01.02.2013 Views

elektronika electronics - Electronics Journal - Elektrotehnicki fakultet

elektronika electronics - Electronics Journal - Elektrotehnicki fakultet

elektronika electronics - Electronics Journal - Elektrotehnicki fakultet

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

It is obvious that the MOSFET noise parameters are very<br />

well simulated in both cases, but a little better agreement with<br />

referent data (especially for minimum noise figure and noise<br />

resistance) is achieved when the correlation between the<br />

noise sources in transistor noise model is included.<br />

IV CONCLUSION<br />

The wave approach to RF MOSFETs’ noise modeling is<br />

presented in this paper. The modeling procedure is based on<br />

some approaches proposed earlier for the other technology<br />

microwave transistors. The noise wave parameters are<br />

calculated in terms of equivalent circuit elements and three<br />

equivalent noise temperatures and shown graphically as a<br />

function of frequency. The standard noise parameters are also<br />

calculated and good agreement with measured noise<br />

parameters is observed. The presented procedure is very<br />

convenient for CAD applications, enabling simple and<br />

reliable prediction of noise parameters over a wide frequency<br />

range.<br />

REFERENCES<br />

[1] T. E. Kolding, Review of CMOS Performance and Future<br />

Process Innovations, Technical Report R98-1014, October<br />

1988.<br />

[2] H. Iwai, CMOS Technology – Year 2010 and Beyond, IEEE<br />

<strong>Journal</strong> of Solid-State Circuits, Vol.34, pp. 357-366, March<br />

1999.<br />

[3] B. Razavi, CMOS Technology Characterization for Analog and<br />

RF Design, IEEE <strong>Journal</strong> of Solid-State Circuits, Vol.34, pp.<br />

268-276, March 1999.<br />

[4] C. Enz, An MOS Transistor Model for RF IC Design Valid in<br />

All Regions of Operation, IEEE Trans. Microwave Theory<br />

Tech., vol. MTT-50, pp. 342-359, January 2002.<br />

[5] C. Hu, “BSIM4 MOSFET Model for Circuit Simulation”,<br />

Department of Electrical Engineering and Computer Science,<br />

University of California, Berkeley, 2000.<br />

[6] J. A. Dobrowolski, Introduction to Computer Methods for<br />

Microwave Circuit Analysis and Design, Artech House, 1991.<br />

[7] M. W. Pospieszalski, Modeling of noise parameters of<br />

MESFET's and MODFET's and their frequency and<br />

temperature dependence, IEEE Trans. Microwave Theory<br />

Tech., vol.MTT-37, pp. 1340-1350, 1989.<br />

[8] S.W. Wedge and D.B. Rutledge, "Wave techniques for noise<br />

modeling and measurement", IEEE Trans. Microwave Theory<br />

Tech., vol.MTT-40, pp. 2004-2012, November 1992.<br />

[9] O. Pronić, V. Marković, N. Maleš-Ilić: "The wave approach to<br />

noise modeling of microwave transistors by including the<br />

correlation effect", Microwave and Optical Technology Letters,<br />

Vol.28, Issue 6, pp. 426-430, March 2001.<br />

[10] A. Pascht, M. Grözing, D. Wiegner, M. Berroth, Small-Signal<br />

and Temperature Noise Model for MOSFETs, IEEE Trans.<br />

Microwave Theory Tech. Vol.50, No.8, pp. 1927-1934, 2002.<br />

[11] Touchstone and Libra Users Manual, EEsof, Inc., 1990.<br />

[12] C. Giusto, C. White, Techniques for small-signal modeling,<br />

Applied Microwave and Wireless, Vol.12, No.5, pp. 42-46,<br />

2000.<br />

[13] V. Markovi}, B. Milovanovi}, N. Male{-Ili}, MESFET Noise<br />

Modeling Based on Three Equivalent Temperatures,<br />

Conference Proceedings EUMC’97, pp.966-971, Jerusalem,<br />

Israel, 1997.<br />

ELECTRONICS, VOL. 8, NO.1, MAY 2004. 25<br />

F min [dB]<br />

Mag (Γ opt )<br />

Ang (Γ opt ) [ o ]<br />

r n<br />

5.5<br />

5.0<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

MOD1<br />

REF<br />

MOD2<br />

0.5<br />

2 3 4 5 6 7 8 9 10<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

f [GHz]<br />

Fig. 4. Minimum noise figure<br />

MOD1<br />

REF<br />

MOD2<br />

0.5<br />

2 3 4 5 6 7 8 9 10<br />

f [GHz]<br />

Fig. 5. Magnitude of optimum reflection coefficient<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

MOD1<br />

REF<br />

MOD2<br />

0<br />

2 3 4 5 6 7 8 9 10<br />

f [GHz]<br />

Fig. 6. Angle of optimum reflection coefficient<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

MOD1<br />

REF<br />

MOD2<br />

2<br />

2 3 4 5 6 7 8 9 10<br />

f [GHz]<br />

Fig. 7. Noise resistance

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!