <strong>on</strong> drinking water engineering.<br />

Ir. Alexander Vos de Wael, CEO of Oasen water company, and Prof.ir. Hans van Dijk, professor in<br />

<strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong> at <strong>TU</strong> <strong>Delft</strong>, signed a collaborati<strong>on</strong> agreement <strong>on</strong> June 30, <strong>2008</strong>.<br />

Oasen <strong>Water</strong> company produces drinking water for 750,000 customers and 7,200 companies in the eastern<br />

part of the province of South-Holland. The supply area has an surface area of 1,115 km2 . The head office of<br />

Oasen water company is located in Gouda.<br />

Signing of the strategic collaborati<strong>on</strong> agreement by Hans van Dijk and Alexander Vos de Wael<br />

Oasen water company and <strong>TU</strong> <strong>Delft</strong> are already working together, <strong>on</strong> drinking water research for some years.<br />

With this strategic collaborati<strong>on</strong> both organisati<strong>on</strong>s aim to start a more structured research relati<strong>on</strong>ship. The<br />

collaborati<strong>on</strong> has advantages for both organisati<strong>on</strong>s. Oasen water company will have more access to knowledge<br />

and research at the university. <strong>TU</strong> <strong>Delft</strong> will have the possibility to execute applied research <strong>on</strong> pilot locati<strong>on</strong>s<br />

close to <strong>Delft</strong>.<br />

Both organisati<strong>on</strong>s intend to do innovative research <strong>on</strong> different aspects of the drinking water process. The<br />

research will be carried out by employees of Oasen water company, PhD students and post docs from <strong>TU</strong><br />

<strong>Delft</strong>.<br />

research<br />

21


Research collaborati<strong>on</strong> CWTRI - <strong>TU</strong> <strong>Delft</strong><br />

In 2007 a collaborati<strong>on</strong> was started between the University of the Netherlands Antilles, the Caribbean <strong>Water</strong><br />

Technology Research Institute, the Associati<strong>on</strong> of Dutch <strong>Water</strong> Companies, the Suriname <strong>Water</strong> Company<br />

and <strong>Delft</strong> University of Technology. The collaborative operative agreement promotes far-reaching cooperati<strong>on</strong><br />

in higher educati<strong>on</strong> and research c<strong>on</strong>cerning the provisi<strong>on</strong> of drinking water supplies. The group’s comm<strong>on</strong><br />

goal is to set up a high-quality knowledge infrastructure in water-system management for the Dutch Antilles,<br />

Aruba and Suriname. From August <strong>2008</strong> the Ant<strong>on</strong> de Kom University of Suriname also participates in this<br />

unique collaborati<strong>on</strong>.<br />

In <strong>2008</strong> several research projects were initiated, like seawater desalinati<strong>on</strong> with wind energy, c<strong>on</strong>sequences<br />

for water utilities of the transiti<strong>on</strong> of the BES islands to the Netherlands, <strong>on</strong>-line temperature measurements<br />

in the distributi<strong>on</strong> system and home installati<strong>on</strong>s. Furthermore, first lectures <strong>on</strong> drinking water treatment were<br />

given at the University of the Netherlands Antilles. Over 60 students and employees of the water companies<br />

participated in the lecture series.<br />

The collaborati<strong>on</strong> has been evaluated as very successful and will be c<strong>on</strong>tinued in the coming years. In 2009<br />

several new research projects will start, like the calculati<strong>on</strong> of the Infrastructure Leakage Index (ILI) for all of<br />

the island of the Netherlands Antilles, the c<strong>on</strong>trol of biofouling in reverse osmosis installati<strong>on</strong> and desalinati<strong>on</strong><br />

by a combinati<strong>on</strong> of photo voltaic cells and reverse osmosis. Furthermore, a lecture series <strong>on</strong> distributi<strong>on</strong><br />

systems will be organised and a chapter in the book :drinking water: principles and practices” will be devoted<br />

Official opening of the first lectures in drinking water engineering at<br />

the University of the Netherlands Antilles.<br />

to the water supply <strong>on</strong> the Netherlands Antilles.<br />

22 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

SWRO-installati<strong>on</strong> driven by<br />

the windmill at Curacao


Research collaborati<strong>on</strong> ITB Bandung - <strong>TU</strong> <strong>Delft</strong><br />

On the 21st of July <strong>2008</strong> Rusnandi Garsadi obtained his doctorate at the ITB in Bandung, Ind<strong>on</strong>esia. During his<br />

PhD research Rusnandi Garsadi worked <strong>on</strong> the design of a new type of coagulati<strong>on</strong>/flocculati<strong>on</strong> unit. This unit<br />

will predominantly used <strong>on</strong> mobile drinking water treatment installati<strong>on</strong>s for emergency drinking water supply.<br />

The design of the unit is improved by the use of CFD models. The CFD models were calibrated with measurements<br />

in a laboratory set-up of the University of Technology <strong>Delft</strong>. The research <strong>on</strong> the improvement of coagulati<strong>on</strong><br />

processes was initiated by cooperati<strong>on</strong> between ITB and Vitens Evides Internati<strong>on</strong>al. In a follow-up study<br />

a c<strong>on</strong>tinuous beaker apparatus will be developed. In a standard beaker apparatus a coagulati<strong>on</strong>/flocculati<strong>on</strong>/<br />

sedimentati<strong>on</strong> batch experiment will be executed. The new apparatus will be able to execute an experiment<br />

like this <strong>on</strong> a c<strong>on</strong>tinuous basis which makes it possible to accelerate the optimizati<strong>on</strong>. Here the CFD modeling<br />

will platy an important role. Rusnandi Garsadi will join the drinking water research group in <strong>Delft</strong> for <strong>on</strong>e year<br />

to work <strong>on</strong> the development of this apparatus. Furthermore, first initiatives have been taken to assist ITB to<br />

develop a new water management educati<strong>on</strong>al and research programme.<br />

Bas Heijman visiting ITB Bandung<br />

research<br />

23


Research exchange<br />

D<strong>on</strong>g Lei Zhou (China)<br />

I am a professor from College of Envir<strong>on</strong>ment and resources, Jilin University,<br />

Changchun city, China. I graduated PhD. in Hydrology and <strong>Water</strong> Resources<br />

from Jilin University. In the past, my research group focuses <strong>on</strong> the water<br />

treatment, including drinking water and wastewater treatment technology and<br />

process design etc. From October <strong>2008</strong> to October 2009, I will work together<br />

with main research <strong>on</strong> topic like drinking water treatment and filtrati<strong>on</strong> technology<br />

at <strong>TU</strong> <strong>Delft</strong>. In the coming year, I am glad to join water research group<br />

at <strong>TU</strong> <strong>Delft</strong> and enjoy my stay period in the Netherlands.<br />

Xavier Coll (Spain)<br />

Xavier Coll is a visiting scholar in the department of Sanitary <strong>Engineering</strong><br />

of <strong>TU</strong> <strong>Delft</strong>. He did a bachelor of Civil <strong>Engineering</strong> and is now finalizing his<br />

master focused <strong>on</strong> Envir<strong>on</strong>ment. Xavier Coll is doing at this moment his<br />

Master Thesis <strong>on</strong> the characterizati<strong>on</strong> of particulate material in the distributi<strong>on</strong><br />

system under the supervisi<strong>on</strong> of the assistant professor Jasper Verberk.<br />

Present particles in drinking water distributi<strong>on</strong> system are the main cause of<br />

organoleptic and discolourati<strong>on</strong> problems of water affecting costumers, as<br />

well as these particles can transport attached bacteria which is then protected<br />

from residual disinfectants. Mainly, particles present in water appear in water<br />

treatment plants because of the incomplete removal or the additi<strong>on</strong> of new<br />

particles during the treatment process.<br />

Megan McC<strong>on</strong>ville (USA)<br />

Megan McC<strong>on</strong>ville is a guest researcher here in <strong>Delft</strong> for nine m<strong>on</strong>ths <strong>on</strong> a<br />

Fulbright fellowship sp<strong>on</strong>sored by the Dutch and American Governments as<br />

well as the Netherlands American foundati<strong>on</strong>. With a background in envir<strong>on</strong>mental<br />

chemistry her research with PhD students Arne Verliefde, and René<br />

van der Aa involves an analysis of the effects natural organic matter (NOM)<br />

has <strong>on</strong> the adsorpti<strong>on</strong> of trace organic pollutants using granular activated.<br />

That’s a mouth full, what it means is that she is looking at emerging pollutants<br />

in drinking water which include pharmaceuticals, some pesticides, horm<strong>on</strong>es<br />

and other pers<strong>on</strong>al care products.<br />

Zhiping Li (China)<br />

I am an associate professor from School of Resources and Envir<strong>on</strong>ment, North<br />

China Institute of <strong>Water</strong> C<strong>on</strong>servancy and Electric Power, Zhengzhou City,<br />

Henan Province, China. I am a specialist in hydrology and water resources. I<br />

have come to <strong>Delft</strong> to enhance my knowledge <strong>on</strong> drinking water and geohydrology.<br />

In the coming year I will work together with different researchers <strong>on</strong><br />

topics like arsenic removal and artificial dune filtrati<strong>on</strong>. I am looking forward<br />

to an interesting research period in the Netherlands<br />

24 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

D<strong>on</strong>g Lei Zhou<br />

Xavier Coll<br />

Megan McC<strong>on</strong>ville<br />

Zhiping Li


Arne Verliefde<br />

From October <strong>2008</strong> to October 2009, I will be carrying out<br />

research at the UNESCO Centre for Membrane Science &<br />

Technology at the University of New South Wales in Sydney,<br />

Australia. The Centre is famous for their profound knowledge<br />

of membranes in different applicati<strong>on</strong>s (albeit mostly in water<br />

treatment). During this period, I will be working with Prof. Vicky<br />

Chen, Dr. Pierre Le-Clech and Prof. T<strong>on</strong>y Fane. The goal of the<br />

project is to investigate the removal of trace organic pollutants<br />

(such as pharmaceuticals, horm<strong>on</strong>es, pesticides) with nanofiltrati<strong>on</strong>/reverse<br />

osmosis membranes in wastewater reuse applicati<strong>on</strong>s<br />

(for direct/indirect potable reuse). This is a logical follow-up<br />

<strong>on</strong> my PhD. research <strong>on</strong> removal of trace organic pollutants by<br />

NF/RO membranes in surface- and groundwater applicati<strong>on</strong>s.<br />

However, since wastewater effluent is a more complex matrix (it<br />

c<strong>on</strong>tains higher c<strong>on</strong>centrati<strong>on</strong>s and different types of NOM and<br />

higher c<strong>on</strong>centrati<strong>on</strong>s of pharmaceuticals and horm<strong>on</strong>es), NF/<br />

RO still faces important challenges in this field.<br />

Rusnandi Garsadi (Ind<strong>on</strong>esia)<br />

l am Rusnandi Garsadi from ITB Bandung in Ind<strong>on</strong>esia. From<br />

October 2007 to January <strong>2008</strong> I stayed at <strong>Delft</strong> University to do<br />

research <strong>on</strong> velocity gradients in a micro hydraulic flocculator.<br />

This treatment installati<strong>on</strong> has been used for the first time in<br />

Ind<strong>on</strong>esia after the Tsunami of 2005. At the moment it is in use in<br />

more than 30 installati<strong>on</strong>s. In <strong>Delft</strong> I validate my CFD calculati<strong>on</strong>s<br />

of the velocity gradients in the micro flocculator by comparing<br />

them with measured velocity gradients made by acoustic doppler<br />

velocimetry measurements. My research period is sp<strong>on</strong>sored by<br />

Vitens Evides Internati<strong>on</strong>al.<br />

French exchange students <strong>on</strong> excursi<strong>on</strong> by bike<br />

Arne Verliefde<br />

Rusnandi Garsadi<br />

research<br />

research exchange<br />

25


<strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong> and Science: the first open access journal for drinking<br />

water treatment<br />

On a cold winter morning, bicycling to the university library to find articles <strong>on</strong> the topic you are interested in.<br />

Remember those days? Things have improved, a lot of informati<strong>on</strong> can be found from your desk in the different<br />

e-journals that now exist. But that desk should be <strong>on</strong> the university campus to have access to those journals.<br />

On January 8th, <strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong> and Science has been launched. The journal is the first <strong>on</strong>line<br />

open access journal <strong>on</strong> drinking water treatment.<br />

‘Open access’ are the key words: every<strong>on</strong>e can download the articles from the journal’s website for free without<br />

expensive subscripti<strong>on</strong>. Nothing is free in this world, you might think. Well, you are right. Publisher Copernicus<br />

hosts the journal and charges the authors for publicati<strong>on</strong>. UNESCO-IHE and <strong>Delft</strong> University of Technology<br />

have set up the journal and have decided to reduce the charges until the journal has an ISI impact factor. But<br />

since the journal is open access, a lot of other scientists will find the papers and cite them, so this should take<br />

not too l<strong>on</strong>g.<br />

The journal aims to be the leading scientific open access journal for the publicati<strong>on</strong> of original research in drinking<br />

water treatment. The focus is <strong>on</strong> fundamental and applied research in water sources, substances, drinking<br />

water treatment processes, distributi<strong>on</strong> systems and residual management. <strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong> and<br />

Science serves scientists from universities and research institutes and engineers from water supply companies<br />

and engineering c<strong>on</strong>sulting firms. Every issue will c<strong>on</strong>tain at least <strong>on</strong>e paper <strong>on</strong> drinking water in developing<br />

countries. A fund will be established to give<br />

authors from developing countries the opportunity<br />

to publish their work.<br />

<strong>Drinking</strong> <strong>Water</strong><br />

The peer-review of submitted papers is public,<br />

<strong>Engineering</strong> and Science<br />

so if you visit the discussi<strong>on</strong> part of the journal’s<br />

An Interactive Open Access Journal<br />

website (DWESD), you will find the papers that<br />

have been submitted. D<strong>on</strong>’t hesitate to give<br />

Aims & Scope<br />

your comments <strong>on</strong> the papers! We look forward<br />

to receive your papers and to offer you high<br />

quality scientific informati<strong>on</strong> <strong>on</strong> drinking water<br />

treatment.<br />

www.drinking-water-engineering-and-science.net<br />

(dwes-executive-editors@copernicus.org)<br />

26 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

<strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong> and Science<br />

(DWES) aims to be the leading scientific Open<br />

Access journal for the publicati<strong>on</strong> of original<br />

research in drinking water treatment. The focus<br />

is <strong>on</strong> fundamental and applied research<br />

in water sources, substances, drinking water<br />

treatment processes, distributi<strong>on</strong> systems and<br />

residual management.<br />

DWES serves scientists from universities and<br />

research institutes and engineers from water<br />

supply companies and engineering c<strong>on</strong>sulting<br />

firms.<br />

Every issue will c<strong>on</strong>tain at least <strong>on</strong>e paper <strong>on</strong><br />

drinking water in developing countries. A fund<br />

will be established to give authors from developing<br />

countries the opportunity to publish their<br />

work.<br />

Public Peer-Review<br />

Interactive Public Discussi<strong>on</strong><br />

Immediate Article Publicati<strong>on</strong><br />

Free Online Access<br />

Full Alert Service<br />

Author Keeps Copyright<br />

Editors-in-Chief<br />

Gary Amy<br />

Hans van Dijk<br />

www.drinking-water-engineering-and-science.net


Impressi<strong>on</strong>s of the “Vakantiecursus” <strong>2008</strong><br />

research<br />

c<strong>on</strong>ferences and journals<br />

27


Cees Boeter Award <strong>2008</strong><br />

On June 6 th , the BSc water management award for the best BSc thesis work was presented for the sixth time.<br />

As from 2006 the award is called the Cees Boeter award. Cees Boeter was involved for almost 40 years to the<br />

laboratory of Sanitary <strong>Engineering</strong>. The Cees Boeter award is used by the department <strong>Water</strong> management to<br />

promote students to achieve high scientific results and to apply results of thesis work in daily field practice. The<br />

winner of the award receives 250 Euro. This price was sp<strong>on</strong>sored<br />

by the Department of <strong>Water</strong>management this year.<br />

For the academic year 2007/<strong>2008</strong> the following pers<strong>on</strong>s were nominated:<br />

• Bart Bergmans. Discolourati<strong>on</strong> is caused by resuspensi<strong>on</strong> of sedi-<br />

ments in the distributi<strong>on</strong> network. To gain more insight in the discolourati<strong>on</strong><br />

risk the Resuspensi<strong>on</strong> Potential Method (RPM) has been<br />

developed. For his BSc thesis Bart has executed several measurements<br />

at the <strong>Water</strong>leiding Maatschappij Limburg (WML). He validated<br />

the by WML adjusted versi<strong>on</strong> of the RPM and evaluated measurement<br />

results of the adjusted RPM.<br />

• Cheryl Bertelkamp. Due to possible hazardous effects it is neces-<br />

sary to remove organic micro-pollutants from the surface water. At<br />

Udo Ouwekerk receiving<br />

the moment Duinwaterbedrijf Zuid-Holland c<strong>on</strong>siders the applica- the Cees Boeter award<br />

ti<strong>on</strong> of UV/H2O2 in Bergambacht to remove micro-pollutants. Cheryl<br />

investigated how the UV-tranmissi<strong>on</strong> of the produced water<br />

in Bergambacht could be improved by means of an extended pre-treatment. From her literature study it was<br />

found that activated carb<strong>on</strong> filtrati<strong>on</strong>, i<strong>on</strong> exchange, ultra filtrati<strong>on</strong> and coagulati<strong>on</strong> seemed the most promising<br />

techniques. With laboratory experiments the suitability of activated carb<strong>on</strong> filtrati<strong>on</strong> was further investigated.<br />

• Udo Ouwekerk. Sara Lee/DE has developed a new water dispenser: the aQa Pickwick water system. The<br />

aQa Pickwick is directly fitted <strong>on</strong> the water distributi<strong>on</strong> network. It delivers water with a c<strong>on</strong>stant quality and<br />

taste to the customer independent of the local water quality.<br />

The jury decided to give the “Cees Boeter award <strong>2008</strong>” to Udo Ouwekerk. The aQa Pickwick has the disadvantage<br />

that not every abstracted liter of tap water ends up in the product. Udo investigated how the water<br />

c<strong>on</strong>sumpti<strong>on</strong> of the aQa Pickwick could be reduced. Furthermore he investigated several alternatives in the<br />

laboratory. Udo has set-up and executed his experiments in a structured and self-employed way. The presentati<strong>on</strong><br />

of his results written in a <str<strong>on</strong>g>report</str<strong>on</strong>g> as well as oral was of a high level. Enough reas<strong>on</strong>s for the jury to award<br />

the Cees Boeter award <strong>2008</strong> to Udo Ouwekerk.<br />

28 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Gijs Oskam Award <strong>2008</strong><br />

During the Vakantiecursus <strong>2008</strong> the Gijs Oskam for the best MSc thesis work was presented for<br />

the fifth time. As known this price is awarded every two years to a promising young researcher<br />

in the field of drinking water. The Gijs Oskam award which c<strong>on</strong>sists of a price of € 1000 is<br />

meant for young graduates. Criteria for granting the award are originality and the quality of<br />

the research. From the applicati<strong>on</strong>s three candidates are nominated by the Committee. The<br />

work of the nominees will be incorporated in the book work of the Vakantiecursus and will be<br />

presented <strong>on</strong> a poster as well.<br />

For the Gijs Oskam Award <strong>2008</strong> the following<br />

pers<strong>on</strong>s were nominated: Karin<br />

Teunissen (<strong>TU</strong> <strong>Delft</strong>) for her research<br />

<strong>on</strong> ir<strong>on</strong> removal at pumping stati<strong>on</strong><br />

Harderboek, Assiyeh Tabatabai (IHE)<br />

for her research <strong>on</strong> membrane fouling<br />

and Doris van Halem (<strong>TU</strong> <strong>Delft</strong>) for her<br />

research <strong>on</strong> ceramic pot filters.<br />

The jury found it very difficult to des-<br />

Doris van Halem receiving the Gijs Oskam award<br />

ignate a winner this year because all<br />

three nominees were of excepti<strong>on</strong>al high level.<br />

Karin Teunissen proved that significant breakthrough of particles occurs when the filters of<br />

pumping stati<strong>on</strong> Harderbroek are back washed or linked. She graduated cum laude and begun<br />

with her PhD research at DZH and <strong>TU</strong> <strong>Delft</strong>.<br />

Assiyeh Tabatatbai investigated the influence of coagulati<strong>on</strong> <strong>on</strong> the MFI and the polluti<strong>on</strong> of<br />

membrane filtrati<strong>on</strong>. She proved to be an excellent researcher and started her PhD research<br />

at UNESCO-IHE.<br />

Doris van Halem graduated cum laude as well and started her PhD research <strong>on</strong> the removal<br />

of arsenic from groundwater at <strong>TU</strong> <strong>Delft</strong> and UNESCO-IHE.<br />

The jury decided to grant the Gijs Oskam Award <strong>2008</strong> to Doris van Halem because of “her<br />

excepti<strong>on</strong>al passi<strong>on</strong> to c<strong>on</strong>tribute to the huge water problems in the third world.”.<br />

Gijs Oskam Award <strong>2008</strong>/2009<br />

The Gijs Oskam award is a prize for the student with the best MSc thesis work. For the coming<br />

year the Gijs Oskam award is sp<strong>on</strong>sored by Evers & Manders C<strong>on</strong>sult. The Award includes a<br />

m<strong>on</strong>ey prize of 2,500 euro as well as a ‘oork<strong>on</strong>de’<br />

research<br />

awards<br />

29


Dissertati<strong>on</strong>s<br />

Smeets, PWMH (<strong>2008</strong>, april 15). Stochastic modeling of drinking water treatment in qantitative microbial risk<br />

assessment. <strong>TU</strong>D Technische Universiteit <strong>Delft</strong> (201 pag.) <strong>Delft</strong>: <strong>Water</strong> Management Academic Press. Prom./<br />

coprom.: Prof.ir. JC van Dijk.<br />

Verliefde, ARD (<strong>2008</strong>, oktober 10). Rejecti<strong>on</strong> of organic micropollutants by high pressure membranes (nf/ro).<br />

<strong>TU</strong>D Technische Universiteit <strong>Delft</strong> (281 pag.) <strong>Water</strong> Management Academic Press. Prom./coprom.: Prof.ir. JC<br />

van Dijk & B van der Bruggen.<br />

Internati<strong>on</strong>al refereed journals<br />

Abrahamse, AJ, Lipreau, C, Li, S & Heijman, SGJ (<strong>2008</strong>). Removal of divalent cati<strong>on</strong>s reduces fouling of<br />

ultrafiltrati<strong>on</strong> membranes. Journal of membrane science, 323, 153-158.<br />

Amy, GL (<strong>2008</strong>). Fundamental understanding of organic matter fouling of membranes. Desalinati<strong>on</strong>, 231(1-3),<br />

44-51.<br />

Banerjee, K, Amy, GL, Nour, S & Jekel, M (<strong>2008</strong>). Kinetic and thermodynamic aspects of adsorpri<strong>on</strong> of arsenic<br />

<strong>on</strong>to granular ferric hydroxide. <strong>Water</strong> research, 42, 3371-3378.<br />

Barrios, R, Siebel, MA, Helm, AWC van der, Bosklopper, ThGJ & Gijzen, HJ (<strong>2008</strong>). Envir<strong>on</strong>mental and<br />

financial life cycle impact assessment of drinking water producti<strong>on</strong> at <strong>Water</strong>net. Journal of cleaner producti<strong>on</strong>,<br />

16(4), 471-476.<br />

Blokker, EJM, Vreeburg, JHG, Buchberger, SG & Dijk, JC van (<strong>2008</strong>). Importance of demand modeling in<br />

network water quality models: a review. <strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong> and Science (<strong>on</strong>line), 1, 27-38.<br />

Broeke, LJP van den, Ross, PS, Helm, AWC van der, Baars, E.T. & Rietveld, LC (<strong>2008</strong>). Use of <strong>on</strong>-line uv/<br />

vis-spectrometry in the measurement of dissvolved oz<strong>on</strong>e and aoc c<strong>on</strong>centrati<strong>on</strong>s in drinking water treatment.<br />

<strong>Water</strong> science and technology, 57(8), 1169-1175.<br />

Cornelissen, ER, Moreau, F, Siegers, WG, Abrahamse, AJ,<br />

Rietveld, LC, Grefte, A, Dignum, M, Amy, GL & Wessels, LP<br />

(<strong>2008</strong>). Selecti<strong>on</strong> of ani<strong>on</strong>ic exchange resins for removal of natural<br />

organic matter fracti<strong>on</strong>s. <strong>Water</strong> research, 42(1-2), 413-423.<br />

Dudley, J, Dill<strong>on</strong>, G & Rietveld, LC (<strong>2008</strong>). <strong>Water</strong> treatment<br />

simulator. Journal of water supply research and technology-<br />

AQUA, 57(1), 1-11.<br />

Ghebremichael, K, Gebremeskel, A, Trifunovic, N & Amy,<br />

GL (<strong>2008</strong>). Modeling disinfecti<strong>on</strong> by-products: coupling<br />

hydraulic and chemical models. <strong>Water</strong> science and technology:<br />

water supply, 8(3), 289-295.<br />

Halem, D van, Heijman, SGJ, Soppe, AIA, Dijk, JC van &<br />

Amy, GL (2007). Ceramic silver-impregnated pot filters for<br />

household drinking water treatment in developing countries:<br />

material characterizati<strong>on</strong> and performance study. <strong>Water</strong> science<br />

and technology: water supply, 7(5-6), 9-17.<br />

30 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

Stochastic modelling of drinking<br />

water treatment in quantitative<br />

microbial risk assessment<br />

Patrick Smeets


Rejecti<strong>on</strong> of organic micropollutants by high pressure membranes (NF/RO). Arne Verliefde<br />

Hartog, M, Draaijer, A & Rietveld, LC (<strong>2008</strong>). Practical aspects of task allocati<strong>on</strong> in design and<br />

development of digital closed questi<strong>on</strong>s in higher educati<strong>on</strong>. Practical Assessment Research<br />

& Evaluati<strong>on</strong>, 13(2), 1-15.<br />

Heijman, SGJ, Verliefde, ARD, Cornelissen, ER, Amy, GL & Dijk, JC van (2007). Influence<br />

of natural organic matter fouling <strong>on</strong> the removal of pharmaceuticals by nanofiltrati<strong>on</strong> and activated<br />

carb<strong>on</strong> filtrati<strong>on</strong>. <strong>Water</strong> science and technology, 7(4), 17-23.<br />

Helm, AWC van der, Rietveld, LC, Bosklopper, ThGJ, Kappelhof, JWNM & Dijk, JC van (<strong>2008</strong>).<br />

Objectives for optimizati<strong>on</strong> and c<strong>on</strong>sequences for operati<strong>on</strong>, design and c<strong>on</strong>cept of drinking<br />

water treatments plants. <strong>Water</strong> science and technology: water supply, 8(3), 297-304.<br />

Helm, AWC van der, Rietveld, LC, Baars, E.T., Smeets, PWMH & Dijk, JC van (<strong>2008</strong>).<br />

Modeling disinfecti<strong>on</strong> and by-product formati<strong>on</strong> during the initial and the sec<strong>on</strong>d phase of natural<br />

water oz<strong>on</strong>ati<strong>on</strong> in a pilot-scale plug flow reactor. Journal of water supply research and<br />

technology-AQUA, 57(6), 1-15.<br />

Her, N, Amy, GL, Sohn, J & Gunten, U v<strong>on</strong> (<strong>2008</strong>). UV absorbance ratio index with size exclusi<strong>on</strong><br />

chromatography (uri-sec) as an nom property indicator. Journal of water supply research<br />

and technology-AQUA, 57(1), 35-44.<br />

Her, N, Amy, GL, Chung, JS, Yo<strong>on</strong>, J & Yo<strong>on</strong>, Y (<strong>2008</strong>). Characterizing dissolved organic matter<br />

and evaluating associated nanofiltrati<strong>on</strong> membrane fouling. Chemosphere, 70(3), 495-502.<br />

Jiang, J, Myngheer, S, Pauw, D de, Spanjers, H., Nopens, I, Kennedy, MD & Amy, GL (<strong>2008</strong>).<br />

Modeling the producti<strong>on</strong> and degradati<strong>on</strong> of solube microbial products (smp) in membrane<br />

bioreactors (mbr). <strong>Water</strong> research, 42(20), 4955-4964.<br />

Kazner, C, Bagoth, SA, Sharma, S, Amy, GL, Wintgens, T & Melin, T (<strong>2008</strong>). Comparing the<br />

effluent organic matter removal of direct nf<br />

and powdered activated carb<strong>on</strong>/nf as high<br />

Rejecti<strong>on</strong> of organic micropollutants by high pressure membranes (NF/RO). Arne Verliefde<br />

quality pretreatment opti<strong>on</strong>s for artificial<br />

groundwater recharge. <strong>Water</strong> science and<br />

technology, 57(6`7), 817.<br />

Kennedy, C.A., Kamanyi, J, Heijman, SGJ<br />

& Amy, GL (<strong>2008</strong>). Colloidal organic matter<br />

fouling of uf membranes: role of nom<br />

compositi<strong>on</strong> & size. Desalinati<strong>on</strong>, 220(1),<br />

200-212.<br />

Khebremichael, K, Gebremeskel, A,<br />

Trifunovic, N & Amy, GL (<strong>2008</strong>). Modeling<br />

disinfecti<strong>on</strong> byproducts: coupling hydraulic<br />

and chemical models. <strong>Water</strong> science and<br />

technology: water supply, 8(3), 289-295.<br />

Kjellberg, S, Jayaratne, A, Vreeburg, JHG,<br />

Sukumaran, N & Verberk, JQJC (2007).<br />

Implementing resuspensi<strong>on</strong> potential<br />

method to optimise yarra valley water’s<br />

mains cleaning program. Vatten, 63(4),<br />

285-297.<br />

research<br />

scientific outPut<br />

31


Lee, N, Pellegrino, J & Amy, GL (<strong>2008</strong>). Modeling nom fouling of low pressure membranes: impact of membrane<br />

properties and nom characteristics. <strong>Water</strong> science and technology: water supply, 8(1), 75-83.<br />

Lieverloo, H van, Blokker, EJM & Medema, GJ (2007). Quantitative microbial risk assessment of distributed<br />

drinking water using faecal indicator incidence and c<strong>on</strong>centrati<strong>on</strong>s. Journal of water and health, 5(S1), 131-<br />

149.<br />

Maeng, SK, Sharma, A, Magic-Knezev, A & Amy, GL (<strong>2008</strong>). Fate of effluent organic matter and natural organic<br />

matter through riverbank filtrati<strong>on</strong>. <strong>Water</strong> science and technology, 57(12), 1999-2007.<br />

Matsinhe, NP, Juizo, D, Rietveld, LC & Perss<strong>on</strong>, J (<strong>2008</strong>). <strong>Water</strong> services with independent providers in periurban<br />

Maputo: challenges and opporortunities for l<strong>on</strong>g-term development. <strong>Water</strong> sa, 34(3), 411-420.<br />

M<strong>on</strong>s, MN, Wielen, L van der, Blokker, EJM & Sinclair, JL (2007). Estimati<strong>on</strong> of the c<strong>on</strong>sumpti<strong>on</strong> of cold tap<br />

water for microbiological risk assessment: an overview of studies and statistical analysis of data. Journal of<br />

water and health, 5(S1), 151-170.<br />

Nam, S & Amy, GL (<strong>2008</strong>). Differentiati<strong>on</strong> of wastewater effluent organic matter (efom) from natural organic<br />

matter (nom) using multiple analytical techniques. <strong>Water</strong> science and technology, 57(7), 1009-1015.<br />

Pham-Thi, M, Mo<strong>on</strong>s, K, Dijk, JC van, Nguyen, TN & Bruggen, B van der (<strong>2008</strong>). To what extent are pesticides<br />

removed from surface water during coagulati<strong>on</strong>-flocculati<strong>on</strong>? <strong>Water</strong> and envir<strong>on</strong>ment journal, 22, 217-223.<br />

Rietveld, LC, Helm, AWC van der, Schagen, KM van, Aa, R. van der & Dijk, H van (<strong>2008</strong>). Integrated simulati<strong>on</strong><br />

of drinking water treatment. Journal of water supply research and technology-AQUA, 57(3), 133-141.<br />

Schagen, KM van, Rietveld, LC & Babuska, R (<strong>2008</strong>). Dynamic modeling for optimisati<strong>on</strong> of pellet softening.<br />

Journal of water supply research and technology-AQUA, 57(1), 45-56.<br />

Schagen, KM van, Rietveld, LC, Babuska, R & Baars, E (<strong>2008</strong>). C<strong>on</strong>trol of the fluidised bed in the pellet softening<br />

process. Chemical engineering science, 63(5), 1390-1400.<br />

Schagen, KM van, Rietveld, LC, Babuska, R & Kramer, OJI (<strong>2008</strong>). Model-based operati<strong>on</strong>al c<strong>on</strong>straints for<br />

fluidised bed crystallisati<strong>on</strong>. <strong>Water</strong> research, 42, 327-337.<br />

Sharma, S, Petrusevski, B & Amy, GL (<strong>2008</strong>). Chromium removal from water: a review. Journal of water supply<br />

research and technology-AQUA, 57(8), 541-553.<br />

Smeets, PWMH, Dijk, JC van, Stanfield, G, Rietveld, LC & Medema, GJ (2007). How can the UK statutory<br />

cryptosporidium m<strong>on</strong>itoring be used for quantative risk assessment of cryptosporidium in drinking water. Journal<br />

of water and health, 5(S1), 107-118.<br />

Smeets, PWMH, Dullem<strong>on</strong>t, YD, Gelder, PHAJM van, Dijk, JC van & Medema, GJ (2007). Improved methods<br />

for modeling drinking water treatment in quantative microbial risk assessment; a case study of campylobacter<br />

reducti<strong>on</strong> by filtrati<strong>on</strong> and oz<strong>on</strong>ati<strong>on</strong>. Journal of water and health, 6(3), 201-314.<br />

Tapia, M, Siebel, MA, Helm, AWC van der, Baars, E.T. & Gijzen, HJ (<strong>2008</strong>). Envir<strong>on</strong>mental financial and quality<br />

assessment of drinking water processes at <strong>Water</strong>net. Journal of cleaner producti<strong>on</strong>.<br />

Teychene, B, Guigui, C, Cabassud, |C & Amy, GL (<strong>2008</strong>). Toward a better identificati<strong>on</strong> of foulant species in<br />

mbr processes. Desalinati<strong>on</strong>, 231(1-3), 44-51.<br />

32 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Verberk, JQJC & Drikas, M (2007). Interacti<strong>on</strong> between treatment and distributi<strong>on</strong> systems: the key to delivery<br />

quality. <strong>Water</strong>-journal of the australian water associati<strong>on</strong>, 34(3), 144-149.<br />

Verberk, JQJC, Doolan, C, Jayarantna, A, Teasdale, P & Vreeburg, JHG (2007). Internati<strong>on</strong>al collaborative<br />

research <strong>on</strong> discoloured water. <strong>Water</strong>-journal of the australian water associati<strong>on</strong>, 34(1), 144-149.<br />

Verliefde, ARD, Heijman, SGJ, Cornelissen, ER, Amy, GL, Bruggen, B van der & Dijk, JC van (<strong>2008</strong>). Rejecti<strong>on</strong><br />

of trace organic pollutants with high pressure membranes (nf/ro). Envir<strong>on</strong>mental progress, 27(2), 180-188.<br />

Verliefde, ARD, Cornelissen, ER, Heijman, SGJ & Amy, GL (<strong>2008</strong>). Rejecti<strong>on</strong> of trace organic pollutants with<br />

high pressure membranes (nf/ro). Envir<strong>on</strong>mental progress, 27(2), 180-188.<br />

Verliefde, ARD, Cornelissen, ER, Heijman, SGJ, Verberk, JQJC & Amy, GL (<strong>2008</strong>). The role of electrostatic<br />

interacti<strong>on</strong>s <strong>on</strong> the rejecti<strong>on</strong> of organgic solutes in aqueous soluti<strong>on</strong>s with nanofiltrati<strong>on</strong>. Journal of membrane<br />

science, 322(1), 52-66.<br />

Vreeburg, JHG, Schippers, D, Verberk, JQJC & Dijk, JC van (<strong>2008</strong>). Impact of particles <strong>on</strong> sediment accumulati<strong>on</strong><br />

in a drinking water distributi<strong>on</strong> system. <strong>Water</strong> research, 42, 4233-4242.<br />

Wols, BA, Uijttewaal, WSJ, Rietveld, LC, Stelling, GS, Dijk, JC van & Hofman, JAMH (<strong>2008</strong>). Residence time<br />

distributi<strong>on</strong>s in oz<strong>on</strong>e c<strong>on</strong>tractors. Oz<strong>on</strong>e-science & engineering, 30, 49-57.<br />

Yangali, VA, Kim, <strong>TU</strong>, Kennedy, M & Amy, GL (<strong>2008</strong>). Modeling of RO/NF membrane rejecti<strong>on</strong>s of PhACs and<br />

organic compounds: a statistical analysis. <strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong> and Science (<strong>on</strong>line), 1(1), 7-15.<br />

(C<strong>on</strong>tributi<strong>on</strong> to) internati<strong>on</strong>al and nati<strong>on</strong>al books<br />

Briggs, GAD, Weddle, S, Flores, JA, Baribeau, H, Garvey, E, Crozes, G, Hofmann, M, Mowat, K, Paradis, N,<br />

Templet<strong>on</strong>, M, Andrews, M, Means, E, Loveland, J, McGuire, M, Amy, GL, Leserman, J, Schwer, P, Chauret,<br />

C, Andrews, GS & Musser, J (<strong>2008</strong>). Advanced water treatment of estuarine water supplies. L<strong>on</strong>d<strong>on</strong>: IWA.<br />

Drewes, J, Bell<strong>on</strong>a, C, Xu, P, Amy, GL, Filteau, G & Oelker, G (<strong>2008</strong>). Comparing nanofiltrati<strong>on</strong> and reverse<br />

osmosis for treating recycled water. L<strong>on</strong>d<strong>on</strong>: IWA.<br />

Krasner, S, Westerhoff, P, Chen, B, Amy, GL, Nam, S, Chowdhury, SR, Sinha, S & Rittmann, BE (<strong>2008</strong>).<br />

C<strong>on</strong>tributi<strong>on</strong> of wastewaster to dbp formati<strong>on</strong>. L<strong>on</strong>d<strong>on</strong>: IWA.<br />

Lozier, J, Cappuccino, K, Amy, GL, Lee, N & Jacangelo, J (<strong>2008</strong>). Natural organic matter fouling of low-pressure<br />

membrane systems. L<strong>on</strong>d<strong>on</strong>: IWA.<br />

Judd, M, Kim, BK & Amy, GL (<strong>2008</strong>). Membrane Bio-reactors: principles, modeling and design. In M Henze,<br />

M van Loosdrecht, G Ekama & D Brdjanovic (Eds.), Biological wastewater treatment (pp. 335-360). L<strong>on</strong>d<strong>on</strong>,<br />

UK: IWA Publishing.<br />

Kennedy, MD, Kamanyi, J, Salinas, SS, Lee, N, Schippers, JC & Amy, GL (<strong>2008</strong>). Low pressure membranes:<br />

microfiltrati<strong>on</strong>(mf) & ultrafiltrati<strong>on</strong> (uf). In N Li, A Fane, W Ho & T Matsuura (Eds.), Advanced membrane technology<br />

and applicati<strong>on</strong> (pp. 131-170). Bognor Regis, West Sussex: John Wiley & S<strong>on</strong>s, ltd.<br />

Hartog, M, Draaijer, A & Rietveld, LC (Eds.). (<strong>2008</strong>). Practical aspects of task allocati<strong>on</strong> in design and developoment<br />

of digital closed questi<strong>on</strong>s in higher educati<strong>on</strong>. Utrecht: Stichting SURF.<br />

research<br />

33


Editorship internati<strong>on</strong>al refereed journal<br />

Amy GL (Ed) (<strong>2008</strong>) <strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong> and Science, Copernicus, Klatenurg-Lindau, Germany<br />

van Dijk JC (Ed) (<strong>2008</strong>) <strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong> and Science, Copernicus, Klatenurg-Lindau, Germany<br />

C<strong>on</strong>ference proceedings<br />

Amy, GL, Ernst, M, Villacorte, L, Maeng, SK & Yangali Quintanilla, VA (<strong>2008</strong>). Advanced water\wastewater<br />

treatment for organic micropollutant removal: a quantative structure activity relati<strong>on</strong>ship (qsar). In s.n. (Ed.),<br />

Singapore internati<strong>on</strong>al water week water c<strong>on</strong>venti<strong>on</strong> (pp. 1-10). Singapore: PUB.<br />

Amy, GL (<strong>2008</strong>). Natural organic matter: particles, colloids and macromolecules. In M Jekel, GL Amy & JHJM<br />

van der Graaf (Eds.), Academic summer school particle separati<strong>on</strong> in water and wastewater treatment <strong>2008</strong><br />

(pp. 1-10). <strong>Delft</strong>: <strong>Water</strong>management Academic Press.<br />

Amy, GL (<strong>2008</strong>). Selected membrane research topics: ceramic membranes, organic matter fouling and organic<br />

micropollutatn rejecti<strong>on</strong>. In s.n. (Ed.), AWWA water quality (pp. 1-10). Cincinnati: AWWA.<br />

Amy, GL, Krasner, S, Westerhoff, P, Drewes, J & Jekel, M (<strong>2008</strong>). Wastewater-impacted drinking water sources.<br />

In s.n. (Ed.), AWWA water quality technology (pp. 1-10). Cincinnati: AWWA.<br />

Bagoth, SA, Maeng, SK, Salinas, SS, Sharma, S, Kennedy, M & Amy, GL (<strong>2008</strong>). An urban water cycle perspective<br />

of natural organic matter in a membrane treatment plant- air scour vs. hydraulic backwash. In P Jarvis<br />

(Ed.), Natural organic matter: from source to tap (pp. 393-401). Bath, UK: IWA.<br />

Bagoth, SA, Maeng, SK, Salinas, SS, Sharma, S & Kennedy, M (<strong>2008</strong>). An urban water cycle perspective of<br />

natural organic matter: nom in drinking water, wastewater effluent, storm water and seawater. In IWA C<strong>on</strong>ference<br />

<strong>on</strong> natural organic matter . Bath, UK: IWA.<br />

Bagoth, SA, Maeng, SK, Salinas Rodriguez, SG, R<strong>on</strong>teltap, M & Sharma, S (<strong>2008</strong>). An urban water cycle<br />

persperctive of natural organic matter: nom in drinking water, wastewater effluent, storm water and seawater.<br />

In P Jarvis (Ed.), Natural organic matter: from source to tap (pp. 393-401). Bath, UK: IWA.<br />

Bagoth, SA, Dignum, M, Grefte, A, Kroesbergen, J & Amy, GL (<strong>2008</strong>). Characterizati<strong>on</strong> of nom in a drinking<br />

water treatment process train with no disinfectant residual. In Jules Jarvis (Ed.), Natural organic matter: from<br />

source to tap (pp. 408-418). Bath, UK: IWA.<br />

Banerjee, K, Amy, GL, Jekel, M, Sperlich, A & Blumenschein, C (<strong>2008</strong>). Impact of phosphate and silica and<br />

comparative assessment of adsorpti<strong>on</strong> technologies for arsenic removal. In s.n. (Ed.), World <strong>Water</strong> C<strong>on</strong>ference<br />

and exhibiti<strong>on</strong> (pp. 1-10). Wenen: IWA.<br />

Buchberger, SG, Vreeburg, JHG, Dijk, JC van & Blokker, EJM (<strong>2008</strong>). Comparis<strong>on</strong> of water demand models:<br />

prp and simdeum applied to milford, ohio. In JE van Zyl & AA Ilemobade (Eds.), 10th <strong>Water</strong> distributi<strong>on</strong> system<br />

analysis c<strong>on</strong>ference (pp. 182-195). Johannesburg: University of Johannesburg.<br />

Buchberger, SG, Blokker, EJM & Vreeburg, JHG (<strong>2008</strong>). Sizes for self cleaning pipes in municipal water<br />

supply systems. In JE van Zyl & AA Ilemobade (Eds.), <strong>Water</strong> distributi<strong>on</strong> system analysis <strong>2008</strong> (pp. 338-347).<br />

Johannesburg, SA: University of Johannesburg.<br />

Dignum, M, Bagoth, SA, Grefte, A, Kroesbergen, J & Amy, GL (<strong>2008</strong>). Characterisati<strong>on</strong> of nom and biological<br />

stability in a distributi<strong>on</strong> network with two water types and no disinfectant residual. In P Jarvis (Ed.), Natural<br />

organic matter: from source to tap (pp. 437-444). Bath, UK: IWA.<br />

34 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Garsadi, R, Salim, HT, Soekarno, I, Doppenberg, AFJ & Verberk, JQJC (<strong>2008</strong>). Operati<strong>on</strong>al experience with<br />

a micro hydraulic mobile water treatment plant in Ind<strong>on</strong>esia after the tsunami of 2004. In BS Richards & AI<br />

Schaefer (Eds.), <strong>Water</strong> and sanitati<strong>on</strong> in internati<strong>on</strong>al development and disaster relief (pp. 102-109). Edinburgh:<br />

University of Edinburgh.<br />

Ghebremichael, K, Gebremeskel, A, Trifunovic, N & Amy, GL (<strong>2008</strong>). Modeling disinfecti<strong>on</strong> by-products:coupling<br />

hydraulic and chemical models. In s.n. (Ed.), World <strong>Water</strong> C<strong>on</strong>ference and exhibiti<strong>on</strong> (pp. 1-10). Wenen:<br />

IWA.<br />

Grefte, A, Bagoth, SA, Dignum, M, Cornelissen, ER & Rietveld, LC (<strong>2008</strong>). Modeling of nom fracti<strong>on</strong> removal<br />

by different i<strong>on</strong> exchange resins. In P Jarvis (Ed.), Natural organic matter: from source to tap (pp. 532-537).<br />

Bath, UK: IWA.<br />

Groot Kormelink, T., Valkenburg, W van & Verberk, JQJC (<strong>2008</strong>). From repository to community. In S Gurell,<br />

B Muramatsu & D Wiley (Eds.), OpenED c<strong>on</strong>ference (pp. 1-10). Logan, Utah, USA: COSL.<br />

Haarhoff, J, Rietveld, LC & Jagals, P (<strong>2008</strong>). Rapid technical assessment and troubleshooting of rural water<br />

supply systems. In van JE Zuyl,AA Llemobade &HE Jacobs (Eds.), 10th <str<strong>on</strong>g>Annual</str<strong>on</strong>g> water distributi<strong>on</strong> systems<br />

analysis c<strong>on</strong>ference (pp. 142-148). Kruger Park: WDSA <strong>2008</strong>.<br />

Halem, D van, Heijman, SGJ, Amy, GL & Dijk, JC van (<strong>2008</strong>). Subsurface arsenic removal for small-scale<br />

applicati<strong>on</strong> in developing countries. In BS Richards & AI Schaefer (Eds.), <strong>Water</strong> and sanitati<strong>on</strong> in internati<strong>on</strong>al<br />

development and disaster relief (pp. 267-282). Edinburgh: University of Edinburgh.<br />

Halem, D van, Vet, WWJM de & Dijk, JC van (<strong>2008</strong>). Subsurface ir<strong>on</strong> removal for drinking water producti<strong>on</strong>:<br />

understanding the process and exploiting beneficial side effects. In s.n. (Ed.), AWWA water quality technology<br />

(pp. 1-11). Cincinnati: AWWA.<br />

Halem, D van (<strong>2008</strong>). <strong>Water</strong> and sanitati<strong>on</strong> for all. In JC van der Dijk & N ir Krikke (Eds.), <strong>Water</strong> and sanitati<strong>on</strong><br />

for all (pp. 59-68). <strong>Delft</strong>: <strong>Water</strong> Management Academic Press.<br />

Halem, D van, Heijman, SGJ, Petrusevski, B, Amy, GL & Dijk, JC van (<strong>2008</strong>). Design c<strong>on</strong>siderati<strong>on</strong>s for smallscale<br />

subsurface arsenic removal in developing countries. In s.n. (Ed.), 2nd internati<strong>on</strong>al c<strong>on</strong>gress arsenic in<br />

the envir<strong>on</strong>ment (pp. 225-226). Valencia: s.n..<br />

Heijman, SGJ, Hamad, JZ, Kennedy, MD, Schippers, J & Amy, GL (<strong>2008</strong>). Sub-micr<strong>on</strong> powdered activated<br />

carb<strong>on</strong> used as a pre-coat in ceramic micro-filtrati<strong>on</strong>. In C Cabussud & M Balabanc (Eds.), Membranes in<br />

drinking water producti<strong>on</strong> and wastewater treatment (pp. 1-8). Toulouse: INSA.<br />

Heijman, SGJ, Rabinovitch, EN, Bos, F, Olthof, N & Dijk, JC van (<strong>2008</strong>). Sustainable seawater desalinati<strong>on</strong>:<br />

stand-al<strong>on</strong>e small scale windmill and reverse osmosis system. In BS Richards & AI Schaefer (Eds.), <strong>Water</strong> and<br />

sanitati<strong>on</strong> in internati<strong>on</strong>al development and disaster relief (pp. 128-133). Edinburgh: University of Edinburgh.<br />

Heijman, SGJ, Rabinovitch, EN, Bos, F, Olthof, N & Dijk, JC van (<strong>2008</strong>). Sustainable seawater desalinati<strong>on</strong>:<br />

stand-al<strong>on</strong>e small scale windmill and reverse osmosis system. In s.n. (Ed.), Coastal cities summit (pp. 1-7).<br />

St. Petersburg, Florida: Coastal cities summit.<br />

Helm, AWC van der, Rietveld, LC, Schagen, KM van, Bosklopper, ThGJ & Dijk, JC van (<strong>2008</strong>). Integrated<br />

model for optimized operati<strong>on</strong> of oz<strong>on</strong>ati<strong>on</strong>. In d Besseling, w St<strong>on</strong>e & w Smuts (Eds.), Wisa <strong>2008</strong> (pp. 1-10).<br />

Sun City: Wisa <strong>2008</strong>.<br />

Helm, AWC van der, Rietveld, LC, Bosklopper, ThGJ, Kappelhof, JWNM & Dijk, JC van (<strong>2008</strong>). Objectives<br />

for optimizati<strong>on</strong> and c<strong>on</strong>sequences for operati<strong>on</strong>, design and c<strong>on</strong>cept of drinking water treatment plants. In<br />

s.n. (Ed.), World water c<strong>on</strong>ference and exhibiti<strong>on</strong> (pp. 1-10). Wenen: IWA.<br />

research<br />

35


Jacobs<strong>on</strong>, A, Kennedy, M, Amy, GL & Schippers, JM (<strong>2008</strong>). Phosphate limitati<strong>on</strong> in reverse osmosis: an<br />

opti<strong>on</strong> to c<strong>on</strong>trol biofouling? In s.n. (Ed.), Desalinati<strong>on</strong> for clean water and energy (pp. 1-8). Dead Sea, Jordan:<br />

EuroMed <strong>2008</strong>.<br />

Li, S, Heijman, SGJ & Dijk, JC van (<strong>2008</strong>). Impact of ca and na in backwash water <strong>on</strong> ultrafiltrati<strong>on</strong> fouling c<strong>on</strong>trol.<br />

In s.n. (Ed.), Internati<strong>on</strong>al young water professi<strong>on</strong>als c<strong>on</strong>ference (pp. 1-10). Berkeley, UK: IWA/YWP.<br />

Li, S, Heijman, SGJ, Verberk, JQJC & Dijk, JC van (<strong>2008</strong>). Influence of compositi<strong>on</strong> of backwash water <strong>on</strong><br />

nom fouling c<strong>on</strong>trol of ultrafiltrati<strong>on</strong>. In C Cabassud & M Balabanc (Eds.), Membranes in drinking water producti<strong>on</strong><br />

and wastewater treatment (pp. 1-10). Toulouse: INSA.<br />

Maeng, SK, Sharma, SK, Magic-Knezev, A & Amy, GL (<strong>2008</strong>). Fate of effluent organic matter and natural<br />

organic matter through riverbank filtrati<strong>on</strong>. In s.n. (Ed.), World water c<strong>on</strong>ference and exhibiti<strong>on</strong> (pp. 1-10).<br />

Wenen: IWA.<br />

Nam, S & Amy, GL (<strong>2008</strong>). Quantitative characterizati<strong>on</strong> of natural organic matter (nom) by fluorescence parallel<br />

factor analysis (parafac). In s.n. (Ed.), 5th IWA LET (pp. 1-10). Zurich: IWAIWA LET.<br />

Peiris, N, Halle, C, Haberkamp, R, Legge, S, Peldszus, C, Moresoli, H, Amy, GL & Huck, PM (<strong>2008</strong>). Assessing<br />

nf fouling in drinking water treatment using fluorescense fingerprinting and la-ocd analyses. In s.n. (Ed.), 5th<br />

LET <strong>2008</strong> (pp. 1-10). Zurich: IWA.<br />

Quess<strong>on</strong>, BAJ, Sheld<strong>on</strong>, L, Vloerbergh, IN & Vreeburg, JHG (<strong>2008</strong>). Acoustic m<strong>on</strong>itoring of terrorist intrusi<strong>on</strong><br />

in a drinking water network. In JE van Zyl, AA Llemobade & HE Jacobs (Eds.), <strong>Water</strong> distributi<strong>on</strong> systems<br />

analysis c<strong>on</strong>ference (pp. 1117-1128). Johannesburg: University of Johannesburg.<br />

Rietveld, LC, Helm, AWC van der, Schagen, KM van & Aa, LTJ van der (<strong>2008</strong>). Good modeling practice<br />

in drinking water treatment, used at Weesperkarspel plant, waternet, Amsterdam. In d’Ant<strong>on</strong>io,G &Lubello,C<br />

(Eds.), Proceedings of the internati<strong>on</strong>al symposium <strong>on</strong> sanitary and envir<strong>on</strong>mental engineering (pp. 17-24).<br />

Florence: SIDISA.<br />

Rietveld, LC, Meijer, L, Smeets, PWMH & Hoek, JP van der (<strong>2008</strong>). The sustainability of reuse of waste water<br />

for drinking water purposes; a case study for the city of amsterdam. In D Besseling, T St<strong>on</strong>e & W Smuts (Eds.),<br />

Wisa <strong>2008</strong> (pp. 1-7). Sun City: Wisa <strong>2008</strong>.<br />

Ross, PS, Broeke, LJP van den & Rietveld, LC (<strong>2008</strong>). <strong>Drinking</strong> water treatment: <strong>on</strong>line estimati<strong>on</strong> of biological<br />

stability using uv-spectrography. In s.n. (Ed.), Online UV/Vis Spectrometry (pp. 1-16). Wenen: UV/Vis.<br />

Ross, PS, Helm, AWC van der, Broeke, LJP van den, Aa, LTJ van der & Rietveld, LC (<strong>2008</strong>). Effect of<br />

raw water quality <strong>on</strong> performance of oz<strong>on</strong>e and biofiltrati<strong>on</strong> based <strong>on</strong> modeling and <strong>on</strong>-line m<strong>on</strong>itoring. In B<br />

Besseling, T St<strong>on</strong>e & W Smuts (Eds.), Wisa <strong>2008</strong> (pp. 1-7). Sun City: Wisa <strong>2008</strong>.<br />

Rubulis, J, Verberk, JQJC, Vreeburg, JHG, Gruskevica, K & Juhna, T (<strong>2008</strong>). Chemical and microbial compsiti<strong>on</strong><br />

<strong>on</strong> loose deposits in drinking water distributi<strong>on</strong> systems. In s.n. (Ed.), 7th Internati<strong>on</strong>al envir<strong>on</strong>mental<br />

engineering (pp. 1-8). Vilnius, Litouwen: Internati<strong>on</strong>al envir<strong>on</strong>mental engineering.<br />

Salinas, SS, Kennedy, M, Chenet, JG, Garcia-Aleman, J, Bankst<strong>on</strong>, A & Amy, GL (<strong>2008</strong>). Tracking organic<br />

matter removal in a membrane treatment-plant- air scour vs. hydraulic. In P Jarvis (Ed.), Natural organic matter:<br />

from source to tap (pp. 182-191). Bath, UK: IWA.<br />

Salinas Rodriquez, SG, Rabaani, B, Kennedy, M, Amy, GL & Schippers, JM (<strong>2008</strong>). MFI-UF c<strong>on</strong>stant pressure<br />

at high i<strong>on</strong>ic strength c<strong>on</strong>diti<strong>on</strong>s. In s.n. (Ed.), Desalinati<strong>on</strong> for clean water and energy . Dead Sea, Jordan:<br />

EuroMed <strong>2008</strong>.<br />

36 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Salinas Rodriquez, SG, Kennedy, MD, Schippers, JC & Amy, GL (<strong>2008</strong>). Organic foulants in estuarine and bay<br />

source for seawater reverse osmosis-comparing pre-treatment processes with respect to foulant reducti<strong>on</strong>s.<br />

In C Cabussud & M Balabanc (Eds.), Membranes in drinking water producti<strong>on</strong> and wastewater treatment (pp.<br />

1-12). Toulouse: INSA.<br />

Schagen, KM van, Ross, P, Rietveld, LC & Babuska, R (<strong>2008</strong>). Model parameter and state estimati<strong>on</strong> for a<br />

full-scale water treatment plant using process disturbances during normal operati<strong>on</strong>. In d’Ant<strong>on</strong>io,G &Lubello,C<br />

(Eds.), Proceedings of the internati<strong>on</strong>al symposium <strong>on</strong> sanitary and envir<strong>on</strong>mental engineering (pp. 9-16).<br />

Florence: SIDISA.<br />

Sharma, S, Musabe, K & Amy, GL (<strong>2008</strong>). Effect of pre-oz<strong>on</strong>ati<strong>on</strong> and advanced oxidati<strong>on</strong> <strong>on</strong> removal of effluent<br />

organic matter (efom) during soil aquifer treatment (sat). In <strong>Water</strong> reuse and desalinati<strong>on</strong> research c<strong>on</strong>ference<br />

(pp. 1-10). Denver, USA: s.n..<br />

Sharma, S, Amy, GL & Maeng, SK (<strong>2008</strong>). Framework for assessment of performance of managed aquifer<br />

recharge (mar) systems. In s.n. (Ed.), World <strong>Water</strong> C<strong>on</strong>ference and exhibiti<strong>on</strong> . Wenen: IWA.<br />

Tabatabai, S.A., Gaulinger, S, Kennedy, M, Amy, GL & Schippers, JM (<strong>2008</strong>). Optimizati<strong>on</strong> of inline coagulati<strong>on</strong><br />

in integrated membrane systems: a study of FeCl3. In s.n. (Ed.), Desalinati<strong>on</strong> for clean water and energy<br />

Dead Sea, Jordan: EuroMed <strong>2008</strong>.<br />

Tabatabai, S.A., Kennedy, MD, Amy, GL & Schippers, JC (<strong>2008</strong>). Optimizing in-line coagulati<strong>on</strong> to reduce<br />

chemical c<strong>on</strong>sumpti<strong>on</strong> in mf/uf systems. In C Cabussud & M Balabanc (Eds.), Membranes in drinking water<br />

producti<strong>on</strong> and wastewater treatment (pp. 1-12). Toulouse: IWA.<br />

Teunissen, K, Verberk, JQJC, J<strong>on</strong>ge, F. de, Amy, GL & Dijk, JC van (<strong>2008</strong>). Advanced oxidati<strong>on</strong> and artificial<br />

recharge: a synergistic hybrid system for removal of organic micropollutants. In s.n. (Ed.), AWWA water<br />

quality technology (pp. 1-18). Cincinnati: AWWA.<br />

Teunissen, K (<strong>2008</strong>). Impact of pretreatment by coagulati<strong>on</strong> or i<strong>on</strong> exchange <strong>on</strong> uv-transmissi<strong>on</strong>. In s.n. (Ed.),<br />

World <strong>Water</strong> C<strong>on</strong>ference and exhibiti<strong>on</strong> (pp. 1-10). Wenen: IWA.<br />

Verberk, JQJC, Vreeburg, JHG, Rietveld, LC & Dijk, JC van (<strong>2008</strong>). Particulate finger printing of water<br />

quality in the distributi<strong>on</strong> system. In D Besselink, T St<strong>on</strong>e & W Smuts (Eds.), Wisa <strong>2008</strong> (pp. 1-11). Sun City:<br />

Wisa <strong>2008</strong>.<br />

Verliefde, ARD, Cornelissen, ER, Heijman, SGJ, Amy, GL, Bruggen, B van der & Dijk, JC van (<strong>2008</strong>). Removal<br />

of trace organic pollutants with nf/ro membranes: c<strong>on</strong>structi<strong>on</strong> and validati<strong>on</strong> of a rejecti<strong>on</strong> model. In s.n. (Ed.),<br />

Internati<strong>on</strong>al c<strong>on</strong>ference <strong>on</strong> membranes (pp. 1-10). H<strong>on</strong>olulu: Icom.<br />

Vet, WWJM de, Rietveld, LC, Heijman, SGJ, Rooij, MR de & Loosdrecht, MCM van (<strong>2008</strong>). Interacti<strong>on</strong> of<br />

ir<strong>on</strong>, manganese and amm<strong>on</strong>ium removal in bio filters for drinking water producti<strong>on</strong>. In AWWA Inorganic c<strong>on</strong>taminants<br />

workshop (pp. 1-13). Albuquerque: AWWA.<br />

Vet, WWJM de, Rietveld, LC & Loosdrecht, MCM van (<strong>2008</strong>). Ir<strong>on</strong> coatings in pilot dry groundwater biofilters.<br />

In s.n. (Ed.), AWWA water quality technology(pp. 1-9). Cincinnati: AWWA.<br />

Villacorte, L, Kennedy, M, Amy, GL & Schippers, JM (<strong>2008</strong>). Measuring dissolved transparant exopolymer<br />

particles (tep) as an indicator of the biofouling potential of ro feed water. In s.n. (Ed.), Desalinati<strong>on</strong> for clean<br />

water and energy . Dead Sea, Jordan: EuroMed <strong>2008</strong>.<br />

Vreeburg, JHG, Schaap, PG & Dijk, JC van (<strong>2008</strong>). How effective is flushing of cast ir<strong>on</strong> pipes. In JE van Zyl<br />

& AA Ilemobade (Eds.), WDSA <strong>2008</strong> (pp. 1-10). Kruger park: WDSA.<br />

research<br />

37


Vreeburg, JHG (<strong>2008</strong>). Particulate removal in relati<strong>on</strong> to discolourisati<strong>on</strong> in drinkwater systems. In s.n. (Ed.),<br />

Academic summer school particle separati<strong>on</strong> in water and wastewater treatment <strong>2008</strong> (pp. 1-37). <strong>Delft</strong>:<br />

Unesco-IHE.<br />

Waly, TKA, Saleh, M., Kennedy, M, Witcamp, G & Amy, GL (<strong>2008</strong>). Will carb<strong>on</strong>ate really scale in seawater<br />

reverse osmosis. In s.n. (Ed.), Desalinati<strong>on</strong> for clean water and energy (pp. 1-8). Dead Sea, Jordan: EuroMed<br />

<strong>2008</strong>.<br />

Weickgenannt, M, Kapelan, Z, Blokker, EJM & Savic, D (<strong>2008</strong>). Optimal sensor placement for the efficient<br />

c<strong>on</strong>taminant detecti<strong>on</strong> in water distributi<strong>on</strong> systems. In JE Zyl & AA Ilemobade (Eds.), WDSA <strong>2008</strong> (pp. 1107-<br />

1116). Kruger Nati<strong>on</strong>al park: WDSA.<br />

Wols, BA, Hofman, JAMH, Uijttewaal, WSJ, Rietveld, LC & Stelling, GS (<strong>2008</strong>). A particle tracking technique<br />

to estimate disinfecti<strong>on</strong> efficacy in drinking water treatment plants. In s.n. (Ed.), 6th Internati<strong>on</strong>al c<strong>on</strong>ference<br />

<strong>on</strong> CDF in oil & gas, metallurgical and proces industries (pp. 1-9). Tr<strong>on</strong>dheim: SINTEF/NTNU.<br />

Worm, GIM, Helm, AWC van der, Kivit, C, Schagen, KM van & Rietveld, LC (<strong>2008</strong>). Hydraulic modeling of<br />

drinking water treatment plants. In d’Ant<strong>on</strong>io,G. &Lubello,C (Eds.), Proceedings of the Internati<strong>on</strong>al symposium<br />

<strong>on</strong> sanitary and envir<strong>on</strong>mental engineering (pp. 1-8). Florence: SIDISA.<br />

Worm, GIM, Helm, AWC van der, Lapikas, T, Schagen, KM van & Rietveld, LC (<strong>2008</strong>). Integrati<strong>on</strong> of models,<br />

data management, interfaces and training and decisi<strong>on</strong> support in a drinking water treatment plant simulator.<br />

In Lubello,C d’Ant<strong>on</strong>io,G (Ed.), Proceedings of the internati<strong>on</strong>al symposium <strong>on</strong> sanitary and envir<strong>on</strong>mental<br />

engineering (pp. 25-32). Florence: SIDISA.<br />

Professi<strong>on</strong>al publicati<strong>on</strong>s<br />

Abrahamse, AJ, Vet, WWJM de, Scholte, P & Heijman, SGJ (2007). Toepassing zeolieten voor verwijdering<br />

amm<strong>on</strong>ium bij de drinkwaterzuivering. H2O: tijdschrift voor watervoorziening en waterbeheer, 18, 34-36.<br />

Beverloo, H, Blokker, EJM & Roer, M van der (<strong>2008</strong>). Verblijftijden in vertakt en vermaasd distributienet op<br />

basis van egv. H2O: tijdschrift voor watervoorziening en waterbeheer, 41(7), 44-46.<br />

Blokker, EJM & Vloerbergh, IN (<strong>2008</strong>). Stand van de techniek r<strong>on</strong>d beheer waterleidingnet. H2O: tijdschrift<br />

voor watervoorziening en waterbeheer, 41(7), 16-17.<br />

Bol, P (<strong>2008</strong>). Sanitatie en volksgez<strong>on</strong>dheid: de lange weg van droom naar daad. In JC van Dijk & N Krikke<br />

(Eds.), <strong>Water</strong> and sanitati<strong>on</strong> (pp. 103-111). <strong>Delft</strong>: <strong>Water</strong> Management Academic Press.<br />

Daal, K van, Blokker, EJM, Holzhaus, P & Hendrikx, R (<strong>2008</strong>). Storingen als early warning systeem voor c<strong>on</strong>ditie<br />

van leidingnetten. H2O: tijdschrift voor watervoorziening en waterbeheer, 41(19), 95-97.<br />

Dijk, JC van (<strong>2008</strong>). <strong>Water</strong> and sanitati<strong>on</strong> for all. In JC van Dijk & N Krikke (Eds.), <strong>Water</strong> and sanitati<strong>on</strong> for all<br />

(pp. 1-9). <strong>Delft</strong>: <strong>Water</strong> Management Academic press<br />

Halem, D van, Bakker, S, Dijk, JC van & Amy, GL (<strong>2008</strong>). Arseen in drinkwater: niet alleen een probleem<br />

voor Bangladesh. H2O: tijdschrift voor watervoorziening en waterbeheer, 41(16), 18-21.<br />

Hofman, JAMH, Shao, L, Wols, BA & IJpelaar, G (<strong>2008</strong>). Prestaties van UV-reactoren te voorspellen met<br />

modellen. H2O: tijdschrift voor watervoorziening en waterbeheer, 41(19), 98-100.<br />

Hoven, MH van den & Rietveld, LC (<strong>2008</strong>). Eerste innovaties van het europese drinkwater<strong>on</strong>derzoekprogramma<br />

techneau. H2O: tijdschrift voor watervoorziening en waterbeheer, 41(11), 10-11.<br />

38 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Mamba, BB, Rietveld, LC & Verberk, JQJC (<strong>2008</strong>). South Africa drinking water standards under the microscope.<br />

<strong>Water</strong> Wheel, jan/feb, 24-27.<br />

Ridder, DJ de, Bruins, J, Huisman, G & Kappelhof, J (<strong>2008</strong>). Biologische <strong>on</strong>tijzering aantrekkelijk voor gr<strong>on</strong>dwaterwinningen<br />

met twee filtratiestappen. H2O: tijdschrift voor watervoorziening en waterbeheer, 41(16),<br />

14-15.<br />

Rietveld, LC, Geilvoet, SP & Dijk, JC van (<strong>2008</strong>). <strong>Water</strong>wereld actief aan de slag met ‘<strong>Water</strong> and Sanitati<strong>on</strong><br />

for all”. H2O: tijdschrift voor watervoorziening en waterbeheer, 41(2), 6-9.<br />

Slaats, PGG, Blokker, EJM & Versteegh, TAM (<strong>2008</strong>). Eerste inventarisatie van gemeten c<strong>on</strong>centraties lood,<br />

koper, nikkel en chroom in drinkwater. H2O: tijdschrift voor watervoorziening en waterbeheer, 41(3), 37-40.<br />

Smeets, PWMH, Medema, GJ & Dijk, JC van (<strong>2008</strong>). The dutch secret: safe drinking water without chlorine<br />

in the netherlands. <strong>Drinking</strong> water engineering and science (<strong>on</strong>line), 1(2), 173-212.<br />

Teunissen, K, Abrahamse, AJ, Leijssen, H, Rietveld, LC & Dijk, JC van (<strong>2008</strong>). Removal of both dissolved<br />

and particulate ir<strong>on</strong> from groundwater. <strong>Drinking</strong> water engineering and science (<strong>on</strong>line), 1(1), 87-115.<br />

Verberk, JQJC (<strong>2008</strong>). Internati<strong>on</strong>al collaborati<strong>on</strong> <strong>on</strong> aesthetic water quality. <strong>Delft</strong> Cluster Magazine, 5,<br />

14-17.<br />

Verliefde, ARD (<strong>2008</strong>). Internati<strong>on</strong>al collaborati<strong>on</strong> <strong>on</strong> aesthetic water quality. <strong>Delft</strong> Cluster Magazine, 5,<br />

14-17.<br />

Verliefde, ARD & Yangali Quintanilla, VA (<strong>2008</strong>). Removal of pharmaceuticals with NF and RO. <strong>Delft</strong> Cluster<br />

Magazine, 5, 18-23.<br />

Verliefde, ARD, Cornelissen, ER, Verberk, JQJC & Dijk, JC van (<strong>2008</strong>). Zijn membranen een waterdichte<br />

oplossing voor organische microver<strong>on</strong>treinigingen. H2O: tijdschrift voor watervoorziening en waterbeheer,<br />

41(21), 32-35.<br />

Vreeburg, JHG (<strong>2008</strong>). Vervuiling distributienet komt uit de zuivering. artikel H2O: Nieuwegein (<strong>2008</strong>, april<br />

04).<br />

Worm, GIM, Mesman, SD, Schagen, KM van, Borger, KJ & Rietveld, LC (<strong>2008</strong>). Hydraulic modeling of drinking<br />

water treatment plant operati<strong>on</strong>s. <strong>Drinking</strong> water engineering and science (<strong>on</strong>line), 1(2), 155-172.<br />

research<br />

39


The first year of <strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong> and Science<br />

<strong>2008</strong> was the first -and a good- year for <strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong> and Science (DWES), the first open access<br />

journal <strong>on</strong> drinking water treatment.<br />

On December 14 th 2007 the web site of DWES, www.drinking-water-engineering-and-science.net went <strong>on</strong>line.<br />

On January 4 th <strong>2008</strong> the first two papers from our own research groups were received and <strong>on</strong> January 30 th<br />

<strong>2008</strong> the first paper from Japan.<br />

In <strong>2008</strong> 18 papers were submitted to DWES Discussi<strong>on</strong> (the first stage of the journal) of which eight are currently<br />

in review and six were rejected in the access review for different reas<strong>on</strong>s. Four papers have completed<br />

the review process and have been published in DWES and can be downloaded for free by every<strong>on</strong>e around<br />

the world.<br />

In <strong>2008</strong> the editorial board was expanded and now c<strong>on</strong>sists of 15 topical editors from all over the world: France,<br />

China, India, South-Africa, Switzerland, Singapore, Japan, Latvia, Korea, Germany, Zimbabwe, the UK and<br />

the Netherlands.<br />

In 2009 we c<strong>on</strong>tinue to aim to be the leading open access scientific journal for the publicati<strong>on</strong> of original research<br />

in drinking water treatment and distributi<strong>on</strong>. The focus is <strong>on</strong> fundamental and applied research in water quality,<br />

quantity and pressure. DWES expects to serve academic scientists and users of newly developed knowledge<br />

working at knowledge centers (universities and research centers), water supply utilities and companies, and<br />

engineering c<strong>on</strong>sulting firms. Prof. Gary Amy and prof. Hans van Dijk are the editors-in-chief.<br />

In 2009 d<strong>on</strong>’t hesitate to check the papers in discussi<strong>on</strong> every now and then and give your comments <strong>on</strong> the<br />

papers! We look forward to receive your own work and to offer you high quality scientific informati<strong>on</strong> <strong>on</strong> drinking<br />

water treatment.<br />

Jasper Verberk and Ignaz Worm (dwes-executive-editors@copernicus.org)<br />

Papers published in DWES in <strong>2008</strong><br />

E. Siebel, Y. Wang, T. Egli, and F. Hammes (<strong>2008</strong>). Correlati<strong>on</strong>s between total cell c<strong>on</strong>centrati<strong>on</strong>, total adenosine tri-phosphate<br />

c<strong>on</strong>centrati<strong>on</strong> and heterotrophic plate counts during microbial m<strong>on</strong>itoring of drinking water.<br />

DWES, 1, 1, 1-6<br />

V. Yangali-Quintanilla, T.-U. Kim, M. Kennedy, and G. Amy (<strong>2008</strong>). Modeling of RO/NF membrane rejecti<strong>on</strong>s of PhACs and<br />

organic compounds: a statistical analysis. DWES, 1, 1, 7-15<br />

Y. Otaki, M. Otaki, P. Pengchai, Y. Ohta, and T. Aramaki (<strong>2008</strong>). Micro-comp<strong>on</strong>ents survey of residential indoor water c<strong>on</strong>sumpti<strong>on</strong><br />

in Chiang Mai. DWES, 1, 1, 17-25<br />

E. J. M. Blokker, J. H. G. Vreeburg, S. G. Buchberger, and J. C. van Dijk (<strong>2008</strong>). Importance of demand modeling in network<br />

water quality models: a review. DWES, 1 ,1, 27-38<br />

40 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Papers in review (published in DWES Discussi<strong>on</strong>)<br />

K. Teunissen, A. Abrahamse, H. Leijssen, L. Rietveld, and H. van Dijk (<strong>2008</strong>). Removal of both dissolved<br />

and particulate ir<strong>on</strong> from groundwater. DWES-D, 1, 1, 87-115<br />

B. Mukhopadhay, M. Majumder, R. Nath Barman, P. Kumar Roy, and A. Mazumder<br />

(<strong>2008</strong>). Verificati<strong>on</strong> of filter efficiency of horiz<strong>on</strong>tal roughing filter by Weglin’s design criteria and Artificial<br />

Neural Network, DWES-D, 1, 2, 117-133<br />

M. A. Tahir, H. Rasheed, and A. Malana (<strong>2008</strong>). Method development for arsenic analysis by modificati<strong>on</strong><br />

in spectrphotometric technique. DWES-D, 1, 2, 135-154<br />

G. I. M. Worm, G. A. M. Mesman, K. M. van Schagen, K. J. Borger, and L. C. Rietveld (<strong>2008</strong>).Hydraulic<br />

modeling of drinking water treatment plant operati<strong>on</strong>s. DWES-D, 1, 2, 155-172<br />

P. W. M. H. Smeets, G. J. Medema, and J. C. van Dijk (<strong>2008</strong>). The Dutch secret: safe drinking water without<br />

chlorine in the Netherlands. DWES-D, 1, 2, 173-212<br />

Li, S.; Heijman, S.G.J.; Verberk, J.Q.J.C.; van Dijk, J.C. (<strong>2008</strong>). An innovative treatment c<strong>on</strong>cept for future<br />

drinking water producti<strong>on</strong>: fluidized i<strong>on</strong> exchange-ultrafiltrati<strong>on</strong>-nanofiltrati<strong>on</strong>-granular activated carb<strong>on</strong><br />

filtrati<strong>on</strong>. DWES-D<br />

D. van Halem, S.A. Bakker, G.L. Amy, and J.C. van Dijk (<strong>2008</strong>). Arsenic in drinking water: not just a problem<br />

for Bangladesh. DWES-D<br />

I. Abdi, T. Tsegaye, W. Tadesse, M. Silit<strong>on</strong>ga, and P. D<strong>on</strong>ald (<strong>2008</strong>). Spatial and temporal variability of heavy<br />

metals in streams of the Flint Creek and Flint River <strong>Water</strong>sheds from n<strong>on</strong>-point sources. DWES-D<br />

<strong>Drinking</strong> <strong>Water</strong><br />

<strong>Engineering</strong> and Science<br />

Volume 1<br />

Issue 1<br />

Year <strong>2008</strong><br />

Copernicus Publicati<strong>on</strong>s<br />

The Innovative Open Access Publisher<br />

research<br />

drinking water engineering and science<br />

41


42 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


c.<br />

a.<br />

d.<br />

b.<br />

a. Swimming pool<br />

b. Softening pellets with and without NOM<br />

c. Fluid dynamics experiments<br />

d. Spiral wound membrane<br />

research Projects<br />

43


Modeling of biological activated carb<strong>on</strong> filtrati<strong>on</strong><br />

Research objectives<br />

The research objective is to develop a quantitative simulati<strong>on</strong> model for biological activated (BAC) filtrati<strong>on</strong> in<br />

drinking water treatment. The model includes adsorpti<strong>on</strong> and biodegradati<strong>on</strong> processes and should be able to<br />

predict the removal of natural organic matter (NOM) and pesticides.<br />

Project outline<br />

Introducti<strong>on</strong><br />

Pre-oxidati<strong>on</strong> prior to granular activated carb<strong>on</strong> (GAC) filtrati<strong>on</strong> enhances biological activity, resulting in NOM<br />

removal. Oxidati<strong>on</strong> also reduces adsorbability of NOM. Both phenomena result in lower solid-phase c<strong>on</strong>centrati<strong>on</strong>s<br />

of NOM <strong>on</strong> activated carb<strong>on</strong>. The reduced solid-phase c<strong>on</strong>centrati<strong>on</strong>s causes less competiti<strong>on</strong> between<br />

pesticides and NOM, resulting in l<strong>on</strong>ger filter run times for pesticides.<br />

Approach<br />

Based <strong>on</strong> literature review a white box simulati<strong>on</strong> model for BAC filtrati<strong>on</strong> was developed. In an other work<br />

package of the project a biomass quantificati<strong>on</strong> method based <strong>on</strong> adeninotriphosphate (ATP) was developed<br />

and the dominant bacteria species in BAC filters were determined and characterized. Laboratory experiments<br />

were performed to determine the effect of oxidati<strong>on</strong> <strong>on</strong> the adsorpti<strong>on</strong> characteristics of the NOM. This provided<br />

data for model calibrati<strong>on</strong>. Pilot plant experiments for both ground and surface water were used for<br />

model validati<strong>on</strong>.<br />

Results<br />

Laboratory experiments showed that due to oxidati<strong>on</strong> and biodegradati<strong>on</strong> the solid-phase c<strong>on</strong>centrati<strong>on</strong>s of<br />

NOM reduce to 50% of the original values. Pesticide spiking experiments in a pilot plant at c<strong>on</strong>centrati<strong>on</strong>s of<br />

2 µg/l showed that BAC filter run times are up to two times l<strong>on</strong>ger than GAC filter run times (see figure 1). In<br />

the pilot plant biomass profiles were determined with the ATP <strong>on</strong> carb<strong>on</strong> method. Surprisingly ATP <strong>on</strong> carb<strong>on</strong><br />

c<strong>on</strong>centrati<strong>on</strong>s peak in spring and not in summer when temperatures are maximal.<br />

atrazine [µg C/l]<br />

2,5<br />

2<br />

1,5<br />

1<br />

TW-BAC1:<br />

0.7 g O3 ·g C<br />

influent<br />

0,5<br />

0<br />

EBCT 5 min<br />

EBCT 10 min<br />

EBCT 20 min<br />

0 100 200 300 400 500 600 700<br />

Time [days]<br />

Figure 1 - Atrazine breakthrough in GAC and BAC at empty bed c<strong>on</strong>tact times of 5 min and 10 min<br />

-1<br />

0-12 g H2O2 ·m-3 44 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

TW-GAC1:<br />

0 g O 3 ·m -3<br />

0 g H 2 O 2 ·m -3<br />

influent<br />

EBCT 5 min<br />

EBCT 10 min<br />

EBCT 20 min


Scientific relevance<br />

In BAC filtrati<strong>on</strong> adsorpti<strong>on</strong> and biodegradati<strong>on</strong> influence each other.<br />

Modeling is used to quantify adsorpti<strong>on</strong> and biodegradati<strong>on</strong> processes and<br />

helps us to understand the fundamentals of BAC filtrati<strong>on</strong>.<br />

Social relevance<br />

The research is performed in close co-operati<strong>on</strong> with industry. The model<br />

will be used to improve operati<strong>on</strong> and design of BAC filtrati<strong>on</strong> to:<br />

• improve drinking water quality: removal of NOM to prevent regrowth in<br />

the drinking water distributi<strong>on</strong> system, robust barrier against micro pollutants<br />

like pesticides<br />

• reduce operati<strong>on</strong> costs through a decrease in filter regenerati<strong>on</strong> frequency<br />

• reduce envir<strong>on</strong>mental impact through a decrease in filter regenerati<strong>on</strong><br />

frequency<br />

Literature<br />

• Aa L.T.J. van der, Rietveld L.C., Siegers W.G.,<br />

Dijk J.C. van (2006). Adsorpti<strong>on</strong> of<br />

natural organic matter and atrazin <strong>on</strong> granular activated carb<strong>on</strong> filters. Workshop<br />

Developments in Modeling <strong>Drinking</strong> <strong>Water</strong> Treatment, <strong>Delft</strong>, the Netherlands,<br />

22-23 June 2006.<br />

• Aa L.T.J. van der, Magic-Knezev A., Rietveld L.C., Dijk J.C. van (2006).<br />

Biomass development in biological activated carb<strong>on</strong> filters. 4th internati<strong>on</strong>al<br />

slow sand filtrati<strong>on</strong> and alternative biological filtrati<strong>on</strong> c<strong>on</strong>ference, Mülheim an<br />

der Ruhr, Germany, 3-5 May 2006.<br />

• Aa L.T.J. van der, Achari V.S., Rietveld L.C., Siegers W.G., Dijk J.C. van (2004).<br />

Modeling biological activated carb<strong>on</strong> filtrati<strong>on</strong>: determinati<strong>on</strong> adsorpti<strong>on</strong> isotherms<br />

of organic compounds. WISA biennial c<strong>on</strong>ference, Cape Town, South Africa, May<br />

2004<br />

• Aa L.T.J. van der, Kolpa R.J., Magic-Knezev A., Rietveld L.C., Dijk J.C. van (2003).<br />

Biological activated carb<strong>on</strong> filtrati<strong>on</strong>: pilot experiments in the Netherlands. <strong>Water</strong><br />

Quality Technology C<strong>on</strong>ference, Philadelphia.<br />

• Aa L.T.J. van der, Rietveld L.C., Dijk J.C. van (2002). Modeling BAC filtrati<strong>on</strong>: integrating<br />

adsorpti<strong>on</strong> and biodegradati<strong>on</strong> in <strong>on</strong>e model. Proceedings of Workshop<br />

Internati<strong>on</strong>al <strong>Water</strong> Associati<strong>on</strong> “Biological activated carb<strong>on</strong> filtrati<strong>on</strong>”, <strong>Delft</strong>.<br />

• Aa L. van der, Rietveld L., Graveland A. (2000). Biologisch actieve-koolfiltratie:<br />

kennis integreren tot één model. H2O (33), nr. 11 pp. 35 – 37.<br />

• Aa L.T.J. van der, Rietveld, L.C. (2000). Modeling of biological activated carb<strong>on</strong><br />

filtrati<strong>on</strong>, a review. Proceedings of workshop Internati<strong>on</strong>al <strong>Water</strong> Associati<strong>on</strong><br />

“Modeling of c<strong>on</strong>venti<strong>on</strong>al drinking water producti<strong>on</strong> processes”, <strong>Delft</strong>.<br />

René van der Aa<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> Management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 20 55 37 054<br />

Fax: +31 20 39 76 880<br />

e-mail: rene.van.der aa@waternet.nl<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

<strong>Water</strong>net<br />

Postbus 94370<br />

1090 GJ Amsterdam<br />

visiting address:<br />

Korte Ouderkerkerdijk 7<br />

1096 AC Amsterdam<br />

Start date: Jan 2000<br />

Expected end date: Summer 2009<br />

key words:<br />

Biological activated carb<strong>on</strong> filtrati<strong>on</strong>,<br />

modeling<br />

cooperati<strong>on</strong> with other<br />

institutes:<br />

<strong>Water</strong>net; Norit; Vitens;<br />

Wageningen University and Research;<br />

KWR <strong>Water</strong>cycle Research<br />

Institute.<br />

The project has been co-funded by<br />

the Dutch Deparment of Ec<strong>on</strong>omics<br />

through Senter<br />

research projects<br />

45


Project Outline<br />

Introducti<strong>on</strong><br />

stochastic deMand Patterns in hydraulic Models<br />

This research program is devoted to fill in the gaps in knowledge <strong>on</strong> the hydraulic c<strong>on</strong>diti<strong>on</strong>s in drinking water distri-<br />

buti<strong>on</strong> systems. There is a significant relati<strong>on</strong> between hydraulics and particles in the network. Particles in drinking<br />

water systems are resp<strong>on</strong>sible for the generati<strong>on</strong> of discolorati<strong>on</strong> of the water, leading to an unacceptable aesthetic<br />

water quality. Also dissolved substances, such as (deliberate) c<strong>on</strong>taminati<strong>on</strong> in the drinking water distributi<strong>on</strong> system,<br />

are affected by the hydraulic c<strong>on</strong>diti<strong>on</strong>s. McKenna et al. (2005) have suggested that due to the stochastic nature<br />

of demands the ‘source locati<strong>on</strong> inversi<strong>on</strong>’ of c<strong>on</strong>taminants is <strong>on</strong>ly possible with accurate informati<strong>on</strong> <strong>on</strong> demand.<br />

Approach<br />

A flexible demand model is developed. The demand model is called SIMDEUM: SIMulati<strong>on</strong> of Demand – an<br />

End-Use Model. A distributi<strong>on</strong> network model is c<strong>on</strong>structed from GIS-informati<strong>on</strong> of pipes (locati<strong>on</strong> and diameter<br />

of pipes and pipe roughness) and customers (locati<strong>on</strong> of demand nodes and yearly water use) and from specific<br />

area informati<strong>on</strong> as input to SIMDEUM (number of people per household, age of inhabitants, and installed<br />

water appliances). The applicati<strong>on</strong> of this demand model in distributi<strong>on</strong> network models is being investigated.<br />

Results<br />

The demand model SIMDEUM based <strong>on</strong> (residential) end-use is developed from statistical informati<strong>on</strong> <strong>on</strong><br />

intensity (flow) and durati<strong>on</strong> per use, frequency of use, and time of use (over the day) for all residential enduses<br />

such as taking a shower, flushing the<br />

toilet, washing hands, doing the dishes, watering<br />

the garden etc. Informati<strong>on</strong> <strong>on</strong> number of<br />

people per household is also used. The (statistical)<br />

informati<strong>on</strong> is retrieved from nati<strong>on</strong>al<br />

census data (<strong>on</strong> a‘DMA’-level), a three-yearly<br />

survey <strong>on</strong> water use at home and a five-yearly<br />

survey <strong>on</strong> time budget. The model is validated<br />

by measurements <strong>on</strong> individual household<br />

level and <strong>on</strong> street level (of 5 to 512 houses).<br />

A distributi<strong>on</strong> network of ca. 550 houses in<br />

Franeker was modeled; occurring velocities, flow<br />

directi<strong>on</strong> reversals and residence times were calculated.<br />

In this small network velocities are low (<<br />

0.1 m/s) and in pipes where flow directi<strong>on</strong> reversals<br />

occur residence times can be more than 2 days. Figure 1 - Flow velocities in Franeker network<br />

Scientific relevance<br />

The processes that govern the settling and resuspensi<strong>on</strong> of particles in the network are not fully understood.<br />

However, it is clear that the hydraulic c<strong>on</strong>diti<strong>on</strong>s in the distributi<strong>on</strong> network are a key factor. Existing demand<br />

models, based <strong>on</strong> measured demand at the pumping stati<strong>on</strong>, are applicable to transport models. These models<br />

are not fit for distributi<strong>on</strong> networks because distributi<strong>on</strong> networks, compared to transport networks, have more<br />

46 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


dynamic flows and occasi<strong>on</strong>ally very low velocities, flow directi<strong>on</strong> reversals<br />

and high residence times. The reas<strong>on</strong> for this is that distributi<strong>on</strong> networks<br />

have much more demand nodes and these demand nodes show much more<br />

uncorrelated demands (both in time and in space) than demand nodes in<br />

transport net works The result is that sediment in distributi<strong>on</strong> net works is<br />

much more of a problem than in transport net works.<br />

Social relevance<br />

Discolorati<strong>on</strong> seriously undermines the customer’s faith in drinking water.<br />

Possible public health effects are not very severe because the color of<br />

the water will prevent people from actually c<strong>on</strong>suming the water. The<br />

effects <strong>on</strong> water quality of resuspended sediment in the sub-visual regi<strong>on</strong>,<br />

below 5 F<strong>TU</strong>, are probably not negligible. <strong>Water</strong> companies spend a<br />

lot of m<strong>on</strong>ey in producing good drinking water that however can deteriorate<br />

significantly in the network. More knowledge <strong>on</strong> hydraulic c<strong>on</strong>diti<strong>on</strong>s<br />

in the distributi<strong>on</strong> network will help determine how to maintain<br />

the network, which will decrease the number of discolored water incidents<br />

and increase customer’s trust in safe and healthy drinking water.<br />

Literature<br />

•<br />

•<br />

•<br />

•<br />

Blokker, E. J. M., Buchberger, S. G., Vreeburg, J. H. G., and van Dijk, J.C. (<strong>2008</strong>).<br />

“Comparis<strong>on</strong> of water demand models: PRP and SIMDEUM applied to Milford,<br />

Ohio, data.” WDSA <strong>2008</strong>, Kruger Park, South Africa.<br />

Blokker, E. J. M., Buchberger, S. G., Vreeburg, J. H. G., and van Dijk, J.C.(<strong>2008</strong>).<br />

“Importance of demand modeling in network water quality models: a review.”<br />

Drink. <strong>Water</strong> Eng. Sci.(1), 27-38.<br />

Blokker, E. J. M., and Vreeburg, J. H. G. (2005). “M<strong>on</strong>te Carlo Simulati<strong>on</strong> of<br />

Residential <strong>Water</strong> Demand: A Stochastic End-Use Model. ”Impacts of Global<br />

Climate Change; 2005 World water and envir<strong>on</strong>mental resources c<strong>on</strong>gress, R.<br />

Walt<strong>on</strong>, ed., American Society of Civil Engineers, Anchorage,Alaska, 34.<br />

Blokker, E. J. M., Vreeburg, J. H. G., and Vogelaar, A. J. (2006). “Combining the<br />

probabilistic demand model SIMDEUM with a network model.” <strong>Water</strong> Distributi<strong>on</strong><br />

System Analysis #8, American Society of Civil Engineers, Cincinnati, Ohio,<br />

USA.<br />

Mirjam Blokker<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> Management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 15 27 86 588<br />

Fax: +31 15 27 84 918<br />

e-mail: mirjam.blokker@kwrwater.nl<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

Postbus 1072<br />

3430 BB Nieuwegein<br />

visiting address:<br />

Gr<strong>on</strong>ingenhaven 7<br />

3433 PE Nieuwegein<br />

Start date: May 2007<br />

Expected end date: May 2011<br />

key words:<br />

stochastic demands, hydraulic<br />

models<br />

cooperati<strong>on</strong> with other<br />

institutes:<br />

KWR <strong>Water</strong>cycle Research Institute<br />

research projects<br />

47


ehaviour and reMoval of natural organic Matter (noM) in<br />

treatMent Processes<br />

Research objectives<br />

The objective of this research is to understand the behaviour of different natural organic matter (NOM) fracti<strong>on</strong>s<br />

in drinking water treatment processes and to improve the drinking water quality at the c<strong>on</strong>sumers tap by<br />

extending the treatment with an i<strong>on</strong> exchange process. Removing NOM before the existing treatment train will<br />

have a positive effect <strong>on</strong> following treatment steps, leading to cost effective alternative treatment strategies.<br />

Also the biofilm formati<strong>on</strong> in the distributi<strong>on</strong> network will be limited by NOM removal with i<strong>on</strong> exchange.<br />

Project outline<br />

Introducti<strong>on</strong><br />

The presence of NOM in drinking water influences both the efficiency of treatment steps, and processes in the<br />

distributi<strong>on</strong> network such as the formati<strong>on</strong> of biofilms. With a combinati<strong>on</strong> of technologies different fracti<strong>on</strong>s of<br />

NOM can be determined, which gives more insight in the effects of NOM in the treatment and distributi<strong>on</strong> network.<br />

Fluidized i<strong>on</strong> exchange is a new treatment step for NOM removal. The behaviour of i<strong>on</strong> exchange resin in<br />

a fluidized column will be investigated. Also the water quality improvement of this new step will be researched.<br />

Research will be carried out at Weesperkarspel (WPK) treatment plan of <strong>Water</strong>net, Amsterdam.<br />

Approach<br />

A new treatment step, i<strong>on</strong> exchange, is being used for removing specific NOM fracti<strong>on</strong>s. The effect of this new<br />

treatment step <strong>on</strong> other treatment steps <strong>on</strong> the water quality at the c<strong>on</strong>sumers tap has been investigated in<br />

batch experiments and <strong>on</strong> pilot scale. Those processes can then be optimised. First, different IEX resins were<br />

tested <strong>on</strong> specific NOM fracti<strong>on</strong> removal by batch experiments. Sec<strong>on</strong>d, the batch experiments results have<br />

been verified with pilot plant research. Finally, the effect of NOM removal <strong>on</strong> following treatments steps will<br />

be investigated with batch experiments and <strong>on</strong> pilot scale, as well as the effect <strong>on</strong> the biofilm formati<strong>on</strong> in the<br />

distributi<strong>on</strong> network.<br />

Results<br />

WPK water was used for batch experiments with 3 different IEX resins<br />

and 1 sorbent resin. WPK water c<strong>on</strong>sists of mainly humic NOM fracti<strong>on</strong>s.<br />

Lewatit VP OC 1071 and MIEX DOC resin were the best performing<br />

resins. By first removing NOM with these resins, the life times of the<br />

following GAC filters will increase by a factor 10 for DOC removal. The<br />

results had to be verified by pilot research, which started in October<br />

<strong>2008</strong>. I<strong>on</strong> exchange is the first step in this pilot plant (Figure 1), followed<br />

by oz<strong>on</strong>ati<strong>on</strong>, pellet softening, biological activated carb<strong>on</strong> filtrati<strong>on</strong> and<br />

slow sand filtrati<strong>on</strong>. Beside this train, there is a reference train without<br />

i<strong>on</strong> exchange for comparis<strong>on</strong>. To investigate the effect of NOM removal<br />

by i<strong>on</strong> exchange <strong>on</strong> biological stability, biofilm m<strong>on</strong>itors are placed after<br />

the slow sand filters. First results of this pilot experiment are expected<br />

in March 2009.<br />

48 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

Figure1 - I<strong>on</strong> exchange column at<br />

pilot plant Weesperkarspel


Scientific relevance<br />

NOM is, more or less, removed by<br />

the existing drinking water treatment<br />

and affects the effectiveness<br />

of certain treatment processes.<br />

NOM is presently seen as a composite<br />

parameter and the removal<br />

and c<strong>on</strong>versi<strong>on</strong> of specific NOM<br />

fracti<strong>on</strong>s has not received much<br />

attenti<strong>on</strong>. By modeling the behav-<br />

Figure 2 - Different i<strong>on</strong> exchange<br />

iour of different NOM fracti<strong>on</strong>s in<br />

resins<br />

the treatment process, insight can<br />

be obtained in the behaviour of<br />

NOM in the treatment under changing circumstances and the effects <strong>on</strong> the<br />

treatment effectiveness. By performing the removal of different NOM fracti<strong>on</strong>s<br />

<strong>on</strong> different locati<strong>on</strong>s in the treatment the effect <strong>on</strong> the water quality<br />

can be studied, also the c<strong>on</strong>sequence for envir<strong>on</strong>ment and costs.<br />

Social relevance<br />

As the research is executed in co-operati<strong>on</strong> with water companies, the results<br />

of the research will directly be implemented in practice. By improved drinking<br />

water treatment and avoiding deteriorati<strong>on</strong> of the water quality during distributi<strong>on</strong>,<br />

in combinati<strong>on</strong> with the distributi<strong>on</strong> processes, the excellent Dutch<br />

drinking water quality will be safeguarded for the future.<br />

Literature<br />

•<br />

•<br />

•<br />

•<br />

Anke Grefte, Marco Dignum, Luuk Rietveld and Hans van Dijk. Evaluati<strong>on</strong> of a<br />

regular measurement program of water quality parameters in a full-scale n<strong>on</strong>chlorinated<br />

distributi<strong>on</strong> system. WQTC c<strong>on</strong>ference proceedings, Denver, 2006<br />

Anke Grefte, Marco Dignum, Alex van der Helm, Luuk Rietveld, Emile<br />

Cornelissen, Gary Amy and Hans van Dijk. Removal of NOM Fracti<strong>on</strong>s by<br />

Different Ani<strong>on</strong> Exchange and Sorbent Resins. Leading Edge c<strong>on</strong>ference proceedings,<br />

Singapore, 2007<br />

Anke Grefte, Marco Dignum, Luuk Rietveld, Emile Cornelissen and Gary Amy.<br />

Removal of NOM Fracti<strong>on</strong>s by Different I<strong>on</strong> Exchange (IEX) and Adsorbent<br />

Resins and Effect <strong>on</strong> the Performance of Activated Carb<strong>on</strong>. WQTC c<strong>on</strong>ference<br />

proceedings, Charlotte, 2007<br />

A. Grefte, S. A. Baghoth, M. Dignum, E.R. Cornelissen and L.C. Rietveld.<br />

Modeling of NOM fracti<strong>on</strong> removal by different i<strong>on</strong> exchange resins. Natural<br />

Organic Matter: From Source to Tap c<strong>on</strong>ference proceedins, Bath, <strong>2008</strong><br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong>management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 15 27 81 585<br />

Fax: +31 15 27 84 918<br />

e-mail: A.Grefte@<strong>TU</strong><strong>Delft</strong>.nl<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.59<br />

Start date: Jan 2006<br />

Expected end date: Jun 2011<br />

key words:<br />

<strong>Drinking</strong> water quality, advanced<br />

treatment, NOM, biological stability<br />

cooperati<strong>on</strong> with other<br />

institutes:<br />

<strong>Water</strong>net; KWR <strong>Water</strong>cycle Research<br />

Institute; Vitens; Unesco-<br />

IHE<br />

research projects<br />

Anke Grefte<br />

49


subsurface arsenic reMoval froM groundwater for<br />

aPPlicati<strong>on</strong> in develoPing countries<br />

Research objectives<br />

The objective of this Ph.D. study is to determine the small-scale applicability of subsurface or in-situ ir<strong>on</strong> removal<br />

for the retenti<strong>on</strong> of high arsenic c<strong>on</strong>centrati<strong>on</strong>s from groundwater.<br />

Project outline<br />

Introducti<strong>on</strong><br />

Arsenic c<strong>on</strong>taminati<strong>on</strong> in groundwater is found in many countries worldwide, including Argentina, Bangladesh,<br />

Hungary, India, the United States, and Vietnam. The main reas<strong>on</strong> for c<strong>on</strong>cern is de gradual, chr<strong>on</strong>ic pois<strong>on</strong>ing<br />

by this invisible, toxic metal. The first symptoms of arsenic pois<strong>on</strong>ing are (de)pigmentati<strong>on</strong> of the skin and<br />

toughening of palms and soles (black-foot disease). Chr<strong>on</strong>ic exposure may cause cancer of the skin, lungs,<br />

urinary bladder and kidneys.<br />

Even though many techniques have been developed over the years to remove arsenic from groundwater, a<br />

soluti<strong>on</strong> is not yet at hand for many people living in rural areas. The use of subsurface arsenic removal could<br />

proof a reliable alternative, especially in regi<strong>on</strong>s where shallow tube wells are already used for drinking water<br />

supply. Arsenic and ir<strong>on</strong> are retained in the aquifer and thus no waste stream is produced. In short, the periodic<br />

injecti<strong>on</strong> of aerated water oxidizes adsorbed ir<strong>on</strong> (II) to ir<strong>on</strong> (III) and therefore forming new adsorpti<strong>on</strong> sites for<br />

ir<strong>on</strong> (II) and trace elements such as arsenic.<br />

Approach<br />

The experimental work in the laboratory is designed with three main focal points: (1) arsenic behaviour during<br />

the regenerati<strong>on</strong> process of the ir<strong>on</strong> hydroxide surface; (2) aging of arsenic-rich ir<strong>on</strong> (hydr)oxides under shifting<br />

redox c<strong>on</strong>diti<strong>on</strong>s; (3) oxygen supply to the aquifer. The small-scale applicability of this technology is tested<br />

with field pilots in rural Bangladesh, focusing <strong>on</strong> the removal of high arsenic c<strong>on</strong>centrati<strong>on</strong>s (> 100 µg/L) with<br />

different groundwater matrices. The results from laboratory and field will be modeled with surface complexati<strong>on</strong><br />

modeling (PHREEQC).<br />

Principle of subsurface arsenic removal:<br />

injecti<strong>on</strong> of aearated water<br />

Results<br />

Currently two experimental set-ups for subsurface arsenic removal are running in Manikganj, Bangladesh.<br />

The water quality is m<strong>on</strong>itored <strong>on</strong> a daily basis in collaborati<strong>on</strong> with UNICEF and DPHE. With arsenic c<strong>on</strong>-<br />

50 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

Principle of subsurface arsenic removal:<br />

abstracti<strong>on</strong> of water


centrati<strong>on</strong>s around 180 µg/L and high Fe:As ratios the selected locati<strong>on</strong>s<br />

are favourable for this technology. Additi<strong>on</strong>ally column studies are used to<br />

experiment with a variety of parameters: aquifer compositi<strong>on</strong>, groundwater<br />

quality and injecti<strong>on</strong> frequency.<br />

Scientific relevance<br />

Even though subsurface ir<strong>on</strong> removal is operated worldwide for many decades<br />

now, the use for arsenic retenti<strong>on</strong> is a new approach. Before subsurface arsenic<br />

removal can be safely implemented it is vital to identify the parameters influencing<br />

the retardati<strong>on</strong> of arsenic to the well, e.g. pH, competing ani<strong>on</strong>s, Fe:As ratio.<br />

Social relevance<br />

One <strong>on</strong>ly has to hear about the ‘mass pois<strong>on</strong>ing’ of people living in<br />

the Bengal Delta to understand the social relevance of arsenic-related<br />

research topics. The use of subsurface arsenic removal to treat<br />

groundwater is not <strong>on</strong>ly interesting from a scientific point-of-view; it may<br />

also provide safe drinking water to milli<strong>on</strong>s worldwide. Therefore this<br />

research study should extend bey<strong>on</strong>d acquiring theoretical answers and<br />

also translate the technology to the practicality of the users’ real world.<br />

In Bangladesh the study is executed in collaborati<strong>on</strong> with local partners<br />

UNICEF and DPHE (Department of Public Health <strong>Engineering</strong>).<br />

Literature<br />

•<br />

•<br />

•<br />

•<br />

•<br />

van Halem, D. (<strong>2008</strong>) <strong>Drinking</strong> water research for all. In J. C. van Dijk & N. Krikke<br />

(eds.), 60e Vakantiecursus in Drinkwatervoorziening, pp. 59-68. <strong>Delft</strong> University<br />

of Technology, <strong>Delft</strong>.<br />

van Halem, D., S. G. J. Heijman, B. Petrusevski, G. L. Amy & J. C. van Dijk<br />

(<strong>2008</strong>) Design c<strong>on</strong>siderati<strong>on</strong>s for small-scale subsurface arsenic removal in<br />

developing countries. Arsenic in the envir<strong>on</strong>ment: Arsenic from nature to humans.<br />

Valencia.<br />

van Halem, D., S. G. J. Heijman, G. L. Amy & J. C. van Dijk (<strong>2008</strong>) Subsurface<br />

arsenic removal for small-scale applicati<strong>on</strong> in developing countries. In B. S.<br />

Richards & A. I. Schafer (eds.), <strong>Water</strong> and Sanitati<strong>on</strong> in Internati<strong>on</strong>al Development<br />

and Disaster Relief. Edinburgh.<br />

Bakker, S. A., D. van Halem, J. C. van Dijk & G. L. Amy (<strong>2008</strong>) Arseen in drinkwater:<br />

niet alleen een probleem in Bangladesh. H2O: Tijdschrift voor watervoorziening<br />

en waterbeheer.<br />

van Halem, D., W. W. J. M. de Vet, G. L. Amy & J. C. van Dijk (<strong>2008</strong>) Subsurface<br />

ir<strong>on</strong> removal for drinking water producti<strong>on</strong>: understanding the process and exploiting<br />

beneficial side effects. <strong>Water</strong> Quality Technology C<strong>on</strong>ference. American <strong>Water</strong><br />

Works Associati<strong>on</strong>, Cincinatti.<br />

Doris van Halem<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong>management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 15 27 83 539<br />

Fax: +31 15 27 84 918<br />

e-mail: D.vanHalem@<strong>TU</strong><strong>Delft</strong>.nl<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.49<br />

Start date: Jan 2007<br />

Expected end date: Jan 2011<br />

key words:<br />

Arsenic, drinking water, subsurface<br />

cooperati<strong>on</strong> with other<br />

institutes:<br />

UNESCO-IHE, UNICEF Bangladesh,<br />

DPHE<br />

research projects<br />

51


new treatMent c<strong>on</strong>cePts for drinking water Producti<strong>on</strong><br />

Research objectives<br />

New treatment c<strong>on</strong>cepts are investigated for large scale but also for small scale drinking water producti<strong>on</strong>.<br />

The research is aiming at high tech soluti<strong>on</strong>s for the Netherlands as well as low tech soluti<strong>on</strong>s for developing<br />

countries. The introducti<strong>on</strong> of new technologies is part of the research.<br />

Project outline<br />

Introducti<strong>on</strong><br />

In the densely populated industrial countries there is a growing c<strong>on</strong>cern for the micro pollutants in the water<br />

sources of the drinking water producti<strong>on</strong>. The apolar micro pollutants are well removed by activated carb<strong>on</strong>.<br />

But the polar are difficult to remove with adsorpti<strong>on</strong> also oxidati<strong>on</strong> techniques and membrane filtrati<strong>on</strong> have<br />

disadvantages. To create a robust barrier against all micro pollutants it is probably necessary to have two barriers<br />

against micro-pollutants (eg membrane filtrati<strong>on</strong>/activated carb<strong>on</strong> filtrati<strong>on</strong> or oxidati<strong>on</strong>/activated carb<strong>on</strong><br />

filtrati<strong>on</strong>). New technologies based <strong>on</strong> for instance zeolites are evaluated.<br />

In developing countries the removal of human pathogens (microorganism and viruses) has the highest priority<br />

to provide safe drinking water to the people in rural areas. Most of the time there is no distributi<strong>on</strong> network so<br />

the treatment system should be designed <strong>on</strong> village scale (500 people) or even <strong>on</strong> household scale (10 people).<br />

So the treatment systems investigated are most of the time low-tech disinfecti<strong>on</strong> techniques for remote<br />

areas preferably driven by solar or wind energy. Also sustainable desalinati<strong>on</strong> c<strong>on</strong>cepts (<strong>on</strong> wind and sun)<br />

are investigated.<br />

Approach<br />

Most of the time experimental research is d<strong>on</strong>e <strong>on</strong> both lab scale as well as pilot scale. Sometimes it is useful<br />

to model the results to get a better understanding of what is happening. From the pilot scale we learn important<br />

design parameters and water producti<strong>on</strong> rates. We can estimate the investment costs of a full scale installati<strong>on</strong><br />

and can estimate a water price. This is also important for the village or household systems. Also we can<br />

measure the water quality produced with the investigated treatment c<strong>on</strong>cept.<br />

Results<br />

• Ceramic membrane filtrati<strong>on</strong> with submicr<strong>on</strong> powdered activated carb<strong>on</strong>. Remove bacteria, viruses, suspended<br />

solids, NOM and micro pollutants in <strong>on</strong>e step.<br />

• Zero liquid discharge for nanofiltrati<strong>on</strong> plants. Nanofiltrati<strong>on</strong> without c<strong>on</strong>centrate producti<strong>on</strong>.<br />

• Seawater evaporati<strong>on</strong> by sun power using vapour compressi<strong>on</strong>. Sustainable producti<strong>on</strong> of fresh water<br />

from saline water.<br />

• <strong>Drinking</strong> with the wind: combinati<strong>on</strong> sea water desalinati<strong>on</strong> with a windmill. Sustainable producti<strong>on</strong> of<br />

fresh water from saline water.<br />

• Amm<strong>on</strong>ium removal with zeolites. Adsorptive removal of amm<strong>on</strong>ium from groundwater.<br />

• Sustainable small scale treatment systems. Treatment systems for developing countries and remote<br />

areas. Ceramic pot filters , slow sand filters, solar disinfecti<strong>on</strong> etc.<br />

Scientific relevance<br />

Innovative soluti<strong>on</strong>s are needed to overcome the problems of both small as well as large treatment systems.<br />

The soluti<strong>on</strong>s are either improving the water quality further or decreasing the costs of water producti<strong>on</strong>. Science<br />

52 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


provide methods to improve or adapt existing c<strong>on</strong>cepts and to evaluate the<br />

c<strong>on</strong>cepts in a scientific way.<br />

Social relevance<br />

Excess to safe and healthy drinking water is important in developing as<br />

well as in developed countries. The systems needed <strong>on</strong>ly differ in size and<br />

technology. But the fundaments are always a reliable appropriate technology<br />

and an adequate implementati<strong>on</strong> of the technology. The alternative<br />

c<strong>on</strong>cepts developed should always be evaluated <strong>on</strong> the water price and<br />

the water quality.<br />

Literature<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Heijman, S.G.J., Rabinovitch, E. Bos, F., Olthof N.,Dijk J.C. van, “Sustainable<br />

seawater desalinati<strong>on</strong>: stand-al<strong>on</strong>e small scale windmill and reverse osmosis<br />

system” in the proceedings of the Coastal Cities Summit 17-20 november <strong>2008</strong>,<br />

St.Petersburg USA.<br />

Heijman, S.G.J., Hamad, J.Z., Kennedy, M.D., Schippers J.C., Amy, G., “ Submicr<strong>on</strong><br />

powdered activated carb<strong>on</strong> used as a pre-coat in ceramic microfiltrati<strong>on</strong>”,<br />

C<strong>on</strong>ference proceedings Membranes in <strong>Drinking</strong> <strong>Water</strong> Producti<strong>on</strong> and<br />

Wastewater Treatment 20–22 October <strong>2008</strong>, Toulouse, France.<br />

D. van Halem, H. van der Laan, S.G.J. Heijman, J.C. van Dijk, G.L. Amy,<br />

“Assessing the sustainability of the silver-impregnated ceramic pot filter for lowcost<br />

household drinking water treatment” , Physics and Chemistry of the Earth<br />

Heijman, S.G.J., H. Guo,S.Li, J.C. van Dijk, L.P. Wessels, “Zero liquid discharge:<br />

heading for 99% recovery”, proceedings of the IMSTEC 2007; Sydney November<br />

2007.<br />

Heijman*, S.G.J. Verliefde, A.R.D., Cornelissen, E.R., Amy, G., van Dijk,<br />

J.C.“Influence of natural organic matter (NOM) fouling <strong>on</strong> the removal of pharmaceuticals<br />

by nanofiltrati<strong>on</strong> and activated carb<strong>on</strong> filtrati<strong>on</strong>” (2007) C<strong>on</strong>ference<br />

proceedings IWA membrane c<strong>on</strong>ference Harrogate.<br />

Anneke Abrahamse, Weren de Vet, Petra Scholte, Bas Heijman, “Toepassing<br />

zeolieten voor verwijdering amm<strong>on</strong>ium bij de drinkwaterzuivering”<br />

Bas Heijman, Sheng Li, Peter Wessels, Hans van Dijk , “Een nieuwe zuiveringsopzet<br />

voor directe behandeling van oppervlaktewater tot drinkwater” H2O<br />

(2006),39,nr.17.<br />

Heijman, SGJ, Li, S & Dijk, JC van (2006). Treatment c<strong>on</strong>cept for future drinking<br />

water producti<strong>on</strong>. In s.n. (Ed.), <strong>Water</strong> Quality Technology (pp. 1-8). Denver:<br />

AWWA.<br />

Schippers, JC, Heijman, SGJ & Bakker, EF (2006). Oppervlaktezuivering door<br />

middel van keramische membranen. H2O: tijdschrift voor watervoorziening en<br />

waterbeheer, 39(14/15), 45-48.<br />

Bas Heijman<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> Management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 15 27 84 282<br />

Fax: +31 15 27 84 918<br />

e-mail: S.G.J.Heijman@<strong>TU</strong><strong>Delft</strong>.nl<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.51<br />

Start date: <strong>on</strong>going<br />

Expected end date: <strong>on</strong>going<br />

key words:<br />

<strong>Drinking</strong> water treatment; new c<strong>on</strong>cepts;<br />

nanofiltrati<strong>on</strong>; i<strong>on</strong> exchange<br />

resin; zeolites; ceramic membranes;<br />

windmill; sun power<br />

cooperati<strong>on</strong> with other<br />

institutes:<br />

Vitens, UNESCO-IHE, KWR <strong>Water</strong>cycle<br />

Research Institute, Aquafor-All<br />

research projects<br />

53


develoPing and Modeling of oxidati<strong>on</strong> Processes for drinking<br />

water treatMent<br />

Research objectives<br />

The research is aiming <strong>on</strong> developing new innovative (advanced) oxidati<strong>on</strong> processes and modeling of these<br />

processes. Within this research the focus is <strong>on</strong> disinfecti<strong>on</strong>, oxidati<strong>on</strong> of micro-pollutants, oxidati<strong>on</strong> of emerging<br />

substances and formati<strong>on</strong> of disinfecti<strong>on</strong> by-products. Describing these processes in dynamic mathematical<br />

models is an integral part of the research.<br />

Project outline<br />

Introducti<strong>on</strong><br />

Oxidati<strong>on</strong> and disinfecti<strong>on</strong> are important in drinking water treatment and can be achieved by (advanced) oxidati<strong>on</strong><br />

processes. Different processes are used for this purpose such as oz<strong>on</strong>ati<strong>on</strong>, UV, UV in combinati<strong>on</strong> with<br />

peroxide, chlorinati<strong>on</strong>, etc. During these processes pathogens are killed or inactivated, micro-pollutants, emerging<br />

substances such as pharmaceuticals and endocrine disrupting compounds and natural organic matter are<br />

oxidized. During these processes by-products that are harmful for human health may be formed. The drinking<br />

water treatment processes that are under research are oz<strong>on</strong>ati<strong>on</strong> and advanced photocatalytic oxidati<strong>on</strong>.<br />

Approach<br />

For oz<strong>on</strong>ati<strong>on</strong> research, experiments in different bench-scale and pilot-scale oz<strong>on</strong>e installati<strong>on</strong>s with different<br />

natural waters are performed. A model for oz<strong>on</strong>ati<strong>on</strong> is developed, calibrated and validated and different c<strong>on</strong>trol<br />

strategies for oz<strong>on</strong>ati<strong>on</strong> are assessed. On the basis of the experiments and model calculati<strong>on</strong>s, a new design<br />

for oz<strong>on</strong>e installati<strong>on</strong>s is developed. In additi<strong>on</strong>, the character and removal of natural organic matter (NOM)<br />

prior to oz<strong>on</strong>ati<strong>on</strong> is studied. With advanced photocatalytic oxidati<strong>on</strong> a titanium dioxide catalyst produces oxidants<br />

(OH radicals) when exposed to sunlight. The oxidants as well as the sunlight can remove pathogens and<br />

organic micro-pollutants with a minimum of undesired by-products. Lab-scale experiments will be performed<br />

<strong>on</strong> oxidati<strong>on</strong> of pharmaceuticals and endocrine disrupting compounds and new measuring techniques will be<br />

used to measure the formati<strong>on</strong> of metabolites. A prototype reactor will be developed that should be used for <strong>on</strong>e<br />

household and it should be possible to upscale it to be used for a village or district. This technique is expected<br />

to be robust and envir<strong>on</strong>mental friendly with low costs and low social impact that is easily maintained.<br />

Results<br />

The developed oz<strong>on</strong>ati<strong>on</strong> model was used for evaluating the current c<strong>on</strong>trol strategy of the full-scale oz<strong>on</strong>e<br />

installati<strong>on</strong> at Weesperkarspel of <strong>Water</strong>net, water cycle company for Amsterdam and surrounding areas, and<br />

for assessing other c<strong>on</strong>trol strategies for operati<strong>on</strong>al support and process c<strong>on</strong>trol of oz<strong>on</strong>ati<strong>on</strong>. It is a tool that<br />

directly shows the c<strong>on</strong>sequences of changes in<br />

operati<strong>on</strong> of the oz<strong>on</strong>e installati<strong>on</strong>. It enables<br />

water supply companies to make more objective<br />

choices for operati<strong>on</strong>al settings and, thus, is a<br />

valuable tool for c<strong>on</strong>trolling the balance between<br />

disinfecti<strong>on</strong>, bromate (a possible carcinogenic<br />

according to the World Health Organizati<strong>on</strong>)<br />

formati<strong>on</strong> and AOC formati<strong>on</strong>. From the experimental<br />

work and modeling studies, the importance<br />

of the hydraulic c<strong>on</strong>diti<strong>on</strong>s for oz<strong>on</strong>ati<strong>on</strong> Optimised oz<strong>on</strong>e dosage<br />

54 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


was dem<strong>on</strong>strated. The dissolved oz<strong>on</strong>e plug flow reactor (DOPFR) c<strong>on</strong>cept<br />

developed in this research addresses this issue. In the DOPFR, oz<strong>on</strong>e is<br />

dissolved in a pre treated side stream and dosed to the main stream just<br />

before a static mixer. Subsequently, c<strong>on</strong>tact time in the DOPFR is created<br />

in a pipe with plug flow characteristics. In this installati<strong>on</strong> disinfecti<strong>on</strong> can<br />

be improved without increasing AOC and bromate formati<strong>on</strong>. The advanced<br />

photocatalytic oxidati<strong>on</strong> project has just started so it is too early to present<br />

any results yet.<br />

Scientific relevance<br />

The experimental and modeling work <strong>on</strong> oxidati<strong>on</strong> processes lead to increasing<br />

knowledge of the processes. The research <strong>on</strong> by-product formati<strong>on</strong> will<br />

gain increasing knowledge of great importance in drinking water treatment<br />

to assess possibilities for removal of these by-products in subsequent drinking<br />

water processes.<br />

Social relevance<br />

With the new dissolved oz<strong>on</strong>e dosing principle it is possible to decrease<br />

bromate c<strong>on</strong>centrati<strong>on</strong> in drinking water while maintaining the same level<br />

of disinfecti<strong>on</strong>. Advanced photocatalytic oxidati<strong>on</strong> is expected to c<strong>on</strong>tribute<br />

to the fulfilment of the United Nati<strong>on</strong>s Millennium Development Goal (MDG)<br />

to halve the proporti<strong>on</strong> of people without sustainable access to safe drinking<br />

water by 2015.<br />

Literature<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Helm A.W.C. van der, Smeets P.W.M.H., Baars E.T., Rietveld L.C. and Dijk J.C.<br />

van (2005). Dosing Ratios for Reduced Bromate Formati<strong>on</strong> by Dissolved Oz<strong>on</strong>e<br />

Dosing. <strong>Water</strong> Science and Technology: <strong>Water</strong> Supply, 5(5), 35-40.<br />

Smeets P.W.M.H., Helm A.W.C. van der, Dullem<strong>on</strong>t Y.J., Rietveld L.C., Dijk J.C.<br />

van and Medema, G.J. (2006). Inactivati<strong>on</strong> of Escherichia coli by oz<strong>on</strong>e under<br />

bench-scale plug flow and full-scale hydraulic c<strong>on</strong>diti<strong>on</strong>s. <strong>Water</strong> Research, 40(17),<br />

3239-3248.<br />

van der Helm, A.W.C., Smeets, P.W.M.H., Baars, E.T., Rietveld, L.C. and van Dijk,<br />

J.C. (2007). Modeling of oz<strong>on</strong>ati<strong>on</strong> for dissolved oz<strong>on</strong>e dosing. Oz<strong>on</strong>e Science and<br />

<strong>Engineering</strong>, 29(5), 379-389.<br />

Barrios R., Siebel M.A., Helm A.W.C. van der, Bosklopper Th.G.J. and Gijzen H.J.<br />

(<strong>2008</strong>). Envir<strong>on</strong>mental and financial life cycle impact assessment of drinking water<br />

producti<strong>on</strong> at <strong>Water</strong>net. Journal of Cleaner Producti<strong>on</strong>, 16(4), 471-476.<br />

Rietveld, L.C., van der Helm, A.W.C., van Schagen, K.M., van der Aa, L.T.J. and<br />

van Dijk, J.C. (<strong>2008</strong>). Integrated simulati<strong>on</strong> of drinking water treatment. Journal of<br />

<strong>Water</strong> Supply: Research and Technology-AQUA, 57(3), 133-141.<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> Management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

<strong>Water</strong>net<br />

Department Research and C<strong>on</strong>sultancy<br />

Tel.: +31 65 24 80 203<br />

Fax: +31 15 27 84 918<br />

e-mail: alex.van.der.helm@waternet.nl<br />

A.W.C.vanderHelm@<strong>TU</strong><strong>Delft</strong>.nl<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

Alex van der Helm<br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.69<br />

Start date: Ongoing<br />

Finished: Ongoing<br />

key words:<br />

<strong>Drinking</strong> water treatment, optimizati<strong>on</strong>,<br />

modeling, integrated, oz<strong>on</strong>e<br />

cooperati<strong>on</strong> with other<br />

institutes:<br />

<strong>Water</strong>net, DHV B.V., Pool <strong>Water</strong><br />

Treatment B.V., <strong>Delft</strong>ChemTech<br />

research projects<br />

55


degradati<strong>on</strong> Products in drinking water due to oxidative water<br />

treatMent Processes<br />

Research Objective<br />

General:<br />

This project investigates the characteristics and effects of transformati<strong>on</strong>/degradati<strong>on</strong> products (metabolites)<br />

and organic c<strong>on</strong>taminants in drinking water sources and drinking water treatment plants after oxidative processes<br />

for water treatment.<br />

Specific:<br />

1. To Identify and characterize transformati<strong>on</strong>/degradati<strong>on</strong> products (metabolites) and organic compounds<br />

including identificati<strong>on</strong> of unknowns, coming out from the effects of oxidative processes; using chromatographic<br />

techniques.<br />

2. To c<strong>on</strong>tribute with informati<strong>on</strong> <strong>on</strong> the characteristics of compounds that have been found, needed to establish<br />

useful models to predict the removal of c<strong>on</strong>taminants<br />

3. To assess the efficiency of the removal of c<strong>on</strong>taminants and their transformati<strong>on</strong>/degradati<strong>on</strong> products after<br />

oxidative processes, according to characteristics of new products.<br />

4. To c<strong>on</strong>tribute with valuable informati<strong>on</strong> of the amount, effects and characteristics of compounds found and<br />

their transformati<strong>on</strong>/degradati<strong>on</strong> products, associated to l<strong>on</strong>g term exposure through drinking water normal<br />

c<strong>on</strong>sumpti<strong>on</strong>.<br />

Project Outline<br />

Introducti<strong>on</strong><br />

<strong>Water</strong> treatment involves different physical, chemical and biological processes that are c<strong>on</strong>tinuously under<br />

study. It has been difficult to find the most c<strong>on</strong>venient combinati<strong>on</strong> of processes that can effectively degrade<br />

or remove all types of c<strong>on</strong>taminants that are possible to occur in the water envir<strong>on</strong>ment. The selecti<strong>on</strong> of the<br />

most c<strong>on</strong>venient combinati<strong>on</strong> of water treatment processes for the degradati<strong>on</strong> or removal of c<strong>on</strong>taminants<br />

should not <strong>on</strong>ly be based <strong>on</strong> the degradati<strong>on</strong> of a target compound itself; but also <strong>on</strong> the degradati<strong>on</strong> of products<br />

generated. Residues of many kinds of c<strong>on</strong>taminants have been detected in samples of surface water,<br />

groundwater and even drinking water. A wide list of products that could generate important residues include<br />

analgesics and anti-inflammatory drugs, antibiotics, lipid regulators, psychiatric drugs, β-blockers, pesticides,<br />

veterinary drugs, etc. These substances are widely used and are the most ubiquitous in both surface waters<br />

and wastewaters. Knowledge of the characteristics of the compounds and their degradati<strong>on</strong>/transformati<strong>on</strong><br />

products (metabolites) is valuable informati<strong>on</strong> for the applicati<strong>on</strong> of predictive models in order to assess a better<br />

combinati<strong>on</strong> of water treatment processes.<br />

In almost every case m<strong>on</strong>itoring is focused <strong>on</strong> the parent compounds (original compound) but there is still a lack<br />

of data and informati<strong>on</strong> c<strong>on</strong>cerning the identificati<strong>on</strong> and characterizati<strong>on</strong> of degradati<strong>on</strong> products and n<strong>on</strong>target<br />

compounds. The absence of the parent c<strong>on</strong>taminants in finished drinking water and in raw water that serves<br />

as sources of drinking water treatment plants is not enough evidence to absolutely guarantee the absence of<br />

residual products. The chemistry of water treatment process is complex, and thorough experiments are needed<br />

in order to determine the characteristics of the chemical structures left at the end of the water treatment processes.<br />

Nowadays the water sector has the opportunity to utilize reliable chromatographic technologies which<br />

c<strong>on</strong>tribute with valuable informati<strong>on</strong> in order to help <strong>on</strong> the optimizati<strong>on</strong> of water treatment processes.<br />

Approach<br />

56 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Powerful analytical techniques such as liquid chromatography time of flight<br />

mass spectrometry (LC–TOF–MS), and others, capable of providing complementary<br />

informati<strong>on</strong> of what kind of chemical structures could be left at<br />

the end of the processes, are going to be used as suitable tools for obtaining<br />

the final structure assignment of a wide range of degradati<strong>on</strong> products and<br />

n<strong>on</strong>target compounds. Mixtures of different types of organic c<strong>on</strong>taminants<br />

in aqueous samples are going to be test in order to investigate the transformati<strong>on</strong>/degradati<strong>on</strong><br />

products (metabolites) due to different types of oxidati<strong>on</strong><br />

techniques applied. The identificati<strong>on</strong> and characterizati<strong>on</strong> of transformati<strong>on</strong>/<br />

degradati<strong>on</strong> products (metabolites) and their extent of toxicity are essential<br />

for water treatment assessment; and the gathering of informati<strong>on</strong> would be<br />

valuable for the applicati<strong>on</strong> of predictive models in order to assess a better<br />

combinati<strong>on</strong> of water treatment processes. Therefore, toxicity tests are<br />

also important to be c<strong>on</strong>duct in combinati<strong>on</strong> with the identificati<strong>on</strong> of the<br />

transformati<strong>on</strong> products.<br />

Results<br />

This project is <strong>on</strong> its initial part.<br />

Scientific Relevance<br />

The study of these degradati<strong>on</strong> products, using different complementary analytical<br />

techniques capable of elucidating new compound structures, would<br />

be an important asset <strong>on</strong> the identificati<strong>on</strong> of the characteristics and possible<br />

toxicological effects of degradati<strong>on</strong> products. This represents valuable<br />

informati<strong>on</strong> for the selecti<strong>on</strong> of the most c<strong>on</strong>venient combinati<strong>on</strong> of water<br />

treatment processes, for the degradati<strong>on</strong> of c<strong>on</strong>taminants and their efficient<br />

removal from drinking water sources.<br />

Social Relevance<br />

Populati<strong>on</strong> growth and rapid urbanizati<strong>on</strong> lead to high demand of water for<br />

human c<strong>on</strong>sumpti<strong>on</strong>; also the usage, reuse and scarcity of water resources.<br />

The need to supply safe drinking water becomes a challenge for the world<br />

water sector. Research c<strong>on</strong>cerning about the formati<strong>on</strong> of transformati<strong>on</strong>/<br />

degradati<strong>on</strong> products (metabolites) is of high social relevance for water treatment<br />

optimizati<strong>on</strong> and for the further use of the informati<strong>on</strong> <strong>on</strong> the differences<br />

<strong>on</strong> the physicochemical properties of the compounds studied. Every<br />

source of water is different taking into account its origin and an appropriate<br />

treatment of raw water is critical to achieve high-quality drinking water for<br />

c<strong>on</strong>sumers.<br />

Zahira E. Herrera Rivera<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> Management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 15 27 81 718<br />

Fax: +31 15 27 84 918<br />

e-mail: Z.E.HerreraRivera@<strong>TU</strong><strong>Delft</strong>.nl<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.44<br />

Start date: <strong>2008</strong><br />

Expected end date: 2012<br />

key words:<br />

Degradati<strong>on</strong> products, oxidati<strong>on</strong><br />

processes, chromatographic<br />

techniques, mass spectrometry,<br />

n<strong>on</strong>-target organic compounds,<br />

analysis<br />

cooperati<strong>on</strong> with other<br />

institutes:<br />

<strong>Water</strong>net, RIKILT<br />

research projects<br />

57


diPool; dutch innovative Pool<br />

advanced uv-based technology for Pool water treatMent<br />

Research objectives<br />

The research objective is to reduce the use of chemical disinfectants in public swimming pools. This can be<br />

d<strong>on</strong>e by combining alternative disinfecti<strong>on</strong> techniques with adapted water treatment in a new pool water treatment<br />

c<strong>on</strong>cept including aspects of hygienic c<strong>on</strong>trol of pool visitors. The goal is to have chemical disinfectant<br />

free swimming pool water for public swimming pools.<br />

Project outline<br />

Introducti<strong>on</strong><br />

The main disadvantage of chemically disinfected swimming pools is the formati<strong>on</strong> of disinfecti<strong>on</strong> by-products.<br />

Operating pool water treatment without chemical disinfecti<strong>on</strong> introduces new questi<strong>on</strong>s like:<br />

• Without chemical treatment biofilms will develop <strong>on</strong> surfaces; can these biofilms be c<strong>on</strong>trolled by cleaning?<br />

• Can these biofilms also be c<strong>on</strong>trolled with nutrient c<strong>on</strong>trol with different treatment steps?<br />

• Measuring the level of disinfectants is an easy way to determine the pool water quality in a chemically<br />

disinfected pool. How can the pool water quality be determined in a UV-disinfected pool?<br />

• Can the pool water quality be predicted in the coming 24 hours?<br />

• Pool hydraulics in chemically disinfected pools will quickly mix the dosed disinfectants over the pool c<strong>on</strong>tent,<br />

and as a result mix the bathers pollutants as well. Innovative pool hydraulics are necessary<br />

to remove bathers pollutants from the pool basin quickly.<br />

• Can we influence the bathing load from swimmers with special showers?<br />

• Can microbiological stability of the pool water be enhanced with special materials & coatings<br />

Approach<br />

Lab scale research will provide the knowledge <strong>on</strong> biofilm formati<strong>on</strong> and reducti<strong>on</strong> at swimming pool c<strong>on</strong>diti<strong>on</strong>s.<br />

During these lab tests, the influence of specific nutrients <strong>on</strong> the biofilm formati<strong>on</strong> and reducti<strong>on</strong> will be<br />

determined, as well as the influences of combined factors like cleaning and special materials. For <strong>on</strong>line c<strong>on</strong>trol<br />

of the pool water quality, a sensor will be developed based <strong>on</strong> UV-spectrum analysis. A c<strong>on</strong>trol unit will be<br />

developed which predicts the pool water quality in the coming 24 hours, based <strong>on</strong> the actual pool water quality,<br />

a predicti<strong>on</strong> of visitors in the coming 24 hours, the pool water treatment system and pool hydraulics. A new<br />

innovative hydraulic design will remove pollutants from the pool basin, in stead of mixing them. The influence of<br />

Figure 1 - Work packages of DIPOOL project<br />

58 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

Initial bathing load (mg/bather)<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

57%<br />

KMnO4usage<br />

60%<br />

DOC<br />

Parameter<br />

35%<br />

Urea<br />

41%<br />

Kjeldahl-N<br />

yes<br />

no<br />

% removal<br />

Bather<br />

showered?<br />

Figure 2 - Showered and n<strong>on</strong> showered<br />

bathing load


swimmers, mixing or stirring the pool water, has yet to be determined and will<br />

be part of this research. The bathing load of swimmers will be determined<br />

for different types of swimmers (toddlers, children and adults) as well as for<br />

different activities of the swimmers (leisure, educati<strong>on</strong>, competiti<strong>on</strong>, recreati<strong>on</strong>).<br />

A sensor to determine the bather’s pers<strong>on</strong>al hygiene will be developed.<br />

The sensor will be mounted in the showers drain, giving the latest accurate<br />

informati<strong>on</strong> (even before the bathers enter the pool) to the pool water c<strong>on</strong>trol<br />

unit, to predict the effect <strong>on</strong> the pool water quality.<br />

Results<br />

First experiments with a special shower to determine the bather’s pers<strong>on</strong>al<br />

hygiene showed that even a short shower of 15-20 sec<strong>on</strong>ds reduces pollutants<br />

<strong>on</strong> the bather’s skin with 35-60% (see graph). Wearing a bathing cap<br />

will reduce the pollutants to 79%. Male bathers seem to have a higher Ureaload<br />

than female bathers. And l<strong>on</strong>g hair has a rising effect <strong>on</strong> KMnO4-load.<br />

Pers<strong>on</strong>al hygiene factors like hours since last shower also had an effect <strong>on</strong><br />

bathing load, as expected. More results are expected later in 2009.<br />

Scientific relevance<br />

Current pool water treatment relies <strong>on</strong> chemical disinfecti<strong>on</strong>. The development<br />

of a pool water treatment with alternative disinfecti<strong>on</strong> techniques is a<br />

new field of expertise. The influence of the dynamic bathing load <strong>on</strong> the water<br />

quality must be kept in c<strong>on</strong>trol. Foreseeable and unforeseeable effects of<br />

alternative disinfecti<strong>on</strong> will be closely examined during this project. Creating<br />

stable microbial pool water without the use of chemical disinfectants can lead<br />

to new viewpoints for comparable water treatment processes.<br />

Social relevance<br />

Since the early ages bathing and swimming play an important role in communities.<br />

The use of water basins changed over the ages from religious via<br />

hygienic to more recreati<strong>on</strong>al and educati<strong>on</strong>al purposes. During this development<br />

bathing and swimming has always been a social activity. Complaints<br />

about “swimming pool odor” and eye irritati<strong>on</strong> are comm<strong>on</strong> reas<strong>on</strong>s why<br />

nowadays some people never visit public swimming pools. UV-disinfected<br />

swimming pools will give this group of people the opportunity of frequent<br />

swimming without complaints about disinfecti<strong>on</strong> by-products.<br />

Literature<br />

•<br />

M.G.A. Keuten, L.L.M. Keltjens, D. Traksel, J.C. van Dijk Traditi<strong>on</strong>al and future<br />

pool water treatment in relati<strong>on</strong> to DBP’s Abstract & presentati<strong>on</strong> for 2nd Pool<br />

and Spa C<strong>on</strong>ference 14th to 16th March 2007 in Munich<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 15 27 83 539<br />

Fax: +31 15 27 84 918<br />

e-mail: m.g.a.keuten@tudelft.nl<br />

www.drinkwater.tudelft.nl<br />

www.bt.tudelft.nl/ebt<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

Maarten Keuten<br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.44<br />

Prestudy Started: Feb 2006<br />

Start date Project: Jan 2009<br />

Expected end date: 2012<br />

key words:<br />

Pool water treatment, alternative<br />

disinfecti<strong>on</strong><br />

cooperati<strong>on</strong> with other<br />

institutes:<br />

Department of Envir<strong>on</strong>mental Biotechnology,<br />

faculty Apllied Sciences,<br />

<strong>TU</strong> <strong>Delft</strong>, Hellebrekers Technieken,<br />

Van Remmen UV techniek,<br />

AkzoNobel, Coram Internati<strong>on</strong>al,<br />

Sportf<strong>on</strong>dsen Nederland<br />

research projects<br />

59


develoPMent of an envir<strong>on</strong>Mental iMPact assessMent (eia) and<br />

decisi<strong>on</strong> suPPort systeM (dss) for seawater desalinati<strong>on</strong> Plants<br />

Research objectives<br />

The PhD research project has the objective to develop and validate a systematic and standardized methodology<br />

for envir<strong>on</strong>mental impact assessment (EIA) applicable to large seawater reverse osmosis (SWRO) projects,<br />

including a decisi<strong>on</strong> support system based <strong>on</strong> multi-criteria analysis (MCA).<br />

Project outline<br />

Introducti<strong>on</strong><br />

Desalinati<strong>on</strong> of seawater is a coastal-based industry. Single reverse osmosis facilities currently produce more<br />

than 200,000 m3 and single distillati<strong>on</strong> plants up to 1.5 milli<strong>on</strong> m3 of water per day. The trend c<strong>on</strong>tinues towards<br />

even larger facilities. The increases in desalinati<strong>on</strong> activity in many sea regi<strong>on</strong>s, such as the Mediterranean, and<br />

the growing number of large facilities raise c<strong>on</strong>cerns over potential negative impacts <strong>on</strong> the envir<strong>on</strong>ment. Key<br />

issues in the permitting process of new facilities, for instance, are the c<strong>on</strong>centrate and chemical discharges to<br />

the sea and energy use. Envir<strong>on</strong>mental impact assessment (EIA) studies are widely recognised as a suitable<br />

approach for identifying, evaluating and mitigating potential impacts of development projects <strong>on</strong> the envir<strong>on</strong>ment.<br />

However, a systematic and standardized EIA approach for large SWRO projects is lacking so far. The<br />

existing general EIA guidance documents do not cover the necessary details that are required for carrying out<br />

an EIA for a specific desalinati<strong>on</strong> project, such as envir<strong>on</strong>mental m<strong>on</strong>itoring protocols. Decisi<strong>on</strong>-makers often<br />

experience difficulties in handling the large amounts of complex informati<strong>on</strong> produced by the EIA studies in a<br />

c<strong>on</strong>sistent and structured way. The development and validati<strong>on</strong> of a systematic methodology for EIA and decisi<strong>on</strong><br />

making applicable to large desalinati<strong>on</strong> projects is a logical step in dealing with these problems.<br />

Approach<br />

A range of distinct EIA methods and techniques are available, which will be revised and developed into a single<br />

integrated assessment and decisi<strong>on</strong> making framework for desalinati<strong>on</strong> projects. The PhD will incorporate<br />

results and recommendati<strong>on</strong>s of the envir<strong>on</strong>mental working group from the World Health Organizati<strong>on</strong> (WHO)<br />

project “Desalinati<strong>on</strong> for Safe <strong>Water</strong> Supply” (2004-2007). The work group was chaired by Sabine Lattemann<br />

and developed a methodological approach as well as guidance c<strong>on</strong>cerning the scope and c<strong>on</strong>tents of EIA studies<br />

for desalinati<strong>on</strong> projects. Forthcoming activities of the PhD project will include the elaborati<strong>on</strong> of m<strong>on</strong>itoring<br />

protocols for baseline and operati<strong>on</strong>al m<strong>on</strong>itoring, and the development of a decisi<strong>on</strong> support system based<br />

<strong>on</strong> multi-criteria analysis (MCA). It is planned to verify the PhD results by case studies, either by comparis<strong>on</strong><br />

of existing EIA studies from different projects in terms of scope, c<strong>on</strong>tents, and methodology, and/or by applying<br />

the results to a specific desalinati<strong>on</strong> project at the end of the PhD.<br />

Relevance<br />

Other l<strong>on</strong>g-existing industries have gained a certain record of and routine in EIAs over the years. A comparable<br />

‘comm<strong>on</strong>’ experience and standardizati<strong>on</strong> of methods, however, has not evolved in the field of desalinati<strong>on</strong> yet.<br />

The proposed research project is of scientific and social relevance insofar as it may provide a science-based<br />

reference source for c<strong>on</strong>sultants assigned with the task of carrying out an EIA study for a seawater desalinati<strong>on</strong><br />

project. Furthermore, the proposed research project may help to establish standards and thereby improve<br />

the quality and comparability of EIA results.<br />

60 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Literature<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Lattemann, S. & M.D. Kennedy, G. Amy & J. Schippers (in review): Global<br />

Desalinati<strong>on</strong> Situati<strong>on</strong>, In: I. Escobar & A.I. Schäfer, Sustainable <strong>Water</strong> for the<br />

Future - <strong>Water</strong> Recycling versus Desalinati<strong>on</strong>, Elsevier Science<br />

Lattemann, S. (in review): Protecting the Marine Envir<strong>on</strong>ment, In: Cippolina et<br />

al., Seawater Desalinati<strong>on</strong>, Springer.<br />

Lattemann, S. & T. Höpner (<strong>2008</strong>): Impacts of Seawater Desalinati<strong>on</strong> Plants<br />

<strong>on</strong> the Marine Envir<strong>on</strong>ment of the Gulf, In: A. Abuzinada, H.-J. Barth, F. Krupp,<br />

B.Böer and T. Abdelsalaam (Eds.), Protecting the Gulf’s Marine Ecosystems<br />

from Polluti<strong>on</strong>, Birkhäuser Verlag, Switzerland.<br />

S. Lattemann & T. Höpner (2007): Desalinati<strong>on</strong> of Seawater, In: Lozan, Graßl,<br />

Hupfer, Menzel & Schönwiese (Eds.), Global Change: Enough <strong>Water</strong> for all?<br />

Universität Hamburg, 384 S.<br />

S. Lattemann & T. Hoepner (2003): Seawater Desalinati<strong>on</strong> ― Impacts of Brine<br />

and Chemical Discharges <strong>on</strong> the Marine Envir<strong>on</strong>ment, Desalinati<strong>on</strong> Publicati<strong>on</strong>s,<br />

L’Aquila, Italy, 142 p.<br />

Sabine Latteman<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

UNESCO-IHE<br />

Urban <strong>Water</strong> Supply and Sanitati<strong>on</strong><br />

Tel.: +49 30 74 78 9015<br />

Fax: +31 15 21 22 921<br />

e-mail: sabine.lattemann@icbm.de<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

UNESCO-IHE<br />

Westvest 7<br />

2611 AX <strong>Delft</strong><br />

visiting address:<br />

UNESCO-IHE<br />

Westvest 7<br />

2611 AX <strong>Delft</strong><br />

Start date: 2007<br />

Expected end date: 2011<br />

key words:<br />

Reverse osmosis<br />

research projects<br />

61


ultrafiltrati<strong>on</strong> fouling c<strong>on</strong>trol: backwashing with<br />

deMineralized water<br />

Research objectives<br />

1. find out the theoretical story of backwashing with demineralized water<br />

2. make this technique mature and apply it in industrial world<br />

Project outline<br />

Introducti<strong>on</strong><br />

ultrafiltrati<strong>on</strong> has been used widely in many fields: drinking water producti<strong>on</strong> and wastewater treatment. However,<br />

the obstacle hindering this technique is fouling of membrane. Without any pretreatment, the membrane will be<br />

fouled easily, so some pretreatments have been introduced, such as coagulati<strong>on</strong>, softening and i<strong>on</strong> exchange.<br />

In the Netherlands, coagulati<strong>on</strong> is a comm<strong>on</strong> pretreatment step for the ultrafiltrati<strong>on</strong>. Its effectiveness <strong>on</strong> ultrafiltrati<strong>on</strong><br />

fouling c<strong>on</strong>trol is promising, but the problem of this technique is the waste stream with a high metal<br />

c<strong>on</strong>centrati<strong>on</strong> during the back washing of ultrafiltrati<strong>on</strong>. Some chemistry companies have encountered the<br />

discharging problem of waste stream. Therefore, in this PhD project, another fouling c<strong>on</strong>trol technique will be<br />

investigated: back washing with RO permeate. Our previous experimental results have shown that back washing<br />

with demineralised water is more efficient than UF permeate, which is also identical with the results from<br />

Kiwa <strong>Water</strong> Research. Back washing with demineralised water has the following advantages:<br />

• no coagulant dosage<br />

• no discharge of backwash waste stream with high c<strong>on</strong>centrated ir<strong>on</strong>/aluminium<br />

Approach<br />

In order to reach the above two goals, experiments of three scales will be carried out:<br />

• fundamental scale<br />

• bench scale<br />

• pilot scale<br />

The fundamental scale experiments will be emphasized <strong>on</strong> the mechanism investigati<strong>on</strong>; while the bench scale<br />

and pilot scale focus <strong>on</strong> the technique optimizati<strong>on</strong> and l<strong>on</strong>g-term c<strong>on</strong>sistency.<br />

Results and discussi<strong>on</strong><br />

Previous results have shown the<br />

impact of calcium and sodium in<br />

backwash water <strong>on</strong> the fouling<br />

of the ultrafiltrati<strong>on</strong> membranes.<br />

We found that fouling c<strong>on</strong>trol<br />

efficiency deteriorate with the<br />

increase of calcium and sodium<br />

c<strong>on</strong>centrati<strong>on</strong> in backwash water.<br />

That is probably because their<br />

presences in the backwash water<br />

maintain the charge screening<br />

effect and calcium complexati<strong>on</strong><br />

with the membrane and the NOM.<br />

62 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

Figure 1 - TMP as a functi<strong>on</strong> of time for three types of backwash water (impact of<br />

organic matter)


Table 1 - Streaming potential of new and fouled membrane (backwash with UF<br />

permeate)<br />

Table 2 - Streaming potential of new and fouled membrane (backwash with demineralized<br />

water)<br />

Recently, the impact of organic matter in backwash water has been investigated.<br />

Figure 1 show the TMP as a functi<strong>on</strong> of time for three backwash<br />

soluti<strong>on</strong>s: permeate, demineralised water and permeate without i<strong>on</strong>s. It is<br />

clear that organic matter itself in backwash water does not influence the<br />

fouling c<strong>on</strong>trol efficiency. However, if there were cati<strong>on</strong>s and organic matter<br />

in backwash soluti<strong>on</strong>, it is possible for the organic matter to absorb in the<br />

membrane with the help of cati<strong>on</strong>s during backwash.<br />

The impact of backwash water <strong>on</strong> the charge of membrane was also investigated.<br />

Table 1 and 2 show the streaming potentials of membrane before<br />

and after the fouling experiment. As can be seen in tables, back washing<br />

with permeate makes the membrane less negatively charged, while back<br />

washing with demineralised water maintains the original negative charge<br />

of membrane.<br />

Scientific relevance<br />

Recently, many researchers focus <strong>on</strong> the effect of cati<strong>on</strong> <strong>on</strong> the membrane<br />

fouling, but most of them emphasize <strong>on</strong> the calcium removal before membrane<br />

filtrati<strong>on</strong>. This project also focuses <strong>on</strong> the effect of cati<strong>on</strong>, but we<br />

emphasize <strong>on</strong> the calcium free c<strong>on</strong>diti<strong>on</strong> in backwash water.<br />

Social relevance<br />

Nowadays, many UF treatment plants use coagulati<strong>on</strong> as pre-treatment, but<br />

they have to face the discharge problem of backwash waste stream, which<br />

c<strong>on</strong>tains a high coagulant c<strong>on</strong>centrati<strong>on</strong>. Therefore, we try to develop this<br />

technique to replace the coagulati<strong>on</strong> pre-treatment.<br />

Literature<br />

•<br />

•<br />

H<strong>on</strong>g, S. and M. Elimelech, Chemical and physical aspects of natural organic<br />

matter (NOM) fouling of nanofiltrati<strong>on</strong> membranes. Journal of Membrane Science,<br />

1997(132): p. 159-181.<br />

S. G. J. Heijman, S.G.J., S. Li, and J.C.v. Dijk, Treatment c<strong>on</strong>cept for future<br />

drinking water producti<strong>on</strong>. the AWWA <strong>Water</strong> Quality and Technology C<strong>on</strong>ference<br />

2006, Denver, 2006.<br />

research projects<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel. : +31 15 27 81 903<br />

Fax : +31 15 27 84 918<br />

e-mail : S.Li@<strong>TU</strong><strong>Delft</strong>.nl<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.51<br />

Start date: Sep 2006<br />

Expected end date: Sep 2010<br />

key words:<br />

Ultrafiltrati<strong>on</strong>, backwashing,<br />

zeta potential<br />

Sheng Li<br />

cooperati<strong>on</strong> with other institutes:<br />

Hatenboer <strong>Water</strong>, Norit, Evides,<br />

Brabant <strong>Water</strong><br />

63


water Quality deteriorati<strong>on</strong> and c<strong>on</strong>trol Police in drinking<br />

water distributi<strong>on</strong> systeM<br />

Research objectives<br />

General:<br />

The main objective of this research is to see which comp<strong>on</strong>ents of particles c<strong>on</strong>tribute to water quality deteriorati<strong>on</strong><br />

and find practical ways to improve the water quality at the c<strong>on</strong>sumers’ tap.<br />

Specific:<br />

1. To devolop and use new prec<strong>on</strong>centrati<strong>on</strong> tools (MuPFiS) as sample method, together with ICP-MS,<br />

microscopy, particle counters and other analysis methods to get more informati<strong>on</strong> about particulate matters<br />

inside the distributi<strong>on</strong> pipelines.;<br />

2. To identify the composti<strong>on</strong> of particulate matters in different types of water and their c<strong>on</strong>tributi<strong>on</strong> to the<br />

water quality detriorati<strong>on</strong>, including physical,chemical and biological processes;<br />

3. To develop new policies to c<strong>on</strong>trol the water deteriorati<strong>on</strong> and reduce particle sedimentati<strong>on</strong> during both<br />

treatment and distributi<strong>on</strong>;<br />

4. To compose a model which can predict water quality deteriorati<strong>on</strong> in different parts of distributi<strong>on</strong> systems,<br />

not <strong>on</strong>ly deteriorati<strong>on</strong> in time but also al<strong>on</strong>g the distance.With the model it should be possible to decide<br />

when to flush the main and to calculate the water quality.<br />

Project outline<br />

Introducti<strong>on</strong><br />

Although the water quality delivered by a treatment<br />

plant is supposed to be c<strong>on</strong>stant of quality (and at<br />

least within the drinking water quality specificati<strong>on</strong>s),<br />

water quality at the c<strong>on</strong>sumer tap may vary (Matsui<br />

et al., 2007, Hamilt<strong>on</strong> et al., 2006, Prevost et al.,<br />

2005). Usually, water in c<strong>on</strong>sumer tap has a lower<br />

quality than the original treated water, and in extreme<br />

cases the water quality deteriorates and even gets<br />

under the drinking water specificati<strong>on</strong>s. All due to<br />

the complicate processes occuring inside the pipelines.<br />

Approach<br />

A new tool, called Multiple Particulate Filtrati<strong>on</strong> System (MuPFiS), was developed<br />

as a new prec<strong>on</strong>centrati<strong>on</strong> method. MuPFiS is easy to take and sufficient<br />

particulate material can be collected in a short time. Having four filters<br />

running in parallel the system offers the following advantages:<br />

• running multiple test in parallel at the same time permits to analyze different<br />

parameters (TSs, VSS, elemental analysis) of the same water<br />

sample<br />

• performing tests <strong>on</strong>e after another in different locati<strong>on</strong>s in the distributi<strong>on</strong><br />

systems allows to obtain an <strong>on</strong>-line m<strong>on</strong>itoring of the suspended<br />

particles in water.<br />

64 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Results<br />

This project is still <strong>on</strong> its initial part. First series of experiments have been<br />

d<strong>on</strong>e with MuPFiS.Interesting results are obtained with this prec<strong>on</strong>centrati<strong>on</strong><br />

appratus and it has proven to be an efficient tool to sample particulate<br />

matter from distributi<strong>on</strong> system.<br />

Scientific relevance<br />

The processes in the drinking water distributi<strong>on</strong> system attract more and<br />

more attenti<strong>on</strong> from water companies .Both the laboratory and field experiments<br />

give insight into water quality deteriorati<strong>on</strong> and discolourati<strong>on</strong> phenomena.<br />

Particulate matter has an important infulence <strong>on</strong> the water quality<br />

in the distributi<strong>on</strong> system and it is the main reas<strong>on</strong> for the discolourati<strong>on</strong>. The<br />

hydrodynamic behavior of particles, the behavior of particles in distributi<strong>on</strong><br />

system and characteristic of paticles were well studied in recent years.Also,<br />

many research <strong>on</strong> biofilm formati<strong>on</strong>, its characteristic and their influence<br />

<strong>on</strong> water quality have been c<strong>on</strong>ducted. But it is still necessary to get more<br />

detailed informati<strong>on</strong> about the <strong>on</strong>line m<strong>on</strong>itoring of the water deteriorati<strong>on</strong><br />

in distributi<strong>on</strong> systems and the informati<strong>on</strong> about the c<strong>on</strong>tributi<strong>on</strong> of different<br />

compounds as well as the biological aspect of the particles in different<br />

types of water and distributi<strong>on</strong> systems for water deteriorati<strong>on</strong>. At the same<br />

time new comtrol policies are required to c<strong>on</strong>trol the deteriorati<strong>on</strong> and to<br />

maintain save and healthy drinking water.<br />

Social relevance<br />

The deteriorati<strong>on</strong> of water quality in distributi<strong>on</strong> system is causing a lot<br />

of complaints all over the world. Visible particles seriously undermine the<br />

customer’s faith in drinking water. Also water quality deteriorati<strong>on</strong> can be<br />

a threat to public health before particles are visible and the water become<br />

discoloured. So it is important to deal with the visible problem as well as the<br />

unvisible threat. More research in this field to maintain high quality drinking<br />

water and keep the water quality for the c<strong>on</strong>sumers’ tap is necessary.<br />

Gang Liu<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel. : +31 15 27 83 539<br />

Fax : +31 15 27 84 918<br />

e-mail : G.Liu-1@<strong>TU</strong><strong>Delft</strong>.nl<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.44<br />

Start date: Nov <strong>2008</strong><br />

Expected end date: Nov 2012<br />

key words:<br />

Particles, WQDS, biological<br />

analyses<br />

cooperati<strong>on</strong> with other institutes:<br />

Oasen, Duinwaterbedrijf Zuid-Holland,<br />

Chinese Scholarship Counsil<br />

research projects<br />

65


Micro Pollutant reMoval by river bank filtrati<strong>on</strong><br />

Research objectives<br />

The main objective of this study is to understand and to develop tools to utilize the multi-objectives water treatment<br />

potential of riverbank filtrati<strong>on</strong> (RBF), especially under extreme water quality c<strong>on</strong>diti<strong>on</strong>s (e.q., wastewater-impacted<br />

drinking water). This study will mainly focus <strong>on</strong> the removal of bulk organic matter, endocrine<br />

disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs). This study aims to the following<br />

specific objectives: an evaluati<strong>on</strong> of the changes in the character of bulk organic matter up<strong>on</strong> soil column passage<br />

to simulate the impact of wastewater effluent during RBF, an understanding of the fundamental abiotic/<br />

biotic interacti<strong>on</strong>s of endocrine disrupting compounds during RBF, an investigati<strong>on</strong> of the fate and transport<br />

of selected PhACs during RBF.<br />

Figure 1 - Results of LC-OCD scans<br />

Project outline<br />

Results<br />

The fate of EfOM and NOM through RBF was investigated by c<strong>on</strong>ducting laboratory-scale soil column studies<br />

and using the state of the art analytical tools. The following c<strong>on</strong>clusi<strong>on</strong>s can be drawn from this study:<br />

• The characteristics of bulk organic matter in NOM-rich surface water (<strong>Delft</strong> canal water) and wastewater<br />

effluent derived surface water were different, however, the residual organic matter characteristics after<br />

soil passage were similar and overlap each other through soil column experiment.<br />

• The fluorescence analysis <strong>on</strong> both SC1 and SC2 filtrates revealed the reducti<strong>on</strong> of humic like materials<br />

was not significant after soil passage. No protein-like material was observed.<br />

• Results of LC-OCD/OND depicted four peaks that are characteristics of organic carb<strong>on</strong>: biopolymers<br />

(polysaccharides), humic substance like material, building blocks of humic substances, and low MW acids.<br />

LC-OCD/OND showed an almost complete removal of biopolymers believed to be polysaccharides, however,<br />

other three fracti<strong>on</strong>s were not significantly removed.<br />

• 50% of total DOC removal with significant reducti<strong>on</strong> of DO was observed in the top 50 cm of the soil columns.<br />

This was presumably due to biodegradati<strong>on</strong> of organic matter by the biomass associated with the<br />

sand which was determined by ATP c<strong>on</strong>centrati<strong>on</strong>s and heterotrophic plate count (HPC).<br />

66 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Literature<br />

•<br />

•<br />

•<br />

•<br />

Maeng S.K., Sharma, S.K, Magic-Knezev .A, Amy, G, (<strong>2008</strong>) Fate of effluent<br />

organic matter (EfOM) and natural organic matter (NOM) through riverbank fil-<br />

trati<strong>on</strong>, water science and technology, V5(12), pp1999-2007<br />

Maeng S.K., Sharma, S.K, Magic-Knezev .A, Amy, G, (<strong>2008</strong>) Fate of effluent<br />

organic matter (EfOM) and natural organic matter (NOM) through riverbank fil-<br />

trati<strong>on</strong>, Proc. IWA World <strong>Water</strong> C<strong>on</strong>gress, 7-13 September, Vienna, Austria<br />

Sung K. Maeng<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

UNESCO-IHE<br />

Urban <strong>Water</strong> Supply and Sanitati<strong>on</strong><br />

Tel. : +31 15 21 51 865<br />

Fax : +31 15 21 22 921<br />

e-mail : andrew.maeng@gmail.com<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

UNESCO-IHE<br />

Westvest 7<br />

2611 AX <strong>Delft</strong><br />

visiting address:<br />

UNESCO-IHE<br />

Westvest 7<br />

2611 AX <strong>Delft</strong><br />

Start date: Jun 2006<br />

Expected end date: Jun 2010<br />

key words:<br />

Riverbank filtrati<strong>on</strong>, Bulk organic<br />

matter, PhACs (Pharmaceutical<br />

Maeng S.K., Sharma, S.K, Magic-Knezev .A., Amy, G, (<strong>2008</strong>) Characterizati<strong>on</strong> of active compounds),<br />

bulk organic matter up<strong>on</strong> soil column passage to simulate the impact of waste- QSAR(Quantitative Structure Activity<br />

Relati<strong>on</strong>ship)<br />

water effluent during riverbank filtrati<strong>on</strong>, Proc. Soil & <strong>Water</strong> symposium, June<br />

9-10, Zeist , The Netherlands<br />

Bagoth S, Maeng S.K , Salinas S.G, Rodríguez, R<strong>on</strong>teltap M, Sharma S,<br />

Kennedy M, and Amy G,(<strong>2008</strong>) An Urban <strong>Water</strong> Cycle Perspective of Natural<br />

Organic Matter (NOM): NOM in <strong>Drinking</strong> <strong>Water</strong>, Wastewater, Effluent, Storm<br />

water, and Seawater, Proc. Natural Organic Matter Research from Source to<br />

Tap 2-4 September, Bath, UK<br />

research projects<br />

67


Research objectives<br />

68 I<strong>on</strong>izati<strong>on</strong> Dissociati<strong>on</strong> of Dissoluti<strong>on</strong> of<br />

<str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

hardness and Ph in drinking water<br />

The research objective is to give an overview of all aspects related to hardness and pH in drinking water. This<br />

overview is to be used as course material in the <strong>TU</strong> <strong>Delft</strong> MSc educati<strong>on</strong> and OpenCourseWare programs.<br />

The main aspects are: origin of hardness, chemistry of hardness and pH, health, envir<strong>on</strong>ment, corrosi<strong>on</strong>, scaling,<br />

optimal water compositi<strong>on</strong>, water treatment processes to obtain the optimal compositi<strong>on</strong>. These different<br />

aspects will be addressed within separate study modules.<br />

Project outline<br />

Introducti<strong>on</strong><br />

During the past 20 years softening has been incorporated into nearly all Dutch drinking water treatment plants<br />

originally producing water with a hardness above 2.5 mmol/l (Ca + Mg). The primary objective for softening is<br />

to reduce the uptake of heavy metals (like lead and copper) from the distributi<strong>on</strong> pipes, with its drawback <strong>on</strong><br />

public health and the envir<strong>on</strong>ment. This metal uptake reducti<strong>on</strong> can be achieved by distributing drinking water<br />

at a high pH (between 7.8 and 8.3). This higher pH requires softening, i.e. calcium removal, at water treatment<br />

plants. The benefits from softening include the reduced scaling in household apparatus and the lower c<strong>on</strong>sumpti<strong>on</strong><br />

of detergents for laundry. The cost savings are estimated to exceed the additi<strong>on</strong>al costs for softening at<br />

water treatment plants, resulting in overall ec<strong>on</strong>omic benefits for the c<strong>on</strong>sumers. Moreover, the supply of softened<br />

water is highly appreciated by the c<strong>on</strong>sumers and prevents the use of water treatment units in homes<br />

with its health, envir<strong>on</strong>mental and ec<strong>on</strong>omic drawbacks. The benefits of softening have been recognized by<br />

the Dutch government, reflected by very strict water quality regulati<strong>on</strong>s, unique in the world. In 2006 some<br />

1,000 violati<strong>on</strong>s of the water quality regulati<strong>on</strong>s were observed at the drinking water producti<strong>on</strong> plants (0.3%<br />

of all water quality tests). Some 85% of these violati<strong>on</strong>s were hardness- and pH-related, and mainly caused<br />

by improper operati<strong>on</strong> and/or process c<strong>on</strong>trol. This points to the need for a better understanding of the water<br />

quality aspects related to hardness and pH.<br />

The increase in water demand due to worldwide populati<strong>on</strong> growth and the more restrictive drinking water quality<br />

requirements will require more extensive water treatment processes including (seawater) desalinati<strong>on</strong>. This<br />

is already reflected in an increase in the total installed desalinati<strong>on</strong> capacity all over the world. Desalinati<strong>on</strong><br />

will produce water with zero hardness. This water will be unsuitable for distributi<strong>on</strong> in pipes because of the<br />

lack of its buffering capacity and its corrosive properties. This c<strong>on</strong>straint will require dosing of hardness and,<br />

in particular, bicarb<strong>on</strong>ates. For this reas<strong>on</strong>, the minimal hardness and the methods to achieve this are receiving<br />

increased attenti<strong>on</strong> from internati<strong>on</strong>al drinking water experts.<br />

Relevant chemistry Optimal c<strong>on</strong>diti<strong>on</strong> <strong>Water</strong> treatment processes<br />

CO2 RQ<br />

H 2O<br />

K w<br />

OH -<br />

+ H +<br />

Carb<strong>on</strong> dioxide<br />

exchange with<br />

atmosphere<br />

of water<br />

H 2O + CO 2<br />

Hydrati<strong>on</strong> of<br />

carb<strong>on</strong> dioxide<br />

carb<strong>on</strong>ic acid<br />

CO 2<br />

CO 2<br />

K H<br />

H2CO3 H<br />

CaCO3 (s)<br />

+<br />

-<br />

+ HCO3 2 H +<br />

2-<br />

2-<br />

+ CO3 CO3 + Ca 2+<br />

Kh Ka Ka1 Ka2 Ks Dissoluti<strong>on</strong> of<br />

carb<strong>on</strong> dioxide<br />

calcium carb<strong>on</strong>ate<br />

atmosphere<br />

gas<br />

water<br />

solid


Approach<br />

In this research project the extensive literature <strong>on</strong> this subject will be col-<br />

lected and presented in practical guidelines. Much of the previous research<br />

was <str<strong>on</strong>g>report</str<strong>on</strong>g>ed in the Dutch language and has apparently received insuffi-<br />

cient internati<strong>on</strong>al attenti<strong>on</strong>. This lack of attenti<strong>on</strong> has nearly resulted in<br />

additi<strong>on</strong>al water quality regulati<strong>on</strong>s from the World Health Organizati<strong>on</strong><br />

(WHO), an acti<strong>on</strong> which would obstruct the <strong>on</strong>going softening practices in<br />

the Netherlands and their beneficial results. Moreover, additi<strong>on</strong>al research<br />

will be undertaken to further substantiate the practical guidelines. In this<br />

respect more research is needed to know whether the requirement for SI<br />

(-0.2


MultiPle water reuse. sustainable design without PreciPitati<strong>on</strong><br />

based <strong>on</strong> a new P-index.<br />

Research objectives<br />

This research project is aimed to identify, based <strong>on</strong> thermodynamics, the fundamental differences of the quality<br />

of water per comp<strong>on</strong>ent in terms of mass flow and pH when water is re-used many times in open systems<br />

divided over the three phases gas, water and solids.<br />

Project outline<br />

Introducti<strong>on</strong><br />

Since most water applicati<strong>on</strong>s have their own unique specificati<strong>on</strong><br />

to guarantee effective local usage, most waters are<br />

<strong>on</strong>ly used <strong>on</strong>ce. This general behavior puts the scarce water<br />

sources as well as the receiving biotopes more and more under<br />

water stress. To enhance a more sustainable water usage a<br />

better understanding of the effect of the physical properties<br />

of each comp<strong>on</strong>ent <strong>on</strong> the performance at any unique applicati<strong>on</strong><br />

is needed.<br />

Approach<br />

The research is performed primarily with existing theoretical<br />

tools like mass and heat transfer relati<strong>on</strong>ship as functi<strong>on</strong> of flow directi<strong>on</strong> like already applied in the process<br />

technology for heat exchangers and distillati<strong>on</strong> columns. The properties for each comp<strong>on</strong>ent between the two<br />

compartments will be expressed as free energy. This makes a relati<strong>on</strong>ship with pH also possible.<br />

top<br />

m1.C1 m1.C1<br />

Rcycle Rcycle . m2.C2 m2.C2<br />

Results<br />

A special case are atmospheric open water systems since air is globally almost c<strong>on</strong>stant. The main three formulas<br />

for describing for example the solubility and precipitati<strong>on</strong> of hardness as well as the expected pH, in<br />

an open system like cooling water or a sewer in c<strong>on</strong>tact with normal air c<strong>on</strong>taining 10-3,4 bar carb<strong>on</strong> dioxide<br />

then become straightforward:<br />

pH-equilibrium - = pH = 11.3 – p{excess cati<strong>on</strong>s} = 11.3 – p{HCO }<br />

e 3<br />

pH-saturati<strong>on</strong> = pH = 6.6 + ½pCa<br />

s<br />

pH-precipitati<strong>on</strong> = pH p = 7.1 + ½pCa<br />

pH p example = 8.1 for instance for 400 mg.L -1 Ca (or: pCa = 2)<br />

70 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

K KHenry Henry<br />

CO 2 (g)<br />

CO 2 (aq) H H2CO 2CO 3 (aq)<br />

Metal excess<br />

Mg 2+<br />

Mg 2+<br />

K +<br />

K +<br />

Na +<br />

Na +<br />

Ca 2+<br />

Ca 2+<br />

= equilibrium<br />

Ratio gas to liquid massflow<br />

CaCO 3<br />

m4.C4 m4.C4 Counter-current<br />

(m1 (m1 – m2) m4.C4 m4.C4<br />

(m1 (m1 – m2)<br />

Cx Cx<br />

Vs Vs<br />

C2 C2<br />

C4 C4<br />

C3 C3<br />

m2.C2 m2.C2<br />

m3.C3 m3.C3<br />

bottom<br />

top<br />

m1.C1 m1.C1<br />

Cx Cx<br />

Vs Vs<br />

Rcycle Rcycle . m2.C2 m2.C2<br />

C2 C2<br />

C4 C4<br />

K 1<br />

HCO 3<br />

- +<br />

+ H<br />

K 2<br />

2- 2- +<br />

CO 3 + 2H<br />

C3 C3<br />

m2.C2 m2.C2<br />

Gas phase<br />

Liquid phase<br />

Solid phase<br />

Counter-current<br />

m3.C3 m3.C3<br />

bottom


P-index = (α + β.pM) – pH e α & β functi<strong>on</strong> of free energy<br />

P-index < 0 simultaneously scale and rapid under deposit corrosi<strong>on</strong><br />

P-index > 0 no scale; <strong>on</strong>ly slow scattered corrosi<strong>on</strong><br />

Other gases then carb<strong>on</strong> dioxide can be taken into account too like amm<strong>on</strong>ia,<br />

halides hypohalous acid. C<strong>on</strong>sequently using these chemical thermodynamic<br />

principles expressed as a functi<strong>on</strong> of pH for open systems enhances the<br />

duplicatability of successful water reuse projects in more areas.<br />

The classical indexes like Langelier Saturati<strong>on</strong> Index and Ryznar Stability<br />

Index are not used in this research since these indexes were originally developed<br />

to describe <strong>on</strong>ly closed systems. They are therefore not applicable for<br />

(multiple) water reuse, but still misrepresented randomly.<br />

Scientific relevancy<br />

The fundamental thermodynamic basis will be integrated to predict more<br />

accurate the equilibrium and mass flow per phase per comp<strong>on</strong>ent under different<br />

physical circumstances to enhance multi water re-use and by doing<br />

so the sustainability and protecti<strong>on</strong> of scarce water sources and receiving<br />

biotopes.<br />

Social relevancy<br />

If all industries in the vicinity of villages and cities reused household wastewater<br />

in the future, the world would be a step closer to diminishing severe<br />

water shortages for clean drinking water and to improving the sewer-pipe<br />

system for every world citizen. The proposed chemical thermodynamics<br />

and the P-index approach for predicting quality and technological risk management<br />

will be of great help for water reuse implementati<strong>on</strong>. The close<br />

cooperati<strong>on</strong> between the public and private stakeholders involved will be an<br />

essential step towards closing the water loop in any regi<strong>on</strong>.<br />

Literature<br />

•<br />

•<br />

Paping L.L.M.J., Groot C.K., Boks P.A. de, Agtmaal J.M.C. van, Veraart A.<br />

Private-Public Partnership in Local Integral <strong>Water</strong> Management. Submitted for<br />

SKIW industrial water symposium 15 May <strong>2008</strong> Amersfoort.<br />

Haug R., Wrangel A. de, Weindel E., Paping L. Reuse of water and still maintaining<br />

reliability by avoiding scale, biological slime and corrosi<strong>on</strong> effects even<br />

more effectively. Eurocorr <strong>2008</strong> The European corrosi<strong>on</strong> c<strong>on</strong>gress Managing<br />

corrosi<strong>on</strong> for sustainability 7 – 11 September <strong>2008</strong> Edinburgh.<br />

Lamber Paping<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 15 27 85 838<br />

Fax: +31 15 27 84 918<br />

e-mail: L.L.M.J.Paping@<strong>TU</strong><strong>Delft</strong>.nl<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.48 & 4.54<br />

Start date: Jul <strong>2008</strong><br />

Expected end date: Jul 2012<br />

key words:<br />

chemical thermodynamics, demineralised<br />

water, equilibrium,<br />

free energy, freshwater, industrial<br />

water, massflow model, multi water<br />

reuse, municipality, open water<br />

system, partner, pH, potable water,<br />

public, quality, reliability, scarce,<br />

steam, sustainability, risk management,<br />

water source, wastewater<br />

cooperati<strong>on</strong> with other institutes:<br />

DOW Chemical<br />

research projects<br />

71


Research objectives<br />

The objective of the research is to develop a model based <strong>on</strong> Quantitative Structure-Activity Relati<strong>on</strong>s (QSARs)<br />

to predict the removal of organic micropollutants from water by the different water treatment processes.<br />

Project outline<br />

Introducti<strong>on</strong><br />

In the eighties, low c<strong>on</strong>centrati<strong>on</strong>s of pesticides have been m<strong>on</strong>itored in Dutch drinking water sources. In<br />

2000, also pharmaceuticals and pers<strong>on</strong>al care products have been detected. As these micro pollutants generally<br />

are persistent, and might have c<strong>on</strong>sequences <strong>on</strong> human health in l<strong>on</strong>g term, a number of these micro<br />

pollutants have been included in regular m<strong>on</strong>itoring campaigns. In the European water framework directive,<br />

legal limits are proposed for a number of substances, with VEWIN acting as representative for the interests of<br />

drinking water companies. These limits are, however, <strong>on</strong>ly applicable for single substances or limited groups<br />

of substances. For the large group of still unregulated substances, a prioritisati<strong>on</strong> tool is required to select the<br />

potentially most harmful <strong>on</strong>es. This tool should include (1) toxicity, (2) removal in drinking water treatment.<br />

As experimental research <strong>on</strong> specific substances may be limited, Quantitative Structure activity relati<strong>on</strong>ships<br />

(QSAR) can be used to estimate both aspects based <strong>on</strong> substance molecular structure.<br />

Approach<br />

The focus of this research study will be <strong>on</strong> predicting substance removal in drinking water processes. Initially,<br />

adsorpti<strong>on</strong> processes will be assessed, as activated carb<strong>on</strong> adsorpti<strong>on</strong> is <strong>on</strong>e of the most comm<strong>on</strong>ly used<br />

techniques to remove micro pollutants. The research will start with identifying micro pollutant properties that<br />

are relevant to predict removal in the treatment processes. Preferably, these properties are measurable parameters.<br />

Batch scale experiments will be carried out to estimate the removal of an array of micro pollutants which<br />

<strong>on</strong>ly differ for <strong>on</strong>e property. This way the influence of specific properties is estimated. Subsequently, a QSAR<br />

model will be used to estimate these properties based <strong>on</strong> chemical structure. C<strong>on</strong>venti<strong>on</strong>al models will be<br />

used as provided or modified to predict micro pollutant removal based <strong>on</strong> the selected solute properties. Pilot<br />

scale experiments will be carried out to verify these models.<br />

Results<br />

Molecular size, charge and<br />

substance hydrophobicity<br />

have been identified<br />

as critical parameters that<br />

influence adsorpti<strong>on</strong>. A set<br />

of 21 pharmaceuticals was<br />

selected with individual<br />

compounds varying <strong>on</strong> each<br />

of these properties. Their<br />

removal is determined in<br />

batch experiments, using<br />

Qsar Modeling in drinking water treatMent<br />

removal (%)<br />

100<br />

72 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Compound removal (8 weeks, 20 mg carb<strong>on</strong>)<br />

Pindolol Clenbuterol Carbamazepine Clofibric acid Gemfibrozil<br />

ultrapure fresh<br />

Compound removal by activated carb<strong>on</strong> in ultrapure-, surface- and wastewater<br />

ultrapure preloaded<br />

surface water preloaded<br />

waste water preloaded


oth fresh and pre loaded carb<strong>on</strong><br />

in the water matrices demineralised<br />

water, surface water and<br />

wastewater. Predicted removal<br />

percentages were within 10-30<br />

percent points of the measured<br />

values. In this data set, molecular<br />

size had no dominant influence.<br />

removal predicted<br />

100<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Scientific relevance<br />

removal measured<br />

Because regular analysis of Model results for removal <strong>on</strong> activated<br />

carb<strong>on</strong> in surface water<br />

drinking water for all emerging<br />

substances is not feasible, it is necessary to predict the removal of the substances<br />

through the drinking water treatment plant. This research will obtain<br />

more fundamental insight in the removal of organic micro-pollutants. Using<br />

the Quantitative Structure-Activity Relati<strong>on</strong>ships (QSAR), the behavior of<br />

the organic micro-pollutants in drinking water treatment processes can be<br />

modeled, taking into account the state of the process and varying influent<br />

quality parameters. Experimental data from bench-scale, pilot-scale and/or<br />

full-scale studies can be used to c<strong>on</strong>struct the QSAR model. When combining<br />

this research effort with that of other PhD students active in this field,<br />

QSAR predicti<strong>on</strong> models of individual treatment methods can be merged<br />

in order to predict the integral removal efficiencies of a drinking water treatment<br />

plant under changing c<strong>on</strong>diti<strong>on</strong>s. On basis of this predicti<strong>on</strong>, operati<strong>on</strong><br />

and design can be adopted to keep drinking water also in future safe<br />

and of excellent quality.<br />

Social relevance<br />

More often alarming bulletins appear in the media about the occurrence of<br />

micro-pollutants in surface water and drinking water. Besides “traditi<strong>on</strong>al”<br />

c<strong>on</strong>taminants as pesticides and industrial waste residues, surface water may<br />

also c<strong>on</strong>tain pharmaceutical residues and endocrine disrupting compounds<br />

(EDCs). In order to estimate human health risks, informati<strong>on</strong> is needed<br />

c<strong>on</strong>cerning 1) occurrence, 2) toxicity and 3) removal in drinking water treatment.<br />

As this last aspect is usually d<strong>on</strong>e experimentally, it is time c<strong>on</strong>suming<br />

and expensive to obtain this informati<strong>on</strong>. QSAR models can’t achieve<br />

the high accuracy of experimental results, but they can be an excellent tool<br />

to identify the most toxic and persistent micro-pollutants. With QSARs as<br />

a “first warning system”, regulatory steps can be taken to protect human<br />

health effectively.<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

QSAR model accuracy surface water<br />

training set<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 15 278 17 18<br />

Fax: +31 15 278 49 18<br />

e-mail: D.J.deRidder@<strong>TU</strong><strong>Delft</strong>.nl<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

David de Ridder<br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.44<br />

Start date: <strong>2008</strong><br />

Expected end date: 2012<br />

key words:<br />

QSAR, adsorpti<strong>on</strong>, pharmaceuticals<br />

cooperati<strong>on</strong> with other institutes:<br />

<strong>Water</strong>net, Duinwaterbedrijf Zuid-<br />

Holland, Unesco-IHE<br />

research projects<br />

73


Modeling and siMulati<strong>on</strong> of drinking water treatMent Plants<br />

Research objectives<br />

Different initiatives for simulati<strong>on</strong> of drinking water treatment plants are worked out. The first initiative is to<br />

model the treatment plant of Weesperkarspel of <strong>Water</strong>net in an integrated way for operati<strong>on</strong>al optimisati<strong>on</strong>.<br />

The sec<strong>on</strong>d is to develop a modeling platform for water treatment processes and the third is to develop a treatment<br />

plant simulator for operati<strong>on</strong>al decisi<strong>on</strong> support and training of operators.<br />

Project outline<br />

Introducti<strong>on</strong><br />

Although drinking water treatment has a l<strong>on</strong>g history, the mathematical analysis for operati<strong>on</strong>al improvements<br />

of these treatment processes is still young. With mathematical models factors such as quality (good, c<strong>on</strong>stant<br />

and reliable), quantity, costs, envir<strong>on</strong>mental impact (low residual levels), design redundancy and flexibility<br />

can be evaluated and operati<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong>s can be optimised, using the existing infrastructure as efficiently<br />

as possible. With models operators can also be trained and supported in making decisi<strong>on</strong>s during calamities.<br />

The use of models will lead to an increased understanding of the processes in general, and to fewer mistakes<br />

in the rare critical situati<strong>on</strong>s.<br />

Approach<br />

Modeling is based <strong>on</strong> numerical integrati<strong>on</strong> of ordinary differential equati<strong>on</strong>s. To be able to come to an integrated<br />

approach the objectives for treatment are explicitly determined, being quality, cost and envir<strong>on</strong>mental<br />

impact.<br />

Results<br />

From the analysis made for the Weesperkarpel plant<br />

in the PROMICIT project it was c<strong>on</strong>cluded that water<br />

quality must have the highest priority. This c<strong>on</strong>clusi<strong>on</strong><br />

could lead to a change in the operati<strong>on</strong> of this<br />

plant, leading to e.g. decreasing the oz<strong>on</strong>e dosage.<br />

In additi<strong>on</strong>, it was discovered that fluidizati<strong>on</strong><br />

and by-pass of the pellet softening is not optimal,<br />

leading to increased costs for chemical dosing and<br />

deteriorati<strong>on</strong> of the water quality.<br />

A water treatment plant simulator for improving<br />

operati<strong>on</strong> and maintenance of existing treatment<br />

plants (the ‘European <strong>Water</strong> Treatment Simulator’<br />

within the TECHNEAU project) is being developed<br />

Figure 1 - Schematic representati<strong>on</strong> of model of drinking<br />

and will be will build up<strong>on</strong> the experiences of exist- water treatment process.<br />

ing modeling platforms and models.<br />

A pilot is executed for a treatment plant simulator for operator training and decisi<strong>on</strong> support. Results of this<br />

pilot and reacti<strong>on</strong>s of end users encouraged nine Dutch companies to start the WATERSPOT project in which<br />

a generic simulator will be developed, company specific simulators and the possibility of model based operati<strong>on</strong>.<br />

74 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Scientific relevance<br />

In general it can be c<strong>on</strong>cluded that nowadays designs of drinking water treatment<br />

plants are robust, plants are operated by experience (operator dependent)<br />

and more <strong>on</strong> quantity than <strong>on</strong> quality. This results in a delayed water<br />

quality c<strong>on</strong>trol and sub-optimal operati<strong>on</strong>. New developments in m<strong>on</strong>itoring,<br />

modeling and simulati<strong>on</strong> will result in a robustly operated plant, including the<br />

influence <strong>on</strong> water quality and with the help of operator independent knowledge<br />

systems. Quality will be c<strong>on</strong>trolled based <strong>on</strong> predicti<strong>on</strong>s, resulting in<br />

optimal performance of the plant.<br />

Social relevance<br />

<strong>Drinking</strong> water treatment plants are operated more and more automatically.<br />

Fully automated treatment plants will require more sophisticated operator<br />

care than manually operated plants. Operators must have more specific<br />

knowledge and must have to understand what is happening behind the<br />

“treatment plant chatter”. Therefore, mathematical models are required to<br />

simulate the treatment processes.<br />

Literature<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Van der Helm A.W.C., Rietveld L.C., Baars E.T., Smeets, P. W. M. H., van Dijk J.C.<br />

(<strong>2008</strong>). Modeling disinfecti<strong>on</strong> and by-product formati<strong>on</strong> during the initial and the<br />

sec<strong>on</strong>d phase of natural water oz<strong>on</strong>ati<strong>on</strong> in a pilot-scale plug flow reactor. Journal<br />

of <strong>Water</strong> Supply: Research and Technology-AQUA Vol 57 (6), 435–449.<br />

Rietveld, L.C., van der Helm, A.W.C., van Schagen, K.M., van der Aa, L.T.J. van<br />

Dijk, J.C. (<strong>2008</strong>). Integrated simulati<strong>on</strong> of drinking water treatment, Journal of<br />

<strong>Water</strong> Supply: Research and Technology-AQUA, Vol. 57 (3), 133-141.<br />

Dudley, J., Dill<strong>on</strong> G., Rietveld, L.C. (<strong>2008</strong>), <strong>Water</strong> treatment simulators. Journal<br />

of <strong>Water</strong> Supply: Research and Technology-AQUA, Vol 57 (1), 13-21.<br />

van Schagen, K., Rietveld, L., Babuska, R., Baars, E.(<strong>2008</strong>), C<strong>on</strong>trol of the fluidised<br />

bed in the pellet softening process. Chemical <strong>Engineering</strong> Science, Vol<br />

63 (5), 1390-1400.<br />

van Schagen, K.M., Rietveld, L.C., Babuska R. (<strong>2008</strong>), Dynamic modeling for<br />

optimisati<strong>on</strong> of softening. Journal of <strong>Water</strong> Supply: Research and Technology-<br />

AQUA, Vol 57 (1), 45-56.<br />

Schagen, K.M. van, Rietveld, L.C., Babuska, R., Kramer, O.J.I. (<strong>2008</strong>), Modelbased<br />

operati<strong>on</strong>al c<strong>on</strong>straints for fluidised bed crystallisati<strong>on</strong>, <strong>Water</strong> Research<br />

42 (1-2) 327-337.<br />

Luuk Rietveld<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 15 27 84 732<br />

Fax: +31 15 27 84 918<br />

e-mail: L.C.Rietveld@<strong>TU</strong><strong>Delft</strong>.nl<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.69<br />

Start date: Ongoing<br />

Expected end date: Ongoing<br />

key words:<br />

<strong>Drinking</strong> water treatment; simulati<strong>on</strong>;<br />

modeling<br />

cooperati<strong>on</strong> with other<br />

institutes:<br />

<strong>Water</strong>net, Vitens, DZH, PWN,<br />

DHV, ABB BV, UReas<strong>on</strong>, KWR<br />

<strong>Water</strong>cycle Research Institute,<br />

WRc<br />

research projects<br />

75


oPtiMizati<strong>on</strong> of drinking water treatMent Processes using<br />

Models and <strong>on</strong>-line M<strong>on</strong>itoring tools<br />

Research objectives<br />

The research objective is to develop and combine existing models for a water treatment platform, which enables<br />

users to virtually c<strong>on</strong>struct a water treatment plant and to m<strong>on</strong>itor and optimise existing water treatment<br />

plants.<br />

Project outline<br />

Introducti<strong>on</strong><br />

To achieve the objective following topics are addressed;<br />

• inventory of models and water quality parameters,<br />

• incorporati<strong>on</strong> of <strong>on</strong>line m<strong>on</strong>itoring tools,<br />

• development of new models,<br />

• descripti<strong>on</strong> of a testing protocol,<br />

• calibrati<strong>on</strong> and validati<strong>on</strong> of the individual models and treatment trains.<br />

Approach<br />

An inventory of models and water quality parameters was carried out from October until December 2006.<br />

Existing water quality models written in MATLAB® Simulink were c<strong>on</strong>verted to c-code after which they were<br />

implemented in SimEau, European <strong>Water</strong> Treatment Simulator developed within the European 6th framework<br />

project Techneau (www.techneau.org).The development of <strong>on</strong>line m<strong>on</strong>itoring tools was d<strong>on</strong>e from January<br />

until December 2007. Biostability was determined through an <strong>on</strong>-line estimati<strong>on</strong> of assimilable organic carb<strong>on</strong><br />

(AOC). This was c<strong>on</strong>ducted by correlating differential UV/Vis-spectra measurements to AOC measurements.<br />

The development of new models combined with the use of <strong>on</strong>line m<strong>on</strong>itoring tools will be addressed in this<br />

part, whereas the descripti<strong>on</strong> of testing protocol and the calibrati<strong>on</strong> and validati<strong>on</strong> will be executed in future<br />

research.<br />

When oz<strong>on</strong>ati<strong>on</strong> is followed by biological filtrati<strong>on</strong>, part of the AOC formed during oz<strong>on</strong>ati<strong>on</strong> is biodegraded<br />

by the biomass present in the biological filters. The AOC is c<strong>on</strong>sumed and transferred into biomass, resulting<br />

in an increase in pressure drop over the filters, until the filters need to be back washed. The amount of produced<br />

biomass in the filters can be directly linked to the amount of AOC present in the water. The clogging of<br />

biological activated carb<strong>on</strong> filters is modelled. In order to study clogging due to the development of biomass,<br />

different oz<strong>on</strong>e dosages were applied, <strong>on</strong> pilot scale, resulting in different AOC c<strong>on</strong>centrati<strong>on</strong>s. The pressure<br />

drop was measured at several heights in the filter bed, see Figure 1.<br />

Figure 1 - Experimental set-up of pilot plant with sampling points<br />

76 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Results<br />

The results of the model predicti<strong>on</strong><br />

for pressure drop and<br />

the actual measured pressure<br />

drop during a period<br />

of cold temperatures and a<br />

period of warm temperatures<br />

is given in Figure 2.<br />

head loss [mWc]<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

model high temperature<br />

measured high temperature<br />

model low temperatures<br />

measured low temperatures<br />

0<br />

0 100 200 300 400 500 600 700 800 900<br />

The presence of biomass<br />

Filter run time [hours]<br />

causes the formati<strong>on</strong> of a Figure 2 - Model predicti<strong>on</strong> filter run<br />

cake layer and accounts for<br />

the majority of the pressure build up in the BAC filter. The model is used to<br />

predict the filter run time between back washing, for both cold as warm temperature,<br />

and can be used to set backwash intervals more accurately.<br />

Scientific relevance<br />

To be able to develop a model, understanding of the processes involved<br />

during the treatment process is necessary. Additi<strong>on</strong>ally the combinati<strong>on</strong> of<br />

processes gives insight in the interacti<strong>on</strong> between the different processes.<br />

On-line m<strong>on</strong>itoring tools can be used to calibrate and validate the models<br />

and is a tool for direct optimizati<strong>on</strong> of the treatment processes.<br />

Social relevance<br />

Direct notice of changes in the raw water quality can result in direct acti<strong>on</strong><br />

and optimizati<strong>on</strong> of the operati<strong>on</strong> of the drinking water treatment plant.<br />

Combined with the existence of a water treatment simulator comprised of<br />

models of different treatment processes this will lead to an improved operati<strong>on</strong><br />

of the drinking water treatment plant and will result in a better water<br />

quality benefiting public safety.<br />

Literature<br />

• Ross, PS, Helm, AWC van der, Broeke, J van den, Aa, LTJ van der<br />

& Rietveld, LC (<strong>2008</strong>). Effect of raw water quality <strong>on</strong> performance of<br />

oz<strong>on</strong>e and biofiltrati<strong>on</strong> based <strong>on</strong> modeling and <strong>on</strong>-line m<strong>on</strong>itoring. In<br />

Proceedings of WISA C<strong>on</strong>ference. Sun City, South Africa<br />

• Broeke, J van den, Ross, PS, Helm, AWC van der, Baars, ET, & Rietveld,<br />

LC (<strong>2008</strong>). Use of <strong>on</strong>-line UV/Vis-spectrometry in the measurement of<br />

dissolved oz<strong>on</strong>e and AOC c<strong>on</strong>centrati<strong>on</strong> in drinking water treatment.<br />

<strong>Water</strong> Science and Technology, 57(8), pp 1169-1175.<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> Management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 15 27 81 585<br />

Fax: +31 15 27 84 918<br />

e-mail: P.S.Ross@<strong>TU</strong><strong>Delft</strong>.nl<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.59<br />

Start date: Oct 2006<br />

Expected end date: Oct 2010<br />

key words:<br />

<strong>Drinking</strong> water treatment,<br />

Modeling<br />

Petra Ross<br />

cooperati<strong>on</strong> with other<br />

institutes:<br />

WRc; Riga Technical University,<br />

Eawag<br />

research projects<br />

77


docr Modeling in c<strong>on</strong>venti<strong>on</strong>al drinking water treatMent<br />

Research Objective<br />

The objective of the research is to develop a model to predict the removal of Dissolved Organic Carb<strong>on</strong> (DOCR)<br />

using coagulati<strong>on</strong> and flocculati<strong>on</strong> in c<strong>on</strong>venti<strong>on</strong>al drinking water treatment facilities.<br />

Project Outline<br />

Introducti<strong>on</strong><br />

Coagulati<strong>on</strong> / Flocculati<strong>on</strong> are of fundamental importance for drinking water treatment as initial measure for<br />

water purificati<strong>on</strong> in many water utilities and their practice can affect noticeably water quality characteristics<br />

and performance of subsequent treatment steps. Nowadays <strong>on</strong>e of the coagulati<strong>on</strong> / flocculati<strong>on</strong> roles in water<br />

treatment that has arisen with more emphasis is the removal of natural organic matter by enhanced coagulati<strong>on</strong><br />

(NOM: complex of heterogeneous mixture of organic substances produced from vegetative decay process<br />

classified in dissolved organic carb<strong>on</strong>, DOC: substances and macromolecules with colloid-like properties<br />

and particulate organic carb<strong>on</strong>, PAC: larger particles as algae, particulate detritus, etc) due to a number of<br />

reas<strong>on</strong>s including that NOM influences greatly <strong>on</strong> coagulant demand, may c<strong>on</strong>trol coagulati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s and<br />

coagulati<strong>on</strong> efficiency.<br />

Approach<br />

Mechanistic mathematical model that relates the nature and c<strong>on</strong>centrati<strong>on</strong> of DOC in the raw water to inorganic<br />

coagulant dosing and operati<strong>on</strong>al flocculati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s that maximize the removal of DOC will be developed<br />

as a systematic attempt to translate c<strong>on</strong>ceptual understanding of coagulati<strong>on</strong> / flocculati<strong>on</strong> practice into mathematical<br />

terms that allow predicti<strong>on</strong> of the behaviour of these processes under changing c<strong>on</strong>diti<strong>on</strong>s.<br />

Validati<strong>on</strong> of the model will be carried out to verify the applicability of the model to real scale c<strong>on</strong>venti<strong>on</strong>al<br />

treatment plants.<br />

Results<br />

The research project is still in the initial stage.<br />

Scientific Relevance<br />

Taking into c<strong>on</strong>siderati<strong>on</strong> that mechanistic models endeavour to understand and mathematically describe the<br />

process mechanisms, the scientific c<strong>on</strong>tributi<strong>on</strong> of modeling coagulati<strong>on</strong> / flocculati<strong>on</strong> steps will allow simultaneously<br />

apply these models with other models developed for various treatment steps given as a result an<br />

integrated and complete water treatment performance.<br />

Social Relevance<br />

The impact of good treatment practices during the water treatment train has being recognized not <strong>on</strong>ly by<br />

engineers and researchers but also by c<strong>on</strong>sumers as a key factor to obtain a safe drinking water. As many<br />

other activities, the initial processes have a high influence <strong>on</strong> the following treatment steps, and the model for<br />

coagulati<strong>on</strong> / flocculati<strong>on</strong> will improve the removal of dissolved organic compounds which can be the source<br />

for generati<strong>on</strong> of disinfecti<strong>on</strong> by products, or affect the sedimentati<strong>on</strong> and filtrati<strong>on</strong> efficiency.<br />

78 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Panama Canal <strong>Water</strong>shed, the water intakes are marked with a red star<br />

Miraflores drinking water treatment plant<br />

Chilibre drinking water treatment plant<br />

Javier Sanchez<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> Management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 15 27 81 585<br />

Fax: +31 15 27 84 918<br />

e-mail: J.A.SanchezGuilen@<strong>TU</strong><strong>Delft</strong>.nl<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.59<br />

Start date: <strong>2008</strong><br />

Expected end date: 2012<br />

key words:<br />

Modeling, DOC removal, Coagulati<strong>on</strong>,<br />

C<strong>on</strong>venti<strong>on</strong>al Treatment<br />

research projects<br />

79


Model-based c<strong>on</strong>trol of drinking-water treatMent Plants<br />

Research objectives<br />

Determine the applicati<strong>on</strong> of models in model-based m<strong>on</strong>itoring, optimisati<strong>on</strong> and c<strong>on</strong>trol approaches for drinking-water<br />

treatment plants, with the Weesperkarspel treatment plant of <strong>Water</strong>net as a case study.<br />

Project outline<br />

Introducti<strong>on</strong><br />

The drinking water in the Netherlands is of high quality and the producti<strong>on</strong> cost is low. This is the result of<br />

extensive research in the past decades to innovate and optimise the treatment processes. These processes<br />

are m<strong>on</strong>itored and operated by motivated and skilled operators and process technologists. However, this<br />

causes an operator-dependent, subjective, variable and possible suboptimal operati<strong>on</strong> of the treatment plants.<br />

Furthermore, the extensive automati<strong>on</strong> of the treatment plants reduces the possible operator attenti<strong>on</strong> per<br />

process unit.<br />

Approach<br />

To meet the challenges in drinking-water producti<strong>on</strong>, a model-based approach is used. This model-based<br />

approach does not <strong>on</strong>ly mean that advanced c<strong>on</strong>trol systems must be implemented at the drinking-water producti<strong>on</strong><br />

plants, but that mathematical process models are also used for the day-to-day operati<strong>on</strong> and basic<br />

c<strong>on</strong>trol design.<br />

In figure 1, the model-based approach is shown. The mathematical process models are used for the analy-<br />

ses of the treatment processes, measurements and c<strong>on</strong>trol acti<strong>on</strong>s. To realise a c<strong>on</strong>trol system that realises<br />

the high water quality standards at minimal operati<strong>on</strong>al cost, a design methodology should be used. At every<br />

design stage, the plant objectives must be taken into account, since each c<strong>on</strong>trol loop c<strong>on</strong>tributes to the optimal<br />

operati<strong>on</strong> of the integral plant.<br />

Figure 1 - Model-based approach of a drinking-water treatment plant<br />

80 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


There are many types of models, that can be used for a model-based<br />

approach (Ljung <strong>2008</strong>). The models vary from so-called “white” models, which<br />

describe the physical processes from first principles, “grey” models, which<br />

c<strong>on</strong>tain some unknown parameters or structures, to “black” models, which<br />

are based <strong>on</strong>ly <strong>on</strong> historical data. Which model must be applied depends<br />

<strong>on</strong> the available models and the desired applicati<strong>on</strong>. By using white or grey<br />

models, the process knowledge is no l<strong>on</strong>ger stored as historical heuristic<br />

rules of thumb or static local c<strong>on</strong>trol objectives.<br />

Results<br />

This approach is shown to be effective <strong>on</strong> all levels of treatment plant operati<strong>on</strong>.<br />

Models are successfully used in plant analysis and basic c<strong>on</strong>trol design,<br />

resulting in implementati<strong>on</strong> of improved basic c<strong>on</strong>trol at the pellet softening<br />

treatment step of the Weesperkarspel plant, leading to significant process<br />

improvement. Model-based m<strong>on</strong>itoring schemes combine the large amount<br />

of data and present relevant informati<strong>on</strong> to the technologists and operators.<br />

Model-based c<strong>on</strong>trol uses the m<strong>on</strong>itored process state to dynamically optimise<br />

the treatment without introducing new disturbances in the treatment<br />

plant. Model-based optimisati<strong>on</strong> gives the technologist the possibility to<br />

improve treatment operati<strong>on</strong> without disrupting the full-scale plant. To improve<br />

the performance of model-based c<strong>on</strong>trol, future research should focus <strong>on</strong><br />

achieving robust measurements of process parameters to effectively determine<br />

the process state. To integrate model-based c<strong>on</strong>trol in the day-to-day<br />

operati<strong>on</strong> a good interface to the operators has to be developed.<br />

Literature<br />

•<br />

•<br />

•<br />

K.M. van Schagen, L.C. Rietveld and R. Babuška (<strong>2008</strong>a), Dynamic modeling<br />

for optimisati<strong>on</strong> of pellet softening, Journal of <strong>Water</strong> Supply: Reasearch and<br />

Technology-AQUA 57(1), 45–56.<br />

K.M. van Schagen, L.C. Rietveld, R. Babuška and O.J.I. Kramer (<strong>2008</strong>b), Modelbased<br />

operati<strong>on</strong>al c<strong>on</strong>straints for fluidised bed crystallisati<strong>on</strong>, <strong>Water</strong> Research<br />

42(1-2), 327–337.<br />

Kim van Schagen, Luuk Rietveld, Robert Babuška and E.Baars (<strong>2008</strong>c), C<strong>on</strong>trol<br />

of the fluidised bed in pellet softening process, Chemical <strong>Engineering</strong> Science<br />

63(5),1390–1400. Ljung, Lennart (<strong>2008</strong>). Perspectives <strong>on</strong> system identificati<strong>on</strong>.<br />

In Proceedings of the 17th IFAC World C<strong>on</strong>gress, July), pp. 7172–7184.<br />

Kim van Schagen<br />

<strong>Delft</strong> University of Technology<br />

<strong>Delft</strong> Center for Systems and<br />

C<strong>on</strong>trol<br />

Tel.: +31 15 27 83 371<br />

Fax: +31 15 27 84 918<br />

e-mail: K.M.vanSchagen@<strong>TU</strong><strong>Delft</strong>.nl<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

visiting address:<br />

Mekelweg 2<br />

2628 CD <strong>Delft</strong><br />

Room 8C-3-17<br />

Start date: Jan 2004<br />

Expected end date:<br />

<strong>2008</strong><br />

Spring 2009<br />

key words<br />

<strong>Drinking</strong> water treatment, optimizati<strong>on</strong>,<br />

modeling, integrated, oz<strong>on</strong>e<br />

cooperati<strong>on</strong> with other<br />

institutes:<br />

DHV B.V., <strong>Water</strong>net, ABB B.V.<br />

research projects<br />

81


efficacy of drinking water treatMent to reMove or inactivate<br />

Pathogenic Micro organisMs (Part of Microrisk Project)<br />

Research objectives<br />

MicroRisk is a collaborative research project. The MicroRisk objective is to develop and evaluate a harm<strong>on</strong>ized<br />

framework for quantitative assessment of the microbiological safety of drinking water in EU Member States.<br />

The research objective is to develop a protocol to evaluate the efficacy of a drinking water treatment to remove<br />

or inactivate pathogenic micro organisms and to develop a model to predict treatment efficacy.<br />

Project outline<br />

Introducti<strong>on</strong><br />

Providing water that is safe to drink is the primary objective of water supply. History has learnt that drinking<br />

water that c<strong>on</strong>tains pathogenic micro-organisms can have a major impact <strong>on</strong> health. Since the early 1900’s,<br />

the c<strong>on</strong>cept of fecal indicator bacteria (if no indicators of fecal c<strong>on</strong>taminati<strong>on</strong> are present, no fecal pathogens<br />

are present) is being used. The use of indicator bacteria (esp. E. coli) has led to significant improvements in<br />

the safety of drinking water world-wide and has resulted in a high level of drinking water quality and supply<br />

infrastructure in European countries. However the indicator c<strong>on</strong>cept has limitati<strong>on</strong>s, since recent outbreaks<br />

of drinking water related infecti<strong>on</strong>s have shown that the absence of indicators does not guarantee safe drinking<br />

water.<br />

Approach<br />

The microbiological safety of twelve drinking water systems throughout Europe was assess from catchment<br />

to tap. The c<strong>on</strong>tributi<strong>on</strong> of each part of the drinking water chain Figure (catchment, 4 shows treatment, the CCDF distributi<strong>on</strong> of the and m<strong>on</strong>itored c<strong>on</strong>- C<br />

sumpti<strong>on</strong>) to microbiological risk (or safety) was addressed in a separate work package. This work package<br />

raw, filtered and oz<strong>on</strong>ated water. It also sho<br />

focused <strong>on</strong> quantifying the ability of drinking water treatment processes to reduce numbers of pathogens in<br />

c<strong>on</strong>fidence interval, as determined with n<strong>on</strong>water.<br />

The collected data c<strong>on</strong>tained microbiological samples, water quality samples and design characteris-<br />

30 to 40 Campylobacter samples were taken<br />

tics of treatment plants.<br />

sample represents a proporti<strong>on</strong> of 2.5-3.3%<br />

Results<br />

M<strong>on</strong>itoring data that was collected according to current<br />

practice was used to quantify the risk of infecti<strong>on</strong> from<br />

drinking water. Microbial m<strong>on</strong>itoring of drinking water generally<br />

resulted in a majority of n<strong>on</strong>-detects for pathogenic<br />

and indicator organisms. Therefore pathogen c<strong>on</strong>centrati<strong>on</strong>s<br />

in drinking water were calculated from the pathogen<br />

c<strong>on</strong>centrati<strong>on</strong> in source water and reducti<strong>on</strong> of pathogens<br />

by water treatment processes. Pathogens in source water<br />

can be detected by microbial m<strong>on</strong>itoring, however, efficacy<br />

of treatment cannot be assessed directly. Log reducti<strong>on</strong>s of<br />

treatment processes <str<strong>on</strong>g>report</str<strong>on</strong>g>ed in literature were applied in<br />

a stochastic model. Thus it became clear that treatment<br />

efficacy varies str<strong>on</strong>gly and log credits include several Figure Figure 1. Complementary 4 CCDF of m<strong>on</strong>itored Cumulative Campylobacter Distributi<strong>on</strong> Functi<strong>on</strong> MPN c<strong>on</strong>ce<br />

of m<strong>on</strong>itored Campylobacter c<strong>on</strong>centrati<strong>on</strong>s in<br />

orders of magnitude of uncertainty. Site specific assess- and 95% CI (dashed lines) of the n<strong>on</strong>-parametric bootst<br />

raw water (O), filtered water (□) and oz<strong>on</strong>ated<br />

ment using local informati<strong>on</strong> could reduce this uncer- and oz<strong>on</strong>ated water (∆) and water the (�). medians (lines) and 95% Credible<br />

Interval (dashed lines) of the data analysis.<br />

82 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

Chapter 5<br />

N<strong>on</strong>-parametric treatment model<br />

The n<strong>on</strong>-parametric stochastic model of treat


tainty. Informati<strong>on</strong> <strong>on</strong> process c<strong>on</strong>diti<strong>on</strong>s, such as disinfecti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>,<br />

temperature and c<strong>on</strong>tact time, was used to model disinfecti<strong>on</strong> processes.<br />

This was an effective method to include variability in time and to optimise<br />

treatment systems. Full-scale hydraulics played a major role in disinfecti<strong>on</strong><br />

and were the main cause of uncertainty in disinfecti<strong>on</strong> processes. Microbial<br />

m<strong>on</strong>itoring provided the most direct informati<strong>on</strong> to assess full-scale treatment<br />

efficacy. New methods were developed to assess treatment efficacy<br />

from microbial m<strong>on</strong>itoring before and after treatment processes. The project<br />

resulted in methods that could distinguish between variability and uncertainty<br />

of the assessed treatment efficacy. Figure 1 illustrates how the c<strong>on</strong>centrati<strong>on</strong>s<br />

from source water to treated water were assessed. The results led to<br />

a change in focus <strong>on</strong> the type of data that needs to be collected for this type<br />

of assessment. The methods were applied in practical examples of decisi<strong>on</strong><br />

support for risk managers, such as choosing set-points and critical limits for<br />

processes or designing m<strong>on</strong>itoring programs.<br />

Scientific relevance<br />

Up to now risk assessments used point estimates of treatment efficacy<br />

which lead to a false sense of accuracy of the assessed risk. When microbial<br />

m<strong>on</strong>itoring data was used, the applied methods lead to an over-estimati<strong>on</strong> of<br />

treatment variability. The newly developed methods provide a more accurate<br />

assessment of treatment efficacy that can than be applied in risk models.<br />

Social relevance<br />

Some current nati<strong>on</strong>al legislati<strong>on</strong>s apply a maximum risk of infecti<strong>on</strong> by drinking<br />

water of 10-4 per pers<strong>on</strong> per year. The maximum acceptable number of<br />

micro organisms in drinking water lies far below the current detecti<strong>on</strong> limits.<br />

Therefore risk assessment is required to determine the safety level for drinking<br />

water c<strong>on</strong>sumers. The scientific basis for this type of risk assessment<br />

was developed in the MicroRisk project.<br />

Literature<br />

•<br />

•<br />

•<br />

Patrick Smeets<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> Management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 64 50 98 533<br />

Fax: +31 15 27 84 918<br />

e-mail: Patrick.Smeets@kwrwater.nl<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.69<br />

Start date: Nov 2002<br />

End date: 15-04-<strong>2008</strong><br />

key words:<br />

<strong>Drinking</strong> water, microbiology,<br />

treatment<br />

Smeets, P.W.M.H., Helm, A.W.C. van der, Dullem<strong>on</strong>t, Y., Rietveld, L.C., Dijk, cooperati<strong>on</strong> with other<br />

J.C. van and Medema, G.J. (2006) Inactivati<strong>on</strong> of Escherichia Coli by Oz<strong>on</strong>e<br />

institutes:<br />

KWR <strong>Water</strong>cycle Research Insti-<br />

Under Bench Scale Plug Flow and Full Scale Hydraulic C<strong>on</strong>diti<strong>on</strong>s. <strong>Water</strong><br />

tute; Microrisk team; (www.micror-<br />

Research 40 3239-3248. doi:10.1016/j.watres.2006.06.025<br />

isk.com)<br />

Smeets, P.W.M.H., Rietveld, L.C., van Dijk, J.C., Medema, G.J., Full scale<br />

data analysis for treatment system validati<strong>on</strong> and treatment modeling, WEF<br />

Disinfecti<strong>on</strong> 2005 c<strong>on</strong>ference, 6-9 February 2005, Phoenix AZ.<br />

Smeets P.W.M.H., Rietveld, L.C., van Dijk, J.C. and Medema, G.J., A Stochastic<br />

Pathogen Reducti<strong>on</strong> Model for Full-scale Treatment, LET c<strong>on</strong>ference, 6-8 June<br />

2005, Sapporo, Japan.<br />

research projects<br />

83


aoP and artificial recharge and recovery: a synergistic hybrid<br />

against organic MicroPollutants<br />

Research objectives<br />

In order to be able to remove organic micropollutants during drinking water producti<strong>on</strong> from surface water,<br />

research is performed towards the combinati<strong>on</strong> of an advanced oxidati<strong>on</strong> process (AOP) and artificial recharge<br />

and recovery (ARR) in the Dutch coastal dune area. When both processes, AOP and ARR, are understood<br />

well in detail, and their individual c<strong>on</strong>tributi<strong>on</strong> towards the removal of micropollutants is known, the operati<strong>on</strong> of<br />

both processes can be tuned for an optimal synergism. The focus of this study is to determine the c<strong>on</strong>tributi<strong>on</strong><br />

of every individual process in AOP and in ARR towards the total removal of organic micropollutants.<br />

Project outline<br />

Introducti<strong>on</strong><br />

Measured c<strong>on</strong>centrati<strong>on</strong>s of priority substances, such as pharmaceuticals, endocrine disrupting compounds<br />

and pesticides, in surface waters used for drinking water producti<strong>on</strong> increase. This is due to an increase in<br />

use of pesticides and pharmaceuticals and due to enhanced m<strong>on</strong>itoring techniques. The c<strong>on</strong>centrati<strong>on</strong>s found<br />

in the surface water are very low. Although there is still discussi<strong>on</strong> about the effects of priority substances <strong>on</strong><br />

human health, the Dutch approach is to remove those undesired compounds. Duinwaterbedrijf Zuid-Holland<br />

(DZH) wants to extend the treatment with AOP, most likely UV/H2O2. Approach<br />

Organic micro pollutants are <strong>on</strong>ly a slight part of the total natural organic matter (NOM). This gives a challenge;<br />

remove a very small and specific part of the NOM, without removing to much organic matter. In additi<strong>on</strong> the<br />

organic micropollutants have a broad field of properties, which makes them hard to remove by <strong>on</strong>e treatment<br />

step. By implementing AOP before ARR, two complementary processes are expected to provide a synergistic<br />

hybrid against micro pollutants. This integral approach of additi<strong>on</strong>al treatment will result in an effective multiple<br />

barrier treatment against micro pollutants.<br />

Results<br />

Experiments will start in October <strong>2008</strong>. Experiments will be performed with:<br />

• Pilot installati<strong>on</strong> with AOP reactors, GAC filtrati<strong>on</strong> and ARR<br />

• Column experiments towards individual processes during ARR<br />

• Batch experiments towards ARR<br />

Scientific relevance<br />

Dune filtrati<strong>on</strong> is an ecological, attractive and safe treatment step in the treatment train for drinking water producti<strong>on</strong>.<br />

Human mistakes are rarely to occur. The overall water quality improvement by dune filtrati<strong>on</strong> is mostly<br />

known. But the fundamental knowledge <strong>on</strong> the influence <strong>on</strong> water quality by individual processes in de dunes<br />

is poor. If dune filtrati<strong>on</strong> is separated in parts, it can better be modeled and be compared with normal soil passage.<br />

Especially the combinati<strong>on</strong> of advanced oxidati<strong>on</strong> and dune filtrati<strong>on</strong> is rare. The influence of advanced<br />

oxidati<strong>on</strong> <strong>on</strong> the performance of dune filtrati<strong>on</strong> is of interest.<br />

84 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Figure 1 - Pilot installati<strong>on</strong> at Berg Ambacht<br />

Social relevance<br />

After this research DZH is able to remove micro pollutants effectively from<br />

the water. Safe drinking water is retained, as well as customer trust in the<br />

Dutch drinking water.<br />

Literature<br />

•<br />

•<br />

•<br />

•<br />

Teunissen K., T. Knol, L. Rietveld, H. van Dijk (2007). Verhoging UV-Transmissie<br />

bij voorzuivering Bergambacht H2O 40, 4, 28-31<br />

Teunissen, K. T. Knol, A. Grefte, G. Amy and J.C. van Dijk. Impact of pretreatment<br />

by coagulati<strong>on</strong> or i<strong>on</strong> exchange <strong>on</strong> UV-transmissi<strong>on</strong>. Presented at IWA<br />

c<strong>on</strong>gress Vienna <strong>2008</strong><br />

Teunissen, K., Verberk, J.Q.J.C., de J<strong>on</strong>ge, H.G., Amy, G., van Dijk, J.C.<br />

Advanced oxidati<strong>on</strong> and artificial recharge: a synergistic hybrid system for<br />

removal of organic micropollutants. C<strong>on</strong>ference proceedings for Awwa WQTC,<br />

November <strong>2008</strong><br />

Teunissen, K., Maeng, S.K., Verberk, J.Q.J.C., de J<strong>on</strong>ge, H.G., Amy, G., van<br />

Dijk, J.C. Advanced oxidati<strong>on</strong> and artificial recharge: synergistic hybrid system<br />

for removal of micropollutants. To be submitted to Berlin AOP c<strong>on</strong>ference, March<br />

2009<br />

Karin Teunissen<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> Management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 61 04 22 377<br />

Fax: +31 15 27 84 918<br />

e-mail: k.teunissen@dzh.nl<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.49<br />

Start date: Jun 2007<br />

Expected end date: Nov 2011<br />

key words:<br />

AOP, redox z<strong>on</strong>es, micro<br />

pollutants, Artificial recharge and<br />

recovery<br />

cooperati<strong>on</strong> with other<br />

institutes:<br />

Duinwaterbedrijf Zuid-Holland,<br />

NWO<br />

research projects<br />

85


Probabilistic assessMent of the PerforMance of water<br />

treatMent Plants toward Pathogens and organic<br />

MicroPollutants<br />

Research objectives<br />

In drinking water treatment processes, pathogens and organic micropollutants are determining parameters<br />

with respect to public health. Analyzing frequently taken grab samples is comm<strong>on</strong>ly used to verify if indicator<br />

organism and organic micropollutant levels meet legislative standards. This approach is lacking coverage in<br />

time and in the amount of micropollutants and organisms c<strong>on</strong>cerned. The objective of this study is to improve<br />

assessment of drinking water quality by modeling and risk analysis.<br />

Project outline<br />

Introducti<strong>on</strong><br />

Every year lots of new chemicals are introduced, am<strong>on</strong>g them comm<strong>on</strong>ly used compounds like pesticides<br />

and pharmaceuticals. They are meant to benefit humanity, but appear in the envir<strong>on</strong>ment, e.g. in river water.<br />

They may affect aquatic life and, in case the latter is used as a source for drinking water, human health. Also<br />

pathogens, present in wastewater effluents and river water, form a potential threat to human health. Since it is<br />

impossible to analyze the amount of pathogens and all other possible pollutants in drinking water, risk analysis<br />

forms a necessary additi<strong>on</strong> to drinking water safety.<br />

Approach<br />

WTPs Berenplaat and Kralingen (Evides), both utilizing pre stored river Meuse water, apply UV (formerly chlorine)<br />

and oz<strong>on</strong>e for disinfecti<strong>on</strong>. <strong>Water</strong> quality and process data from river to drinking water will be used to<br />

develop, calibrate and validate applicable models for removal (and residual levels) of pathogens and organic<br />

pollutants. C<strong>on</strong>tributi<strong>on</strong>s from the processes reservoir with selective intake of river water, disinfecti<strong>on</strong> and GAC<br />

processes will be quantified. The effects <strong>on</strong> drinking water safety caused by regular polluti<strong>on</strong> and process levels<br />

and incident related levels will be evaluated.<br />

Results<br />

The WTP Berenplaat UV disinfecti<strong>on</strong> system, utilizing medium pressure lamps, was tested both <strong>on</strong> pilot, 1:1<br />

unit scale and full producti<strong>on</strong> scale. Disinfecti<strong>on</strong> capacity and the manufacturer’s fluence calculati<strong>on</strong> method<br />

were validated by biodosimetry. The UV disinfecti<strong>on</strong> process appeared to be reliable during standard operati<strong>on</strong><br />

and in the way it dealt with process upsets. Spores of Sulphite Reducing Clostridia are rather insensitive<br />

to UV as well as oz<strong>on</strong>e. UV disinfecti<strong>on</strong> results in a better removal, see figure below, even without formati<strong>on</strong><br />

of disinfecti<strong>on</strong> by-products, while oz<strong>on</strong>e disinfecti<strong>on</strong> capacity is often limited by bromate formati<strong>on</strong>. Moreover,<br />

m<strong>on</strong>itored UV-data, like UV-intensity and lamp currents are sampled in much higher frequencies. Corrective<br />

86 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


acti<strong>on</strong>s e.g. <strong>on</strong> lamp failure can be taken within a sec<strong>on</strong>d. In the case of<br />

oz<strong>on</strong>e disinfecti<strong>on</strong>, process incidents with a fatal effect <strong>on</strong> oz<strong>on</strong>e exposure,<br />

can be hard to detect and will last l<strong>on</strong>ger. The effect of the durati<strong>on</strong> of process<br />

incidents <strong>on</strong> complying the risk analysis standard is presented in the<br />

figure <strong>on</strong> the previous page.<br />

Scientific relevance<br />

Since infectious c<strong>on</strong>centrati<strong>on</strong>s for pathogens are extremely low, risk analyses<br />

are comm<strong>on</strong> practice for organisms like Giardia, Cryptosporidium,<br />

Campylobacter and viruses. Although Netherlands is the first country which<br />

developed additi<strong>on</strong>al risk based legislati<strong>on</strong> <strong>on</strong> pathogens, applied methods<br />

lack accuracy and require optimizati<strong>on</strong>. Even though risk analysis based<br />

assessments for organic micro pollutants are recommended by B<strong>on</strong>n Charter<br />

and WHO guidelines, these methods are hardly used up till now. Processes<br />

in this study do not utilize advanced oxidati<strong>on</strong>, like UV/peroxide, but rely <strong>on</strong><br />

water quality based intake of river water. Quantifying the c<strong>on</strong>tributi<strong>on</strong> of the<br />

selective intake with storage reservoirs to meet safe drinking water forms an<br />

interesting challenge and will be optimised further within this study.<br />

Social relevance<br />

<strong>Drinking</strong> water quality is linked with public health and therefore gets a lot of<br />

public interest. <strong>Drinking</strong> water processes are c<strong>on</strong>structed in c<strong>on</strong>crete and<br />

steel and liable to rather l<strong>on</strong>g depreciati<strong>on</strong> periods, while water quality is characterized<br />

by frequent updates and lack of data. Because of this, investment<br />

decisi<strong>on</strong>s in drinking water processes are rather complicated and should be<br />

well-founded to avoid under as well as over investments. Newly developed<br />

process techniques like UV might be the best choices to meet (new) goals,<br />

but require further research for proper implementati<strong>on</strong>. Risk analysis, for as<br />

well pathogens as organic micro pollutants, forms an important tool to meet<br />

drinking water safety goals and to ground investment decisi<strong>on</strong>s.<br />

Literature<br />

•<br />

•<br />

•<br />

A.J. van der Veer, W.A.M. Hijnen, D. van der Kooij and M. Groenendijk, Pilot<br />

plant studies <strong>on</strong> AOC and Biofilm Formati<strong>on</strong> Potential of oz<strong>on</strong>ated water after<br />

filtrati<strong>on</strong>. Proceedings IOA, Aug. 2005, Strasbourg<br />

A.J. van der Veer, R.M. Schotsman, B. Martijn , R. Schurer, J.C. van Dijk,<br />

Comparative small technical Scale Study <strong>on</strong> Oz<strong>on</strong>e Disc Diffusers and Ejector<br />

System. Proceedings IOA, Aug. 2005, Strasbourg<br />

Martijn Bram J., van der Veer Bram .J , Kruithof Joop C., (2007) Byproduct formati<strong>on</strong><br />

in oz<strong>on</strong>e and UV based processes; a critical factor in process selecti<strong>on</strong>,<br />

<strong>Water</strong> Practice 1 (3) 1-14<br />

Bram van der Veer<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 15 27 87 894<br />

Fax: +31 15 27 81 585<br />

e-mail: A.J.vanderVeer@<strong>TU</strong><strong>Delft</strong>.nl<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.65<br />

Start date: 2005<br />

Expected end date: 2009<br />

key words:<br />

Risk analysis, drinking water safety<br />

plan, pathogens, organic micropollutants,<br />

UV disinfecti<strong>on</strong><br />

cooperati<strong>on</strong> with other<br />

institutes:<br />

<strong>Water</strong> Company Evides<br />

research projects<br />

87


Research objective<br />

88 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

water Quality in distributi<strong>on</strong> systeMs<br />

The objective of this research project is to investigate the different processes affecting the water quality in<br />

distributi<strong>on</strong> systems and to quantify the c<strong>on</strong>tributi<strong>on</strong> of these processes <strong>on</strong> the water quality at the customer’s<br />

tap. From this knowledge operati<strong>on</strong>al acti<strong>on</strong>s can be proposed in the treatment process to limit the nutrient<br />

source for biofilms, to limit the particlulate loading to prevent resuspensi<strong>on</strong> of particles and to limit the chemical<br />

interacti<strong>on</strong> between the water and the pipe material.<br />

Project outline<br />

Introducti<strong>on</strong><br />

The water quality in distributi<strong>on</strong> systems is depending <strong>on</strong> a combinati<strong>on</strong> of biological, physical and chemical<br />

processes. Biostability and disinfecti<strong>on</strong> residual c<strong>on</strong>centrati<strong>on</strong> are internati<strong>on</strong>ally c<strong>on</strong>sidered the most important<br />

parameters of interest in distributi<strong>on</strong> systems as most countries worldwide have a treatment system not<br />

capable of producing bio stable water. Therefore chemical disinfecti<strong>on</strong> is worldwide used to safeguard the<br />

biological water quality. In the Netherlands and parts of Germany another approach is used, as the use of disinfectant<br />

residual is totally avoided. The combinati<strong>on</strong> of an extensive treatment by multiple barriers with good<br />

distributi<strong>on</strong> practices eliminates the need for disinfectant residual. By the multiple barrier treatment a chemical<br />

and biological stable water is produced. As a result of the multiple barriers treatment the physical loading of<br />

the distributi<strong>on</strong> system in the Netherlands with particulate material is also low. Stable and low turbidity values,<br />

in order of < 0.2 N<strong>TU</strong>, a saturati<strong>on</strong> index (SI) with a value of -0.2 < SI < 0.3 and an AOC c<strong>on</strong>centrati<strong>on</strong> of 10<br />

µg/l are comm<strong>on</strong>ly found in the water leaving the treatment plant. However, still discolorati<strong>on</strong> events occur.<br />

Although the processes and mechanisms that cause water quality deteriorati<strong>on</strong> in distributi<strong>on</strong> systems are generally<br />

known, they are complex and poorly understood compared to water quality processes in the treatment<br />

plant. Despite the distributi<strong>on</strong> system being known as a vast and unc<strong>on</strong>trollable biological reactor, <strong>on</strong>ly limited<br />

research <strong>on</strong> improving water quality within the distributi<strong>on</strong> system is undertaken, as there are no operati<strong>on</strong>al<br />

parameters that can be easily changed.<br />

Approach<br />

The research <strong>on</strong> water quality processes in distributi<strong>on</strong> systems is performed <strong>on</strong> two different levels, viz. <strong>on</strong>-line<br />

experiments in existing distributi<strong>on</strong> systems and research in laboratory pilot installati<strong>on</strong>s. In several distributi<strong>on</strong><br />

systems in the Netherlands new tools are applied to characterise the water quality based. Furthermore,<br />

laboratory distributi<strong>on</strong> systems will be designed and developed to investigate the optimal water quality and the<br />

required degree of treatment to avoid water quality deteriorati<strong>on</strong> in the distributi<strong>on</strong> system. The water quality<br />

in the laboratory distributi<strong>on</strong> systems will be c<strong>on</strong>tinuously m<strong>on</strong>itored and an overall mass balance of the distributi<strong>on</strong><br />

system (model approach) will be made.<br />

Results<br />

• Development of tools to assess the particulate water quality in distributi<strong>on</strong> systems<br />

• Optimal chemical c<strong>on</strong>diti<strong>on</strong> of drinking water including health aspects, corrosi<strong>on</strong> and scaling<br />

• Determinati<strong>on</strong> of the c<strong>on</strong>tributi<strong>on</strong> of biofilm to the water quality changes in a distributi<strong>on</strong> system<br />

• Large scale pilot distributi<strong>on</strong> system fed by different parallel operated treatment trains


Scientific relevance<br />

The research in the distributi<strong>on</strong> systems has always been quantitatively<br />

focused. Distributi<strong>on</strong> networks have always been developed in such a way<br />

that there is always sufficient water at sufficient pressure at the customer’s<br />

tap. Recently a shift in focus of the research in distributi<strong>on</strong> systems has<br />

occurred. To be able to deliver the high quality water at the customers tap also<br />

in the future the water quality processes in the distributi<strong>on</strong> network have to be<br />

understood better and more interacti<strong>on</strong> between researchers and operators<br />

of water treatment plants and water distributi<strong>on</strong> systems is needed.<br />

Social relevance<br />

The social relevance of this project is that, in combinati<strong>on</strong> with advanced<br />

treatment processes, the excellent Dutch drinking water quality will be safe<br />

guarded for the future. Furthermore, the processes c<strong>on</strong>tributing to the water<br />

quality deteriorati<strong>on</strong> in the distributi<strong>on</strong> network are quantified and appropriate<br />

acti<strong>on</strong>s can be taken to avoid future deteriorati<strong>on</strong> of the water quality.<br />

Literature<br />

<strong>Water</strong> quality in distributi<strong>on</strong> systems<br />

• Vreeburg JHG, Schippers D., Verberk JQJC, van Dijk JC Field c<strong>on</strong>trol study into<br />

the impact of particles <strong>on</strong> sediment accumulati<strong>on</strong> in a drinking water distributi<strong>on</strong><br />

system. <strong>Water</strong> Research (<strong>2008</strong>), 42, 16, 4233-4242<br />

• Rubulis J, Verberk JQJC, Vreeburg JHG, Gruškevica K., Juhna T. CHEMICAL<br />

AND MICROBIAL COMPOSITION OF LOOSE DEPOSITS. Proceedings 7th<br />

Internati<strong>on</strong>al C<strong>on</strong>ference ENVIRONMENTAL ENGINEERING<br />

• Particles in the distributi<strong>on</strong> system. Verberk J.Q.J.C., Vreeburg J.H.G., Rietveld,<br />

L.C., van Dijk J.C. Proceedings WISA<br />

• Verberk JQJC (<strong>2008</strong>) Internati<strong>on</strong>al collaborati<strong>on</strong> <strong>on</strong> aesthetic water quality. <strong>Delft</strong><br />

Cluster Magazine, 5, 14-17<br />

Other publicati<strong>on</strong>s<br />

• Verliefde ARD, Cornelissen ER, Heijman SGJ, Verberk JQJC, Amy GL, Van der<br />

Bruggen B, van Dijk JC. The role of electrostatic interacti<strong>on</strong>s <strong>on</strong> the rejecti<strong>on</strong> of<br />

organic solutes in aqueous soluti<strong>on</strong>s with nanofiltrati<strong>on</strong>. Journal of Membrane<br />

Science (<strong>2008</strong>), 322,1, 52-66<br />

• R. Garsadi, Hang Tuah.S., Indratmo, A.F.J. Doppenberg, J.Q.J.C. Verberk.<br />

Operati<strong>on</strong>al experience with a micro hydraulic mobile water treatment plant in<br />

Ind<strong>on</strong>esia after the “Tsunami of 2004”. Proceedings C<strong>on</strong>ference <strong>on</strong> Sanitati<strong>on</strong><br />

Edinborough<br />

• <strong>TU</strong> <strong>Delft</strong> OpenCourseWare: from repository to community. J. Groot Kormelink,<br />

W. van Valkenburg, J. Verberk. OpenED c<strong>on</strong>ference<br />

Jasper Verberk<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> Management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 15 27 85 838<br />

Fax: +31 15 27 84 918<br />

e-mail: J.Q.J.C.Verberk@<strong>TU</strong><strong>Delft</strong>.nl<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.48<br />

Start date: <strong>on</strong>going<br />

Expected end date: <strong>on</strong>going<br />

key words:<br />

<strong>Water</strong> quality in distributi<strong>on</strong> systems,<br />

particulate material, chemical<br />

c<strong>on</strong>diti<strong>on</strong>ing<br />

cooperati<strong>on</strong> with other<br />

institutes:<br />

Duinwaterbedrijf Zuid-Holland, Oasen,<br />

<strong>Water</strong>net, KWR <strong>Water</strong>cycle<br />

Research Institute, Cooperative<br />

Research Centre for <strong>Water</strong> Quality<br />

and Treatment, Australia.<br />

research projects<br />

89


eMoval of organic MicroPollutants by nanofiltrati<strong>on</strong>/reverse<br />

osMosis in (drinking) water (reuse) aPPlicati<strong>on</strong>s<br />

Research objectives<br />

•<br />

•<br />

•<br />

Assessment of removal efficiency of organic micropollutants (pharmaceuticals, horm<strong>on</strong>es, pesticides,…)<br />

by nanofiltrati<strong>on</strong>/reverse osmosis (NF/RO) in drinking water and waste water reuse applicati<strong>on</strong>s<br />

Development of predictive models for removal of pollutants by NF/RO, based <strong>on</strong> their chemical struc-<br />

ture<br />

Assessment of water matrix effects <strong>on</strong> removal<br />

Project outline<br />

Introducti<strong>on</strong><br />

The excellent drinking water quality in the Netherlands is threatened by newly emerging organic micro pollutants<br />

(pesticides, pharmaceuticals, industrial chemicals) in the source waters. Many of these pollutants have<br />

potential health effects in fish and mammals. Therefore, an extensive study of the presence of these pollutants<br />

in source waters and the behaviour during drinking water treatment is necessary. NF/RO as membrane filtrati<strong>on</strong><br />

techniques already proved their potential as a removal method for several organic pollutants.<br />

Approach<br />

By spiking a cocktail of carefully selected model organic solutes, with distinct physico-chemical properties <strong>on</strong>to<br />

different membranes, with well-defined characteristics, the governing removal mechanisms and parameters<br />

influencing these mechanisms can be determined. By carefully studying the effect of each parameter, an integrated,<br />

predictive model can be c<strong>on</strong>structed.<br />

<strong>Water</strong> quality parameters are included into the model by using different natural water types, carefully characterising<br />

them, and comparing them to artificial water types (c<strong>on</strong>taining model foulants).<br />

Results<br />

The three most important removal mechanisms in NF/RO are:<br />

• Steric hindrance (a sieving effect: molecules larger than the membrane pores are removed)<br />

• Adsorpti<strong>on</strong>/partiti<strong>on</strong>ing and hydrophobic-hydrophobic interacti<strong>on</strong>s<br />

• Charge interacti<strong>on</strong>s (membranes are mostly negatively charged at neutral feed water pH)<br />

Steric interacti<strong>on</strong> is a simple mechanism determined by the size of the solutes, compared to the size of the<br />

membrane pores. Charge interacti<strong>on</strong>s can be incorporated by extrapolating DLVO-theories for charge distributi<strong>on</strong>s<br />

in the vicinity of a charged plate. Partiti<strong>on</strong>ing of solutes into the membranes is determined by solutemembrane<br />

affinity, which can be determined from surface tensi<strong>on</strong> parameters of solute and membrane (which<br />

can be determined from c<strong>on</strong>tact angle measurements). After modeling the three removal mechanisms, an<br />

integrated model for solute transport through the membranes was developed, which was then extended to fullscale<br />

installati<strong>on</strong>s. Some experimentally determined rejecti<strong>on</strong> values in a full-scale installati<strong>on</strong> are compared<br />

to modelled rejecti<strong>on</strong>s for some pharmaceuticals in the figure below.<br />

The influence of feed water characteristics <strong>on</strong> removal efficiency are still difficult to understand. Different feed<br />

water types lead to different fouling layers <strong>on</strong> the membranes and different changes in membrane properties.<br />

It is therefore necessary to study different (extreme) natural water types (e.g. different waste water matrices),<br />

in comparis<strong>on</strong> with artificial water types c<strong>on</strong>taining model foulants.<br />

90 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


from the first to the last stage, the dependency of the zeta potential <strong>on</strong> the i<strong>on</strong>ic<br />

strength has to be incorporated. A linear decrease of the zeta potential with<br />

increasing salt c<strong>on</strong>centrati<strong>on</strong> in the installati<strong>on</strong> is assumed.<br />

Figure 4.8 1 - – Experimental and modelled and modelled rejecti<strong>on</strong> values rejecti<strong>on</strong> for positively values charged for positively pharmaceuticals charged <strong>on</strong> pilot pharma- scale NF<br />

ceuticals installati<strong>on</strong>, <strong>on</strong> as a pilot functi<strong>on</strong> scale of feed NF water installati<strong>on</strong>, recovery for as filtrati<strong>on</strong> a functi<strong>on</strong> run at 75% of feed recovery water (installati<strong>on</strong> recovery loaded for with filtrati<strong>on</strong> Desal<br />

run HL membranes) at 75% recovery (installati<strong>on</strong> loaded with Desal HL membranes)<br />

A necessity for the calculati<strong>on</strong> of the rejecti<strong>on</strong> of the charged solutes is that an<br />

Scientific relevance<br />

uncharged solute with similar physico-chemical properties has to be available.<br />

A more fundamental insight into the influence of the chemical structure of<br />

organic solutes and membranes, <strong>on</strong> their interacti<strong>on</strong>s, will help in further 133<br />

development of the NF/RO process and may lead to development of new<br />

and better membrane materials. Furthermore, relating molecular structure<br />

to removal (this c<strong>on</strong>cept is called QSAR (quantitative structure-activity relati<strong>on</strong>ship)),<br />

results in a framework through which it is able to “a priori” predict<br />

removal of newly emerging pollutants. This technique can easily be translated<br />

to other drinking water treatment processes (such as activated carb<strong>on</strong><br />

filtrati<strong>on</strong>, or river bank filtrati<strong>on</strong>). This offers a broader perspective and an<br />

important boost to the project.<br />

Social relevance<br />

In combinati<strong>on</strong> with the study of the water quality deteriorati<strong>on</strong> and the biological<br />

growth in the distributi<strong>on</strong> system and inner house installati<strong>on</strong>s, the<br />

improved understanding of the drinking water treatment process will result<br />

in a better safeguarding of the excellent quality of the drinking water in the<br />

Netherlands, to the benefit of all customers. Moreover, due to the importance<br />

of this problem to human health, it has gained attenti<strong>on</strong> worldwide and as a<br />

c<strong>on</strong>sequence, numerous research-institutes are involved in this project:<br />

Literature<br />

•<br />

•<br />

•<br />

Rejecti<strong>on</strong> (%)<br />

100<br />

80<br />

60<br />

40<br />

Terbutaline<br />

Terbutaline model<br />

Salbutamol<br />

Salbutamol model<br />

Pindolol<br />

Pindolol model<br />

Propranolol<br />

Propranolol model<br />

Atenolol<br />

Atenolol model<br />

Metoprolol<br />

Metoprolol model<br />

0 10 20 30 40 50 60 70 80<br />

Recovery (-)<br />

Verliefde et al., <strong>Water</strong> Research 41 (15) (2007), 3227.<br />

Verliefde et al., Envir<strong>on</strong>mental Progress 27 (2) (<strong>2008</strong>) 180.<br />

Verliefde et al., Journal of Membrane Science 322 (1). (<strong>2008</strong>) 52.<br />

Arne Verliefde<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> Management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 15 27 83 347<br />

Fax: +31 15 27 84 918<br />

e-mail: A.R.D.Verliefde@<strong>TU</strong><strong>Delft</strong>.nl<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.59<br />

Start date: Ongoing<br />

Expected end date: Ongoing<br />

key words:<br />

Organic micropollutants, nanofiltrati<strong>on</strong>,<br />

reverse osmosis, rejecti<strong>on</strong><br />

cooperati<strong>on</strong> with other<br />

institutes:<br />

KWR <strong>Water</strong>cycle Research Institute;<br />

K.U. Leuven; Unesco-IHE,<br />

University of California Los Angeles,<br />

University of New South Wales<br />

Sydney<br />

research projects<br />

91


nitrificati<strong>on</strong> in unsaturated drinking water filters<br />

Research objectives<br />

The main objective of the PhD-studies is to imitate the positive effect of subsurface aerati<strong>on</strong> (SA) <strong>on</strong> the nitrificati<strong>on</strong><br />

in drinking water filters (see figure below). To achieve this aim the mechanisms by which nitrificati<strong>on</strong><br />

relapses in normal groundwater filters and SA enhances nitrificati<strong>on</strong> will be unraveled.<br />

Project outline<br />

Introducti<strong>on</strong><br />

Oasen <strong>Drinking</strong> <strong>Water</strong> Company produces drinking water from groundwater in the fenland area of South<br />

Holland. Typical groundwater compounds like methane, ir<strong>on</strong>, amm<strong>on</strong>ium and manganese are removed in<br />

trickling biofilters. Ir<strong>on</strong> can be removed by oxidati<strong>on</strong>/floc filtrati<strong>on</strong>, adsorptive or biological oxidati<strong>on</strong>. The biological<br />

c<strong>on</strong>versi<strong>on</strong> of amm<strong>on</strong>ium to nitrate (nitrificati<strong>on</strong>) in these filters is often not durable. Enhancement of<br />

nitrificati<strong>on</strong> by improved back washing in full scale filters points to hindering of nitrificati<strong>on</strong> by ir<strong>on</strong> deposits.<br />

The main proven way for Oasen to maintain sound nitrificati<strong>on</strong> is by SA. By introducing air into the subsoil,<br />

both microbial ir<strong>on</strong> oxidati<strong>on</strong> is stimulated and mobile ir<strong>on</strong> colloids are formed in the aquifer, which enhances<br />

nitrificati<strong>on</strong> (Wolthoorn et al, 2004). It is hypothesized that the inorganic and bacterial ir<strong>on</strong> colloids influence<br />

the ir<strong>on</strong> removal mechanism, thus preventing filter clogging or improving the features of the filter coating which<br />

form the habitat for nitrifying microorganisms.<br />

Approach<br />

The project started with the determinati<strong>on</strong> of the dominant microbial populati<strong>on</strong>s in both the raw groundwater<br />

and the full scale drinking water filters in an Oasen SA and a reference system (de Vet et al., in press). On<br />

this knowledge, quantitative molecular techniques (rtPCR) have been developed and applied for enumerati<strong>on</strong><br />

of the relevant groups of microorganisms, ir<strong>on</strong>- and amm<strong>on</strong>ia-oxidizers. The interacti<strong>on</strong> between ir<strong>on</strong><br />

92 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


emoval mechanism, deposit features and nitrificati<strong>on</strong> has been researched<br />

in l<strong>on</strong>g durati<strong>on</strong> column experiments (set-up in figure <strong>on</strong> left page). The dis-<br />

covered c<strong>on</strong>straints <strong>on</strong> ir<strong>on</strong> removal and nitrificati<strong>on</strong> during groundwater fil-<br />

trati<strong>on</strong> and alternative enhancement techniques will be further investigated<br />

in batch, pilot and full-scale experiments.<br />

Results<br />

Ir<strong>on</strong> removal inhibits nitrificati<strong>on</strong> in pilot-scale experiments. Groundwater<br />

features str<strong>on</strong>gly influence which ir<strong>on</strong> removal mechanisms prevails in filtrati<strong>on</strong>.<br />

Under distinct c<strong>on</strong>diti<strong>on</strong>s, the growth of the ir<strong>on</strong>-oxidizing bacteria G.<br />

ferruginea is stimulated even under relatively high oxygen saturati<strong>on</strong> required<br />

for nitrificati<strong>on</strong>. Both results are shown in the figures below.<br />

Scientific relevance<br />

Nitrogen forms <strong>on</strong>e of the main cycles <strong>on</strong> earth, therefore nitrificati<strong>on</strong> is a<br />

major process in both natural soils and waters and artificial systems like<br />

water, waste and wastewater treatment. While enhancement of nitrificati<strong>on</strong><br />

is aimed for in purificati<strong>on</strong> processes, this is undesirable in some natural<br />

and most cultivati<strong>on</strong> systems. The influence of envir<strong>on</strong>mental and especially<br />

(geo-) chemical factors <strong>on</strong> the microbial growth is largely not understood<br />

and can thus not be c<strong>on</strong>trolled. Better understanding of these interacti<strong>on</strong>s<br />

will open the way to new methods of process c<strong>on</strong>trol and finer techniques<br />

for detecti<strong>on</strong> of biological effects. Both can then be further developed and<br />

applied to other microorganisms in a broader field of work.<br />

Social relevance<br />

Development of an alternative method of nitrificati<strong>on</strong> enhancement overcomes<br />

the possible envir<strong>on</strong>mental risks involved in SA, notably accumulati<strong>on</strong><br />

of heavy metals in the subsoil. Moreover a better c<strong>on</strong>trolled and optimised<br />

nitrificati<strong>on</strong> process diminishes filter maintenance and thus energy and costs.<br />

Better understanding of the inhibiti<strong>on</strong> of bacteria by chemical factors can lead<br />

to more effective use of micro organisms for example in bioremediati<strong>on</strong>.<br />

Literature<br />

•<br />

•<br />

de Vet, W.W.J.M., Dinkla, I.J.T., Muyzer, G., Rietveld, L.C. and van Loosdrecht,<br />

M.C.M. Molecular characterizati<strong>on</strong> of microbial populati<strong>on</strong>s in groundwater<br />

sources and sand filters for drinking water producti<strong>on</strong>. <strong>Water</strong> Research, article<br />

in press, <strong>on</strong>line publicati<strong>on</strong> complete: 7-NOV-<strong>2008</strong> DOI informati<strong>on</strong>: 10.1016/j.<br />

watres.<strong>2008</strong>.09.038.<br />

Wolthoorn, A., Temminghoff, E.J.M. and Van Riemsdijk, W.H. (2004) Effect of<br />

synthetic ir<strong>on</strong> colloids <strong>on</strong> the microbiological NH4+ removal process during<br />

groundwater purificati<strong>on</strong>. <strong>Water</strong> Research 38(7), 1884-1892.<br />

Weren de Vet<br />

<strong>Delft</strong> University of Technology<br />

Faculty of TNW/CiTG<br />

Department of Biotechnology/<strong>Water</strong>management<br />

Secti<strong>on</strong> Envir<strong>on</strong>mental Biotechnology/<strong>Drinking</strong><br />

water<br />

Tel.: +31 15 27 81 551<br />

Fax: +31 15 27 82 355<br />

e-mail: W.W.J.M.deVet@<strong>TU</strong><strong>Delft</strong>.nl<br />

www.drinkwater.tudelft.nl<br />

www.bt.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

visiting address:<br />

Julianalaan 67<br />

2628 BC <strong>Delft</strong><br />

Building of Kluyver Laboratory<br />

Room 1.580<br />

Start date project: Jul 2006<br />

Expected end date: Jun 2010<br />

key words:<br />

<strong>Drinking</strong> water filter, ir<strong>on</strong> removal,<br />

nitrificati<strong>on</strong>, subsurface aerati<strong>on</strong><br />

cooperati<strong>on</strong> with other<br />

institutes:<br />

Oasen <strong>Drinking</strong> <strong>Water</strong> Gouda<br />

research projects<br />

93


Research objectives<br />

The objectives of the study are:<br />

•<br />

•<br />

Particles in drinking water networks<br />

Establish a relati<strong>on</strong><br />

with<br />

between<br />

these<br />

water<br />

c<strong>on</strong>cepts.<br />

quality<br />

Samples<br />

characteristics<br />

such as these<br />

of the<br />

have<br />

finished<br />

been<br />

water<br />

installed<br />

in terms<br />

in a laboratory<br />

of particle<br />

facility<br />

load, turand<br />

bidity, AOC, Fe-c<strong>on</strong>tent, significant suspended discolourati<strong>on</strong> solids etc. was and generated the depositi<strong>on</strong> by exposing and mobility them to of flushing sedimentary flow rates, deposits despite in the<br />

a c<strong>on</strong>venti<strong>on</strong>al drinking disturbance water distributi<strong>on</strong> of weakly adhered network. material caused by obtaining the samples..<br />

Compose a model for the reacti<strong>on</strong> of an existing network loaded with sedimentary deposits to the introducti<strong>on</strong><br />

of improved water quality (HQ-water) in terms of the above menti<strong>on</strong>ed water quality parameters. With<br />

the model it should be possible to c<strong>on</strong>trol the mass balance with dedicated measures.<br />

Project outline<br />

Introducti<strong>on</strong><br />

This research program is devoted to fill in the gaps in knowledge <strong>on</strong> the behaviour of particles in drinking water<br />

distributi<strong>on</strong> systems. Particles in drinking water systems are resp<strong>on</strong>sible for the generati<strong>on</strong> of discolourati<strong>on</strong> of the<br />

water, leading to an unacceptable aesthetic water quality. Apart from the aesthetic aspect of particles in the drinking<br />

Fig 1-4 Material accumulati<strong>on</strong> around the complete perimeter of cast ir<strong>on</strong> pipe samples<br />

water system, also public health could be compromised, as particles can be related to other water quality aspects,<br />

such as the biological regrowth problems in the network. Discolourati<strong>on</strong> of the water is the most important cause<br />

Transport of particles will not <strong>on</strong>ly occur through the liquid phase as suspended solids, but<br />

for customers to complain<br />

can<br />

at<br />

also<br />

their<br />

take<br />

water<br />

place<br />

company<br />

as bed load<br />

and leads<br />

transport:<br />

to 3000<br />

particles<br />

to 6000<br />

rolling<br />

water<br />

over<br />

quality<br />

the pipe<br />

complaints<br />

wall. Though<br />

per year.<br />

not<br />

menti<strong>on</strong>ed in literature, bed load is a distinct possibility for particle transport. All the<br />

Approach aforementi<strong>on</strong>ed particle-related processes in a network are visualised in Fig 1-5.<br />

The framework of the<br />

research is a mass balance<br />

model for a network.<br />

Within the model, the different<br />

processes dealing<br />

Suspended<br />

solids<br />

Biofilm<br />

formati<strong>on</strong> &<br />

sloughing<br />

Corrosi<strong>on</strong><br />

Suspended<br />

solids<br />

with particles can be quantified<br />

and analysed. The<br />

origin of the accumulated<br />

sediment is multiple, as is<br />

dem<strong>on</strong>strated in the fig-<br />

(AOC and<br />

dissolved<br />

solids)<br />

Regular<br />

depositi<strong>on</strong> &<br />

resuspensi<strong>on</strong><br />

Precipitati<strong>on</strong> &<br />

flocculati<strong>on</strong><br />

(AOC and<br />

dissolved<br />

solids)<br />

ure. New measuring methods<br />

are developed as the<br />

© J.H.G. Vreeburg<br />

Bed load<br />

transport<br />

Resuspensi<strong>on</strong> Potential Figure 1 - Particle-related processes in a network<br />

Fig 1-5 Particle-related processes in a network. The directi<strong>on</strong> of the arrows indicate the path<br />

Method to asses the dis- particles follow in the pipe. The vertically aimed arrows indicate particles settling <strong>on</strong> the pipe<br />

colourati<strong>on</strong> risk. Particle wall; counting the horiz<strong>on</strong>tally is introduced aimed to analyse arrows the indicate impact particles of the suspended moving with solids the <strong>on</strong> water the as accumula- suspended<br />

solids.<br />

ti<strong>on</strong> of sedimentary deposits.<br />

Overall it can be c<strong>on</strong>cluded that the mechanism leading to discolourati<strong>on</strong> events are<br />

Results<br />

complicated, poorly understood and interactive. However the processes may be understood<br />

The Resuspensi<strong>on</strong> Potential through Method the framework (RPM) is developed presented in and Fig applied 1-5. On in this many representati<strong>on</strong> Dutch networks the as hypothesis a tool to asses of this<br />

the discolourati<strong>on</strong> risk. The research tool is is also based. necessary The underlying to follow cause the effect of discolourati<strong>on</strong> of measures to is limit presumed the particle to be formed load. A large by<br />

particles attached by some means to the pipe wall, irrespective of their origin, either imported<br />

scale experiment is set up to find out what the effect of the particles in the network is. In the network of treatment<br />

from outside the network, by the treatment or produced within the network itself. In normal<br />

plant Spannenburg in the flow province the particles Friesland regularly two areas deposit are and isolated partly resuspend and fed through without a affecting single feed. the One aesthetic of the<br />

quality of the water. If flows are increased above normal values in an hydraulic incident,<br />

94 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

Introducti<strong>on</strong> - 5 -<br />

incidental<br />

resuspensi<strong>on</strong>


areas will be fed with the original drinking water while the other will be fed with<br />

Ultra Filtrati<strong>on</strong> post treated water. The UF will limit the particle load to almost<br />

zero have also some effect <strong>on</strong> the biological stability of the water.<br />

Three m<strong>on</strong>ths prior to the experiment the network was cleaned, which was<br />

repeated at the start of the experiment. From the results is could be calculated<br />

that the sediment load of the original water was 85 µg/l.<br />

Lab experiments with pipe rigs showed that the settling of particles is a complex<br />

process that not <strong>on</strong>ly leads to gravitati<strong>on</strong>al settling, but also involves<br />

velocity dependant wall attracti<strong>on</strong>.<br />

Scientific relevance<br />

The processes that govern the settling and resuspensi<strong>on</strong> of particles in the<br />

network are not fully understood. Many models <strong>on</strong> particle behaviour in water<br />

as sewer systems (Berlam<strong>on</strong>t) or rivers and channels (Stokes and Shield)<br />

do not apply to the drinking water system, because of the difference in type<br />

and density of the particles. This is c<strong>on</strong>firmed by explorative lab experiments<br />

in the aforementi<strong>on</strong>ed pipe test rig. New theories as the cohesive transport<br />

model developed by Boxall (Sheffield University) do not cover the resuspensi<strong>on</strong><br />

enough. The RPM offers the opportunity to qualitatively assess the actual<br />

discolorati<strong>on</strong> risk and formulate operati<strong>on</strong>al measures. Further development<br />

will eventually lead to predictive and quantitative models that help to understand<br />

the processes in the network.<br />

Social relevance<br />

Discolorati<strong>on</strong> seriously undermines the customer’s faith in drinking water.<br />

Possible public health effects are not very severe because the colour of the<br />

water will prevent people from actually c<strong>on</strong>suming the water. The effects <strong>on</strong><br />

water quality of resuspend sediment in the sub-visual regi<strong>on</strong>, below 5 F<strong>TU</strong>,<br />

are probably not negligible.<br />

<strong>Water</strong> companies spend a lot of m<strong>on</strong>ey to produce good drinking water that<br />

however can deteriorate significantly in the network. More knowledge in how<br />

to maintain the network and treat the water will decrease the number of discoloured<br />

water incidents and increase customer’s trust in save and healthy<br />

drinking water.<br />

Literature<br />

•<br />

•<br />

Vreeburg JHG, Schaap, PG, Dijk, JC van (‘04) “Measuring Discolourati<strong>on</strong> Risk:<br />

Resuspensi<strong>on</strong> Potential Method: Leading Edge Technology, Prague, IWA<br />

Vreeburg JHG, Schaap, PG, Dijk, JC van (2004), “Particles in the drinking water<br />

system: from source to discolourati<strong>on</strong>” <strong>Water</strong> Science and Technology, 2004,<br />

4(5-6) pp 431-438<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> Management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 15 27 87 894<br />

Fax: +31 15 27 84 918<br />

e-mail: J.H.G.Vreeburg@<strong>TU</strong><strong>Delft</strong>.nl<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

Jan Vreeburg<br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.65<br />

Start date: <strong>on</strong>going<br />

Expected end date: <strong>on</strong>going<br />

key words:<br />

Particles, drinking water, networks<br />

cooperati<strong>on</strong> with other<br />

institutes:<br />

KWR <strong>Water</strong>cycle Research Institute;<br />

Unesco-IHE<br />

research projects<br />

95


Research objectives<br />

•<br />

•<br />

•<br />

96 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

cfd in drinking water treatMent<br />

Model the flow and mixing properties in the disinfecti<strong>on</strong> installati<strong>on</strong>s (oz<strong>on</strong>e and UV) in a correct man-<br />

ner by means of CFD.<br />

Dem<strong>on</strong>strate the weak spots in the present disinfecti<strong>on</strong> installati<strong>on</strong>s and optimize these installati<strong>on</strong>s<br />

with respect to its c<strong>on</strong>sumpti<strong>on</strong> (oz<strong>on</strong>e, UV), disinfecti<strong>on</strong> capacity and formati<strong>on</strong> of disinfecti<strong>on</strong> by-products.<br />

Design of new UV reactor systems that makes use of hydrodynamic principles to enhance the performance.<br />

Project outline<br />

Introducti<strong>on</strong><br />

In the drinking water sector, computati<strong>on</strong>al fluid dynamics (CFD) is especially interesting in case of complex<br />

flows, which occur in disinfecti<strong>on</strong> installati<strong>on</strong>s, such as oz<strong>on</strong>e and UV systems. Oz<strong>on</strong>e installati<strong>on</strong>s c<strong>on</strong>sist out<br />

of a bubble column and a number of c<strong>on</strong>tact chambers. Oz<strong>on</strong>e gas is injected in the bubble column, where<br />

it is dissolved in the water. The dissolved oz<strong>on</strong>e-water mixture flows through the c<strong>on</strong>tact chambers in order<br />

to create enough reacti<strong>on</strong> time between the oz<strong>on</strong>e and the c<strong>on</strong>taminants. UV installati<strong>on</strong>s c<strong>on</strong>tain a number<br />

of lamps that emit UV light in order to inactivate microorganisms (by damaging their DNA). These UV lamps<br />

are often placed perpendicular to the flow directi<strong>on</strong>, which results in a complex flow pattern around the lamps.<br />

Approach<br />

In oz<strong>on</strong>e installati<strong>on</strong>s, problems arise due to the formati<strong>on</strong> of disinfecti<strong>on</strong> by-products, when the<br />

water is in c<strong>on</strong>tact with the dissolved oz<strong>on</strong>e for a l<strong>on</strong>g time. But a proper disinfecti<strong>on</strong> requires a certain<br />

c<strong>on</strong>tact time between the dissolved oz<strong>on</strong>e and water. The challenge is to reduce the spreading in<br />

c<strong>on</strong>tact time. Numerical modeling is a powerful tool to investigate the c<strong>on</strong>tact time under different circumstances<br />

and optimise the flow in the installati<strong>on</strong>. For UV-systems, the complex flow causes a distributi<strong>on</strong><br />

in UV dose (=amount of UV light received by a microorganism). Reducing the dose distributi<strong>on</strong><br />

by optimising the hydraulics will result in a reducti<strong>on</strong> of the (high) energy c<strong>on</strong>sumpti<strong>on</strong> of the lamps<br />

Results<br />

The complex flow patterns in the oz<strong>on</strong>e c<strong>on</strong>tactor are calculated by means of computati<strong>on</strong>al fluid dynamics.<br />

Individual particle trajectories are<br />

calculated to determine the c<strong>on</strong>tact<br />

time (CT) of each particle with the<br />

dissolved oz<strong>on</strong>e. Tracer experiments<br />

were c<strong>on</strong>ducted to determine<br />

the residence time distributi<strong>on</strong>s at<br />

several locati<strong>on</strong>s in oz<strong>on</strong>e c<strong>on</strong>tactor.<br />

The model results show good<br />

agreement with the tracer experiment.<br />

As a next step, the model is<br />

Figure 1 - Oz<strong>on</strong>e exposure of microorganisms released instantaneously at the<br />

used as a tool to evaluate different<br />

inlet after 5.57min. The additi<strong>on</strong>al horiz<strong>on</strong>tal baffles increase the values<br />

of the lowest oz<strong>on</strong>e exposures and yield a narrower distributi<strong>on</strong>.


affling c<strong>on</strong>figurati<strong>on</strong>s inside the oz<strong>on</strong>e c<strong>on</strong>-<br />

tactor (Fig 1). It is shown that additi<strong>on</strong>al hori-<br />

z<strong>on</strong>tal baffles may increase the disinfecti<strong>on</strong><br />

performance significantly. Velocity measure-<br />

ments of the water flowing through a bench-<br />

scale UV reactor showed that a recirculati<strong>on</strong><br />

z<strong>on</strong>e develops downstream of the UV lamp,<br />

which causes a l<strong>on</strong>ger residence time for the<br />

water trapped inside the recirculati<strong>on</strong> (Fig 2).<br />

Moreover, the CFD models that incorporate<br />

a standard k-epsil<strong>on</strong> turbulence model were Figure 2 - Visualizati<strong>on</strong> of the<br />

flow field around a UV lamp in the<br />

not able to reproduce these recirculati<strong>on</strong>s bench scale reactor<br />

correctly. Therefore, more complex CFD<br />

models, such as Large Eddy Simulati<strong>on</strong>, were used to capture the complex<br />

turbulent moti<strong>on</strong>s originating from the lamp. The shape of a single UV lamp<br />

placed perpendicular to the flow is hydraulically optimised by experimental<br />

and numerical tools.<br />

Scientific relevance<br />

A proper descripti<strong>on</strong> of the turbulent mixing is of great importance for the<br />

disinfecti<strong>on</strong> capacity. But turbulent mixing is a complicated process, which<br />

is str<strong>on</strong>gly influenced by the local flow situati<strong>on</strong> and therefore by the geometry.<br />

There is still indistinctness <strong>on</strong> the physical properties, but also <strong>on</strong> the<br />

numerical implementati<strong>on</strong>, like turbulence modeling and particle tracking.<br />

Social relevance<br />

Improving the disinfecti<strong>on</strong> capacity and reducing the disinfecti<strong>on</strong> by-products<br />

by means of some small adjustments in oz<strong>on</strong>e installati<strong>on</strong>s leads to a<br />

low-cost soluti<strong>on</strong> for better quality of drinking water. UV-installati<strong>on</strong>s lead to<br />

the required disinfecti<strong>on</strong> without the formati<strong>on</strong> of disinfecti<strong>on</strong> by-products.<br />

Optimizati<strong>on</strong> of the UV reactor using CFD leads to a lower energy c<strong>on</strong>sumpti<strong>on</strong><br />

and accordingly lower costs.<br />

Literature<br />

•<br />

•<br />

Wols, B.A., Hofman, J.A.M.H., Uijttewaal, W.S.J., Rietveld, L.C., Stelling, G.S.,<br />

van Dijk, J.C., <strong>2008</strong>. Residence time distributi<strong>on</strong>s in oz<strong>on</strong>e c<strong>on</strong>tactors. Oz<strong>on</strong>e:<br />

Science and <strong>Engineering</strong> 30(1) 49-57.<br />

Wols, B.A., Hofman, J.A.M.H., Uijttewaal, W.S.J., Rietveld, L.C., Stelling, G.S.,<br />

van Dijk, J.C., <strong>2008</strong>. A particle tracking technique to estimate disinfecti<strong>on</strong> efficacy<br />

in drinking water treatment plants. 6th internati<strong>on</strong>al c<strong>on</strong>ference <strong>on</strong> CFD in<br />

the oil and gas, metallurgical & process industries, Tr<strong>on</strong>dheim, 11 juni <strong>2008</strong><br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> Management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 15 27 85 433<br />

Fax: +31 15 27 84 842<br />

e-mail: B.A.Wols@<strong>TU</strong><strong>Delft</strong>.nl<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2628 CN <strong>Delft</strong><br />

Bas Wols<br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 2.92<br />

Start date: Jan 2006<br />

Expected end date: Jan 2010<br />

key words:<br />

CFD, Oz<strong>on</strong>ati<strong>on</strong>, UV, Disinfecti<strong>on</strong><br />

cooperati<strong>on</strong> with other<br />

institutes:<br />

KWR <strong>Water</strong>cycle Research Institute;<br />

<strong>Water</strong>net, TTI Wetsus<br />

research projects<br />

97


drinking water siMulator for Proactive oPerati<strong>on</strong> and training<br />

Research objectives<br />

Topic of my PhD research is the combinati<strong>on</strong> and applicati<strong>on</strong> of water quality and water quantity models of<br />

drinking water treatment plants. The models, linked <strong>on</strong> a software platform that includes training and decisi<strong>on</strong><br />

support features and user interfaces forms the heart of a drinking water treatment simulator. The research is<br />

part of the project carrying the same name as the simulator: <strong>Water</strong>spot.<br />

Project outline<br />

Introducti<strong>on</strong><br />

The simulator can be c<strong>on</strong>nected to a producti<strong>on</strong> database, to a process automati<strong>on</strong> (PA) systems or to a PA<br />

system emulator. A PA system emulator can be described as a copy of PA functi<strong>on</strong>ality used in a drinking water<br />

treatment plant <strong>on</strong> a separate PC. The emulator interfaces with the simulator using a virtual plant.<br />

The simulator has three main types of end-users, depending <strong>on</strong> the other system the simulator is c<strong>on</strong>nected<br />

to. The first type of end-users are operati<strong>on</strong> supervisors who can train their skills in a company look & feel<br />

simulator when c<strong>on</strong>nected to an emulator. The sec<strong>on</strong>d type are technologists who can perform process optimisati<strong>on</strong>s<br />

when the simulator is c<strong>on</strong>nected to a historian database. An advanced applicati<strong>on</strong> is the c<strong>on</strong>necti<strong>on</strong><br />

of the system to the <strong>on</strong>line PA system for <strong>on</strong>line model based process optimizati<strong>on</strong>. The third type are software<br />

engineers who can use the simulator-emulator system<br />

for virtual commissi<strong>on</strong>ing of software.<br />

Approach<br />

Last year the research has focussed <strong>on</strong> the software<br />

setup of the simulator and <strong>on</strong> hydraulic modeling of<br />

a drinking water treatment plant. For the latter two<br />

models have been set up and validated, <strong>on</strong>e of treatment<br />

plant Harderbroek and <strong>on</strong>e for treatment plant<br />

Wim Mensink. The coming year, the focus will be <strong>on</strong><br />

the integrati<strong>on</strong> of the simulator with the virtual plant<br />

and the PA system emulator and <strong>on</strong> a process c<strong>on</strong>trol<br />

optimizati<strong>on</strong> case for the softening plant of Wim<br />

Mensink.<br />

The research is founded by PWN <strong>Water</strong>supply<br />

Company North-Holland and cofounded by Senter<br />

Novem, Dutch Ministery of Ec<strong>on</strong>omic affairs.<br />

Results<br />

Together with fellow researchers and project members<br />

the beta versi<strong>on</strong> of the simulator for treatment<br />

plants Weesperkarspel and Wim Mensink were set<br />

up and they run smoothly. For PWN the work started<br />

98 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


to set up an interface between the simulator, a virtual plant and an emulator,<br />

the latter being a copy of all c<strong>on</strong>trol functi<strong>on</strong>ality and man-machineinterfaces<br />

from a PLC <strong>on</strong> a PC. The beta versi<strong>on</strong> for Vitens will follow so<strong>on</strong>,<br />

since modeling is in progress now.<br />

Two papers were presented <strong>on</strong> the SIDISA c<strong>on</strong>ference in Florence. Both<br />

papers have accessed the review process of a peer-reviewed journal. One<br />

papers deals with the hydraulic modeling of a drinking water treatment plant,<br />

the other with the simulator’s software layout.<br />

Scientific relevance<br />

The development of a platform that hosts available water quantity and water<br />

quality models and let them interact, is a great boost for the use of existing<br />

models and the development of new <strong>on</strong>es. A nice example is the simulatorvirtual<br />

plant-emulator development that has created a request to develop a<br />

Stimela model for ultrafiltrati<strong>on</strong> and RO filtrati<strong>on</strong>.<br />

Social relevance<br />

In drinking water supply companies the trend of fully automated and centralized<br />

operati<strong>on</strong> c<strong>on</strong>tinues, leading to new challenges and opportunities like<br />

alarm management and model based process c<strong>on</strong>trol and operati<strong>on</strong>. This<br />

project is aiming to develop the tools and mind set needed to use models in<br />

the daily operati<strong>on</strong> and optimizati<strong>on</strong> of drinking water treatment plants. The<br />

simulator will be used by operati<strong>on</strong> supervisors to train their skills, to ensure<br />

they will resp<strong>on</strong>d adequately during calamities in future.<br />

Literature<br />

• Worm, G.I.M., van der Helm, A.W.C., Lapikas, T., van Schagen, K.M.,<br />

Rietveld, L.C., Integrati<strong>on</strong> of models, data management, interfaces,<br />

and training and decisi<strong>on</strong> support in a drinking water treatment plant<br />

simulator, paper ID 394<br />

• Worm, G.I.M., van der Helm, A.W.C , Kivit, C, van Schagen, K.M.,<br />

Rietveld, L.C., Hydraulic Modeling of <strong>Drinking</strong> <strong>Water</strong> Treatment Plants,<br />

Proceeding SIDISA c<strong>on</strong>ference <strong>2008</strong>, Florence, paper ID 395<br />

<strong>Delft</strong> University of Technology<br />

PWN <strong>Water</strong> Supply North-Holland<br />

Tel.: +31 61 04 53 808<br />

e-mail: ignaz.worm@pwn.nl<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

P.O. Box 2113<br />

1990 AC Velserbroek<br />

the Netherlands<br />

visiting address:<br />

Pumping stati<strong>on</strong> Jan Lagrand<br />

<strong>Water</strong>weg 1<br />

1969 GA Heemskerk<br />

Start date: Sep 2005<br />

Expected end date: Dec 2011<br />

key words:<br />

Simulati<strong>on</strong>, dynamic modeling,<br />

training, drinking water treatment<br />

cooperati<strong>on</strong> with other<br />

institutes:<br />

PWN, Duinwaterbedrijf Zuid-Holland,<br />

<strong>Water</strong>net, Vitens, URea<strong>on</strong>,<br />

DHV, ABB, KWR <strong>Water</strong>cycle Research<br />

Institute<br />

research projects<br />

Ignaz Worm<br />

99


ejecti<strong>on</strong> of PharMaceutically active and endocrine disruPting<br />

coMPounds by low and high Pressure MeMbranes: interacti<strong>on</strong>s<br />

between solutes and fouled MeMbranes<br />

Research objectives<br />

Understand fundamental interacti<strong>on</strong>s occurring between compounds and membranes that influence rejecti<strong>on</strong><br />

during membrane filtrati<strong>on</strong>.<br />

Dem<strong>on</strong>strate that modified properties of pre fouled membranes when compared to clean <strong>on</strong>es, may possibly<br />

result in improved or diminished rejecti<strong>on</strong>s of PhACs and EDCs.<br />

Define models that describe or predict compound rejecti<strong>on</strong> based <strong>on</strong> compound properties, membrane selecti<strong>on</strong>,<br />

chemistry of the soluti<strong>on</strong>, and operati<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong>s.<br />

Project outline<br />

Introducti<strong>on</strong><br />

Pharmaceutically Active Compounds (PhACs) and Endocrine Disrupting Compounds (EDCs) – present in<br />

surface waters due to wastewater effluents discharged to surface waters – are of c<strong>on</strong>cern as future removal<br />

targets in drinking water treatment plants that recycle wastewater effluents or use wastewater-c<strong>on</strong>taminated<br />

surface waters. The threat as trace c<strong>on</strong>taminants becomes more extensive after identificati<strong>on</strong> of PhACs and<br />

EDCs in some effluents of wastewater treatment plants and tap drinking water of some water utilities.<br />

Approach<br />

The research started with an extensive literature review of previous studies. After selecti<strong>on</strong> and property estimati<strong>on</strong><br />

of compounds, rejecti<strong>on</strong> experiments are carried out. The results are interpreted and theory and model<br />

developments are used to relate important variables of the process. Am<strong>on</strong>g those, we have membrane characteristics<br />

such as pure water permeability, charge, hydrophobicity; solute properties such as molecular weight,<br />

molecular size, dipole moment, octanol-water partiti<strong>on</strong> coefficient, and hydrophilicity; chemical compositi<strong>on</strong> of<br />

waters and operati<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong>s.<br />

Results<br />

Results will follow so<strong>on</strong>.<br />

Scientific relevance<br />

After some years of research in trace organic compounds removal during membrane filtrati<strong>on</strong>, there is not a<br />

clear picture of interacti<strong>on</strong> between physical-chemical compound properties and membrane characteristics.<br />

The difficulties are related to the search of a unique or simplified explanati<strong>on</strong> of rejecti<strong>on</strong> accounting part of<br />

the variables involved. The current investigati<strong>on</strong> c<strong>on</strong>siders overcoming those problems relating necessary variables<br />

and using statistical and data-driven modeling.<br />

Social relevance<br />

The study of the removal of trace c<strong>on</strong>taminants through water membrane treatment is of social relevance for<br />

the future, as water resources become scarce and demands of recycled water will arise. Thus, esthetical c<strong>on</strong>siderati<strong>on</strong>s<br />

of the public will demand drinking water utilities high-quality drinking water.<br />

100 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Literature<br />

•<br />

V. Yangali-Quintanilla, T.-U. Kim, M. Kennedy, and G. Amy (<strong>2008</strong>) Modeling of<br />

RO/NF membrane rejecti<strong>on</strong>s of PhACs and organic compounds: a statistical<br />

analysis DWES 1, (1), 7-15<br />

Victor Yangali Quntanilla<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> Management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

UNESCO-IHE<br />

Urban <strong>Water</strong> Supply and Sanitati<strong>on</strong><br />

Tel.: +31 15 21 51 896<br />

Fax: +31 15 21 22 921<br />

e-mail: v.yangaliquintanilla@unesco-ihe.org<br />

www.drinkwater.tudelft.nl<br />

Postal address:<br />

UNESCO-IHE<br />

Westvest 7<br />

2611 AX <strong>Delft</strong><br />

visiting address:<br />

UNESCO-IHE<br />

Westvest 7<br />

2611 AX <strong>Delft</strong><br />

Start date: Jun 2006<br />

Expected end date: Jun 2010<br />

key words:<br />

membrane filtrati<strong>on</strong>, fouling<br />

research projects<br />

101


decisi<strong>on</strong> suPPort systeM for Managing underground water<br />

related assets (water distributi<strong>on</strong> and sewerage)<br />

Research objectives<br />

The purpose of asset management decisi<strong>on</strong> maker is to obtain effective, efficient and ec<strong>on</strong>omy management<br />

during the asset’s whole life. The strategies involve two shifts: from single short-term plan to both short and<br />

l<strong>on</strong>g-term plan, from single reactive to both reactive and proactive approaches. These strategies are based <strong>on</strong><br />

predictive deteriorati<strong>on</strong> tendency, and thorough understanding of how the various and numerous parameters<br />

impact <strong>on</strong> the process of system deteriorati<strong>on</strong> and <strong>on</strong> the different aspects of performance. In additi<strong>on</strong>, the<br />

need to optimize the ec<strong>on</strong>omic efficiency of the rehabilitati<strong>on</strong> strategy within operati<strong>on</strong>al requirements must be<br />

complemented by a sound understanding of the interactive ec<strong>on</strong>omic impacts of system performance.<br />

Project outline<br />

Introducti<strong>on</strong><br />

With decades of years of municipal infrastructure investment, the assets ageing and deteriorati<strong>on</strong> problem is<br />

more and more important for all assets managers. As pipes deteriorate, some events can happen, such as<br />

breakage increase, head loss increase, water quality decline and so <strong>on</strong>. Due to the budget limitati<strong>on</strong>, different<br />

severity and importance for each pipe, not all ageing and deteriorated pipes can be replaced or rehabilitated<br />

at same time. The priority rehabilitati<strong>on</strong> is an optimal problem in essential for decisi<strong>on</strong> makers.<br />

Approach<br />

The research c<strong>on</strong>cerns the development of a decisi<strong>on</strong> support system manage water distributi<strong>on</strong> systems.<br />

Correct pipe c<strong>on</strong>diti<strong>on</strong> assessment and pipe significance assessment are two foundati<strong>on</strong>s of reas<strong>on</strong>able asset<br />

management strategies. Based <strong>on</strong> them, pipe criticality integrati<strong>on</strong> can be d<strong>on</strong>e. Using different methods to<br />

rehabilitate pipes with different significance and pipe c<strong>on</strong>diti<strong>on</strong> is the reas<strong>on</strong>able method under the budget limitati<strong>on</strong>.<br />

A whole life costing approach will take into account the total direct, indirect and social costs associated<br />

with provisi<strong>on</strong>, maintenance, operati<strong>on</strong>, servicing and decommissi<strong>on</strong> of these assets over its useful life.<br />

Results<br />

In this year, a c<strong>on</strong>ceptual framework for operati<strong>on</strong>, maintenance and rehabilitati<strong>on</strong> of water distributi<strong>on</strong> infrastructures<br />

assets has been produced (see Fig. 1). Pipe c<strong>on</strong>diti<strong>on</strong> assessment model, pipe significance model,<br />

and pipe criticality model are the foundati<strong>on</strong> of whole life costing model. These analyses can help decisi<strong>on</strong><br />

maker focus <strong>on</strong> bad c<strong>on</strong>diti<strong>on</strong> and/or important pipes. With the reduced computati<strong>on</strong> load, some really key<br />

pipe rehabilitati<strong>on</strong> and replacement can be made further analysis. Then a pipe c<strong>on</strong>diti<strong>on</strong> assessment model<br />

development is going-<strong>on</strong>. The PCA model, which is based <strong>on</strong> fuzzy PROMETHEE method, has been used<br />

to measure pipe’s relative c<strong>on</strong>diti<strong>on</strong>. Pipe’s significance is determined by the pipe change’s influence or failure<br />

c<strong>on</strong>sequence. The integrati<strong>on</strong> of these two models results criticality model, which provides the priority of<br />

rehabilitati<strong>on</strong> for decisi<strong>on</strong> maker. With the whole life costing c<strong>on</strong>siderati<strong>on</strong>, the optimizati<strong>on</strong> pipe rehabilitati<strong>on</strong>/<br />

replacement strategies can be made.<br />

Scientific relevance<br />

Whole life costing model provide decisi<strong>on</strong> maker a l<strong>on</strong>g term and comprehensive c<strong>on</strong>siderati<strong>on</strong> of asset rehabilitati<strong>on</strong>.<br />

This multi objective optimisati<strong>on</strong> WLC model produces a set of n<strong>on</strong> inferior soluti<strong>on</strong>s. The keys of<br />

the model are the selecti<strong>on</strong> of objectives and that of optimizati<strong>on</strong> methods.<br />

102 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


ipe’s relative c<strong>on</strong>diti<strong>on</strong>. Pipe’s significance is determined by the pipe change’s influence or failure<br />

<strong>on</strong>sequence. The integrati<strong>on</strong> of these two models results criticality model, which provides the<br />

riority of rehabilitati<strong>on</strong> for decisi<strong>on</strong> maker. With the whole life costing c<strong>on</strong>siderati<strong>on</strong>, the<br />

ptimizati<strong>on</strong> pipe rehabilitati<strong>on</strong>/replacement strategies can be made.<br />

Yi Zhou<br />

Deteriorati<strong>on</strong> of <strong>Water</strong> Quality Reliability<br />

Hydraulic<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

WDS Performance<br />

Performance Performance<br />

Performance<br />

Department of Sanitary <strong>Engineering</strong><br />

Figure 1 - Research framework Fig. 1 Research Framework<br />

cientific relevance<br />

UNESCO-IHE<br />

Urban <strong>Water</strong> Supply and Sanitati<strong>on</strong><br />

hole life Literature<br />

costing model provide decisi<strong>on</strong> maker a l<strong>on</strong>g term and comprehensive c<strong>on</strong>siderati<strong>on</strong> Tel.: of +31 15 21 51 767<br />

sset rehabilitati<strong>on</strong>.<br />

• Yi Zhou,<br />

This<br />

Vairavamoorthy.<br />

multi-objective<br />

K,<br />

optimizati<strong>on</strong><br />

Mansoor. M.A.M.,<br />

WLC model<br />

Integrati<strong>on</strong><br />

produces<br />

Of Urban<br />

a set<br />

<strong>Water</strong><br />

of n<strong>on</strong>-inferior Fax: +31 15 21 22 921<br />

oluti<strong>on</strong>s. The keys of the model are the selecti<strong>on</strong> of objectives and that of optimizati<strong>on</strong> methods. e-mail: yi.zhou@unesco-ihe.org<br />

Services, <strong>Water</strong> And Sanitati<strong>on</strong> In Internati<strong>on</strong>al Development And Disaster Relief<br />

www.drinkwater.tudelft.nl<br />

Edinburgh, UK, 28 - 30 May <strong>2008</strong><br />

iterature<br />

Postal address:<br />

i Zhou, Vairavamoorthy. K, Mansoor. M.A.M, Integrati<strong>on</strong> Of Urban <strong>Water</strong> Services, <strong>Water</strong> And<br />

UNESCO-IHE<br />

anitati<strong>on</strong> In Internati<strong>on</strong>al Development And Disaster Relief Edinburgh, UK, 28 - 30 May <strong>2008</strong><br />

Westvest 7<br />

2611 AX <strong>Delft</strong><br />

hD research fellow: Yi Zhou<br />

mail: yi.zhou@unesco-ihe.org<br />

visiting address:<br />

UNESCO-IHE<br />

tart date: June 2007<br />

Westvest 7<br />

xpected end date: June 2011<br />

2611 AX <strong>Delft</strong><br />

ddress:<br />

NESCO-IHE<br />

O Box 3015<br />

601 DA <strong>Delft</strong><br />

he Netherlands<br />

C<strong>on</strong>diti<strong>on</strong> Assessment Model<br />

Criticality Model<br />

Decisi<strong>on</strong> Tool<br />

Whole life costing Model<br />

2<br />

Significance Model<br />

Acti<strong>on</strong> Cost Model<br />

Start date: Jun 2007<br />

Expected end date: Jun 2011<br />

key words:<br />

<strong>Water</strong> distributi<strong>on</strong> system; pipe<br />

c<strong>on</strong>diti<strong>on</strong> assessment; pipe significance;<br />

pipe criticality; whole life<br />

costing; pipe deteriorati<strong>on</strong>; pipe<br />

rehabilitati<strong>on</strong>; optimizati<strong>on</strong><br />

research projects<br />

103


coMParis<strong>on</strong> of oPerati<strong>on</strong>al Processes of three full-scale Mbrs<br />

Research objectives<br />

The objective of this research project is to compare operati<strong>on</strong>al processes of three different full-scale membrane<br />

bioreactors (MBR) in the Netherlands. Through their comparis<strong>on</strong> accompanied with identificati<strong>on</strong> of correlati<strong>on</strong>s<br />

between operati<strong>on</strong>al parameters of each MBR, plants optimizati<strong>on</strong> is foreseen.<br />

Project introducti<strong>on</strong><br />

To facilitate further development and optimisati<strong>on</strong> of MBR technology an extensive research programme has<br />

been worked out. The Sanitary <strong>Engineering</strong> secti<strong>on</strong> of <strong>Delft</strong> University of Technology (<strong>TU</strong>D) is participating<br />

in this research in the framework of the European MBR-TRAIN research programme. The research project<br />

MBR-TRAIN deals with process optimizati<strong>on</strong> and fouling c<strong>on</strong>trol in membrane bio reactors for water treatment.<br />

Am<strong>on</strong>g other targets in the project <strong>TU</strong> <strong>Delft</strong> focuses <strong>on</strong> comparis<strong>on</strong> and optimisati<strong>on</strong> of the full-scale plants,<br />

i.e. the cost and energy reducti<strong>on</strong>.<br />

Project descripti<strong>on</strong><br />

The main objective of this work is to investigate effects of operati<strong>on</strong>al parameters <strong>on</strong> MBR performance. The<br />

operati<strong>on</strong>al process performances of three full-scale membrane bio reactors in the Netherlands will be compared<br />

in this study. Filterability and its relati<strong>on</strong>ship to plants operati<strong>on</strong>al parameters will be under investigati<strong>on</strong>.<br />

These data will be worked out in a database to compare performance <strong>on</strong> full scale and to identify the correlati<strong>on</strong>s<br />

between those parameters. This should provide informati<strong>on</strong> <strong>on</strong> effects of different membrane bio reactors<br />

c<strong>on</strong>figurati<strong>on</strong>s and may give insight into operati<strong>on</strong>al issues and efficiency of the plants. Moreover, extensive<br />

research <strong>on</strong> energy c<strong>on</strong>sumpti<strong>on</strong> within the MBRs is scheduled. This operati<strong>on</strong>al aspect comparis<strong>on</strong> should<br />

lead to the optimizati<strong>on</strong> of the costs, energy demand and chemical additi<strong>on</strong>.<br />

Project results<br />

After detailed descripti<strong>on</strong> of the plants chosen for the study (Table 1), experiments at each locati<strong>on</strong> were performed.<br />

Table 1 - MBR characteristics of three Dutch full-scale plants selected for comparis<strong>on</strong> studies<br />

Parameter Unit<br />

Wastewater -<br />

Process C<strong>on</strong>figurati<strong>on</strong> -<br />

Membrane type -<br />

Total membrane area m 2<br />

Membrane pore size μm<br />

Hydraulic capacity m 3 /h<br />

Permeate producti<strong>on</strong> m 3 /h 100 150 775<br />

From the first set of experiments in which filterability of selected full-scale MBRs was m<strong>on</strong>itored it arise that<br />

plants present similar behavior in terms of sludge filterability. In each case activated sludge filterability was<br />

good (Figure 1), also when higher flux applied, in order to create more stressed c<strong>on</strong>diti<strong>on</strong>s.<br />

104 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

Locati<strong>on</strong> A Locati<strong>on</strong> B Locati<strong>on</strong> C<br />

municipal municipal municipal<br />

Submerged Sidestream Submerged<br />

Flat sheet Tubular Hollow fibre<br />

4115 2784 20160<br />

0,08 0,03 0,035<br />

Biological Capacity p.e. 3333 9250<br />

23150<br />

50 75 250-300


as good (Figure 1), also when higher flux applied, in order to create more stressed<br />

oreover behaviour of sludge samples from different compartments of the plants was<br />

or the membrane tanks no significant difference is observed. Some differences are<br />

biological part of the MBR.<br />

Pawel Krzeminski<br />

�R20[x10 12 m -1 ]<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

Flux 80 [LMH]<br />

Anaerobic Anoxic Aerobic<br />

Membrane<br />

Anaerobic Anaerobic Anoxic<br />

FS MT FS<br />

Anoxic<br />

MT<br />

Anoxic<br />

HF<br />

Aerobic<br />

FS<br />

Aerobic<br />

MT<br />

Aerobic<br />

HF<br />

MT FS MT MT MT HF<br />

Figure Figure 1: Three 1 - Three Dutch MBRs comparis<strong>on</strong> case – filtrati<strong>on</strong> case – resistance filtrati<strong>on</strong> rateresistance<br />

rate<br />

Moreover behaviour of sludge samples from different compartments of the<br />

plants was investigated. For the membrane tanks no significant difference is<br />

observed. Some differences are visible for the biological part of the MBR.<br />

measured sludge properties and operati<strong>on</strong>al parameters of the full scale<br />

MBRs. Plants operating with the submerged systems are showing some<br />

similarities and side stream system is working with much higher fluxes and<br />

thus obtaining higher permeability values.<br />

Preliminary results were ambiguous and clear relati<strong>on</strong>s between MBRs and<br />

their parameters through the comparis<strong>on</strong> could not be made. It is then foreseen<br />

to further investigate and compare three selected MBRs<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 15 27 83 347<br />

Fax: +31 15 27 84 918<br />

e-mail: P.Krzeminski@<strong>TU</strong><strong>Delft</strong>.nl<br />

www.afvalwater.tudelft.nl<br />

the first measuring campaign were further related with the <strong>on</strong>line measured sludge<br />

operati<strong>on</strong>al parameters of the full scale MBRs. Plants operating with the submerged<br />

owing some similarities and sidestream system is working with much higher fluxes and<br />

higher permeability values.<br />

Results from the first measuring campaign were further related with the <strong>on</strong>line<br />

sults were ambiguous and clear relati<strong>on</strong>s between MBRs and their parameters through<br />

n could not be made. It is then foreseen to further investigate and compare three selected<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.64<br />

Start date Project: 2007<br />

Expected end date: 2011<br />

key words:<br />

MBR<br />

cooperati<strong>on</strong> with other<br />

institutes:<br />

research projects<br />

105


oPtiMizati<strong>on</strong> of MeMbrane bioreactors through activated<br />

sludge Quality<br />

Research objectives<br />

The goals of this PhD research are to identify optimal membrane bioreactor (MBR) activated sludge, characterize<br />

its properties and use that knowledge to c<strong>on</strong>tribute for MBR optimizati<strong>on</strong>.<br />

Project outline<br />

Introducti<strong>on</strong><br />

Membrane bioreactors are a promising technology with good performance results. However, the technology<br />

still has serious drawbacks such as fouling. The three main factors determining fouling behaviour (membrane<br />

characteristics, membrane operati<strong>on</strong> and activated sludge characteristics) vary between MBR installati<strong>on</strong>s<br />

therefore results are difficult to compare. Another c<strong>on</strong>sequence is that each MBR has its own activated sludge<br />

and c<strong>on</strong>sequently the optimal quality for MBR activated sludge is not known.<br />

In order to overcome the problem of fouling a direct approach based <strong>on</strong> the nature and mechanisms of fouling<br />

or <strong>on</strong> performance results has been extensively applied by the scientific community. Important advances regarding<br />

the nature and size of the foulants have been made but no c<strong>on</strong>clusive soluti<strong>on</strong> has yet been reached.<br />

In this PhD we propose an indirect approach to the problem of fouling by focusing our attenti<strong>on</strong> <strong>on</strong> membrane<br />

bioreactor activated sludge quality. If the characteristics of membrane bioreactor activated sludge were to be<br />

known fouling particles could be more easily kept in the bulk.<br />

Approach<br />

The identificati<strong>on</strong> of optimal MBR activated sludge quality is d<strong>on</strong>e by applying the <strong>Delft</strong> Filtrati<strong>on</strong> Characterizati<strong>on</strong><br />

method (DFCm) (Evenblij, H. 2005) to several European MBR installati<strong>on</strong>s. Full scale and MBR pilots in a<br />

total of 9 were visited in summer and winter time providing a data-base of MBR activated sludge quality. The<br />

DFCm uses always the same membrane and identical operati<strong>on</strong> therefore differences in filterability are directly<br />

linked to activated sludge quality, enabling the comparis<strong>on</strong> between MBR installati<strong>on</strong>s. In additi<strong>on</strong>, the secti<strong>on</strong><br />

of Sanitary <strong>Engineering</strong> is involved in two European projects (EUROMBRA and MBR Train) that provided<br />

access to European MBR installati<strong>on</strong>s.<br />

Parallel to the in situ measurements batch tests (diluti<strong>on</strong> tests) were performed in the <strong>TU</strong> lab to characterize<br />

MBR activated sludge quality. The diluti<strong>on</strong> tests will be followed by c<strong>on</strong>centrati<strong>on</strong>s tests in order to fully understand<br />

MBR activated sludge properties. The gathered knowledge will allow the definiti<strong>on</strong> of practical design<br />

and operati<strong>on</strong> advice for MBR optimizati<strong>on</strong>.<br />

Results<br />

6,00<br />

The in situ measurements provided the 5,00<br />

characterizati<strong>on</strong> of the filtrati<strong>on</strong> behavior<br />

of MBR activated sludge. Different<br />

4,00<br />

filtrati<strong>on</strong> behaviors were obtained from<br />

3,00<br />

excellent (ΔR20 lower than 0.05) to<br />

2,00<br />

poor (ΔR20 higher than 1) as it can be 1,00<br />

seen in Figure 1, allowing the identifica- 0,00<br />

ti<strong>on</strong> of optimal MBR activated sludge.<br />

Figure 1- Filterability results from membrane tanks in full scale MBR<br />

106 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

�R [x10-12m-1]<br />

2 0<br />

Membrane tanks activated sludge (WWTP)<br />

Schilde M<strong>on</strong>heim Heenvliet Schilde Nordkanal M<strong>on</strong>heim Heenvliet


Particle counting results indicated<br />

a relati<strong>on</strong> between good<br />

filterability and lower number of<br />

particles in the range 5 to 20 μm.<br />

However, it is likely that the range<br />

of particles directly c<strong>on</strong>nected to<br />

the filtrati<strong>on</strong> behavior is a lower<br />

range and the menti<strong>on</strong>ed range<br />

(5 to 20 μm) is being indirectly<br />

affected.<br />

Diluti<strong>on</strong> tests showed that whenever the initial sample has a mixed liquor<br />

suspended solids (MLSS) c<strong>on</strong>centrati<strong>on</strong> higher than 10 g/L there is a<br />

decrease in filterability with decreasing MLSS followed again by an increase<br />

(see figure 2).<br />

The decrease in filterability was accompanied by a slight deflocculati<strong>on</strong> and<br />

release of particles between 5 and 20 μm. Further tests will include particle<br />

counting at lower ranges (0.01-5 μm).<br />

Scientific relevance<br />

Until now the scientific community approach to the problem of fouling has<br />

been a direct <strong>on</strong>e based <strong>on</strong> nature and fouling mechanisms and <strong>on</strong> performance<br />

results. This PhD project proposes an indirect and innovative approach<br />

based <strong>on</strong> the MBR activated sludge properties.<br />

Social relevance<br />

Over the last decades the quality of wastewater discharges is becoming<br />

increasingly restrictive. In order to comply with increasingly restrictive requirements<br />

society needs new developments <strong>on</strong> tertiary and advanced waste<br />

water treatment. Membrane bio reactors are generally c<strong>on</strong>sidered as state<br />

of the art but also seen as prohibitively costly. This PhD aims to c<strong>on</strong>tribute<br />

to the optimizati<strong>on</strong> of this technology by lowering the costs and therefore<br />

c<strong>on</strong>tribute to its widespread.<br />

Literature<br />

•<br />

�R20[x10 12 m -1 ]<br />

2,00<br />

1,80<br />

1,60<br />

1,40<br />

1,20<br />

1,00<br />

0,80<br />

0,60<br />

0,40<br />

0,20<br />

0,00<br />

0,0 5,0 10,0 15,0 20,0<br />

MLSS[g/L]<br />

22-jan-08<br />

29-jan-08<br />

Figure 2 - Filterability results for batch tests<br />

when initial sample (represented by bigger<br />

points) has MLSS higher than 10 g/L.<br />

M. Lousada-Ferreira, S. Geilvoet, A. Moreau, E. Atasoy, P. Krzeminski, A. van<br />

Nieuwenhuijzen, J. van der Graaf (<strong>2008</strong>) MLSS: Still a poorly understood parameter?<br />

Membranes in drinking waster producti<strong>on</strong> and waste water treatment, EDS,<br />

INSA, Toulouse<br />

7-fev-08<br />

21-fev-08<br />

4-mar-08<br />

10-jun-08<br />

Maria Lousada-Ferreira<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel. : +31 15 27 84 026<br />

Fax : +31 15 27 84 918<br />

e-mail : M.Lousadaferreira@<strong>TU</strong><strong>Delft</strong>.nl<br />

www.afvalwater.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.64<br />

Start date: Jun 2006<br />

Expected end date: Jun 2010<br />

key words:<br />

Membranes bioreactors, activated<br />

sludge quality, filterability<br />

cooperati<strong>on</strong> with other institutes:<br />

<strong>Water</strong>shap Hollandse Delta, Instituto<br />

de Biologia Experimental<br />

e Tecnologica, AQUAFIN, ERFT-<br />

VERBAND, Universita degli studi<br />

di Trento<br />

research projects<br />

107


dfcM <strong>on</strong> tour: activated sludge filterability assessMent of<br />

euroPean large-scale Mbr Plants<br />

During the third year of the project, the measuring campaign was successfully<br />

c<strong>on</strong>cluded and the database finalized. Seven full scale and<br />

eight pilot scale plants from the project partners were investigated<br />

with the <strong>Delft</strong> Filtrati<strong>on</strong> Characterizati<strong>on</strong> method in order to qualify the<br />

activated sludge quality of a broad range of large scale MBRs.<br />

Figure Each MBR 1: Overview was investigated of the locati<strong>on</strong> twice, of <strong>on</strong>e the time investigated during the MBRs summer<br />

period and <strong>on</strong>e time during winter time. Thus variati<strong>on</strong>s due to climate<br />

Each fluctuati<strong>on</strong>s MBR can was be investigated notified and impact twice, of <strong>on</strong>e temperature time during and different the summer period and <strong>on</strong>e time during<br />

winter bacteriological time. Thus populati<strong>on</strong> variati<strong>on</strong>s can bedue quantified. to climate Compare fluctuati<strong>on</strong>s to wintercan timebe<br />

notified and impact of temperature<br />

Figure 1 - Overview of the locati<strong>on</strong> of the<br />

and different bacteriological populati<strong>on</strong> can be quantified. Compare to winter time MBR sludge<br />

MBR sludge filterability improved drastically during summer period. An<br />

investigated MBRs<br />

filterability improved drastically during summer period. An improvement of the sludge<br />

improvement of the sludge filterability of 85% was generally observed.<br />

filterability of 85% was generally observed. This kind of informati<strong>on</strong> is extremely valuable for<br />

This kind of informati<strong>on</strong> is extremely valuable for membrane bio reactor hand-users in order to adjust and<br />

membrane bioreactor hand-users in order to adjust and therefore optimize plant operati<strong>on</strong>al<br />

therefore optimise plant operati<strong>on</strong>al parameters depending <strong>on</strong> the period of the year.<br />

parameters depending <strong>on</strong> the period of the year.<br />

∆R20 (10 12 m -1 )<br />

1,60<br />

1,40<br />

1,20<br />

1,00<br />

0,80<br />

0,60<br />

0,40<br />

0,20<br />

0,00<br />

Seas<strong>on</strong>al variati<strong>on</strong>s winter<br />

HF-Plant A HF-Plant B FS-Plant C FS-Plant D<br />

Figure 2 - Example of activated sludge filterability (average) comparis<strong>on</strong> winter/summer for 4 full-scale MBR<br />

Figure 2: (a) Example sludge filterability of activated evoluti<strong>on</strong> sludge al<strong>on</strong>g filterability the years (b) (average) comparis<strong>on</strong> winter/summer for 4 fullscale<br />

MBR (a) sludge filterability evoluti<strong>on</strong> al<strong>on</strong>g the years (b).<br />

A comparative study was also performed in cooperati<strong>on</strong> with KWB (MBR-10) and the <strong>TU</strong> Berlin. The aim of this<br />

A study comparative was to compare study different was also reversible performed fouling in cooperati<strong>on</strong> measurement with devices KWB and (MBR-10) to assess their and relevancies. the <strong>TU</strong> Berlin. Four<br />

The methods aim were of this tested study (<strong>on</strong>e was to the compare DFCm). Results different showed reversible that the fouling three out measurement of four methods devices were relevant and to<br />

assess and were their given relevancies. comparable Four data in methods term of activated were tested sludge (<strong>on</strong>e quality. was Results the DFCm). dem<strong>on</strong>strated Results that showed it was important that the<br />

three that measurements out of four took methods place were directly relevant <strong>on</strong> site in and order were to prevent given biological comparable structure data changes in term due of to activated sample<br />

sludge transportati<strong>on</strong>s. quality. Furthermore Results dem<strong>on</strong>strated ex-situ or in-situ that reversible it was important fouling measurements that measurements did not seem took to place induce directly notice-<br />

<strong>on</strong> site in order to prevent biological structure changes due to sample transportati<strong>on</strong>s. Furthermore<br />

able trend changes in term of activated sludge filterability.<br />

As a following up of this study, links between reversible fouling measurements<br />

and large scale plant permeability were investigated. The<br />

aim of this study was to figure out under which specific c<strong>on</strong>diti<strong>on</strong>s<br />

MBR reversible fouling investigati<strong>on</strong>s might predict membrane performances<br />

of large scale MBR plants.<br />

Results of this research showed that reversible fouling measurements<br />

seem to be significant to assess membrane performance under specific<br />

c<strong>on</strong>diti<strong>on</strong>s:<br />

108 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

summer<br />

∆∆R20(10 12 m -1 )<br />

1,6<br />

1,4<br />

1,2<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

Seas<strong>on</strong>al variati<strong>on</strong>s<br />

jul-06 jan-07 feb-07 mrt-07 jun-07 jan-08 aug-08 sep-08<br />

FS- C FS- C HF- A HF- B FS- D FS- D HF- A HF- B<br />

Jc [L/m²h]<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

MBR1<br />

MBR2<br />

MBR3<br />

MBR4<br />

MBR4<br />

R²=0.65<br />

0<br />

0 0,5 1 1,5 2<br />

Figure 3 - DFCm results plotted against in<br />

situ fouling characterisati<strong>on</strong><br />

device (De la Torre et al., <strong>2008</strong>)


0<br />

0 0,5 1 1,5<br />

Figure 3: DFCm results plotted against in situ fouling characterisati<strong>on</strong> device (De la Torre et al., <strong>2008</strong>)<br />

As a following up of this study, links between reversible fouling measurements and large scale<br />

plant permeability were investigated. The aim of this study was to figure out under which specific<br />

c<strong>on</strong>diti<strong>on</strong>s • Reversible MBR reversible fouling measurements fouling investigati<strong>on</strong>s seems might more predict relevant membrane inperformances full scale plants of large<br />

scale MBR plants. Results of this research showed that reversible fouling measurements seem to<br />

be significant rather than to assess in pilot membrane scale performance plants, under specific c<strong>on</strong>diti<strong>on</strong>s:<br />

• Reliable • Reversible correlati<strong>on</strong>s fouling measurements betweenseems reversible more relevant fouling in full-scale measurements plants rather than andin<br />

pilot scale plants,<br />

•MBR Reliable membrane correlati<strong>on</strong>s performance between reversible assessments fouling measurements were observed and MBR under membrane regular<br />

performance chemical cleaning assessments (weekly were observed basis) under or clean regular membranes chemical cleaning c<strong>on</strong>diti<strong>on</strong>s. (weekly basis)<br />

or clean membranes c<strong>on</strong>diti<strong>on</strong>s.<br />

Plant Permeability (L/m 2 h Bar)<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 0,5 1 1,5 2 2,5 3<br />

12 -1<br />

∆R ∆∆∆ 20 (10 m )<br />

HF plant A<br />

HF plant B<br />

HF plant C<br />

MT plant D<br />

FS plant E<br />

0<br />

0 0,5 1 1,5 2 2,5 3<br />

Finally a study was performed with the help of BIOMATH (MBR-18) in order<br />

to quantify variati<strong>on</strong>s of activated sludge apparent viscosity in municipal<br />

full-scale MBR applicati<strong>on</strong>s. MBRs investigated in this study were operated<br />

with sludge age varying from 13 to 30 days. Temperature fluctuated<br />

between 9 and 27.4 oC and total suspended solid c<strong>on</strong>tent of the activated<br />

sludge between 5 to 17.8 g/L. Within this representative range for full scale<br />

applicati<strong>on</strong>s, the apparent viscosity values were included between 0.0021<br />

and 0.0047 Pa s, which are 2 to 4 times higher than the water viscosity. The<br />

main factor influencing activated sludge apparent viscosities was the total<br />

suspended solid c<strong>on</strong>tent as already menti<strong>on</strong>ed in literature. Temperature did<br />

not seem to affect activated sludge apparent viscosity significantly within<br />

the temperature range of full scale municipal MBR plants (9 to 27.4 o Finally a study was performed with the help of BIOMATH (MBR-18) in order to<br />

quantify variati<strong>on</strong>s of activated sludge apparent viscosity in municipal full-scale MBR<br />

applicati<strong>on</strong>s. MBRs investigated in this study were operated with sludge age varying<br />

from 13 to 30 days. Temperature fluctuated between 9 and 27.4<br />

C). In<br />

term of reversible fouling potential and membrane performance, activated<br />

sludge filterability and large scale plant permeability does not seems to be<br />

affected by activated sludge apparent viscosity variati<strong>on</strong>s. Therefore, even if<br />

apparent viscosity plays a major role in term of oxygen transfer efficiency, it<br />

does not seem to be relevant in order to optimise membrane fouling c<strong>on</strong>trol<br />

and membrane performance of MBR full scale applicati<strong>on</strong>s.<br />

o C and total suspended<br />

solid c<strong>on</strong>tent of the activated sludge between 5 to 17.8 g/L. Within this representative<br />

range for full scale applicati<strong>on</strong>s, the apparent viscosity values were included between<br />

0.0021 and 0.0047 Pa s, which are 2 to 4 times higher than the water viscosity. The main<br />

factor influencing activated sludge apparent viscosities was the total suspended solid<br />

c<strong>on</strong>tent as already menti<strong>on</strong>ed in literature. Temperature did not seem to affect activated<br />

sludge apparent viscosity significantly within the temperature range of full scale<br />

municipal MBR plants (9 to 27.4 o C). In term of reversible fouling potential and<br />

membrane performance, activated sludge filterability and large scale plant permeability<br />

does not seems to be affected by activated sludge apparent viscosity variati<strong>on</strong>s. Therefore,<br />

even if apparent viscosity plays a major role in term of oxygen transfer efficiency, it does<br />

not seem to be relevant in order to optimize membrane fouling c<strong>on</strong>trol and membrane<br />

performance of MBR full scale applicati<strong>on</strong>s.<br />

Plant Permeability (L/m 2 h Bar)<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

12 -1<br />

∆∆ ∆R20 (10 m )<br />

Figure 4 - Activated sludge filterability versus full scale plant (a) and pilot-<br />

Figure 4: Activated sludge filterability versus full scale plant (a) and pilot-scale plant (b)<br />

permeability data scale depending plant (b) <strong>on</strong> permeability their c<strong>on</strong>figurati<strong>on</strong>s data depending <strong>on</strong> their c<strong>on</strong>figurati<strong>on</strong>s<br />

Apparent Viscosity (Pa s)<br />

0,010<br />

0,008<br />

0,006<br />

0,004<br />

0,002<br />

Locati<strong>on</strong> A<br />

Locati<strong>on</strong> B<br />

Locati<strong>on</strong> C<br />

Locati<strong>on</strong> D<br />

Locati<strong>on</strong> E<br />

Locati<strong>on</strong> F<br />

Locati<strong>on</strong> G<br />

Locati<strong>on</strong> H<br />

Locati<strong>on</strong> I<br />

Locati<strong>on</strong> J<br />

0,000<br />

0 2 4 6 8 10 12 14 16 18 20<br />

Total Suspended Solid (g/L)<br />

0,010<br />

0,008<br />

0,006<br />

0,004<br />

0,002<br />

FS pilot A<br />

FS pilot B<br />

FS pilot C<br />

HF pilot D<br />

HF pilot E<br />

0,000<br />

0 100 200 300 400 500 600<br />

Permeability (L/m 2 h Bar)<br />

Figure 5: 5 - Apparent viscosity versus versus total total suspended suspended solid (a) solid apparent (a) apparent viscosity viscosity versus plant<br />

permeability versus (b) plant permeability (b)<br />

Apparent Viscosity (Pa s)<br />

Locati<strong>on</strong> B<br />

Locati<strong>on</strong> C<br />

Locati<strong>on</strong> E<br />

Locati<strong>on</strong> F<br />

Locati<strong>on</strong> G<br />

Locati<strong>on</strong> H<br />

Locati<strong>on</strong> I<br />

Locati<strong>on</strong> J<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 15 27 85 838<br />

Fax: +31 15 27 84 918<br />

e-mail: A. Moreau@<strong>TU</strong><strong>Delft</strong>.nl<br />

www.afvalwater.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.65<br />

Start date: 2005<br />

Expected end date: 2009<br />

key words:<br />

MBR<br />

Adrien Moreau<br />

cooperati<strong>on</strong> other institutes:<br />

research projects<br />

109


caPwat ii: caPacity reducing gas Pockets in downward sloPes<br />

of wastewater Mains<br />

Research objectives<br />

Pressurized wastewater mains are subject to significant capacity losses caused by gas pockets in downward<br />

slopes, such as inverted siph<strong>on</strong>s to cross channels, motorways or railways. The existing design approach in<br />

the Netherlands, based <strong>on</strong> a required velocity to break down and transport gas pockets through a downward<br />

slope, has proven to be too optimistic. The ultimate research objective is the development of practical design<br />

and operati<strong>on</strong>al guidelines for the preventi<strong>on</strong> and mitigati<strong>on</strong> of gas pockets. The main scientific challenge of<br />

this research project is the development of a numerical model that predicts the gas pocket break down rate<br />

and net gas flow rate in a downward slope of a wastewater pipeline.<br />

Project outline<br />

Introducti<strong>on</strong><br />

Capwat is an acr<strong>on</strong>ym of “CAPacity reducti<strong>on</strong> of pressurized wasteWATer<br />

mains”. Capwat is a joint industry project that is running since 2003 (Lubbers<br />

2007). The Capwat I deliverables include a database with a large number of<br />

laboratory measurements in which the head loss associated with gas pockets<br />

has been measured as a functi<strong>on</strong> of gas flow rate, water flow rate, declinati<strong>on</strong><br />

angle, pipe diameters ranging from 80 mm to 500 mm and slope length.<br />

Furthermore a few field tests have been carried out. These tests show that the<br />

gas pocket head loss in the field is significantly smaller than in the lab, which<br />

must be caused by the difference in fluid properties and/or pipeline c<strong>on</strong>diti<strong>on</strong>s.<br />

Fluid properties that may affect the gas transport include surface tensi<strong>on</strong>,<br />

suspended particle c<strong>on</strong>centrati<strong>on</strong>, viscosity and pipe wall roughness.<br />

Approach<br />

The CAPWAT II research project (2007 – 2010) investigates the following issues:<br />

• the effect of the water quality <strong>on</strong> the gas transport in downward slopes,<br />

• the development of a method for the detecti<strong>on</strong> of gas pockets,<br />

• a numerical model for the predicti<strong>on</strong> of the gas pocket break down and transport and<br />

• practical design and operati<strong>on</strong>al guidelines for the preventi<strong>on</strong> and mitigati<strong>on</strong> of gas pockets.<br />

Results in <strong>2008</strong><br />

A large scale facility has been erected at the wastewater treatment plant Nieuwe <strong>Water</strong>weg in Hoek van Holland<br />

in Spring <strong>2008</strong>. This facility includes a 40 m l<strong>on</strong>g, 7 m tall downward slope that has been c<strong>on</strong>nected to a fresh<br />

water tank and that is currently c<strong>on</strong>nected to the raw wastewater influent from the treatment plant. The experiments<br />

in this facility have shown that up to seven c<strong>on</strong>secutive hydraulic jumps and gas pockets can coexist in<br />

a 40 meter downward slope; this flow regime had not been observed in the lab facilities, despite the maximum<br />

slope length of 12 m. Three types of experiments with different water qualities have been performed to enable<br />

a step-by-step comparis<strong>on</strong> with the lab data: experiments with tap water, polluted tap water with surfactants<br />

and raw wastewater. The effect of the surfactants <strong>on</strong> the gas pocket head loss shows a linear dependence.<br />

Furthermore, the detecti<strong>on</strong> method, developed in 2007, has been successfully tested in the field (Pothof, <strong>2008</strong>a).<br />

Finally, the synthesis of our experiments and existing literature has revealed that the pipe wall fricti<strong>on</strong> cannot be<br />

neglected at pipe diameters smaller than 200 mm (Pothof, <strong>2008</strong>b). The experimental work to date has supported<br />

110 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

Entrainment of gas bubbles in<br />

the hydraulic jump in a declining<br />

secti<strong>on</strong>


dHgas (mwc)<br />

6<br />

5<br />

4<br />

3<br />

Effect of Surface tensi<strong>on</strong><br />

y = 0.0797x<br />

R2 = 0.9857<br />

y = 0.0498x<br />

R2 = 0.85<br />

2<br />

y = 0.0197x<br />

R2 = 0.8669<br />

1<br />

y = 0.0064x<br />

R2 = 0.5009<br />

0<br />

-20 -10 0 10 20 30 40 50 60 70 80<br />

-1<br />

minimal value: 28<br />

Surface tensi<strong>on</strong> (mN/m)<br />

v'=0.62; Qg=7.10 nl/min v'=0.45; Qg=0.71 nl/min v'=0.63; Qg=1.42 nl/min<br />

v'=0.63; Qg=0.71 nl/min v'=0.72; Qg=0.71 nl/min Lineair (v'=0.62; Qg=7.10 nl/min)<br />

Lineair (v'=0.45; Qg=0.71 nl/min) Lineair (v'=0.63; Qg=0.71 nl/min) Lineair (v'=0.72; Qg=0.71 nl/min)<br />

Surface tensi<strong>on</strong> and gas pocket head loss are linearly correlated<br />

the formulati<strong>on</strong> of the<br />

dominant momentum<br />

and energy balances<br />

in the numerical<br />

model. The guidelines<br />

for design and operati<strong>on</strong><br />

of pressurized<br />

wastewater mains are<br />

being drafted in close<br />

co-operati<strong>on</strong> with the<br />

participants via a set of<br />

interactive WIKI pages<br />

<strong>on</strong> the Internet.<br />

Scientific relevance<br />

The CAPWAT II project aims to c<strong>on</strong>tribute to closing an existing knowledge<br />

gap in multiphase flows: namely, the lack of knowledge <strong>on</strong> the multiphase<br />

flow behaviour in declining pipe secti<strong>on</strong>s. A numerical model will be developed<br />

for multiphase flow in declining circular c<strong>on</strong>duits with superficial liquid<br />

velocities in the order of 1 m/s and superficial gas velocities in the order of<br />

1 cm/s. This model will be validated with tap water, wastewater and air.<br />

Social relevance<br />

CAPWAT II aims to deliver a set of design guidelines for the design, maintenance<br />

and management of pressurized wastewater mains. These guidelines<br />

are not <strong>on</strong>ly based <strong>on</strong> the research activities to mitigate gas pockets, but also<br />

<strong>on</strong> a series of workshops with all participants <strong>on</strong> various critical aspects of<br />

the design and management of pressurized wastewater mains. The guidelines<br />

aim to improve the operati<strong>on</strong> of existing and future wastewater mains,<br />

to reduce pumping energy and to prevent or postp<strong>on</strong>e investments in the<br />

pumping stati<strong>on</strong>s’ capacity.<br />

Literature<br />

• Lubbers, C. L. (2007). On gas pockets in wastewater pressure mains and their<br />

effect <strong>on</strong> hydraulic performance. <strong>Delft</strong>, <strong>Delft</strong> University of Technology. PhD: 290.<br />

• Pothof, I., Clemens, FHLR (<strong>2008</strong>a). Detecti<strong>on</strong> of gas pockets in dendritic wastewater<br />

mains. 10th Int. Pressure Surges C<strong>on</strong>ference. Surge Analysis – system<br />

design, simulati<strong>on</strong>, m<strong>on</strong>itoring and c<strong>on</strong>trol, Edinburgh, UK, BHR Group Ltd<br />

• Pothof, I., Clemens, FHLR (<strong>2008</strong>b). On gas transport in downward slopes of<br />

sewerage mains. 11th Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Urban Drainage. Edinburgh,<br />

UK<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 15 27 84 734<br />

Fax: +31 15 27 84 918<br />

e-mail: I.W.M.Pothof@<strong>TU</strong><strong>Delft</strong>.nl<br />

ivo.pothof@deltares.nl<br />

www.riolering.tudelft.nl<br />

www.wldelft.nl/capwat<br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Room 4.52<br />

Ivo Pothof<br />

Start date: Apr 2007<br />

Expected end date: April 2010<br />

key words:<br />

Wastewater pipelines, gas pocket,<br />

multiphase flow<br />

cooperati<strong>on</strong> with other institutes:<br />

Deltares , Gemeentewerken Rotterdam,<br />

<strong>Water</strong>board Delfland, <strong>Water</strong>board<br />

Hollands Noorderkwartier,<br />

<strong>Water</strong>net, <strong>Water</strong>board Brabantse<br />

Delta, <strong>Water</strong>board Reest en Wieden,<br />

<strong>Water</strong>board Rivierenland, <strong>Water</strong>board<br />

Zuiderzeeland, <strong>Water</strong>board Fryslân<br />

and <strong>Water</strong>board Hollandse Delta,<br />

Aquafin, Royal Hask<strong>on</strong>ing, Gr<strong>on</strong>tmij<br />

<strong>Engineering</strong> C<strong>on</strong>sultancy, ITT Flygt<br />

BV, Foundati<strong>on</strong> Stowa and the Dutch<br />

Ministry of Ec<strong>on</strong>omic Affairs.<br />

research projects<br />

111


Research objectives<br />

dynaMic M<strong>on</strong>itoring of in-sewer Processes<br />

This research project aims at developing and testing new methods for in-sewer wastewater m<strong>on</strong>itoring. With<br />

the obtained data, in-sewer processes are studied.<br />

Project outline<br />

Introducti<strong>on</strong><br />

With the introducti<strong>on</strong> of new sensor technology, in-sewer quality m<strong>on</strong>itoring has g<strong>on</strong>e <strong>on</strong>e step forward.<br />

Compared to the ‘old’ sampling method, new <strong>on</strong>-line sensors produce high-frequency and -after careful calibrati<strong>on</strong>-<br />

reliable data <strong>on</strong> a wide variety of parameters. Such data <strong>on</strong> wastewater system behavior can be used<br />

for e.g. model calibrati<strong>on</strong>, as input for system operati<strong>on</strong> decisi<strong>on</strong>s or to study in-sewer processes. The use of<br />

these modern sensors, however, is not off-the-shelf technology. Many aspects such as installati<strong>on</strong>, maintenance<br />

and data interpretati<strong>on</strong> still need careful c<strong>on</strong>siderati<strong>on</strong> before a wide applicati<strong>on</strong> of sensors is feasible.<br />

Approach<br />

In several m<strong>on</strong>itoring campaigns <strong>on</strong>-line sensors have been installed in wastewater systems. At the wwtp<br />

Eindhoven UV/VIS sensors m<strong>on</strong>itor influent quality of three distinct wastewater flows. This type of sensor uses<br />

light absorbance as indicator for parameters such as TSS, COD and NO . The measuring interval is two minutes<br />

3<br />

which allows a detailed study of water quality variati<strong>on</strong>s. In the municipality of Ede DTS m<strong>on</strong>itoring systems<br />

have been installed in combined and separate sewer systems. DTS systems can measure temperature values<br />

al<strong>on</strong>g fiber-optic cables of several kilometers with spatial and temporal resoluti<strong>on</strong>s of 1 meter and 1 minute<br />

respectively. Using this technique, illicit c<strong>on</strong>necti<strong>on</strong>s can be detected in storm water systems. In combined<br />

systems, the formati<strong>on</strong> and propagati<strong>on</strong> of diluted wastewater after a storm event can be m<strong>on</strong>itored.<br />

5 - 6 april <strong>2008</strong><br />

05/04 00:00<br />

06:00<br />

12:00<br />

18:00<br />

06/04 00:00<br />

06:00<br />

12:00<br />

18:00<br />

07/04 00:00 4<br />

200 400 600 800 1000 1200<br />

Figure 1 - Example of DTS m<strong>on</strong>itoring results<br />

112 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6


Results<br />

The figure shows an example of m<strong>on</strong>itoring results with the DTS system. A<br />

fiber-optic cable of 1300m measured for a two-day period temperature val-<br />

ues in a storm water system. Warm water plumes are an indicati<strong>on</strong> of the<br />

inflow of relatively warm water, often wastewater from domestic or industrial<br />

premises. With these results, an effective campaign for illicit c<strong>on</strong>necti<strong>on</strong><br />

removal can be initiated.<br />

Scientific relevance<br />

High frequency m<strong>on</strong>itoring data allows a better understanding of fundamental<br />

processes in sewer systems. Also, calibrati<strong>on</strong> of wastewater quantity and<br />

quality models can be enhanced using this data.<br />

Social relevance<br />

A better understanding of in-sewer processes ultimately leads to better wastewater<br />

system performance: a reducti<strong>on</strong> in overflow spills and an optimizati<strong>on</strong><br />

of wwtp efficiency. This results in better receiving water quality.<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> Management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 15 27 85 457<br />

Fax: +31 15 27 84 918<br />

e-mail: r.p.s.schilperoort@tudelft.nl<br />

www.riolering.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

Remy Schilperoort<br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.66<br />

Start date: Aug 2004<br />

Expected end date: May 2009<br />

key words:<br />

wastewater, sewer system, m<strong>on</strong>itoring,<br />

UV/VIS, fiber-optic DTS,<br />

wwtp, sensor technology, calibrati<strong>on</strong><br />

cooperati<strong>on</strong> with other<br />

institutes:<br />

research projects<br />

113


Research objectives<br />

114 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

urban flood risk Quantificati<strong>on</strong><br />

This research project aims to define a method to quantify urban flood risks for all possible causes of flooding.<br />

The results will provide a risk-based approach to cope with urban flooding. This approach improves current<br />

strategies that incorporate <strong>on</strong>ly <strong>on</strong>e cause of flooding, sewer system overloading, and fail to take into account<br />

flooding c<strong>on</strong>sequences, uncertainties and its safety implicati<strong>on</strong>s.<br />

Project outline<br />

Current methods focus <strong>on</strong> expected frequencies of flooding based <strong>on</strong> the modeled behavior of sewer systems<br />

for a series of historical rainfall data. They do not take into account flood occurrences caused by system deg-<br />

radati<strong>on</strong>, e.g. blockages in sewer systems. Also, they are exclusively based <strong>on</strong> flooding frequencies and do<br />

not explicitly c<strong>on</strong>sider flooding c<strong>on</strong>sequences. As a result, current methods do not allow for an explicit weigh-<br />

ing of flood damage versus investment cost in order to support investment decisi<strong>on</strong>s. Another drawback is that<br />

models follow a deterministic approach and do not address the inevitable uncertainties that feature in model<br />

calculati<strong>on</strong>s. There is a need for a method that can overcome these deficiencies in order to aim improvement<br />

measures directly at the observed causes and to balance expected damage versus investment costs.<br />

Causes of flooding and flood probability<br />

Fault tree analysis is applied to the process of urban flooding to identify potential failure mechanisms that cause<br />

flooding (figure 1). A quantitative assessment of flood frequencies is made for each of the failure modes based<br />

<strong>on</strong> municipal call centre data, rainfall measurements and hydrodynamic model calculati<strong>on</strong>s. Ten years of call<br />

data <strong>on</strong> flood incidents in a Dutch city of about 150.000 inhabitants have been classified according to their<br />

causes and c<strong>on</strong>sequences. Based <strong>on</strong> these data the probability of urban flooding and the c<strong>on</strong>tributi<strong>on</strong>s of the<br />

various causes can be derived. The results provide insight into the main causes of flooding and a minimum<br />

number of citizens that call up<strong>on</strong> the municipality to solve their flooding problems.<br />

C<strong>on</strong>sequences of flooding and flood risk<br />

Most urban pluvial flood incidents cause limited material damage; they mainly cause disrupti<strong>on</strong> of road traffic and<br />

inc<strong>on</strong>venience for pedestrians caused by pools in fr<strong>on</strong>t of shops, <strong>on</strong> parking lots and sidewalks. Quantificati<strong>on</strong><br />

of these tangible and intangible urban flood damages is based <strong>on</strong> municipal call data that c<strong>on</strong>tain detailed informati<strong>on</strong><br />

<strong>on</strong> causes and c<strong>on</strong>sequences of urban flood incidents. Damage classes are defined based <strong>on</strong> comm<strong>on</strong><br />

damage characteristics found in call data.<br />

Top event:<br />

The analysis incorporates quantificati<strong>on</strong><br />

Urban pluvial<br />

flooding<br />

of direct and indirect damage and results<br />

in a set of risk curves that can be used to<br />

OR<br />

set priorities for urban flood risk management<br />

(Kaplan and Garrick, 1981).<br />

Rainfall <strong>on</strong><br />

surface<br />

does not<br />

flow away<br />

Rainfall<br />

upstream<br />

flows to<br />

downstream<br />

locati<strong>on</strong><br />

<strong>Water</strong><br />

flows from<br />

sewer <strong>on</strong> to<br />

surface<br />

<strong>Drinking</strong><br />

water<br />

pipe<br />

bursts<br />

Groundwater<br />

table above<br />

ground<br />

level<br />

Surface<br />

water<br />

flooding<br />

<strong>Water</strong><br />

discharged<br />

<strong>on</strong>to<br />

surface<br />

Figure 1 - Basic features of a Fault tree for urban pluvial flooding that distin<br />

guishes 4 causes of urban pluvial flooding. These are the failure<br />

modes that are further decomposed to find the relevant for vari<br />

ables flood frequency calculati<strong>on</strong>s and uncertainty analysis.<br />

Results<br />

The results of the fault tree analysis show<br />

that comp<strong>on</strong>ent failures c<strong>on</strong>tribute significantly<br />

to urban flood probability: gully pot


lockage c<strong>on</strong>tributes 71%, gully pot manifold blockage 25% and pipe blockage<br />

1% in a complete fault tree analysis for the investigated case study. In another<br />

case study sewer flooding results in a flood frequency of 0.07 per week, where<br />

the c<strong>on</strong>tributi<strong>on</strong> of sewer blockage is 73%. Heavy rainfall c<strong>on</strong>tributes <strong>on</strong>ly 3% to<br />

urban flood probability and 27% to sewer flooding in the presented cases. Similar<br />

results apply for selecti<strong>on</strong>s of flood incidents that lead to flooding of buildings<br />

and of small flood incidents that <strong>on</strong>ly lead to pools <strong>on</strong> streets. The results justify<br />

further extensi<strong>on</strong> of research and m<strong>on</strong>itoring in this field.<br />

The first results of risk quantificati<strong>on</strong> by c<strong>on</strong>structi<strong>on</strong> of risk curves show that there<br />

is a correlati<strong>on</strong> between different c<strong>on</strong>sequence classes, e.g flooding in buildings<br />

and flooding of streets, for those incidents that result in more than 5 calls made<br />

by citizens. The probability of individual c<strong>on</strong>sequence classes as revealed in call<br />

data seems to be dependent <strong>on</strong> three factors: c<strong>on</strong>sequence class frequency,<br />

c<strong>on</strong>sequence class severity (severe c<strong>on</strong>sequences generate calls more often)<br />

and c<strong>on</strong>sequence class definiti<strong>on</strong> (detailed class definiti<strong>on</strong> results in less calls<br />

per class). Still, the results indicate that even though flood in buildings is c<strong>on</strong>sidered<br />

to be the severest type of flood c<strong>on</strong>sequence, the probability of this c<strong>on</strong>sequence<br />

class is the 2nd highest, after flooding of streets1 .<br />

Scientific relevance<br />

Current methods lack the ability to assess causes of flooding related to sewer<br />

system c<strong>on</strong>diti<strong>on</strong> and to explicitly incorporate flooding c<strong>on</strong>sequences. Current<br />

research addresses the latter by development of overland flow models and depthdamage<br />

functi<strong>on</strong>s; however, these methods incorporate <strong>on</strong>ly a part of urban flood<br />

causes and c<strong>on</strong>sequences. This research aims to provide a method that c<strong>on</strong>siders<br />

all possible causes of urban flooding, quantifies both tangible and intangible<br />

c<strong>on</strong>sequences and combines these in a quantitative flood risk assessment that<br />

will support urban flood management strategies.<br />

Literature<br />

•<br />

•<br />

•<br />

Ashley, R.M., Balmforth, D.J., Saul, A.J. and Blanksby, J.D. (2005). Flooding in the<br />

future - predicting climate change, risks and resp<strong>on</strong>ses in urban areas. <strong>Water</strong> Science<br />

and Technology. 52 (5): 265-273<br />

Kaplan, S., Garrick, B.J. (1981). On the quantitative definiti<strong>on</strong> of risk. Risk Analysis,<br />

1(1), 11-27.<br />

Veldhuis, J.A.E. ten, Clemens, F.H.L.R., van Gelder, P.H.A.J.M. (<strong>2008</strong>). Fault tree<br />

analysis for urban flooding. In: Proc. of 11th Internat. C<strong>on</strong>ference <strong>on</strong> Urban Drainage,<br />

Edinburgh, UK.<br />

1 If flooding of basements and crawl spaces is included, otherwise basement flooding is 4th and flooding in buildings<br />

is 5th in terms of highest probabilities.<br />

Marie-Claire ten Veldhuis<br />

<strong>Delft</strong> University of Technology<br />

Faculty of Civil <strong>Engineering</strong> and<br />

Geosciences<br />

Department of <strong>Water</strong> Management<br />

Secti<strong>on</strong> Sanitary <strong>Engineering</strong><br />

Tel.: +31 15 27 84 734<br />

Fax: +31 15 27 84 918<br />

e-mail: J.E.A.tenVeldhuis@<strong>TU</strong><strong>Delft</strong>.nl<br />

www.riolering.tudelft.nl<br />

Postal address:<br />

P.O. BOX 5048<br />

2600 GA <strong>Delft</strong><br />

visiting address:<br />

Stevinweg 1<br />

2628 CN <strong>Delft</strong><br />

Building of Civil <strong>Engineering</strong><br />

Room 4.52<br />

Start date: Aug 2006<br />

Expected end date: Dec 2009<br />

key words:<br />

Flooding, risk, urban drainage,<br />

fault tree<br />

cooperati<strong>on</strong> with other<br />

institutes:<br />

RIONED<br />

Cities/water company: Haarlem,<br />

Breda, Apeldoorn, <strong>Water</strong>net<br />

research projects<br />

115


116 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


c.<br />

a.<br />

d.<br />

b.<br />

a. MSc thesis defense Perry van<br />

Overveld<br />

b. Students <strong>on</strong> study trip in Argentina<br />

c. Excursi<strong>on</strong> during lectures in Curacao<br />

d. Stuident windmill excursi<strong>on</strong><br />

educati<strong>on</strong><br />

117


Students listening attentively to company presentati<strong>on</strong><br />

118 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

Students <strong>on</strong> excursi<strong>on</strong>


<strong>TU</strong> <strong>Delft</strong> offers several possibilities to study water related topics. Within the BSc programme<br />

<strong>on</strong> civil engineering, students are introduced into hydrology, water management and sanitary<br />

engineering. In the MSc programme, students can choose specialized programmes in<br />

hydrology, water management and sanitary engineering. Within sanitary engineering several<br />

courses <strong>on</strong> drinking water infrastructure are taught, including treatment processes, practicals<br />

and design exercises. Students include Dutch and internati<strong>on</strong>al BSc-graduates, but also<br />

BEng-graduates and “mid careers”, who are already working at water companies and follow<br />

a part-time intensive course. The courses are given by academics working at the university<br />

and at Kiwa <strong>Water</strong> Research and sometimes by special guest lectures, like the Dutch crown<br />

prince Willem-Alexander. In the final MSc thesis the students have to prove that they are able<br />

to study a scientific or engineering subject. The MSc thesis is defended in a public presentati<strong>on</strong><br />

and always many specialists from water companies are present.<br />

BSc courses involving drinking water engineering<br />

CT3011 - Introducti<strong>on</strong> watermanagement<br />

CT3420 - Sanitary <strong>Engineering</strong><br />

MSc courses involving drinking water engineering<br />

CT4471 - <strong>Drinking</strong> water 1: technology<br />

CT5520 - <strong>Drinking</strong> water 2: design<br />

CT5550 - <strong>Water</strong> transport and pumping stati<strong>on</strong>s<br />

CT5420 - Public hygiene and epidemiology<br />

MSc thesis presentati<strong>on</strong><br />

educati<strong>on</strong><br />

general<br />

119


OpenCourseWare<br />

In July 2006 the central board of the university initiated discussi<strong>on</strong>s <strong>on</strong> OpenCourseWare at <strong>TU</strong> <strong>Delft</strong> for the<br />

following reas<strong>on</strong>s (quote rector Fokkema):<br />

“The university’s core tasks include delivering know-how and building knowledge networks in an internati<strong>on</strong>al<br />

c<strong>on</strong>text. Who we are and what we do should be visible for any<strong>on</strong>e. What we are doing nowadays in separate<br />

instituti<strong>on</strong>s worldwide, should be d<strong>on</strong>e in collaborati<strong>on</strong> with the rest of the world. Branding and visibility are<br />

extremely important: we should be recognized as a source of knowledge, as a creative pool’. Open Educati<strong>on</strong>al<br />

Resources (OER) c<strong>on</strong>tribute to that thought, by c<strong>on</strong>necting <strong>TU</strong> <strong>Delft</strong> to the rest of the world. Investing in these<br />

kinds of projects is also a way to find out how we have to deal with all new technologies and trends influencing<br />

the university of tomorrow.“<br />

Target groups of the OpenER project include scientists from outside <strong>TU</strong> <strong>Delft</strong>, potential students and ‘lifel<strong>on</strong>g<br />

learners’, former students who wish to c<strong>on</strong>tinue learning. Educators from around the world may upgrade their<br />

classes; students may enhance their course work or pursue self study; the general public may glimpse the<br />

depth and breadth of what leading universities are offering and benefit from reading lists and lectures.<br />

Peter de Moel, project leader of the pilot project in the Faculty of Civil <strong>Engineering</strong> notes: ‘Many people who<br />

have had higher professi<strong>on</strong>al educati<strong>on</strong> and several years of working experience are employed at waterworks<br />

or waterboards. For this group we are offering a part-time <strong>Water</strong> Management Master’s programme. With the<br />

Open Educati<strong>on</strong>al Resources these people are able to get a better idea of what is being taught in <strong>Delft</strong>, before<br />

they actually register as students; they can get a feel for the material. This lowers the threshold, students are<br />

better prepared, and that makes the programme more efficient. OCW improves the exchange of informati<strong>on</strong><br />

with such companies, who are not <strong>on</strong>ly our clients for teaching and research, but who also provide the working<br />

envir<strong>on</strong>ment for graduates and our working field for study and graduati<strong>on</strong> projects.’<br />

The <strong>TU</strong> <strong>Delft</strong> OCW initiative has started with a pilot phase (2007/<strong>2008</strong>). During this period MSc material from<br />

six different disciplines have been published. This phase has now been completed. The project will be c<strong>on</strong>tinued<br />

in 2009. Over time <strong>TU</strong> <strong>Delft</strong> wants to make all its teaching materials available digitally without charge,<br />

including lectures, books, tests and video recordings.<br />

One of the six pilot projects dealt with drinking water engineering. The objectives of the chair of <strong>Drinking</strong> <strong>Water</strong><br />

<strong>Engineering</strong> to participate in the OpenCourseWare pilot were:<br />

• to attract more (internati<strong>on</strong>al) students and life l<strong>on</strong>g learners (LLL);<br />

• to experiment with modern forms of educati<strong>on</strong>.<br />

The OCW drinking water project started in September 2007 when the lectures of the course CT4471 <strong>Drinking</strong><br />

<strong>Water</strong> Treatment began. All the lectures have been recorded with Collegerama. Collegerama is a new tool<br />

developed by the Multi Media Studio of <strong>TU</strong> <strong>Delft</strong>. It combines streaming video recordings of the lectures with<br />

Powerpoint presentati<strong>on</strong>s. Recordings are available <strong>on</strong>line within 24 hours after the lectures. In this way the<br />

lectures are available for all students in case they have missed the lecture or when they want to hear (parts of)<br />

the lecture again. Especially for foreign students (due to language problems) and life l<strong>on</strong>g learners (because<br />

of travel times) the recording of the lectures with Collegerama is a very interesting opti<strong>on</strong>.<br />

120 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Furthermore all lecture notes and PDF’s of the PowerPoint presentati<strong>on</strong>s have been made available<br />

to access <strong>on</strong>line. Special <strong>on</strong>-line assignments have been developed to test the students<br />

understanding of a treatment processes. Students are encouraged to do the assignment before<br />

following the next lecture. Additi<strong>on</strong>ally several old examinati<strong>on</strong>s have been placed <strong>on</strong> the web<br />

site. For students interested in <strong>on</strong>e of the treatment technologies advanced literature is offered.<br />

The advanced literature is pre selected by the lecturer. This advanced literature should give the<br />

student more up to date back ground informati<strong>on</strong>. It c<strong>on</strong>sists of chapters of hand books, but<br />

also of recent journal articles <strong>on</strong> certain topics. During the lecturing period many excursi<strong>on</strong>s<br />

are made to water companies to see treatment facilities in field practice. Some video recordings<br />

of these excursi<strong>on</strong>s have been made and are placed <strong>on</strong> the OCW site.<br />

For more informati<strong>on</strong> visit the OCW site:<br />

- www.drinkwater.tudelft.nl and click <strong>on</strong> the OCW banner <strong>on</strong> the right side of the screen<br />

- www.tudelft.nl and click <strong>on</strong> the OCW logo oPen course ware<br />

Screen shot of Collegerama of the course CT4471 - <strong>Drinking</strong> water 1: technology<br />

educati<strong>on</strong><br />

121


Ongoing MSc thesis<br />

Josanne Derks: Reuse potential of Heineken’s brewery wastewater<br />

The process of brewing beer requires large volumes of high quality water. Apart from brewing, water is used<br />

in a range of other processes such as cleaning the plant, cooling, heating, washing yeast, cleaning returnable<br />

bottles etc. Heineken is interested in the re-use potential of the wastewater originating from the brewing process.<br />

Reusing the effluent can reduce the required intake of drinking water and reduce the volume of discharge<br />

to the natural envir<strong>on</strong>ment.<br />

The reuse of wastewater in general will become an increasingly important aspect of the water supply; society<br />

can no l<strong>on</strong>ger afford to use water <strong>on</strong>ly <strong>on</strong>ce. <strong>Water</strong> reuse can offer an alternative water supply that is c<strong>on</strong>sistently<br />

available in urban areas. However, the acceptance of reclaimed water as an alternative water source<br />

has to overcome some hurdles: its genesis from municipal wastewater (sewage) creates a negative percepti<strong>on</strong><br />

am<strong>on</strong>gst the public. Even though brewery wastewater c<strong>on</strong>tains no sewage, a similar reluctance could be<br />

expected from the customers and employees. Heineken is interested in the re-use potential of waste water<br />

outside the main beer producti<strong>on</strong> stream.<br />

This project requires a multidisciplinary approach: water treatment technology and chemistry, corporate and<br />

public policy making, managerial-ec<strong>on</strong>omics as well as socio-ec<strong>on</strong>omics are all part of the project. Besides<br />

the typical engineering aspects, I will also include the menti<strong>on</strong>ed technology-related aspects. This broad view<br />

was the main focus of my Bachelor studies in Technology, Policy and Management and I think that it could add<br />

extra value to my Master Thesis research.<br />

Y. Mikkers: Amm<strong>on</strong>ium removal from anaerobe ground water by zeolites –<br />

Impact of competing i<strong>on</strong>s <strong>on</strong> the reusability of regenerant<br />

Amm<strong>on</strong>ium is present in most groundwater and some surface water bodies which act as drinking water<br />

source. Traditi<strong>on</strong>al treatment c<strong>on</strong>sists of a sand filter where nitrifying bacteria c<strong>on</strong>vert amm<strong>on</strong>ium into nitrate.<br />

Research performed by Kiwa <strong>Water</strong> Research has shown that zeolites used as i<strong>on</strong>-exchange medium can produce<br />

water with amm<strong>on</strong>ium c<strong>on</strong>centrati<strong>on</strong>s low enough to meet the water quality standards. The main reas<strong>on</strong><br />

why the system isn’t implemented yet, is that regenerati<strong>on</strong> of the zeolites is too costly. The amount of chemicals<br />

necessary is high and the waste stream can’t be disposed of easily because of the high amm<strong>on</strong>ium levels.<br />

Scope of this research project is to see whether it is possible to strip the regenerant of the amm<strong>on</strong>ium<br />

and then re-use it several times. Key questi<strong>on</strong> in this situati<strong>on</strong> is: ‘What impact do other cat<br />

i<strong>on</strong>s absorbed <strong>on</strong> the zeolite have <strong>on</strong> the regenerati<strong>on</strong> process and the quality of the regenerant?’<br />

Xiaoyu Yuan: Model based optimizati<strong>on</strong> of the c<strong>on</strong>trol of the pellet softening process<br />

The objective of the thesis work is to develop the new c<strong>on</strong>trol strategies of the softening process for treatment<br />

plant Heemskerk and Wim Mensink in company PWN based <strong>on</strong> the technology of n<strong>on</strong>linear model-predictive<br />

c<strong>on</strong>trol (NLMPC) with Stimela under Matlab 6.5.2.<br />

122 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


3-10-<strong>2008</strong> 13:55 Pagina 1<br />

The current c<strong>on</strong>trol strategy they are operating now can achieve the normal functi<strong>on</strong> of the<br />

softening process and mix the c<strong>on</strong>venti<strong>on</strong>al treated water flow with the reverse osmosis (RO)<br />

permeate flow coming from treatment plant Heemskerk at a fixed ratio. However, this fixed ratio<br />

will lead to almost 10% water loss of the RO permeate water to the dune area aquifer and this<br />

process needs to be improved to low down the RO permeate flow to the extent of 0%.<br />

In the meantime, the fluidised bed, the caustic soda dosage and grain dosage also need to be<br />

well-c<strong>on</strong>trolled under the situati<strong>on</strong> of the new developed c<strong>on</strong>trol strategies with a variable ratio<br />

to fit the different RO permeate flow. The graduati<strong>on</strong> thesis work will show a descripti<strong>on</strong> of the<br />

current softening process in Wim Mensink and the parameters to be calibrated. Different c<strong>on</strong>trol<br />

strategies are elaborated and compared with each other. The results with relating discussi<strong>on</strong>s<br />

and model limitati<strong>on</strong>s will also be presented as well.<br />

Harmen van der Laan: Accelerating the ripening of a Subsurface Arsenic<br />

Removal (SAR) well<br />

The SAR technique involves the injecti<strong>on</strong> of aerated water into an anaerobic aquifer through<br />

a tube well. Ir<strong>on</strong> in the aquifer is oxidized by the aerated water and precipitates. The freshly<br />

formed ferric oxides surfaces are effective absorbents for dissolved species, through which<br />

arsenic i<strong>on</strong>s are removed. Typical for the SAR treatment is that the removal efficiency increases<br />

of the successive injecti<strong>on</strong>-extracti<strong>on</strong> cycles.<br />

This research focuses <strong>on</strong> the questi<strong>on</strong> how to speed up this increasing efficiency i.e. how to<br />

accelerate the ripening process of a SAR well, in order to reach the required water quality standard<br />

as so<strong>on</strong> as possible. Column experiments are performed to obtain sufficient experimental<br />

data to provide insight into the dominant mechanism, aiming to establish some operati<strong>on</strong>al optimizati<strong>on</strong><br />

parameters for the daily practice.<br />

Countering threats to drinking water quality Perry van Overveld<br />

<strong>2008</strong> Perry van Overveld<br />

Department of Multi Actor Systems<br />

Policy Analysis Secti<strong>on</strong><br />

Faculty of Technology, Policy and Management<br />

Department of <strong>Water</strong> Management<br />

Sanitary <strong>Engineering</strong> Secti<strong>on</strong><br />

Faculty of Civil <strong>Engineering</strong> and Geosciences<br />

Countering threats to drinking<br />

water quality<br />

Strategy formulati<strong>on</strong> for enhanced protecti<strong>on</strong> of drinking water interest<br />

regarding organic micropollutants in the course of European Uni<strong>on</strong><br />

decisi<strong>on</strong>-making<br />

educati<strong>on</strong><br />

Msc theses<br />

123


Completed MSc thesis in <strong>2008</strong><br />

E. Rabinovitch: <strong>Drinking</strong> with the wind<br />

Sea water is often the <strong>on</strong>ly available water source in arid, remote areas. Reverse osmosis (RO) desalinati<strong>on</strong> is<br />

the most energy efficient technology to treat saline water for drinking water purposes. Nevertheless it is still an<br />

energy intensive process, traditi<strong>on</strong>ally powered by fossil energy sources. Due to increasing costs and envir<strong>on</strong>mental<br />

drawbacks of fossil energy sources it becomes ec<strong>on</strong>omically feasible to use renewable energy sources.<br />

In this project wind energy is used to power an RO installati<strong>on</strong>. Direct, mechanical drive is used instead of an<br />

electric drive to prevent energy losses by c<strong>on</strong>versi<strong>on</strong> and expensive electrical energy storage. The first prototype<br />

of a small scale RO installati<strong>on</strong> mechanically driven by wind power was designed, built and tested. The<br />

operati<strong>on</strong> was variable due to the characteristics of the wind power supply. The process c<strong>on</strong>trols were operating<br />

mechanically/hydraulically without the use of electricity. To prevent delaminating of the RO membranes a<br />

fresh flush was included. The fresh flush was activated hydraulically when the wind speed dropped below a<br />

certain level and the recovery was c<strong>on</strong>trolled mechanically as well.<br />

P. van Overveld: Countering threats to drinking water quality<br />

I have studied European Uni<strong>on</strong> decisi<strong>on</strong>-making regarding threats from organic micro pollutants to drinking<br />

water quality (e.g., pesticides and pharmaceuticals), with a focus <strong>on</strong> the strategies that stakeholders employ to<br />

influence the decisi<strong>on</strong>-making processes to protect their interests by lobbying the formal European Uni<strong>on</strong> instituti<strong>on</strong>s.<br />

By rec<strong>on</strong>structing the <strong>Water</strong> Framework Directive dossiers “Priority Substances” and “Envir<strong>on</strong>mental<br />

Quality Standards” I have identified factors that have a decisive impact <strong>on</strong> the final decisi<strong>on</strong>-making outcome<br />

(European Uni<strong>on</strong> legislati<strong>on</strong>, e.g., a list of Priority Substances and according Envir<strong>on</strong>mental Quality Standards).<br />

By comparing the current lobby strategy of the European drinking water sector with these factors I have developed<br />

recommendati<strong>on</strong>s to enable a more important role of drinking water interests in the decisi<strong>on</strong>-making processes<br />

- and ultimately the European Uni<strong>on</strong> legislati<strong>on</strong> - in order to counter threats from organic micro pollutants.<br />

L. Gao: Post-treatment for desalinated water<br />

Desalinated water provides an increasing porti<strong>on</strong> of the total drinking water supply in a growing number of<br />

countries. However, it can not meet all relevant drinking water standards due to a very small amount of i<strong>on</strong>s<br />

and minerals. The aggressive water also has corrosive properties towards piping material. As a result, a posttreatment<br />

is necessary to improve chemical stability and to fulfill the health requirements. In this research,<br />

various types of limest<strong>on</strong>e pellets which are obtained from different pellet softening reactors are used to c<strong>on</strong>diti<strong>on</strong><br />

the desalinated water. Carb<strong>on</strong> dioxide is used to dissolve the softening pellets to produce a soluti<strong>on</strong><br />

- 2+ with high c<strong>on</strong>centrati<strong>on</strong> of HCO and Ca . The drinking water is then produced by mixing the soluti<strong>on</strong> with the<br />

3<br />

aggressive water. The kinetics of the dissoluti<strong>on</strong> process and the c<strong>on</strong>sumpti<strong>on</strong> of CO and softening pellets<br />

2<br />

are investigated, the optimal operati<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong> is determined finally.<br />

R. Doekhie: Low cost drinking water treatment for rural Suriname<br />

The aim of this research is to develop a water treatment c<strong>on</strong>cept for the inlands of Suriname, which produces<br />

bacteriological safe water using sustainable materials trough innovative methods. The c<strong>on</strong>cept must not c<strong>on</strong>flict<br />

with there daily way of living.<br />

The design c<strong>on</strong>sists of a slow sand filter combined with UV-disinfecti<strong>on</strong> by sunlight. In order to formulate an<br />

optimal c<strong>on</strong>cept the following will be studied:<br />

124 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


•<br />

•<br />

•<br />

Maintenance of the slow sand filter using a protective layer.<br />

Characterizing/model of the UV-disinfecti<strong>on</strong> using sunlight.<br />

Innovative/sustainable implementati<strong>on</strong> of the slow sand filter and UV-disinfecti<strong>on</strong> using mostly locally avail-<br />

able materials.<br />

In order to establish if this c<strong>on</strong>cept (slow sand filter (with protective layer) and UV-disinfecti<strong>on</strong> (sun)) produces<br />

safe drinking water the removal of E.Coli K12 will be tested.<br />

A. Salmin: <strong>Water</strong> treatment in Suriname<br />

<strong>Drinking</strong> water sources in Suriname are characterised by low hardness and low pH values. This has c<strong>on</strong>sequence<br />

for corrosi<strong>on</strong> of pipes and dissoluti<strong>on</strong> of copper. To increase the hardness, filters filled with sea shells<br />

are applied. To investigate the kinetics of dissoluti<strong>on</strong> of calcium, lab scale tests will be executed. The project<br />

will lead to improved design and operati<strong>on</strong> of water c<strong>on</strong>diti<strong>on</strong>ing installati<strong>on</strong>s in Suriname.<br />

A. Kaeocha: Removal of NOM by i<strong>on</strong> exchange<br />

In this research the different NOM fracti<strong>on</strong>s removed by i<strong>on</strong> exchange are studied, as well as the effect of<br />

removing NOM by activated carb<strong>on</strong> filters. The research will take place <strong>on</strong> batch and pilot scale level.<br />

Anushka Salmin answers questi<strong>on</strong>s during the presentati<strong>on</strong><br />

of her MSc.-thesis<br />

Raheena Doekhie and Prof. van Dijk<br />

educati<strong>on</strong><br />

125


MSc thesis projects <strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong><br />

Evgenia Rabinovitch <strong>Drinking</strong> with the wind <strong>2008</strong><br />

Perry van Overveld 2 Countering threats to drinking water quality <strong>2008</strong><br />

Li Gao Reuse of softening pellet for remineralizing desalinated<br />

water<br />

<strong>2008</strong><br />

Raheena Doekhie Low cost water treatment for rural communities<br />

in Suriname<br />

<strong>2008</strong><br />

Anushka Salmin C<strong>on</strong>diti<strong>on</strong>ing of aggressive water in Suriname <strong>2008</strong><br />

Anurat Kaeocha I<strong>on</strong> exchange for NOM removal in drinking water<br />

treatment<br />

<strong>2008</strong><br />

Hanning Guo <strong>Drinking</strong> water treatment under a high nanofiltrati<strong>on</strong><br />

recovery with zero liquid discharge<br />

2007<br />

Karen Shao Degradati<strong>on</strong> of 4TBP by AOP 2007<br />

Karin Teunissen2 Ir<strong>on</strong> removal at groundwater pumping stati<strong>on</strong> 2007<br />

Doris van Halem2 Ceramic filters for developing countries 2006<br />

Petra Ross Clogging of biological activated carb<strong>on</strong> filters 2006<br />

Sheng Li IEX-UF-NF-GAC treatment 2006<br />

Qing Wang Characterizati<strong>on</strong> of sediment 2006<br />

David de Ridder UV-H O treatment - Research and design 2 2 2006<br />

Leo Meijer Reuse of wastewater for Amsterdam 2006<br />

Sharleen Alberga OLM/Asset management 2005<br />

Anke Grefte Test-rig research distributi<strong>on</strong> 2005<br />

Jan-Hendrik Vos Sediment transport in distributi<strong>on</strong> network 2005<br />

Menno van Leenen Influence NOM <strong>on</strong> oz<strong>on</strong>e 2005<br />

Maarten Lut Laboratory research distributi<strong>on</strong> 2005<br />

Christiaan Kivit Q21 – distributi<strong>on</strong> 2004<br />

Michiel van der Meulen Particles in distributi<strong>on</strong> network 2004<br />

Sawan Raktoe1 Backwashing leads to fouling 2004<br />

Guy Heijnen Capillary NF for horticulture 2002<br />

Martijn Kramer UV-disinfecti<strong>on</strong> Andijk 2002<br />

Angela Puts Risk analysis Legi<strong>on</strong>ella 2002<br />

Michel Bretveld Oz<strong>on</strong>ati<strong>on</strong> Weesperkarspel 2002<br />

Remco Keijser Real-time c<strong>on</strong>trol Loosdrecht plant 2002<br />

Colette de Roo Airflush of capillary membranes 2002<br />

Pepijn Koenders Nanofiltrati<strong>on</strong> Twentekanaal water 2001<br />

Maaike Glastra MBR in drinking water treatment 2001<br />

S.G. Tan Modeling WRK-treatment 2001<br />

Jan Post1 C<strong>on</strong>centrate treatment with cNF 2000<br />

Ant<strong>on</strong> van Rosmalen Risk analysis water market 2000<br />

Ignaz Worm3 Air/water backwash UF 2000<br />

Johannis Vijlbrief Urban water chain company Overijssel 2000<br />

René van der Aa1,2 Nitrificati<strong>on</strong> in rapid filters 1999<br />

126 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Jeroen Boel Microfiltrati<strong>on</strong> Philips Nijmegen 1999<br />

Bram Martijn Ultrafiltrati<strong>on</strong> Biesbosch water 1999<br />

Jeroen Krijgsman Industrial water project Roerm<strong>on</strong>d 1999<br />

Alex van de Helm 3 Modeling gas transfer systems 1998<br />

B<strong>on</strong>ne Hylkema Hybrid membrane filtrati<strong>on</strong> Nuland 1998<br />

Siebe van de Zel Sludge treatment and disposal Gelderland 1998<br />

Joukje Klomp Anaerobic membrane filtrati<strong>on</strong> 1997<br />

Martijn Riemersma Modeling nanofiltrati<strong>on</strong> 1997<br />

Martin de K<strong>on</strong>ing Electrodialysis Leiduin 1997<br />

Steven Oterdoom Reservoir Drentsche Aa 1997<br />

Weren de Vet Riverbank filtrati<strong>on</strong> Panheel 1997<br />

Jan-Dik Verdel Modeling groundwater filtrati<strong>on</strong> 1997<br />

Eelco Trietsch See weed membrane filtrati<strong>on</strong> 1996<br />

Eric Schwencke <strong>Water</strong> treatment Achterhoek 1996<br />

Joukje Keuning Flocculati<strong>on</strong> Brakel 1996<br />

Marije Hendriks Dynasand filtrati<strong>on</strong> WRK III 1996<br />

Francois van Ekkend<strong>on</strong>k 2 Industrial water project Philips Nijmegen 1996<br />

Martijn Nijsse Industrial water project Cerestar 1996<br />

Ernst-Jan Hageman Membrane filtrati<strong>on</strong> backwash water 1996<br />

Piet-Hein Spaans Dynasand filtrati<strong>on</strong> Loenderveenseplas 1996<br />

Maarten Keuten Optimizati<strong>on</strong> treatment swimming pools 1996<br />

Jasper Verberk Optimizati<strong>on</strong> treatment plant WRK I/II 1996<br />

Mark Brieskorn Design Bergen op Zoom treatment plant 1996<br />

Peter Tienhooven Expansi<strong>on</strong> Lake water supply Amsterdam 1995<br />

Edgardo Valeriano Design backwash gutters 1995<br />

Mark Eikens <strong>Drinking</strong> water project for the Veluwe 1995<br />

Mireille Beumer Industrial water project Parenco 1995<br />

Marieke van Winkelen Industrial water reuse Akzo Amsterdam 1995<br />

Gert-Jan Schoterman Biesbosch water treatment 1995<br />

Jan Leen van de Vlies Industrial water South West Netherlands 1995<br />

Bas van Efferen Large-scale membrane filtrati<strong>on</strong> 1995<br />

Patrick Smeets Virus removal through infiltrati<strong>on</strong> 1995<br />

Martijn Bakker Real-time c<strong>on</strong>trol of water producti<strong>on</strong> 1995<br />

Örjan van Dr<strong>on</strong>gelen Reliability study for Panheel 1995<br />

Hella van de Maarel Removal of micro-organisms 1995<br />

R<strong>on</strong>ald van de Berg Design Aalsterweg treatment plant 1995<br />

David Visscher Activated carb<strong>on</strong> filtrati<strong>on</strong> Bergambacht 1995<br />

Petra Holzhaus Riverbank filtrati<strong>on</strong> al<strong>on</strong>g the Lek 1995<br />

Patrick van de Wens Distributi<strong>on</strong> strategy PIM 1994<br />

Roel Br<strong>on</strong>da Reuse backwash water WMO 1994<br />

Ellen van Duikeren Deep infiltrati<strong>on</strong> South East Netherlands 1994<br />

Nico Versteeg Use of surface water for Overijssel 1994<br />

Peter Wessels Use of Biesbosch water for Gelderland 1993<br />

educati<strong>on</strong><br />

overview Msc theses since 1991<br />

127


Jenne van de Velde Reuse backwash water WMN 1993<br />

Georgina Martinez Ortiz Industrial water project Veendam 1993<br />

Jan Timmer Softening with lime 1993<br />

Carel Aeyelts Averink Modeling of membrane filtrati<strong>on</strong> 1993<br />

Idsart Dijkstra <strong>Water</strong> supply of Vlieland 1992<br />

Robert Willemse AOC-removal in filters 1992<br />

Gertjan Schers Flotati<strong>on</strong>: theory and practice 1991<br />

1 Gijs Oskam Award for best young researcher,<br />

2 Graduati<strong>on</strong> with h<strong>on</strong>ours (cum laude),<br />

3 Faculty Award for best graduati<strong>on</strong><br />

All thesis can be downloaded from www.drinkwater.tudelft.nl (=> research, => MSc research completed)<br />

Internati<strong>on</strong>al dinner after the course drinking<br />

water treatment 1<br />

128 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

Changing membranes <strong>on</strong> the excursi<strong>on</strong><br />

to Hatenboer <strong>Water</strong>


BSc theses <strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong><br />

Bart Bergmans: Resuspensi<strong>on</strong> Potential Method<br />

In the last lecture period I did my Bachelor Thesis <strong>on</strong> the Resuspensi<strong>on</strong> Potential Method<br />

(RPM). The subject caught my interest due to the coarse character of the development phase<br />

wherein the method currently is.<br />

A large part of the customer complaints that arrive at the Dutch drinking water companies c<strong>on</strong>cern<br />

the color of the water: brown water complaints. Brown water originates from sediment<br />

that precipitated <strong>on</strong> the bottom of a pipe and comes in resuspensi<strong>on</strong> caused by a hydraulic<br />

disturbance. The RPM is a young method which focuses <strong>on</strong> quantificati<strong>on</strong> of the resuspensi<strong>on</strong><br />

risk in drinking water pipelines and to gain more insight in the factors which influence the<br />

process. For this method a standardized disturbance is applied during a specified time in an<br />

isolated part of the pipeline. The turbidity of the water is measured in fr<strong>on</strong>t, during and after this<br />

disturbance. Because the RPM is still developing, there are a lot of indistinctness’s c<strong>on</strong>cerning<br />

the validity, interpretati<strong>on</strong> and the processing of the measure ments. Besides, different water<br />

companies are using different adjusted versi<strong>on</strong>s of the RPM.<br />

The objective of this bachelor thesis was the validati<strong>on</strong> of the adjusted versi<strong>on</strong> of the RPM like<br />

it is applied by <strong>Water</strong>leiding Maatschappij Limburg and to evaluate the measurement results<br />

obtained with this adjusted versi<strong>on</strong>. The first few weeks I studied the theory behind the method.<br />

Afterwards I visited WML for a day to see how the measurements were executed and to see how<br />

the drinking water pipes were drained. On this instructive day everybody was enthusiastically<br />

answering my questi<strong>on</strong>s, I saw brown water for the first time and definitely got enough coffee.<br />

The rest of the period I have been busy with analyzing the measurement results of several<br />

producti<strong>on</strong> areas which were gathered by WML. I looked particularly to the differences in measurement<br />

results between these producti<strong>on</strong> areas and to possible relati<strong>on</strong>s between resuspensi<strong>on</strong><br />

potential en the pipe material.<br />

The most important c<strong>on</strong>clusi<strong>on</strong> from this thesis is that the extent to which an area is sensitive<br />

to precipitati<strong>on</strong> of resuspendable material can str<strong>on</strong>gly differ and that in cast ir<strong>on</strong> pipes no<br />

enlarged risk in sediment suspensi<strong>on</strong> is present compared to pipes of other materil. This last<br />

part is noticeable, because cast ir<strong>on</strong> pipes are often indicated as biggest wr<strong>on</strong>gdoer of the<br />

brown water problem. The recommendati<strong>on</strong> to WML coupled to this c<strong>on</strong>clusi<strong>on</strong> is to research<br />

the compositi<strong>on</strong> and origin of the precipitated sediment in the distributi<strong>on</strong> system.<br />

After all the ‘designing’ in previous courses, I like it a lot to be able to do some ‘research’ now.<br />

I learned a lot from the comments and advise from my supervisors and WML. For me it was<br />

a very interesting and instructive period and I am looking forward to do more of these projects<br />

in the coming years.<br />

educati<strong>on</strong><br />

bsc theses<br />

129


David Moed: C<strong>on</strong>diti<strong>on</strong>ing and storage of water in developing countries<br />

There are places in the world where the <strong>on</strong>ly source for water is either seawater or heavily c<strong>on</strong>taminated<br />

groundwater. Treatment of such sources in order to produce drinking water is complicated and expensive.<br />

C<strong>on</strong>sidering the fact that these places usually harbor the poorest people <strong>on</strong> the planet, it is obvious that there<br />

is a drinking water problem.<br />

A newly developed and sustainable technique to produce fresh water from sea water or c<strong>on</strong>taminated groundwater<br />

is called pervaporati<strong>on</strong>. This is a form of membrane filtrati<strong>on</strong>, driven solely by the energy of the sun.<br />

The company which has developed this membrane is Solar Dew and they are now seeking to implement this<br />

technique in developing countries <strong>on</strong> house-hold level, by placing the membranes <strong>on</strong> roofs.<br />

The product of pervaporati<strong>on</strong> is desalinated water. Desalinated (or demineralized) water has some serious<br />

disadvantages which make it unsuitable for c<strong>on</strong>sumpti<strong>on</strong>. First of all, the water is aggressive and can therefore<br />

dissolve c<strong>on</strong>crete and metal piping. Sec<strong>on</strong>dly, demineralized water is c<strong>on</strong>sidered a health risk, because our<br />

body needs the salts that are usually found in drinking water. On top of that, the usage of demineralized water<br />

for cooking in aluminum pans dissolves the aluminum. This is a very serious health risk because c<strong>on</strong>sumpti<strong>on</strong><br />

of aluminum causes Alzheimer’s disease. The water doesn’t taste very good either. Before c<strong>on</strong>sumpti<strong>on</strong> of<br />

the effluent of pervaporati<strong>on</strong> is possible, the water has to be c<strong>on</strong>diti<strong>on</strong>ed (or rehardened). The techniques that<br />

are know for rehardening are dosing of chemicals (lime), aerati<strong>on</strong> and limest<strong>on</strong>e filtrati<strong>on</strong>. For this situati<strong>on</strong>,<br />

limest<strong>on</strong>e filtrati<strong>on</strong> turned out to be the most applicable soluti<strong>on</strong>. The idea was to make a cylinder c<strong>on</strong>taining<br />

calcium carb<strong>on</strong>ate (i.e. shells, softening pellets), and letting the water filtrate through this medium, thereby<br />

bringing the water in carb<strong>on</strong>ic acid equilibrium.<br />

The kinetics of the dissluti<strong>on</strong> of calcium carb<strong>on</strong>ate in water have been investigated in literature and practice. It<br />

could be c<strong>on</strong>cluded that the c<strong>on</strong>diti<strong>on</strong>ing process is a slow <strong>on</strong>e. Without the presence of an acid in the water,<br />

the calcium carb<strong>on</strong>ate was hard to dissolve. In order to produce 40 L/day l<strong>on</strong>g c<strong>on</strong>tact times were required.<br />

The <strong>on</strong>ly way to achieve this was by making a very large cylinder with calcium carb<strong>on</strong>ate. The c<strong>on</strong>diti<strong>on</strong>ed<br />

water would eventually be stored in a drum inside the house. The entire system had to be made of plastic in<br />

order that make sure that the aggressive water did not dissolve the piping or storage.<br />

130 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Udo Ouwekerk: aQa Pickwick water system<br />

In the past lecture period, lecture period 3, I did my Bachelor Thesis <strong>on</strong> the aQa Pickwick water system. The<br />

aQa Pickwick water system is like the name already gives away, a water system and is developed by Sara<br />

Lee/DE.<br />

The c<strong>on</strong>cept of water systems is present at the market for already a while in the form of systems with replaceable<br />

water c<strong>on</strong>tainers. Sara Lee/DE developed a new type of water system that can directly be c<strong>on</strong>nected to<br />

the water distributi<strong>on</strong> network. Present substances in the water are removed by a Reverse Osmosis filter. A<br />

specific amount of minerals is added to the water to provide a c<strong>on</strong>stant taste of the water irrespective of the<br />

locati<strong>on</strong> of the system.<br />

The big advantage of this system is that there is no storage required for the water c<strong>on</strong>tainers, there is storage<br />

required for the minerals however. The volume of minerals is much smaller than a water c<strong>on</strong>tainer and more<br />

water can be produced (400 liter) with these minerals than is present in a water c<strong>on</strong>tainer. It turned out that<br />

the current system is using a severe amount of water. For the producti<strong>on</strong> of 1 liter water, 3 liter is flushed away<br />

in the sewerage. Paying attenti<strong>on</strong> to durability and the c<strong>on</strong>scious use of raw materials this is unacceptable.<br />

Therefore the water use needs to be reduced.<br />

A water analyses was made for the current system to localize the water losses. Based <strong>on</strong> this analyses several<br />

alternatives were created, from which the best <strong>on</strong>e was experimentally investigated.<br />

Experimental set-up<br />

educati<strong>on</strong><br />

131


From the analysis it became clear that the sources of water losses are:<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Flushing the Reverse Osmosis filter<br />

Ventilating the membrane<br />

Overflow of the cold water tank<br />

Oveflow fresh water tank<br />

Leakage water during tapping of the water<br />

Producti<strong>on</strong> of water by the Reverse Osmosis filter for the system<br />

The biggest source of water loss is the producti<strong>on</strong> of water for the system. To reduce these losses several<br />

soluti<strong>on</strong>s were c<strong>on</strong>sidered, from which finally is chosen to experimentally investigate the recirculati<strong>on</strong> of the<br />

c<strong>on</strong>centrate (see picture).<br />

Point of interest for the research is that with a high recovery the chance <strong>on</strong> scaling increases, This effect is<br />

not desirable and the risk <strong>on</strong> scaling can be decreased by the applicati<strong>on</strong> of i<strong>on</strong> exchange. From the experimental<br />

research is found that it is possible to obtain a recovery of 94% by recirculati<strong>on</strong> of the c<strong>on</strong>centrate.<br />

Scaling did not have a negative influence <strong>on</strong> the producti<strong>on</strong> of the system, given that there were no scaling<br />

i<strong>on</strong>s present in the water anymore. At the same time it it possible to reduce the other water losses to zero by<br />

means of transporting the water of the leakage tank back to the pre-filter.<br />

It was very interesting doing research <strong>on</strong> this subject. Normally Reverse Osmosis is applied <strong>on</strong> larger scale<br />

which was not the case in this thesis and therefore it was questi<strong>on</strong>ed whether the principles of the installati<strong>on</strong>s<br />

<strong>on</strong> macro level were also valid <strong>on</strong> micro level. It was also very nice and instructive to pass trough the whole<br />

process from collecting data about the subject to analyzing and the setting –up and execute experiments. Finally<br />

it was a huge amount of work for the limited amount of time available but is was definitely worth the effort.<br />

132 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Mid-careers of Vitens<br />

In September 2007 we started the master Sanitary <strong>Engineering</strong> of the Department of <strong>Water</strong><br />

Management as part time students. We are Frank Scho<strong>on</strong>enberg and Bas Rietman, both<br />

working as expert water treatment for Vitens. Let’s introduce ourselves:<br />

Frank: Iam 43 years old. In 1991 Ifinished my HTS study ChemicalTechnology. Since 2001 Iwork for<br />

Vitens at the department of process technology. At Vitens I am active in new estate, research<br />

and process optimisati<strong>on</strong>. Vitens disposes of 100 producti<strong>on</strong> locati<strong>on</strong>s where drinking water is<br />

produced. Therefore Vitens is able to provide enough challenging projects.<br />

Bas: I am 40 years old, married and we have two daughters (2.5 years and 0.5 years). After<br />

finishing my MTS Proces en Mileutechniek I did not feel the need to study further. Trough<br />

manure processing I ended up in the drinking water world at Vitens (then still WMO). I started<br />

as a process technological employee (process technologist). After doing several projects in<br />

the first few years, I started in 1994 with pilot research to nanofiltrati<strong>on</strong>. As a process technologist<br />

I designed and started up anaerobic nanofiltrati<strong>on</strong> installati<strong>on</strong>s in Overijssel. From 2000 till<br />

2004 I finished the study HTS Chemical Technology as a part time student. Since June <strong>2008</strong><br />

I am an expert water treatment for the department of process technology inside the regi<strong>on</strong> of<br />

Overijssel and I am leading <strong>on</strong>e of the spearheads of the department, membrane filtrati<strong>on</strong>.<br />

Following a study is a nice and interesting variati<strong>on</strong> <strong>on</strong> our daily job. With this study we are<br />

able to broaden and deepen our knowledge.<br />

And last but not least: for some functi<strong>on</strong>s an<br />

academic degree is required. Above all it’s<br />

an opportunity and an extra stimulus that our<br />

employer makes this study possible by granting<br />

us study leave and bearing the costs.<br />

We experienced the first study year as really<br />

positive. We c<strong>on</strong>sciously chose courses that<br />

were close to our expertise, drinking water and<br />

wastewater. In this manner we could get to<br />

know the university. Our big study efforts were<br />

rewarded with good results. Furthermore we<br />

liked the fact that we were stimulated to look<br />

to problems form a new prospective.<br />

Frank Scho<strong>on</strong>enberg (r) en<br />

Bas Rietman (l)<br />

educati<strong>on</strong><br />

Mid-careers<br />

133


Internship BES-islands (Dutch Antilles): Rick Reijtenbagh<br />

Within the framework of the cooperati<strong>on</strong><br />

between the University of the Netherlands<br />

Antilles (UNA) and the Caribbean <strong>Water</strong><br />

Technology Research Institute (CWTRI) a project<br />

c<strong>on</strong>cerning the c<strong>on</strong>stituti<strong>on</strong>al reformati<strong>on</strong><br />

of the BES-islands has been formulated. The<br />

goal of this project is to define the technical,<br />

policy and legal c<strong>on</strong>sequences for the drinking<br />

water companies <strong>on</strong> B<strong>on</strong>aire, Saba and<br />

St Eustatius <strong>on</strong>ce these islands have become<br />

public entities of the Netherlands.<br />

The research has been c<strong>on</strong>ducted by Rick Rick Reijtenbagh visiting the government of St. Eustatius<br />

Reijtenbagh (TPM, SEPAM) during the summer<br />

holidays at the head office of GEBE NV at St Maarten. GEBE NV is the local utility company for both St<br />

Eustatius and Saba, WEB NV is the water and electricity company for B<strong>on</strong>aire.<br />

Field visits have been made to all BES-islands to inspect the local drinking water supply systems, take quality<br />

samples and c<strong>on</strong>duct interviews with the actors c<strong>on</strong>cerned. The research c<strong>on</strong>tains the current drinking water<br />

supply situati<strong>on</strong> <strong>on</strong> the BES-islands from a technical, policy and legal perspective. Emphasis has been put<br />

<strong>on</strong> the deviati<strong>on</strong>s from the current drinking water legislati<strong>on</strong>. These deviati<strong>on</strong>s exist of, am<strong>on</strong>g others, lack of<br />

governmental c<strong>on</strong>cessi<strong>on</strong>s for both producti<strong>on</strong> and distributi<strong>on</strong> of drinking water, no adequate inspecti<strong>on</strong> systems<br />

and no designated drinking water council as prescribed in the Landsverordening. A scenario-analysis<br />

has been formulated in order to define potential future legislati<strong>on</strong>. Based <strong>on</strong> the latter findings recommendati<strong>on</strong>s<br />

have been put forward for the drinking water companies in order for them to anticipate <strong>on</strong> the new c<strong>on</strong>stituti<strong>on</strong>al<br />

situati<strong>on</strong>.<br />

Internship PWN: Lucy Magda<br />

I started my internship at <strong>Water</strong> Technology Department at PWN water supply company North Holland in<br />

Septermber <strong>2008</strong>. The idea was to make a short research about “self-calibrating” flow meters and make suggesti<strong>on</strong>s<br />

<strong>on</strong> their applicati<strong>on</strong> in PWN system. My supervisor- Ignaz Worm, inspired with the publicati<strong>on</strong> from<br />

Measurement journal from 2002, titled: Keeping Meters <strong>on</strong> Line. Accurately measuring <strong>Drinking</strong> <strong>Water</strong> and<br />

Sewage [1] thought the subject is worth more insight.<br />

After <strong>on</strong>e or two weeks we both found out that <strong>on</strong>ly the name sound promising, because there is no such thing<br />

as self-calibrated flow meters. There are all sorts of verificati<strong>on</strong> systems, which are often referred as in-situ<br />

calibrati<strong>on</strong> [3], applied to an existing or a new instrument (footprinted), which perform a periodical diagnostic<br />

expanded to several parameters. It was intriguing finding as it seemed that in the era of automated c<strong>on</strong>trol there<br />

is still lot of room for improvements. Having said that thought, it may seem surprising that, according to numerous<br />

press issues from water networks process c<strong>on</strong>trol, flow meters are already used to measure the influent<br />

water, to calculate the available storage and sometimes also to calculate payments and taxes [2]. However, not<br />

134 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


much is being said that most of the water networks<br />

are c<strong>on</strong>signed with reliability problems.<br />

In 2006 the quality of the historical flow data at<br />

PWN, has been examined. For this purpose the<br />

whole water network has been divided into 6 main<br />

schemes, each of them was investigated more in<br />

detail by breaking down to small water balances.<br />

The flow values were collected from the flow meters<br />

readings. For 6 investigated schemes, up to 70% of<br />

balances was doubtful. Furthermore: all of the balances<br />

showed systematic error and bias with<br />

the total order of magnitude of 3000 m3 Measurement in an electromagnetic<br />

flowmeter<br />

/day. In<br />

the light of such results it was clear that <strong>on</strong>ly flow<br />

meters are not enough to justify the decisi<strong>on</strong>s <strong>on</strong><br />

water levels and discharge. What was interesting is<br />

that according to my small research some sources<br />

of errors claimed in the PWN <str<strong>on</strong>g>report</str<strong>on</strong>g>s and typically<br />

stipulated like:<br />

• Inaccuracy of the flow meters,<br />

• System jammings,<br />

• Impact of the infiltrati<strong>on</strong> and extracti<strong>on</strong> <strong>on</strong> the<br />

total water balance,<br />

Universal inline ultras<strong>on</strong>ic flowmeter<br />

• Possible leakage,<br />

have in fact insignificant influence <strong>on</strong> the biggest errors in water. According to my verificati<strong>on</strong>,<br />

the fouling, polluti<strong>on</strong>, flow meters’ surrounding have much bigger impact <strong>on</strong> inc<strong>on</strong>sistency of<br />

the data. To c<strong>on</strong>clude: it is difficult to verify the flow meters performance. In situ calibrati<strong>on</strong> of<br />

the flow meters has potential of improving the daily operati<strong>on</strong>s therefore the subject calls for<br />

more research and experiments.<br />

Sources:<br />

[1] R. Johns<strong>on</strong>: Keeping Meters On Line, Measurements, 2002.<br />

[2] D.W. Spitzer On site flow calibrati<strong>on</strong> is painful but necessary, Retrieved September 16, <strong>2008</strong>, from<br />

Process Automati<strong>on</strong> Technologies:http://www.c<strong>on</strong>trolglobal.com/article/2005<br />

[3] D.W. Spitzer Flowmeters clean and dirty, Retrieved October 16, <strong>2008</strong>, from Process<br />

Automati<strong>on</strong> Technologies: http://www.c<strong>on</strong>trolglobal.com/article/2006<br />

educati<strong>on</strong><br />

internshiPs<br />

135


Development of a drinking water module for sec<strong>on</strong>dary schools<br />

The chair of drinking water engineering not <strong>on</strong>ly gives educati<strong>on</strong> to students <strong>on</strong> universitiy level, but is also<br />

active in encouraging the next generati<strong>on</strong> of students to study water engineering. To make pupils with an age<br />

of 16 or 17 year old at sec<strong>on</strong>dary schools interested in drinking water engineering a so called NLT course<br />

has been developed. NLT stands for Nature, Life and Technology (Natuur, Leven en Techniek) and it is a new<br />

elective course pupils with the profiles Nature & Technology and Nature & Health can do at sec<strong>on</strong>dary schools<br />

(HAVO and VWO). In the NLT course the students have to select 13 different modules out a large number of<br />

available modules. NLT focuses <strong>on</strong> the Beta courses and more specific <strong>on</strong> the domains geography, biology,<br />

mathematics, chemistry and physics. The course NLT shows pupils how to apply fundamental theory from the<br />

beta courses into day to day applicati<strong>on</strong>s. NLT is a course for curious pupils that want to know more about<br />

recent developments in applied science and technology.<br />

<strong>Delft</strong> University of Technology, chair of drinking water engineering and <strong>TU</strong>LO (<strong>TU</strong> lerarenopleiding), has<br />

developed this NLT course in collaborati<strong>on</strong> with teachers from two sec<strong>on</strong>dary schools (Hofstad Lyceum and<br />

Sorghvliet, both located in the Hague).<br />

136 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

NLT-module<br />

Drinkwater, lekker belangrijk!<br />

Promoti<strong>on</strong> poster of the drinking water NLT module


NLT module “Drink water, quite important!”<br />

Setup of module “Drink water, quite important!”<br />

In the general part of this module examples are given about the importance of safe drinking<br />

water for humans based <strong>on</strong> the availability of safe drinking water in different places in the world.<br />

Thereafter informati<strong>on</strong> is given of the different available treatment processes to treat water to<br />

drinking water. The focus is <strong>on</strong> treatment technologies as used in the Netherlands. What processes<br />

are used and why? The descripti<strong>on</strong> and explanati<strong>on</strong> of the treatment processes is supported<br />

by theory of chemistry, physics, biology and mathematics.<br />

The theory is further explained by performing experiments. In groups of 4 pupils, the pupils<br />

have to do simple water treatment experiments, like cascade aerati<strong>on</strong>, filtrati<strong>on</strong>, c<strong>on</strong>diti<strong>on</strong>ing<br />

or the calculati<strong>on</strong> of a simple distributi<strong>on</strong> system. The pupils have to work out the experiments<br />

and present the results to each other.<br />

The module is closed with a discussi<strong>on</strong> about the worldwide challenges in water treatment and<br />

how the pupils can c<strong>on</strong>tribute to solve these challenges.<br />

Experiments NLT module “Drink water, quite important!”<br />

In simple experiments the theory of chemistry, physics and mathematics is used to calculate<br />

for example (reacti<strong>on</strong> c<strong>on</strong>stants), like Henry c<strong>on</strong>stant, calcium carb<strong>on</strong>ic acid equilibrium or<br />

fricti<strong>on</strong> factor. This obtained informati<strong>on</strong> is used to make a design of treatment processes.<br />

All experimental installati<strong>on</strong>s are made with material that is easily available, like PET bottles,<br />

measuring cylinders, shells.<br />

In the experiments the “engineering thinking” is emphasised. The pupil should think as an engineer<br />

in search of practical soluti<strong>on</strong>s of a water problem.<br />

Experimental setup used in the NLT module, left cascade aerati<strong>on</strong>, middle c<strong>on</strong>diti<strong>on</strong>ing with shells, right<br />

filtrati<strong>on</strong> experiment<br />

educati<strong>on</strong><br />

sec<strong>on</strong>dary schools<br />

137


SWaRM: student exchange with Australia<br />

To train the next generati<strong>on</strong> of specialists in the field of sustainable water resources five Australian universities<br />

(all founding partners of the Internati<strong>on</strong>al Centre of Excellence in <strong>Water</strong> Resources Management – ICE WaRM)<br />

and three European leading water universities have signed a Memorandum of Understanding to exchange<br />

90 post graduate students in the coming three years. In total a grant of over AU$ 1,000,000 (500,000 euro)<br />

for travel expenses and living allowances is available for students and staff members to share best practice<br />

and to improve global understanding of the importance of sustainability in water resources. This exchange is<br />

funded by the Australian government and the European Uni<strong>on</strong>.<br />

Over the next three years, 45 post graduate students from the University of Dundee (Scotland, UK), <strong>Delft</strong><br />

University of Technology (The Netherlands) and the Technical University of Dresden (Germany) will study for<br />

<strong>on</strong>e semester at <strong>on</strong>e of the participating universities in Australia. In return, 45 post graduate students from<br />

Flinders University, University of South Australia, Deakin University, CQUniversity and the University of Adelaide<br />

will come to Europe to study at <strong>on</strong>e of the three participating European universities.<br />

As well as exchanging students, staff members will visit the universities in the other c<strong>on</strong>tinent to give guest<br />

lectures, to start joint PhD research projects and to develop joint courses.<br />

The representatives of the participating universities in the SWaRM project preparing the MoU.<br />

From left to right (top row) Prof Graeme Dandy, A/Prof Bas Baskaran, Prof Sim<strong>on</strong> Beecham, Dr.<br />

Adrian Werner, A/Prof Larelle Fabbro, (bottom row) Cristopher Bustin, Richard Hopkins and A/Prof<br />

Jasper Verberk.<br />

Informati<strong>on</strong> <strong>on</strong> this exchange programme can be obtained form Mr Richard Hopkins of ICE WaRM,<br />

+61882365200, rhopkins@icewarm.com.au, Christopher Bustin, +441382388031,<br />

c.m.bustin@dundee.ac.uk or Jasper Verberk, +31152785838, J.Q.J.C.Verberk@<strong>TU</strong><strong>Delft</strong>.nl<br />

More detailed informati<strong>on</strong> about the exchange programme can be found <strong>on</strong> the web portal of SWaRM,<br />

http://www.icewarm.com.au/page.php?pId=346<br />

138 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


Books <strong>Drinking</strong> water can be ordered <strong>on</strong>line<br />

The books about <strong>Drinking</strong> water can be ordered <strong>on</strong> the web site: http://drinkwater.tudelft.nl<br />

Book : DRINKING WATER - Principles and Practices<br />

(English)<br />

ISBN : 981-256-836-0<br />

Prize : Euro 50,00<br />

Book : DRINKWATER - Principes en praktijk (Nederlands,<br />

2e editie)<br />

ISBN : 90-12-10946-9<br />

Prize : Euro 50,00 (incl. BTW en verzendkosten)<br />

educati<strong>on</strong><br />

other activities<br />

139


140 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


in <strong>on</strong>s drinkwater:<br />

b. a. Carto<strong>on</strong> medicines in drinking water<br />

b. De Delta, the news paper of the<br />

<strong>on</strong>venient truth<br />

University<br />

yme MTBE<br />

ibuprofen<br />

rozac<br />

NDMA<br />

a.<br />

DIRCES<br />

Robustness in drinking-water safety<br />

drinking water engineering in the Media<br />

141


-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

Vechten tegen arseen<br />

Doris van Halem geeft uitleg aan de bew<strong>on</strong>ers in Manikanj. (Foto: Suze Ann Bakker)<br />

In Bangladesh <strong>on</strong>twik -<br />

kelt promovenda Doris<br />

van Halem een methode<br />

om gr<strong>on</strong>dwater van<br />

arseen te zuiveren.<br />

Eén op de tien mensen<br />

dreigt er te sterven aan<br />

kanker.<br />

x SUZE ANN B AKKER<br />

Het kankerverwekkende arseen<br />

komt in Bangladesh van nature voor<br />

in de bodem. Doordat het makkelijk<br />

oplost in water, komt het in drink -<br />

water terecht. De Wereldgez<strong>on</strong>d<br />

heidsorganisatie WHO spreekt van<br />

een ‘massavergiftiging’. Wereldwijd<br />

worden naar schatting meer dan<br />

zeventig miljoen mensen bedreigd<br />

-<br />

door met arseen besmet drink<br />

water in <strong>on</strong>der meer India, China,<br />

-<br />

Spanje, Italië en de Verenigde Sta<br />

ten. Ir. Doris van Halem, werkzaam<br />

bij de sectie gez<strong>on</strong>dheidstechniek<br />

-<br />

van Civiele Techniek en Geoweten<br />

schappen, noemt arseenvergiftiging<br />

een probleem op wereldschaal.<br />

DELTA. In de jaren 35 20-11-<strong>2008</strong> zestig en zeventig stierf<br />

een groot deel van de kinderen in<br />

Bangladesh aan diarree en andere<br />

-<br />

142 ziekten <str<strong>on</strong>g>Annual</str<strong>on</strong>g> veroorzaakt <str<strong>on</strong>g>report</str<strong>on</strong>g> door het DWE drin <strong>2008</strong> -<br />

ken van <strong>on</strong>veilig oppervlaktewater.<br />

Internati<strong>on</strong>ale hulpverleningsor -<br />

cent van de putten ver<strong>on</strong>treinigd is.<br />

Bestaande verwijderingtechnieken,<br />

zoals de in het Westen gebruikte<br />

kunststof membranen of adsorptie -<br />

�lters, zijn duur. Bovendien kunnen<br />

ze de extreem hoge c<strong>on</strong>centraties<br />

arseen zoals die in Bangladesh<br />

voorkomen niet aan.<br />

Van Halem komt met een eenvoudig<br />

en goedkoop alternatief. Haar tech -<br />

niek is verrassend simpel: eerst<br />

wordt zuurstofrijk water in de aarde<br />

gepompt. Vervolgens oxideert de<br />

zuurstof in het water het ijzer in<br />

de gr<strong>on</strong>d. Geoxideerd ijzer (roest)<br />

Momenteel zijn er<br />

tweeduizend dorpen<br />

waar elke waterput<br />

gevaarlijk hoge<br />

c<strong>on</strong>centraties arseen<br />

bevat<br />

absorbeert het arseen in de bodem<br />

en bindt het, zodat het weer opge -<br />

pompte water arseenvrij is. Aange -<br />

zien arseenrijke gr<strong>on</strong>d vaak ook ijzer<br />

bevat, lijkt het idee levensvatbaar.<br />

Het is ook hoopgevend dat Unicef en<br />

het departement voor gez<strong>on</strong>dheids -<br />

techniek in Bangladesh (DPHE) als<br />

partners in het project staan en erg<br />

enthousiast zijn.<br />

Arseen uit gr<strong>on</strong>dwater halen blijkt<br />

WETE NSCH AP<br />

parasieten, zorgt wereldwijd voor<br />

nog veel meer slachto�ers.”<br />

Hoe veelbelovend idee het idee van<br />

de arseenbinding ook is, er moet<br />

nog heel wat <strong>on</strong>derzocht worden.<br />

“Het moet geen black box worden”,<br />

zegt Van Halem. “We moeten precies<br />

weten wat er in de gr<strong>on</strong>d gebeurt.”<br />

Daarom wil ze de komende twee<br />

jaar van haar promotie een aantal<br />

vragen beantwoorden. De belang -<br />

rijkste vragen zijn hoeveel ijzer er<br />

nodig is voor een betrouwbare �l -<br />

ter, hoe arseen zich in de bodem<br />

gedraagt en hoeveel water geïnjec -<br />

teerd moet worden.<br />

Van Halem noemt het verwijderen<br />

van hoge c<strong>on</strong>centraties de grootste<br />

uitdaging: “Een veilige norm ligt op<br />

minder dan tien microgram arseen<br />

per liter water, maar in Bangladesh<br />

is vijfh<strong>on</strong>derd microgram per liter<br />

geen uitz<strong>on</strong>dering. Als <strong>on</strong>s gr<strong>on</strong>d�l -<br />

ter deze c<strong>on</strong>centraties naar enkele<br />

tientallen microgram per liter kan<br />

terugbrengen, is dat een enorme<br />

verbetering.”<br />

Tests ter plaatse moeten de<br />

komende tijd uitwijzen of Van<br />

Halems methode de hoge c<strong>on</strong>cen -<br />

traties arseen kan verwijderen. Ze<br />

heeft nu bij twee pompen proef -<br />

opstellingen gebouwd en de gr<strong>on</strong>d<br />

met duizend liter zuurstofrijk water<br />

doordrenkt. Wekelijks krijgt ze nu<br />

analyses binnen, maar ze vindt het<br />

nog te vroeg om er wat over te zeg -<br />

gen. “We weten dat de techniek na<br />

gaatje<br />

Delta en De<br />

innovatieve<br />

komst. Maa<br />

gebeurd? H<br />

maal-invas<br />

gen ingewi<br />

uitvoeren?<br />

“Wat een ingew<br />

Dat moet toch ve<br />

nen.” Dat dacht<br />

toen hij in de Da<br />

het Universitair<br />

(UMC) Utrecht. D<br />

een apparaat wa<br />

sleutelgatoperat<br />

“Een van mijn sto<br />

het niet ingewik<br />

dan nodig is. Ik p<br />

Jaspers bedacht<br />

Amsterdams Med<br />

was hij klaar. Het<br />

van de peperdur<br />

eenvoudiger te b<br />

pers maakte geb<br />

doorgeeft aan he<br />

“De Da Vinci he<br />

een computer”, z<br />

fysica is bij medis<br />

verder opzij bew<br />

tuurlijk en het ma<br />

bij sleutelgatope<br />

raken.”<br />

Twee jaar geled<br />

operaties met de<br />

tieve inschatting<br />

hadden een aant<br />

zouden oplossen<br />

De afgelopen tw<br />

versie zaten ach<br />

aansturing van d<br />

een beweging n<br />

dat allemaal op e<br />

omdat het hand<br />

we nu nog maar<br />

is dus vereenvou<br />

“Het probleem is<br />

dus naar nieuwe<br />

matig bij mij hoe<br />

Ik verwacht dat w<br />

L EUK B ED


Av<strong>on</strong>tuur / Mens & Lichaam<br />

Edward Kean vangt ijsbergen<br />

voor de kust van Canada. Een<br />

producent maakt er luxe drinkwater<br />

van. Is dat wel gez<strong>on</strong>d?<br />

7 TEKST: RIK KUIPER<br />

Slokje<br />

Noordpool<br />

80<br />

10/<strong>2008</strong><br />

Av<strong>on</strong>tuur / Mens & Lichaam<br />

84<br />

10/<strong>2008</strong><br />

Toen er nog geen<br />

happende kraan op<br />

de boot st<strong>on</strong>d,<br />

probeerden de ijsberg-<br />

jagers met bijlen en<br />

kettingzagen brokken<br />

ijs los te maken van de<br />

ijsberg. Die takelden ze<br />

vervolgens aan boord.<br />

Hoe vangt een<br />

Canadees een ijsberg?<br />

T<br />

ienduizend jaar geleden A Kraan hapt ijs<br />

sneeuwde het nog boven Kean kent zijn prooi. ‘IJsbergen<br />

Groenland. De atmos- zijn niet alleen groot, maar ook<br />

feer was niet vervuild heel <strong>on</strong>berekenbaar. Een kleine<br />

door industrie en auto’s, en de verstoring kan een berg laten<br />

sch<strong>on</strong>e sneeuw werd opgenomen kantelen. Dan <strong>on</strong>tstaan golven,<br />

in een ijskap. Millimeter voor kleine tsunami’s, die de boten in<br />

milli meter duwde de Petermann- gevaar brengen. Eén keer maakte<br />

gletsjer het <strong>on</strong>tstane ijs richting een ijsberg een gat in <strong>on</strong>ze grote<br />

zee. Daar braken grote brokken boot. We moesten snel terug naar<br />

af: met elke pl<strong>on</strong>s werd een ijsberg de haven om hem te laten maken.<br />

geboren.<br />

Het was een close call.’<br />

‘IJsbergen komen in verschillende Om gevaar te vermijden, kijkt<br />

kleuren voor’, vertelt Edward Kean goed naar de vorm van een<br />

K e a n . ‘ D e m e e s t e z i j n w i t . D i e z i j ijsberg. n Platte ijsbergen zijn het<br />

het beste. Je kunt er eenvoudig beste. Ze zijn stabiel en hebben<br />

stukken vanaf breken. Bergen steile wanden. Daardoor is de<br />

met een blauwe kap zijn minder kans klein dat de berg <strong>on</strong>der het<br />

goed. Het ijs is gesmolten en wateroppervlak tentakels heeft<br />

opnieuw aangevroren. Daardoor waar het schip op kan vastlopen.<br />

is het water minder puur. Het Heeft Kean een goed exemplaar<br />

ergst zijn de transparante bergen. gev<strong>on</strong>den, dan neemt hij een touw<br />

Die zijn bijna niet te doen. Sla je en vaart in een kleine boot om de<br />

er met een bijl tegen, dan stuitert berg heen. Met de grote boot<br />

hij net zo hard weer terug.’ sleept hij zij prooi naar een baai.<br />

Elk jaar, zo r<strong>on</strong>d maart, wordt ‘Daar kunnen we rustiger werken.’<br />

Kean <strong>on</strong>rustig. Het oogstseizoen Zijn schip gaat langszij liggen, de<br />

komt eraan. Hij tuigt zijn boot, de berg op een paar meter afstand.<br />

Mottak, op en maakt zich klaar Dan brengt Kean zijn m<strong>on</strong>ster in<br />

om te vertrekken. Met vier of vijf stelling: een kraan die naar voren<br />

andere zoutwatercowboys verlaat buigt en met zijn bek naar het ijs<br />

hij zijn wo<strong>on</strong>plaats, de Canadese hapt. Duizend kilo per keer. De<br />

havenstad St. John’s. Hij vaart nek van de kraan draait en spuugt<br />

over de Labradorzee, en gaat op het ijs in een crusher aan boord.<br />

zoek naar ijsbergen om drink- Die vermorzelt het, waarna het in<br />

water van te maken. Want, zo een opslagtank terechtkomt. Op<br />

beweert Kean, ijsbergen bevatten een goede dag hapt de kraan 500<br />

het puurste natuurlijke water dat bollen ijs. Wat Kean tegenwoordig<br />

op aarde te vinden is.<br />

in een uur binnenhaalt, kostte 0<br />

Touroperators klagen over de ijsbergjacht. Toeristen krijgen geen prachtig dobberende<br />

ijsberg meer te zien, maar eentje die aan stukken is gereten. Kean vindt dat hij geen<br />

schade aanricht. ‘Als wij ze niet vangen, zijn ze een paar weken later gesmolten.’<br />

Piek<br />

bestaan). Daarbij door -<br />

Moleculair verschilt ijsbergwater Met één of niet meerdere spitse van punten. kruiste ander hij wateren vol ijs - water<br />

Canada<br />

Labradorzee<br />

ijsbergvanggebied<br />

St. Johns<br />

IJsland<br />

Av<strong>on</strong>tuur / Mens & Lichaam<br />

De Saoedische prins Al Faisal<br />

wilde in de jaren 70 een ijsberg<br />

naar zijn land brengen<br />

Herken de<br />

0 hem voorheen een paar dagen.<br />

Z<strong>on</strong>der happende kraan moest<br />

ijsberg!<br />

hij vreemde capriolen uithalen om<br />

de ijsberg aan boord te krijgen.<br />

Soms schoot hij met een geweer<br />

sbergen zijn er in soorten en op een berg. Of hij draaide kei -<br />

IJ maten. Dit zijn de meest hard hardrockmuziek, in de hoop<br />

voorkomende vormen:<br />

dat de geluidsgolven het ijs in<br />

brokken zouden breken. Maar<br />

Tafel<br />

meestal benaderden Kean en zijn<br />

Vlakke plaat met steile wanden. mannen een ijsberg in kleine<br />

bootjes. Met een bijl en ketting -<br />

zaag probeerden ze brokken ijs<br />

los te maken van de berg. Dreef<br />

een brok ter grootte van een auto<br />

in zee, dan sloegen ze er een net<br />

omheen. Vervolgens takelden ze Edward Kean heeft<br />

het ijs aan boord.<br />

een vergunning voor<br />

het oogsten van<br />

A Zeelui dr<strong>on</strong>ken ijsberg ijsbergen. Jaarlijks<br />

Koepel<br />

De Canadees is niet de eerste die mag hij 300.000 t<strong>on</strong><br />

Met een r<strong>on</strong>de top.<br />

van ijsbergen drinkwater maakt.<br />

In januari van het jaar 1773 voer<br />

de <strong>on</strong>tdekkingsreiziger<br />

James Cook met zijn<br />

schip The Resoluti<strong>on</strong><br />

ergens tussen Afrika en<br />

Antarctica. Hij was op<br />

zoek naar een nieuw c<strong>on</strong> -<br />

tinent met een gematigd<br />

klimaat (dat niet bleek te<br />

ijs uit zee vissen.<br />

:<br />

bergen. Omdat het drink -<br />

water aan boord op<br />

dreigde te raken, besloot<br />

0 stappen in de fles zit, nog verschil<br />

met ander water? ‘De watermoleculen<br />

in ijsberg water verschillen<br />

niet van watermoleculen in ander<br />

water’, zegt Alex van der Helm.<br />

Hij is drinkwater<strong>on</strong>derzoeker aan<br />

de <strong>TU</strong> <strong>Delft</strong>. ‘Het verschil zit hem<br />

in de hoeveelheid gassen, mineralen<br />

en organische stoffen die in<br />

het water zitten. Hoe minder dat<br />

Wig<br />

Een steile en een minder steile<br />

wand.<br />

Cook kleinere boten in<br />

het water te zetten en<br />

brokken ijs aan boord te Een grote ijsberg weegt<br />

hijsen. Ideaal was het niet.<br />

De bemanningsleden die zo’n 2 miljoen t<strong>on</strong>. Volgens<br />

IJsbergwater is<br />

ervan dr<strong>on</strong>ken, kregen Kean zou het een half uur<br />

veel duurder dan<br />

last van opgezette klieren<br />

ander gebotteld water.<br />

in de keel. duren om al het water dat<br />

Ruim 200 jaar daarna<br />

waren er grootschaliger erin plannen opgeslagen het Midden-Oosten zit van vervoeren. de Arabië af te leveren. Die belofte<br />

in omloop om ijsbergen Niagara als drink - Falls De berg te zou gooien, duizenden de mensen k<strong>on</strong> hij niet nakomen.<br />

water te gaan gebruiken. In 1977 jarenlang van drinkwater kunnen<br />

kwamen zo’n 175 wetenschappers grootste voorzien. waterval En bovendien: van het zou A ‘Je proeft de Noordpool’<br />

bijeen in de Amerikaanse staat goedkoper Noord-Amerika.<br />

zijn dan het <strong>on</strong>tzilten Na een dag of tien hard werken<br />

Iowa voor een ijsbergc<strong>on</strong>ferentie. van water, zo beweerde de prins. zit de buik van het schip van<br />

Een van de meest opvallende Niet iedereen geloofde daarin. Edward Kean vol. Hij keert met<br />

er zijn, hoe puurder het water is.’<br />

Een testrapport van het Canadese<br />

watermerk Berg geeft inzicht in<br />

de ingrediënten van het ijsbergwater.<br />

We lezen <strong>on</strong>der meer het<br />

volgende: Calcium: 0,7 milligram<br />

per liter. Magnesium: 0,1 milligram<br />

per liter. Maar is dat nou<br />

veel of weinig? De etiketten van<br />

twee andere flesjes water geven<br />

uitsluitsel. Spa Blauw, een br<strong>on</strong>water,<br />

bevat ruim zes keer zo veel<br />

calcium en dertien keer zo veel<br />

magnesium als het ijsbergwater.<br />

En in Evian, een mineraalwater,<br />

zitten meer dan h<strong>on</strong>derd keer zo<br />

veel calcium en meer dan 250<br />

keer zo veel magnesium.<br />

Het ijsbergwater uit de Labrador-<br />

sprekers was de Saudi-Arabische Wilford Weeks van het Ameri - 1,2 miljoen liter ijswater terug<br />

prins Mohammed al Faisal. Zijn kaanse leger voorspelde tegen - naar huis. In de haven laat hij het<br />

Droogdok<br />

bedrijf, Iceberg Transport Inter - over een verslaggever van week - geoogste ijs smelten. Hij verkoopt<br />

IJsberg die zo is uitgesleten dat nati<strong>on</strong>al, was van plan een ijsberg blad Time ‘Zo gauw je boven de het aan producenten van gebot -<br />

een u-vormig zijaanzicht <strong>on</strong>tstaat. bij Antarctica in zeil te verpakken. evenaar komt, hangt er alleen nog teld water. Die �lteren het nog<br />

Vervolgens zouden sterke sleep - een touw achter je sleepboot.’ een keer of vier en desinfecteren<br />

boten de 100 miljoen t<strong>on</strong> wegende Toch beweerde Al Faisal binnen het met UV-licht. Want het water<br />

kolos in een maand of acht naar drie jaar een ijsberg in Saoedi- kan tijdens het transport besmet<br />

zee is dus inderdaad opvallend ‘Dat is ook minder belastend voor te drinken. ‘Er zitten wel heel kraanwater dr<strong>on</strong>ken. C<strong>on</strong>clusie:<br />

zuiver. Maar maakt dat het water het milieu. Want slepen met ijs- weinig mineralen in. Al heel lang op plekken waar water met weinig<br />

bijz<strong>on</strong>der? Volgens Van der Helm bergen en flesjes distribu eren over zijn er aanwijzingen dat het beter magnesium uit de kraan kwam,<br />

niet. Want voor de productie van de hele wereld kost veel energie.’ is om water met meer calcium en bleken meer hart- en vaatziekten<br />

zuiver water heb je geen ijsberg<br />

nodig. ‘Met een <strong>on</strong>tziltingsinstal- A Is ijsberg <strong>on</strong>gez<strong>on</strong>d?<br />

magnesium te drinken.’<br />

In 2005 verscheen het rapport<br />

voor te komen. (Ter geruststelling:<br />

het Nederlandse kraanwater<br />

latie kun je zeewater omzetten in Het mag dan zeer zuiver zijn, Nutrients in <strong>Drinking</strong> <strong>Water</strong>. De is rijk aan magnesium.)<br />

water dat even weinig mineralen sommige kenners beweren dat ijs- Wereld gez<strong>on</strong>dheidsorganisatie Edward Kean zal het allemaal<br />

bevat als dit ijsbergwater.’ Op veel bergwater niet goed is voor de WHO waarschuwt daarin voor worst wezen. Hij gaat volgend jaar<br />

plaatsen ter wereld gebeurt dat gez<strong>on</strong>dheid. Zo raadt drinkwater- overmatige c<strong>on</strong>sumptie van gede- weer gewo<strong>on</strong> verder met zijn jacht<br />

ook. In het Midden-Oosten wordt, expert Ans Versteegh van het mineraliseerd water, ofwel demi- op ijsbergen. ‘Er is een markt<br />

op plaatsen waar dat nodig is, Rijksinstituut voor Volksgez<strong>on</strong>dwater. Het rapport verwijst naar voor luxe water. Ik heb me laten<br />

meer dan de helft van het drinkheid en Milieu (RIVM) af om proefdierstudies met ratten die vertellen dat in Hollywood filmwater<br />

op die manier gew<strong>on</strong>nen. grote hoeveelheden ijsbergwater last kregen van nieren en darmen sterren zijn die duizend dollar<br />

als ze langere tijd demiwater te per week uitgeven aan gebotteld<br />

De meeste ijsbergen die voor Petermann<br />

drinken kregen. De WHO noemt water voor hun huisdieren. Prima,<br />

de kust van Newfoundland<br />

gletsjer<br />

ook <strong>on</strong>derzoek waarin de gez<strong>on</strong>d- toch?’ 7<br />

drijven, komen van de Peter-<br />

heid van mensen die kraanwater<br />

manngletsjer in het noorden<br />

van Groenland. Ze doen 3 tot<br />

5 jaar over de reis.<br />

Groenland<br />

met weinig mineralen dr<strong>on</strong>ken,<br />

werd vergeleken met de gez<strong>on</strong>dheid<br />

van mensen die mineraalrijk<br />

rik.kuiper@quest.nl<br />

MET DANK AAN PINC (WWW.PINC.NL)<br />

Win een<br />

ijsberg<br />

elf proeven hoe een ijs-<br />

Z berg smaakt? Quest liet<br />

een treetje ijsbergwater uit<br />

Canada overvliegen. Stuur<br />

vóór 16 oktober een mailtje<br />

naar ijsberg@quest.nl MEER INFORMATIE en<br />

www.bergwater.com: beschrijf in maximaal website 25 van<br />

ijsbergwaterfabrikant woorden wat je met Berg 500 milli- <strong>Water</strong>.<br />

tinyurl.com/2bjsg4: liter ijsberg gaat doen. rapport De van 15 de<br />

WHO origineelste over drinkwater. inzenders krijgen<br />

een flesje thuisgestuurd.<br />

10/<strong>2008</strong> 81<br />

in the media<br />

raken. Uiteindelijk komt het als kosten om het water te winnen.<br />

een luxeproduct op de markt. Op Andere mineraalwaters komen<br />

hun stijlvolle �esjes met transpa - uit een br<strong>on</strong>. Direct daarnaast<br />

rante etiketten noemen de produ - wordt het gebotteld. Wij moeten<br />

centen van Berg en Iceberg met het op zee oogsten, laten smelten<br />

trots de herkomst van het water: en naar de fabriek brengen.’<br />

‘Source: North Atlantic Icebergs’. Ondanks de hoge prijs verovert<br />

De c<strong>on</strong>sument moet er wel voor het ijsbergwater de wereld. Het<br />

in de buidel tasten. De productie - merk is <strong>on</strong>der meer in Nieuwkosten<br />

van ijsbergwater zijn circa Zeeland, Dubai en het Verenigd<br />

twee euro per liter. De verkoop - K<strong>on</strong>inkrijk verkrijgbaar. Wat is<br />

prijs ligt nog veel hoger. ‘Dit is het succes? Medellin-Kenny: ‘Het<br />

waarschijnlijk het duurste water is een ervaring om <strong>on</strong>s water te<br />

dat er is’, laat Gabriela Medellin- drinken. Je proeft een stukje<br />

Kenny van producent Berg <strong>Water</strong> Noordpool. Ons water smaakt<br />

per e-mail weten. ‘Wij maken veel scho<strong>on</strong> en puur als sneeuw.’ Ze<br />

denkt dat het niet lang duurt<br />

voordat het lichtgroene �esje ook<br />

in de Nederland in de schappen<br />

staat. ‘We hebben al c<strong>on</strong>tact met<br />

een distributeur.’ De prijs? Circa<br />

vijf euro voor een halve liter.<br />

A <strong>Water</strong> bevat mineralen<br />

Het ijsbergwater doet het natuur -<br />

Edward Kean ving lijk leuk op de menukaart van<br />

zijn eerste ijsberg sjieke restaurants. Maar is het<br />

begin jaren 70.<br />

meer dan een mooi verhaal? Is er,<br />

als de ijsberg na al die zuiverings - 0<br />

Brokken ter grootte van een auto<br />

kunnen aan boord gehesen worden.<br />

10/<strong>2008</strong> 83<br />

143


t een ‘�ets -<br />

ten binnen<br />

en stallen<br />

paar verdie -<br />

voor twee -<br />

e komst van<br />

ti<strong>on</strong> Park,<br />

eidsplaatsen<br />

het aantal<br />

uid reist<br />

nderdeel<br />

fose dat<br />

p de korte<br />

venh<strong>on</strong>derd<br />

n 32 extra<br />

n<br />

ok eigen -<br />

nsen hoef<br />

vriendin<br />

ordert de<br />

en. Ik draai<br />

em over<br />

DELTA. 39 18-12-<strong>2008</strong><br />

R egen<br />

De Vereniging voor <strong>Delft</strong>se Fysisch<br />

Technologen heeft ir. Eric Woittiez<br />

<strong>on</strong>derscheiden met haar jaarlijkse<br />

studieprijs. De student technische<br />

natuurkunde kreeg de prijs van<br />

1500 euro voor zijn afstudeer<strong>on</strong>der -<br />

zoek naar regenvorming. Op school<br />

leert iedereen hoe water verdampt,<br />

opstijgt, afkoelt en weer als regen<br />

neerdaalt. Maar welke processen<br />

zich precies in de wolken afspelen<br />

is nog <strong>on</strong>duidelijk. Woittiez vatte<br />

de botsende waterdruppeltjes in<br />

een wolk in een computermodel.<br />

Zo verrootte hij het fundamentele<br />

begrip van het <strong>on</strong>tstaan van regen.<br />

NIE UWS<br />

Open Course hoogte Ware van in zijn the schouders media, te ope Delta - 40 mer (<strong>2008</strong>), in kaart en doet 4, 31 voorzetten Janauri om <strong>2008</strong><br />

www.dutracing.nl<br />

Slechte erg<strong>on</strong>omie in operatiekamer<br />

Het is niet best gesteld<br />

met de erg<strong>on</strong>omie van<br />

operatiekamers. Dr.ir.<br />

Arma ^ gan Albayrak pro -<br />

moveerde dinsdag op<br />

dit <strong>on</strong>derwerp bij Indus -<br />

trieel Ontwerpen.<br />

x JOS WASSINK<br />

Operatietafels zijn niet ingericht<br />

voor kijkoperaties met lange instru -<br />

menten, zodat ze niet laag genoeg<br />

gezet kunnen worden. De chi -<br />

rurg staat dan met zijn handen ter<br />

reren en moet vaak schuin omhoog<br />

kijken naar een vaak te vaag plaatje<br />

op de m<strong>on</strong>itor. En bij gew<strong>on</strong>e of open<br />

operaties staat de chirurg vaak<br />

urenlang over de tafel gebogen. Het<br />

gevolg? Oncomfortabele werkhou -<br />

Vijftien <strong>TU</strong>-studenten<br />

mogen de komende drie<br />

jaar een half jaar naar<br />

Australië. Op drie uni -<br />

versiteiten, in Adelaide,<br />

Melbourne en Brisbane,<br />

kunnen ze vakken vol -<br />

gen over water.<br />

De <strong>TU</strong> is, samen met de universiteiten<br />

van Dresden (Duitsland) en Dundee<br />

(Groot-Brittannië), een uitwisselings -<br />

Neus<br />

Het <strong>Delft</strong>se racing team DUT-09<br />

presenteerde woensdagav<strong>on</strong>d zijn<br />

nieuwe <strong>on</strong>twerp. In vergelijking met<br />

de winnende auto van afgelopen<br />

jaar wordt de racer iets groter en<br />

toch lichter, aldus teammanager<br />

Stef de J<strong>on</strong>g. Nieuwe voorschrif -<br />

ten vereisen een binnenruimte die<br />

gelijk is aan Formule 1-wagens.<br />

Voor het <strong>Delft</strong>se team, dat de klein -<br />

ste en lichtste wagens maakt in<br />

de Formula Student Racing Com -<br />

petitie, betekende dat vooral een<br />

hogere beenruimte. De neus werd<br />

verhoogd en de wielophanging naar<br />

beneden verplaatst.<br />

ding, klachten over pijn in rug en<br />

nek bij open operaties en schouder -<br />

klachten bij laparoscopische (kijk)<br />

operaties.<br />

Dr.ir. Arma ^ gan Albayrak (industrial<br />

design bij Industrieel Ontwerpen)<br />

heeft het de afgelopen jaren vaak<br />

van dichtbij mogen zien. Ook merkte<br />

ze dat het tegen de cultuur is om<br />

over de <strong>on</strong>gemakken van het ope -<br />

reren te klagen: “Ze denken vaak<br />

‘pijn is �jn’ en verder zijn ze heel<br />

gec<strong>on</strong>centreerd met hun vak bezig,<br />

waardoor ze de eigen lichamelijke<br />

<strong>on</strong>gemakken vergeten.”<br />

In haar proefschrift ‘Erg<strong>on</strong>omics in<br />

the operating room’ brengt Albay -<br />

rak de problemen r<strong>on</strong>d houding en<br />

beeldschermen in de operatieka -<br />

de situatie te verbeteren. Zo <strong>on</strong>twik -<br />

kelde ze een prototype chirurgen -<br />

kruk, die de operateur steun geeft<br />

tegen de billen en borstkas, zodat<br />

de rugspieren <strong>on</strong>tlast worden. Ook<br />

kan het platform waarop de chi -<br />

programma gestart met een groep<br />

Australische universiteiten. De Euro -<br />

pese Unie en de Australische over -<br />

heid subsidiëren het ticket en verblijf<br />

van vijfenveertig Europese studenten<br />

in Australië. Eenzelfde aantal Austra -<br />

liërs komt in Europa studeren.<br />

“<strong>Delft</strong> mag vijftien studenten stu -<br />

ren”, aldus de initiatiefnemer van<br />

de uitwisseling, dr.ir. Jasper Verberk<br />

(Civiele Techniek en Geowetenschap -<br />

pen). Studenten van alle <strong>Delft</strong>se<br />

faculteiten kunnen zich inschrijven,<br />

mits ze zich met water bezighouden.<br />

Mogelijk kunnen zelfs meer studen -<br />

ten afreizen. “De andere twee Euro -<br />

(advertentie)<br />

SWaRM: Student exchange with Australia, Delta 40 (<strong>2008</strong>), 39, 18 December <strong>2008</strong><br />

<strong>on</strong>t-end <strong>on</strong>twikkelaar Projectplanner Ontwik k<br />

es Webmaster CMS Webmaster/Supportengin<br />

stallatiespecialist Flexibel Visual Basic Ontwikkelaa<br />

e<br />

r<br />

formatiebeveiliging werken C<strong>on</strong>sultant in een Netwerken e n<br />

nd <strong>on</strong>twikkelaar dynamische Projectplanner omgeving? Ontwikkela<br />

ebmaster CMS Webmaster/Supportenginee<br />

a<br />

144<br />

stallatiespecialist Wij zoeken ervaren Visual telemarketeers Basic Ontwikkelaa met<br />

een neus voor commerciële kansen. Heb<br />

formatiebeveiliging jij goede communicatieve C<strong>on</strong>sultant vaardigheden, Netwerken e<br />

nd <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <strong>on</strong>twikkelaar ben je enthousiast <str<strong>on</strong>g>report</str<strong>on</strong>g> Projectplanner DWE en resultaatgericht <strong>2008</strong> Ontwikkela en<br />

ebmaster zoek je een CMS baan Webmaster/Supportenginee<br />

voor 16 uur per week?<br />

r<br />

n<br />

a<br />

stallatiespecilist CMS Developer Visual Basic O<br />

x<br />

(Foto: DUT-09)<br />

rurg staat op verschillende hoogten<br />

ingesteld worden, wat bij laparos -<br />

copische operaties een comforta -<br />

belere werkhoogte biedt.<br />

Het prototype werd door enkele chi -<br />

rurgen van het Erasmus Medisch<br />

Centrum, waar het praktische deel<br />

van het <strong>on</strong>derzoek plaatsv<strong>on</strong>d, uit -<br />

geprobeerd. De ervaringen waren<br />

positief. Ook st<strong>on</strong>den de medici<br />

‘Ze denken vaak ‘pijn<br />

is �jn’ en verder zijn ze<br />

heel gec<strong>on</strong>centreerd<br />

met hun vak bezig’<br />

open voor het erg<strong>on</strong>omisch <strong>on</strong>der -<br />

zoek. Maar verder dan een proto -<br />

type is het nooit gekomen. Waarom<br />

blijft <strong>on</strong>duidelijk.<br />

Misschien hadden ze een medisch<br />

bedrijf erbij moeten betrekken,<br />

denkt Albayrak. Of misschien wer -<br />

Vijftien waterstudenten naar Australië<br />

pese universiteiten zijn veel kleiner.<br />

De plekken die zij niet vullen, mogen<br />

wij gebruiken.”<br />

Verberk, die zelf enige tijd in Austra -<br />

lië werkte, diende het voorstel voor de<br />

subsidie in omdat hij denkt dat Euro -<br />

peanen en Australiërs veel van elkaar<br />

kunnen leren op watergebied. “De<br />

problematiek is heel anders. Kortweg<br />

heeft Australië een tekort aan water<br />

en Europa heeft water in overvloed”,<br />

zegt Verberk. “Het verbreedt de hori -<br />

z<strong>on</strong> van de studenten als ze eens aan<br />

de andere kant gaan kijken.”<br />

In de subsidiepot zit ook geld voor<br />

medewerkers. Zij mogen drie weken<br />

Engels<br />

Meer bacheloropleidingen moeten<br />

Engelstalig worden. Studenten -<br />

raden van de Idea League-univer -<br />

siteiten waren het hierover eens<br />

tijdens de Idealistic-c<strong>on</strong>ferentie.<br />

Ze zien graag veranderingen in<br />

het Engelstalige <strong>on</strong>derwijs. Idea<br />

League is een samenwerkings -<br />

verband tussen vijf Europese<br />

technische universiteiten. Deze<br />

staan in L<strong>on</strong>den, Zürich, Aken,<br />

Parijs en <strong>Delft</strong>. Veel studenten<br />

zijn geïnteresseerd in studeren in<br />

het buitenland, maar de drempels<br />

zijn vaak nog te hoog. Nu moeten<br />

uitwisselingsstudenten de moe -<br />

den de medici afgeschrokken door<br />

het protheseachtige uiterlijk van<br />

het prototype. Haar promotor prof.<br />

dr. Huib de Ridder denkt dat het<br />

gewo<strong>on</strong> nog te vroeg is. “We hebben<br />

nu een eerste generatie <strong>on</strong>derzoe -<br />

kers die vanuit de <strong>TU</strong> in het Erasmus<br />

Medisch Centrum werkt aan de ope -<br />

ratiekamer van morgen. Dat gaat<br />

over beeldtechniek, erg<strong>on</strong>omie,<br />

werkvormen en andere zaken. Ze<br />

brengt de problemen en de behoef -<br />

ten in kaart. Pas in de tweede gene -<br />

ratie kun je oplossingsgericht werk<br />

verwachten.”<br />

De komende jaren zal de samenwer -<br />

king tussen de <strong>TU</strong> en het Erasmus<br />

MC daarom <strong>on</strong>verminderd worden<br />

voortgezet. Maar, waarschuwt De<br />

Ridder, meer en betere techniek is<br />

niet altijd de oplossing. De opera -<br />

tiemaker staat vaak al bomvol met<br />

apparatuur. “Medici vragen soms<br />

alleen om een soort checklist met<br />

tien geboden.”<br />

naar Australië om samen te werken<br />

met <strong>on</strong>derzoekers daar. “We willen<br />

met die c<strong>on</strong>tacten zorgen dat we,<br />

ook na de subsidieperiode van drie<br />

jaar, door kunnen gaan met het pro -<br />

gramma.”<br />

Verberk kreeg inmiddels drie aanvra -<br />

gen van studenten. De eerste, David<br />

Moed (vierdejaars CiTG) vertrekt in<br />

februari van volgend jaar. De eerste<br />

of�ciële aanvraag van medewerkers<br />

moet nog komen. Verberk: “Maar veel<br />

van mijn directe collega’s hebben al<br />

interesse geto<strong>on</strong>d. Ik heb ineens veel<br />

vrienden.” (MM)<br />

05<br />

dertaal van e<br />

De meeste m<br />

in het Engel<br />

bacheloropl<br />

uitwisseling<br />

bacheloropl<br />

de moederta<br />

omdat stude<br />

eigen taal m<br />

latere loopb<br />

van student<br />

universiteite<br />

van de gr<strong>on</strong><br />

denken dat d<br />

kendheid va<br />

maken.<br />

DELTA<br />

B eurspr<br />

Promovendi<br />

De Tweede<br />

unaniem ee<br />

die de reger<br />

zorgen. De u<br />

de beurspro<br />

bij af.<br />

Tijdloos<br />

De Zigzagst<br />

zenstoel of<br />

mige stoelen<br />

ze telkens<br />

worden. Dr<br />

(Bouwkunde<br />

historie van<br />

Meer, m<br />

Sinds 1995<br />

in Nederland<br />

men met 29<br />

nog forser k<br />

tal j<strong>on</strong>geren<br />

was gedaald<br />

Teleurge<br />

<strong>Delft</strong>se ge<br />

geven de T<br />

hen bestem<br />

regelingen.<br />

reageert tele<br />

B espare<br />

De <strong>TU</strong> is van<br />

cent energie<br />

Dat staat in<br />

Plan. Hierin<br />

regelen de u<br />

te bereiken.<br />

Niet vija<br />

De <strong>Delft</strong>se<br />

sualiteit be<br />

renblad Exp<br />

<strong>on</strong>derzoek<br />

homovriend<br />

studentenst<br />

helemaal nie<br />

B loemp<br />

Ouderen zo<br />

mogen bew<br />

Albaina. Vo<br />

wikkelde hij<br />

bejaarden s<br />

een lachend


mp<strong>on</strong>g<br />

des -<br />

, zag<br />

in de<br />

een<br />

hope -<br />

rtelt<br />

en er<br />

zijn.<br />

d om<br />

heel<br />

eren<br />

aken<br />

n.”<br />

lden:<br />

slop -<br />

ing is,<br />

en te<br />

ver -<br />

d van<br />

r een<br />

was -<br />

geld<br />

en en<br />

voor<br />

hun<br />

erop<br />

kam -<br />

andel,<br />

blijkt<br />

tus -<br />

cen -<br />

iders<br />

rken,<br />

kers,<br />

m hun<br />

en in<br />

ar de<br />

huren<br />

ders<br />

n van<br />

bewo -<br />

omst<br />

rs en<br />

<strong>on</strong>en<br />

n van<br />

leven<br />

ver -<br />

liever<br />

otels<br />

x<br />

en kantorenpanden te bouwen. Het<br />

komt regelmatig voor dat maf�aachtige<br />

organisaties brand stichten<br />

in de kamp<strong>on</strong>g, zodat mensen hun<br />

huizen kwijtraken en het land kan<br />

worden ingenomen door bedrijven.<br />

De Ind<strong>on</strong>esische overheid staat ech -<br />

ter <strong>on</strong>der druk van internati<strong>on</strong>ale<br />

organisaties en ziet zich genood -<br />

zaakt om meer en meer rekening te<br />

houden met de rechten van de kam -<br />

p<strong>on</strong>gbew<strong>on</strong>ers. Er worden daarom<br />

programma’s op poten gezet om de<br />

kamp<strong>on</strong>gbew<strong>on</strong>ers te stimuleren<br />

om te verhuizen door bijvoorbeeld<br />

huisvesting aan te bieden aan de<br />

rand van de stad.<br />

Volgens Tunas is dat geen goede<br />

oplossing. “Kamp<strong>on</strong>gbew<strong>on</strong>ers zijn<br />

in hun levens<strong>on</strong>derhoud afhankelijk<br />

van de locatie van de kamp<strong>on</strong>g en<br />

van de sociale structuren. Ver weg<br />

van het ec<strong>on</strong>omische centrum en<br />

z<strong>on</strong>der hun sociale netwerk kun -<br />

nen zij geen handeltjes opzetten.<br />

Buiten de kamp<strong>on</strong>g verliezen zij de<br />

mogelijkheid om inkomsten te ver -<br />

werven.”<br />

Volgens Tunas moet het probleem<br />

bij de wortel worden aangepakt:<br />

“Mensen trekken naar de kam -<br />

p<strong>on</strong>g omdat ze op het platteland<br />

niet �nancieel kunnen r<strong>on</strong>dkomen.<br />

Jakarta is hét ec<strong>on</strong>omische centrum<br />

van Ind<strong>on</strong>esië. De overheid zou de<br />

welvaart beter moeten spreiden en<br />

de groei van andere ec<strong>on</strong>omische<br />

centra moeten stimuleren. Dan<br />

hebben mensen minder motivatie<br />

om naar de kamp<strong>on</strong>gs van Jakarta<br />

te trekken.”<br />

Devisari Tunas promoveerde maan -<br />

dag 24 november bij Bouwkunde. De<br />

titel van haar proefschrift luidt: ‘The<br />

Spatial Ec<strong>on</strong>omy in the Urban Informal<br />

Settlement’.<br />

Drinkwater van<br />

astr<strong>on</strong>autenplas<br />

Deze week haperde hij nog. Maar het nieuwe uri -<br />

nezuiveringsapparaat in het internati<strong>on</strong>ale ruim -<br />

testati<strong>on</strong> ISS moet straks astr<strong>on</strong>autenplas zuive -<br />

ren tot drinkwater.<br />

Wie de ruimte in gaat, weet dat hij daar niet op culinaire hoogstandjes hoeft<br />

te rekenen. Maar straks krijgen astr<strong>on</strong>auten, naast hun vijf jaar houdbare<br />

maaltijd uit een zak, een glaasje met hun eigen plas te drinken. Door van<br />

urine drinkwater te maken, moeten ruimtevaarders langere tijd in het inter -<br />

nati<strong>on</strong>ale ruimtestati<strong>on</strong> ISS kunnen blijven, z<strong>on</strong>der dure aanvoer van water<br />

per ruimteveer.<br />

Drinkwater maken van urine is prima mogelijk, zegt dr.ir. Jasper Verberk<br />

(Civiele Techniek en Geowetenschappen) desgevraagd. “Schadelijke stof -<br />

fen in urine zijn daar met bestaande technologieën uit te zuiveren.” Hoe,<br />

daar wil hij met collega’s van de afdeling gez<strong>on</strong>dheidstechniek wel even over<br />

brainstormen. In een uurtje verzinnen de <strong>on</strong>derzoekers een vier-stappenzuiveringssysteem.<br />

Om van een plasje tot een glas drinkbaar water te komen, moeten eerst<br />

de ziekmakende micro-organismen eruit. “In <strong>on</strong>s systeem zitten drie stap -<br />

pen die micro-organismen en bacteriën verwijderen”, vertelt Verberk. Een<br />

membraan met poriën van h<strong>on</strong>derd nanometer tot een micrometer moet het<br />

grotere vuil verwijderen. Na deze ‘ultra-�ltratie’ is het aan een nano�lter<br />

om nog kleinere deeltjes te �lteren. Uiteindelijk maakt ultraviolet licht het<br />

DNA van de nog overgebleven organismes kapot.<br />

“Zo’n double of tripple treatment is normaal in drinkwaterzuivering”, vertelt<br />

Verberk. “Als een van de stappen niet goed werkt, zorgen de andere �lters<br />

ervoor dat het water veilig is.” Bovendien verstopt het kleinere �lter niet zo<br />

snel, als een ander �lter het grootste vuil al heeft verwijderd.<br />

“In <strong>on</strong>s systeem zitten twee stappen om ook medicijnsporen uit urine te<br />

halen.” Het eerder genoemde nano�lter heeft ook deze taak. Om nog klei -<br />

nere deeltjes te verwijderen gaat de urine, vóór de UV-desinfectie, nog door<br />

een kolom met korrels. Dit ‘actieve kool�lter’ absorbeert de allerkleinste<br />

moleculen.<br />

Het systeem is klein uit te voeren en dus makkelijk mee te nemen de ruimte<br />

in, meent Verberk. Maar ook op aarde zou met de techniek drinkwater uit<br />

afvalwater gew<strong>on</strong>nen kunnen worden. Het �lter verwijdert ook de gele kleur<br />

van plas. “Maar sociale acceptatie blijft een probleem. Wil je je eigen urine<br />

drinken?”<br />

Om mensen het gevoel te geven dat gezuiverd afvalwater prima drinkwater<br />

kan zijn, is goede marketing nodig, meent Verberk. “In Singapore staat al<br />

een installatie, waar alle waterzuiverings<strong>on</strong>derzoekers van de wereld graag<br />

Delta<br />

een kijkje<br />

40<br />

nemen”,<br />

(<strong>2008</strong>),<br />

vertelt<br />

36, 26<br />

Verberk.<br />

November<br />

Het water<br />

<strong>2008</strong><br />

uit die zogeheten NE<strong>Water</strong>installatie<br />

komt van afvalwater. “Het wordt daar verkocht in �esjes, zoals bij<br />

<strong>on</strong>s Spa wordt verkocht. Als mensen een paar jaar hebben kunnen wennen,<br />

kun je er vanuit gaan dat dit uit afvalwater geproduceerde water het drink -<br />

waternet in gaat.”<br />

In Singapore wil de overheid minder afhankelijk worden van wateraanvoer<br />

in the media<br />

Glaz<br />

Niemand kan<br />

de glasplaten<br />

dertien meter<br />

gevel bevesti<br />

maar bij storm<br />

de façade tot<br />

timeter heen<br />

De nieuwbou<br />

Hogeschool I<br />

op de <strong>TU</strong>-cam<br />

een unieke en<br />

dunne glasge<br />

x J OS WASSINK<br />

Architect Rijk Rietv<br />

vend haar en een g<br />

was op zoek naar ve<br />

vertelt hij via een<br />

zijn vestigingsplaat<br />

w<strong>on</strong>dering wilde h<br />

een volkomen gla<br />

z<strong>on</strong>der kolommen o<br />

<strong>on</strong>twerp voor de Ho<br />

land aan de Leeghw<br />

gebouw bestaat uit<br />

blokken, met als blik<br />

staande auditoriu<br />

ook als ‘frietzak’<br />

aan drie zijden doo<br />

wordt. Daardoor <strong>on</strong><br />

atrium.<br />

Tussen begin 200<br />

145


146 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


in the media<br />

147


<strong>Drinking</strong> water without chlorine in Canada?<br />

As most of you will know, historically a great schism exists in drinking water treatment between (North) America<br />

and Europe. In the USA and Canada drinking water companies have always relied heavily <strong>on</strong> chlorine for disinfecti<strong>on</strong>,<br />

as a result of which some Americans c<strong>on</strong>sider a str<strong>on</strong>g chlorine taste as proof of proper disinfecti<strong>on</strong>.<br />

In Europe the drinking water companies have taken a more cautious approach regarding chlorine and have<br />

relied more <strong>on</strong> the multi barrier approach with physical treatment processes, including soil passage.<br />

Obviously the debate between Americans and Europeans <strong>on</strong> drinking water treatment has been intensified by<br />

the discovery of chlorinated disinfecti<strong>on</strong> byproducts such as THMs by the chemist from the Rotterdam <strong>Water</strong><br />

company Joop Rook in the 1970s and outbreak of Cryptosporidium in Milwaukee in the 1990s, which proved<br />

that some organisms are highly resistant to chlorine. In the internati<strong>on</strong>al literature this debate is referred to<br />

as “balancing of the risks”, i.e. choosing between the advantages and disadvantages of using chlorine for<br />

disinfecti<strong>on</strong>.<br />

Two years ago I gave a talk at the University of <strong>Water</strong>loo in Canada <strong>on</strong> “ The Dutch secret, safe drinking water<br />

without chlorine”. This helped to create interest in Canada for the Dutch experiences. Moreover the internet<br />

and European travel experiences of Canadians, have lead to an increased interest by Canadian citizens and<br />

municipalities for drinking water without chlorine.<br />

As a result the Advisory Council <strong>on</strong> <strong>Drinking</strong> <strong>Water</strong> Quality of the Canadian Ministry of Health organized an<br />

internati<strong>on</strong>al workshop <strong>on</strong> “Alternative Approaches to Disinfecti<strong>on</strong>” <strong>on</strong> September 22-23, <strong>2008</strong> in Tor<strong>on</strong>to,<br />

Canada.<br />

Panel discussi<strong>on</strong><br />

148 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>


The workshop comprised of invited talks by experts from Canada (prof. Robert Andrews, prof. Steve Hrudley),<br />

the USA (dr. Mark Lechevalier), Australia (dr. Mary Drikas), Norway (prof. Hallvard Ődegard), Switzerland (dr.<br />

Daniel Urfer) and the Netherlands (prof. Hans van Dijk) and was meant to provide an overview of alternatives<br />

to chlorine that might form a basis for a modificati<strong>on</strong> of the Canadian <strong>Drinking</strong> <strong>Water</strong> Act (in which at the<br />

moment the use of chlorine is mandatory).<br />

For me it was quite a surprise to experience the huge interest by both the speakers and the invited audience<br />

(c<strong>on</strong>sisting of some 100 representatives of water companies, regulators and government) in the Dutch experiences.<br />

Almost all the questi<strong>on</strong>s during the panel debate were directed to me! It made me realize that we<br />

have quite a unique feature to offer to the internati<strong>on</strong>al drinking water community: since the renovati<strong>on</strong> of the<br />

Berenplaat and Andijk plants with UV/H2O2 , we can state that the Netherlands has completely abolished the<br />

use of chlorine! We are the <strong>on</strong>ly country that has g<strong>on</strong>e all the way and is completely chlorine free!<br />

The interest in Canada to pursue this approach is high and many municipalities would like to start experiments.<br />

Of course there are many differences between the Netherlands and Canada so they still have a l<strong>on</strong>g road<br />

ahead. During the workshop there was general c<strong>on</strong>sensus that UV replace chlorine for primary disinfecti<strong>on</strong><br />

and so most of the discussi<strong>on</strong> focused <strong>on</strong> the sec<strong>on</strong>dary disinfecti<strong>on</strong>, i.e. the practice to provide some residual<br />

chlorine in the distributi<strong>on</strong> network. Mark Le Chevalier showed results of research that proved that ingress of<br />

c<strong>on</strong>taminants in the distributi<strong>on</strong> network could occur as a result of negative pressures. In the discussi<strong>on</strong> I found<br />

out that in these systems they did not have any water hammer provisi<strong>on</strong>s or frequency c<strong>on</strong>trolled pumps, so<br />

obviously the chances of negative pressure are higher in such cases. He also showed some interesting results<br />

of using household water meters to measure back flow from the house into the network, again indicating negative<br />

pressures <strong>on</strong> many locati<strong>on</strong>s. Also in this case the situati<strong>on</strong> is different as they do not use any n<strong>on</strong> return<br />

valves and break tanks. Another striking difference is that the AOC levels in the treated drinking water were in<br />

the order of 100 mg/l, which would of course be unthinkable in the Netherlands. Nevertheless I discussed with<br />

Mark the possibilities to repeat his research in the Netherlands, which might be an interesting way to show<br />

the impact of the differences and prove (<strong>on</strong>ce again) that our distributi<strong>on</strong> systems are intact, both physically,<br />

hydraulically and regarding water quality.<br />

in the media<br />

149


150 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong><br />

Dagelijkse douchebeurt kost<br />

58 cent<br />

Dagelijks gaan we <strong>on</strong>der de douche,<br />

maar eigenlijk hebben we geen idee<br />

wat deze vanzelfsprekendheid kost.<br />

Alex van der Helm is drinkwatertechnoloog<br />

aan de <strong>TU</strong> <strong>Delft</strong> en<br />

heeft de milieubelasting van<br />

douchen beeldend gemaakt. door<br />

dit om te rekenen naar de milieubelasting<br />

van een kilometer<br />

autorijden. “De productie van een<br />

jaar lang drinkwater voor een<br />

perso<strong>on</strong>, kan uitgedrukt worden in<br />

33 kilometer autorijden.’, aldus van<br />

der Helm [www.bright.nl].


151


Secti<strong>on</strong> Sanitary <strong>Engineering</strong>, <str<strong>on</strong>g>Chair</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <strong>Engineering</strong><br />

Department of <strong>Water</strong>management<br />

Faculty of Civil <strong>Engineering</strong> and Geosciences<br />

<strong>Delft</strong> University of Technology<br />

Visiting adress Postal adress:<br />

Stevinweg 1 PO BOX 5048<br />

2628 CN <strong>Delft</strong> 2600 GA <strong>Delft</strong><br />

teleph<strong>on</strong>e: +31 15 27 84 732<br />

fax: +31 15 27 84 918<br />

email: m.a.j.hubert@tudelft.nl<br />

url: www.drinkwater.tudelft.nl<br />

152 <str<strong>on</strong>g>Annual</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> DWE <strong>2008</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!