30.01.2013 Views

Logical Analysis and Verification of Cryptographic Protocols - Loria

Logical Analysis and Verification of Cryptographic Protocols - Loria

Logical Analysis and Verification of Cryptographic Protocols - Loria

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

102 CHAPTER 4. PROTOCOLS WITH VULNERABLE SIGNATURE SCHEMES<br />

while θ is a substitution in normal form (the construction <strong>of</strong> θ is shown in<br />

Definition 28). Since C ′ is I”-satisfiable there exists a normal substitution<br />

σ ′ such that (viθ)↓σ ′ ∈ (Eiθ)↓σ ′I”<br />

implies that (viθσ ′ )↓ ∈ (Eiθσ ′ )↓ I<br />

<strong>and</strong> thus (viθσ ′ )↓ ∈ (Eiθσ ′ )↓ I”<br />

, which<br />

(Lemma 31). Let σ = (θσ ′ )↓, we have that<br />

(viσ)↓ ∈ (Eiσ)↓ I<br />

, <strong>and</strong> by construction <strong>of</strong> θ, we have that θ |=H U, <strong>and</strong> hence<br />

σ |=H U which concludes the pro<strong>of</strong>. �<br />

Figure 4.2 System <strong>of</strong> transformation rules.<br />

Apply :<br />

Cα, E ⊲ t, Cβ<br />

(Cα, (E ⊲ y)y∈lx , Cβ)σ<br />

Unif :<br />

lx, l1, . . . , ln → r ∈ LI” <strong>and</strong> lx �<br />

⊆ X , t /∈ X<br />

e1, . . . , en ∈ E <strong>and</strong> σ = mgu(<br />

Cα, E ⊲ t, Cβ<br />

(Cα, Cβ)σ<br />

u, t /∈ X<br />

u ∈ E, σ = mgu(u ? = ∅ t)<br />

(ei ? = ∅ li)i, r ? = ∅ t<br />

Second step: Transformation in solved form. We give now the rules that simplify<br />

a modified constraint system. These rules are given in Figure 4.2. Our<br />

goal is to transform C ′ , the modified constraint system obtained from C at<br />

the end <strong>of</strong> Step 1, into a modified constraint system in solved form.<br />

The next Lemma shows that the application <strong>of</strong> a rule from Figure 4.2 on a<br />

modified constraint system outputs a modified constraint system.<br />

Lemma 35 Let C ′ be a modified constraint system. The application <strong>of</strong> Apply <strong>and</strong> Unif<br />

rules on C ′ outputs a modified constraint system.<br />

PROOF.<br />

Let C ′ = (E1 ⊲ t1, . . . , En ⊲ tn) be a modified constraint system. Definition<br />

22 (Chapter 2) implies that Ei ⊆ Ei+1 <strong>and</strong> V ar(Ei) ⊆ V ar({t1, . . . , ti−1}) for i ∈<br />

{1, . . . , n}. Assume C ′ = (E1 ⊲ x1, . . . , Ei−1 ⊲ xi−1, Ei ⊲ ti, Ei+1 ⊲ ti+1, . . . , En ⊲ tn)<br />

with ti /∈ X , <strong>and</strong> let us prove that the application <strong>of</strong> Apply <strong>and</strong> Unif rules on C ′<br />

outputs a modified constraint system.<br />

Unif rule. The application <strong>of</strong> Unif on C ′ outputs C” = (E1σ ⊲ x1σ, . . . , Ei−1σ ⊲<br />

xi−1σ, Ei+1σ ⊲ ti+1σ, . . . , Enσ ⊲ tnσ) with σ = mgu(u ? =∅ ti), u ∈<br />

Ei \ X . Ej ⊆ Ej+1 implies Ejσ ⊆ Ej+1σ. We prove next that<br />

V ar(Ejσ) ⊆ V ar(x1σ, . . . , xi−1σ, ti+1σ, . . . , tj−1σ). Actually, we have<br />

V ar(Ej) ⊆ V ar(x1, . . . , xi−1, ti, . . . , tj−1). This implies that V ar(Ejσ) ⊆<br />

V ar(x1σ, . . . , xi−1σ, tiσ, ti+1σ, . . . , tj−1σ). We have that tiσ = uσ <strong>and</strong> u ∈ Ei,<br />

thus V ar(tiσ) = V ar(uσ) ⊆ V ar(Eiσ) ⊆ V ar({x1σ, . . . , xi−1σ}). This implies<br />

that V ar(Ejσ) ⊆ V ar(x1σ, . . . , xi−1σ, ti+1σ, . . . , tj−1σ), <strong>and</strong> hence, the<br />

application <strong>of</strong> Unif rule on C ′ outputs a modified constraint system.<br />

�<br />

)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!