09.05.2013 Views

liiiMIIIfl~UDliiiMIII~U - Biblioteca de la Universidad Complutense ...

liiiMIIIfl~UDliiiMIII~U - Biblioteca de la Universidad Complutense ...

liiiMIIIfl~UDliiiMIII~U - Biblioteca de la Universidad Complutense ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

UNiVERSIDAD COMPLUTENSE DE MADRID<br />

FACULTAD DE CIENCIAS BIOLOGICAS<br />

DEPARTAMENTO DE BIOQUíMICA Y BIOLOGíA MOLECULAR 1<br />

liiiMIII fl~ U DliiiMII I~ U<br />

* 5309838805*<br />

UNIVERSIDAD COMPLUTENSE<br />

REGULACION A CORTO PLAZO DE LA CARN?UI’TNA<br />

PALMITOILTRANSFERASA 1 DE THGADO DE RATA<br />

TESIS DOCTORAL<br />

por<br />

GUILLERMO VELASCO DIEZ<br />

Director: Dr. Manuel Guzmán Pastor<br />

Madrid, 1997


ABREVIATURAS<br />

ACBP:<br />

ACC:<br />

AICAR:<br />

AMPK:<br />

Ca 2~/CMPKII:<br />

eAMP:<br />

CAT:<br />

COT:<br />

CPT-I:<br />

CPT-II:<br />

db-cAMP:<br />

FABP:<br />

FAS:<br />

HDL:<br />

IDPN:<br />

L-FABP:<br />

MFABP:<br />

PICA:<br />

PKC:<br />

PMA:<br />

OA:<br />

VLDL:<br />

Proteína ligante <strong>de</strong> ésteres <strong>de</strong> coenzima A<br />

Acetil-CoA carboxi<strong>la</strong>sa<br />

5-aminoimidazol-4-carboxiamida ribonucleásido<br />

Proteína quinasa activada por 5’-AMP<br />

Proteína quinasa <strong>de</strong>pendiente <strong>de</strong> Ca2~ y calmodulina<br />

<strong>de</strong> tipo It<br />

AMP cíclico<br />

Carnitina acetiltransferasa<br />

Carnitina octanoiltransferasa<br />

Carnitina palmitoiltransferasa 1<br />

Carnitina palmitoiltransterasa 11<br />

Dibutiril-AMP cíclico<br />

Proteína ligante <strong>de</strong> ácidos grasos<br />

Acido graso sintasa<br />

Lipoproteinas <strong>de</strong> alta <strong>de</strong>nsidad<br />

3,3’-iminodipropionitrilo<br />

Proteína ligante <strong>de</strong> ácidos grasos (isoforma hepática)<br />

Proteína <strong>de</strong> membrana ligante <strong>de</strong> ácidos grasos<br />

Proteína quinasa <strong>de</strong>pendiente <strong>de</strong> AMP cíclico<br />

Proteína quinasa C<br />

4 ~-forbol 12 ~-miristato 13 6-acetato (=TPA)<br />

Acido okadaico<br />

Lipoproteinas <strong>de</strong> muy baja <strong>de</strong>nsidad


1. INTRODUCCIÓN<br />

ÍNDICE<br />

1.1. ASPECTOS GENERALES DEL METABOLISMO HEPÁTICO<br />

1.2. REGULACIÓN DEL METABOLISMO HEPÁTICO DE ÁCIDOS GRASOS<br />

Captura<br />

Tráfico intracelu<strong>la</strong>r<br />

Activación<br />

Síntesis <strong>de</strong> novo<br />

Esterificación<br />

Oxidación<br />

Transporte <strong>de</strong> ácidos grasos a <strong>la</strong>mitocondria<br />

/3-Oxidación<br />

Cetogénesis<br />

Ciclo <strong>de</strong> los ácidos tricarboxílicos<br />

Oxidación <strong>de</strong> ácidos grasos en peroxisomas<br />

1.3. CARNITINA PALMITOILTRANSFERASA 1<br />

Estructura e isofornias<br />

Estructura primaria <strong>de</strong> <strong>la</strong> CPT-Lf<br />

Estructura primaria <strong>de</strong> <strong>la</strong> CPT-I<br />

Hígado<br />

Músculo esquelético<br />

Corre<strong>la</strong>ción estructurafunción<br />

Tovología en <strong>la</strong> membrana<br />

Sitios <strong>de</strong> unión <strong>de</strong>l sustrato y el malonil-CoA<br />

Regu<strong>la</strong>ción a corto p<strong>la</strong>zo<br />

Regu<strong>la</strong>ción por malonil-CoA<br />

Hígado<br />

Músculo esquelético y corazón<br />

Célu<strong>la</strong>s 13<br />

Sensibilidad a malonil-CoA<br />

Cambios conformacionales y malonil-CoA<br />

Regu<strong>la</strong>ción in<strong>de</strong>pendiente <strong>de</strong> malonil-CoA<br />

Regu<strong>la</strong>ción a <strong>la</strong>rgo p<strong>la</strong>zo<br />

CPTs extramitocondriales<br />

1.4. OBJETIVOS Y CONTENIDO<br />

2. RESULTADOS Y DISCUSIÓN<br />

2.1. EFECTOS DEL AlT EXTRACELULAR Y DE LOS CAMBIOS EN EL VOLUMEN<br />

CELULAR SOBRE LA ACTIVIDAD CPT-I<br />

Introducción<br />

2.1.1 Are cytoske letal componen Ls involvedin the control ofhepatic carnitine<br />

pabnitoyltransferase 1.<br />

(Biochem. Biphys. Res. Commun. 224, 754-759)<br />

2.1.2 Inhibition ofcarnitine palmitoyltransftrasel by hepatocyte swelling<br />

(FEBS Lett. 344, 239-241)<br />

Discusión


2.2. MECANISMO DE REGULACIÓN A CORTO PLAZO (INDEPENDIENTE DE<br />

MALONIL-CoA) DE LA CPT-I<br />

Introducción<br />

2.2.1 Are cytoskeletal components involved in the control ofhepatic carnitine<br />

palmitoyltransferase<br />

(Biochem. Biophys. Res. Cominun. 224, 754-759<br />

2.2.2 Involvement ofCa<br />

t/calmodulin-<strong>de</strong>pen<strong>de</strong>ntprotein kinase JI in the<br />

activation ofcarnitine palmytoiltransferase 1 by okadaic acid in rat<br />

hepacytes.<br />

(Biocliem. J. 321, 211-216)<br />

2.2.3 Malonyi-CoA-in<strong>de</strong>pen<strong>de</strong>nt acute control ofhepatic carnitine<br />

palmitoyltransferase 1 activity. Role ofCa2*/Calmodulin <strong>de</strong>pen<strong>de</strong>n 1<br />

protein kinase II and cytoskeIeton components<br />

(J. Biol. Chem., en revisión)<br />

Discusión<br />

2.3. POSIBLE PAPEL FISIOLÓGICO DE LA REGULACIÓN A CORTO PLAZO<br />

(INDEPENDIENTE DE MALONIL-CoA) DE LA CPT-I<br />

Introducción<br />

2.3.1 Loss ofresponse ofcarnitine paImitoyltransferase. 1 lo okadaic acid in<br />

transformedhepatic celis.<br />

(Biochem. Pliarmacol., en revisión)<br />

2.3.2 Control ofhepaticfatty acid oxidation by 5>-AMP-activatedprotein<br />

kinase involves a malonyl-CoA-<strong>de</strong>pen<strong>de</strong>nt and a malonyl-CoA<br />

in<strong>de</strong>pen<strong>de</strong>nt mechanism.<br />

(Arcli. Biochem. Biophys. 337, 169-175)<br />

2.3.3 Studies on Ihe intracellu<strong>la</strong>r localization ofacetyl-CoA carboxi<strong>la</strong>se<br />

(Biochem. Biophys. Res. Commun. 233, 253-257)<br />

Discusión<br />

3. DISCUSIÓN GENERAL Y CONCLUSIONES<br />

Regu<strong>la</strong>ción a corto p<strong>la</strong>zo <strong>de</strong> <strong>la</strong> CPT-I<br />

Principales proteína quinasas implicadas en el control a corto p<strong>la</strong>zo <strong>de</strong> <strong>la</strong> CPT-I<br />

z) Ct/CMPKIJ<br />

u) AMPK<br />

Efectos <strong>de</strong> otros mediadores


L Introducción


Can indo 1<br />

ASPECTOS GENERALES DEL<br />

METABOLISMO HEPÁTICO<br />

El hígado juega un papel esencial en los mecanismos<br />

homeostáticos y en <strong>la</strong> distribución <strong>de</strong><br />

sustratos a los distintos tejidos <strong>de</strong>l organismo. Así,<br />

el hígado contiene <strong>la</strong>s enzimas necesarias para<br />

llevar a cabo tanto <strong>la</strong> biosíntesis como <strong>la</strong> <strong>de</strong>gradación<br />

<strong>de</strong> los lípidos y los hidratos <strong>de</strong> carbono, es el<br />

órgano que lleva acabo mayoritariamente el proceso<br />

<strong>de</strong> gluconeogénesis y, en muchas especies, entre<br />

<strong>la</strong>s que se encuentra el hombre, es un órgano lipogénico<br />

<strong>de</strong> extraordinaria importancia. Des<strong>de</strong> el<br />

punto <strong>de</strong> vista anatómico, el hígado se encuentra<br />

situado en una posición privilegiada para contro<strong>la</strong>r<br />

<strong>la</strong> homeostasis <strong>de</strong> <strong>la</strong> concentración <strong>de</strong> glucosa en <strong>la</strong><br />

sangre <strong>de</strong>bido a que <strong>la</strong> vena porta, antes <strong>de</strong> bañar<br />

el hígado, abarca <strong>la</strong> mayor parte <strong>de</strong> <strong>la</strong> superficie <strong>de</strong><br />

absorción <strong>de</strong>l intestino <strong>de</strong>lgado. De esta forma el<br />

hígado recibe rápida información acerca <strong>de</strong> <strong>la</strong><br />

cantidad <strong>de</strong> glucosa que se ha obtenido a partir <strong>de</strong><br />

<strong>la</strong> ingesta, con lo que <strong>la</strong> maquinaria metabólica<br />

hepática retirará glucosa <strong>de</strong> <strong>la</strong> sangre o <strong>la</strong> liberará<br />

al torrente circu<strong>la</strong>torio para mantener constante <strong>la</strong><br />

glucemia, proceso crucial para el correcto funcionamiento<br />

<strong>de</strong>l sistema nervioso central. Sin embargo,<br />

aunque se conocen <strong>la</strong>s principales rutas implicadas<br />

en el metabolismo los hidratos <strong>de</strong> carbono y<br />

Hígado<br />

Mi<br />

Tejido Adiposo<br />

Introducción<br />

los lípidos, el <strong>de</strong>stino exacto <strong>de</strong> <strong>la</strong> glucosa absorbida<br />

es aún tema <strong>de</strong> <strong>de</strong>bate. Así, durante muchos<br />

años se mantuvo <strong>la</strong> i<strong>de</strong>a <strong>de</strong> que <strong>la</strong> glucosa pasaría<br />

directamente <strong>de</strong>s<strong>de</strong> el intestino a <strong>la</strong> vena porta, <strong>de</strong><br />

don<strong>de</strong> el hígado <strong>la</strong> capturaría, siendo entonces<br />

fosfori<strong>la</strong>da y utilizada como precursor directo en<br />

los procesos <strong>de</strong> biosíntesis <strong>de</strong> glucógeno y lípidos.<br />

Sin embargo, durante <strong>la</strong> última década se ha venido<br />

acumu<strong>la</strong>ndo una abundante evi<strong>de</strong>ncia experimental<br />

que apoya <strong>la</strong> existencia <strong>de</strong> una ruta indirecta, que<br />

supone <strong>la</strong> transformación <strong>de</strong> <strong>la</strong> glucosa en fragmentos<br />

C 3 (especialmente <strong>la</strong>ctato) antes <strong>de</strong> ser<br />

convertida en glucógeno y lípidos. La <strong>de</strong>tección <strong>de</strong><br />

esta ruta indirecta, aparentemente ineficiente y muy<br />

costosa <strong>de</strong>s<strong>de</strong> el punto <strong>de</strong> vista energético, ha dado<br />

origen al concepto <strong>de</strong> <strong>la</strong> paradoja <strong>de</strong> <strong>la</strong> glucosa.<br />

La contribución re<strong>la</strong>tiva <strong>de</strong> <strong>la</strong>s rutas directa e indirecta<br />

en los procesos <strong>de</strong> biosíntesis <strong>de</strong> glucógeno y<br />

lípidos en el hígado está aún por establecer<br />

(McGany el aL, 1987; Watford, 1988; Cune y<br />

Schulman, 1991; Schulman y Landau, 1992).<br />

Durante periodos <strong>de</strong> ayuno, en los cuales el<br />

cociente insulina/glucagón en <strong>la</strong> sangre se encuentra<br />

disminuido, se movilizan <strong>la</strong>s reservas tanto <strong>de</strong><br />

glucógeno <strong>de</strong>l hígado como <strong>de</strong> triacilgliceroles <strong>de</strong>l<br />

tejido adiposo. Estas últimas dan lugar a glicerol,<br />

que sirve como sustrato para <strong>la</strong> gluconeogénesis, y<br />

a ácidos grasos, que, transportados vía circu<strong>la</strong>toria<br />

Lac ~<br />

AG—<br />

Figura 1. Ciclo <strong>de</strong> <strong>la</strong> glucosa y los ácidos grasos y su re<strong>la</strong>ción con el ciclo <strong>de</strong> Cori. Las flechas discontinuas indican <strong>la</strong>s<br />

interacciones metabólicas entre los lípidos y los hidratos <strong>de</strong> carbono, mientras que <strong>la</strong>s flechas gniesas muestran el ciclo <strong>de</strong> Cori.<br />

Ábrcviauras: Ac-CoA, acetil-CoA; AG, ácidos grasos; CC, cuerpos cetónicos; (Mc, glucosa; Pir, piruvato; Lac, <strong>la</strong>ctato; TO,<br />

triglicéridos<br />

Glc<br />

Hc S<br />

Pir<br />

‘e<br />

9<br />

.4---<br />

9<br />

Músculo


Canítulo 1 Introducción<br />

en forma <strong>de</strong> complejos con <strong>la</strong> albúmina, son oxidados<br />

por el hígado y los tejidos extrahepáticos<br />

(Sug<strong>de</strong>n et al., 1989; Eeylot, 1996). En situaciones<br />

como ésta, en <strong>la</strong>s que <strong>la</strong> oxidación <strong>de</strong> ácidos grasos<br />

se encuentra estimu<strong>la</strong>da, parecen una serie <strong>de</strong> mecanismos<br />

adaptativos que conducen a <strong>la</strong> supresión<br />

<strong>de</strong> <strong>la</strong> utilización y oxidación <strong>de</strong> <strong>la</strong> glucosa (el ciclo<br />

glucosa/ácidos grasos), por lo que los requerimientos<br />

gluconeogénicos para el mantenimiento <strong>de</strong><br />

<strong>la</strong> glucemia disminuyen (Fig 1). Así, <strong>la</strong> oxidación<br />

<strong>de</strong> ácidos grasos inhibe <strong>la</strong> fosfori<strong>la</strong>ción <strong>de</strong> <strong>la</strong> glucosa,<br />

el flujo glicolítico a nivel <strong>de</strong> <strong>la</strong> 6-fosfofructo-<br />

1-quinasa, <strong>la</strong> enzima regu<strong>la</strong>dora <strong>de</strong> <strong>la</strong> primera fase<br />

<strong>de</strong> <strong>la</strong> glicolisis y <strong>la</strong> oxidación <strong>de</strong> piruvato por el<br />

complejo <strong>de</strong> <strong>la</strong> piruvato <strong>de</strong>shidrogenasa (Hue el al,<br />

1988). Este último efecto permite que se reciclen<br />

los esqueletos <strong>de</strong> carbono entre <strong>la</strong> glicolisis y <strong>la</strong><br />

gluconeogénesis (ciclo <strong>de</strong> Cori, Fig. 1). La oxidación<br />

<strong>de</strong> ácidos grasos estimu<strong>la</strong> a<strong>de</strong>más <strong>la</strong> gluconeogénesis<br />

hepática (Sug<strong>de</strong>n el aL, 1989). En<br />

suma, <strong>la</strong> oxidación <strong>de</strong> <strong>la</strong>s reservas lipídicas juega<br />

un papel regu<strong>la</strong>dor <strong>de</strong> gran importancia tanto en <strong>la</strong><br />

CC AG-Ab TO<br />

CC t Ins/Gluc (ca<strong>de</strong>na <strong>la</strong>rga)<br />

conservación como en <strong>la</strong> biosíntesis <strong>de</strong> <strong>la</strong> glucosa.<br />

En situaciones <strong>de</strong> ingesta correcta, una parte<br />

<strong>de</strong> los ácidos grasos hepáticos se <strong>de</strong>svía hacia <strong>la</strong><br />

ruta <strong>de</strong> esterificación en lugar <strong>de</strong> ser oxidados (Fig.<br />

2). El control <strong>de</strong>l equilibrio esterificación/oxidación<br />

<strong>de</strong> los acil-CoA <strong>de</strong> ca<strong>de</strong>na <strong>la</strong>rga es<br />

ejercido por factores tales como el cociente insulina/glucagón<br />

en el p<strong>la</strong>sma y <strong>la</strong> disponibillidad re<strong>la</strong>tiva<br />

<strong>de</strong> lípidos e hidratos <strong>de</strong> carbono (Zammit,<br />

1984) (Fig.2). Durante los periodos <strong>de</strong> alimentación<br />

correcta, <strong>la</strong> baja actividad <strong>de</strong> <strong>la</strong> camitina palmitoiltransferasa<br />

1 (CPT-l) impi<strong>de</strong> que <strong>la</strong> oxidación<br />

mitocondrial <strong>de</strong> ácidos grasos se verifique a velocida<strong>de</strong>s<br />

elevadas. Sin embargo, esta restricción<br />

<strong>de</strong>saparece en el estado <strong>de</strong> ayuno, <strong>de</strong> manera que<br />

se <strong>de</strong>svía hacia <strong>la</strong> ~3-oxidaciónuna mayor proporción<br />

<strong>de</strong> acil-CoA <strong>de</strong> ca<strong>de</strong>na <strong>la</strong>rga (Zammit, 1994).<br />

Las <strong>de</strong>mandas energéticas <strong>de</strong>l hígado, son así cubiertas<br />

mayoritariamente por <strong>la</strong> j3-oxidación, contribuyendo<br />

<strong>de</strong> forma minoritaria <strong>la</strong> glicolisis y <strong>la</strong><br />

oxidación <strong>de</strong> piruvato. Los ácidos grasos oxidados<br />

por el hígado son convertidos principalmente en<br />

Acetil-.CoA<br />

Ins/GIuc<br />

Hidratos <strong>de</strong><br />

carbono<br />

Figura 2. Interre<strong>la</strong>ciones entre <strong>la</strong> síntesis y <strong>la</strong> oxidaci6n <strong>de</strong> ácidos grasos en el hígado. Las flechas discontinuas indican<br />

<strong>la</strong> inhibición que diversos intermediarios <strong>de</strong>l metabolismo <strong>de</strong> ácidos grasos ejercen sobre <strong>la</strong> ACC y <strong>la</strong> CPT-l. Las flechas<br />

punteadas indican los lugares don<strong>de</strong> el cociente insulina/glucagón ejerce sus efectos. Abreviaturas: Ac-CoA, acetil-CoA;<br />

ACC, acetil-CoA carboxi<strong>la</strong>sa; AO-Ab, complejos ácido graso-albúmina; CC, cuerpos cetónicos; CPT-l, camitina<br />

palmitoiltransferasa 1; Gluc, glucagón; ms, insulina; Mal-CoA, malonil-CoA; Pir, piruvato; TG, triglicéridos.<br />

2<br />

Pir<br />

1


Capitulo 1<br />

cuerpos cetónicos, que pue<strong>de</strong>n ser utilizados como<br />

sustratos alternativos a <strong>la</strong> glucosa por el hígado y<br />

los tejidos periféricos, incluido el cerebro<br />

(Zammit, 1984; 1994).<br />

En contraste con su elevada homogeneidad<br />

morfológica, una <strong>de</strong> <strong>la</strong>s características más sorpren<strong>de</strong>ntes<br />

<strong>de</strong> <strong>la</strong>s célu<strong>la</strong>s que constituyen el parénquima<br />

hepático (los hepatocitos) es su alta heterogeneidad<br />

en lo que a ultraestructura, características<br />

metabólicas y equipamiento enzimático se refiere<br />

(Gumucio, 1989; Jungermann, 1992; Jungemann y<br />

Kietzmann, 1996). Dentro <strong>de</strong> lo que se consi<strong>de</strong>ra<br />

como <strong>la</strong> unidad estructural y funcional <strong>de</strong>l hígado,<br />

esto es, el acino hepático, los hepatocitos pue<strong>de</strong>n<br />

ser subdivididos en dos subpob<strong>la</strong>ciones celu<strong>la</strong>res,<br />

los hepatocitos periportales (situados alre<strong>de</strong>dor <strong>de</strong><br />

<strong>la</strong>s ramificaciones terminales <strong>de</strong> <strong>la</strong> vena poz-ta, es<br />

Pv<br />

PP<br />

Gle<br />

Cava<br />

Ole GP ~<br />

G1no~~<br />

7-<br />

C37<br />

4<br />

r<br />

Ole 6P<br />

A<br />

Ole<br />

Introducción<br />

ya que <strong>la</strong> sangre entra a cada acino siguiendo el<br />

sentido porta —* cava, <strong>de</strong> forma que <strong>la</strong> composición<br />

<strong>de</strong> <strong>la</strong> sangre va siendo modificada a medida<br />

que atraviesa el acino <strong>de</strong>s<strong>de</strong> <strong>la</strong> “entrada” (zona<br />

periportal) hasta <strong>la</strong> “salida” <strong>de</strong> éste (zona perivenosa)<br />

(Lamers el al., 1989ab; Jungermann, 1992).<br />

Cada una <strong>de</strong> <strong>la</strong>s dos subpob<strong>la</strong>ciones <strong>de</strong> hepatocitos<br />

posee asimismo una inervación particu<strong>la</strong>r<br />

(Moorman el aL, 1989; Gar<strong>de</strong>mann el aL, 1992).<br />

A<strong>de</strong>más, tanto los hepatocitos periportales como<br />

los perivenosos poseen características fenotípicas<br />

propias, ya que aún ais<strong>la</strong>dos por separado a partir<br />

<strong>de</strong>l hígado conservan sus peculiarida<strong>de</strong>s metabólicas<br />

y enzimáticas (Chen y Katz, 1988; Tosh el al,<br />

1988; Jungermann, 1992; Jungermann y<br />

Kietzmann, 1996). Así, los hepatocitos perivenosos<br />

parecen estar mejor capacitados para llevar a cabo<br />

Figura 3. Zonación metabólica <strong>de</strong>l hígado. Abreviaturas: Ac-CoA, acetil-CoA; CC, cuernos cet\nicos; Glc, glucosa; (Mc<br />

6P, glucosa 6 fosfato; Gíno, glucógeno; LP, lipoproteinas; PP. zona periportal; PV, zona perivenosa.<br />

<strong>de</strong>cir en <strong>la</strong> zona aferente <strong>de</strong>l hígado) y los hepatocitos<br />

perivenosos (situados alre<strong>de</strong>dor <strong>de</strong> <strong>la</strong>s ramificaciones<br />

terminales <strong>de</strong> <strong>la</strong> venahepática, es <strong>de</strong>cir en<br />

<strong>la</strong> zona eferente <strong>de</strong>l higado) (Gumucio, 1989; Lamers<br />

et al, 1989ab; Jungermann, 1992; Jungermann<br />

y Kietzmann, 1996).<br />

Una primera consecuencia que surge <strong>de</strong>l concepto<br />

<strong>de</strong> heterogeneidad zonal <strong>de</strong>l hígado es que<br />

<strong>la</strong>s distintas regiones <strong>de</strong>l hígado poseen una diferente<br />

disponibilidad <strong>de</strong> nutrientes, 02 y hormonas,<br />

3<br />

LP<br />

LP<br />

CC<br />

CC<br />

<strong>la</strong> captura <strong>de</strong> aminoácidos (Burger el aL, 1989) y<br />

<strong>de</strong> 2-oxoglutarato (Stoll y Háussinger, 1989), <strong>la</strong><br />

biosíntesis <strong>de</strong> glutamina (Lindros el al., 1989) y<br />

quizá <strong>la</strong> glicolisis (Chen y Katz, 1988; Wals el al,<br />

1988; Moorman el al, 1991; Jungermann, 1992) y<br />

<strong>la</strong> lipogénesis (Guzmán y Castro, 1989; Evans el<br />

al, 1989, 1990), mientras que los hepatocitos<br />

periportales verifican con mayor eficiencia los<br />

procesos <strong>de</strong> síntesis <strong>de</strong> glucógeno (Chen y Katz,<br />

1988; Agius el al, 1990), colesterol (Li el al,


Can/tu/o ¡<br />

1988) y sales biliares (Verhoven y Jansen, 1989;<br />

Ugele el aL, 1991), así como <strong>la</strong> gluconeogénesis<br />

(Chen y Katz, 1988; Tosh el aL, 1988; Jungernmann,<br />

1992), <strong>la</strong> oxidación <strong>de</strong> ácidos grasos<br />

(Tosh el aL, 1988; Guzmán y Castro, 1989a) y <strong>la</strong><br />

síntesis <strong>de</strong> urea (Háussinger, 1990; Takei, 1990)<br />

(Fig. 3). Des<strong>de</strong> el punto <strong>de</strong> visía <strong>de</strong> <strong>la</strong> paradoja <strong>de</strong><br />

<strong>la</strong>glucosa, esta heterogeneidad zonal <strong>de</strong>l metabolismo<br />

<strong>de</strong> hidratos <strong>de</strong> carbono ha sido explicada <strong>de</strong><br />

forma que los hepatocitos perivenosos capturarían<br />

y fosfori<strong>la</strong>rían <strong>la</strong> glucosa, pasando seguidamente a<br />

<strong>la</strong> ruta glicolítica hasta generar fragmentos C 3,<br />

sobre todo <strong>la</strong>ctato. A continuación, éste pasar<strong>la</strong> a <strong>la</strong><br />

circu<strong>la</strong>ción sistémica hasta ser capturado por los<br />

hepatocitos periportales, que utilizarían el <strong>la</strong>ctato<br />

como precursor para <strong>la</strong> síntesis <strong>de</strong> glucosa, glucógeno<br />

y lípidos (McGarry el aL, 1987; Watford,<br />

1988). Sin embargo, los datos <strong>de</strong> los que se dispone<br />

en <strong>la</strong> actualidad sólo apoyan parcialmente esta<br />

hipótesis (Watford, 1988; Youn, 1989; Cline y<br />

Schulman, 1991).<br />

Otra cuestión importante es el papel que podna<br />

jugar en el control <strong>de</strong>l metabolismo hepático<br />

el hinchamiento celu<strong>la</strong>r. Aunque los mecanismos<br />

bioquímicos a través <strong>de</strong> los cuales este control<br />

sería ejercido no se conocen con precisión, excepto<br />

en el caso <strong>de</strong> <strong>la</strong> enzima glucógeno sintasa (Meijert<br />

el aL, 1992), el hinchamiento celu<strong>la</strong>r comienza a<br />

ser consi<strong>de</strong>rado como un elemento importante en <strong>la</strong><br />

regu<strong>la</strong>ción metabólica <strong>de</strong> diferentes tejidos y especialmente<br />

<strong>de</strong>l hígado (Agius el al., 1991; Háussínger<br />

el al., 1994; Háussinger, 1996), don<strong>de</strong> diferentes<br />

rutas podrían verse afectadas por este proceso.<br />

REGULACIÓN DEL METABOLISMO<br />

HEPÁTICO DE ÁCIDOS GRASOS<br />

El hígado utiliza ácidos grasos <strong>de</strong> proce<strong>de</strong>ncia<br />

tanto exógena, mayoritariamente <strong>de</strong> los complejos<br />

ácido graso albúmina presentes en el píasma)<br />

cono endógena (sintetizados <strong>de</strong> novo a partir<br />

<strong>de</strong> acetil-CoA u obtenidos a partir <strong>de</strong> los <strong>de</strong>pósitos<br />

intracelu<strong>la</strong>res <strong>de</strong> triacilgliceroles). Estos ácidos<br />

grasos podrán entonces ser, bien oxidados<br />

(completamente a CO2 o parcialmente a cuerpos<br />

cetónicos) bien esterificados a lípidos complejos<br />

(principalmente triacilgliceroles, fosfatidilcolinas y<br />

fosfatidiletano<strong>la</strong>minas), bien secretados en forma<br />

esterificada como glicerolipidos unidos a proteínas<br />

<strong>de</strong> muy baja <strong>de</strong>nsidad (VLDL) o a lipoproteinas <strong>de</strong><br />

alta <strong>de</strong>nsidad (l-IDL). Todas estas rutas son regu<strong>la</strong>das<br />

<strong>de</strong> manera coordinada por diferentes factores,<br />

<strong>de</strong> forma que <strong>la</strong> mayor o menor actividad <strong>de</strong> alguna<br />

<strong>de</strong> el<strong>la</strong>s repercute en <strong>la</strong> actividad <strong>de</strong> otras. A continuación<br />

se repasarán los puntos <strong>de</strong> control más<br />

importantes <strong>de</strong>l metabolismo <strong>de</strong> ácidos grasos.<br />

4<br />

Captura<br />

Introducción<br />

Los ácidos grasos son capturados muy eficazmente<br />

por el hígado. Tradicionalmente se ha<br />

asumido que los ácidos grasos atraviesan <strong>la</strong> membrana<br />

p<strong>la</strong>smática siguiendo un proceso no saturable<br />

<strong>de</strong> difusión simple (Spector el aL, 1965; De Grelle<br />

y Light, 1980). Esta visión clásica <strong>de</strong> captura <strong>de</strong><br />

ácidos grasos está asimismo apoyada por experimentos<br />

más recientes (Cooper el aL, 1989; Ferraresi-Filho<br />

el al., 1992). Alternativamente, durante<br />

los últimos altos se ha ido acumu<strong>la</strong>ndo una cierta<br />

evi<strong>de</strong>ncia que apoya <strong>la</strong> existencia <strong>de</strong> un sistema<br />

saturable <strong>de</strong> transporte facilitado <strong>de</strong> ácidos grasos<br />

(Stremmel, 1989; Stremmel el aL, 1992; Trotter y<br />

Voelker, 1994; G<strong>la</strong>tz y van <strong>de</strong>r Vusse, 1996). En<br />

concreto, el grupo <strong>de</strong> Stremmel ha i<strong>de</strong>ntificado una<br />

proteína <strong>de</strong> membrana ligante <strong>de</strong> ácidos grasos <strong>de</strong><br />

40 KDa (MFABP). Aunque esta proteína se propuso<br />

que pudiera funcionar como intercambiador<br />

Na~/ácidos grasos <strong>de</strong> ca<strong>de</strong>na <strong>la</strong>rga (Stremel, 1989;<br />

Die<strong>de</strong> el aL, 1992; Trotter y Voelker, 1994) parece<br />

que su funcionamiento podría ser más bien <strong>de</strong>pendiente<br />

<strong>de</strong> <strong>la</strong> existencia <strong>de</strong> un gradiente <strong>de</strong> protones<br />

que podría generar el propio transporte <strong>de</strong> ácidos<br />

grasos al interior <strong>de</strong>l hepatocito (Elsing el al,<br />

1996). Se han ais<strong>la</strong>do a<strong>de</strong>más otras proteínas simi<strong>la</strong>res<br />

a partir <strong>de</strong> otros tejidos que capturan ácidos<br />

grasos con gran actividad, tales como el tejido<br />

adiposo (Schwieterman el al., 1988; Abumrad el<br />

aL, 1994; Schaffer y Lodish, 1994), <strong>la</strong> mucosa<br />

intestinal (Stremmel, 1988) y el corazón<br />

(Sorrentino el al., 1988). Estas proteínas podrían<br />

constituir un primer punto <strong>de</strong> control <strong>de</strong> <strong>la</strong> entrada<br />

<strong>de</strong> ácidos grasos al interior <strong>de</strong> <strong>la</strong> célu<strong>la</strong>. La función<br />

<strong>de</strong> <strong>la</strong>s diversas proteínas ligantes <strong>de</strong> ácidos grasos<br />

en <strong>la</strong> membrana p<strong>la</strong>smática podría ser <strong>la</strong> <strong>de</strong> actuar<br />

como transportadores o quizás, simplemente como<br />

aceptores <strong>de</strong> ácidos grasos que facilitasen <strong>la</strong> posterior<br />

difusión a través <strong>de</strong> <strong>la</strong> membrana (van Nieuwenhoven<br />

el aL, 1996).<br />

Otro punto importante <strong>de</strong> control lo constituiría<br />

<strong>la</strong> lipasa sensible a hormonas (HSL) <strong>de</strong>l tejido<br />

adiposo: los <strong>de</strong>pósitos <strong>de</strong> triglicéridos <strong>de</strong>l tejido<br />

adiposo son, cuantitativamente, los más importantes<br />

reservorios <strong>de</strong> energía <strong>de</strong>l organismo y, <strong>de</strong> esta<br />

manera, los niveles <strong>de</strong> ácidos grasos libres en<br />

p<strong>la</strong>sma vienen principalmente <strong>de</strong>terminados por <strong>la</strong><br />

actividad <strong>de</strong> esta enzima, cuya eficacia catalítica<br />

está sometida a regu<strong>la</strong>ción por fosfori<strong>la</strong>ción<strong>de</strong>sfosfori<strong>la</strong>ción.<br />

Tráfico intracelu<strong>la</strong>r<br />

El tráfico intracelu<strong>la</strong>r <strong>de</strong> ácidos grasos <strong>de</strong> ca<strong>de</strong>na<br />

<strong>la</strong>rga está mediado por proteínas ligantes <strong>de</strong><br />

ácidos grasos (FABP). Hasta el momento se han<br />

i<strong>de</strong>ntificado 9 isoformas distintas en diferentes<br />

tejidos (van Nieuwenhoven el aL, 1996), entre


Canilulo 1<br />

el<strong>la</strong>s <strong>la</strong> isoforma hepática (conocida como<br />

FAEP), cuya expresión aumenta en presencia <strong>de</strong><br />

diferentes ácidos grasos (Meunier-Durmont el al.,<br />

1996). Por otra parte también se ha <strong>de</strong>scubierto <strong>la</strong><br />

existencia <strong>de</strong> unas proteínas ligantes <strong>de</strong> acil-CoA<br />

(ACEP) (Gossett el aL, 1996) que podrían estar<br />

implicadas en <strong>la</strong> regu<strong>la</strong>ción <strong>de</strong> <strong>la</strong>s enzimas que<br />

utilizan acil-CoA, como sustrato o como modu<strong>la</strong>dor,<br />

a través <strong>de</strong> <strong>la</strong> mayor o menor disponibilidad<br />

<strong>de</strong> acil-CoA libre (Faergeman y Knudsen, 1997).<br />

Activación<br />

La activación <strong>de</strong> ácidos grasos a sus tioésteres<br />

<strong>de</strong> CoA es un requisito previo a su utilización<br />

por <strong>la</strong> célu<strong>la</strong>. Esta reacción es catalizada por una<br />

familia <strong>de</strong> acil-CoA sintetasas que difieren en su<br />

especificidad por <strong>la</strong> longitud <strong>de</strong> ca<strong>de</strong>na <strong>de</strong>l ácido<br />

graso y en su localización subcelu<strong>la</strong>r (Zammit,<br />

1984; Schulz, 1991; Waku, 1992). De esta manera<br />

el hígado contiene acil-CoA sintetasas específicas<br />

para acil-CoA <strong>de</strong> ca<strong>de</strong>na corta, ca<strong>de</strong>na media,<br />

ca<strong>de</strong>na <strong>la</strong>rga y <strong>de</strong> ca<strong>de</strong>na muy <strong>la</strong>rga. Aunque <strong>la</strong><br />

acil-CoA sintetasa <strong>de</strong> ca<strong>de</strong>na <strong>la</strong>rga es inducible por<br />

<strong>la</strong> dieta (Suzuki el al., 1990; Schoojans el al.,<br />

1993), y <strong>la</strong>s acil-CoA sintetasas <strong>de</strong> ca<strong>de</strong>na corta y<br />

media son regu<strong>la</strong>das in vitro por el cociente<br />

ATP/ADP (Zammit, 1994).<br />

Síntesis <strong>de</strong> novo<br />

La síntesis <strong>de</strong> novo <strong>de</strong> ácidos grasos se encuentra<br />

regu<strong>la</strong>da en primer lugar por <strong>la</strong> disponibilidad<br />

<strong>de</strong> sustrato. Así, el flujo a través <strong>de</strong> <strong>la</strong> glicolisis,<br />

el suministro <strong>de</strong> <strong>la</strong>ctato y <strong>la</strong> conversión <strong>de</strong><br />

piruvato en acetil-CoA por el complejo <strong>de</strong> <strong>la</strong> piruvato<br />

<strong>de</strong>shidrogenasa son factores <strong>de</strong> gran importancia<br />

que intervienen en el control <strong>de</strong> <strong>la</strong> velocidad<br />

<strong>de</strong> síntesis <strong>de</strong> ácidos grasos (Geelen el aL, 1980;<br />

Wakil el aL, 1983; Hillgartner eta!, 1995). A<strong>de</strong>más,<br />

<strong>la</strong>s dos enzimas implicadas en <strong>la</strong> ruta <strong>de</strong> biosíntesis<br />

<strong>de</strong> novo <strong>de</strong> ácidos grasos, esto es, <strong>la</strong> acetil-<br />

CoA-carboxi<strong>la</strong>sa (ACC) y <strong>la</strong> ácido graso sintasa<br />

(FAS), se encuentran sometidas a un estrecho control<br />

por diferentes tipos <strong>de</strong> mecanismos (Wakil el<br />

al, 1983; Hardie, 1992; Hardie y Carling, 1997).<br />

Esto es especialmente cierto para <strong>la</strong> ACC, enzima<br />

que cataliza <strong>la</strong> etapa limitante <strong>de</strong>l proceso biosintético<br />

<strong>de</strong> los ácidos grasos (Bijíeveld y Geelen,<br />

1987; Hardie, 1992). La ACC está sometida a<br />

diferentes mecanismos <strong>de</strong> regu<strong>la</strong>ción: alostérica,<br />

con el precursor biosintético citrato como principal<br />

activador (Thampy y Wakil, 1988) y el producto<br />

malonil-CoA como retroinhibidor (Geelen el al?,<br />

1980; Powell el aL, 1985); los acil-CoA <strong>de</strong> ca<strong>de</strong>na<br />

<strong>la</strong>rga son asimismo potentes inhibidores alostéricos<br />

<strong>de</strong> <strong>la</strong> ACC (Wakil el aL, 1983). La ACC se regu<strong>la</strong><br />

a<strong>de</strong>más por cambios en su estado <strong>de</strong> agregación<br />

(Geelen el al., 1980) y por mecanismos <strong>de</strong> fosfori-<br />

5<br />

Introducción<br />

<strong>la</strong>ción-<strong>de</strong>sfosfori<strong>la</strong>ción. En general <strong>la</strong> activación <strong>de</strong><br />

<strong>la</strong> ACC resulta <strong>de</strong> su <strong>de</strong>sfosfori<strong>la</strong>ción (Swenson y<br />

Porter, 1985; Bijíeveld y Geelen, 1987; Thampy y<br />

Wakil, 1988). La proteína quinasa <strong>de</strong>pendiente <strong>de</strong><br />

AMP (AMPK) parece ser <strong>la</strong> responsable principal<br />

<strong>de</strong>l control <strong>de</strong> <strong>la</strong> actividad <strong>de</strong> <strong>la</strong> enzima hepática<br />

(Carling el al?, 1989; Moore el aL, 1991; Hardie y<br />

Carling, 1997). Se han <strong>de</strong>scrito dos especies <strong>de</strong><br />

ACC en hígado (Thampy, .1989; Bianchi el al.,<br />

1990). Se ha sugerido que <strong>la</strong> especie <strong>de</strong> 280 KDa<br />

está probablemente implicada en <strong>la</strong> sintesis <strong>de</strong><br />

malonil-CoA para el control <strong>de</strong> <strong>la</strong> actividad CPT-l<br />

(Bianchi el aL, 1990; Ha el aL, 1996), aunque este<br />

aspecto no está aún c<strong>la</strong>rificado (Winz el aL, 1994;<br />

Guzmán el aL, 1995). La isoenzima <strong>de</strong> 265 KDa<br />

parece tener dos isoformas diferentes que difieren<br />

es su capacidad para ser fosfori<strong>la</strong>das por <strong>la</strong> proteína<br />

quinasa <strong>de</strong>pendiente <strong>de</strong> cAMP (PKA) (Kong el<br />

aL, 1990; Winz el aL, 1994). El hígado contiene<br />

principalmente <strong>la</strong> isoenzima no fosfori<strong>la</strong>blepor<br />

¡‘KA (Kong el aL,1990), lo que es coherente con <strong>la</strong><br />

i<strong>de</strong>a <strong>de</strong> que <strong>la</strong> fosfori<strong>la</strong>ción <strong>de</strong> <strong>la</strong> ACC hepática in<br />

vivo es llevada a cabo principalmente por <strong>la</strong><br />

AMPK (Hardie y Carling, 1997).<br />

Esterificación<br />

La esterificación <strong>de</strong> ácidos grasos se encuentra<br />

regu<strong>la</strong>da en el hígado <strong>de</strong> forma coordinada con<br />

su oxidación (Zammit, 1994). Así, <strong>la</strong>s variaciones<br />

en el estado nutricional y hormonal <strong>de</strong>l animal<br />

pue<strong>de</strong>n estimu<strong>la</strong>r en el hígado <strong>la</strong> esterificación y<br />

disminuir <strong>la</strong> oxidación <strong>de</strong> los ácidos grasos (como<br />

son los casos <strong>de</strong> <strong>la</strong> realimentación tras el ayuno o<br />

el hipotiroidismo) o viceversa (como ocurre en el<br />

ayuno, <strong>la</strong> diabetes o el hipertiroidismo). La esterificación<br />

<strong>de</strong> ácidos grasos a triacilgliceroles se<br />

encuentra regu<strong>la</strong>da a niVel <strong>de</strong> distintas etapas enzimáticas,<br />

<strong>de</strong>stacando <strong>la</strong> glicerol 3-fosfato-acil<br />

transferasa (regu<strong>la</strong>da por fosfori<strong>la</strong>ción<strong>de</strong>sfosfori<strong>la</strong>ción),<br />

<strong>la</strong> fosfatidato fosfohidro<strong>la</strong>sa<br />

(regu<strong>la</strong>da por fosfori<strong>la</strong>ción - <strong>de</strong>sfosfori<strong>la</strong>ción, por<br />

traslocación citop<strong>la</strong>sma-retículo endoplásmico y<br />

por ácidos grasos) y <strong>la</strong> diacilglicerol acil transferasa<br />

(posiblemente regu<strong>la</strong>da por fosfori<strong>la</strong>ción<strong>de</strong>sfosfori<strong>la</strong>ción)<br />

(Tijburg el al, 1989).<br />

Oxidación<br />

En el hígado, los ácidos grasos <strong>de</strong> proce<strong>de</strong>ncia<br />

exógena o endógena son convertidos en sus<br />

correspondientes ésteres <strong>de</strong> CoA por <strong>la</strong>s distintas<br />

acil-CoA sintetasas (Zammit, 1984; 1994). En caso<br />

<strong>de</strong> no ser esterificados a lípidos complejos, los<br />

acil-CoA pue<strong>de</strong>n ser oxidados en <strong>la</strong>s mitocondrias,<br />

aunque también pue<strong>de</strong>n hacerlo en los peroxisomas<br />

(Osmundsen el al., 1991). Sin embargo, <strong>la</strong> membrana<br />

mitocondrial interna es impermeable a los<br />

acil-CoA <strong>de</strong> ca<strong>de</strong>na <strong>la</strong>rga, por lo que existe un


Capítulo 1 Introducción<br />

sistema <strong>de</strong> transporte <strong>de</strong>pendiente <strong>de</strong> camitina que<br />

transloca los acil-CoA a <strong>la</strong> matriz mitocondrial y<br />

cuyo papel, crucial en <strong>la</strong> regu<strong>la</strong>ción <strong>de</strong>l proceso <strong>de</strong><br />

oxidación <strong>de</strong> ácidos grasos, se estudia en <strong>de</strong>talle en<br />

un apanado posterior.<br />

Una vez en el interior <strong>de</strong> <strong>la</strong> mítocondria, los<br />

acil-CoA son escindidos en fragmentos <strong>de</strong> acetil-<br />

CoA a través <strong>de</strong> <strong>la</strong> ruta <strong>de</strong> <strong>la</strong> 13-oxidación. Estos<br />

restos C 2 pue<strong>de</strong>n ser completamente oxidados a<br />

CO2 y 1-hO a través <strong>de</strong> <strong>la</strong> acción subsecuente <strong>de</strong>l<br />

ciclo <strong>de</strong> los ácidos tricarboxílicos y <strong>la</strong> ca<strong>de</strong>na respiratoria<br />

transportadora <strong>de</strong> electrones o bien ser<br />

convertidos en cuernos cetónicos. En general se<br />

pue<strong>de</strong> consi<strong>de</strong>rar que <strong>la</strong> capacidad <strong>de</strong> oxidación <strong>de</strong><br />

ácidos grasos por el hígado (u otros tejidos) en una<br />

situación fisiopatológica <strong>de</strong>terminada está condicionada<br />

por dos factores principales (Edstrom y<br />

Grimby, 1986; Zammit, 1994): <strong>la</strong> disponibilidad <strong>de</strong><br />

sustrato y <strong>la</strong> capacidad <strong>de</strong>l tejido en cuestión para<br />

oxidar ácidos grasos. En lo que al primer factor se<br />

refiere, <strong>la</strong> velocidad <strong>de</strong> oxidación <strong>de</strong> ácidos grasos<br />

por el hígado aumenta <strong>de</strong> forma casi lineal con <strong>la</strong><br />

concentración <strong>de</strong> ácidos grasos en el medio, al<br />

menos en el rango fisiológico <strong>de</strong> concentraciones<br />

<strong>de</strong> estos sustratos. Así, suele consi<strong>de</strong>rarse que <strong>la</strong>s<br />

concentraciones <strong>de</strong> ácidos grasos que se consiguen<br />

in vivo no son suficientes para saturar el sistema<br />

oxidativo <strong>de</strong> ácidos grasos (Zammit, 1984). Por lo<br />

que respecta a <strong>la</strong> capacidad <strong>de</strong> oxidación <strong>de</strong> ácidos<br />

grasos po<strong>de</strong>mos consi<strong>de</strong>rar cuatro procesos en <strong>la</strong><br />

oxidación <strong>de</strong> un acil-CoA; el transporte al interior<br />

<strong>de</strong>l orgánulo, <strong>la</strong> 13-oxidación, <strong>la</strong> cetogénesis, y el<br />

ciclo <strong>de</strong> los ácidos tricarboxilicos. El transporte y<br />

<strong>la</strong> 3-oxidación tienen lugar tanto en los peroxisomas<br />

como en <strong>la</strong>s mitocondrias, mientras que <strong>la</strong><br />

cetogénesis y el ciclo <strong>de</strong> los ácidos tricarboxílicos<br />

se llevan a cabo exclusivamente en el interior <strong>de</strong><br />

<strong>la</strong>s mitocondrias.<br />

Transporte<br />

Los ácidos grasos <strong>de</strong> ca<strong>de</strong>na corta o media<br />

pue<strong>de</strong>n penetrar libremente en <strong>la</strong> mitocondria in<strong>de</strong>pendientemente<br />

<strong>de</strong> carnitina y ser posteriormente<br />

activados a ésteres <strong>de</strong> CoA en <strong>la</strong> matriz mitocondrial<br />

por <strong>la</strong> acción <strong>de</strong> acil-CoA sintetasas especificas<br />

<strong>de</strong> ácidos grasos <strong>de</strong> ca<strong>de</strong>na corta y media don<strong>de</strong>,<br />

finalmente, sufrirán el proceso <strong>de</strong> 13-oxidación<br />

(Bieber, 1988). Sin embargo, los acil-CoA <strong>de</strong> ca<strong>de</strong>na<br />

<strong>la</strong>rga son capaces <strong>de</strong> atravesar solo <strong>la</strong> membrana<br />

mitocondrial externa; para po<strong>de</strong>r atravesar <strong>la</strong><br />

membrana mitocondrial interna <strong>de</strong>ben esterificarse<br />

con camitina para formar un complejo acilcamitína.<br />

Esta reacción <strong>de</strong> síntesis <strong>de</strong>l complejo acilcarnitina<br />

<strong>la</strong> lleva a cabo una familia <strong>de</strong> enzimas <strong>de</strong>nominadas<br />

en su conjunto carnitina aciltransferasas.<br />

El hígado <strong>de</strong> los mamíferos contiene tres activida<strong>de</strong>s<br />

carnitina aciltransferasa atendiendo a <strong>la</strong><br />

longitud <strong>de</strong> ca<strong>de</strong>na <strong>de</strong>l acíl-CoA sustrato (Bieber,<br />

6<br />

1988): una actividad carnitina aciltransferasa específica<br />

<strong>de</strong> acil-CoA <strong>de</strong> ca<strong>de</strong>na corta (actividad carnitina<br />

acetiltransferasa, CAl), una actividad camitina<br />

aciltransferasa específica <strong>de</strong> acil-CoA <strong>de</strong> ca<strong>de</strong>na<br />

intermedia (actividad camitina octanoiltransferasa,<br />

COT) y una actividad carnitina aciltransferasa<br />

específica <strong>de</strong> acil-CoA <strong>de</strong> ca<strong>de</strong>na <strong>la</strong>rga<br />

(carnitina palmitolitransferasa, CPT). Estas tres<br />

activida<strong>de</strong>s enzimáticas se encuentran localizadas<br />

en <strong>la</strong>s mitocondrias y en los peroxisomas y en el<br />

retículo endoplásmico. Sin embargo, existe una<br />

cierta evi<strong>de</strong>ncia hoy en día <strong>de</strong> que <strong>la</strong>s activida<strong>de</strong>s<br />

COT y CPT son en realidad dos activida<strong>de</strong>s <strong>de</strong> una<br />

misma enzima, que recibe en general el nombre <strong>de</strong><br />

CPT y que se estudia en <strong>de</strong>talle en un próximo<br />

apartado.<br />

/3-oxidación<br />

El conocimiento <strong>de</strong> <strong>la</strong> 13-oxidación <strong>de</strong> ácidos<br />

grasos ha aumentado en gran medida durante los<br />

últimos años <strong>de</strong>bido a <strong>la</strong> caracterización <strong>de</strong> distintas<br />

enzimas implicadas en esta ruta y a <strong>la</strong> <strong>de</strong>scripción<br />

<strong>de</strong> una serie <strong>de</strong> <strong>de</strong>fectos hereditarios asociados<br />

a el<strong>la</strong> (Schulz, 1991; Bennet, 1994; Middleton,<br />

1994; Vockley, 1994; Eaton et aL, 1996). La ruta<br />

compren<strong>de</strong> dos etapas oxidativas (<strong>la</strong>s reacciones<br />

catalizadas por <strong>la</strong> acil-CoA <strong>de</strong>shidrogenasa y <strong>la</strong> L-<br />

3-hidroxiacil-CoA <strong>de</strong>shidrogenasa), por lo que un<br />

posible factor regu<strong>la</strong>dor podría ser <strong>la</strong> re<strong>la</strong>ción entre<br />

<strong>la</strong>s concentraciones intramitocondriales <strong>de</strong><br />

NADHINAD (Grunnet y Kondrup, 1986; Latipá~<br />

el aL, 1986; Eaton el aL, 1994). Aunque existen<br />

otra serie <strong>de</strong> efectores que pue<strong>de</strong>n actuar a distintos<br />

niveles en <strong>la</strong> ruta 13-oxidativa (Wang el a!,<br />

1991; He el aL, 1992; Bennet, 1994; Eaton el a!,<br />

1996), no existen evi<strong>de</strong>ncias directas <strong>de</strong> que <strong>la</strong>s<br />

enzimas <strong>de</strong> <strong>la</strong> 13-oxidación estén sometidas a regu<strong>la</strong>ción<br />

alostérica o a modificación covalente in<br />

vivo.<br />

Celogénesis<br />

La formación <strong>de</strong> cuernos cetónicos constituye<br />

el <strong>de</strong>stino metabólico principal <strong>de</strong>l acetil-CoA<br />

producido por <strong>la</strong> 13-oxidación <strong>de</strong> ácidos grasos en<br />

el hígado. Así <strong>la</strong> contribución <strong>de</strong>l ciclo <strong>de</strong> los ácidos<br />

tricarboxilicos a <strong>la</strong> utilización <strong>de</strong> este acetil-<br />

CoA es bastante reducida (menos <strong>de</strong>l 10%) en<br />

situaciones en <strong>la</strong>s cuales <strong>la</strong> disponibilidad <strong>de</strong> glucosa<br />

es <strong>la</strong> a<strong>de</strong>cuada y prácticamente nu<strong>la</strong> en estados<br />

catabólicos tales como el ayuno y <strong>la</strong> diabetes,<br />

en los que los ácidos grasos oxidados por el hígado<br />

se <strong>de</strong>svían prácticamente en su totalidad hacia <strong>la</strong><br />

síntesis <strong>de</strong> cuerpos cetónicos (McGarry y Foster,<br />

1980; Zammit, 1984; Sug<strong>de</strong>n et aL, 1989). Algunos<br />

estudios han sugerido <strong>la</strong> hipótesis <strong>de</strong> <strong>la</strong> canalización<br />

<strong>de</strong> sustratos entre <strong>la</strong>s enzimas <strong>de</strong> <strong>la</strong> ruta 3oxidativa<br />

y <strong>la</strong> cetogénica, así como entre <strong>la</strong> oxida-


Capítulo 1<br />

ción <strong>de</strong> piruvato y el ciclo <strong>de</strong> los ácidos tricarboxílicos.<br />

Así, el acetil-CoA producido en <strong>la</strong> 13oxidación<br />

<strong>de</strong> ácidos grasos es <strong>de</strong>sviado <strong>de</strong> manera<br />

preferencial hacia <strong>la</strong> ruta cetogénica, mientras que<br />

el formado por <strong>la</strong> piruvato <strong>de</strong>shidrogenasa es principalmente<br />

utilizado por el ciclo <strong>de</strong> los ácidos<br />

tricarboxílicos (Baranyai y Blum, 1989; Norsten y<br />

Cronholm, 1990; Des Rosiers el aL, 1991). Actualmente<br />

está bien establecido que <strong>la</strong> cetogénesis<br />

hepática está contro<strong>la</strong>da tanto a corto como a <strong>la</strong>rgo<br />

p<strong>la</strong>zo por el estado nutricional y hormonal <strong>de</strong>l<br />

animal (McGarryy Foster, 1980; Zarnmit, 1994).<br />

El primer paso <strong>de</strong> <strong>la</strong> formación <strong>de</strong> cuernos<br />

cetónicos es <strong>la</strong> con<strong>de</strong>nsación <strong>de</strong> dos molécu<strong>la</strong>s <strong>de</strong><br />

acetil-CoA para generar acetoacetil-CoA, en reacción<br />

catalizada por <strong>la</strong> acetil-CoA acetiltransferasa.<br />

La formación <strong>de</strong> acetoacetil-CoA catalizada por <strong>la</strong><br />

acetiltransferasa es inhibida por uno <strong>de</strong> sus productos,<br />

<strong>la</strong> CoA libre, que disminuye <strong>la</strong> afinidad <strong>de</strong><br />

<strong>la</strong> enzima por su sustrato, el acetil-CoA (Zamniit,<br />

1994). Éste podría constituir un mecanismo para <strong>la</strong><br />

regu<strong>la</strong>ción <strong>de</strong> <strong>la</strong> cetogénesis a través <strong>de</strong> cambios en<br />

<strong>la</strong> re<strong>la</strong>ción intramitocondrial <strong>de</strong> [acetil-<br />

CoA]/[CoAJ (Wang el aL, 1991).<br />

El acetoacetil-CoA es un importante metabolito<br />

implicado en el control <strong>de</strong>l metabolismo mitocondrial<br />

<strong>de</strong> ácidos grasos en hígado. Se ha observado<br />

que el acetoacetil-CoA inhibe iii viíro a <strong>la</strong><br />

acil-CoA <strong>de</strong>shidrogenasa, <strong>la</strong> primera enzima implicada<br />

en <strong>la</strong> 13-oxidación <strong>de</strong> ácidos grasos, y que<br />

e¡erce inhibición por producto sobre <strong>la</strong> acetil-CoA<br />

acetíltransferasa y por sustrato sobre <strong>la</strong> 3-hidroxi-<br />

3-metilglutaril-CoA (HMG-CoA) sintasa (Lowe y<br />

Tubbs, 1985). La HMG-CoA sintasa mitocondrial<br />

cataliza <strong>la</strong> síntesis <strong>de</strong> HMG-CoA para <strong>la</strong> formación<br />

<strong>de</strong> cuerpos cetónicos y parece representar <strong>la</strong> principal<br />

etapa limitante <strong>de</strong>l flujo en <strong>la</strong> cetogénesis a<br />

partir <strong>de</strong> acetil-CoA (Quant el a!, 1990; 1993). La<br />

actividad <strong>de</strong> <strong>la</strong> l-IMG-CoA sintasa mitocondrial<br />

está contro<strong>la</strong>da por dos mecanismos que operan <strong>de</strong><br />

manera coordinada: (i) modificaciones a corto<br />

p<strong>la</strong>zo <strong>de</strong> <strong>la</strong>s molécu<strong>la</strong>s <strong>de</strong> enzima preexistentes a<br />

través <strong>de</strong> un proceso <strong>de</strong> modificación covalente<br />

(succini<strong>la</strong>ción ¡ <strong>de</strong>succini<strong>la</strong>ción) (Quant el a!,<br />

1990; Zammit, 1994); (u) cambios a <strong>la</strong>rgo píazo<br />

que afectan a los niveles <strong>de</strong> mRNA que codifica<br />

para <strong>la</strong> enzima y también a <strong>la</strong> cantidad <strong>de</strong> proteína<br />

inmunorreactiva (Casals el a!, 1992; Rodríguez el<br />

a!, 1994).<br />

Ciclo <strong>de</strong> ¡os ácidos Iricarboxiícos<br />

La oxidación completa <strong>de</strong> acetil-CoA. a CO 2<br />

tiene lugar en <strong>la</strong> matriz mitocondrial por <strong>la</strong>s enzimas<br />

<strong>de</strong>l ciclo <strong>de</strong> los ácidos tricarboxilicos. Como<br />

ya se ha mencionado en el apanado anterior, <strong>la</strong><br />

contribución <strong>de</strong>l ciclo <strong>de</strong> los ácidos tricarboxílícos<br />

a <strong>la</strong> utilización <strong>de</strong>l acetil-CoA producido por <strong>la</strong> 13oxidación<br />

hepática <strong>de</strong> ácidos grasos es práctica-<br />

7<br />

Introducción<br />

mente nu<strong>la</strong> comparada con <strong>la</strong> utilización <strong>de</strong> dicho<br />

acetil-CoA para <strong>la</strong> síntesis <strong>de</strong> cuerpos cetónicos.<br />

Los mecanismos <strong>de</strong> control <strong>de</strong>l ciclo son muy<br />

variados e incluyen modu<strong>la</strong>ción alostérica, control<br />

por carga energética 2~ y control y potencial por volumen redox, mitocondrial. regu<strong>la</strong>ción<br />

por El lector iones Ca interesado pue<strong>de</strong> consultar una serie <strong>de</strong><br />

revisiones publicadas en los últimos años<br />

(Halestrap, 1989; McCormack y Denton, 1990;<br />

McCormack eta!, 1990; Brown, 1992; Halestrap,<br />

1994).<br />

Oxidaci¿n <strong>de</strong> ácidos grasos enperoxisomas<br />

Los peroxisomas poseen un equipamiento<br />

enzimático particu<strong>la</strong>r para13-oxidar ácidos grasos,<br />

ácidos dicarboxílicos, prostag<strong>la</strong>ndinas, ácidos 513colestanóícos<br />

hidroxi<strong>la</strong>dos y diversos análogos <strong>de</strong><br />

ácidos grasos (Osmundsen el al?, 1991; Osumi,<br />

1993; Reddy y Mannaerts, 1994; Singh, 1997).<br />

Comparada con <strong>la</strong> 13-oxidación mitocondrial, <strong>la</strong> ¡3oxidación<br />

en peroxisomas posee una especificidad<br />

<strong>de</strong> sustrato más amplia, siendo especialmente activa<br />

con ácidos grasos <strong>de</strong> ca<strong>de</strong>na muy <strong>la</strong>rga<br />

(Osmundsen el a!, 1991; Reddy y Mannaerts,<br />

1994). De esta manera, los peroxisomas acortarían<br />

<strong>la</strong> ca<strong>de</strong>na hidrocarbonada <strong>de</strong> los ácidos grasos que,<br />

<strong>de</strong>bido a su longitud, dificilmente podrían ser oxidados<br />

en <strong>la</strong> mitocondria (Osmundsen el a!, 1991;<br />

Pourfarzam y Barlett, 1992). Los productos <strong>de</strong> <strong>la</strong><br />

oxidación en los peroxisomas son transferidos al<br />

citop<strong>la</strong>sma y posteriormente a <strong>la</strong> matriz mitocondrial,<br />

don<strong>de</strong> continúan su metabolización (Bieber,<br />

1988; Osmundsen el a!, 1991; Mannaerts y van<br />

Veldhoven, 1993). La contribución <strong>de</strong> <strong>la</strong> ¡3oxidación<br />

en peroxisomas a <strong>la</strong> oxidación total <strong>de</strong><br />

ácidos grasos <strong>de</strong> ca<strong>de</strong>na <strong>la</strong>rga en hepatocitos <strong>de</strong>pen<strong>de</strong><br />

tanto <strong>de</strong> <strong>la</strong> concentración como <strong>de</strong> <strong>la</strong> longitud<br />

<strong>de</strong> ca<strong>de</strong>na <strong>de</strong> los ácidos grasos utilizados<br />

(Skorin el aL, 1992). En ratas alimentadas osci<strong>la</strong><br />

en un rango <strong>de</strong>s<strong>de</strong> el 20 al 35% si se utiliza palmitato<br />

u oleato como sustrato (Rongstad, 1991; Guzmán<br />

y Geelen, 1992; Skorin el a!, 1992). La ¡3oxidación<br />

en peroxisomas pue<strong>de</strong> ser fácilmente<br />

inducida por <strong>la</strong> dieta, así como por <strong>la</strong> administración<br />

a <strong>la</strong>rgo p<strong>la</strong>zo <strong>de</strong> una serie <strong>de</strong> agentes hipolipídémícos<br />

y xenobióticos (osmundsen el a!, 1991;<br />

Moody el a!, 1992; Reddy y Mannaerts, 1994).<br />

CARNITINA PALMITOILTRANSFERASA..I<br />

Como se ha mencionado anteriormente, los<br />

ácidos grasos <strong>de</strong> ca<strong>de</strong>na <strong>la</strong>rga no pue<strong>de</strong>n atravesar<br />

<strong>la</strong> membrana mitocondrial interna. Para po<strong>de</strong>r<br />

hacerlo, los acil-CoA proce<strong>de</strong>ntes <strong>de</strong> dichos ácidos<br />

grasos <strong>de</strong>ben ser transformados en acilcarnitinas<br />

que, finalmente, son transportadas al interior <strong>de</strong> <strong>la</strong><br />

mitocondria. Las CPT catalizan <strong>de</strong> forma reversi-


Capitulo 1 Introducción<br />

ble <strong>la</strong> síntesis <strong>de</strong> complejos acilcarnitina a partir <strong>de</strong><br />

una molécu<strong>la</strong> <strong>de</strong> acil-CoA <strong>de</strong> longitud <strong>de</strong> ca<strong>de</strong>na<br />

intermedia o <strong>la</strong>rga y una molécu<strong>la</strong> <strong>de</strong> camitina. En<br />

<strong>la</strong>s mitocondrias existen dos activida<strong>de</strong>s CPT, que<br />

suelen <strong>de</strong>nominarse CPT-1 y CPT-11, con distinta<br />

localización en <strong>la</strong> barrera mitocondrial (Murthy y<br />

Pan<strong>de</strong>, 1987). Así, hoy en día se admite el siguiente<br />

mo<strong>de</strong>lo <strong>de</strong> traslocación <strong>de</strong> ácidos grasos <strong>de</strong><br />

ca<strong>de</strong>na <strong>la</strong>rga al interior <strong>de</strong> <strong>la</strong> mitocondria<br />

(McGarry y Brown, 1997): <strong>la</strong> acil-CoA sintetasa <strong>de</strong><br />

<strong>la</strong> cara citoplásmica <strong>de</strong> <strong>la</strong> membrana mitocondrial<br />

externa activaría un ácido graso <strong>de</strong> ca<strong>de</strong>na <strong>la</strong>rga a<br />

su respectivo éster <strong>de</strong> CoA. En estrecho contacto<br />

con <strong>la</strong> acil-CoA sintetasa estaría <strong>la</strong> CPT-l que<br />

mediaría <strong>la</strong> síntesis <strong>de</strong> acilcarnitina a partir <strong>de</strong>l<br />

acil-CoA y <strong>la</strong> carnitina. El complejo acilcarnitina<br />

difundiría a través <strong>de</strong>l espacio intermembrana hasta<br />

AG<br />

Matriz<br />

Acil-CoA<br />

Cam Acil-Cam<br />

¡<br />

Cam AciI-Cam<br />

dora es <strong>la</strong> CPT-I (McGany y Brown, 1997). La<br />

CPT-1 es <strong>la</strong> enzima que se consi<strong>de</strong>ra c<strong>la</strong>ve en el<br />

proceso <strong>de</strong> oxidación <strong>de</strong> ácidos grasos <strong>de</strong> ca<strong>de</strong>na<br />

<strong>la</strong>rga tanto en hígado (Zammit, 1986) como en los<br />

tejidos extrahepáticos (Saggerson, 1986), puesto<br />

que cataliza <strong>la</strong> principal etapa regu<strong>la</strong>dora <strong>de</strong>l flujo<br />

a través <strong>de</strong> dicha ruta (Drynan el al?, 1996;<br />

Spurway el aL, 1997) A continuación abordaremos<br />

el estudio <strong>de</strong> <strong>la</strong>s propieda<strong>de</strong>s estructurales y regu<strong>la</strong>doras<br />

que presentan <strong>la</strong>s CPT, haciendo especial<br />

incapié en <strong>la</strong> CPT-1.<br />

Estructura e Isoformas<br />

Durante bastante tiempo el estudio <strong>de</strong> <strong>la</strong>s<br />

propieda<strong>de</strong>s cinéticas y regu<strong>la</strong>doras <strong>de</strong> <strong>la</strong> CPT-l<br />

tuvo que enfrentarse a tres gran<strong>de</strong>s dificulta<strong>de</strong>s: (i)<br />

Acil-CoA<br />

Figurn 4. Traslocación <strong>de</strong> ácidos grasos a <strong>la</strong> matriz mitocondrial. Abreviaturas: ACS, acil-CoA sintetasa;; AG, ácido<br />

graso; Carn, carnitina; MME, membrana mitocondrial externa; MMI, membrana mitocondrial interna; T, trauslocasa <strong>de</strong><br />

camitina:acilcarnitina<br />

llegar a <strong>la</strong> cara externa <strong>de</strong> <strong>la</strong> membrana mitocondrial<br />

interna, o alcanzaría esta a través <strong>de</strong> los puntos<br />

<strong>de</strong> contacto entre <strong>la</strong>s dos membranas mitocondriales<br />

(Kerner y Bieber, 1990) y allí <strong>la</strong> acción<br />

sucesiva <strong>de</strong> <strong>la</strong> translocasa <strong>de</strong> carnitina:acilcarnitina<br />

y <strong>de</strong> <strong>la</strong> CPT-ll permitiría <strong>la</strong> entrada <strong>de</strong>l resto <strong>de</strong><br />

acil-CoA en <strong>la</strong> matriz mitocondrial (Fig. 4) A nivel<br />

fisiológico, <strong>la</strong> CPT <strong>de</strong> mayor importancia regu<strong>la</strong>-<br />

8<br />

CoA-SH<br />

Carn<br />

La caracterización molecu<strong>la</strong>r <strong>de</strong> <strong>la</strong> enzima, principalinente<br />

<strong>de</strong>bido a <strong>la</strong> creencia errónea (pero clásicamente<br />

aceptada) <strong>de</strong> que <strong>la</strong> enzima se encontraba<br />

localizada en <strong>la</strong> membrana mitocondrial interna<br />

(Murthy y Pan<strong>de</strong>, 1987). (u) La presencia <strong>de</strong> peroxisomas<br />

en <strong>la</strong>s preparaciones convencionales <strong>de</strong><br />

mitocondrias y <strong>la</strong> consiguiente contaminación<br />

cruzada con <strong>la</strong> CPT <strong>de</strong> peroxisomas, fácilmente


Cap itulo 1 introducción<br />

solubilízable (Healy el a!, 1988; Ramsay, 1988).<br />

(iii) La solubilización <strong>de</strong> <strong>la</strong> proteína a partir <strong>de</strong> <strong>la</strong>s<br />

membranas mitocondriales con <strong>la</strong> consiguiente<br />

pérdida <strong>de</strong> <strong>de</strong> actividad enzimática y/o <strong>de</strong> sensibilidad<br />

a <strong>la</strong> inhibición por malonil-CoA (Murthy y<br />

Pan<strong>de</strong>, 1987; Woeltje el a!, 1987; McGarry el a!,<br />

1991). Así, al comienzo <strong>de</strong> <strong>la</strong> presente década<br />

había una serie <strong>de</strong> cuestiones p<strong>la</strong>nteadas y no resueltas<br />

en torno a <strong>la</strong> CPT-l tales como: (i) Si <strong>la</strong><br />

CPT-l y <strong>la</strong> CPT-ll eran <strong>la</strong> misma o diferentes proteínas.<br />

(u) Si existían diferentes isoformas <strong>de</strong> ambas<br />

enzimas en los distintos tejidos. (iii) Cómo se<br />

producía <strong>la</strong> interacción <strong>de</strong> los inhibidores reversibles<br />

(como el malonil-CoA) o irreversibles (como<br />

el tetra<strong>de</strong>cilglicidil-CoA o el etomoxir -CoA) con<br />

<strong>la</strong> CPT-l. Clásicamente ha habido dos escue<strong>la</strong>s que<br />

proponían respuestas diferentes a estas cuestiones.<br />

Una <strong>de</strong> el<strong>la</strong>s sostenía que <strong>la</strong> CPT-l y <strong>la</strong> CPT-ll<br />

eran <strong>la</strong> misma proteína (al menos en un tejido<br />

dado), pero que <strong>la</strong> primera tenía asociada una subunidad<br />

regu<strong>la</strong>doracon <strong>la</strong> que interaccionarían los<br />

diferentes inhibidores que, <strong>de</strong> esta manera, suprimirían<br />

<strong>la</strong> actividad <strong>de</strong>l componente catalítico<br />

(Zammit el a!, 1989; Kemer y Bieber, 1990; Ohanimineja<br />

y Saggerson, 1990ab; Wol<strong>de</strong>giorgis el a!,<br />

1992). Una visión alternativa proponía que <strong>la</strong> CPT-<br />

1 y <strong>la</strong> CPT-ll eran proteínas diferentes y que <strong>la</strong><br />

primera poseería, <strong>de</strong>ntro <strong>de</strong> <strong>la</strong> misma ca<strong>de</strong>na polipeptidica,<br />

tanto el centro activo como el sitio regu<strong>la</strong>dor<br />

<strong>de</strong> <strong>la</strong> enzima (Woeltje el a!, 1987; Declercq<br />

el al., 1987; Woeltje el a!, 1990ab; Murthy<br />

y Pan<strong>de</strong>, 1990; McGarry el al, 1991). Finalmente<br />

<strong>la</strong> aplicación <strong>de</strong> <strong>la</strong>s técnicas <strong>de</strong> <strong>la</strong> biología molecu<strong>la</strong>r<br />

ha permitido c<strong>la</strong>rificar este escenario mediante<br />

<strong>la</strong> <strong>de</strong>terminación <strong>de</strong> <strong>la</strong>s estructuras primarias<br />

<strong>de</strong> ambas enzimas.<br />

Estructura primaria <strong>de</strong> <strong>la</strong> CPT-11<br />

Primeramente se caracterizó <strong>la</strong> estructura<br />

primaria <strong>de</strong> <strong>la</strong> CPT-Il. Gracias a que esta proteína<br />

pue<strong>de</strong> ser solubilizada en forma activa mediante el<br />

empleo <strong>de</strong> <strong>de</strong>tergentes fue posible purificar una<br />

actividad CPT insensible a malonil-CoA (Woeltje<br />

el a!, 1990a) y finalmente llevar a cabo <strong>la</strong> clonación<br />

<strong>de</strong>l cDNA <strong>de</strong> <strong>la</strong> CPT-ll <strong>de</strong> hígado <strong>de</strong> rata<br />

(Woeltje el a!, 1990b) y humano (Finocchiaro el<br />

al., 1991) que, en ambos casos, permitió pre<strong>de</strong>cir<br />

un tamaño <strong>de</strong> 658 aminoácidos y un peso molecu<strong>la</strong>r<br />

<strong>de</strong> 71 KDa para <strong>la</strong> CPT-l1. Diferentes estudios<br />

mostraron que el mRNA <strong>de</strong> <strong>la</strong> CPT-ll era idéntico<br />

en tamaño (Woeltje el a!, 1990a; McGarry el al,<br />

1991) e inmunológicamente indistinguible<br />

(Kolodziej el a!, 1992) en toda una serie <strong>de</strong> tejidos,<br />

indicando que en todos ellos se expresaba <strong>la</strong><br />

misma proteína.<br />

El gen <strong>de</strong> <strong>la</strong> CPT-l1 (el único <strong>de</strong> los genes<br />

que codifican para <strong>la</strong>s CPTs que ha sido analizado<br />

en profundidad hasta el momento) (Ver<strong>de</strong>rio el al.,<br />

9<br />

1995), está compuesto <strong>de</strong> 5 exones, uno <strong>de</strong> los<br />

cuales es excepcionalmente <strong>la</strong>rgo. En estudios<br />

realizados con los genes humano y murino <strong>de</strong> <strong>la</strong><br />

CPT-II (Gelb, 1993; Ver<strong>de</strong>rio el a!, 1995) se han<br />

localizado potenciales elementos regu<strong>la</strong>dores en <strong>la</strong><br />

región promotora que podrían incluir: un sitio Sp-<br />

1, una secuencia consenso para <strong>la</strong> unión <strong>de</strong> factores<br />

<strong>de</strong> respuesta a insulina y, finalmente, una secuencia<br />

que podría ser un sitio <strong>de</strong> unión <strong>de</strong> receptores <strong>de</strong><br />

hormonas esteroi<strong>de</strong>as/tiroi<strong>de</strong>as.<br />

Esíruclura primar¡ci <strong>de</strong> <strong>la</strong> CPT-i<br />

Hígado<br />

La caracterización <strong>de</strong> <strong>la</strong> CPT-l fue bastante<br />

más dificil <strong>de</strong>bido a dos propieda<strong>de</strong>s <strong>de</strong> <strong>la</strong> enzima<br />

que ya habían sido previamente observadas: su<br />

estrecha asociación a <strong>la</strong> membrana mitocondrial<br />

externa y <strong>la</strong> pérdida <strong>de</strong> actividad catalítica que<br />

experimenta cuando es separada <strong>de</strong> su entorno<br />

nativo (McGarry el al., 1989; Zammit eta!, 1989).<br />

La estrategia que finalmente se empleó fue <strong>la</strong> <strong>de</strong><br />

tratar mitocondrias <strong>de</strong> hígado <strong>de</strong> rata con<br />

etomoxir-CoA (que como ya se había seña<strong>la</strong>do<br />

anteriormente es un inhibidor irreversible y específico<br />

<strong>de</strong> <strong>la</strong> CPT-1) para marcar covalentemente<br />

dicha enzima. Posteriormente se trataron <strong>la</strong>s membranas<br />

mitocondriales con una mezc<strong>la</strong> <strong>de</strong> proteasas.<br />

Así, se pudo obtener u fragmento <strong>de</strong> CPT-l<br />

todavía marcado y que pudo ser purificado a partir<br />

<strong>de</strong> geles <strong>de</strong> electroforesis en cantida<strong>de</strong>s suficientes<br />

como para llevar a cabo su secuenciación (Esser el<br />

aL, 1993a). Con esta infonnación, se secuenciaron<br />

oligonucícótidos con los que se realizó <strong>la</strong> búsqueda<br />

<strong>de</strong>l gen <strong>de</strong> <strong>la</strong> CPT-l en una genoteca <strong>de</strong> cDNA <strong>de</strong><br />

hígado <strong>de</strong> rata. Finalmente, el clon ais<strong>la</strong>do permitió<br />

pre<strong>de</strong>cir una proteína <strong>de</strong> 773 aminoácidos (88<br />

KDa) que, una vez expresada en célu<strong>la</strong>s COS,<br />

produjo una inducción <strong>de</strong> entre 10 y 20 veces <strong>de</strong><br />

una actividad CPT inhibible por malonil-CoA y<br />

sensible al tratamiento con <strong>de</strong>tergentes (Esser el<br />

a!, 1993b). La expresión <strong>de</strong> esta proteína en levaduras<br />

(que carecen <strong>de</strong> actividad CPT endógena)<br />

confirmó plenamente los resultados anteriores<br />

(Brown el a!, 1994; De Vries el al., 1997). Estos<br />

experimentos establecieron c<strong>la</strong>ramente que: (i) <strong>la</strong><br />

CPT-l está constituida por un único polipéptido en<br />

el que resi<strong>de</strong>n tanto el dominio catalítico como el<br />

inhibidor y, (u) que <strong>la</strong> CPT-[ y <strong>la</strong> CPT-ll son proteínas<br />

diferentes. A diferencia <strong>de</strong> lo que ocurre con<br />

<strong>la</strong> CPT-Il, que presenta una secuencia señal en el<br />

amino terminal para po<strong>de</strong>r ser transportada al interior<br />

<strong>de</strong> <strong>la</strong> mitocondria, <strong>la</strong> CPT-I al igual que otras<br />

proteínas <strong>de</strong> <strong>la</strong> membrana mitocondrial externa,<br />

carece <strong>de</strong> esa secuencia (Brown el al., 1994).<br />

A partir <strong>de</strong>l cONA <strong>de</strong> <strong>la</strong> CPT-I <strong>de</strong> hígado <strong>de</strong><br />

rata fue posible ais<strong>la</strong>r su equivalente en una genoteca<br />

<strong>de</strong> cDNA <strong>de</strong> hígado humano (Brition el a!,<br />

1995). Al igual que ocurría en el caso <strong>de</strong> <strong>la</strong> CPT-1l


Can¡tu/o 1 introducción<br />

Ca ractenstica<br />

Peso Molecu<strong>la</strong>r<br />

1C 50 para el Malonil-CoA<br />

K,,, para <strong>la</strong> Carnitina<br />

Cromosoma humano<br />

Expresión en tejidos<br />

Hígado<br />

Músculo esquelético<br />

Corazón<br />

Rifión<br />

Pulmón<br />

Bazo<br />

Intestino<br />

Páncreas<br />

Adiposo (pardo)<br />

Adiposo (b<strong>la</strong>nco)<br />

Ovario<br />

Testículos<br />

Fibrob<strong>la</strong>stos humanos<br />

Deficiencia humana <strong>de</strong>scrita<br />

L-CPT 1 M-CPT 1 CPT II<br />

88 KDa<br />

~25 ¡.tM<br />

~30kM<br />

1 1q13<br />

(+)<br />

+<br />

(+)<br />

+<br />

(+)<br />

Sí<br />

88 KDa<br />

0.03 ~.tM<br />

500 ~iM<br />

22q13.3<br />

(+)<br />

(+)<br />

(+)<br />

No<br />

70 KDa<br />

120 M<br />

Ip32<br />

Tab<strong>la</strong> 1. Características <strong>de</strong> <strong>la</strong>s CPT mitocondriales. Los niveles 3]etomoxir-CoA). re<strong>la</strong>tivos <strong>de</strong> expresión (+) en Solo cada trazas órganoestán en comparación basadoscon en<br />

análisis <strong>la</strong> isolbrma por nor¡hern alternativa. bicí (-) (yIn<strong>de</strong>tectable. en algunos casos Los datos por marcaje <strong>de</strong> expresión con [Hen<br />

tejidos se refieren a rata excepto en el caso <strong>de</strong> los<br />

tibrob<strong>la</strong>stos. La Km para <strong>la</strong> carnitina <strong>de</strong> <strong>la</strong> CPT-ll fue <strong>de</strong>terminada tras solubilización <strong>de</strong> <strong>la</strong>s mitocondrias en<br />

octilglucásido y portanto no <strong>de</strong>beser comparada directamente con los valores <strong>de</strong> CPT-I.<br />

tanto <strong>la</strong> secuencia obtenida a partir <strong>de</strong>l cDNA <strong>de</strong><br />

CPT-l humana como <strong>la</strong> estructura primaria (773<br />

aminoácidos) presentaron una gran homología (82<br />

y 88% <strong>de</strong> i<strong>de</strong>ntidad, respectivamente) con respecto<br />

a <strong>la</strong> enzima <strong>de</strong> rata.<br />

Músculo esquelético<br />

Que <strong>la</strong> CPT-l <strong>de</strong> hígado (L) y músculo (M)<br />

son proteínas diferentes se sospechaba <strong>de</strong>s<strong>de</strong> hacía<br />

ya tiempo ya que presentaban una sensibilidad a<br />

malonil-CoA muy diferente (lC 50~ 2.7 gM y 003<br />

en hígado y músculo esquelético, respectivamente)<br />

y valores muy diferentes <strong>de</strong> Km para <strong>la</strong><br />

carnitina (30 pM y 500 pM, respectivamente)<br />

(McGarry el al, 1983). Y a<strong>de</strong>más, tras su marcaje<br />

con inhibidores específicos <strong>de</strong> <strong>la</strong> CPT-l ambas<br />

proteínas migraban con pesos molecu<strong>la</strong>res aparentes<br />

distintos (88 KDa (L) y 82 KDa (M) (Woeltje<br />

el al., 1990a; Weis el al., 1994a). La donación <strong>de</strong>l<br />

gen <strong>de</strong> CPT-l <strong>de</strong> músculo esquelético (Yamazaki el<br />

a!, 1995; Esser el a!, 1996) confirmó que dicho<br />

tejido presenta, en efecto, una isoforma diferente<br />

10<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

<strong>de</strong> CPT-1 y cuyo peso molecu<strong>la</strong>r era sorpren<strong>de</strong>ntemente<br />

<strong>de</strong> 88 KDa. El hecho <strong>de</strong> que <strong>la</strong> isoforma<br />

hepática y muscu<strong>la</strong>r tengan movilida<strong>de</strong>s electrofo<br />

réticas tan diferentes, a pesar <strong>de</strong> poseer un peso<br />

molecu<strong>la</strong>r casi idéntico, se ha sugerido que se<br />

<strong>de</strong>be, más a <strong>la</strong> estructura primaria <strong>de</strong> <strong>la</strong> M-CPT 1<br />

que a posibles modificaciones postraduccionales<br />

<strong>de</strong> <strong>la</strong> misma (McGarry y Brown, 1997). Ambas<br />

isoformas presentan una amplia distribución<br />

en diferentes tejidos (McGarry y Brown, 1997)<br />

(Tab<strong>la</strong> 1). La isoforma L-CPT 1 es <strong>la</strong> principal (o<br />

única) en hígado, riflón, pulmón, bazo, intestino,<br />

ovario y pancreas (tanto en los islotes como en los<br />

acinos), mientras que <strong>la</strong> forma M-CPT 1 predomina<br />

en músculo esquelético y testículos. Especialmente<br />

interesante es el caso <strong>de</strong>l corazón, don<strong>de</strong> <strong>la</strong> isoforma<br />

<strong>de</strong> músculo se expresa mayoritariamente<br />

pero don<strong>de</strong> también hay una presencia significativa<br />

<strong>de</strong> <strong>la</strong> isoforma hepática (Weis et a!, 1994) que<br />

podría dar cuenta <strong>de</strong> <strong>la</strong>s propieda<strong>de</strong>s cinéticas<br />

intermedias que presentan <strong>la</strong>s preparaciones <strong>de</strong><br />

+<br />

+<br />

+<br />

+<br />

+<br />


Canítulo 1 Introducción<br />

corazón (en términos <strong>de</strong> 1C 50 para el malonil-CoA<br />

y Km para <strong>la</strong> camitina) con respecto a <strong>la</strong>s observadas<br />

en hígado y en músculo esquelético (McGarry<br />

eta!, 1983).<br />

Corre<strong>la</strong>ción estructurafunción<br />

Aunque todavía no se ha <strong>de</strong>terminado <strong>la</strong><br />

estructura <strong>de</strong> ninguna <strong>de</strong> <strong>la</strong>s CPT <strong>de</strong> forma inequívoca,<br />

sí existen datos aportados por estudios <strong>de</strong><br />

expresión en levaduras, por comparación <strong>de</strong> secuencias<br />

o por utilización <strong>de</strong> anticuerpos específicos<br />

frente a distintos dominios <strong>de</strong> estas proteínas<br />

que permiten conocer algunos datos acerca <strong>de</strong> <strong>la</strong><br />

topología <strong>de</strong> estas enzimas.<br />

Tonolog<strong>la</strong> en <strong>la</strong> membrana<br />

La CPT-1l se encuentra débilmente asociada<br />

a <strong>la</strong> cara interna <strong>de</strong> <strong>la</strong> membrana mitocondrial<br />

interna y pue<strong>de</strong> ser solubilizada fácilmente en su<br />

forma activa (Woeltje el aL, 1987). En concordancia<br />

con esta observación, <strong>la</strong> CPT-1l no presenta<br />

ninguna secuencia <strong>de</strong> aminoácidos indicativa <strong>de</strong> <strong>la</strong><br />

presencia <strong>de</strong> fragmentos transmembranares<br />

(Woeltje el a!, 1990b).<br />

La forma <strong>de</strong> asociación a <strong>la</strong> membrana externa<br />

mitocondrial <strong>de</strong> <strong>la</strong> CPT-l parece consi<strong>de</strong>rablemente<br />

diferente. El hecho <strong>de</strong> que <strong>la</strong> enzima no<br />

pueda solubilizarse en su forma activa mediante <strong>la</strong><br />

utilización <strong>de</strong> <strong>de</strong>tergentes suaves ya es indicativo<br />

-ooc<br />

citop<strong>la</strong>sma<br />

espacio intermenibrana<br />

<strong>de</strong> una fuerte asociación a <strong>la</strong> membrana. La secuencia<br />

<strong>de</strong>ducida tanto para <strong>la</strong> isoforma L como<br />

para <strong>la</strong> M <strong>de</strong> <strong>la</strong> CPT-1 dé rata contiene dos dominios<br />

hidrofóbicos entre los aminoácidos 53 y 75<br />

(HI) y 103 y 122 (H2). Aunque se ha cuestionado<br />

que Hl pudiera ser un fragmento transmembranar<br />

<strong>de</strong>bido a <strong>la</strong> presencia <strong>de</strong> dos prolinas en <strong>la</strong>s posiciones<br />

56 y 59 <strong>de</strong> <strong>la</strong> secuencia <strong>de</strong> aminoácidos <strong>de</strong><br />

<strong>la</strong> proteína (aminoácidos poco habituales en este<br />

tipo <strong>de</strong> dominios), diferentes datos parecen indicar<br />

que realmente adopta esta estructura. La presencia<br />

<strong>de</strong> 5 aminoácidos con carga positiva altamente<br />

conservados en el extremo amino terminal <strong>de</strong> <strong>la</strong><br />

secuencia HI, junto a <strong>la</strong> conservación <strong>de</strong> distribuciones<br />

<strong>de</strong> carga <strong>de</strong> un affiinoácido positivo y uno<br />

negativo en el extremo carboxilo terminal <strong>de</strong> dicho<br />

dominio, son características <strong>de</strong> proteínas <strong>de</strong> membrana<br />

que presentan el amino terminal hacia <strong>la</strong> cara<br />

citoplásmica (Kolodziej y Zammit, 1993). Así, se<br />

ha propuesto que <strong>la</strong> CPT-1 tendría dos fragmentos<br />

transmembranares (Hl y H2) <strong>de</strong> tal forma que<br />

tanto el extremo amino como el carboxilo terminal<br />

se situarían hacia <strong>la</strong> cara citoplásmica <strong>de</strong> <strong>la</strong> membrana<br />

mitocondrial externa y que el corto bucle <strong>de</strong><br />

27 aminoácidos que une Hl y H2, estaría situado<br />

hacia el espacio intermembrana (Fraser el a!,<br />

1997) (Fig 5). Dc acuerdo con esta hipótesis, una<br />

serie <strong>de</strong> estudios realizados con malonil-CoA y<br />

octanoil-CoA asociados a agarosa (para imposibilitar<br />

que pudiesen atravesar <strong>la</strong> membrana mitocon-<br />

Figura 5 Topología <strong>de</strong> <strong>la</strong> CPT-I en <strong>la</strong> memebrana mitocondrial externa. En <strong>la</strong> figura se exponen <strong>la</strong>s principales<br />

características <strong>de</strong> <strong>la</strong> topología <strong>de</strong> <strong>la</strong> CPT-l: (i) La proteína tiene dos fragmentos transmembranares (Hl y H2); tanto el<br />

extremo N como C terminal <strong>de</strong> <strong>la</strong> proteína están expuestos en <strong>la</strong> cara citosólica <strong>de</strong> <strong>la</strong> membrana mitocondrial externa.<br />

Las letras C, A’ yL, indican <strong>la</strong> localización <strong>de</strong> los fragmentos frente a los cuales se han <strong>de</strong>sarrol<strong>la</strong>do anticuerpos especíticos.<br />

11<br />

L


Cadhulo 1 Introducción<br />

drial externa) mostraba que ambos compuestos<br />

podian seguir actuando como inhibidor y sustrato<br />

<strong>de</strong> <strong>la</strong> CPT-1 respectivamente, indicando que <strong>la</strong><br />

localización <strong>de</strong> los dominios regu<strong>la</strong>dor y catalítico<br />

<strong>de</strong> <strong>la</strong> CPT-l es citosólica (Fraser, eta!, 1996).<br />

Sitios <strong>de</strong> unión <strong>de</strong>l sustrato y <strong>de</strong>l malonilCoA en <strong>la</strong><br />

CPT-l<br />

Si bien inicialmente se consi<strong>de</strong>ró que <strong>la</strong> inhibición<br />

<strong>de</strong> <strong>la</strong> actividad CPT-l que produce el malonil-CoA<br />

podría ser competitiva, diferentes análisis<br />

mostraron que, en gran parte, esa inhibición es<br />

alostérica (Cook el a!, 1994). El tratamiento <strong>de</strong><br />

mitocondrias <strong>de</strong> higado <strong>de</strong> rata con diferentes proteasas<br />

produce una pérdida <strong>de</strong> sensibilidad a malonil-CoA<br />

<strong>de</strong> <strong>la</strong> CPT-l sin que <strong>la</strong> actividad catalítica<br />

se vea afectada (Frasee/aL, 1996; Kashfi y Cook,<br />

1992), indicando que existen dos dominios diferentes,<br />

uno catalítico y otro alostérico, en <strong>la</strong> enzima.<br />

A<strong>de</strong>más, <strong>la</strong> presencia en el medio <strong>de</strong> malonil-<br />

CoA durante el tratamiento con proteasas previene<br />

tanto <strong>la</strong> <strong>de</strong>sensibilización como <strong>la</strong> inactivación <strong>de</strong><br />

<strong>la</strong> enzima (Kashfi y Cook, 1991). Se ha propuesto<br />

(ver apartado siguiente) que <strong>la</strong> presencia <strong>de</strong> malonil-CoA<br />

en el medio pue<strong>de</strong> inducir un cambio <strong>de</strong><br />

conformación en <strong>la</strong> CPT-l que favorezca <strong>la</strong> unión<br />

posterior <strong>de</strong>l propio malonil-CoA y que quizá haga<br />

a <strong>la</strong> enzima menos suceptible a <strong>la</strong> acción <strong>de</strong> <strong>la</strong>s<br />

proteasas (Zammit, 1996).<br />

La diferencia <strong>de</strong> tamaño existente entre <strong>la</strong><br />

CPT-l y <strong>la</strong> CPT-ll se <strong>de</strong>be fundamentalmente a <strong>la</strong><br />

presencia <strong>de</strong> un extremo amino terminal mucho<br />

más <strong>la</strong>rgo en <strong>la</strong> primera. Así, <strong>la</strong>s dos proteínas<br />

presentan una alta homología <strong>de</strong> secuencia excepto<br />

en los primeros 170 aminoácidos <strong>de</strong> <strong>la</strong> CPT-l, en<br />

los que se localizarían los dos fragmentos transmembranares<br />

que <strong>la</strong> CPT-ll no posee. Puesto que<br />

<strong>la</strong> diferencia más <strong>de</strong>stacable entre ambas proteínas<br />

estriba en <strong>la</strong> capacidad <strong>de</strong> ser inhibida por malonil-<br />

CoA <strong>de</strong> <strong>la</strong> CPT-l pero no <strong>de</strong> <strong>la</strong> CPT-1I, es posible<br />

especu<strong>la</strong>r que el dominio <strong>de</strong> unión para malonil-<br />

CoA pudiera residir en ese extremo amino terminal<br />

<strong>de</strong> <strong>la</strong> CPT-1, mientras que el centro activo se encontraría<br />

en el extremo carboxilo terminal común<br />

con <strong>la</strong> CPT-ll. Diferentes datos apoyan esta hipótesis.<br />

Así, <strong>la</strong> expresión en levaduras <strong>de</strong> una L-CPT<br />

1 truncada a <strong>la</strong> que faltaban los primeros 82 aminoácidos<br />

y que presenta una notable disminución<br />

en <strong>la</strong> sensibilidad a malonil-CoA (lC 50~80 pM para<br />

<strong>la</strong> proteína truncada y 5 ¡iM para <strong>la</strong> nativa) (Brown<br />

eta!, 1994) indica que el extremo amino terminal<br />

podría estar implicado <strong>de</strong> alguna manera en <strong>la</strong><br />

formación <strong>de</strong>l dominio <strong>de</strong> unión a malonil-CoA.<br />

De acuerdo con esto, el tratamiento con proteinasa<br />

K <strong>de</strong> mitocondrias <strong>de</strong> hígado escin<strong>de</strong> el extremo<br />

amino terminal <strong>de</strong> <strong>la</strong> CPT-1 produciendo una pérdida<br />

<strong>de</strong> sensibilidad a malonil-CoA. Sin embargo,<br />

cuando <strong>la</strong> proteinasa K tiene acceso también a <strong>la</strong><br />

cara interna <strong>de</strong> <strong>la</strong> membrana mitocondrial externa,<br />

12<br />

<strong>la</strong> pérdida <strong>de</strong> sensibilidad a malonil-CoA <strong>de</strong> <strong>la</strong><br />

CPT-I es bastante más rápida, indicando que otras<br />

interacciones entre los dominios amino terminal y<br />

carboxilo terminal, entre el dominio Hl y <strong>la</strong> membrana,<br />

y/o entre los dominios Hl y H2 podrían<br />

estar implicadas en <strong>de</strong>terminar <strong>la</strong> sensibilidad <strong>de</strong> <strong>la</strong><br />

CPT-1 a malonil-CoA (Fraser el a!, 1997). El<br />

hecho <strong>de</strong> que ambos dominios sean importantes a<br />

<strong>la</strong> hora <strong>de</strong> <strong>de</strong>terminar <strong>la</strong> función <strong>de</strong> <strong>la</strong> enzima se<br />

apoya también en <strong>la</strong> observación <strong>de</strong> que, aunque el<br />

dominio catalítico <strong>de</strong> <strong>la</strong> CPT-l parece residir en el<br />

gran extremo carboxilo terminal <strong>de</strong> <strong>la</strong> enzima, <strong>la</strong><br />

rotura <strong>de</strong>l extremo amino terminal por proteinasa<br />

K también induce una fuerte disminución <strong>de</strong> <strong>la</strong><br />

actividad catalítica (Fraser el a!, 1997)<br />

Regu<strong>la</strong>ción a corto p<strong>la</strong>zo<br />

Regu<strong>la</strong>ción por malonil-CoA<br />

Hipado<br />

El <strong>de</strong>scubrimiento <strong>de</strong> <strong>la</strong> inhibición <strong>de</strong> <strong>la</strong><br />

CPT-I por malonil-CoA (McGarry el a!, 1977;<br />

Mcúarry el a!, 1978; McGarry y Foster, 1980)<br />

atrajo una enorme atención hacia el estudio <strong>de</strong> <strong>la</strong><br />

regu<strong>la</strong>ción <strong>de</strong> esta enzima. Como se menciona en<br />

el apartado <strong>de</strong> síntesis <strong>de</strong> novo <strong>de</strong> ácidos grasos, el<br />

malonil-CoA es precisamente el producto <strong>de</strong> <strong>la</strong><br />

reacción catalizada por <strong>la</strong> ACC, que constituye <strong>la</strong><br />

etapa limitante <strong>de</strong> <strong>la</strong> síntesis <strong>de</strong> ácidos grasos<br />

(Geelen el a!, 1980; Wakil el aL, 1983). De esta<br />

manera, se consigue un control coordinado <strong>de</strong> <strong>la</strong><br />

síntesis y <strong>la</strong> oxidación <strong>de</strong> ácidos grasos en el hígado<br />

(McGarry y Foster, 1980; Zammit, 1984).<br />

Puesto que los niveles <strong>de</strong> malonil-CoA en <strong>la</strong> célu<strong>la</strong><br />

son <strong>de</strong>pendientes <strong>de</strong> <strong>la</strong> actividad ACC, se ven<br />

afectados notablemente por los cambios a corto<br />

p<strong>la</strong>zo que diferentes mecanismos producen sobre<br />

dicha actividad enzimática (Zammit, 1994). Así,<br />

los niveles <strong>de</strong> malonil-CoA hepáticos se ven afectados<br />

por alteraciones en el estado hormonal y<br />

nutricional <strong>de</strong>l animal (McGarry y Foster, 1980;<br />

Zammit, 1984). Especialmente <strong>de</strong>terminante en <strong>la</strong><br />

actividad ACC y en los niveles <strong>de</strong> malonil-CoA, y<br />

por tanto en <strong>la</strong> actividad CPT-l, es el cociente<br />

insulina/glucagón. Cuando este cociente es alto, los<br />

niveles <strong>de</strong> malonil-CoA también los son y <strong>la</strong> actividad<br />

CPT-1 está inhibida, y viceversa (Zammit,<br />

1994).<br />

Músculo esQuelético y corazón<br />

El <strong>de</strong>scubrimiento <strong>de</strong> que diferentes tejidos<br />

no lipogénicos, como el corazón y el músculo<br />

esquelético, también contienen malonil-CoA, y que<br />

sus niveles osci<strong>la</strong>n en función <strong>de</strong>l estado nutricional<br />

<strong>de</strong>l organismo indicaban que este metabolito<br />

también podría estar <strong>de</strong>sempeñando un importante<br />

papel regu<strong>la</strong>dor en otros tejidos (Saggerson, 1986).<br />

De hecho, <strong>la</strong> isoforma <strong>de</strong> CPT-I mayoritariamente


Capitulo 1 Introducción<br />

presente en músculo cardiaco y esquelético (M-<br />

CPT 1), es mucho más sensible a <strong>la</strong> presencia <strong>de</strong><br />

malonil-CoA que <strong>la</strong> isoforma hepática (Saggerson,<br />

1986). La i<strong>de</strong>a <strong>de</strong> que el malonil-CoA y <strong>la</strong> CPT-1<br />

constituyen un importante punto regu<strong>la</strong>dor <strong>de</strong>l<br />

metabolismo energético en músculo esquelético y<br />

en corazón fue confirmado por el <strong>de</strong>scubrimiento<br />

<strong>de</strong> que ambos tejidos contienen ACC. La isoforma<br />

<strong>de</strong> músculo esquelético y corazón es <strong>la</strong> <strong>de</strong> 280<br />

KDa (ó ACC2) distinta <strong>de</strong> <strong>la</strong> <strong>de</strong> 265 (ó ACCI)<br />

mayoritaria en hígado (Thampy, ¡989; Bianchi el<br />

al., 1990). Diversos experimentos han llevado a <strong>la</strong><br />

conclusión <strong>de</strong> que los niveles <strong>de</strong> malonil-CoA en<br />

corazón <strong>de</strong>pen<strong>de</strong>n principalmente <strong>de</strong> <strong>la</strong> disponibilidad<br />

<strong>de</strong> acetil-CoA citosólico, <strong>de</strong> forma que el<br />

papel <strong>de</strong>l malonil-CoA sería el <strong>de</strong> regu<strong>la</strong>dor <strong>de</strong> <strong>la</strong><br />

CPT-l más que el <strong>de</strong> precursor para <strong>la</strong> síntesis <strong>de</strong><br />

ácidos grasos (Awan y Saggerson, 1993; Saddik el<br />

al?, 1993; Lopaschuk el a!, 1994; Kudo el a!,<br />

1995; Ha el a!, 1996; Stanley el a!, 1996). La<br />

situáción en músculo esquelético es menos c<strong>la</strong>ra y<br />

aún existen datos contradictorios con respecto al<br />

posible papel que el malonil-CoA pudiera estar<br />

<strong>de</strong>sempeñando en este tejido (McGarry y Brown,<br />

1997).<br />

Célu<strong>la</strong> 5<br />

Un tercer tipo celu<strong>la</strong>r extrahepático en el que<br />

<strong>la</strong> regu<strong>la</strong>ción <strong>de</strong> <strong>la</strong> CPT-l mediada por malonil-<br />

CoA parece tener un papel fisiológico importante<br />

es <strong>la</strong> célu<strong>la</strong> 13 <strong>de</strong>l pancreas. Se ha propuesto que<br />

tras un incremento <strong>de</strong> <strong>la</strong> concentración <strong>de</strong> glucosa<br />

en sangre, este azúcar es metabolizado por <strong>la</strong> célu<strong>la</strong><br />

13 a través <strong>de</strong> <strong>la</strong> ruta glicolítica, <strong>de</strong> tal forma<br />

que parte <strong>de</strong>l piruvato sería <strong>de</strong>sviado hacia <strong>la</strong> síntesis<br />

<strong>de</strong> malonil-CoA. Este malonil-CoA inhibiría a<br />

<strong>la</strong> CPT-l, lo que provocaría una acumu<strong>la</strong>ción <strong>de</strong><br />

acil-CoAs <strong>de</strong> ca<strong>de</strong>na <strong>la</strong>rga en el citop<strong>la</strong>sma <strong>de</strong> <strong>la</strong><br />

célu<strong>la</strong> ¡3. Se ha propuesto que estos acil-CoA actúan<br />

estimu<strong>la</strong>ndo <strong>la</strong> exocitosis <strong>de</strong> los gránulos <strong>de</strong><br />

insulina acumu<strong>la</strong>dos en estas célu<strong>la</strong>s (Newgard y<br />

McGarry, 1995; McGarry y Brown, 1997). De esta<br />

forma, el malonil-CoA y <strong>la</strong> CPT-1 podrían también<br />

<strong>de</strong>sempeñar una función esencial en el mecanismo<br />

implicado en <strong>la</strong> secreción <strong>de</strong> insulina.<br />

Sensibilidad a malonil-CoA<br />

El malonil-CoA, por si mismo, no solo inhibe<br />

<strong>la</strong> actividad CPT-l, sino que también podría <strong>de</strong>terminar<br />

<strong>la</strong> sensibilidad <strong>de</strong> <strong>la</strong> CI’T-l a <strong>la</strong> inhibición<br />

por malonil-CoA. De esta manera, tanto <strong>la</strong> preincubación<br />

<strong>de</strong> hepatocitos intactos con agentes que<br />

incrementan los niveles intracelu<strong>la</strong>res <strong>de</strong> malonil-<br />

CoA (Guzmán y Castro, 1989b) como <strong>la</strong> exposición<br />

<strong>de</strong> mitocondrias ais<strong>la</strong>das <strong>de</strong> hepatocitos a<br />

concentraciones fisiológicas <strong>de</strong> malonil-CoA<br />

(Zammit, 1983) hacen que <strong>la</strong> CPT-l sea más sensible<br />

al malonil-CoA en el posterior ensayo. Es más,<br />

13<br />

se ha observado una fuerte corre<strong>la</strong>ción entre <strong>la</strong><br />

sensibilidad <strong>de</strong> <strong>la</strong> CPT-1 hepática a <strong>la</strong> inhibición<br />

por malonil-CoA y <strong>la</strong> concentración <strong>de</strong> malonil-<br />

CoA a <strong>la</strong> que <strong>la</strong> enzima está expuesta hz vivo antes<br />

<strong>de</strong>l ais<strong>la</strong>miento <strong>de</strong> <strong>la</strong>s mitocondrias para el ensayo<br />

enzimático (Robinson y Zammit, 1982). Estas<br />

observaciones sugieren que este fenómeno podría<br />

también constituir <strong>la</strong> base <strong>de</strong> un importante mecanismo<br />

regu<strong>la</strong>dor a través <strong>de</strong>l cual <strong>la</strong> respuesta <strong>de</strong> <strong>la</strong><br />

CPT-l a pequeños cambios en <strong>la</strong> concentración <strong>de</strong><br />

malonil-CoA hepático pudiera verse amplificada<br />

(Zammit, 1994).<br />

En cualquier caso, <strong>la</strong> importancia fisiológica<br />

<strong>de</strong> este mecanismo está ampliamente admitida, ya<br />

que en diferentes situaciones fisiopatológicas <strong>la</strong><br />

sensibilidad <strong>de</strong> <strong>la</strong> CPT-l a malonil-CoA se ve modificada.<br />

Así, los cambios inducidos por <strong>la</strong> dieta y<br />

el estado hormonal en el flujo a través <strong>de</strong> <strong>la</strong> ruta<br />

oxidativa <strong>de</strong> los ácidos grasos están normalmente<br />

acompañados por variaciones parale<strong>la</strong>s en <strong>la</strong> actividad<br />

específica y <strong>la</strong> sensibilidad a malonil-CoA <strong>de</strong><br />

<strong>la</strong> CPT-1 <strong>de</strong> hígado <strong>de</strong> rata. Por ejemplo en estados<br />

cetóticos tales como el ayuno (Bremer, 1981),<br />

diabetes (Cook y Gamble, 1987; Grantham y<br />

Zammit, 1988) e hipertiroidismo (Stakkestad y<br />

Bremer, 1983), <strong>la</strong> actividad específica <strong>de</strong> <strong>la</strong> CPT-l<br />

aumenta, mientras que <strong>la</strong> sensibilidad <strong>de</strong> <strong>la</strong> enzima<br />

a inhibición por malonil-CoA disminuye. Por el<br />

contrario, en estados lipogénicos tales como hipotiroidismo<br />

(Saggerson y Carpenter, 1986), realimentación<br />

tras el ayuno (Grantham y Zammit,<br />

1986) o alimentación crónica con etanol (Guzmán<br />

el a!, 1987) ocurre lo contrario. La importancia <strong>de</strong><br />

<strong>la</strong> sensibilidad a malonil-CoA <strong>de</strong> <strong>la</strong> CPT-l en el<br />

control <strong>de</strong> <strong>la</strong> oxidación <strong>de</strong> ácidos grasos <strong>de</strong> ca<strong>de</strong>na<br />

<strong>la</strong>rga ha sido inequivocamente <strong>de</strong>mostrada en hepatocitos<br />

ais<strong>la</strong>dos (Prip-Buus el a!, 1990).<br />

Cambios conformacionales y malonil-CoA<br />

La posibilidad <strong>de</strong> que puedan existir diferentes<br />

conformaciones en <strong>la</strong> CPT-l re<strong>la</strong>cionadas<br />

con <strong>la</strong> unión <strong>de</strong> malonil-CoA ha venido sugerida<br />

por una serie <strong>de</strong> observaciones, por ejemplo, <strong>la</strong><br />

sensibilización a malonil-CoA <strong>de</strong> <strong>la</strong> CPT-1 inducida<br />

por <strong>la</strong> preincubación en presencia <strong>de</strong> concentraciones<br />

fisiológicas <strong>de</strong> malonil-CoA se mantiene<br />

cuando <strong>la</strong>s mitocondrias se incuban a 4<br />

0C (aún en<br />

ausencia <strong>de</strong> malonil-CoA) mientas que <strong>la</strong> incubación<br />

<strong>de</strong> <strong>la</strong> enzima durante unos minutos a 370C<br />

revierte completamente esta sensibilización a malonil-CoA<br />

(Zammit, 1983; Zamndt el a!, 1984).<br />

A<strong>de</strong>más, <strong>la</strong> unión <strong>de</strong> malonil-CoA a <strong>la</strong> enzima<br />

parece inducir un fuerte cambio conformacional<br />

puesto que su presencia protege a <strong>la</strong> enzima <strong>de</strong> <strong>la</strong><br />

acción <strong>de</strong> proteasas (Kashfi y Cook, 1992).<br />

Se ha propuesto que <strong>la</strong> CPT-l podría adoptar<br />

diferentes conformaciones en un comportamiento<br />

que ha sido sugerido para otras enzimas monoméricas<br />

(Ricard el a!, 1974). De esta forma <strong>la</strong> unión


Canítulo 1 Introduccián<br />

<strong>de</strong>l malonil-CoA produciría un cambio conformacional<br />

que a<strong>de</strong>más facilitaría <strong>la</strong> unión posterior <strong>de</strong><br />

otra molécu<strong>la</strong> <strong>de</strong> malonil-CoA (Fig. 6). El pH<br />

(Fafournoux e al., 1987) o <strong>la</strong> composición lipídica<br />

<strong>de</strong> <strong>la</strong> membrana (Zammit, 1994) podrían contribuir<br />

asimismo a <strong>de</strong>terminar <strong>la</strong> conformación <strong>de</strong> <strong>la</strong> enzima<br />

en <strong>la</strong> membrana mitocondrial externa y por<br />

tanto, su sensibilidad a malonil-CoA.<br />

Regu<strong>la</strong>ción in<strong>de</strong>pendiente <strong>de</strong> malonil-CoA<br />

Durante bastante tiempo se consi<strong>de</strong>ró que el<br />

único mecanismo <strong>de</strong> regu<strong>la</strong>ción a corto p<strong>la</strong>zo <strong>de</strong> <strong>la</strong><br />

actividad CPT-l seria aquel <strong>de</strong>pendiente <strong>de</strong> los<br />

M-CoA<br />

Activa<br />

M CeA<br />

3 7o~<br />

©<br />

t<br />

Mal-CoA<br />

agonistas. Por ejemplo, <strong>la</strong> insulina y el éster <strong>de</strong><br />

forbol 4¡3-forbol 1213-miristato l3ct-acetato (PMA)<br />

inhiben <strong>la</strong> actividad CPT-l, mientras que el yanadato,<br />

el ácido okadaico y los agentes que incrementan<br />

los niveles <strong>de</strong> cAMP tienen el efecto<br />

opuesto (Guzmán y Geelen, 1988; Guzmán y Castro,<br />

1990; Guzmán y Geelen, 1992). En todos estos<br />

estudios se observó una re<strong>la</strong>ción cualitativa entre<br />

los cambios en <strong>la</strong> actividad CPT-I y los cambios en<br />

<strong>la</strong> velocidad <strong>de</strong> oxidación mitocondrial <strong>de</strong> palmitato,<br />

confirmando que <strong>la</strong> CPT-l es una enzima<br />

c<strong>la</strong>ve en el control <strong>de</strong> <strong>la</strong> oxidación <strong>de</strong> ácidos grasos<br />

<strong>de</strong> ca<strong>de</strong>na <strong>la</strong>rga por mitocondrias hepáticas (Tab<strong>la</strong><br />

2). Es importante resaltar que el ensayo <strong>de</strong> <strong>la</strong> acti-<br />

4 0C<br />

Mal-CoA<br />

M-CoA<br />

Figura 6. La CPT-l podría sufrir cambios conformacionales en función <strong>de</strong> <strong>la</strong> existencia o no <strong>de</strong> malonil-CoA en el<br />

medio. La CPT-í podría adoptar al menos dos conformaciones diferentes en función <strong>de</strong> <strong>la</strong> presencia <strong>de</strong> malonil-CoA en el<br />

medio. Abreviaturas: M-CoA, malonil-CoA; It conformación re<strong>la</strong>jada (más activa); T, conformaci\n tensa (menos<br />

activa).<br />

niveles <strong>de</strong> malonil-CoA que como hemos visto<br />

anteriormente <strong>de</strong>terminan tanto <strong>la</strong> actividad catalítica<br />

<strong>de</strong> <strong>la</strong> enzima como su sensibilidad al propio<br />

malonil-CoA. Ésto podría ser <strong>de</strong>bido al hecho <strong>de</strong><br />

que <strong>la</strong> modu<strong>la</strong>ción a corto p<strong>la</strong>zo <strong>de</strong> <strong>la</strong> CPT-l se<br />

perdiera durante el proceso <strong>de</strong> rotura celu<strong>la</strong>r y<br />

posterior ais<strong>la</strong>miento <strong>de</strong> <strong>la</strong>s mitocondrias para<br />

llevar a cabo el correspondiente ensayo enzimátíco.<br />

Sin embargo, <strong>la</strong> puesta a punto <strong>de</strong> métodos <strong>de</strong><br />

<strong>de</strong>terminación <strong>de</strong> <strong>la</strong> actividad CPT lii situ mediante<br />

<strong>la</strong> utilización <strong>de</strong> célu<strong>la</strong>s permeabilizadas (Stephens<br />

y Harris, 1987; Guzmán y Geelen, 1988) (Fig. 7)<br />

permitió <strong>de</strong>mostrar que <strong>la</strong> CPT-I hepática se hal<strong>la</strong><br />

contro<strong>la</strong>da a corto p<strong>la</strong>zo por diferentes tipos <strong>de</strong><br />

14<br />

vidad CPT-I en célu<strong>la</strong>s permeabilizadas implica<br />

una notoria dilución <strong>de</strong>l, contenido <strong>de</strong>l citop<strong>la</strong>sma<br />

celu<strong>la</strong>r en el medio <strong>de</strong> ensayo y con ello <strong>de</strong>l malonil-CoA<br />

presente en el mismo, por lo que los cambios<br />

observados en <strong>la</strong> actividad CPT-l no se <strong>de</strong>berían<br />

a modificaciones en los niveles <strong>de</strong> malonil-<br />

CoA, sino a otro(s) posible(s) mecanismo(s) implicado(s)<br />

en <strong>la</strong> regu<strong>la</strong>ción a corto p<strong>la</strong>zo <strong>de</strong> <strong>la</strong> CPT-1.<br />

Dado que diversos agonistas capaces <strong>de</strong> modificar<br />

a corto píazo <strong>la</strong> actividad CPT-I, como por ejemplo<br />

el glucagón (que incrementa los niveles intracelu<strong>la</strong>res<br />

<strong>de</strong> cAMP, induciendo así <strong>la</strong> activación <strong>de</strong><br />

<strong>la</strong> PKA) median su acción a través <strong>de</strong> <strong>la</strong> activación<br />

<strong>de</strong> proteínas quinasas, se especuló con <strong>la</strong> posibili-


Capitulo ¡<br />

A B<br />

1<br />

Permeabilización y<br />

ensayo<br />

P-CoA<br />

c<br />

Introducción<br />

\Permeabilizacióne<br />

1<br />

1<br />

\Homogeneización<br />

) Ensayo<br />

P-CoA<br />

~N. ~ Carnitina<br />

.5 ¿<br />

) Ais<strong>la</strong>miento<br />

~PCoA<br />

2<br />

<strong>de</strong><br />

Carnitina<br />

3<br />

Ensayo<br />

niitocondrias<br />

Figura 7. Esquema <strong>de</strong> los diferentes tipos <strong>de</strong> ensayo <strong>de</strong> actividad CPT-l. Cuando <strong>la</strong> actividad CPT-l es <strong>de</strong>terminada tras<br />

el ais<strong>la</strong>miento <strong>de</strong> mitocondrias, (método C), <strong>la</strong>s modificaciones que diferentes agonistas pue<strong>de</strong>n inducir en dicha actividad<br />

enzimática se pier<strong>de</strong>n. Por el contrario, <strong>la</strong> utilización <strong>de</strong> los métodos <strong>de</strong> penneabilización con digitonina, directo (A) o<br />

indirecto (B), permiten establecer los cambios que estos compuestos inducen a corto píazo en <strong>la</strong> actividad CPT-l.<br />

dad <strong>de</strong> que <strong>la</strong> CPT-l pudiera ser directamente fosfori<strong>la</strong>da<br />

por acción <strong>de</strong> algunas <strong>de</strong> estas quinasas<br />

(Harano el al., 1985). A<strong>de</strong>más, el ácido okadaico,<br />

un compuesto que inhibe <strong>la</strong>s proteínas fosfatasas 1<br />

y 2A, produciendo así un fuerte aumento en el<br />

grado <strong>de</strong> fosfori<strong>la</strong>ción <strong>de</strong> numerosas proteínas<br />

celu<strong>la</strong>res, induce asimismo una notable estimu<strong>la</strong>ción<br />

<strong>de</strong> <strong>la</strong> actividad CPT-l (Guzmán y Castro,<br />

1991; Guzmán y Geelen, 1992). Sin embargo,<br />

diversos experimentos <strong>de</strong>mostraron que <strong>la</strong> CPT-l<br />

no es directamente fosfori<strong>la</strong>da ni por acción <strong>de</strong> <strong>la</strong><br />

¡‘KA ni <strong>de</strong> <strong>la</strong> AMPK (Guzmán el a!, 1994), indicando<br />

que <strong>la</strong>s modificaciones a corto píazo <strong>de</strong> <strong>la</strong><br />

actividad CPT-l <strong>de</strong>ben estar mediadas a través <strong>de</strong><br />

otro(s) mecanismo(s). La c<strong>la</strong>rificación <strong>de</strong> esos<br />

posibles mecanismos es el principal objetivo <strong>de</strong> <strong>la</strong><br />

presente memoria.<br />

Regu<strong>la</strong>ción a <strong>la</strong>rgo p<strong>la</strong>zo<br />

El estudio <strong>de</strong> <strong>la</strong> regu<strong>la</strong>ción <strong>de</strong> <strong>la</strong> expresión<br />

<strong>de</strong> los genes <strong>de</strong> <strong>la</strong>s CPT aún no se ha llevado a<br />

cabo en profundidad y hasta el momento se ha<br />

restringido al estudio <strong>de</strong> cómo diversos factores<br />

15<br />

y<br />

nutricionales y hormonales pue<strong>de</strong>n afectar a <strong>la</strong><br />

expresión <strong>de</strong> <strong>la</strong>s CPT <strong>de</strong> hígado <strong>de</strong> rata. Se sabe<br />

que diferentes situaciones que estimu<strong>la</strong>n <strong>la</strong> cetogénesis<br />

en hígado, tales corno el ayuno, <strong>la</strong> diabetes, el<br />

hipertiroidismo o el tratamiento con agentes proliferadores<br />

<strong>de</strong> peroxisomas, inducen tanto un aumento<br />

en los niveles <strong>de</strong> proteína inmunorreactiva<br />

como <strong>de</strong> mRNA <strong>de</strong> CPT-l y CPT-Il (Kolodziej el<br />

a!, 1992; Park el aL, 1995; McGarry y Brown,<br />

1997). Otra situación fisiológica que afecta <strong>de</strong><br />

manera selectiva a <strong>la</strong> expresión <strong>de</strong> los genes <strong>de</strong><br />

CPT-l y CPT-I1 se produce durante el periodo<br />

perinatal en <strong>la</strong> rata. En el hígado fetal, tanto los<br />

niveles <strong>de</strong> mRNA como <strong>la</strong> actividad CPT-1 son<br />

muy bajos en el periodo anterior al nacimiento. Sin<br />

embargo, ambos aumentan bruscamente durante el<br />

primer día <strong>de</strong> vida extrauterina y permanecen elevados<br />

durante todo el periodo <strong>de</strong> <strong>la</strong>ctancia<br />

(Saggerson y Carpenter, 1982; Thumelin el al.,<br />

1994; Asins el a!, 1995). Tras el <strong>de</strong>stete, <strong>la</strong> transcripción<br />

<strong>de</strong>l gen <strong>de</strong> <strong>la</strong> CPT-I se ve fuertemente<br />

atenuado si se suministra a <strong>la</strong> cría una dieta rica en<br />

hidratos <strong>de</strong> carbono, mientras que si <strong>la</strong> dieta es rica<br />

en grasas los niveles <strong>de</strong> mRNA <strong>de</strong> CPT-1 se man-


Capitulo ¡<br />

Introducción<br />

Preincubación Actividad CPT-I (%) Oxidación <strong>de</strong> palmitato (%)<br />

Sin adiciones 100 100<br />

Glucagón 10 nM<br />

Dibutiril cAMP 50 iiM<br />

Forskolina 50 kM<br />

Insulina 85 nM<br />

EGF 100 nM<br />

Vasopresina 100 nM<br />

¡‘MA 1 ¡.tM<br />

127±7a<br />

l 3l±3b<br />

84±8a<br />

86±4a<br />

ss±ía<br />

86±3a<br />

82±7a 88±3<br />

1<br />

Vanadato2mM l4S±l6b 142±11<br />

Etanol 20 mM<br />

Acetal<strong>de</strong>hido<br />

73±11”<br />

81±6a<br />

66±8” b<br />

71±11<br />

Acido okadaico 0.5 pM 154±15” 149±12”<br />

Tab<strong>la</strong> 2. Efecto <strong>de</strong> diferentes agonistas sobre <strong>la</strong> actividad CPT-I <strong>la</strong> oxidación <strong>de</strong> palínitato. Después <strong>de</strong> un periodo<br />

<strong>de</strong> incubación <strong>de</strong> 10-30 mm. en ausencia o presencia <strong>de</strong> <strong>la</strong>s adiciones indicadas, se tomaron alícuotas <strong>de</strong> <strong>la</strong>s suspensiones<br />

<strong>de</strong> bepatocitos para <strong>de</strong>terminar <strong>la</strong> actividad CPT-l en hepatocitos perineabilizados con digitonina y <strong>la</strong> velocidad <strong>de</strong><br />

oxidación <strong>de</strong> palmitato en hepatocitos intactos. Significativamente diferente <strong>de</strong> <strong>la</strong>s incubaciones sin adiciones: ‘P-


Capitulo 1<br />

siblemente por etomoxir-CoA. La forma soluble no<br />

presenta este tipo <strong>de</strong> regu<strong>la</strong>ción, a semejanza <strong>de</strong> lo<br />

que ocurre con <strong>la</strong> CPT-ll (Lilly er a!, 1990; Murthy<br />

y Pan<strong>de</strong>, 1994a; Broadway Saggerson, 1995).<br />

A pesar <strong>de</strong> su aparente similitud funcional con <strong>la</strong><br />

CPT-l (88 KDa), <strong>la</strong> enzima unida a membrana es<br />

una proteína diferente (47 KDa), al igual que ocurre<br />

con <strong>la</strong> forma soluble (54 KDa), que difiere <strong>de</strong><br />

<strong>la</strong> CPT-ll (71 KDa). A<strong>de</strong>más, <strong>la</strong> forma asociada a<br />

membrana parece ser idéntica a una proteína <strong>de</strong><br />

estrés (GRP5S) cuyo cONA había sido previamente<br />

donado (Murthy y Pan<strong>de</strong>, 1994b).<br />

En cuanto al posible papel que <strong>la</strong>s CPT microsomales<br />

pudieran <strong>de</strong>sempeñar se ha propuesto<br />

que pudieran intervenir en <strong>la</strong> aci<strong>la</strong>ción <strong>de</strong> proteínas<br />

<strong>de</strong>stinadas a <strong>la</strong> secreción y/o al ensamb<strong>la</strong>je <strong>de</strong><strong>la</strong>s<br />

VLDL (Broadway y Saggerson, 1995). Puesto que<br />

este proceso podría ocurrir, al menos en parte, en<br />

el interior <strong>de</strong>l retículo endoplásmico, el aporte <strong>de</strong><br />

acil-CoA al lumen <strong>de</strong> dicho orgánulo podría requerir<br />

<strong>de</strong> una CPT implicada en el proceso <strong>de</strong> transporte<br />

<strong>de</strong> los acil-CoA a través <strong>de</strong> <strong>la</strong> membrana <strong>de</strong>l<br />

retículo endop<strong>la</strong>smico.<br />

En los peroxisomas también parecen existir<br />

dos activida<strong>de</strong>s CPT. Al igual que ocurre en el<br />

caso <strong>de</strong> los microsomas, existe una actividad CPT<br />

insensible a malonil-CoA (Derrick y Ramsay,<br />

1989) que, dada su preferencia por acil-CoA <strong>de</strong><br />

ca<strong>de</strong>na intermedia como sustratos ha sido <strong>de</strong>nominada<br />

camitina octanoiltransferasa (COT). Esta<br />

proteína, pue<strong>de</strong> ser solubilizada en forma activa<br />

con cierta facilidad, pero difiere en su peso molecu<strong>la</strong>r<br />

(~63 KDa) estructura primaria y reconocimiento<br />

por anticuerpos <strong>de</strong> <strong>la</strong>s otras dos CPT insensibles<br />

a malonil-CoA (<strong>la</strong> CPT-ll y <strong>la</strong> CPT soluble<br />

<strong>de</strong> micrósomas) (Ramsay, 1988;Pan<strong>de</strong> et aL,<br />

1992). También se ha <strong>de</strong>terminado <strong>la</strong> existencia <strong>de</strong><br />

una CPT sensible a malonil-CoA que estaría fuertemente<br />

unida a <strong>la</strong> membrana <strong>de</strong>l peroxisoma<br />

(Singh eta!, 1996). Actualmente se acepta que los<br />

peroxisomas no requieren <strong>de</strong> camitina para llevar a<br />

cabo <strong>la</strong> oxidación <strong>de</strong> acil-CoAs, por lo que se ha<br />

propuesto que <strong>la</strong> CPT <strong>de</strong> estos orgánulos podría<br />

estar implicada más bien en <strong>la</strong> exportación <strong>de</strong> acil-<br />

CoAs <strong>de</strong> ca<strong>de</strong>na intermedia, que son los principales<br />

productos <strong>de</strong> <strong>la</strong> oxidación <strong>de</strong> ácidos grasos en<br />

peroxisomas (Kunau et a!, 1995). Es en cualquier<br />

caso curioso que <strong>la</strong>s mitocondrias, el retículo endoplásmico<br />

y los peroxisomas compartan un sistema<br />

simi<strong>la</strong>r <strong>de</strong> transporte <strong>de</strong> ácidos grasos a pesar<br />

<strong>de</strong> que <strong>la</strong>s proteínas que constituyen dichos sistemas<br />

sean tan diferentes.<br />

OBJETIVOS Y CONTENIDO<br />

El hígado <strong>de</strong>sempeña una función fundamental<br />

en <strong>la</strong> distribución <strong>de</strong> sustratos a los distintos<br />

tejidos <strong>de</strong>l organismo (Capítulo 1). En lo que al<br />

17<br />

Introducción<br />

metabolismo <strong>de</strong> ácidos grasos se refiere, el hígado<br />

pue<strong>de</strong> llevar a cabo <strong>la</strong> síntesis y oxidación <strong>de</strong> estas<br />

molécu<strong>la</strong>s, así como su exportación a otros tejidos<br />

<strong>de</strong>l organismo. De esta manera, <strong>la</strong> coordinación <strong>de</strong><br />

todos esos procesos <strong>de</strong>pen<strong>de</strong> <strong>de</strong> <strong>la</strong> acción <strong>de</strong> una<br />

serie <strong>de</strong> efectores celu<strong>la</strong>res, que son liberados en<br />

respuesta a diferentes situaciones fisiopatológicas.<br />

La principal etapa regu<strong>la</strong>dora <strong>de</strong>l flujo a<br />

través <strong>de</strong> <strong>la</strong> ruta <strong>de</strong> oxidación <strong>de</strong> ácidos grasos es<br />

<strong>la</strong> catalizada por <strong>la</strong> camitina palmitolitransferasa 1.<br />

Des<strong>de</strong> que en 1977 se <strong>de</strong>scubriera <strong>la</strong> inhibición<br />

mediada por malonil-CoA <strong>de</strong> <strong>la</strong> CPT-I este mecanismo<br />

que permite explicar <strong>la</strong> regu<strong>la</strong>ción coordinada<br />

<strong>de</strong> <strong>la</strong> síntesis y oxidación <strong>de</strong> ácidos grasos, ha<br />

sido consi<strong>de</strong>rado como el principal proceso implicado<br />

en <strong>la</strong> regu<strong>la</strong>ción a corto p<strong>la</strong>zo <strong>de</strong> <strong>la</strong> CPT-í.<br />

Sin embargo, estudios llevados a cabo en nuestro<br />

<strong>la</strong>boratorio a mediados <strong>de</strong> <strong>la</strong> década <strong>de</strong> los 80 con<br />

hepatocitos permeabilizados en los que es posible<br />

<strong>de</strong>terminar <strong>la</strong> actividad CPT-1 in situ sin necesidad<br />

<strong>de</strong> recurrir al ais<strong>la</strong>miento <strong>de</strong> mitocondrias, pusieron<br />

<strong>de</strong> manifiesto que diversos factores pue<strong>de</strong>n<br />

modificar <strong>la</strong> actividad <strong>de</strong> <strong>la</strong> CPT-l <strong>de</strong> manera estable<br />

e in<strong>de</strong>pendiente <strong>de</strong> malonil-CoA. Puesto que<br />

dichos experimentos no permitieron dilucidar el<br />

mecanismo implicado en <strong>la</strong> regu<strong>la</strong>ción in<strong>de</strong>pendiente<br />

<strong>de</strong> malonil-CoA <strong>de</strong> <strong>la</strong> CPT-1, en <strong>la</strong> presente<br />

Tesis Doctoral se ha llevado a cabo un estudio<br />

<strong>de</strong>tal<strong>la</strong>do sobre <strong>la</strong>s posib!es bases bioquímicas <strong>de</strong><br />

<strong>la</strong> regu<strong>la</strong>ción a corto p<strong>la</strong>zo e in<strong>de</strong>pendiente <strong>de</strong><br />

malonil-CoA <strong>de</strong> <strong>la</strong> CPT-1.<br />

En el primer bloque <strong>de</strong> resultados <strong>de</strong> este<br />

trabajo (Capítulo 2.1), se <strong>de</strong>scriben los efectos <strong>de</strong>l<br />

ATP extracelu<strong>la</strong>r y los cambios en el volumen<br />

celu<strong>la</strong>r sobre <strong>la</strong> actividad CPT-1 y <strong>la</strong> oxidación <strong>de</strong><br />

ácidos grasos que, en ambos casos parecen utilizar<br />

esta vía <strong>de</strong> regu<strong>la</strong>ción “in<strong>de</strong>pendiente <strong>de</strong> malonil-<br />

CoA”. Una vez que <strong>la</strong> existencia <strong>de</strong> esta regu<strong>la</strong>ción<br />

<strong>de</strong> <strong>la</strong> CPT-l pareció confirmarse, en un segundo<br />

bloque <strong>de</strong> resultados (Capitulo 2.2), estudiamos<br />

qué mecanismos intracelu<strong>la</strong>res podrían <strong>de</strong>terminar<br />

estas modificaciones <strong>de</strong> <strong>la</strong> actividad <strong>de</strong> <strong>la</strong> enzima.<br />

Para ello utilizamos el ácido okadaico como herramienta<br />

que permitiera establecer si en dicha<br />

regu<strong>la</strong>ción <strong>de</strong> <strong>la</strong> CPT-l estaban interviniendo procesos<br />

<strong>de</strong> fosfori<strong>la</strong>ción <strong>de</strong>sfosfori<strong>la</strong>ción. Por último<br />

en un tercer bloque (Capítulo 2.3) se apuntan <strong>la</strong>s<br />

posibles implicaciones fisiológicas <strong>de</strong> este mecanismo,<br />

tanto a nivel <strong>de</strong> su potencial implicación en<br />

procesos <strong>de</strong> . malignización celu<strong>la</strong>r como <strong>de</strong> su<br />

coordinación con el mecanismo <strong>de</strong>pendiente <strong>de</strong><br />

malonil-CoA ya previamente establecido. Finalmente,<br />

<strong>la</strong> presente memoria incluye una discusión<br />

general <strong>de</strong> los resultados obtenidos, en <strong>la</strong> que se<br />

exponen <strong>la</strong>s conclusiones finales <strong>de</strong>l trabajo realizado<br />

(Capitulo 3).


Canítulo ¡<br />

BIBLIOGRAFLA<br />

Abunirad, N.A., EI-Maghrabi, MR., Amri, EZ., López, E. y<br />

Crimaldi, PA. (1994)1. Biol. Chem, 268,17665-17668<br />

Agius, L., Peak, M. y Alberti, K.C.M.M. (1990) Biocl,em. J. 266,<br />

91-102<br />

Agius, L., Peak, M. y AI-Habori, M. (1991) Biochem. 1. 276,<br />

843-845<br />

Asios, O., Serra, D., Arias, O. y Hegardt, F.G. (1995) Bicchem. 5.<br />

306,379-384<br />

Awan, M.M. y Saggerson, ED. (1993) Biocbem. 1.295,61-66<br />

Baranyai, 1. y BIum, 1.1. (1989) Biochem. 1.258, 121-140<br />

Bennel, M.J. (1994) Clin. CI,im. Acta 226,211-224<br />

Beylot, M. (1996) Diabetes Metab, Rey. 22, 299-304<br />

Bianchi, A., Evans, iL.. Iverson, A.J,, Nordíviod, A.C., Watts, T.<br />

y Witters, L.A. (1990)1. Biol. Chem. 265, 1502-1509<br />

Bieber, L.L. (1988) Annu. Rey. Biocbem. 57,261-283<br />

Bijieveid, C. y Ce<strong>de</strong>n, Mil]. (1987) Biochim. Eiophys. Acta<br />

918,274-283<br />

Brilton, CH., Schulz, RA., Zhang, 8., Esser, V., Posta, D.W. y<br />

Mcf<strong>la</strong>rry, iD. (1995) Proc. NaIl. Acad. Sci, USA 92,1984-1988<br />

Bremer, 1. (1981) Biochim. Bicphys. Acta 665, 628-631<br />

Broadway, N.M. y Saggerson, ED. (1995) Biochem. 1., 310,<br />

989-995<br />

Brown, C.C. (3992) Biochemí, 284,1-13<br />

Brown, NF., Esser, y., Foster, D.W. y McOarry, iD. (1994) 1.<br />

Bici, Chem, 269,26438-26442<br />

Burger, EJ., Gebbardt, R., Mayer, C. y Mecke, D. (1989)<br />

Hepatology 9,22-28<br />

CarIing, D., C<strong>la</strong>rk, PR., Zammit, VA. y Hardie, D.C. (1989)<br />

Lur. 1. Biochem. ¡86,129-136<br />

Casals, N., Roca, N., Cuerrero, M., Oil-Gómez, O., Alté, J.,<br />

Ciudad, Ci. y Hegardt, F.C. (1992) Biochemí. 283, 261-264<br />

Chate<strong>la</strong>in, F., Kohl, C., Ester, V., McCany, ID, Cirard, i. y<br />

Pegorier, iP. (1996) Lur. 1. Biochem. 235, 789-798<br />

Chen, K.S. y Katz, 1. (1988) Biocheta. J. 255,99-104<br />

Cune 0W. y Schulrnan Cl. (1991) J. Biol. Chem. 266, 4094-<br />

4098<br />

De Crelle, R.F. y Light, Rl. (1980) 1. BicI. Chem. 240, ¡032-<br />

1041<br />

Cook, C.A. y Cambie, MS. (1987) 1. Biol. Cbem. 262, 2050-<br />

2055<br />

Cook, CA., Mynatt, RL. y Kashti, K. (1994)1. BicI. Chem. 269,<br />

8803 -8807<br />

Cooper, RE.. Noy, N, y Zakim, 0. (1989) J. Lipid. Res. 30,<br />

1719-1726<br />

Decaux, iP,, Ferré, P., Robin, 0, Robin, P. y Girard, J. (1988) J.<br />

Biol. Chem. 263, 3284-3289<br />

DecLerq, PL., Falck, iR., Kuwajima, M., Tyaniinski, E., Foster,<br />

D. y McCany, iD. (1987)1. Biol. Chem, 262,9812-9821<br />

Derrick, 1.?. y Ramsay, R.R, (1989) Biochem. 1., 262, 801-806<br />

Oes Rcsiers, C., David, F., Gameau, M. y Brunengraber, E.<br />

(1991)1. Biol. Chem. 266, 1574-1578<br />

De Vries Y., Arvidson, ON., Waterham, H.R., Cregg, i,M.,<br />

Wol<strong>de</strong>giorgis, C. (1997) Biochemistry36 (17), 5285-5292<br />

Die<strong>de</strong>, EL., Rodil<strong>la</strong>-Sa<strong>la</strong>, E., Gunawan, J,, Manns, M. y<br />

Stremmel, W. (1992) B¡ochim. Biophys. Acta 1125,13-20<br />

Drynan, L., Quant, PA. y Zammit, VA. (1996) Biochem. J. 317,<br />

69 1-695<br />

Laten, 5., Tumbull, DM. y Bartiete, K. (1994) Eur. 1. Biochem.<br />

220, 671-681<br />

18<br />

Introducción<br />

Laten, 5,, Bartiett, K. y Pourfarzam, M. (1996) Bichen,. 1., 320,<br />

345 -35 7<br />

Edstrom, L. y Grirnby, L. (1986) Muscle Nerve 9,104-126<br />

Elsíng, C., Kassner, A. y SIremniel, W. (1996) Am. 1. PhysioL.<br />

271, 01067-01073<br />

Esser, V., Kuwajima, M., Brillen, CH., Krishnan, K., Foster,<br />

D.W. y McGany, 1.0. (1993a) 1. BicI. Chem. 268, 5810-5816<br />

Esaer, V., Britton, CH., Weis, B.C., Foster, 0W. y McCany,<br />

5.0. (1993b)J. Bici. Chen,. 268, 5817-5822<br />

Esser, V., Brown, NF., Cowan, A.T., Foster, D.W. y McCarry,<br />

iD. (1996)1. BicI. Chem. 271,6972-6977<br />

Evana, J.L., Quistortf, E. y Witters, L.A. (1989) Biocbem. J. 259,<br />

82 1-829<br />

Evans, iL. Quistorff, E. y Witters LA. (1990) Eiochem. J. 270,<br />

665-674<br />

Faergeman, N.1. y Knudsen, 1. (1997) Biochem. 1., 323. 1-12<br />

Fafoumoux, P., Demigné, C. y Rémésy, C. (1987) Am. 1. PhysioL.<br />

252, C200-0208<br />

Fenaresi-Filho, O., Ferraresi, ML., Constantin, J., lshii-lwamoto,<br />

EL., Scbwab, AS. y Brachí, A. ¡(1992) Biochim. Biophys. Acta<br />

1103,239-249<br />

Finochiaro, O., Tarcmi, E,, Rocchi, M., Liras Martin, A.,<br />

Colcmbo, 1., Torri-Tarelli, O. y Di Donato, 5. (1991) Proc. Natí.<br />

Acad. Sci. USA 88, 661-665<br />

Fraser, E., Corstorphine, C.C. y Zamn,it, VA. (1996) Biochem.<br />

Scc. Praos. 24, 184<br />

Fraser, E., Corstorphine, C.C. yZammit, VA, (1997) Biochem. 1.<br />

323,711-718<br />

Gar<strong>de</strong>mann A., PtischeI O. y Jungermano, K. (1992) Lur. 1.<br />

Eiochem. 207,399411<br />

Gellera, C., Ver<strong>de</strong>rio, E., Floridia, O., Finocchiaro, O.,<br />

Montermíni, L., Cavadini, P., Zufl’ardi, O. y Taroni, E. (1994)<br />

Cenomics 24, 195-197<br />

Ce<strong>de</strong>n, Mil]., Harris, RA., Beynen, A.C. y McCune, SA.<br />

(1980) Diabetes 29, 1006-1022<br />

0db, B.D. (1993) Genomies 18, 651-655<br />

Chaniminejad, 1. y Saggerson, LO. (1990a) PEES Len. 269, 406-<br />

408<br />

Chanimínejad, 1. y Saggerson, LO. (¡99Gb) Biochem. 1. 270,<br />

787-794<br />

C<strong>la</strong>tz, J.F.C. y van <strong>de</strong>r Vusse, G.J. (1996) Prog. Lipid Res. 35,<br />

243-282<br />

Cossett, RE., Frolov, A.A., Roths, SE., Behnke, W.D,, Kier,<br />

AB, y Sebroe<strong>de</strong>r (1996) Lipids, 31,895-918<br />

Orantham, B.D. y Zammit, VA. (1986) Biochem. J. 233, 589-<br />

593<br />

Crantham, B.D. y Zanimil, VA. (1988) Biochem. J. 249, 409-<br />

414<br />

Cninnet, N.y Kcndnip, 5. (1986) Aicoholism: Clin. Exp. Res. 10,<br />

64S-68S<br />

Gumucio, J.J. (1989) Hepatology 9, 154-160<br />

Guzmán, M. y Castro, J. (1989a) Biochem, 1,264,107-113<br />

Guzmán, M. y Castro, 1. (1989b) Bíochini. Biophys. Acta 1002,<br />

405-408<br />

Guzmán, M. y Castro, 1. (1990) Arch. Biochem. Bicphys. 283,<br />

90-95<br />

Guzmán, M. yCastro, 1. (1991) PEES Leus. 291,105-108<br />

Guzmán, M., Castro, 1. y Maquedano, A. (1987) Biochem.<br />

Biophys. Res. Comniun. 149, 443448<br />

Guzmán, M. y Ce<strong>de</strong>n, MíE. (1988) Eiochim. Biophys. Res.<br />

Commun. 149,443-448<br />

Guzmán, M. y Geclen, M.J.H. (1992) Biochem.1.287,487492


Capitulo ¡<br />

Guzmán, M. Koiodziej, MP., Caldwell. A., Corstorpbine, C.C. y<br />

Zan,mit, VA. (1994) Bioehem. J. 300,693-699<br />

Cuzmán, M., Bijieveid, C., Ce<strong>de</strong>n, M.J.H. (1995) Biochem. J.<br />

311, 853-860<br />

Ea, J., Lee, J.K., K¡m, K.S., Witters, L.A. y Kim, K.H. (1996)<br />

Proc. Natí. Acad. Sci. USA. 93, 11466-11470<br />

Ealestrap, AP. (1989) Biochim. Biophis. Acta 973, 355-382<br />

Ealestrap, A.?. (1994) Eiochem. Soc. Trans. 22, 522-529<br />

Earano, Y., Kashiwagi, A., Kojima, H., Suzuki, M., Hashimoto,<br />

T. y Shigeta, Y. (1985) FEBS Leus. 188,267-272<br />

Eardie, D.C. (1992) Biochin,. Biophys. Acta 1123,231-238<br />

Eardie, D.C. y Carling, D. (1997) Lur. J. Biochem. 246,259-273<br />

Hlussinger, D. (1990) Biochem. J. 267, 281-290<br />

Elustinger, D. (1996) Biochem. i. 313, 697-710<br />

I-Ilussiger, O., Lang, F. y Cerok, W, (¡994) Am. J. Physiol. 267<br />

13343-E355<br />

Ee, X.Y., Yang, S.Y. y Shuiz, E. (1992) Arch, Biochen,.<br />

Biophys. 298, 527-53 1<br />

Eealy, M,J., Kemer, J. y Bieber, L.L. (¡988) Biochem. J. 249,<br />

23 1-237<br />

Eiilgartner, PB., Sa<strong>la</strong>ti, L.M. y Coodridge, A.C. (1995) Physiol.<br />

Rey. 75, 47-76<br />

Hue, L., Maisin, L. y Rí<strong>de</strong>r, MM. (1988) Biocheni. J. 251, 241-<br />

245<br />

Jungermann, K. (1992) Enzynie 46, 5-7<br />

Jungermann, K. y Kietzmann, T. (1996) Annu. Rey, NuIr. 16,<br />

179-203<br />

Kashf,, K. y Cook, CA. (1991) Bíochem. Biophys. Res.<br />

Commun. ¡78,600-605<br />

Kashfí, K. y Cook, CA. (¡992) Biochein. J. 282,909-914<br />

Kemer J. y Bieber, L. (¡990) Biochemistzy 29,43264334<br />

Koiodziej, MP. y Zamniit, V.A. (¡992) Biochem. J. 282, 415-<br />

421<br />

Kolodziej, MP. y Zammit, VA. (¡993) PEES Lett. 327, 294-296<br />

Kong, LS., López-Casil<strong>la</strong>s, F. y Kim, K.H. (1990) J. Biol. Chem.<br />

265,13695-13701<br />

Kudo, N., Barr, Al., Barr, R.L., Desai, 5. y Lopaschuk, C.D.<br />

(¡995)1. Biol. Chem. 270, 17513-17520<br />

Kunau, W.H., Donimes, V. y Schulz, E. (1995) Prog. Lipid Res.<br />

34<br />

Lan,ers, W.H., Hilberis, A., Furt, L., Smith, J., Jonges, C.N., van<br />

Noor<strong>de</strong>n, C.J.F., Janzen, J.W.C., Charles,R. y Moarman, A.F.M.<br />

(1989a)HepatoIogy 10, 72-76<br />

Lamers, W.H., Moorman, A.F.M. y Charles, R. (1989b) Ccli Biol.<br />

Rey. 19, 5-26<br />

Latipáil, PM., Kárki, T.T., Eiltunen, J.K. y Hassinen. lE. (1986)<br />

Biochim. Biophys. Acta 875, 293-300<br />

Li, A.C., Tanaka, R.D., CaI¡away, K., Fogelman, A.M. y<br />

Edwards, PA, (¡988) i. Lipid Res. 29, 78 ¡-796<br />

Lilly, K.; Bugaisky, GE.; Umeda, P.K. y Bieber, L.L. (¡990)<br />

Arch. Biochem. Biphys, 280, ¡67-174<br />

Lindros, KO., PentIllá, KL., Janzen, J.W.C., Moorman, A.F.M.,<br />

Speisky, E. e Israel, Y. (1989) J. Hepatol. 8,338-343<br />

Lopaschuk, C.D., Belke, D.D., Cambie, J,, Itol, T. y Schénekess,<br />

BO. (1994) Biochim. Biophys. Acta 1213,263-276<br />

Lowe, D.M. y Tubbs, P.K. (1985) Biochem. J. 227,601-607<br />

Mannaerts, GP. y van Veldhoven, PP. (¡993) Biochimie 75,<br />

¡47-lS 8<br />

McConnack, J.C. y Denton, R.M. (1990) Annu, Rey. Physiol. 52,<br />

451466<br />

McCormack, J.C., Idalestrap, A.P. y Denton, R.M. (¡990)<br />

Physiol. Rey. 70,391423<br />

19<br />

Introducción<br />

McCany, J.D. y Brown, NF. (¡997) Fur J. Biochem. 244, 1-14<br />

McCany, iD. y Foster, 0W. (1980) Annu. Rey. Biochem. 49,<br />

395-420<br />

McGany, , iD., Kuwajima, M., Newgard, CH. y Foster, 0W.<br />

(1987) Annu. Rey. Nutr. 7,51-73<br />

McGany, ID., Leatherman, GP. y Foster, D.W. (1978) J. Biol.<br />

Chem. 253,4128-4136<br />

McGarry, iD., Mannaerts, GP.. y Foster, 0W. (¡977) J. Clin.<br />

tnvest. 60,265-270<br />

McGany, iD., Milis, S.L., Long, C.S. y Foster, D.W. (¡983)<br />

Biochem. 1.214,21-28<br />

McGany, J.D., Sen, A., Lsser, V., Woeltje, AP., Weis, B. y<br />

Foster, 0W. (1991) Biochemie 73,77-84<br />

McGany, J.D., Woeltje, K.F., Kuwajima, M. y Foster, 0W.<br />

(1989) Diabet. Metab, Rey. 5,271-284<br />

Mcijert, A.J., Baquel, A., Custafson, L., van Woerkom, C.M. y<br />

Hue, L. (¡992)1. Biol. Chem. 267, 5823-5828<br />

Middleton, B. (¡994) Biochen,. Soc. Trans. 22,427431<br />

Meunier-Durmont, C., Poirier, ¡‘1., Niol, 1., Foresí, C. y Besnard,<br />

P. (¡996) Biochem. 1.319,483487<br />

Moody, D.F., Gíbson, C.C., Grant, D.F., Magdalou, 1. y Rao,<br />

MS. (¡992) Drug Metab. Disp. 20, 779-791<br />

Moere, F., Weekes, 1. y Hardie, DG. (1991) Fur. J. Biochem.<br />

¡99, 691-697<br />

Moorman, AP., Charles, R. y Lamen, W.H. (¡989) Ccli Biol.<br />

Rey. 19,28-41<br />

Moorman, AP., <strong>de</strong> Boer, PAl., Charles, R. y Laniers, W.H.<br />

(1991) PEBS Lea, 287,47-52<br />

Murthy, M.S.R. y Pan<strong>de</strong>, 5V. (¡987) Proc. NaIl. Acad. Sci. USA.<br />

84, 5823-5828<br />

Mur¡hy, M.S.R. y Pan<strong>de</strong>, 5V, (1990) Biochem. 1. 268, 599-604<br />

Muriliy, M.S.R. y Pan<strong>de</strong>, 5V. (1994a) i. Biol. Chem., 269,<br />

¡8283-18286<br />

Murtliy M.S.R. y Pan<strong>de</strong>, 5V. (1994b) Biochem.J. 304,31-34<br />

Newgard, CE. y McGany iD. (¡995) Annu. Rey. Biochem 64,<br />

689-719<br />

Norsten, C. y Cronholin, T. (1990) Biochem. J. 265, 569-574<br />

Osmundsen, 11., Bremer, 1. y Pe<strong>de</strong>rsen, .1.1. (1991) Biochim.<br />

Biophys. Acta 85, 141-158<br />

Osumi, T. (¡993) Biochimie 75,243-250<br />

Pan<strong>de</strong> 5V., Bhuiyan, A.K.M.J. y Murthy, M.5.R. (¡992) en<br />

Current concepts in carnitine research’ (Carter A.L. cd) PP ¡65-<br />

¡78, CRC Press, ¡tic; Boca Ratón<br />

Park, LA., Mynatt, RL., Cook, CA. y Kashfi, K. (¡995)<br />

Biochem. 1.310, 853-858<br />

Powfarzam, M. y Bartlett, K. (¡992) Lur. J. Biochem. 208 301-<br />

307<br />

Powe¡i, C.L., Tippett, PS., Kiorpes, T,C,, McMii¡in-Wood, 1..<br />

Colí, K.E., Schulz, H., Tanaka, K., Kang, LS. y Shrago, E.<br />

(1985) FASEB J. 1,81-84<br />

Prip-Buus, C., Pégorier, IP., Duéc, PH., Kohl, C. y Girard, 1.<br />

(¡990) Biochem. 1.269,409415<br />

Quant, PA., Tubbs, P.K. y Brand, MD. (1990) Lur. J, Biochem,<br />

187, ¡69-174<br />

Quant, PA., Robin, 0., Robín, P., Cirard, 1. y Bratid, MD.<br />

(¡993) Biochim. Biophys. Acta 1156, ¡35-143<br />

Ra,nsay, R.R. (1988) Biochem. 1. 249, 239-245<br />

Reddy, 1K. y Mannaerts, GP. (¡994) Annu. Rey. Nutr. ¡4, 343-<br />

370<br />

Ricard 1., Meurier, J-C. y Suc 1. (1974) Eur. 1. Biochem. 49, ¡95-<br />

208<br />

Robinson, IR. y Zammit, VA. (¡982) Biochem, 1.206,107-109


Capítulo ¡<br />

Rodríguez, J.C., Cil-Cómez, C., Hegardt, F.C. y Earo. 0. (1994)<br />

J. Biol. Chem. 269, ¡8767-18772<br />

Rognstadt, R. (1991) Biochem. J. 279, 147-150<br />

Saggerson, ED. (¡986) Biochem, Soc. Trans. ¡4, 679-681<br />

Saggersoo, LO. y Carpenter, C.A. (¡982) FEBS Letts. ¡50, 177-<br />

¡80<br />

Saggerson, ED. y Carpenter, CA. (¡986) Biochem. J. 236, ¡37-<br />

¡4’<br />

Saddik, M., Cambie, J., W¡tters, L.A. y Lopaschuk, C.D. (¡993)<br />

J. Biol. Chen,. 268, 25836-25845<br />

Schoojans. K., Síacís, B.. Crimaidi, P y Auwerx, J, (1993) Lur. J,<br />

Biochen,. 216,615-622<br />

Schatler, JE. y Lod¡sh, H.p. (¡994) Ccli 79,427436<br />

Schulman, Cl. y Landau, BR. (1992) Physio¡. Rey. 72, ¡029-<br />

¡035<br />

Sehulz, E. (1991) Biochin,, Biophys. Acta 1081, 109-120<br />

Schwieterman, W., Sorrentino, 0,, Potter, B.J., Ratid, J., Kiang,<br />

C.L., Stump, O., y Berk, PO. (¡988) Proc. Natí. Acad. Sci. USA<br />

85, 359-363<br />

Singh, 1. (¡997) Mol.Cei¡.Biochem, ¡67,1-29<br />

Singh, E., Beckman. ¡4. y Pou¡os, A. (¡996) J. Lipid Res, 37,<br />

261 6-2626<br />

Skorin, C., Necochea, C., Johow, V., Soto, V.. Grau, A.M.,<br />

Bremer, J, y Leighton, P. (1992) Biochem. J. 281, 561-567<br />

Sorrentino, D., Stump, D., Potter, B.J., Robinson, R,B., White,<br />

R., Kiang, CL. y Berk, PO. (1988) J. Clin. Invest. 82,928-935<br />

Spector, AA., Steinberg, O. y Tanaka, A. (¡965) J. Biol. Chem.<br />

240, 1032-1041<br />

Spurway, T., Sherrat, MSA., Rogson, Cl. y Agius, L. (1997)<br />

Biochem. J. 323,119-122<br />

Stakkestad, JA. y Bremer, J. (¡983) Biochim. Biophys. Acta 750,<br />

244-25 2<br />

Stephens, T.W. y Harris, RA. (1987) Biochem. J, 243,405412<br />

Stan¡ey, WC., Hernán<strong>de</strong>z, L.A., Spires, O., Bringas, J,, Wal<strong>la</strong>ce,<br />

5. y McCormack,J.C. (1996) J. Mol. Ccli. Cardiol. 28.905-914<br />

Stoll, E. y Háussinger, D, (¡989) Eur. J. Biochen,. 181,709-716<br />

Stremmel, W, (¡988) J. Clin, tnvest. 82,2001-2010<br />

Sirenimel, W. (1989)J. Hepatol. 9,374-382<br />

Stren,n,e¡, W.. K¡einert, E., Pischer EA., Cunawan, J., K<strong>la</strong>asen-<br />

Sch¡iiter, C., Móclíer, K. y Wegener, M. (1992) Biochem. Soc.<br />

Trans. 20, 814-817<br />

Sug<strong>de</strong>n, MC., Eolness, Mi. y Palmer, T.N. (¡989) Biochem. J.<br />

263, 3 ¡3-323<br />

Suzuk¡, E., Kawarabayasi, Y., Kondo, J., Abc, T., Nishikawa, K..<br />

Kimura, 5,, Hashimoto, T. y Vamarnoto, T. (¡990) J. Biol. Chem.<br />

265, 8681-8685<br />

Swenson, T.L. y Porter, 1W. (1985) J. Biol. Chem. 260, 3391-<br />

397<br />

TaIcei, Y., Kauffinan, F.C., Misra, U.K., Yamanaka, H. y<br />

Thurman, R.C. (¡990) Biochim. Biophys. Acta 1036,242-244<br />

Tharnpy, KG. (¡989)1. Biol. Chem. 264, ¡7631-17634<br />

Thanipy, KG. y Wakil, S.J. (1988) 1. Biol. Chem. 263, 6454-<br />

6458<br />

Thumeiin, 5.. Esser, V., Cbarvy, D., Kolodziej, M., Zammit,<br />

VA., MeCany, iD., Girard, 1. y Pegorier, 1.?. (1994) Biochem.J.<br />

300, 583-587<br />

Tijburg, L.B.M., Ce<strong>de</strong>n, Mil]. y van Col<strong>de</strong>, L.M.C. (¡989)<br />

Bíoehím B¡ophys. Acta ¡004, ¡-¡9<br />

Tosh, O., Alberti, K.C.M.M. y Agius, L. (1988) Biochem. 1. 256,<br />

¡97 -204<br />

Trotteer, Pi. y Voelker, DR. (¡994) Biochim. Biophys. Acta<br />

¡213, 241-262<br />

20<br />

Introducción<br />

Ugele, E., Kempen, J.M., Cebhardt, R., Meijer, P., Burger, EJ. y<br />

Princen, MO. (¡991) Biochem. J. 276,13-77<br />

Van Nieuwenhoven, PA., Van <strong>de</strong>r Vusse, Ci. y G<strong>la</strong>ta, J.P,C.<br />

(¡996) Lipids 31, S223-S227<br />

Ver<strong>de</strong>rio, E., Cavadini, P., Montermini, L., Wang, H., Laniantea,<br />

E., Finocchiaro, G,, DiDonato, 5., Celiera, C. y Taroni, P. (1995)<br />

Huni. Mol. Gen. 4, ¡9-29<br />

Verboeven, A.J.M. y Jansen, H. (¡989) Biochini. Biophys. Acta<br />

1001,239-242<br />

Vock¡ey, J. (¡994) Mayo Clin. Proc. 69,249-257<br />

Waku, K. (1992) Biochin,. Biophys. Acta ¡124, ¡01-111<br />

Wakil, S.J., Stoops, J.K. y Joshí, V.C. (¡983) Annu. Rey.<br />

Biochem. 52, 537-579<br />

WaIs, PA., Pa<strong>la</strong>cín, M. y Katz, 1. (1988) 1. Biol, Chem. 263,<br />

48764881<br />

Wang, H.Y., Baxter, C.P. y Schu¡z, H. (1991) Arch. Biochem,<br />

Biophys. 289,48764881<br />

Watford, M. (¡988) Trends Biochem. Sci. ¡3,329-330<br />

Weis, B.C., Cowan, A,T., Brown, N., Poster, 0W. y McGany,<br />

J.D. (¡994) J, Biol. Cbem. 269, 26443-26448<br />

Winz, R., Hess, O., Aeberdold, R. y Brotinsen, R.W, (¡994) 1.<br />

Biol. Chem. 269, ¡4438-14445<br />

Wocltje. K.F., Kuwajima, M., Foster, 0W. y McCany, 1.0.<br />

(1987) J. Biol. Chem. 262,9822-9827<br />

Woeitje, K,F.. Esser, V., Weis, B.C., Cox, W.F., Schroe<strong>de</strong>r, J.C.,<br />

Liao, S-T, Foster, 0W. y Mc Cany, J.D. (1990a) J,Bioi,Chem,<br />

265, 10714-¡0719<br />

Woe¡tje, KL., Esser, V., Weis, B.C., Sen, A., Cox, W,F., Mc<br />

Phaul, M.J., S<strong>la</strong>ugbter, CA., Foster, 0W. y Mc Cany, JO.<br />

(¡990b) J. Biol. Chem. 265,10720-10725<br />

Wol<strong>de</strong>giorgis, G., Fibich, 8., Contreras, L. y Shrago, E. (¡992)<br />

Arch Biochem. Biophys. 295, 348-35 1<br />

Yamazaki, N., Shivohara, Y,, Shima, A. y Terada, E. (¡995)<br />

PEES Lett. 363,4145<br />

Yeaman, S.J. (¡990) Biochim. Biophys. Acta 1052, ¡28-132<br />

Youn, J.H., A<strong>de</strong>r, M. y Bergman, R.N. (¡989) J. fbI, Chem. 264.<br />

¡68-172<br />

Zammit, VA. (1983) Biochem ,J. 222, 335-342<br />

Zammit, VA. (1984) Prog. Lipid Res, 23, 39-67<br />

Zammit, VA. (¡986) Biochem, Soc. Trans. 14, 676-679<br />

Zammit, VA. (¡994) Diabes Rey. 2,132-155<br />

Zammit, VA., Corstorphine, C.C. y Cray, SR. (¡984) Biochcm.<br />

1. 222, 335-342<br />

Zammul, VA., Costorphine, C.C. y Koiodziej, MP. (¡989)<br />

Biochcm. J. 263, 89-95


2. Resultados y<br />

DíseuSión


2.1. Efectos <strong>de</strong>JATP<br />

extracelu<strong>la</strong>ry <strong>de</strong> los<br />

cambios en el<br />

volumen celu<strong>la</strong>r sobre<br />

<strong>la</strong> actividad CPT-I


Capítulo 2 Resultados y Discusión<br />

Bibliografía-<br />

INTRODUCCION<br />

Como ya se ha seña<strong>la</strong>do anteriormente en el apartado <strong>de</strong> Introducción<br />

General, <strong>la</strong>s diferentes situaciones fisiopatológicas en <strong>la</strong>s que se pue<strong>de</strong><br />

encontrar el organismo, conducen a <strong>la</strong> liberación <strong>de</strong> una gran variedad <strong>de</strong><br />

mediadores extracelu<strong>la</strong>res que ejercen su efecto sobre el metabolismo hepático.<br />

En lo que a <strong>la</strong> regu<strong>la</strong>ción <strong>de</strong> <strong>la</strong> oxidación <strong>de</strong> ácidos grasos se refiere, <strong>la</strong> insulina<br />

y los factores <strong>de</strong> crecimiento inhiben mientras que el glucagón activa a <strong>la</strong> CPT-<br />

1 <strong>la</strong> enzima limitante <strong>de</strong>l flujo a través <strong>de</strong> esta ruta (Guzmán y Geelen, 1993).<br />

En el presente capítulo, se estudian los efectos que otros mediadores (tales como<br />

los agentes que movilizan Cafl, o situaciones fisiológicas (cambios en el<br />

volumen celu<strong>la</strong>r), pudieran ejercen sobre <strong>la</strong> actividad CPT-I.<br />

El ATP extracelu<strong>la</strong>r, que pue<strong>de</strong> ser liberado en respuesta a diferentes<br />

estímulos por diversos tejidos (El-Moatassim et al., 1992), pue<strong>de</strong> ejercer sus<br />

efectos a través <strong>de</strong> toda una serie <strong>de</strong> receptores (Windscheif, 1996). A nivel<br />

hepático, el ATP extracelu<strong>la</strong>r actúa sobre el receptor P<br />

2~, estimu<strong>la</strong>ndo <strong>la</strong><br />

hidrólisis <strong>de</strong> fosfoinosítidos (Windscheif, 2~ y 1996) <strong>de</strong> diacilglicerol. y mediandoPor así un ello, incremento se utilizó<br />

en este<strong>la</strong>compuesto concentración cornocitosólica mo<strong>de</strong>lo para <strong>de</strong> Ca estudiar los efectos que este tipo <strong>de</strong> agentes<br />

pudieran ejercer sobre <strong>la</strong> actividad CPT-I.<br />

Los cambios en el volumen celu<strong>la</strong>r, también constituyen un importante<br />

mecanismo regu<strong>la</strong>dor <strong>de</strong>l metabolismo hepático (Háussinger, 1996), <strong>de</strong> tal<br />

manera que el hinchamiento <strong>de</strong> los hepatocitos se encuentra re<strong>la</strong>cionado con <strong>la</strong><br />

activación <strong>de</strong> rutas anabólicas, mientras que su <strong>de</strong>shinchainiento lo está con <strong>la</strong><br />

<strong>de</strong> mias catabólicas (Háussinger, 1996). Los posibles efectos <strong>de</strong> los cambios en<br />

el volumen celu<strong>la</strong>r sobre <strong>la</strong> actividad CPT-1 no son aún conocidos. Los<br />

resultados que se exponen a continuación confirman que <strong>la</strong> actividad CPT-1<br />

también pue<strong>de</strong> verse contro<strong>la</strong>da a corto p<strong>la</strong>zo por agonistas que movilizan Ca2~<br />

y por cambios en el volumen celu<strong>la</strong>r.<br />

EI-Moatassint C., Dornand, J y Mani, J.C. (¡992) Bioehim. Biophys. Acta 1134,31-45<br />

Guzman, Ni. y Ce<strong>de</strong>n, M,J.H. (1993) Biochim, Biophys. Acta 1167, 227-241<br />

Hinasinger, 0. (¡996) Biochem. 1.313,697-710<br />

WindscheitU. (¡996)1. Pharn,. Pharmaco¡. 48, 993-1011


Effects of extracellu<strong>la</strong>r ATP Qn hepatic<br />

fatty acid metabolism<br />

MANUEL GUZMAN, GUILLERMO VELASCO, ANT) JOSÉ CASTRO<br />

Department of Biachemistry and Molecu<strong>la</strong>r Biology 1, Faculty of Biology,<br />

<strong>Complutense</strong> University, 28040 Madrid, Spain<br />

Guzmán,Manuel, GuillermoVe<strong>la</strong>sco, and José Castro.<br />

Effects ofextracellu<strong>la</strong>rATP on hepatic fatty acid metabolisna.<br />

Am. J. Physiol. 270 (Gastrointest. Liver PhysioL 33): G701—<br />

G707, 1996.—Incubation of rat hepatocytes with extracellu<strong>la</strong>r<br />

ATP inhibited acetyl-CoA carboxy<strong>la</strong>se (ACC) activity and<br />

fatty acid aynthesis <strong>de</strong> novo, with a coneomitant <strong>de</strong>crease of<br />

intracellu<strong>la</strong>r malonyl-CoA concentration. However, both carnitine<br />

O-palmitoyltransferase 1 (CPT-I) activity and ketogenesis<br />

from palmitate were inhibited inparallel by extracellul.ar<br />

ATP. fle inhibitory effeet of extracellu<strong>la</strong>r ATP on ACC and<br />

CPT-I activities was not evi<strong>de</strong>nt in Ca<br />

2~-<strong>de</strong>pleted hepatocytes.<br />

Incubation of hepatocytes with thapsigargin, 2,5-di-(tbutyl)-1,4-benzohydrOquiflOne<br />

(BHQ), orA-23187, compounds<br />

that increase cytosolic free Ca2~ concentration ([Ca2i¡),<br />

<strong>de</strong>pressed ACC activity, whereas CPT-I activity was una!fected.<br />

The phorbol ester 4~3-phorbol 12~-myristate iSaacetate<br />


0702<br />

EFEECTS OF EXTRACELLULAR ATP Di HEPATOCYTES<br />

[U-<br />

14C]glycerol(0.2 Ci/mol, 0.5 mM final concn). Cellu<strong>la</strong>r<br />

triacylglycerols ami phospholipids were iso<strong>la</strong>ted by thin-<strong>la</strong>yer<br />

chro¡natography and quantified as <strong>de</strong>scribed by Tijburg<br />

st aL (25).<br />

For ita <strong>de</strong>termination of ratas of fatty acid oxidation,<br />

reactiona were atañed by the addition to ceil incubationa of<br />

[1-’4C]fatty acid (either palmitate or octanoate, 0.05 CiImol,<br />

0.4 mM final concn) bound te albumin. Oxidation producta<br />

(both acid-soluble producta ami CO<br />

2) were extractad ami<br />

quantiñed exactly as <strong>de</strong>scribed before (10). Ketone bodies<br />

routinely repreaent 80—90% oftotal acid-solubleproducta (10).<br />

Finzymatic assays. Acetyl-CoA carboxy<strong>la</strong>se (ACC) activity<br />

was <strong>de</strong>terminad ja digitonin-penneabiitad hepatocytes as<br />

the incorporation of radio<strong>la</strong>beled acatyl-CoA into fatty acids<br />

<strong>la</strong> a raaction conpled to the fatty acid synthase (FAS) reaction.<br />

This method avoids the number of interferences inherant<br />

to ita c<strong>la</strong>ssic bicarbonate-fixation aasay of ACC activity<br />

(5). Te measure enzynie activity, 100 pl of hepatocyte suspensien<br />

was ad<strong>de</strong>d to 100 pl of prewarmed digitonin-containiflg<br />

aasay medium exactly as <strong>de</strong>scribad by Bijleveld andGeelen (5).<br />

FAS activity was monitored in digitonin-permeabilized<br />

hepatocytas as <strong>de</strong>scribed previously (5).<br />

Carnitine O-palmitoyltransferase 1 (CPT-I) activity was<br />

<strong>de</strong>terminad in digitonin-parmeabilited hepatecytas aB the<br />

tetra<strong>de</strong>cyiglyeidate (TDGA)-sensitive incorporation of radio<strong>la</strong>beled<br />

L-carmtine into palxnitoylcarnitine. In brief, hepatocytea<br />

were preincubated for 20 mm in the absence or presente<br />

of5 wM TIJGA, apotent andspeciflcinhibitor ofCPT-I (7, 12).<br />

Aliquota ware removed from both sets of incuhationa to<br />

monitor CFT-1 activity. For that purpose, 100 pl of hapatocyte<br />

suspansien was ad<strong>de</strong>d to 100 pl of prewarmad digitonincontaining<br />

assay medium exactly as <strong>de</strong>scribed by Guzmán<br />

and Gealen (12). Peroxisomal CFI? activity was <strong>de</strong>terminad lii<br />

the sanie incubationa as tha TDGA-insensitive, malonyl-CoAsensitiva<br />

hepatoceHu<strong>la</strong>r CFI? activity (12).<br />

Lactate <strong>de</strong>hydrogeaase activity was <strong>de</strong>terminad by a standard<br />

spectrophotometric methed Hepatocytes (29). (2—3 mg of cellu<strong>la</strong>r<br />

Determination of [Ca 2~.l~.<br />

protainlml) were incubated witb 6 pM indo 1-acetoxymethyl<br />

ester (indo 1-AM) in bicarbonate-free Krebs-Henseleit medium<br />

suppiemeated with 10 mMN~2.hydroxyethylpiPeraZin5<br />

N’~2-ethanesulfoniC acid-NaOH (pH 7.4). 10 mM glucosa, and<br />

1% (wt/vol) <strong>de</strong>fatted and dialyzed bovina saruin albumin.Ita<br />

incubation was performad at 370C for 45 mm with constant<br />

shalci.ng (85 oscil<strong>la</strong>tions/min).<br />

The fluorescence of indo 1-loadad cal<strong>la</strong> wasexcitad by a5-W<br />

<strong>la</strong>ser tunad to 345—365 sun, andthe amitted fluorescance was<br />

simultaneously measurad at 895 t 12.5 nm (for Ca2t~bound<br />

indo 1) and 488 ± 5 nm (for Ca2t-free indo 1) in a FACStar<br />

Plus (Becton Dickinson) Iiow cytometer<br />

Oth-eranalyticalproeedures. Intracellu<strong>la</strong>r <strong>la</strong>ve<strong>la</strong> of malonyl-<br />

CoA ware <strong>de</strong>tarmined in neutralizad perchloric acid celí<br />

extracta by a radieenzymatic mnethed as <strong>de</strong>scribad by Baynan<br />

et al. (2). Protein was <strong>de</strong>terminad by the merhod of Lewry at<br />

al. (19). with bovine sarum albuminas standard.<br />

Materíais. [1-’4C]acatyl-CoA (54 CiImol), [1-’4C]acetate (56<br />

CiImol), 3H<br />

4C]palniitic acid (58 Ci/mol),<br />

[1-’4C]octanoic 20 (5 acid CiImol), (32 Ci/moll. [1-’ [U-’4Clglycerol (171 CiImol),<br />

and L-(Me-’4C]carmtlf<strong>la</strong> (54 Cf/mal) wera suppliad by Aniershani<br />

International (Ainershani, Bucks, UK). Digitonia, col<strong>la</strong>genase<br />

(type 1), 4~3-phorbol 12r3-myristate iSa-acetata (PMA),<br />

and ATP were purchased from Sigma Chemical (St. Louis,<br />

MO). TIRiA was a gift from Dr. M. J. H. Gee<strong>la</strong>n, Utracht<br />

University, The Nather<strong>la</strong>nds. Bisindolylma<strong>la</strong>inti<strong>de</strong>, thapsigargin,<br />

A-23187, ~,5~di.(t.butyl).1,4-banZOhytfrOqrnnOne (BHQ),<br />

and indo 1-AM wara from Calbiocham (San Diego, CA).<br />

Statistical analysi-s. Unlees ctharwise indicated, resulta<br />

are meana ±SD of the number of aniinals indicated in every<br />

case. Ceil incubationa and/or enzyme assays were always<br />

carried out iii triplicate. Statiatical analysis was performed<br />

by Studant’s t-tast.<br />

RESULTS<br />

Ita affeeta of extracallu<strong>la</strong>r ATP en fatty acid synthesis<br />

and oxidation were studied in iso<strong>la</strong>ted rat hepatocytea.<br />

In addition, digitonin-permeabilizad hapatocytes<br />

were uaed for the study of tha effects exerted by<br />

extracallu<strong>la</strong>r ATP en the activity of ACO (a kay regu<strong>la</strong>tory<br />

enzyme of fatty acid syntheais <strong>de</strong> novo in the liver)<br />

and CPT-I (an important regu<strong>la</strong>tory site ofhepatic fatty<br />

acid oxidation). Exposura of hepatoeytea to the concentration<br />

of digitonin used in our system (—40 pg/mg of<br />

cellu<strong>la</strong>r protein) liberatea more than 95% of total<br />

<strong>la</strong>ctate <strong>de</strong>hydroganase (a cytosolic markar enzyme)<br />

within 15 8(11, 12). The intagrity of the mitochondrial<br />

ontar and inner membranas is preved by the fact that<br />

<strong>la</strong>sa than 1% of total monoamine oxidase (a mitochondrial<br />

outer membrana marker enzyme) and of total<br />

glutamate <strong>de</strong>hydrogenase (a mitochondrial matrix<br />

ma.rker enzyme) <strong>la</strong> raleased from tha permeahilized<br />

celia after 1 mm of exposure to digitonin (11, 12).<br />

Because extracellu<strong>la</strong>r ATP acta on hepatic matabolism<br />

in a vary rapid fashion (8, 9), and because it is<br />

actively hydrolyzad by p<strong>la</strong>sma membrana ecto-adanosinetriphoaphataaes<br />

(8, 9, 18), the incubation times usad<br />

in the presant study wera vary ahort. Itese incubation<br />

timea ware observad to allow maximal effects en the<br />

parametera experimental1)’ <strong>de</strong>terminad (resulta not<br />

shown). In the casa of maasurements of ratas of fatty<br />

acid synthesia, esterification, and oxidation, incubationa<br />

wera carried out for np te 5 mm to achieve<br />

a<strong>de</strong>quate incorporation of the radio<strong>la</strong>beled subatrates<br />

into producta.<br />

Prolongad exposura of rat hepatocytes te high <strong>de</strong>sea<br />

of ATP has been ahown te produce cytotoxic affects (31).<br />

Howaver we did not observe any cytotoxic affect of thia<br />

compeund in our short-term cali incubationa. Thua<br />

challenge of hepatocytea te 200 pM ATP for 5 mm did<br />

not induce any signiñcant variation of calí viability, as<br />

<strong>de</strong>terminad by both trypan bíne axcluaion and <strong>la</strong>ctate<br />

<strong>de</strong>hydrogenaae ralease.<br />

Sifects of extracellu<strong>la</strong>r A7’P on Upogenesis. Incubation<br />

of hepatocytea with ATP markadly <strong>de</strong>creased the<br />

rata of fatty acid synthesia <strong>de</strong> novo when [‘4C]acetate<br />

was usad as a subatrate (Tab<strong>la</strong> 1). Simi<strong>la</strong>rly, extracalín<strong>la</strong>r<br />

ATP <strong>de</strong>presaed fatty acid synthesia da novo by<br />

39.3 t 6.4% (n = 3, P


Tab<strong>la</strong> 1. Effect of extracellu<strong>la</strong>r A=PPen hepatie fatty<br />

acid synthesis<br />

EFFECTS OF EXTRACELLULARATP Di HEPATOCX’TES 0703<br />

Additions te the Incubationa<br />

Parameter n None 100 pMATP<br />

Rata offatty acid synthesis 6 25.3±0.6 16.8 ±2.1*<br />

ACC aetivity 9 0.74±0.08 0.45±0.16*<br />

FAS activity 9 22:0.3 2.3±0.4<br />

Malenyl-CoAcencfl 4 0.089±0.011 0.055±0.006*<br />

Hapatocytas were incubated in absenee nr in prasance nf 100 pM<br />

AlT for 1 mii,. Than, calle wera usad fer measnrement of acetyl-CoA<br />

carboxy<strong>la</strong>se (ACC) and fatty acid synthase (FAS) activitias, aB well so<br />

malonyl-CoA concentration. TEa rata offatty acid synthasis <strong>de</strong> aovo<br />

was monitored ja paraba! cali incubationa. In this case, [‘ 4C]acetate<br />

(3 mM final cenca) andATP (100pM final conca) ware siinultaneousiy<br />

ad<strong>de</strong>d to tEa incubationa, which were allewad to rin for 5 mii,.<br />

Enzyme activitias are axprassed aB nanomolesof preduct par minute<br />

par milligTam celluJar pretain. Malenyl-CoA teveis are axpresaed as<br />

nanemoles par milligran caltu<strong>la</strong>r protain. Bates of fatty acid syntha<br />

a<strong>la</strong> are expressed as nanomoles acetyl unita par Emir per milligram<br />

ceildar protain. Signiflcantly ditTarent from incubationa with no<br />

additions: *~


G704<br />

Tab<strong>la</strong> 2. Lack of effect of extracellu<strong>la</strong>r AJ’Pon<br />

fatty acid synthesis and oxidation in<br />

2 activity. Hepatocytes ware praincubated<br />

for 5 mii, with no additiens (—)<br />

or with Cia pM) 0.1 thapaigargin (TSG),<br />

10 2,5-di-(t.butyt)-1,4-beazohydroqul-<br />


EFFECTS OF EXTRACEI<br />

4LULARATP Di HEPATOCVTES<br />

G705<br />

Tab<strong>la</strong> 3. Effect of extracellu<strong>la</strong>r 2ÉL inAIF, iso<strong>la</strong>tedhepatocytes<br />

thapsigargin,<br />

RHQ, azul A-23187 on[Ca<br />

Fíoore sca oce<br />

ity (as a parcentaga of incubations with no additiens,<br />

n = 3) were 73 ±4% (incubations with 1 pM PMA?1,<br />

73 t 3% (incubations with 1 pM PMA plus 10 pM<br />

BHQ), 72 5% (incubatiens with 1 pM PMA plus 0.1<br />

Additions tú tlie Incuhatione<br />

Intensity, %<br />

Nona 100<br />

1iM thapsigargin), and 75 t 5% (incubatiens with 1 piM<br />

PMAplus 2 pMA-23187).<br />

100pMATP<br />

0.1 pM thapsigargin<br />

0.1 iM thapsigargin±100 pMATP<br />

iO<br />

4MBHQ<br />

1OpMBHQ+100pMATP<br />

2 gMA-23187<br />

2jMA-23187 + 100 p.MATP<br />

296<br />

304<br />

371<br />

297<br />

355<br />

230<br />

Afta indo 1 ¡oadirxg, hapatocytas wera jncubated wjth tha additiona<br />

indicatad at 37’C, aad tha intracallu<strong>la</strong>r indo 1-emjttad fluorascanee<br />

light was <strong>de</strong>tarmined by flow cvtúmatry. Data are % of<br />

jncubatjons with no additjons (% of control) and reprasent marimuin<br />

value of fluorescenca intensjty at 395 12.5 ma re<strong>la</strong>tiva tú that at<br />

488 5 nm. ISaac peak valuas 2~-mebihzjng ware routinaly agente. obtajnad f<strong>la</strong>ta correspoad 45—75 a after tú a<br />

representativa addition offha djffereat experjment Ca that was rapeatad 3 times with simi<strong>la</strong>r<br />

resulta. BHQ, 2,5~di.(t-buty¡)-1,4-benzohYdrOqmnOaC.<br />

both ACC activity (Fig. 2) arid [Ca2’]t (Tab<strong>la</strong> 3) was<br />

markedly potentiated by extracellu<strong>la</strong>r ATE<br />

Extracallu<strong>la</strong>r ATPwas unable te <strong>de</strong>prasa CPT-I actiyity<br />

arid Rateganasis frem palmitate in Ca2’-dapletad<br />

hapatocytas (Tab<strong>la</strong> 2).Although this may indicate that<br />

Ca2’ should be involvad in thasa affects, hepatocyta<br />

incubation with thapsigargin, BHQ, er A-23187 had no<br />

effect en CPT-I activity (Fig. 3). Qn the othar hand,<br />

PMA <strong>de</strong>creased CPT-I activity in a nonadditive and<br />

quantitativaly simi<strong>la</strong>r marinar with respact te axtracellu<strong>la</strong>r<br />

ATP (Fig. 3). Moreover, bisindolylnia<strong>la</strong>imida abelished<br />

the extraeeilu<strong>la</strong>rAl?-ínediated inhibition of CPT-I<br />

activity (Fig. 3). Bisin<strong>de</strong>lylmaleimi<strong>de</strong> also antagenizad<br />

tha extracallu<strong>la</strong>r ATP-<strong>de</strong>pan<strong>de</strong>nt inhibition of CPT-I<br />

whan thapsiga.rgin, BHQ, or A-23187 waa presant in<br />

the incubation medium (resulta net shown). The <strong>de</strong>pen<strong>de</strong>ncy<br />

of the antilcetogenie affact ofextracellu<strong>la</strong>rATP en<br />

Ca2~ (Tab<strong>la</strong> 2) may thus resi<strong>de</strong> in a step prior te PKC<br />

activatien. Interestingly, tite PMA-induced inhibition<br />

of CPT-I activity waa not avidant in Ca2’-<strong>de</strong>pleted<br />

hepatecytas (results not shown). Moreovar, tite PMAinduced<br />

inhibition of CPT-I activity observad in Ca2’contaiing<br />

hepatocytas (Fig. 3) was not potentiatad by<br />

BHQ, titapaigargin, er A-23 187. Values of CPT-I activ-<br />

u<br />

ce<br />

o<br />

-¡00<br />

90<br />

80<br />

70<br />

383<br />

DISCUSSION<br />

o ~I~sc RHO AfllS7 PMA SIM<br />

In tha praaant atudy we show that axtracellu<strong>la</strong>rATP<br />

markadly affecta hapatic fatty acid matabolism. Tha<br />

parallel inhibitien of ACC arid fatty acid syntheaia <strong>de</strong><br />

nove by extracallu<strong>la</strong>r ATP supperts tite general view<br />

that ACC is a key regu<strong>la</strong>tory point of tha fatty acidsynthasizing<br />

proceas (13). Malonyl-CeA, tite preduct of<br />

tite reactien catalyzad byACC, isa phyaielogical inhibiter<br />

of CPT-I and p<strong>la</strong>ya an essential reía in tite ceerdinata<br />

control of fatty acid synthasis and exidatien in tite<br />

livar (4, 13, 20, 30). Tha extracellu<strong>la</strong>r ATP-induced<br />

dapressien of itepatie ACC activity <strong>la</strong>d te a parallel<br />

<strong>de</strong>crease in malonyl-CoA centent. Bacause CPT-I actívity<br />

and palmitata oxidation were inhibitad by extracellu<strong>la</strong>r<br />

ATP, titis would indicate that tha intracallu<strong>la</strong>r<br />

cencentration of malonyl-CoA is net tha factor raspensible<br />

for the ragu<strong>la</strong>tion of hapatie leng-chain fatty acid<br />

oxidation un<strong>de</strong>r theaa conditiona. It should also be<br />

pointad eut that te measure CPT-I activity we haya<br />

permeabilized tite p<strong>la</strong>sma membrane, arad titis has<br />

causad tite cytesol te leak out of tite calí, <strong>la</strong>achng te a<br />

<strong>la</strong>rga dilutien of cytoaolic componanta, including malonyl-CoA<br />

(11, 12). In titis respect it is netewortity that<br />

tite shoñ-term modu<strong>la</strong>tien of CPT-I by extracailu<strong>la</strong>r<br />

ATP (rasults not shown), hepatocyta awalling (15), er<br />

tite piteapitatasa inhibiter ekadaic acid (14) <strong>la</strong> very<br />

stable, since thay survive hepatocyte permeabihzation,<br />

extensive waahing of the permeabilizad cal<strong>la</strong>, arad sub-<br />

sequent incubation of tha parmeabilizad celís at 37 0C<br />

for at leaat 10 mm. Thus, although inhibition of CPT-I<br />

by malenyl-CoA <strong>la</strong> a wall-<strong>de</strong>scribed property of tite<br />

anzyme (4, 13, 20, 30), ether types e!ragu<strong>la</strong>tery machanisma<br />

may be invelvad in tite shert-tertn control of<br />

hapatic CPT-I by cellu<strong>la</strong>r effactors (cf. Ref. 14).<br />

Tha malonyl-CeA-in<strong>de</strong>pandant inltbition of hapatic<br />

CPT-I activity by extracallui<strong>la</strong>r ATP is accempaniad by a<br />

dual effect en mitochondrial fatty acid oxidation, sinca<br />

Fig. 3. Medu<strong>la</strong>tion ofcifacte of extracallu<strong>la</strong>r<br />

ATP on CPT-I activity by conpounds<br />

that changa [Ca2’]<br />

1 and PKC<br />

actjvity. Hepatocytes were preeneabatod<br />

fer 5 mii, with no additiona (—br<br />

with (ja pM) 0.1 TSG, 10 BHQ, 2<br />

A-23187, 1 PMA, or 2 BlM. Hepatocytes<br />

wera further incubated for 1 mm<br />

ja abseace (opea bara) or prasence<br />

(hatehad bara) of100 pM ATP, and ten<br />

CPT-I activity was <strong>de</strong>terminad. Results<br />

are % of activity ra¡ative tú incubationa<br />

with no additions and correspond tú<br />

3—4 differant anima<strong>la</strong>. 100% Value of<br />

CPT-I actjvity ng 177 : 0.35 mno¡<br />

preduct.mia< -mg celu<strong>la</strong>r pretein’.<br />

Note ecale en y-axis. Significantly differant<br />

5P < fron 0.01. jacubationa with no additions:


0706<br />

EFFECTS OF EXTRACELLULAR ATP Iii HEPATOGYTES<br />

ketone bedy formatien is <strong>de</strong>prassed while CO<br />

2 productien<br />

ia enhanced. Thus axtracellu<strong>la</strong>r ATP may reduce<br />

tite antry of fatty acyl-CeA into hapatie mitecitendria<br />

and divart mitochondriail acetyl-CoA inte tite tncarbexylic<br />

acid cyc<strong>la</strong> at tite expense of tite keteganic pathway.<br />

Tite atimu<strong>la</strong>tion of CO2 fermation 2~-mobilizing itas alse aganta beensucit observad<br />

as vasopresain in the case andofa etiter Ca<br />

1-adrenergic agents (e.g., sea Re!s.<br />

6, 11, 22), witareas tha inhibition of itepatic CPT-I<br />

activity and ketogenasis by vasopreasin (11, 22) and<br />

a1-adrenergic agenists (results net sitewn) itas been<br />

<strong>de</strong>seribad as well. Heweyar, otitara haya reportad titat<br />

a1-adrenargic agenta stimu<strong>la</strong>ta er haya no effect en<br />

itepatic katoganesis (cf Re!. 13). In any case, eur rasults<br />

are in agraamant witit the netion titat apart frem CPT-I<br />

otitar factors may exert control ovar tite fatty aci<strong>de</strong>xidativa<br />

precass in the liver at tite intramiteehondrial<br />

<strong>la</strong>yal (sea Rafs. 13 and 30 for reviaw).<br />

Tite effects of extracallu<strong>la</strong>r Al? and otiter Ca 2t~<br />

ACC (and hence of fatty acid synthasis <strong>de</strong> nove) by<br />

mebilizing effectera en livar metabolism are believed te<br />

be <strong>de</strong>pendant en receptor-mediated break<strong>de</strong>wn of membrana<br />

phespitatidylinoaitel 4,5-bispitespitate te produce<br />

diacylglycerel and inositol 1,4,5-trispitoapitata<br />

(1, 6). Extracallu<strong>la</strong>r ATP is also able te trigger tite<br />

recepter-mediated hydrelysis of piteaphatidylciteline<br />

and pitospitatidyletitalie<strong>la</strong>mifle by membrana phospitoupases<br />

(8, 9). In soma cali types, sucit as p<strong>la</strong>ta<strong>la</strong>ta and<br />

varleus secretory calís, tite diacylglycarol and the ineaitel<br />

1,4,5-trispitespitate limbs of phosphelipid hydrelysis<br />

act aynargically (1). However, titis is not tite case witit<br />

itepatocytes. Thus it has been sitewn titat tite stimu<strong>la</strong>tion<br />

of glycegan breakdown, gluconeoganesis, and tite<br />

tricarboxylic acid cyc<strong>la</strong> inducad by Ca2~-mobi1izing<br />

agenta in rat liver solely <strong>de</strong>pends en the inesitel<br />

1,4,5-trispitespitate cempenant of membrana phospitoinositida<br />

itydrelysis, i.a., en tite elevatien of [Ca2>]<br />

1(6, 8,<br />

9). Howaver, tite effecta of extracellu<strong>la</strong>r ATP en itepatic<br />

fatty acid metaboliam, as shewn in tite prasent papar,<br />

saam te be mere cemp<strong>la</strong>x (Fig. 4). Titus tite inhibition of<br />

extracellu<strong>la</strong>r Al? may be inadiated by tite e<strong>la</strong>vation of<br />

[Ca2t (as<br />

shown by tite <strong>la</strong>ck of petantiatien of tite PMA effect by<br />

BHQ, titapsigargin, andA-23187).<br />

Because PMA inhibits CPT-I actiyity, it might be<br />

argued that inhibition of PKC by bisin<strong>de</strong>lylmaleimi<strong>de</strong><br />

sitould cause an activation of CPT-I. Hewaver, it sitouid<br />

be pointed eut that tite basal activity of itepatecellu<strong>la</strong>r<br />

PKC ja very low bacause mest of tite anzyme is presant<br />

in tite soluble fraction (a.g., sea Raf. 28). merafora,<br />

inhibition of this marginal aetivity of PiCO should net<br />

haya any important affect en CPT-I activity. In contrast,<br />

bisin<strong>de</strong>lylmaieimida sitonid be expected te abelish<br />

PiCO-mediatad aventa witen PiCO is fully activatad<br />

by itepatocyte incubation witit pitorbol estara. Thus we<br />

haya observad titat bisin<strong>de</strong>lylmaleimida is ab<strong>la</strong> te bleck<br />

tite PMA-inducad inhibition of CPT-I activity (rasults<br />

net sitown), indicating titat tite inlhihitery affect of PMA<br />

en CPT-I ismadiated by activation of PI-CC.<br />

Extracellu<strong>la</strong>r ATP itas been aitown te trigger in vitre<br />

a nuinber ofbielogical responses in different ceil limes of<br />

Fjg. 4. Diagram showirg effecta of extracallu<strong>la</strong>r<br />

ATP en hepatic fatty acid<br />

metabolism. <strong>la</strong>esitel 1,4,5-triBpheBphate<br />

[hab of phosphoinositi<strong>de</strong> 2~ connactien) hydroly- may be<br />

sis rasponBib<strong>la</strong> (jo., thafor Cainhibition<br />

ofACO (and<br />

hence of fatty acid synthesis da novo)<br />

and admu<strong>la</strong>tien of tricarbexy¡ic acid<br />

cycle. Tha diacytgtycerol compoaeat of<br />

phosphelipid breakdown may modutate<br />

the inhihitjon of CPT-I (and hanca of<br />

ketogenesis from long-chain fatty acida).<br />

Effect ofextraceltuiaxATP is shown<br />

aB +, activation; —, inhibitioa; oro, no<br />

effact. KB. katúna boches; LCFA, longchau,<br />

fatty acids; PL, phospholipids;<br />

TG. triacylglycaro¡s.<br />

Extrocellulor ><br />

ATP<br />


EFFECTS OF EXTRACELLTJLAR AIF Di HEPATOCYTES<br />

0707<br />

tite cardiovascu<strong>la</strong>r tract and tite nerveus system titat 10. Guzmán, M.. and M. J. E. Geelen. Effects of ethanol feedingon<br />

itave been extrapo<strong>la</strong>ted te the pesaib<strong>la</strong> situation in vivo the actjvjty and regu<strong>la</strong>tjon ofhapatic carnitine pa¡mitoyltransfar-<br />

(6, 9). In tite case of liver tissue, itowavar, tite atudies ascí. Arel.. R¿ochem. Riophys. 267: 580—588, 1988.<br />

reportad te date itava baen restrictad te tite use of<br />

iso<strong>la</strong>tad hapatocytes er perfusad liver, se tha poasib<strong>la</strong><br />

role of ATP in vivo ramains te be fully elucidated (6, 9>.<br />

Ite prasent results suggest a petential physiological<br />

11. Guzmán, M., and M. J. II. Ce<strong>de</strong>n. Short-term ragu<strong>la</strong>tion of<br />

carnítine palmitoy¡transferase actjvity ja iso<strong>la</strong>ted rat hapatocytes.<br />

Riochem. Riophys. Res. Cemmun. 151:781—787, 1988.<br />

12. Guzmán, 51, and M. J. E. Ce<strong>de</strong>n. Activity of carnitina<br />

palmitoyltransferasa ja mitúchoadria¡ outar membranas aad<br />

reía for extracellu<strong>la</strong>r ATP in the modu<strong>la</strong>tion of itepatic peroxisomes ni djgitonin-parmeabilized hepatúcytcs. Riochem. J<br />

metabolism. Thus, in limewitit eur observationa, sympathetic<br />

activation of tite liver, whicit may involve both<br />

catecite<strong>la</strong>núnes and extracellu<strong>la</strong>r ATP (8, 9), has been<br />

sitown te <strong>de</strong>presa ketegenesis (3). In additien, stress<br />

287:487—492, 1992.<br />

13. Guzmán, M., asid M. J. U. Ce<strong>de</strong>n; Ragu<strong>la</strong>tjen of fatty acjd<br />

oxidatjon in mamznalian ¡jvar Biochirn. Riophys. Ada 1167:<br />

227—241, 1993.<br />

14. Guzmán, M., M. P. Kolodziej, A. Caldwel¡, C. O. Costor-<br />

mediaters sucit as vasopreasin, catecite<strong>la</strong>minas, and pune, asid V.A. Zansmit. Evidance against directphosphery<strong>la</strong>-<br />

(petentially) extracellu<strong>la</strong>r ATP exert simi<strong>la</strong>r effects en<br />

itapatie carboitydrate (8, 9) and lipid metabolism (tite<br />

presamt papar) by imcreasing glucoaa ouput from tite<br />

liver te tite bleodstraam and by inhibiting hepatic fatty<br />

acid utilization, thus increasimg tite supply of substratas<br />

fer axtrahapatic tiasues in stress situatiena.<br />

In conclusien, our results show titat extracellu<strong>la</strong>r<br />

ATPaxertsstriking effects en itepatie fatty acid matabelism<br />

by simultaneously inhibiting fatty acid syntitesis<br />

tion ja tha activation of carnitine palmitoyltransferase by ekadaic<br />

acjd ji, rat hepatocytes. Bloc/cern. 4. 300: 698—699, 1994.<br />

15. Guzmán, M., G. Ve<strong>la</strong>sco, J. Castro, asid V. A. Zaxnmit.<br />

Inhibition of carnitine palmitoy¡transfcrase 1 by hepatúcyta<br />

swelling. FEBS. Lett 344: 239—241, 1994.<br />

16. Hardie, D. G. Regti<strong>la</strong>tion offatty acid and cholestarol metabo-<br />

¡jsm by tha AMP-activatod protein kinase. Biochim. Biophys.<br />

Acta 1123:231—238, 1992.<br />

17. Hánasinger, D., F. Lang, aud W. Gerok. Regu<strong>la</strong>tion of ceil<br />

ftmction by the callu<strong>la</strong>r hydratioa atata. Am. JI Physiol. 267<br />

’, J. D., and D. W. Postor. Ragu<strong>la</strong>tien of hepatic fatty<br />

acid oxidation and kctena body production. Anna. Reo. Bloc/cern.<br />

49: 895—420, 1980.<br />

liver cal<strong>la</strong>, and titis may cause prefound alteratiems in<br />

hepatic mnetabolism (17).<br />

21. Nahamura, &, andY. Nishizuha. Lipjd mediatera anil proteln<br />

kinase C activation for dic intracellu<strong>la</strong>r sjgnaling aetwork.<br />

JI Bloc/cern. 115: 1029—1034,1994.<br />

We are in<strong>de</strong>btad to Dr. Teresa Portolés for kind halp ja tha 22. Nomura, T., Y. Nosnura, M. Tachihana, E. Nomura, 1


ELSEVIER<br />

FEES Letters 344 (t994) 239—241<br />

FEBS 140¡9<br />

LE TTERS<br />

Inhibition of carnitine palmitoyltransferase 1 by hepatocyte swelling<br />

Manuel Guzmána*. Guillermo Ve<strong>la</strong>scoa, José Castroa, Victor A. Zammitb<br />

~Departmentof Biochernistrr ond Molecu<strong>la</strong>r Biology L Facuitv of Chernistry, <strong>Complutense</strong> University. 28040-Madrid, Spain<br />

bHannah Research Institute, Ayr, KÁÓ SHL, Scot<strong>la</strong>nd. UK<br />

Received 8 April 1994<br />

Abstract<br />

Incubation of hepatoc~tes un<strong>de</strong>r conditions known te increase their vo¡ume. i.e. with amino acids ev in bypo-osmotic medium.<br />

<strong>de</strong>creased carnitine pa¡n,itoyi-transferase 1 (CPT-l) activity. Tbis effect of hepatocvte swe¡¡ing was antagonized by okadaic acid and dibutyry¡-cAMP.<br />

Physio¡ogica¡ concentrations of g¡uramate inhibited CPT-l activity in digitonin-permeabi¡ized bepatocytes but not in iso¡ated n,itochondria. Resu¡ts<br />

suggest that the amino acid-induced inhibition of CPT-¡ shares a common n,echanism with the amino acid-induced stimu¡ation of acety¡-CoA<br />

carboxy¡ase and g¡ycogen synthase f(¡993) Eur. J. Biochen. 2¡7. ¡083—¡089].<br />

Key words: Carnitjne palmitoyltransferase 1; l-lepatocyte swelling; Glutamine: Ketegenesis<br />

1. Introduction 2. Experimental<br />

Evi<strong>de</strong>nce is rapidly accumu<strong>la</strong>ting that changes in<br />

hepatocyte volume p<strong>la</strong>y an important role in the control<br />

of hepatocellu<strong>la</strong>r metabolic function [1,2]. Hepatocyte<br />

swelling induced by several amino acids, notably glutaminc<br />

amd proline. or by hypotonicity have a number of<br />

anabolic and anti-catabolic effects. such as stimu<strong>la</strong>tion<br />

of glycogen [3,4], lipid [4] and protein synthesis [5], or<br />

¡nbibition of glycogenolysis [6] aud proteolysis [7]. Keto-<br />

~enesis is also inhibited by hepatocyte swelling [8]. Although<br />

the mechanism responsible for this effect has not<br />

been <strong>de</strong>scribed. amino acid-induced inhibition of hepatic<br />

ketogenesis was observed te be in<strong>de</strong>pen<strong>de</strong>nt of changes<br />

tn the concentration of malonyl-CoA [8],a physiological<br />

inhibitor of the key regu<strong>la</strong>tory enzyme in the transport<br />

of long-cbain fatty acids into the mitochondrial matrix,<br />

viz. carnitine palmitoyltransferase 1 (CPT-l) [9—12].<br />

Changes in the kinetic characteristics of CPT-I that<br />

occur in parallel with, or in<strong>de</strong>pen<strong>de</strong>ntly of. intracellu<strong>la</strong>r<br />

malonyl-CoA concentration have been shown te be involved<br />

in a number of short- and long-ten alterations<br />

of hepatic kctogenesis [9—12].Iherefore. the present<br />

work was un<strong>de</strong>rtaken te test whether changes in the<br />

intrinsic properties of CPT-I are involved in the amino<br />

acid-induced inhibition of hepatic ketogencsis.<br />

‘Corresponding author. Fax: (341 (¡) 394 4¡59.<br />

O0¡4-5793/94/$7.O0© ¡994 Fe<strong>de</strong>ration of EuropeanBiochemical Secieties.<br />

lSD! 00 ¡ 4-5793


240<br />

snspansions ware incubatad at 37C for 5—¡5 minandthenCPTactivitY<br />

was monitored. Finatty, the third melhod mathod O measures enzyme<br />

activity in mitochondria iso¡ated from bapatecyte suspensions as dascribed<br />

in (17]. When the direct efYect of g¡utamate en 0PTA activity<br />

was studied, iso-esmotic contro¡s were always rl.tfl in para¡le¡ by rap¡-acing<br />

potassium glutamate br i<strong>de</strong>núca¡ concentratiens of KC¡.<br />

3. Results and discuasion<br />

Incubation of iso<strong>la</strong>ted hepatocytes in conditioms<br />

known te increase titeir volume, le. wíth amino acids (10<br />

mM glutamine or 10 mM proline) or in hypo-osmotic<br />

(225 mosm) medium. <strong>de</strong>creased CPT-l activity, as measured<br />

in digitonin-perineabilized celis by method A (Tab<strong>la</strong><br />

It Ihis was accompanied by an inhibition of hepatic<br />

Icetogemesis from palmitate in parallel celí incubations<br />

jable 1). In contrast. a slight increase in CPT-I activity<br />

and in ketegenesis from palmitate was observed in bepatocytes<br />

incubated in hyper-osmetic


.14. Guzmán et al. IFEBS Letters 344 (1994) 239—241 241<br />

meabilizad calís at 37<br />

0C fer 5—15 mm, again indicating<br />

that the medu<strong>la</strong>tion of enzyme activity is stable. Iberafore,<br />

although tite inhibition of CPT-l by malonyl-CeA<br />

¡s a wall-<strong>de</strong>scribed property of tha enzyma [9—12],ether<br />

types of regu<strong>la</strong>tory mechanisms ceuld be involved <strong>la</strong> the<br />

control of hepatic CPT-I by hapatocyta swelling. Since<br />

tha changas observad in CPT-I activity are stab<strong>la</strong> ja spite<br />

of the absence of fluori<strong>de</strong> in tha medium, they are uniikely<br />

te be due te changas in the phospheryiatioa state<br />

of CPT-I.<br />

A macitanism linkiag amino acid-inducad hapatocyta<br />

swelliag te stimu<strong>la</strong>tion of glycogea syathasis and upegenesis<br />

has bean recantly suggested. Ihus, tha increasa<br />

tn tite intracellu<strong>la</strong>r concentration of glutamate amd (te a<br />

lesser axteat) aspartate that is observad <strong>la</strong> swollen hepatocytes<br />

after incubation with giutamine or proline seam<br />

te be rasponsible. at <strong>la</strong>ast in part, for the stimu<strong>la</strong>tion of<br />

pretein phosphatase(s) involvad in tite activatien of glycogen<br />

syathase (and banca of glycogem synthesis) [20]<br />

and acetyl-CoA carboxy<strong>la</strong>se (and hence of lipegenesis)<br />

[21]. Titerefere, we wendared whather a simi<strong>la</strong>r mechanísm<br />

ceuld be respoasib<strong>la</strong> for the inhibition of CPT-I<br />

(and hence of ketegenesis in<strong>de</strong>pen<strong>de</strong>atly of malonyl-<br />

CoA coacantratien) by hepatocyte swelliag. Frem data<br />

presentad in Fig. 1 it may be inferred that (1) concentrations<br />

of glutamata feuad <strong>la</strong> hepatecytas incubatad with<br />

glutamina or prolina [20] inhibitad CPT-T when enzyrne<br />

activity was assayed by metitod H in digitonin-permeabilized<br />

hepatocytes: (u) preincubatien of hepatocytes<br />

with glutamine induced a cartain daseasitizatien of tite<br />

Cl’T-I enzyma toward glutamate: (iii) preincubatien of<br />

hepatocytas with ekadaic acid randared CPT-I insensitive<br />

te tite inhibitory effact of glutamate. Titarefore, results<br />

suggest that tite amino acid-induced inhibition of<br />

hepatic CPT-I may result from a glutamata-<strong>de</strong>pam<strong>de</strong>nt<br />

machanism re<strong>la</strong>tad te that invoived <strong>la</strong> tite activatien of<br />

g]ycogen synthase [20]and acatyl-CoA carboxy<strong>la</strong>se [21].<br />

It has racantly baca shown that tite okadaic acid-induced<br />

stimu<strong>la</strong>tion of CPT-I is retained whea mitecheadha<br />

are still associatad with ether cellu<strong>la</strong>r fractions, a.g.<br />

tn parmeabilized celí ghosts aad in cruda cellu<strong>la</strong>r hemegenatas,<br />

but aot when mitechondria are iso<strong>la</strong>tad fer datermination<br />

of emzyma activity [19]. Likewise, the inhibition<br />

of CPT-l by glutamata observad in parmeabilized<br />

hapatocytes (Tab<strong>la</strong> 1 and Fig. 1) was net evi<strong>de</strong>nt witea<br />

enzyma activity was assayed by method C in mitochondha<br />

ise<strong>la</strong>tad from hepatecyte suspeasiems (Fig. 1). Okadaic<br />

acid is knewn te disrupt the cytoskeleton [22], and<br />

soma eífacts of hepatocyta swe]ling are abelished by<br />

hepatocyta praincubatien with colciticine. ¡e. they seam<br />

te dapend en tite intagrity of the cytoskeleton [23]. Hewayer,<br />

whan wa preincubated hepatecytes with colchicina<br />

or cytocha<strong>la</strong>sin B, the effects of glutamina amd okadaic<br />

acid en CPT-I activity were still evi<strong>de</strong>mt (results not<br />

shown), suggesting titat tha integrity of the cyteskeleton<br />

is not necessary fer the modu<strong>la</strong>tion of CPT-I activity by<br />

these cellu<strong>la</strong>r effactors. Our currení research focuses en<br />

the characterization of tite exíra-mitochondrial cali compoaents,<br />

prasumably nen-diflusib<strong>la</strong> amd possibly mcmbrameus.<br />

whicit seem te be required fer tite effects of<br />

glutamina er okadaic acid en CPT-I activity te be observad.<br />

Ácknowledgernents~ This work was supported by a grant (91/209) frem<br />

the Fondo <strong>de</strong> Investigación Sanitaria <strong>de</strong>l Ministerio <strong>de</strong>sanidad y Consumo,<br />

Spain.<br />

Refarences<br />

[1] Hañssinger, O. and Lang, F. (t991) Biochim. Biophys. Acta ¡071,<br />

33 1—3 50.<br />

[2] Parker. J.C. (¡993) Am. J. Physio¡. 265. C¡ ¡91-C¡200.<br />

131 Haquat, A., Hue. L.. Meijer van Woerkom. G.M. and<br />

P¡omp. P.J.A.M. (¡990) J. Hiel. Chem. 265. 955—959.<br />

[4] Baquat, A., Maisin. L. and Hue. L. (19911 Biochení. J. 278, 887—<br />

890.<br />

[5] Sto¡l. 5.. Gerok, W.. Lang, E. and Haússingar, D. (¡992)Biochem.<br />

1. 287. 217—222.<br />

(6] Lang, F.. SÉchia, T and Hatssinger. D. {t989) Pffiigars Arch. Eur.<br />

J. Physio¡. 4¡3, 209—2¡6.<br />

[7] Haíissinger. D.. HaI¡brucker. C.. von Dahí, 5.. Lang, F. and<br />

Gerok. W. (1990) Eiocham. J. 272. 239—242.<br />

[8] Baquat. A.. Lavoinne, A. and Hija. L. (199¡) Biochem. J. 273,<br />

5742.<br />

[9] Zammit. VA. (t984) Prog. Lipid Res. 23. 39—67.<br />

[10] McGarry, 1.0.. Woa¡tje. K.F.. Kuwajima. M. and Foster, D.W.<br />

(¡989) Diabetes Matab. Rey. 5. 27¡—284.<br />

lt¡] Guzmán. M. ané Gea<strong>la</strong>n. M.J.H. (1993) Biochim. Biophys. Acta<br />

1167. 227—241.<br />

[¡21 Ramsay. R. and Arduini. A. (¡993)Arch. Biochen,. Biophys. 302,<br />

307—314.<br />

[¡3] Beynen. A.C.. Vaartjes. W.J. and Gaa¡en. M.J.H. (1979) Diabetes<br />

28, 828—835.<br />

[¡41Guzmán. M. and Geelen. MIlI. (¡992) Biochem. 1.287.487—492.<br />

[15] Gtrnnán. M. and Gee¡en. M.J.I’1. (¡9881 Biochen,. Biophys. Res.<br />

Commun. ¡5¡, 78¡—787.<br />

[16] Dec¡ercq, FE.. Fa¡ck, J.R.. Kuwajinia. M.. Tyminski, H., Foster.<br />

D.W. and McGarry, ID. (1987)1. Biol. Chem. 262, 98t2—982¡.<br />

[17] Guzmán. M., Castre, J. and Maquedano, A. (1987) Biocham.<br />

Biophys. Res. Cemmun. 149, 443—448.<br />

[18] Guzmán. M. and Castro. J. (¡991) FEBS Lett. 29¡, 105—¡08.<br />

[¡9] Guzmán. M., Ko¡odziej, MP. Caídwefl. A.. Costorphine, CG.<br />

and Zammit, VA. (¡994) Biochan,. J. (in press).<br />

[20) Maijer. Al.. Baquet, A.. Gustafson. L.. van Woerkom, G.M. and<br />

Hue, L. (¡992) 1. Bio¡. Chan,. 267. 5823—5828.<br />

[21) Baquet. A.. Gaussin. V.. BoI¡en. M.. Stalmans. W. and Hua, L.<br />

(¡9931 Eur. J. Biochani. 217. ¡083—¡089.<br />

[22] Heleo. ¡.. Gordon. PB. and Seglen. PO. (¡993) Eur. 1. Biochem.<br />

215. ¡13—122.<br />

[23] Haússinger. D.. Saha. N.. Ha¡¡bruckar. C.. Lang. F. and Gerok.<br />

W. (¡993) Biocham. 1. 291. 355—360.


Capitulo 2<br />

Bibliograria.<br />

DISCUSIÓN.<br />

Resultados y Discusión<br />

En el presente capítulo, se <strong>de</strong>scriben los efectos <strong>de</strong>l ATP extracelu<strong>la</strong>r y<br />

<strong>de</strong> les cambios en el volumen celu<strong>la</strong>r sobre <strong>la</strong> actividad CPT-I. En ambos casos,<br />

y al igual que ocurría en el caso <strong>de</strong> <strong>la</strong> insulina, el glucagón e los factores <strong>de</strong><br />

crecimiento, dichos cambios en <strong>la</strong> actividad CPT-I no parecen ser <strong>de</strong>bidos<br />

únicamente a cambios en <strong>la</strong> concentración intracelu<strong>la</strong>r <strong>de</strong> malonil-CeA. En el<br />

caso <strong>de</strong>l ATP axtracalu<strong>la</strong>r, éste inhibe simultaneamenta tanto <strong>la</strong> síntesis como<br />

<strong>la</strong> oxidación <strong>de</strong> ácidos grasos, <strong>de</strong> tal manera que a pesar <strong>de</strong> que los niveles <strong>de</strong><br />

malonil-COA se encuentran disminuidos, <strong>la</strong> actividad CPT-[ se encuentra<br />

inhibida. Las modificaciones que los cambies en el volumen celu<strong>la</strong>r ejercen<br />

sobre <strong>la</strong> actividad CPT-I tampoco parecen <strong>de</strong>bersa a cambios en los nive<strong>la</strong>s <strong>de</strong><br />

malonil-COA, puesto que el metodo utilizado para <strong>de</strong>terminar <strong>la</strong> actividad CPT-<br />

1 (hepatocitos penneabilizados con digitonina) implica <strong>la</strong> dilución extrema <strong>de</strong>l<br />

contenido <strong>de</strong>l citop<strong>la</strong>sma en el medio extracelu<strong>la</strong>r. De esta manera, diferentes<br />

tipos <strong>de</strong> agonistas que ejercen sus efectos a través <strong>de</strong> muy diferentes vías <strong>de</strong><br />

transducción <strong>de</strong> señales, son capaces <strong>de</strong> modificar <strong>la</strong> actividad CPT-I mediante<br />

un mecanismo in<strong>de</strong>pendiente <strong>de</strong> los niveles <strong>de</strong> malenil-CeA.<br />

El efecto inhibitorio <strong>de</strong>l ATP extracelu<strong>la</strong>r sobre <strong>la</strong> actividad CPT-I<br />

podría estar mediado por <strong>la</strong> activación <strong>de</strong> <strong>la</strong> PKC. Por otra parte, <strong>la</strong> inhibición<br />

<strong>de</strong> <strong>la</strong> CPT-I mediada por hinchamiento celu<strong>la</strong>r, parece verse mimetizada por<br />

ácido glutámico, sugiriendo que, tal y como se ha propuesto para <strong>la</strong> glucógeno<br />

sintasa y <strong>la</strong> acetil-CeA-carboxi<strong>la</strong>sa (Baquet et aL, 1993), este aminoácido<br />

podría activar una proteína fosfatasa. La activación <strong>de</strong> esta proteína fesfatasa<br />

estaría implicada en <strong>la</strong> estimu<strong>la</strong>ción <strong>de</strong> ambas enzimas (Baquet et al., 1993) y<br />

quizá también en <strong>la</strong> inhibición <strong>de</strong> <strong>la</strong> CPT-I. Todas estas observaciones apuntan<br />

a que <strong>la</strong> modu<strong>la</strong>ción <strong>de</strong> <strong>la</strong> actividad <strong>de</strong> proteínas quinasas y fesfatasas podría<br />

<strong>de</strong>sempeñar una función importante en <strong>la</strong> regu<strong>la</strong>ción <strong>de</strong> <strong>la</strong> actividad CPT-I. De<br />

hecho, <strong>la</strong> incubación <strong>de</strong> los hepatecitos con ácido okadaico un inhibidor <strong>de</strong> <strong>la</strong>s<br />

proteína fosfatasas <strong>de</strong> tipo 1 y 2A induce un fuerte incremento en dicha<br />

actividad enzimática (Guzmán y Geelen, 1992), aunque este aumento no parece<br />

<strong>de</strong>berse a una fosferi<strong>la</strong>ción directa <strong>de</strong> <strong>la</strong> enzima (Guzmán et aL, 1994). Así,<br />

consi<strong>de</strong>ramos <strong>la</strong> posibilidad <strong>de</strong> que <strong>la</strong>s diferentes vias <strong>de</strong> transducción <strong>de</strong> <strong>la</strong><br />

señal pudiesen afectar a <strong>la</strong> actividad CPT-I mediante cambies en el grado <strong>de</strong><br />

fosfori<strong>la</strong>ción <strong>de</strong> potenciales proteínas regu<strong>la</strong>doras. En <strong>la</strong> búsqueda <strong>de</strong> esas<br />

posibles dianas, algunas observaciones pue<strong>de</strong>n resultar interesantes:<br />

i) Tanto los cambios en cl volumen celu<strong>la</strong>r, en los que el propio ATP<br />

extracelu<strong>la</strong>r podría estar implicado, ya que se ha propuesto que podría actuar<br />

como una señal paracrina secretada por <strong>la</strong> célu<strong>la</strong> en respuesta al hinchamiento<br />

celu<strong>la</strong>r (Wang e! aL, 1996), como el tratamiento <strong>de</strong> los hepatocitos con ácido<br />

okadaico, inducen cambios importantes en <strong>la</strong> morfologíay organización<br />

intracelu<strong>la</strong>r <strong>de</strong> <strong>la</strong> célu<strong>la</strong>.<br />

u) Los cambies en <strong>la</strong> actividad CPT-I que inducen todos los efectores<br />

celu<strong>la</strong>res estudiados se preservan en célu<strong>la</strong>s penneabilizadas, cuya organización<br />

trídimensional no se ve básicamente alterada (Fiskum e! aL, 1980), pero se<br />

pier<strong>de</strong>n tras el ais<strong>la</strong>miento <strong>de</strong> mitocondrias, indicando que pue<strong>de</strong> ser necesaria<br />

<strong>la</strong> presencia <strong>de</strong> elementos extramitocondriales para que este tipo <strong>de</strong> regu<strong>la</strong>ción<br />

dc <strong>la</strong> CPT-l se veriftquc.<br />

¡Baquet,X,Gaussin, y., BoI¡en, M., Sta¡mans, W.yllue,L. (1993) Eur. 3. Biochen,. 215, ¡083-¡089<br />

Fiskum, O., Craig, 5W., Daeker, G.L. y Lohninger, AL. (1980) Proc. Natl. Acad. Sci. USA 77, 3430-3434<br />

Guzmán, M. y Gee<strong>la</strong>n, MilI. (1992) Biochení. 3.287, 487492<br />

Guzmán, M., Ko¡odziaj, MP., C-a¡dwel¡, A., Corstorphine, CG. y Zsmníit, VA. (1994) Bjochem. 3.300,693-699<br />

Wang, Y., ¡toman, R., Lidoñky, S.D., Fjtz, 3.0. (1996) Proc. Natl. Acad. Scj. USA93, 12020-¡2025


2.2. Mecanismo <strong>de</strong><br />

regu<strong>la</strong>ción a corto<br />

p<strong>la</strong>zo (in<strong>de</strong>pendíente<br />

<strong>de</strong> malonil-CoA) <strong>de</strong> <strong>la</strong><br />

CPT-I


Capitulo 2<br />

INTRODUCCIÓN<br />

Resultados y Discusión<br />

Una vez puesto <strong>de</strong> manifiesto que muy diferentes agenistas son capaces <strong>de</strong><br />

modificar <strong>la</strong> actividad CPT-l mediante un mecanismo in<strong>de</strong>pendiente <strong>de</strong> malenil-<br />

CeA (Capítulo 2.1), intentamos <strong>de</strong>terminar cuáles podrían ser <strong>la</strong>s bases<br />

bioquímicas <strong>de</strong> dicho mecanismo. Para ello, utilizamos el ácido okadaice como una<br />

herramienta que nospermitiera profundizar en el estudio <strong>de</strong> potenciales dianas cuya<br />

fosferi<strong>la</strong>ción fuese inducida por esta compuesto y que a su vez pudiesen regu<strong>la</strong>r a <strong>la</strong><br />

CPT-l. Dado que, tanto el ácido okadaico como el db-cAMP o el vanadate<br />

(compuestos todos alíes que inducen un incremente en <strong>la</strong> actividad <strong>de</strong> <strong>la</strong> CPT-l)<br />

afectan a <strong>la</strong> merfolog<strong>la</strong>a celu<strong>la</strong>r y a <strong>la</strong> organización <strong>de</strong>l citoesqueleto, primeramente<br />

<strong>de</strong>cidimos estudiar el posible papel <strong>de</strong>l mismo como factor extramitocendrial<br />

implicado en <strong>la</strong> regu<strong>la</strong>ción da <strong>la</strong> CPT-l.<br />

El citoesqueleto está constituido por tres tipos <strong>de</strong> elementos, los<br />

microtúbulos, los microf¡<strong>la</strong>mentes y los fi<strong>la</strong>mentos intermedios (Tab<strong>la</strong> 1) que se<br />

encuentran estrechamente re<strong>la</strong>cionados entre sí. Aunque hasta hace tiempo se<br />

consi<strong>de</strong>raba que el citoesquelete únicamente poseía una función estructural, cada<br />

vez son más Los datos que indican que también <strong>de</strong>sempeña un importante papel<br />

regu<strong>la</strong>dor (De Loof e! aL, 1996). Las proteínas <strong>de</strong> los diferentes elementes <strong>de</strong>l<br />

citoesqualeto pue<strong>de</strong>n verse fosferi<strong>la</strong>das por <strong>la</strong> acción <strong>de</strong> diferentes proteína<br />

quinasas, entre <strong>la</strong>s que <strong>la</strong> Ca<br />

2~/CMPKll es quizá <strong>la</strong> más importante (Toivo<strong>la</strong> el aL,<br />

Con,positida ¡>rog~,s<br />

AIiuotál,alos o.l1—(ubt¡ ma C.’¡chiei no<br />

MA¡”s Necoda2o¡<br />

~lficrofi<strong>la</strong>na¡das Ac¡ no Citoca¡asina U<br />

Citúqucratisias<br />

dcsm no. ~i,ncntino<br />

protdnas ¡ibri¡arcs<br />

Tab<strong>la</strong> 1. Componentes <strong>de</strong>¡ citeesque¡ete. Abreviaturas: MAP’s, proteínas asociadas a<br />

microtúbulos; ¡DPN, 3,3’-iminodipropionitri¡o; ¡F, fi¡amentos intermedios<br />

1997). Eses procesos <strong>de</strong> fosfori<strong>la</strong>ción/<strong>de</strong>sfori<strong>la</strong>ción afectan notablemente al grado<br />

<strong>de</strong> polimerización/organización <strong>de</strong>l citoesquelete, <strong>de</strong> tal manera que <strong>la</strong>s<br />

interacciones en <strong>la</strong>s que éste pudiera estar implicado también se vedan alteradas.<br />

Por elle también precedimos a estudiar sial tratamiento con ácido okadaico podría<br />

inducir <strong>la</strong> activación <strong>de</strong> alguna proteína quinasa y, dadas sus características, <strong>la</strong><br />

Ca24/CMPKII es quizá el candidato más probable, tanto por su capacidad <strong>de</strong><br />

fosfori<strong>la</strong>r a diferentes proteínas <strong>de</strong>l citeasqueleto como por sus propieda<strong>de</strong>s<br />

regu<strong>la</strong>doras: En <strong>de</strong>terminadas condicionas <strong>de</strong> activación, <strong>la</strong> Ca2t’CMPKII se<br />

autofosfori<strong>la</strong>, alcanzando así un estado autónomo (activado) que es in<strong>de</strong>pendiente<br />

<strong>de</strong> <strong>la</strong> presenciada Ca24 y <strong>de</strong> calmedulina (Braun y Schulman, 1995) (Fig. 1).<br />

Los diferentes estudios realizados y que se exponen a continuación, nos<br />

permiten proponer un mo<strong>de</strong>lo <strong>de</strong> regu<strong>la</strong>ción a corto píazo (in<strong>de</strong>pendiente <strong>de</strong><br />

malonil-CeA) <strong>de</strong> <strong>la</strong> CPT-l.


Canitulo 2 Resultados y Discusión<br />

0% 0%<br />

e<br />

20 80<br />

Estado autónomo<br />

Calmodulina<br />

Ca¡modu¡ina<br />

Figura ¡. Estados <strong>de</strong> activación <strong>de</strong> <strong>la</strong> Ca’~/CMPK1I. La autofosfori¡ación <strong>de</strong> <strong>la</strong> Ca<br />

2~/CMPKII conduce a un estado<br />

autónomo que conserva parte <strong>de</strong> ¡a actividad <strong>de</strong> ¡a quinasa, siendo esta activación in<strong>de</strong>pendiente <strong>de</strong> ¡a presencia <strong>de</strong><br />

Ca2~ y ca¡modulina en e¡ medio.<br />

Bibliografía.<br />

00/o<br />

100%<br />

Osci<strong>la</strong>ciones (ca2+I<br />

QO/ o<br />

Dc Loo¡I A.. Van<strong>de</strong>n Brocck, J. y Janssen, ¡(¡996) tnt. Rey. Cyto¡. 166, ¡-57<br />

[iraun,AP. y Schu¡man, H. (¡995) Ann. Rey. Physio¡. 57, 417445<br />

Toivo¡a, DM., Goidman, RO., Garrad, DR., Eriksson, lE. (1997)1. Ce¡¡. Sci. ¡¡0.23-33<br />

100%<br />

100%<br />

-Ca2’


BIOCHEMICAL AND B!OPHYSTCAL RESEARCH COI’AWNICATIONS 224, 754—759 (1996)<br />

AncLE NO. 1095<br />

Are Cytoskeletal Components Invoived in the Control of Hepatio<br />

Carnitine PaIm¡toyltransferase 1 Activity?<br />

Guillermo Ve<strong>la</strong>sco,* Cristina Sánchez,* Math 3. H. Geelen,t-1 and Manuel Guzmín*<br />

*Dgp~rgy~~~ of Biochem¿srry ¿md Molecu<strong>la</strong>r Biology 1, Facu.fry of Biology, <strong>Complutense</strong> Universiry,<br />

28040-Madrid, Spain; ¿md tLaborarory of Vererinary Biochemisrry ¿md Insinue of Biomembranes<br />

Urrechs Universiry, 35082V Urreclz 77w Nerher<strong>la</strong>nds<br />

Received luna 7, 1996<br />

The present work was un<strong>de</strong>rraken to test wheter cytoslcelera¡ componenrs are involved in te control<br />

ofrat-liver carniríne pa]miraylnansferase Y (CFI-!) ac~ry by cellu<strong>la</strong>r effectars. Iba núcrotubule stabilizer<br />

taxa] abolished te changes ¡a CFI-! acrívity induced by te effectors resred. Taxol a]so prevenred OAinduced<br />

sbrinkage of heparocyres as wdll as te enhanced release of <strong>la</strong>crare <strong>de</strong>bydrogenase fram dígitanin-<br />

- permeabilized hepatocyres. On te basis of frs re<strong>la</strong>dve sensirivity tu tautomycin and QA, te modu<strong>la</strong>rían<br />

of CFI-! activity seemed tu involve masdy protein pliaspliarase 1. flese dan suggest taL te sboit-tenn<br />

confrol of bepatic CFI-! by cellu<strong>la</strong>r effecrors may <strong>la</strong>volve modu<strong>la</strong>rían of inreracdons berween CFI-Y and<br />

cyroskeletai companents. © 1996 Aeadic Pztss. Inc.<br />

Carnitine pallmitoylu-ansferase 1 (CPT-I), te mitochondrial outer membrane carnitine palmitoyltransferase,<br />

catalyzes te pace-sett¡ng step of long-chain fatty acid transiocañon into te<br />

mitochondrial matrix (1-3). The phosphatase inhibitor okadaic acid (OA) is able to stimu<strong>la</strong>te<br />

by up to 50% hepañc CFI-! activity as well as paimitate oxidatian (4,5). Tbis observation led<br />

to te suggestion thai, apart fi-orn modu<strong>la</strong>tion of mt-livor CPT-I activity by malonyl-CoA, a<br />

phosphory<strong>la</strong>ñon-<strong>de</strong>phosphory<strong>la</strong>tion mechanism might be involved in te shart-term control of<br />

tbis enzyme (3). However, further research showed tat te increase of CPT-Iactivity observed<br />

lxi QA-treated hepatocytes was not due to direct phosphory<strong>la</strong>tion of te CPT-I enzyme, bat<br />

may involve interactions between te mitochondriai outer membrane and extra-mitochondrial<br />

ceil components (6).<br />

A number of reports hayo recently <strong>de</strong>scribed dxc existence of specific interactioxis between<br />

te mitochondrial outer membrane and cytoskeletal elements (7-9). Lx te context of CFI’-!<br />

regu<strong>la</strong>tion, QA and vanadate, which activate hepatio CPT-I (5,10), have been shown to disnapt<br />

te cytoslceleton of heparocytes (11-13). Furthermore, CFI’-! activity is affected by changes<br />

lix hepatocyte volumne (14), mrd several responses of hepatocytes to changes in cd volume<br />

are <strong>de</strong>pen<strong>de</strong>nt on micx-otubuie dynamics (15,16). Iherefore, dxc present work was un<strong>de</strong>rtaken<br />

ro rest whether cytoskeletai companents may be involved lix te control of hepaúc CFI’-!<br />

activity by OA mrd other short-term effectors of celu<strong>la</strong>r metabolisin.<br />

MATERIALS AND METI-4ODS<br />

Ma<strong>la</strong> Wisrarras (250-300 g) wbich liad fice accesa ta foad and wazer were usad tzougbaurin rbis snzdy. Heparoc>ts<br />

were ¡salmed and incubared as <strong>de</strong>scúbed <strong>la</strong> (17). Ya sorne expeuiments, te osma<strong>la</strong>nry of te medíum (305 mOsm in<br />

te normal, iso-osmaric Krebs-Henselelr bicarbanare buifer) was increasad tu 385 mOsm (byper-osmadc medium) by<br />

cbanging te NaO concentrarían. Ibis was achieved by adding 10 ~u1of 4.0 M NaO per ml of ceil incubarían.<br />

ASter incubarían of dic beparocytes wirh te addidons indicared ¡a cadi case, CFI-! acdvfty was rourinely daumined<br />

in digfronin-permeabiiized beparocyres exacdy as <strong>de</strong>scribed befare (5).<br />

‘lo wbam canespon<strong>de</strong>nce sbould be addressed.<br />

0006-291X/96 518-00<br />

Cop>~~ 01996 by Aca<strong>de</strong>,c Press. Inc.<br />

MI ,í~u of re~odtaedou m any fom resnvS.<br />

754


Val. 224, No. 3, 19% BYOCHEMYCAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS<br />

TABLE 1<br />

Taxol Pravents Sbart-Term Madu<strong>la</strong>don of CPT-I Acúvity<br />

Taxol aher addiúons CPT-I activity (%)<br />

— Nane (6) 100<br />

+ None(6) 98t5<br />

— 0.5f¿MOA(6) l5l~l?<br />

+ 0.5 pMOA (6) 97 ~ 8<br />

— 50 f¿M dibutyryl-cAivlP (4) 136 t<br />

50~Mdibutyryl-cAMP(4) lO4~2<br />

— LomMvanadaze(4) 143 z l6~<br />

l.OmMvanadate(4) 105~7<br />

— lomMgluramuna(6) S3~l0*<br />

+ lomMglutarnuna(6) l0l~6<br />

— 385 mOsm medium (6) ~<br />

+ 3gfmOsmmedium(6) 99z6<br />

Hepa¡ocytes were preuncubazed far 30 xnizi ¡a te absenca or ¡a te<br />

presence of 10 pM uní, fallowed by 15 (OA, dibutyryl-cAMP, vañadate)<br />

ar 30 (glutamune, hyper-asmadc mcdium) addiríonal miii with tha<br />

additians undicated. Subsequernly, CFI-Y activiry was <strong>de</strong>termuned iii<br />

digitonun-parmeabulized heparacytes. Values correspand ta te number<br />

of heparacyte prepaxatians undícated iii parentheses. 100% valueof CFI-<br />

Y acdvity was 1.56 z 0.18 nmol/mun per mg of cellu<strong>la</strong>r prateun. Venus<br />

ineubaríons witb no addiríons: *p .< 0.01; ~P -c 0fl5.<br />

Hepaxocyte valume was estimared fram te wet te dry cefi weight rafia as <strong>de</strong>scribed ¡a (18). <strong>la</strong>ctare <strong>de</strong>hydrogenase<br />

acfivity was <strong>de</strong>terminad iii permeabilized celia as <strong>de</strong>scribed befare (6).<br />

Resulta sliown represenr te mema ±SL. of te number af animais undicared iii each case. Ccli ineabationa ami<br />

enzyme assays wert aiways cardad out ¡a triplicare. Stauisncal analysis was perfarmad by Sm<strong>de</strong>nús t reaL<br />

Saurces of chemicais as iii (5) and (6).<br />

RESULTS<br />

The possibiility that cytoskeletai camponents may be invalved lix te short-term modu<strong>la</strong>tion<br />

of CPT-! activity was tested by te use of taxoL This complex diterpenoid binda to tubulin<br />

and stabilizes microtubules, preventing te disassembly of niicrotubules in a -very efficient<br />

fashion (cf ref. 19). Interestingly, stirnu<strong>la</strong>úon of bepa<strong>de</strong> CFI’-! acúvity induced by QA,<br />

dibutyryl-cAMP or vanadate were campletely abolished by pretreatrnent of bepatocytes with<br />

taxol (Table 1)- Lilcewise, changes in CFI?-! acúvity produced by hepatocyte swelling ar<br />

shrinkage were also prevented by taxol (Table 1). Hence, blocica<strong>de</strong> of inicrombule dynamics<br />

preventa short-tenn modui<strong>la</strong>tion of CPT-I activity by a number of celu<strong>la</strong>r effectors- Since QA<br />

produced te most pronounced change of CPI’-I acúvity, a dose-response of te cambined<br />

effects of taxol mrd QA on CPT-I activity was <strong>de</strong>termined (Kg. 1).<br />

The possible re<strong>la</strong>tionship between hepatocyte volurne, ¡nicrorubule stability mrd CPT-I activuy<br />

was further studied. QA <strong>de</strong>creased hepatocyte volume by 7% (Table 2), a magnitu<strong>de</strong> simi<strong>la</strong>r<br />

to tal observed after hepatacyte ueatment with glucagon or dibutyryl-cAMP (20). More<br />

importan, taxal preveníed te QA-unduced shrunkage of hepatocytes (Table 2). When bepatocytes<br />

were incubated lix a hyper-osmotic (385 mOsm) mediuxn, a 12% <strong>de</strong>crease lii ccli valume<br />

was observed. This shrinkage was also prevented by taxol (Table 2).<br />

One ofte alterations observed after OA-induced disruption of te cytoskeleían is enbanced<br />

ccli fragility (6,11,21). ID mr attempt to quantify hepatocyte fragiliry, we <strong>de</strong>termined te<br />

percentage of <strong>la</strong>ctate <strong>de</strong>hydrogenase retained in te permeabilized celis after penneabilizatian<br />

ofte p<strong>la</strong>sma membrane with digitonin (cf ref. 6). As shown in Table 2, treatment of hepato-<br />

755


Vol. 224, No. 3, 1996 BIOCHEMICAL MW BYOPHYSICAL RESEARCH COMMUNICATIONS<br />

o<br />

140<br />

I-;4 120<br />

1—<br />

o<br />

o<br />

1 00<br />

140<br />

~ 120<br />

0<br />

‘-4<br />

oo<br />

100<br />

-1 0<br />

Iog [taxol] (gM)<br />

-2 -1 0<br />

log [OA]«¡M)<br />

HG. 1. Taxol anuagamzes te OA-¡aduced sdmu<strong>la</strong>ñon of CPT-L Panel A: Hepatacytes were preincubated far30<br />

mm with vazyung concentraríons of mxci, fol<strong>la</strong>wed by 15 additional mía ¡a ¡he absence (O) & ¡a ¡he presence of 0.5<br />

~¿l.4OA (e). Panel E: Heparocyws were preuncubared for 30 miii ¡a te absence (O) or ¡a te presence af 10 sM<br />

mal (e), fol<strong>la</strong>wed by 15 addif<strong>la</strong>nai mía with varyung concentañons of OX <strong>la</strong> bat paneis, CFI-Y acúvity vas<br />

<strong>de</strong>rermuned ¡a digitanin-permeabilized heparocytes foliawing ¡he uncubañans of ¡he celis ¡a ¡he presonce or absence<br />

of te ¡adicared agonista. Ya bat cases values correspand to 3 separare bepatacyte preparatians.<br />

cytes wit QA resulted un a <strong>de</strong>creased retendon of<strong>la</strong>ctate <strong>de</strong>hydrogenase lix dxc permeabilized<br />

cells. Once again, taxol prevented this effea of QA (Table 2).<br />

Altough QA is a mare potent inhibitar of pratein plxasphatase 2A tan of protein<br />

phosphatase 1, u te doses emp<strong>la</strong>yed in dxc present study (0-5 gM) QA is supposcd ta<br />

completely inbibit both proteun phosphatases (22,23). Ta study wbeter te stimu<strong>la</strong>tory<br />

756


Vol. 224, No. 3, 1996 BIOafEMYCAL AND BIOPHYSYCAL RESEARCH COMMUNICAflONs<br />

Taxol OA<br />

TASIS 2<br />

<strong>la</strong>xal Prevents Heparocyte Sbrinkage as WeII as Release of Lacrare Dehydrogenase<br />

from Permeabilized Heparocytes<br />

385 mOsm<br />

medium<br />

Wer weight:<br />

D¡y weight<br />

Lactare <strong>de</strong>hydrogenase<br />

rerained in ceil ghasrs<br />

3.93 t 0.07<br />

(100) 6.5 t 1.1<br />

367 t 0.03*<br />

— -~- (93.4) 2.0 ± 0.3*<br />

334 ±0.02<br />

(100.3) 6.7 z 1.4<br />

3.92 ~ 0.04<br />

— .4- (99.7) 6.6 ~ 0.9<br />

3.47 t 0.07w<br />

— — + . (88.3) o-d.<br />

3.86 ~ 0.08<br />

+ — (98.2) n4.<br />

Heparocytes were preincubared for 30 mía iii te absence ar ¡a te presence of 10 ¿M raxol, fol<strong>la</strong>wed by 15<br />

addiional m¡a wxt ar withonr0.5 ~¿MQA ar 30 addiúanal mía iii hyperosmaúc mediuzn. men, pan of ¡he hepatacytes<br />

was used ro <strong>de</strong>termine ¡he wet ro dry cd weigbt rano. The percenhage as compared ra ¡acubañoas wi¡h no addinians<br />

Ls sbawn ¡a parenteses. Ibe rest ofte celis was permeabiluzed wit ca. 40 pg digitaninimg prarein and ¡he pereentage<br />

of <strong>la</strong>crare <strong>de</strong>bydrogenase rerained by ¡he permeabilized celis was <strong>de</strong>termuned. Values correspond ra 4 separare beparaeyre<br />

prepararians. ~P c 0.01 versus íncubadons wit no additions. n.d.: nar <strong>de</strong>termuned.<br />

effect of QA on CPT-I activity was mostly due to inhibiton of phosphatase 1 ar 2A, we<br />

campared te effect of OA with that of tautomycin, wbich inhibits phosphatase 1 more<br />

efficiently tan pliospliatase 2A (23). As shown in Fig- 2, tautomycin was quite more<br />

potent lix stimu<strong>la</strong>ting hepatic CPT-I activity (50% of acúvation at 4 olA) titan OA (50%<br />

activation at 18 nM), indicating tlxat protein phosphatase 1 is more important tan pratein<br />

o a<br />

o<br />

6~<br />

o<br />

160<br />

140<br />

120<br />

100-<br />

I4’<br />

-a 0 1 2<br />

Iog 1a904IÉtI


Vol. 224. No. 3, 1996 . BIOCHEMICAL. ANt> BIOPHYSICAL RESEARCH COMMUNYCATYONS<br />

phosphatase 2A in dic control of CPT-! activity. !nterestingly, taxol also prevented dic<br />

tautomycin-induced activation of CPT-I.<br />

DISCUSSION<br />

Severa! smdies ~erfonnedby aur group using digitonin-penneabilized hepatocytes lcd to<br />

te suggestion that a mechanism of phosphory<strong>la</strong>úon-<strong>de</strong>phosphory<strong>la</strong>tion miglxt be involúed in<br />

te short-tenn control ofmí liver CPT-I acúviíy (reviewed un ref. 3). However, furíher researcb<br />

showed taí te incitase in CPT-I acíiviíy observed ¡ix QA-treated hepatocytes was not chic<br />

to direcí phosphory<strong>la</strong>íion of te CFI’-! enzyme, buí may involve interacíions beíwecn te<br />

mitochondrial outer membrane mrd exíra-mitochondrial, non-diffusiblc ccli componenís (6).<br />

Data on te effects of tao! preseníed lix te prcsentrepon indicate that te extra-mitochondrial<br />

cd components poíentiaily involved lix tite short-term control of CPT-I activity might resi<strong>de</strong><br />

¡ix tite cytoskeleíon. lix addition, te data on te síinxu<strong>la</strong>tion of CPT-! by OA mrd tautornycin<br />

suggest thai protein phospbatase 1 is more imporíaní tan protein pitospitatase 2A lix dic sitorííerm<br />

control of CP’T-I. Titis is lix agreement wit tite observation thai pitospitatase 1 seems to<br />

be tite ¡naln proicin pitospitatase involved ¡ix te regu<strong>la</strong>tion of tite phosphory<strong>la</strong>tion state ofte<br />

cyíoskeleíon, mrd ¡ix mm in tite control of cytoskeletal integrity (21,24).<br />

Thc namure of tite putative cyíoskeletal componení(s) tlxaí might be involved lix controlling<br />

CPT-I activity is still unknown. A firsm possibility could be thai tite control of CFI?-! activity<br />

by tose potential interactions between mimochondria mrd te cytoskeleton merely reflected a<br />

physicail pitenomenon, Le. CPT-I acmivity might be <strong>de</strong>pendcnt on mitochondrial shapc, stretcix-<br />

¡ng or cantraction of dxc ¡nimochondrial outer membrane, etc. (cf ref. 7). A second possibility<br />

couild be thai modu<strong>la</strong>don of CPT-I activimy involved te specific inmeraction between CPT-I<br />

sud regu<strong>la</strong>tory cymoskeletal promein(s). Titis notion is supported by te obscn’ation thai te mere<br />

disruption of microtubules by 2-methoxy 5-(2,3,4--¡rimethoxyphenyl) 2,4,6-cycloheptatrien-1one<br />

or coichicine or te mere disruption of actin microfi<strong>la</strong>menís by cytocha<strong>la</strong>sin B does<br />

noí affect CPT-I activimy (unpublished work). QA mrd otiter pitospitatase inhibitors produce<br />

hyperphosphory<strong>la</strong>tion mrd consequently disruption of microtubules, actin microfi<strong>la</strong>mcnts mrd<br />

inmennediame fi<strong>la</strong>ments in several ccli Unes, includ¡ng hepamocytes (21,25,26)- Whether diese<br />

cymoskeletal changes are re<strong>la</strong>ted to te cifecís of QA on hepatic CPT-I activity is as yet mr<br />

open question.<br />

AOKNOWLEDGMENTS<br />

flese ¡avestigaúons were supparred ¡a pan by te Nerher<strong>la</strong>nds Faundarian far Chemical Reseaxch (SON) with<br />

financial aid ftam dic Nether<strong>la</strong>nds Organizarion for Scienrific Researcb (NWO).<br />

REFERENCES<br />

1. McGariy. 1. D.. Waekje. Kl E, Kuwajima, Ml. and Fasrer, D. W. . 0. (1995) Eur. ¿ Biochem. 230, 17—24.<br />

14. Guzmán, M., Ve<strong>la</strong>sco, G-, Castro, 3., md Zammit, V. A. (1994) FEBS Lar. 344,239-241.<br />

758


VoL 224, No. 3, 1996 BYOGHEMICAL MW BIOPHYSICAL RESEARCH COMMUNICAflONS<br />

15. Háussunger, D., Saha, N., Hallbrucker, C.. Lang, E, and Gerok, W. (1993) Biochera. ¿ 291,355-360<br />

16. voni DÉ1, 5.. SmI]. B., Gerok, W., and H~iussunger. D. (1995) Biochem. ¿ 308, 529—536.<br />

17. Beynen, A. C., Vaar~es, W. it, and Geelen, M. 1. H. (1979) Diabetes 28, 828—835.<br />

18. Baquer, A., Hue, L., Meijer, A. 1.. van Woerkam, O. M.. md P<strong>la</strong>mp, P. 3. A. M. (1990) J. RiaL Chent 265,<br />

955—959.<br />

19. Nogales, E., Grayer WaL 5.. Y~an, Y. A.. Ludueña, R. E, md Dawnung, FC. H. (1995) Naxure 375, 424-427.<br />

20. Háussunger, D. (1996) Biodzem. .1. 313, 697—710.<br />

21. Yana, Y., Sakon, M., Kambayashi, J., Kawasaki, 1., Senda, 1., Ianaka, FC., Yamada, F., and Shibaza. N. (1995)<br />

Bioehem. i. 307, 439-449.<br />

22. Cohen, E, Holmes, C. F. B., md Tsuldtani. Y. (1990) Trenás Biochem. Set. 15, 98-102.<br />

23. MacKuntosh, C., and MacKunrash, R. W. (1994) Trends Bloc/ter. Set 19, 444—448.<br />

24. Gur¡and, G., and Gun<strong>de</strong>nen, 0. 0. (1993) Proc. Noii Acad. Set USA 90, 8827-8831.<br />

25. Seglen, E O., and Bahley, E (1992) Experientia 48, 158—172.<br />

26. Obra, 1., Nishiwaid, R, Yarsunarm, 3., IComan, A.. Suganuma, M., and Fujiki, H. (1992) Cordnogenests 13,<br />

2443—2447.<br />

759


ajochen. J. (1997)321. 211—216 (Printed in Greal Br(¡ain) 211<br />

Involvement of Ca2~/caImoduIin-<strong>de</strong>pen<strong>de</strong>nt pratein kinase hin the<br />

activation of carnitine palm¡tayltransferase ¡ by okadaic acid in rat<br />

hepatocytes<br />

Guillermo VELASOO*, Manue¡ GUZMÁN*, Victor A. ZAMMITt and Math J. H. GEELENt§<br />

tepartmenl of Bioehemistry and Moiecul& B¡o)ogy 1, Facu)ty of Bio)ogy, <strong>Complutense</strong> University, 28040-Madrid, Spain, tHannán Research <strong>la</strong>sfitute, Ayr KA6 SHL,<br />

Scot)and, U.K. aid Laboratory of Veterinary 8)ocremistry aid Instituís of Biomenibranes, U¡echt Univsrsity, 3508 TO Utrechí, lbs Nether<strong>la</strong>nds<br />

The present ‘york was un<strong>de</strong>rtaken to study the mechanism by<br />

~vhichokadaic acid (OA). an inhibitor of protein phosphatases 1<br />

and 2A. stimu<strong>la</strong>tes carnitine palmitoyltransferase 1 (CPT-1) in<br />

iso<strong>la</strong>ted rat hepatocytes [Guzmán. Kolodziej, Caldwell. Costorphine<br />

and Zammit (¡994) Biochem. .1. 300. 693—699]. The OAinduced<br />

srimtt<strong>la</strong>tion of CPT-l was aholished bx’ the general<br />

protein kinase inhibitor K-252a a; weli os by KN-62. a specific<br />

inhibitor of Ca24/calmodulin-<strong>de</strong>pen<strong>de</strong>nt protein kinase II<br />

(Ca2JCM-PKII). However, neither the protein kinase C-specific<br />

inhibitor bisindolylmaleimi<strong>de</strong> nor the protein kinase A/protein<br />

kinase C inhibitor 1-1-7 was able lo prevent the OA-induced<br />

stimu<strong>la</strong>cion ofCPT-i. Hepatocyte-shrinkage-induced stimu<strong>la</strong>tion<br />

INTRODIJCTION<br />

Garnitine pa¡mitoyltransferase 1 (CPT-l) catalyses the pacesetting<br />

step of ¡ong-chain fatty acid transiocation into the<br />

mitochondrial matrix [1—3].It 1; weIl established thac long-taran<br />

changas ini rat liver CPT-l activity occur in response to alterations<br />

ini the nutritional and hormonal status of the animal [1—3].Ini<br />

addition. several studies using permeabilized hepatocvtes haya<br />

.shown that various agents exert short-term effects on CPT-l<br />

activity in parallel with changas ini the rata of Iong-chain fatty<br />

acid oxidation measured in the sama cali praparationis (reviewed<br />

in (3]). ¡ni particu<strong>la</strong>r. okadaic acid (OA). a potent inhibitor of<br />

protein phosphatases 1 and 2A [4]. is able to stimuiate by up to<br />

5000 hepatic CPT-I and palmitate oxidation [56], indicating that<br />

inhibition of the phosphatases might have resultad in increased<br />

phosphoryiation of CPT-l, with consaquent increasa in enzyme<br />

acíivity [5.6].However, when hepatocytes were treated with OA<br />

and then permeabilized with digitonin, addition of purified<br />

protein phosphatases 1 and 2A to the permeabilized cali ghosts<br />

did not reverse the OA-induced stimu<strong>la</strong>tion of CPT-1 [71. In<br />

addition, although tha effects of OA couid be observad ini<br />

peraneabilized hapatocytes, they were lost upon iso<strong>la</strong>tion of<br />

mitochondria from the sama celis. This and other observations<br />

showed that (1) the morcase in CPT-I activity observad in OAtreated<br />

hepatocytes is not due to direct phosphory<strong>la</strong>tion of the<br />

GPT-¡ enzyma. and (Ii) diffusible ccli component(s) iost on<br />

permeabilization of the hepatoc~íe p<strong>la</strong>smo membrana with<br />

digitonun and distinct from protein phosphatases 1 and 2A are<br />

essenuial for íhe stimu<strong>la</strong>tory effact of OA tobe damonstrated [7].<br />

of CPT-l a; well as OA-induced hepatocyte shrinkage was<br />

prevented by KN-62. KN-62 also antagonized the OA-enhanced<br />

release of <strong>la</strong>ctate <strong>de</strong>hydrogenase from digitonin-permeabilized<br />

hepatocytes. Exposure of 32P-<strong>la</strong>belled hepatocytes to OA increased<br />

the <strong>de</strong>gree of phosphory<strong>la</strong>tion of CaC+/CM~PK1I, -os<br />

immunoprecipitated by a monoclonal antibody raised against<br />

the ~-subunit of rat brain kinase. This effect of OA was also<br />

antagonized by KN-62. The resuits thus indicate that the OA<strong>de</strong>pen<strong>de</strong>nt<br />

stimu<strong>la</strong>tion of CPT-1 may be mediated (at least ini<br />

pan) by increased phosphor~iation anid subsequent activation of<br />

Ca2~/CM-PKli.<br />

The present study was thus conducted to i<strong>de</strong>ntify intermediate<br />

proteins the phosphoryiation (= activation) of which could be<br />

triggerad by OA, resulting in subsequent activation of CPT-I.<br />

OA may mnifluence the phosphory<strong>la</strong>tion state of a particu<strong>la</strong>r<br />

rargat protein either by the direct inhibition of the protein<br />

phosphatases involved in the <strong>de</strong>phosphory<strong>la</strong>tion of such protein<br />

or by the indirect activation of the protein kiaases involved in its<br />

activation. Regarding the <strong>la</strong>tter possibility, CaC+/calmoduiin~<br />

dapan<strong>de</strong>nt protein kinase II (CaJCM-PKII) is abie to become<br />

constitutively activated when autophosphoryiated in key serme<br />

or threonine residues on tha autonomy site of the enzyme [8.9].<br />

Autophosphoryiation is sufficient to disrupt the autoinhibitory<br />

domain of Ca2t/CM-PKII, ieading to a <strong>de</strong>inhibition of the<br />

kinase [8].1-<strong>la</strong>nce permanent activation of Ca24/CM-PKII should<br />

be achieved by inhibition of the phosphatases involved in the<br />

daphosphoryiation (= <strong>de</strong>activation) of Caa±/CM~PKII.<strong>la</strong> fact.<br />

sevaral responses of intacthepatocytes to OA, namely disruption<br />

of nhe cytoskeieton [10], inhibition of autophagy [10.11] and<br />

activation of pheny<strong>la</strong>ianine hydroxyiase [12], appear to be<br />

mediated by the activation of Ca2~/CM-PKIl. Likewise, in the<br />

present report we prasent data indicating that Ca2~/CM-PKII is<br />

involved in the activation of CPT-I by OA in rat hepatocytes.<br />

EXPERIMENTAL<br />

Mater<strong>la</strong>is<br />

L-(rnetht’1-’4C]Carnitine anid carrier-free [:¡aP]P~were from Amersham<br />

International (Amersham. Bucks., ¡3K.). Phosphate-free<br />

Abbreviations used: Ca2~/CM-PKFI. Ca2tÍcaImodu)in~<strong>de</strong>pen<strong>de</strong>nt protein kirtase II: 0PTA, carnitine palmitoyltransferase 1; LDH, <strong>la</strong>ctate<br />

<strong>de</strong>hydroqenase: CA, okadaic acM.<br />

$ To wbom correspon<strong>de</strong>nce shoutd be addressed.


212 0. Ve<strong>la</strong>sco and othsrs<br />

Dulbaccos modified Fagles medium was from ICN Pharmacauticals<br />

(Costa Mesa, CA, U.S.A.). Tatra<strong>de</strong>cylglycidate was<br />

donatad by Dr. 3. M. Lowanstain (Bran<strong>de</strong>is University. Waltham.<br />

MA. U.S.A.). OA. KN-62. K-252a. bisindoly¡maleimi<strong>de</strong><br />

and H-7 ‘vera from Calbiochem (San Diego. CA. U.S.A.). Anti-<br />

Ca>/CM-PKII monoclonal anitibody (raisad against the ~subunir<br />

of tha rat brain enzyme) was from Boahringer-Mannheim<br />

(Indianapolis, IN. U.S.A.).<br />

Iso<strong>la</strong>tion and incubation of bepatocytes<br />

Ma<strong>la</strong> Wistar rats (250—300 g) which had free accass to food and<br />

watar wara usad throughout tha study. Hepatocytes were iso<strong>la</strong>ted<br />

by the col<strong>la</strong>genase perfusion mathod <strong>de</strong>scribed ini [¡3]. They ware<br />

incubated in Krebs—Hensaleit bicarbonata bul<strong>la</strong>r, pH 7.4, supp<strong>la</strong>-<br />

0~ (w/v) dafattad anid dialysad<br />

mentad with ¡OmM glucosa and ¡<br />

BSA. Incubation;


Table 1 Effect al protejo kinase inhibitore no [heDA-induced stimutatlon<br />

of hepatio CPT-I<br />

Heoalocynss were prelocuhaled nr 15 mm ¡e


214 G. Ve<strong>la</strong>sco and others<br />

13<br />

I-4<br />

o-<br />

(-3<br />

a 5<br />

H<br />

¡2.<br />

o-<br />

(-3<br />

160<br />

140 -<br />

120 —<br />

loo<br />

160-<br />

140<br />

120 -<br />

boj-<br />

Y<br />

- A<br />

84<br />

e<br />

L.<br />

-2 -1 0<br />

log (OA] (gM><br />

¡ ¡<br />

--o -1 0 1<br />

2<br />

lo~ [KN-621(pM)<br />

Figure 2 Eftect of KN-02 00 DA-Induced stimu<strong>la</strong>[ion al CPT-I<br />

(A) Hepa¡ocyles ¡¡ere preincubaled br 15 nin lo al 30 ¡,M<br />

K14-62, to((nwed by 15 additional nin w¡th vaninus nnncsn¡ralicns ob DA. (B( Hepatonhies were<br />

preincunaled br 15 mm ¡¡¡lb varinus nonnenlral)ons of KN-62, to((owed by 15 add(¡(onal mm<br />

O


ab cd<br />

— — —<br />

FIgure 4 Eblect of KN-02 an DA-Inducflphnsphory<strong>la</strong>llon of CaZt/CM.PkII<br />

02P [nr 1 b and Ihea ireaned [nr 15 mm mi. 30 pM KN-62 «ane o) and 30 pM KN-62 pIas 0.5 ~<br />

CA ((ane di.


216 G. Ve<strong>la</strong>sco and others<br />

pho;phory<strong>la</strong>tion is triggerad by OA (but not by A23187) are<br />

requirad for tha stimuiation of CPT-¡.<br />

13V. mas I<strong>de</strong> recipiení cf a FEES sbu<strong>de</strong>ntship. Thess ¡nvest¡galions mere supported<br />

o pan by I<strong>de</strong> Nebher<strong>la</strong>nds Faundation fo; Chemical Researod (SON) ¡¡lId linancial<br />

aid treo I<strong>de</strong> Nethsr<strong>la</strong>nds Organization ter Scieníific Researod (NWO). as melí as by<br />

(he Soanish Comísión lníermioister¡aI <strong>de</strong> Ciencia y Tennologia (5AF93/0281).<br />

R Ef ER E NCES<br />

~AcGarry, 1 0.. WeeIb)e. 1 O<strong>la</strong>beles<br />

.fe


THE JOURNAL OP WOLOGICAL CI4EM¡SIRY (en revisión)<br />

Malonyl-CoA-in<strong>de</strong>pen<strong>de</strong>nt Acute Control of<br />

Hepat¡c Carnitine Palmitoyltransferase 1 Activity<br />

Role of Ca2~/ca1moduIin-<strong>de</strong>pen<strong>de</strong>nt Protein K¡nase II aud Cytoskeletal Component?<br />

Guillermo Ve<strong>la</strong>scot, Math J.H. Geelen, and Manuel Guzmánt<br />

From the ‘~Department of Biochemistry and Molecu<strong>la</strong>r Biolo~r 1, School of Bio)o~’, <strong>Complutense</strong> University, 28040-Madrid,<br />

Spain, and the ‘ Laboratory of Veíerina¡y Biochemistry, Schooi of Veterinaay Medicine, Utrecht University, 3508-TD Utrecht,<br />

The Netheriands<br />

This work was supported by granrs froan the Spanish Comisión Interministerial <strong>de</strong> Ciencia y Tecnología (SAF9Ó/O113) arad<br />

Fondo <strong>de</strong> Investigación Sanitaria (FIS 97/0039), as well as fror» the Ncthcr<strong>la</strong>nds Foundation for Chemical Research (SON)<br />

and the Netheriands Organization for Sciantific Research (NWO)<br />

-The mechanism of malonyl-CoA-in<strong>de</strong>pen<strong>de</strong>nt acate<br />

control of hepatie carn¡tine palmitoyltransferase 1 (CP’T-I)<br />

acrivity was investigated. In a first series of experiments,<br />

the possible involvement of the cytoskeleton in the control<br />

of CI’T-1 activity was studied (1) Treatment of<br />

pe¡-meabllized hepatocytes with tryps¡n ¡u very mild<br />

conditions produced a ca. 50% stimu<strong>la</strong>tion of CPT-1. This<br />

effect was not observed in celis that bad been pretreated<br />

with okadaic acid (QA) and seemed to be due to tbe action<br />

of tryps¡n 00 cdl component(s) distinct from CPT-I. (u)<br />

Incubation of ¡ntact bepatocytes with 3,3’-<br />

iminodipropionitrile (IDPN), a disruptor of intermediare<br />

fi<strong>la</strong>ments, ¡nci-eased CPT-1 activity in a non-addit¡ve<br />

manner with respect to OX Taxol, a stabiiizer of tbe<br />

cytoskeleton, prevented the QA- and IDPN-induced<br />

stimu<strong>la</strong>tlon of CPT-l. (iii) CPT-I activity iii iso<strong>la</strong>ted<br />

mitochondria ns <strong>de</strong>pressed ¡o a dose-<strong>de</strong>pen<strong>de</strong>nt fashion<br />

by the addition of a total-cytoskeleton fraction and a<br />

cytokeratin-enriched cytoskeletal fraction, tbe <strong>la</strong>trer be¡ng<br />

3 times more potent than the former. lo a second series of<br />

experiments, tbe poss¡ble link between Ca2~/calmodulin-<br />

<strong>de</strong>pen<strong>de</strong>nt protein kinase 11 (Ca2/CM-PKII) and the<br />

cytoskeleton ii-as stud¡ed in the contefl of CFI’-1<br />

regu<strong>la</strong>tion. Cytokeratin phosphory<strong>la</strong>tion -> CPT-1 <strong>de</strong>-inhibition.<br />

Mitochondrial fatty acid oxidation in livor provi<strong>de</strong>s a<br />

major sourco of energy Lo this organ and supplios<br />

extrahepatic tissuos with ketone bodios as a glucose-<br />

rep<strong>la</strong>cing fuel (1,2). Carnitino palmitoyltransforase 1 (CFI’-<br />

1), the outer-mitochondrial-menibrano carnitino<br />

pa]mitoyltransforaso, catalyzos the pace-sotting stop of long-<br />

chain fatty acid translocation hito dio mitochondrial matrix<br />

(1-5). Moreovor, receut <strong>de</strong>termination of flux control<br />

1<br />

coefficients of the enzymes involved in hepatic iong-chain<br />

fatty acid oxidation shows that CPT-I p<strong>la</strong>ys a pivotal role in<br />

controlling tho flux through tbk patbway undor different<br />

substrato concontrations and patho-physiological ataros<br />

(6,7). CPT-I is subjectod Lo long-torm rogu<strong>la</strong>tion lii<br />

responk to altorations in tho nutrirional aud hormonal<br />

status of tSe animal (1,2,5). Short-term control of CPT-I<br />

acdvity involves inhibition by malonyl-CoA, the product of<br />

the roaction catalyzed by acetyl-CoA carboxy<strong>la</strong>se (8). Since<br />

tho <strong>la</strong>ttor onzyme ja a koy regu<strong>la</strong>tory site of fatty acid<br />

synthosis <strong>de</strong> novo (cf. 1-5), malonyl-CoA inhibition of CFI’-<br />

1 allows an elegant expianation for tho coordinato control<br />

of tho partition of hepatic fatty acids betweon ostorification<br />

and oxidation. As a matror of fact, ovidonce has<br />

accumu<strong>la</strong>ted during tSe <strong>la</strong>sÉ two docados highlighting tSe<br />

pbysiological importanco of malonyi-CoA inhibition of<br />

CPT-I not only in livor bur also iii extra-hopatic tissues<br />

(1,5).<br />

During tho <strong>la</strong>sÉ years, howovor, a novel mochanism of<br />

control of hepatic CPT-I activity has beon pur forward.<br />

Srudios using permeabilizod hopatocytos hayo shown that<br />

varinus agonts oxort short-torm changos ¡u CP’I’-I activity iii<br />

parallol with changos ¡u tho rato of long-chain fatty acid<br />

oxidation (3,9). Thoso shorr-rerm changos ira bopatio CPT-l<br />

activity are asaumed to be mediatod by a malonyl-CoAindopen<strong>de</strong>nt<br />

mochanism, since they survive cd<br />

pormabilization, extensivo washing of tSe permoabilizod<br />

celis «o aliow complote reoñoval of malonyl-CoA) and<br />

subsequont proincubation of tho coil ghosts at 3TC before<br />

<strong>de</strong>tormination of CPT-I activity (to allow equalization of<br />

tho conformational atate of CPT-I) (10). Evidonco has also<br />

boen prosontod showing thaÉ the stimu¡ation of hepatic<br />

CPT-I by tSe phosphataso inhibitor okadaic acid (OA),<br />

used as a modol compound to study tho shorr-torm<br />

rogu<strong>la</strong>tion of CPT-I, doca nor involvo tho direct<br />

phosphoryiation of CPT-I (10). It has been rocontly shown<br />

that tSe OA-inducod stimu<strong>la</strong>tion of CPT-I ¡a prevented by<br />

KN-62, an inhibitor of Ca2~/cahnodulin-<strong>de</strong>pendont protoin<br />

kinase II (Ca2~/CM-PKII) (11), aud by taxol, a atabilizer of<br />

the cyroskeleton (12). These obsorvations suggost that both<br />

activation of Ca2~/CM-PKII aud disruption of tho<br />

cytoskoloton may be nocossary for the QA-induced<br />

stimu<strong>la</strong>tion of CPT-I Lo be <strong>de</strong>monstrated. It os conceivable


diaL diese twa processes may be re<strong>la</strong>Led, sizice Ca 2JCM-<br />

PKII is ono of tho protein kmasos more active¡y involved in<br />

dic control of the inLegrity of tho cytoskeleton by<br />

phospbory<strong>la</strong>ting cytoskeleral proteins (13). However, the<br />

avents undorlying this novel mechanism of control of CPT-I<br />

activity are as yot unknown. Tlio present work was thus<br />

undortaken to study iii <strong>de</strong>tall tho molecu<strong>la</strong>r basis of the<br />

malonyl-CoA-in<strong>de</strong>pendont sbort-torm control of hopatic<br />

CPT-Y activity.<br />

EXPERIMENTAL PROCEDURES<br />

Mateñais - L-[methy/-3H]carnitine, carrier-free [32P]P<br />

1,[1-<br />

‘ 4Cfacetyl-CoA, the ECL <strong>de</strong>tection kit and the protain kinase C<br />

assay kit were from Amersham International (Amersham, Hucks,<br />

131K). Terra<strong>de</strong>cyig)ycidate was kindiy donated by Dr. .1KM.<br />

Lowenstein (Bran<strong>de</strong>is University, Wa)tham, MA). The anti-CPT-I<br />

anribody (raised against pepti<strong>de</strong> residues 428-441 ofrat liver CFI’-<br />

1) was kind)y given by Dr. Victor A. Zammit (Hannah Research<br />

InstituLe, Ayr, UniLed Kingdom). Coichicine and cytocha<strong>la</strong>sin B<br />

were kind)y gifted by Dr. .1KM. Andreu (CIB, Madrid, Spain). 3,3’iniinodipropionitrile<br />

(IDPN) was frono Acros Chinúca (Geel,<br />

Belgium). OA,KN-62, A23187 and c<strong>la</strong>ssical protein kinase C were<br />

frono Calbiochem (San Diego, CA). Ca2~/CM-PKII was from<br />

Biomo) (Plymouth Meeting, PA). cAMP-dcpen<strong>de</strong>nt protein<br />

kinase, írypsin and the monoclonal anti-cytokeratin antibody<br />

(done 1(8.13) were frono Sigma (St. Locis, MO).<br />

Iso/añon and incubañon of heparocytes - Ma<strong>la</strong> Wistar rat; (200-<br />

250 g) which had free access to food and water were used in aU<br />

experiments. Hepatocytes were iso)atad by ¡ha col<strong>la</strong>ganase<br />

perfusion method as <strong>de</strong>scribed bafore (9). Hapatocytes were<br />

routmely uncubated iii Krebs-Henseleit bicarbonate buffer (pH<br />

7.4) supplemented with 10 mM glucosa and 1% (w/v) dafatted<br />

and dialyzed bovina serum albumin. Incubation; (4-6 mg of<br />

ceUu<strong>la</strong>r protein/ml) were carried mit aL 37C iii a meíaboiic<br />

gyratoiy shaker (85 oscil<strong>la</strong>tions par miii), un<strong>de</strong>r an atmospherc of<br />

0 2/C02 (19:1).<br />

Ass~v of CPT-I acñviíy ña isoé’ated mitochondña - Mitochondria<br />

were iso<strong>la</strong>ted citber from hepatocytes and CPT-I activity was<br />

measured as the malonyi-CoA-sensitive uncorporation of<br />

radio<strong>la</strong>belled L—cannitine bito paimitoylcarniíine exact¡y as<br />

<strong>de</strong>scribed before (10). When CPT-I activity was <strong>de</strong>termuned in<br />

suspensiona of mitochondria contauning cytoskeletal fraction;<br />

(Figs. 2 arad 3), CPT activity was also <strong>de</strong>termuned iii al) the<br />

cytoskeletal fractions employad and than substraaad from Ihe<br />

CPT-I acttvity experimentaUy <strong>de</strong>termined. An>way, CPT activity<br />

<strong>de</strong>tarmuned in Ihosa cytoskeletal fractioras was alway; marginal and<br />

on Lhe basis of proteun content nevar accounted for more [han5%<br />

of ’ davoid of<br />

paroxisomes, as judged from the ¡0w recovar>’ of cata<strong>la</strong>se activity<br />

(’ assay washed with 40<br />

volumes of a mediuno containung 10 mM Tris-HO, pH 7.4, 150<br />

mM KCI, 5 mM EDTA and 5 mM EGTA. fle permeabilized-ceil<br />

peleÉ was resuspen<strong>de</strong>d iii that medium with the additions<br />

undicated and CFI’-I activÉ>’ was subsequently <strong>de</strong>terminad after<br />

preincubation aL 37C for 5 miii. This was achieved exactly as<br />

dascnbed previously (10).<br />

Since permeabilized hepatocyt¿s aiso express CFI’ activÉ>’ from<br />

peroxisomes arad microsomes, Ihe contribution of CFI”-! to total<br />

hepatocellu<strong>la</strong>r tetra<strong>de</strong>cylglycidate-sensitive CFI? activity has been<br />

quantitiad. Thus, hepatocytes were uncubated with 10 ¡¿M<br />

tetra<strong>de</strong>cylglycidate for 30 miii; purified mitochondria,peroxisomes<br />

and microsomes were iso<strong>la</strong>ted (9), and CFI’ activity was measured<br />

iii ¡hase fractioras. It turnad out that at ¡aast 85% of total<br />

tetra<strong>de</strong>cyiglycidate-sensitive CPT acrivity experimental)>’<br />

<strong>de</strong>terminad correspon<strong>de</strong> to CFI’-I, whereas microsomal CFI” arad<br />

paroxisomal CFI’ together make a munor contribution (’. Proteuns were transfarred frono SDS geis<br />

onto nitroceilulose membranas. The hlots were then biocked with<br />

5% fat-frae dniad milk lii PBS supp)emented with 0.1% Tween 20.<br />

They were subsequentí>’ uncubared with Ihe anti-CFI’-I antibod>’<br />

(1:5,000) iii PBS/Tween 20 fon 2 h at 4C, andwashed thorougly.<br />

The blots were Unen uncubated with anti-shaep peroxidaseconjugated<br />

secondar>’ antibo@ (1:10,000) fon 1 h aL room<br />

temperatura, arad final>’ subjected to luminography with an ECL<br />

<strong>de</strong>tection kit.<br />

Isotation of cytoskeletat fractions - Two cytoskeietal fractiona<br />

were preparad according Lo van Bergan en Henegouwen et al.<br />

(14). Briafly, iso<strong>la</strong>tad hapatocytes ware sedimented (2 rada at 100<br />

x g) arad resuspen<strong>de</strong>d iii a cytoskeieton stabilizung buffer (CSK<br />

buffer) consisting of 10 mM Pipes, pH 6.8, 0.25 M sucrose, 3 mM<br />

MgCI 2, 150 mM KCI arad 1 mM EGTA. mis buffer was<br />

supplemented with the folowung proteunase unhibitors:<br />

phenylmethanesulphonyl fluoni<strong>de</strong> (75 aNt), tosyl-L-pheny<strong>la</strong><strong>la</strong>nine<br />

chioronethyl ketone (2.5 ug/m)), íosyl-L-.lysine chloromethyl<br />

ketone (25 sg/mI), tosyi-L-argununa merhyl ester (2.5 sg/mI),<br />

pepstatun (0.8 sg/mI), taypsun unhibitor (7.5 sg/mI), <strong>la</strong>upeptun<br />

(0.8 sg/mI), banzamidine (115 sg/mI) and aprotunin (0.06<br />

kallicreun unhibitory units/ml), together with 10 mM 2mercaptoathanol.<br />

Tha fraction corresponding tototal cytoskeleton<br />

(Fraction 1) was obtained by incubarion of hepatocytes iii CSK<br />

buffer with 0.5% Triton X-100 at room temperature fon 10 miii<br />

nad subsequant centrifugation ar 20,000 x g for 1 miii (14). The<br />

fraction anniched iii intermedia¿e ff<strong>la</strong>ments (Fraction II) was<br />

ise<strong>la</strong>ted by uncubation of hepatocytes un CSK buffer with 0.5%<br />

Triton X-100 for 10 mun at 4C (which allows tubulin<br />

<strong>de</strong>polynierization) and ira the presence of 0.6 M Kl (which allows<br />

actun <strong>de</strong>polymarization). Col<strong>la</strong>ction of the untermediate fi<strong>la</strong>mentanniched<br />

fraction was performad as in (14). The two cytoskeletal<br />

fractioras were fanal)>’ resuspen<strong>de</strong>d un CSK buffer supplemented<br />

with the afora-mantioned proteinase inhibitors arad characcerized<br />

for their content iii tubulun and cytokeratins axactí>’ as un (14).


Immunop~rcipi¡añon of<br />

32P-¡abeiled cytokemñns -Aftar iso<strong>la</strong>tion,<br />

hepatocyteswerewashed twice iii phosphate-free DMEM madium<br />

supplemented with 1% (w/v) <strong>de</strong>fatted and dialyzed bovina serum<br />

albumin. Hapatocytes (6-8 mg of cellu<strong>la</strong>r protein iii LS ml of Use<br />

aforemerationed madium) wera subsequently iracubated iii that<br />

medium ar 37C iii a metabolic ~‘rato¡y shakar (85 oscil<strong>la</strong>tioras<br />

par miii), un<strong>de</strong>r an atmosphere of 0jC0<br />

32P]Pfor 2 1 (19:1). Ii arad subsequantly Hapatocytes<br />

wera exposed )abelled to thewith additions 0.2 mCi undicated. of [ One mi of celis was rapidiy<br />

sedimentad (5 s al 12,000 x g) arad resuspen<strong>de</strong>d iii 0.5 ml of 50<br />

mM Tris-HCI, pH 7.4, 0.15 M NaCí, 1% (y/y) Igepal, 0.5% (w/v)<br />

sodium <strong>de</strong>oxycho<strong>la</strong>te and 0.1% (w/v) SDS, supplementad with the<br />

afore-mentioned proteunase unbibitors. Samples were cantrifuged<br />

(1 miii at 12,000 x g) arad 500 pl of Lhe supannataníware treated<br />

with 1% (y/y) Triton X-100 br 1 mira. After another<br />

cantnifugation stap, 200 plof the resu¡tung supamatarat wera taken<br />

for inomunoprecipitation by uncubatung wiíh a monoclonal anticytokaratun<br />

antibod>’ bound Lo proteun A-Sepharose iii TTHS<br />

buffar (20 mM Tris-HCI, pH 7.5, 0.5 Nt NaCí arad 0.05% Tween<br />

20). ‘Pie <strong>la</strong>tter was also supplemaníed with pro<strong>la</strong>inase inhibitors.<br />

Immunoprecipitation of cytokaratuns was performad as <strong>de</strong>scribad<br />

bafora for acetyl-CoA carboxy<strong>la</strong>se (15) and Ca2~/CNt-PK1I (11).<br />

Samples ware subjected to SDS-PAGE as <strong>de</strong>scribad aboye. After<br />

foxung and drying of Use geis, 32P-<strong>la</strong>bal<strong>la</strong>d bands ware visualizad by<br />

autoradiography.<br />

Incubañon wida pmrein kino.ses - Permeabilized heparocytes or<br />

iso<strong>la</strong>ted mitochondria (1.5-2.0 mg protein/ml), supp<strong>la</strong>manted or<br />

not wiíh cytoskeletal fractions (as undicatad iii eve¡y case), were<br />

uncubated at 30C for 10 miii iii ejíher of Ihe followung<br />

phosphory<strong>la</strong>tion media, arad aliquota of the incubatioras ware<br />

subsequently taken to <strong>de</strong>termine CP’I’-I activity as <strong>de</strong>scribad<br />

aboye. (i) Ca’~/CNt-PKII phosphoryiation medium contaunad 50<br />

mM Hapes/KOH, pH 7.4, 100 mM XCI, 1 mM CaCI<br />

2, 10 mM<br />

NtgCI2, 0.1 mM ATP, 2~/CM-PKII, 30 ng/pl esseníially cahniodulun, as 50 recomendad nM OA arad by 0.6 the<br />

ng/pl suppiiar. purífied (u) cAMP-<strong>de</strong>pandant Ca protaun kunase phosphoey<strong>la</strong>tion<br />

medium was axactí>’ as <strong>de</strong>scribed before (10). (iii) Protaun kunase<br />

C phosphory<strong>la</strong>tion madium contauned 3 mU/sil purifaed proteun<br />

ldnase C arad the assay components accordung to Lina supplier.<br />

Detenninañon of matonyl-CoA concentrrnion - Intracellu<strong>la</strong>r<br />

¡avais of malonyl-CoA ware <strong>de</strong>terminad iii neutralizad pcrchloric<br />

acid extracta by a radioenzymatic meritod (15).<br />

Stañsñcal ana¡ysis - Results shown raprasení the mearas±&D.<br />

of tina number of hepatocyte praparatioras indicated in cadi case.<br />

Incubatioras of inepatocytes or mitochondria a; wdli as anzyme<br />

assays were always carniad out in triplicata. Síatistical anaiysis was<br />

performad by Studant”s t test.<br />

RESULTS<br />

Effect of mi/ti tzypsin digestion on CPT-f activity - In a<br />

farst set of experimenta aimed aL <strong>de</strong>termining whether<br />

cyroskeletal conuponants may be unvolved in tino control of<br />

CFI’-! activity (12), permeabilizad hepatocytes were LreaLed<br />

with trypsin in very mild condiLiona (low doses, 40C, 2 mm)<br />

aud CPT-I activity was subsequentí>’ <strong>de</strong>terminad. As shown<br />

ira Fig. 1, when hepatocytea wero uncubated iii the proaonco<br />

of no additions and furthor permeabilized with digiLonin,<br />

trypsin was ablo to stimu<strong>la</strong>te CPT-I by ca. 50% iii these ccli<br />

3<br />

ghosrs. Preincubation of hepatocytes with QA ¡cd to a<br />

simi<strong>la</strong>r activation of CPT-I iii the permeabilized-ceil system<br />

(Fig. 1). However, trypsun was unabie to produce an>’<br />

furthor stimu<strong>la</strong>Éion of CPT-I iii ghosts proparod from OApretreatod<br />

hepatocytos (Fig. 1). Tho cytoskeletal stabilizer<br />

taxol has been shown Lo prevent the changos iii hepatic<br />

CPT-I activity inducod by a number of cellu<strong>la</strong>r offoctors<br />

including QA (12). Likewise, whon hepatocyres wore<br />

pretreated wiLh QA iii combination with taxol, the<br />

stimu<strong>la</strong>tory effect of t¡’ypsin was evidont (Table 1).<br />

TABLE 1<br />

CPT-I aalvnv u, pemeabiltM /aeoatocna ami ¿,oúai mácehonáña te núM 0>72mw<br />

He~aocvcn WCTC orcincubsed toe 45 aun ¡o rite absen~ crin tite pmcaa ot ¡0 .h4<br />

azoÉ Inonaoos wcra conunued loe 85 aádiñonui mis wid, oc witboa 0.5 uM OK<br />

Cel<strong>la</strong> were peninbdized with digitotun. a~ glnu fl. Resano cosr~ so 4<br />

nfferes expenmeno.<br />

mi —<br />

(amol/mio o mg prometí<br />

Repazco-ce<br />

pee ¡noubsñcza<br />

Sto addiúons<br />

Taxol<br />

DA<br />

Taxo¡ OA<br />

Trvpsin<br />

Ño<br />

Yes<br />

No<br />

Yes<br />

No<br />

Ye,<br />

No<br />

Yes<br />

Permeubjl¡zed Iso<strong>la</strong>ted<br />

:04±011<br />

3.01±0. 13<br />

¡98±0.34<br />

287t0.I&<br />

360±04?<br />

3.82±0.5W<br />

2.11 ±0.30<br />

2.98±0.4r<br />

5¡oniñandvdifferem¡P’ cleave CPT-I itself un<strong>de</strong>r<br />

Éhoao digostion conditioras, mitochondria were iso<strong>la</strong>tod from<br />

control and trypain-treated permeabilized hepatocytos and<br />

CPT-I was subsequontí>’ <strong>de</strong>tectad by Western blottung (Fig.<br />

1). As oxpectod (5), a unique baud of Mr=88 KDa was<br />

<strong>de</strong>tectod iii tino blots. In addition, no difforonces were<br />

obaerved between Lhe two preparations of mitochondria<br />

(Fig. 1). Furtinormoro, CFI’-! activit>’ was dotormined iii<br />

mitochondria iso<strong>la</strong>tod from pormoabiizod hepatocytes that<br />

had been treated with or without t¡ypsin. As ahown in<br />

Tablo 1, no dilforences ira CFI’-! acrivity were evi<strong>de</strong>nt<br />

among Lhe different conditiona.<br />

It is worth ¡uoting that treatmont of pormeabilized<br />

heparocyros ivith trypaun iii the conditiona empioyed harem<br />

had no effoct on tho rocover>’ of total pormeabilized-coil or<br />

total mirochondrial proteun. Tinus, when permeabilized<br />

hepatocytas aL 1.6±0.2mg protein (n=4) were troated or<br />

not with 17.5 pg trypsun fon 2 mira aL 40C and ghosts were<br />

collected aher stoppirag trypsin action as <strong>de</strong>scribed ira<br />

legond to Fig. 1, 1.5±0.1and 1.5±0.2mg ghost proteun<br />

were respectivel>’ recovered. Likewiso, when mitochondria<br />

were iso<strong>la</strong>Led from those gliosta, 0.18±0.04aud 0.19±0.06<br />

¡ng protem were recovared in ¡nitochondria preparod from<br />

mrypsin-treared and trypsin-untreatod ghosts, respectively.


fliE JOURNAI. OF WOWG¡CM. CHEMISTRY <br />

HG. 1. FIlen of n.ild brypsin digestion en CPT-I actidby <strong>la</strong><br />

penneabilized hepatocytes. Hopatocytos were preincutiated for 15 mm ira<br />

dio absonce (o) or ira Iba presoraco (@)of 0.5 gM OA. Ccli; ~cre ehen<br />

pormoabilized váth digitorain arad thorougJy washod with 40 volumes cf<br />

digitonin-free modium as <strong>de</strong>scribed ira Experimental Procedures.<br />

Permoabulized hopatocytes were subsequoratly resuspendod at 1.5-2.0 mg<br />

protejo/ml and troated with vatying concentrations of tzypsin at 4C.<br />

Trypsin action was stoppcd aftor 2 mira ti>’ additiora of 10 mg/ml of bovino<br />

serum albuniin arad immodiate washing with 40 volumos of erypsin-froe<br />

medium. mora. CPT-T activity was <strong>de</strong>tormined ira thoso penneabilizod<br />

hepatocytes. One-bundrod percoral CPT-i activity was 1.87±0.20<br />

ramol/min ir mg protoira. Resu¡ts corrospond te 4 d¡fferont cali<br />

preparation;. lnset: Mitochondria were iso<strong>la</strong>tod from pormeabulized<br />

hepatocytos that liad beco troatod wiLbout (<strong>la</strong>ne a) or váth (<strong>la</strong>rio ti) 17.5<br />

gg/mI tzypsin, arad CPT-I was <strong>de</strong>tected ti>’ Westorn blctting. ‘Dio arrow<br />

points te iba 88-KDa band.<br />

Effect of disn¿ptors of tite cytoskeleton oit CpT-i ac¡iviry -<br />

OA and otber phosphataso inhibitors produce<br />

hyperphosphory<strong>la</strong>rion and corasoquontly disruption of the<br />

cytoskeletal network ira sevaral cail types, including<br />

hopatocytes (e.g. 16,17). To test whether changas in Lho<br />

organization of the cytoske¡eton may be re<strong>la</strong>ted to parallel<br />

changas ira CPT-I activity, hepatocytcs were incubaLod wath<br />

colchicune (a microtubule disrupLor), cytocha<strong>la</strong>sin B (a<br />

m¡crofi<strong>la</strong>mont disrupror), and IDPN (ara intermediatefi<strong>la</strong>ment<br />

disruptor) (18,19). As shown in Table II, raeithor<br />

coichicine nor cytocha<strong>la</strong>sun B affected CPT-I acrivity. A; a<br />

control to prova the biologica] activity of Lhese Nro<br />

compounds on hepatocytes, cellu<strong>la</strong>r lipid; were pre-<strong>la</strong>beiled<br />

with [‘<br />

4C]palmitate, and very-low-<strong>de</strong>rasity-lipoprotein output<br />

anto the medium was monitorod (26). As previousiy<br />

<strong>de</strong>scribed (20), disruption of microtubules wirh colciiicine<br />

or disruption of microfi<strong>la</strong>monts with cytocha<strong>la</strong>sira 8 led to<br />

a sLrong inhibition (>90%) of the output of very-lowdonsity-lipoprotoin<br />

lipids into the medium arad to a paral<strong>la</strong>l<br />

accumu<strong>la</strong>Lion of intracellu<strong>la</strong>r lipids.<br />

»<br />

TABLE II<br />

Effces ofdin,,xas of¡he qeatkMon a. CPUn* .~ i0m4 frtei<br />

¡<br />

Hentccvtes were premoibetcd for 45 mira lo tite k — <strong>la</strong> ¡be ptn of tite<br />

nnowaaon of cvnkcleuá inujmny indialsd. ¡aaÉs~ we,t anaS ter 15<br />

adadonal — váab or “.,thout 0.5 »MOA. aaá din .Iiquoc .exe mkn te <strong>de</strong><strong>la</strong>nune<br />

cfl”-i by tite one-etepsafas w.I¡ ma wuloa>4.CoA¡o.k Cw.4n~S pan van<br />

of CFI-! actnwv andmalouiyl-CaAaeennnozwere ).29±ftflo,neI/mnnz mgpmtelfl<br />

and 73±12pmoi/mg protein. respeaivciy. Rh. an~k


permeabilizod hepatocytos and CPT-I acliivity was<br />

<strong>de</strong>rermunod. Ca<br />

2~/CM-PKII was ablo to signuficantly<br />

(P-cO.O1) stimu<strong>la</strong>lie CFI’-! in permeabilized cells (140±8%<br />

stimu<strong>la</strong>tion, n= 4) but nat iii iso<strong>la</strong>ted mitochondria (6±7%<br />

stimu<strong>la</strong>tion, n= 4). In contrasli, addiliion of purified cAMP<strong>de</strong>pen<strong>de</strong>nt<br />

proteun kinase or protoin kinaso C to<br />

permeabilized hepaliocytes did not produce an>’ change iii<br />

CPT-I acriviliy in eirhor iso<strong>la</strong>ted mitochondria or<br />

parmeabilized bepatocytes (dalia noli shown).<br />

o-<br />

ci<br />

120<br />

100F~<br />

90 1-<br />

¿0 h<br />

40f-<br />

20<br />

OF-<br />

-n -3<br />

-2 —1<br />

’ <strong>de</strong>ternhletod as indicated ira<br />

Experimental Proceduros. Ono-hundrod porcont CFI’-! activity was<br />

865±1.11ramol/mira ir mg proteira. Results corrosporad ¡o 4 difforont<br />

exporimoflts.<br />

In ar<strong>de</strong>r lio <strong>de</strong>fine tite cali campononlis that are sufficionli<br />

for rite malonyl-CoA-in<strong>de</strong>pen<strong>de</strong>nt control of CPT-I lio be<br />

<strong>de</strong>monstrated, we raen attempted to recansLitulie tite wholecali<br />

experimental system in a simple manner by incubating<br />

iso<strong>la</strong>ted mitochondria togeliher witit cytoskcletal Fraction II<br />

and purifaed Ca2JCM-PKII. As shown in Fig. 3, Lite<br />

unhibition of CP’I’-I producad by exposura of isa<strong>la</strong>tod<br />

mitochandria lio cytoskelotal Fraction II was reverted by<br />

additian of exogenaus Ca2~/CM-PKII.<br />

Fhosphory<strong>la</strong>tion of cytokeratins in intact hepatocytes - To<br />

obliain furtitor evi<strong>de</strong>nco for titepossible connection between<br />

Ca2~/CM-PK1I arad intermediare fi<strong>la</strong>ments, expariments of<br />

hepatic cyliokeraliin pitosphory<strong>la</strong>tion were performed. Tite<br />

pitosphory<strong>la</strong>tion pattern of purifaed cytokeratinsin vitro ma>’<br />

noÉ reflecli titeir phospitary<strong>la</strong>liiora staLus in more<br />

physiological, intact-coll systems (22-24). Titerefore, intact<br />

hepatacytes were <strong>la</strong>belled with 32P< and cytakeratins woro<br />

ammunoprecipilialied. As shown in Fig. 4, twa majar<br />

cyrokeratin bands were phosphory<strong>la</strong>Led upan itepatacyte<br />

citallerago to OX These twa ban<strong>de</strong> were assigned Lo cyto-<br />

5<br />

o-<br />

1~)<br />

tik- 90 F-<br />

~ractrcnII<br />

Ca¡CM-PKII<br />

FU].]. Effen of Ca2 /CM-PKII en CPT-I adivity. Hopatic mitochondria<br />

(1.5-2.0 mg protein/mí) were preincubated for 30 mira ira the absonce (-)<br />

or ira tho presorace (-4-) cf cytoskelotal Faaction II (0.05-0.06 mg<br />

pro¡ein/mfl. Purifiod C.a2~/CM-PKll was subscquontly addod (-4-) or not<br />

(-) te tÉ incubadoras, which v.ere run for 10 additioraa¡ mm. Aliqacoes<br />

wero subsoqueratly takon te <strong>de</strong>termine CPT-I activity. Results corresporad<br />

te 3 differont experimeratCSignificaratly difforent (P-c0.01) from<br />

inaibatioras witb no additions.<br />

keratins 8 and 18 on Lite basis of liheir Mr (54 and 45 KDa,<br />

rospecrivel>’) and higb abundance iii rat liver (eg. 22-24).<br />

Mareover, tite QA-unduced phosphary<strong>la</strong>tion of diese Nro<br />

ban<strong>de</strong> was prevented by KN-62, Lite Ca2~/CM-PKII<br />

inhibilior titar antagonizes lihe OA-induced stimu<strong>la</strong>tion of<br />

CPT-I (11). Novertheless, libe Ca2~ ionophore A23187 had<br />

no effocli on cytokeratin phosphory<strong>la</strong>tion iii intact<br />

hepatocytes (Fig. 4, <strong>la</strong>nes e and O.<br />

94—<br />

67-<br />

43—<br />

ab<br />

½<br />

+ - +<br />

+ +<br />

E: d ef<br />

PTO. 4. Phosphery<strong>la</strong>tion of cytokeratins 1t intact hepatocytes.<br />

llepatocytos wero ¡ce<strong>de</strong>d with 32P~ as indicatod ¡o Exporimeneal<br />

Procedures and further incubatod for 15 mira iii tho absonce or ira the<br />

presenca of 30 pM KN-62. iracubatioras were coratinued for ara additional<br />

15-mira period whh or v.-ithout 0.5 PM OA or 10 pM A23187. Colis were<br />

subsoquently disrupted ami cytolceratins wero immunoprecipitatod witb<br />

a monoclonal aíiti-cytokoratin antibod>’. lmmuraoprocipitates wert<br />

sutijected te SDS-PACE arad autoradiography. [ano a: no additions; ¡ano<br />

ti: QA: ¡ano e: KN-62; ¡ano d: ICN-62 plus 0A4 ¡ano o: A23187; ¡ano f:<br />

KN-62plus A23187. Molecu<strong>la</strong>r-mass marlceex (ira KDa) are shown en tite<br />

Ieft-harad sido of tite autoradiogram. ‘Dio oxperimont was repoated titreo<br />

times and simi<strong>la</strong>r results wero otitainod.


IMSCUSSION<br />

The prosent work was un<strong>de</strong>rtaken to study libe<br />

mecbanism by which Ca<br />

2~/CM-PKII (11) togetiter wilih<br />

cytoskaletal slirucliures (12) ma>’ be invalved ira libo acuto<br />

control of hopaliic CPT-I, libe enzymo Litat catalyzes libe<br />

pace-settmg step of long-cbain fatty acid oxidation (1-5).<br />

Dalia presoralied in tuis report support the notion titar<br />

itepatic CPT-I activity ma>’ be contro<strong>la</strong>d iii tSe shorli term<br />

not oral>’ by intracelu<strong>la</strong>r malorayl-CoA levels (5,8) but also<br />

by a malonyl-CoA-un<strong>de</strong>pen<strong>de</strong>nt mecitanism that ma>’ invalve<br />

modu<strong>la</strong>rion of tite inlieractioras berwoan CPT-I and<br />

cyroske<strong>la</strong>tal componants. As will be discussed below, lihis<br />

novel mechanism of control of hapatic CFI’-! activiliy ma>’<br />

p<strong>la</strong>usibí>’ reí>’ ora libo casca<strong>de</strong> Ca2~/CM-PKII activation -><br />

Cyliokerathn pitospitary<strong>la</strong>Liofl -> CPT-I <strong>de</strong>-inhibition.<br />

Involvement of cytoskeleta¿ components itt tite control of<br />

CPT-f activity - A number of reparts haya recaralil>’<br />

<strong>de</strong>scribad libe existeraco of specific intaractioras baliween tite<br />

mitochondrial auter membrane and cytoskeleLal eleníenlis<br />

(25,26). Ira the context of CFI’-! regu<strong>la</strong>tion, OA activates<br />

hapatic CP’I’-I (9) and disrupts libe cytoske<strong>la</strong>lion of<br />

hepaliocytes by causung lihe hyperpitospitary<strong>la</strong>tion of<br />

cvtoskeletal proLeiras (16). Faur observations ira tite preserat<br />

report provi<strong>de</strong> additional evi<strong>de</strong>nca far libe iravolvemarar of<br />

cytaska<strong>la</strong>lial components (most likely cytakeratira<br />

inliermedialie fi<strong>la</strong>menlis) in libe control of hepaliic CPT-I<br />

acliiviliy. First, exporiments of mild trypsira digasLion suggosli<br />

lihat CFI’-! ma>’ become activatad by cleavage of extramitachondrial<br />

celi component(s). Ira lina witb lihis<br />

observation, Forataune cli al. bayo recentí>’ reported thali<br />

porun, the mitacboradrial-outer-membrarae pore-forming<br />

protoira, also becamos activalied ira permeabilized<br />

hepatocytes upan mild trypsin digestiora of extramirochoradrial<br />

celí componaralis (27). Iris worth raotirag titar<br />

libe digostiora conditioras employad ira libe presenli papar<br />

were oxtremel>’ mil<strong>de</strong>r titan rhasa praviously usad by Kashfi<br />

arad Coak lio study libe effecli of prateolysis ora CP’I’-I (e.g.<br />

28), arad libaraforo libo twa liypes of experimeralis aro raot<br />

comparable. In lino witb aur observatioras, Frasar at al. (29)<br />

did not observe an>’ offecli of trypsin ora CFI’-! undar<br />

digestion conditions more ar iess comparable lio ours.<br />

Intorestungly, ceil pretreatment with OA rendarod CPT-I<br />

relucliarali ra activatiora by trypsira, suggestirag that bolih QA<br />

arad trypsin ma>’ share a cammon mecbaraism to relieve<br />

CFI-! from inhibition. Secorad, incubation of intacli<br />

hepaliocytos witit IDPN increased CPT-I activit>’ in a<br />

basicalí>’ raon-additive mararaer w¡Lh respeaL to OA,<br />

suggestirag a common mecitaraism of actian. Titiad, CPT-I<br />

activ¡ty m iso<strong>la</strong>tod míLochoradria was <strong>de</strong>pressed ira a dosa<strong>de</strong>pora<strong>de</strong>rar<br />

fasitiora by tite addition of a totai-cytoskeletora<br />

fraction arad a cytokeratin-onriched cyliaskalelial fractiora, tSe<br />

<strong>la</strong>rrer beirag 3 times more poterat liban libe formar. Fourtit,<br />

taxol prevoratad libe OA-iraduced <strong>de</strong>sensitization of CPT-I lio<br />

trypsira activation, as well as libe OA- arad IDPN-induced<br />

stimu<strong>la</strong>liion of CPT-!. In sborr, al) titese daLa suggost thali<br />

disruptian of interactions betwaera CFI’-! arad cytoskeletal<br />

6<br />

component(s) ma>’ relievo CPT-I from inhibition arad<br />

titorefore incroase erazyme acliivity.<br />

The passibililiy libat CFI’-! inlieracts witb cyroska<strong>la</strong>lial<br />

comporaenlis as pur forward ira libis papar is ira lino with libo<br />

currerat nation libar the dynamics and intracelu<strong>la</strong>r<br />

distributiora of mitochondria ira living colis ma>’ rasulli from<br />

specific interactioras of mitoebondria with compononlis of<br />

tite cyroskololian (25,26). In libe case of rar brain<br />

mitochondria, accruing evi<strong>de</strong>nce indicatos libali specif¡c<br />

interactioras occur botwaen mitocboradrial-auter-membrana<br />

prolieins arad cytoskelotal proroiras, aweli doscribed oxample<br />

being libe intoracrian berwoanpena, micrarubule-associatad<br />

protain 2, and libo neurofi<strong>la</strong>montal prateins NF-E arad NF-<br />

M (26,30). fo axisronce of direct conract sitas berwaan<br />

inliermediate fi<strong>la</strong>monlis and libe mitochondrial autor<br />

membrana has boen reportad nor only ira neuroras, buli also<br />

ira smoatb muscle myocytes (31) arad adrenal cortax celis<br />

(32). As far as wa know, altbough rat livor mitochandria<br />

itavo been sitawn to intoract witb micrarubules (33), diroct<br />

evidanca for titeir interactian witb intermediare fi<strong>la</strong>nienlis is<br />

sliill <strong>la</strong>cking.<br />

It has beon suggesred libat a funclilon of libe interacliians<br />

betwean mitachondria arad intermediare fi<strong>la</strong>menlis ma>’ be<br />

to locate mitocbondria in precise sites wilibin libe cel<br />

(25,26,34). This i<strong>de</strong>a is basad on experimoralis showing a<br />

parallel redislinibutian of mitochondria and intermediare<br />

ft<strong>la</strong>manlis upan cal expasure lio agonts tbar disrupt<br />

inliermedialie fi<strong>la</strong>monlis (34) ar ira cerrain stross situaliians<br />

(35). TSe mitochondnia<strong>la</strong>ltaratians observad ira dosmin-nuil<br />

‘mice alsa supparli this bypotitosis (36,37). Since tho<br />

organizaliian of iratermediate fi<strong>la</strong>mants changos dramaticail>’<br />

in a number of livor palibologios (38), libe abservations<br />

<strong>de</strong>scribed ira Lhe praserat papar pradicli libar CPT-I activiliy<br />

as affacrod b>’ cytaskeloral companenlis ma>’ chango urador<br />

patba-pbysia<strong>la</strong>gical situations <strong>la</strong> wbich libe orgaraizarion of<br />

tite cytoskoleton is altored, eg. ira trarasformod celIs. Tbus,<br />

wa hayo recenlil>’ observad (aulibar;’ urapublishad resullis)<br />

that CPT-I specific activir>’ 1; simi<strong>la</strong>r <strong>la</strong> miliocitandria<br />

iso<strong>la</strong>ted from bepatoma cals and normal hepatocytes, buli<br />

just abaut italf in permoabilizod hapaliocytes liban an<br />

permoabilized itepalioma col];; in addiliion, CFI’-! becamas<br />

reluctant Lo stimu<strong>la</strong>tion by OA ira bopatoma celis. These<br />

observaliions supporli Lhe noliion titar <strong>la</strong> bapatocytas OA<br />

raleases CP’I’-I from certain corasliricliians imposadby extramitochondrial<br />

cali camponenlis libat da noÉ aparate cirber<br />

ira isa<strong>la</strong>ted mitachondria or in transformad livor celis.<br />

Involvemene of Ca2~/CM-PKJI ¡it the contml of CPT-I<br />

acdvity - Provious exporimonlis <strong>la</strong> orn <strong>la</strong>boratorios hayo<br />

shown that KN-62, an inhibitar of Ca’~/CM-PKII (21),<br />

antagon¡zos tite OA-iraducod stimu<strong>la</strong>tion of bepatia CP’I’-I<br />

actívir>’ (11). In contrasli, nailiher H-7 -an initibitor of<br />

cAMP-<strong>de</strong>pen<strong>de</strong>nt pratein kinase and protain kinaso C- nar<br />

0F109203X -a protain kinasa C inhibitar- were able ro<br />

prevent libe OA-iraduced stimu<strong>la</strong>tion of CP’I’-I (11).<br />

Likewise, inhibirors of libe mitogan-activated protoinkinaso<br />

cascado sucb as wortmararaira, apiganin and PD98059 aro<br />

unabia La preverat libe OA-iraducad sti¡rau<strong>la</strong>tion of CPT-I


(autbors’ urapublisbad rosullis). Ca<br />

2~ /CM-PK1I becomos<br />

carastitutivol>’ activated wbera autophaspitary<strong>la</strong>ted <strong>la</strong> kay<br />

serme or libreanune residues on tite autoraomy site of libe<br />

erazyme (13). Autophospitory<strong>la</strong>tion is sufflciorat Lo disrupt<br />

tite autoirahibitor>’ domain of Ca2~/CM-PKII, leading to a<br />

permananli da-inhibition of libo kinasa (13). It is Litus<br />

conceivab<strong>la</strong> libaL parmanent activation of Ca2~/CM-PKII<br />

erasues upan irabibitiora b>’ OA of libe pitospitatases involvad<br />

ira libo <strong>de</strong>pbospbory<strong>la</strong>liiora (= <strong>de</strong>activation) of Ca2 /CM-<br />

PKI!. Ca2~/CM-PKII autopbosphory<strong>la</strong>tiara itas <strong>la</strong><strong>de</strong>ad been<br />

<strong>de</strong>morastralied in bepatocylies upora chaflerage lia OA (13).<br />

Tbe present dalia po<strong>la</strong>li Lo a link between Ca2~/CM-PKII<br />

and libe c>’toska<strong>la</strong>ton in tbo corataxli of CFI’-! ragu<strong>la</strong>tiora.<br />

This coraclusion is basad mostí>’ on titree observatioras. Firsli,<br />

purified Ca2~/CM-PKI! was able to activato CFI’-I ni<br />

permeabilizad celís buL nat ira iso<strong>la</strong>ted mitochondria. Tbis<br />

ís ira agroamerat with previous evi<strong>de</strong>nce againsli tite<br />

involvement of direcr phospitory<strong>la</strong>tion ira tite OA-induced<br />

stimu<strong>la</strong>tion of CFI’-! (10) arad iradicates titar extramitochondrial<br />

cdl comporaenlis are raqulrad for libe<br />

regu<strong>la</strong>tion of CFI’-I acrivit>’ by Ca2~/CM-PKII. In Lhis<br />

respecli, it is wortb notirag diaL parmeabilization of<br />

hepatocytes witb digilionira seems Lo preserve quite wall<br />

batb tite general morpboiog>’ of tite cefi arad tite structure<br />

of libo cyroskaloron (39), arad titerefore tite potential<br />

interactiaras botwean libe cylioskeleton and calI orgaraellos<br />

ma>’ remain basicail>’ uraaffected upora titis type of<br />

manipu<strong>la</strong>tiara. Secorad, wbon iso<strong>la</strong>tad mitocitoradria wera<br />

nícubatad witb a cyliokeratin-enricitod cytoskoletal fraction,<br />

purified Ca2t/CM-PKII was abia to abrogata libe iraitibition<br />

of CPT-l iraduced by tbat cyliokerat<strong>la</strong> fraction. It is clear<br />

from titase experimonlis titali a simple roconstituted system<br />

compasad by iso<strong>la</strong>liad mitochondria, a cyliokeratin-eraricbed<br />

fracrion arad purified Ca2~/CM-PKI! may reflect tite<br />

situatiora accurr<strong>la</strong>g ira Lite intaet hepatacyte, iradicaliing diaL<br />

tbese libree companents are suflicierat for titemalonyl-CoAiradaperadorali<br />

acuto control of CPT-I to be <strong>de</strong>monstralied in<br />

vitro. Third, Lite Ca2~/CM-PKII irahibitor KN-62 preverated<br />

libe OA-iraduced pitospbory<strong>la</strong>tion of cyrakeratins in<br />

bepatocylios, poiratirag Lo a role of Ca2~/CM-PKII on<br />

cytokeratin pbospbory<strong>la</strong>tion ira intact itepatacylies (23,24).<br />

Pbosphory<strong>la</strong>tion of cytokorat<strong>la</strong> intormediate fi<strong>la</strong>menlis by<br />

Ca2~/CM-PKI! in wbolo ceils lead; Lo tite disruption of<br />

tbese strucliuras (23,24), arad liberafore tuis observation f¡ts<br />

witb tite OA- and IDPN-induced stimuiatiora of CPT-I.<br />

Additioraal evidorace far libe involvomeat of cytokeratins<br />

ira tite conLrol of CFI’-I activili>’ is givon by tbe <strong>la</strong>ck of effoct<br />

of A23187 ora cyrokeratira phosphory<strong>la</strong>tiora ira hepatocyros.<br />

In lihis coraliext, challerage of itepatocytos Lo OA leads Lo<br />

CFI’-I activaLiora arad c>’tokeraliin pitospbory<strong>la</strong>tiora, witoreas<br />

alevation of cytosolic frae Ca2t coracentratiora b>’ A23187<br />

has no effect ora aither CFI’-! activit>’ (40) or cytokaratira<br />

phospitory<strong>la</strong>tion (Lito proseali papar). Tite passibility that<br />

liver Ca2t/CM-PK!I ma>’ bayo a different palitern of<br />

activation by Ca2~/calmodulin arad b>’ autopbospitory<strong>la</strong>tiara<br />

titan brain Ca2t/CM-PKII (cf. 11) is a; yot ara open<br />

quostiora.<br />

It is wortb notirag tbat neither cAMP-proteira protaira<br />

7<br />

kinase nor prote<strong>la</strong> kinase C alfocted CFI’-I activiliy <strong>la</strong><br />

permeabilizad bepatocyres <strong>la</strong> spilio of titair abilir>’ La<br />

pbospitory<strong>la</strong>ta cytokerat<strong>la</strong>s itt vitro (23,41,42). However,<br />

saveral linos of avidaraca indicata libar neitber of libase Nro<br />

pratein kinases pía>’ mi imporrarar role in Lba direor control<br />

of iratarmedialia fi<strong>la</strong>merar integrity ira inliact bepaliocytes.<br />

Thus, it itas beon sbawn libat pratein kinase C may be<br />

resporasible for maintairaung basal lovais of phospbary<strong>la</strong>Lion<br />

on cytakeraliiras 8 arad 18 witbout altor<strong>la</strong>g cyrokeraliin<br />

fi<strong>la</strong>merat assombly (41). As a matter of fact, exposure of<br />

<strong>la</strong>tact hepaliocytos Lo phorbol estor; induces c>’tokaratin<br />

pitaspbor>’<strong>la</strong>tion buli doc; noÉ allier argaraization of<br />

<strong>la</strong>tormedialio fi<strong>la</strong>menlis fi<strong>la</strong>merat, wbich appear as fuil>’<br />

assembled raotwarks (42). In addition, phosphopepti<strong>de</strong> maps<br />

of bopatie cytokoratins pbospitory<strong>la</strong>tad in vivo and itt vitro<br />

cloarí>’ indicate lihat cAMP-daperadant protein kinase is not<br />

mucb iravolved ira c>’tokeratin pitaspbor>’<strong>la</strong>liion ira iratact celis<br />

(23). Ira contrast, arad ira lirae with data <strong>la</strong> tite presenL paper,<br />

Ca2t/CM-PKII bas been showra to pía>’ a majar rolo in tite<br />

pbospbory<strong>la</strong>liion and furactional <strong>la</strong>liogrity of hepatie<br />

cytokoratins itt vivo (23). It has tren also suggestad libat<br />

activatian of Ca2~ /CM-PKI! (arad noÉ of aliber prato<strong>la</strong><br />

kiraases) is rasponsible far tite OA-<strong>la</strong>duced disruption of<br />

hepatocyto cytosko<strong>la</strong>ron (16). Ah ¡ibis pounts ra a furactional<br />

involvomerat of rbi; protein . kinasa ira libe control of tite<br />

<strong>la</strong>tegrity of bepaliic cytoskolelion.<br />

o<br />

¡«‘4-62<br />

~kioase<br />

Pases ¡/2A<br />

OA<br />

Trypsin<br />

e<br />

Cytcske¡eton<br />

(intacO<br />

Taxol<br />

(¡esa active)<br />

Q (more active><br />

O CPT-<br />

IDi’N ~® O-®<br />

(ytoske¡eton<br />

(dknuptrd)<br />

SCHEME 1. Pnposed modal for lb. maionyl-CoA-in<strong>de</strong>pen<strong>de</strong>nt acule<br />

control of hepatie CPT-I aetivity. Seo tÉ ten for abbreviations arad<br />

further <strong>de</strong>tai<strong>la</strong>.<br />

Malonyl-CoA-<strong>de</strong>pen<strong>de</strong>nt and rnalonyl-CoA-in<strong>de</strong>pen<strong>de</strong>nt<br />

control of CPT-I activi¡y - Togetitar wiLb previous<br />

obsarvatioras (10-12), dalia <strong>la</strong> ¡ibis papar allow a modal to<br />

exp<strong>la</strong>in tbo OA-iraducod ma<strong>la</strong>rayl-CoA-iradapen<strong>de</strong>nt control<br />

of bapatic CP’I’-I. As sbowra <strong>la</strong> Scbeme 1, OA ma>’ activata<br />

Ca2t/CM-PK!! by increasirag it; <strong>de</strong>gree of pbospbar>’<strong>la</strong>tion<br />

upan irabibition of protein phospitaliases 1 and 2A; tuis<br />

effect would be prevantod b>’ KN-62, an <strong>la</strong>hibitor of


TItE JOURNAL OF BIOLOGICAL CHEMISTRY (en rev¡oén)<br />

Ca<br />

2 /CM-PKII aurapbospbary<strong>la</strong>tion. AcLivated Ca2~/CM-<br />

PKII would pbospitary<strong>la</strong>te cytoskelotal camponents,<br />

perbaps cytokeratins 8 arad 18, tbereb>’ disrupting puliarive<br />

irahibitor>’ irateractiaras boliweara libe cytoskaiotora and CPT-I.<br />

Stimu<strong>la</strong>Lion of CPT-! upan disruptian of libo cytosko<strong>la</strong>ton<br />

would be also acbievod b>’ challenga of intact bepaLocyres<br />

lio IDPN or b>’ Lrealimenli of permeabilized bepaliocytes witb<br />

tryps<strong>la</strong> ira mild coradiliions. Stabilization of libo cyroska<strong>la</strong>ton<br />

wilib Laxol ma>’ provarat tite malorayi-CaA-indopen<strong>de</strong>nt aculio<br />

stimu<strong>la</strong>Lian of CFI’-I.<br />

It is obvious ritat libe raotion tbat fatr’y acid traraslocation<br />

<strong>la</strong>to mitochondria ma>’ be contro<strong>la</strong>d it>’ madu<strong>la</strong>tion of libe<br />

irateractioras botweera CFI’-I arad cyraskeletal componenlis<br />

(i.e. by a ma<strong>la</strong>ra>’l-CoA-ira<strong>de</strong>pora<strong>de</strong>rat mechanism) does raoli<br />

diminisb Lite imporlianca of maiorayl-CoA as a pitysio<strong>la</strong>gical<br />

madu<strong>la</strong>tor of CPT-I activir>’ (5,8). Ora ono barad, since libo<br />

pioneering work of McGarry arad coworkers (8,43), citarages<br />

<strong>la</strong> long-chaira fality acid oxidation ura<strong>de</strong>r man>’ diffarerat<br />

patbo-pbysio<strong>la</strong>gical situatioras bayo boen sbown La be liraked<br />

Lo changos ira iratracellu<strong>la</strong>r malonyl-CoA concentration<br />

and/or citaragos ira tite serasitivit>’ of CPT-I Lo ma]ora>’l-COA<br />

(1,2,5). On Lite aLbar batid, several observatioras suggesli libali<br />

malonyl-CoA-<strong>de</strong>pondorat arad ma<strong>la</strong>rayl-CoA-ira<strong>de</strong>pera<strong>de</strong>rat<br />

aculie control of bepatic CP’I’-I activir>’ migbt aperate in<br />

coracerli. First, Wc itave rocenLí>’ showra libat stimu<strong>la</strong>tian of<br />

Lite AMP-activated proteira kinase -a majar prote<strong>la</strong> kinasa<br />

¡ravolved <strong>la</strong> libe control of bepatic lipid metabolism- <strong>la</strong>ads to<br />

ara acrivation of bepatic CPT-I by ma]on>’l-CoA-<strong>de</strong>pendont<br />

arad malon>’l-CoA-indapen<strong>de</strong>nt mocitanisms (44). Second,<br />

a fractiara of bapaLic acatyl-CoA carboxy<strong>la</strong>se, tite arazyme<br />

resparasiblo for libe s>’rathosis of malon>’l-CoA, has beon<br />

reconlil>’ suggoslied Lo be bound ta Lbo cytaskoletan (45).<br />

Third, ir itas beon puÉ forward titar libe 280-KDa isoform of<br />

aceLyl-CaAcarbox>’<strong>la</strong>se migbL interact witb libe outer leafler<br />

of tbe mitocitoradrial autor membrana ira or<strong>de</strong>r Lo citannel<br />

malon>’l-CoA for CP’I’-I initibition (46). Fourtb, tite rocent<br />

obsorvation libar Lite bulk of tite CPT-I protein seems Lo<br />

face libo cytop<strong>la</strong>smic sido of Lite mitocitandrial auter<br />

membrane (29) makes more Iikel>’ LitaL interactiaras<br />

beliwoon CFI’-I arad cytoskeleta] camparaerat; migbt occur.<br />

Ira tbo conten of tbe emergirag role of cytoskelolial<br />

fi<strong>la</strong>mentaus raoNrorks <strong>la</strong> intracelu<strong>la</strong>r sigraaling (47), currarat<br />

resoarcb ira our <strong>la</strong>boratorios is focussed ora Lito possible<br />

axisrenca of a coardinalie control of CPT-! arad acet>4-CoA<br />

carbax>’<strong>la</strong>se activities by modu<strong>la</strong>tion of interaction; between<br />

tite cylioskoletora and libe mitochoradrial autor membrarae.<br />

.4cknow/edgements - Wa are ira<strong>de</strong>tited to Dr. Ismael Gaiya arad<br />

Ms. Teresa Gómez <strong>de</strong>l Pulgar for expart techaical asistarace, as<br />

well as Lo Dr. Alejandra Alonso arad Dr. Jean Eraracois Leterrier<br />

for ha¡pfuL critical commerats.<br />

REFERENCES<br />

1. Mcúarr>’, J.D., Woeltja, K.F., Kuwajinia, M., arad Foster,<br />

D.W. (1989) Diabetes Metab. Rey. 5, 271-284<br />

2. Zammit, VA. (1994) Diabetes Rey. 2, 132-155<br />

3. Guzmán, M., arad Gaelen, M.J.H. ’, M., Contasse, V., Lefebvre, H., Da<strong>la</strong>rue, C.,<br />

arad Vaudwy, H. (1994) Am. 1. Physioi 266, E202-E210<br />

19. Da Loof, A., Broeck, J., arad Jarassen, 1. (1996) Inc Rey.<br />

Cytol. 166, 1-58<br />

20. Haagsmara, H.P., <strong>de</strong> Haas, C.G.M., van Golda, L.M.G.,<br />

arad Gaelen, MJ.H. (1981) Biochim. Biophys. Acta 665,<br />

1-7<br />

21. Tokumitsi, H., Chijiwa, T., Hagiwara, M., Mizutaní, A.,<br />

Taresawa, M., arad Hidaka, H. (1990)1 Rio! Chem. 265,<br />

43154320<br />

22. Fuchs, E., arad Wabar, K. (1994) Annu. Rey. Biochem.<br />

63, 345-382<br />

23. Toivo<strong>la</strong>, DM., Goidmara, R.D., Garrod, D.R., arad<br />

Eriksson, J.E. (1997) J. Ccli Sci. 110, 23-33<br />

24. Inagak>’, M., Inagaki, 14., Takahashi, T., arad Takay, Y.<br />

(1997) £ Biochem. (Tokyo) 121, 407414<br />

25. Baraiter-Hahn, J., arad Vóth, M. (1994) Micmsc. Res.<br />

Tech. 27,, 198-219<br />

26. Letarrier, J.F., Rusakov, DA., Nelson, B.D., arad<br />

Lindéra, M. (1994) Microsc. Res. Tech. 27, 233-261<br />

27. Fontaine, EM., Keriet, C., Laratuajoul, 5., Rigouiet, M.,<br />

Leverve, X.M., and Saks, VA. (1995) Biochem. Riophys.<br />

Res. Comman. 213, 138-146<br />

28. Kashfi, K., and Cook, GA. (1992) Biochem. £ 282, 909-<br />

914.<br />

29. Fraser, E., Costorphina, CG., arad Zarairaiit, VA. (1997)<br />

Biochem. J. 323, 711-718<br />

30. Lundéra, M., arad Karlsson, 0. (1996) Bloc/acm. Biophys.<br />

Res. Commun. 218, 833-836<br />

31. Stromer, M.H.. arad Bedayan, M. (1990) Cd Motí!<br />

Cytoskeleton 17, 11-18


TItE JOURNAL OF BIoLoGICA[. CIIEMISTRY (en re~Sión)<br />

32. Almahbobi, O., Wiliams, Li., arad Hall, EF. (1992)<br />

Sip. CefI Res. 200, 361-369<br />

33. Bernier-Valeratira, F., arad Rousset, B. (1982) J. Bid.<br />

’, A., arad<br />

Capetanaki, Y. (1996)1. Ccii Bici. 134, 1255-1270<br />

38. Omar>’, MB., arad Ku, NO. (1997) Hepaíology 25, 1043-<br />

1048<br />

39. Fiskum, M, Craig, S.W., Dador, G.L., and Lehninger,<br />

AL. (1980) ¡‘mc. NiaL Aco4. Sci. USA. 77, 3430-3434<br />

40. Guzmán, M., Ve<strong>la</strong>sco, O., and Castro, J. (1996) Am. £<br />

Physioi. 270, 0710-0707<br />

41. Ko, 14.0., arad Omar>’, E. (1994)1. Ccli Bici 127. 161-<br />

171<br />

42. Cadrin, M., McFar<strong>la</strong>ne-An<strong>de</strong>rson, N., Aasheim, L.H.,<br />

Kawahara, H., Fraraks, Di., Marcaau, N., arad French,<br />

S.W. (1992) Ccli? Signal. 4, 715-722<br />

43. McGarr>’, J.D., Mannaerrs, GP., arad Foster, D.W.<br />

(1977) ¿ Clin. Invest. 60, 265-270<br />

44. Ve<strong>la</strong>sco, 0., Geelen, Mi.H., arad Guzmán, M. (1997)<br />

A,rh. Biochem. Biophys. 337, 169-175<br />

45. Gealen, Mi.H., Bijieveld, C., Ve<strong>la</strong>sco, G., Wara<strong>de</strong>rs,<br />

RAJ., arad Guzmán, M. (1997) Bloc/acm. Biophys. Res.<br />

Commun. 233, 253-257.<br />

46. Ha, 3., Lee, J.K., Kim, K.S., Witters, LA., arad Kim,<br />

K.H. (1996) ¡‘mc. Noii Acad. Sri. USA. 93, 11466-<br />

11470.<br />

47. Forgaes, G. (1995) ¿ Cefi Sci. 108, 2131-2143<br />

9


Canítulo 2<br />

DISCUS!ÓN<br />

Resultados y Discusión<br />

Los resultados experimentales expuestos era el presente capitulo<br />

permiten i<strong>de</strong>ntificar algunos <strong>de</strong> los a<strong>la</strong>mentos que parecen estar implicados en<br />

<strong>la</strong> regu<strong>la</strong>ción a corto p<strong>la</strong>zo <strong>de</strong> <strong>la</strong> CPT-I:<br />

i) Diferentes pruebas indican que el citoesqueleto <strong>de</strong>sempeña ‘un papel<br />

importante en <strong>la</strong> regu<strong>la</strong>ción <strong>de</strong> <strong>la</strong> CPT-I y que, podría constituir el elemento<br />

extramitocondrial necesario para que se verifique <strong>la</strong> regu<strong>la</strong>ción <strong>de</strong> <strong>la</strong> CPT-I que<br />

se pier<strong>de</strong> tras el ais<strong>la</strong>miento <strong>de</strong> mitocondrias. De eratre los diferentes<br />

componentes <strong>de</strong>l citoesqueleto, los fi<strong>la</strong>mentos intermedios (y sus principales<br />

proteínas constituyentes en hígado, <strong>la</strong>s citoqueratinas) surgen como los<br />

principales candidatos a estar directamente implicados en <strong>la</strong> regu<strong>la</strong>ción <strong>de</strong> <strong>la</strong><br />

CPT-I. A pesar <strong>de</strong> que resulta tentador especu<strong>la</strong>r con una interacción entre<br />

citoqueratinas y CPT-I (o alguna otra proteína mitocondrial que pudiera<br />

participar en <strong>la</strong> regu<strong>la</strong>ción a corto p<strong>la</strong>zo <strong>de</strong> <strong>la</strong> enzima) lo cierto es que no<br />

existen pruebas directas, por lo que <strong>de</strong> momento dicha hipótesis permanece en<br />

el p<strong>la</strong>no especu<strong>la</strong>tivo.<br />

u) La Ca<br />

2t/CMPKII ha sido i<strong>de</strong>ntificada como un factor soluble que se<br />

per<strong>de</strong>ría tras <strong>la</strong> penneabilización <strong>de</strong> los hepatocitos y que sería una diana <strong>de</strong> <strong>la</strong><br />

acción <strong>de</strong> <strong>la</strong>s proteína fosfatasas 1 y 2A en <strong>la</strong> activación <strong>de</strong> <strong>la</strong> CPT-I. Así, <strong>la</strong><br />

trahibición <strong>de</strong> estas proteína fosfatasas por ácido okadaico o por tautomicana,<br />

impediría que pueda llevarse a cabo <strong>la</strong> <strong>de</strong>sfosfori<strong>la</strong>ción <strong>de</strong> <strong>la</strong> quinasa, que al<br />

aumentar su nivel <strong>de</strong> fosfori<strong>la</strong>ción pasa a encontrarse mayoritariamente en el<br />

estado autónomo. La quinasa activada fosfori<strong>la</strong>ría diferentes sustratos en <strong>la</strong><br />

célu<strong>la</strong> y entre ellos diferentes citoqueratinas. Con ello podría estar induciendo<br />

<strong>la</strong> <strong>de</strong>spolimerización <strong>de</strong>l citoesqueleto (o al menos <strong>de</strong> los fi<strong>la</strong>mentos<br />

intermedios) y cora ello un aumento en <strong>la</strong> actividad CPT-I.<br />

A <strong>la</strong> vista <strong>de</strong> los datos expuestos era este capítulo es posible presentar un<br />

mo<strong>de</strong>lo <strong>de</strong> regu<strong>la</strong>ción <strong>de</strong> <strong>la</strong> CPT-I in<strong>de</strong>pendiente <strong>de</strong> maionii-CoA que liga<br />

activación <strong>de</strong> Ca2~/CMPKII, fosfori<strong>la</strong>ción y ruptura <strong>de</strong>l citoesqueleto y<br />

activación <strong>de</strong> <strong>la</strong> CPT-I. Sin embargo, <strong>la</strong>s modificaciones que el ácido okadaico<br />

induce en nuestro sistema experimental, probablemente difieran notablemente<br />

<strong>de</strong> <strong>la</strong>s que ocurren habitualmente en <strong>la</strong> célu<strong>la</strong>, ya que <strong>la</strong> alteración <strong>de</strong>l equilibrio<br />

<strong>de</strong> fosfori<strong>la</strong>ción/<strong>de</strong>sfosfori<strong>la</strong>ción que ganera es probablemente <strong>de</strong> un or<strong>de</strong>n<br />

mayor que el que resulta <strong>de</strong> <strong>la</strong> activación fisiológica <strong>de</strong> <strong>la</strong>s diferentes quinasas.<br />

Par ello, a pesar <strong>de</strong> <strong>la</strong> utilidad que el ácido okadaico posee como instrumento<br />

para el estudio <strong>de</strong> <strong>la</strong> regu<strong>la</strong>ción a corto p<strong>la</strong>zo <strong>de</strong> <strong>la</strong> CPT-I, es necesario verificar<br />

el posible papel fisiológico que este mecanismo pudiera tener en <strong>la</strong> regu<strong>la</strong>ción<br />

<strong>de</strong> <strong>la</strong> oxidación <strong>de</strong> ácidos grasos.


2.3. Posible papel<br />

fisiológico <strong>de</strong><strong>la</strong><br />

regu<strong>la</strong>ción a corto<br />

p<strong>la</strong>zo (in<strong>de</strong>pendiente<br />

<strong>de</strong> malonil-CoA) <strong>de</strong><strong>la</strong><br />

CPT-I


Capitulo 2<br />

Bibliograria<br />

INTRODUCCIÓN<br />

Hardie, D.C. y Car¡ing, D. (¡9971 Lur. J. B¡oehem. 246,259-273<br />

Resultados y Discusión<br />

Una vez <strong>de</strong>terminada <strong>la</strong> importancia que el citoesqueleto y <strong>la</strong> regu<strong>la</strong>ción <strong>de</strong><br />

su estado <strong>de</strong> organización pue<strong>de</strong>n tener en el control <strong>de</strong> <strong>la</strong> CPT-l, se hizo necesario<br />

buscar <strong>la</strong>s implicaciones que este mecanismo pudiera tener era el contexto <strong>de</strong> <strong>la</strong><br />

regu<strong>la</strong>ción fisiológica <strong>de</strong> <strong>la</strong> oxidación <strong>de</strong> ácidos grasos.<br />

Por una parte, estudiamos <strong>la</strong> regu<strong>la</strong>ción <strong>de</strong> <strong>la</strong> actividad <strong>de</strong> <strong>la</strong> CPT-l en<br />

célu<strong>la</strong>s <strong>de</strong> hepatoma (Fao y HepG2). Puesto que el ácido okadaico es un conocido<br />

agente carcinogénico, que produce entre otros efectos <strong>la</strong> <strong>de</strong>sorganización <strong>de</strong>l<br />

citoesqueleto, nos p<strong>la</strong>nteamos <strong>de</strong>terminar qué tipo da regu<strong>la</strong>ción presenta <strong>la</strong> CPT-l<br />

en unas célu<strong>la</strong>s, como <strong>la</strong>s <strong>de</strong> hepatoma, en <strong>la</strong>s que (dada su condición <strong>de</strong> célu<strong>la</strong>s<br />

tumorales) el citoesqueleto tambiénse encuentra <strong>de</strong>sorganizado.<br />

Por otra parte, teniendo en cuenta que <strong>la</strong> AMPK es quizá <strong>la</strong> proteína<br />

quinasa más importante en <strong>la</strong> regu<strong>la</strong>ción <strong>de</strong>l metabolismo hepático <strong>de</strong> ácidos grasos<br />

(Hardie y Carling, 1997), nos p<strong>la</strong>nteamos estudiar si esta enzima podría estar<br />

implicada también ea <strong>la</strong> regulción <strong>de</strong> <strong>la</strong> CPT-l no solo a través <strong>de</strong>l control <strong>de</strong> <strong>la</strong><br />

actividad ACC (y con ello <strong>de</strong> los niveles <strong>de</strong> malonil-CoA), sino también a través <strong>de</strong><br />

un mecanismo in<strong>de</strong>pendiente <strong>de</strong> malonil-CoA.<br />

Por último, una serie <strong>de</strong> estudios- acerca <strong>de</strong> <strong>la</strong> posible localización<br />

subeeluiar <strong>de</strong> <strong>la</strong> ACC indicaron que ambos mecanismos <strong>de</strong> regu<strong>la</strong>ción <strong>de</strong> <strong>la</strong> CPT-l<br />

(<strong>de</strong>pendiente e in<strong>de</strong>pendiente <strong>de</strong> malonil-CoA), podrían estar estrechamente<br />

re<strong>la</strong>cionados.


LOSS OF RESPONSE OF CARNITINE PALMITOYLTRANSFERASE 1<br />

TO OKADAIC ACID IN TRANSFORMED HEPATIC CELLS<br />

Guillermo Ve<strong>la</strong>sco’, Patricia Passilly’, Manuel Guzmán~ and Norbert Latruffe’<br />

‘Department af Biachemistry arad Molecu<strong>la</strong>r Bio<strong>la</strong>gy 1, Faculry of Biology, Compluterase University, 28040<br />

Madrid, Spain; arad ‘Laboratoire <strong>de</strong> Bia<strong>la</strong>gie Molecu<strong>la</strong>ire et Cellu<strong>la</strong>ire, Faculté <strong>de</strong>s Sciences Miran<strong>de</strong>,<br />

Université <strong>de</strong> Bourgagne, BP 400, 21011 Dijon, France<br />

ABSTRACr. The specific activity of carnitine palmitoyltransferase 1 (CPT-I) was simi<strong>la</strong>r in mitacharadria<br />

isa<strong>la</strong>ted fram rat Fao and human HepG2 heparama celís arad from rat hepatocytes, bur almost 2-foid<br />

higber in permeabilized hepatoma celís thara ira permeabilized heparocytes. Short-rerm exposure ta akadaic<br />

acid induced a ca. 80% stimu<strong>la</strong>tion of CPT-I ira hepatocytes, whereas no significant response of the enzyme<br />

from hepatoma celís was evi<strong>de</strong>rat. Thus, libe high CPT-I activir>’ disp<strong>la</strong>yed by hepatama celis may be<br />

reached by hepatocyliesupan challerage ta okadaic acid. The present data may be exp<strong>la</strong>ined by a disruption<br />

of irateractioras beliweera CPT-I arad cytoskeletal componerats ira tumor celís wbicb may be involved ira lihe<br />

okadaic acid-induced activatian of hepatie CPT-I as previausly suggested [BiochemBiophys Res Commun<br />

224~ 754-759, 1996].<br />

Mitochandrial fatty acid axidatian provi<strong>de</strong>s a major saurce of ener~’ ira beart, skeletal muscle arad liver<br />

(reviewed ira [1-3]).Hepatic fatty acid oxidarion alsa supplies exírahepatie tissues with kerone bodies as<br />

a glucase-rep<strong>la</strong>cing fuel[1-3].Carnitine palmitayltrarasferase 1 (CPT-I), the auter-mitachoradrial-membrane<br />

carnitine palmitoyltransferase, calialyzes libe paco-settirag step of long-chaira fatty acid transiacarian inta<br />

Abbrev<strong>la</strong>tlons: CPT-I, carnitine palmitayitransferase 1; ODH, glutamate <strong>de</strong>hydrogenase<br />

torresponding autitor: Dr. Manuel Guzmán, Deparlimerat of Biocheniistry arad Molecu<strong>la</strong>r Biology 1, FaculÉ>’ of Biology,<br />

<strong>Complutense</strong> Uraiversit>’, 28040-Madrid, Spain. Telephone: (1) 3944671. Far (1) 3944672. E-mail: mgp@solea.quim.ucm.es


lihe mitochondrial matrix [1-31.Recerat <strong>de</strong>termination of flux coratral coefflcierats of the enzymes involved<br />

ira hepatic long-chaira fatty acid oxidatiara shows thar CPT-I p<strong>la</strong>ys a pivatal role in contralling the flux<br />

Lhrough titis patbway un<strong>de</strong>r different substrate cancenliratioras arad patho-pbysio<strong>la</strong>gical states [4,5].It is well<br />

established that <strong>la</strong>ng-term changes ira hepatie CPT-I activity occur ira response lio alterations in the<br />

rautritianal arad hannonal status of the animal [1-3].Ira additian, CPT-I is subjected to allosteric inhibition<br />

by malorayl-CoA [1-3].<br />

During the <strong>la</strong>styears, a novel mochanism af control of hepatic CP’F-I activity has beera put forward.<br />

Several studies usirag permeabilized heparocytes have shown that variaus agents exert shart-terni effects<br />

an CPT-I activity ira parallel with charages ira the rate of long-chain fatty acid oxidation (reviewed ira [1]).<br />

Thus, cAMP ana<strong>la</strong>gues (e.g. dibutyryl-cAMP) [6], effectarswhich increase intracellu<strong>la</strong>r cAMIP levels (cg.<br />

glucagara, forskalin) [6] arad protein phosphatase irahibitors (e.g. okadaic acid) [6,7] are able ro stimu<strong>la</strong>te<br />

hepaíic CPT-I. This shart-term activatiara of CPT-I is assumed to be mediated by a malorayl-CoA-<br />

in<strong>de</strong>pera<strong>de</strong>rat mechanism [8] libar may involve the phosphory<strong>la</strong>tiora of cytoskeletal comporaerat(s) and the<br />

subsequerar disruptiora of interactioras betweera CPT-I arad the cytoskeletora [9,10].However, the significance<br />

of this putative mechanism of control of CPT-I activity is as yet uraknowra. In the contefl of the<br />

aforementioned hypathesis, it is conceivable that the regu<strong>la</strong>tory properties of CPT-I may change ura<strong>de</strong>r<br />

patho-physio<strong>la</strong>gical situatioras ira which libe arganization of the cytoskeletan is altered. Since it is welI<br />

established rhat the cytaskeletora of transformad celis is disorganized, the present wark was un<strong>de</strong>rtaken<br />

to study libe regu<strong>la</strong>tion of CPT-I activity by okadaic acid ira hepatoma celís compared to hepatocyres ira<br />

primary cultures.<br />

MALTERL&LS AND METHODS<br />

Ceil culture<br />

The rat hepatoma celI une Fao arad lihe human hepatoma ceil line HepG2 were cultured as previously<br />

<strong>de</strong>scribed [11]. They were trarasferred to titeir respective serum-free culturad media [11] supplemented<br />

with 1% (w/v) dafatted arad dialyzed bavine serum albumin 24 h prior lio tbe experiments. Hepatocytes<br />

were iso<strong>la</strong>ted from malo Wistar rats (250-300 g) which had free access to foad and water by libe<br />

cal<strong>la</strong>genase perfusiora method <strong>de</strong>scribed ira [7].They were inocu<strong>la</strong>ted ira DMEM cantaining 10% (y/y) fetal<br />

calf serum. Aftar calI attachmerat (ca. 6 h), the medium was rep<strong>la</strong>ced with serum-free DMEM contairaing<br />

10 raM <strong>de</strong>xamethasarae arad 1% (w/v) <strong>de</strong>fatred arad dialyzed bovine serum albuniira, arad libe hepatocytes<br />

were culturad for 14-18 h befare libe exparimerats were performed.<br />

CPT-I assay<br />

CPT-I activity was <strong>de</strong>termiraed ira digitonin-permeabilized celis as the tetra<strong>de</strong>cylglycidate-sensitive<br />

incorparation of radia<strong>la</strong>belled L-carraitine irata palmitaylcarraitine. Briefly, alitached calis (p<strong>la</strong>ted ira P6<br />

pIales) ar celís ira suspensiora (scraped fram F75 f<strong>la</strong>sks), as indicated ira ever>’ case, were preiracubated for<br />

45 mira ira the absenca or ira rhe preserace of 20 ~M tetra<strong>de</strong>cylglycidate (kiradly donated by Dr. J.M.


Lowenstein, Bran<strong>de</strong>is Uraiversity, Waltham, MA, USA), a speciflc irreversible inhibitor of CPT-I (cf. [7]).<br />

Incubatioras were cantinued for an additianal 45-mm period ira the preserace or tha absance of varyirag<br />

coracenlirarioras of akadaic acid. Subsequeralily, carnitine palmitoyltrarasferase activity was manitored ira<br />

hapatocyte mono<strong>la</strong>yers [5] ar susperasioras [7].<br />

Far libe <strong>de</strong>terminatiora of CPT-I activity ira isa<strong>la</strong>ted mitochoradria, the culture medium from 10-15<br />

F75 f<strong>la</strong>sks was aspirated, celis wara washed ira NaCl/P 1, scraped from libe f<strong>la</strong>sks, arad homogenized ira a<br />

madium coratainirag 10 mM Tris-HCl, pH 7.4, 0.25 M sucrose arad 1 mM EDTA. The resulting cru<strong>de</strong><br />

bamogenates were directly used for iso<strong>la</strong>tion of mitochondria and <strong>de</strong>terminatiora of CPT-I arad glutamate<br />

<strong>de</strong>hydrogeraase (GDH) activities exactly as <strong>de</strong>scribed ira [8].<br />

Ststistical analysis<br />

Rasullis shawn represent the means±S.D. of tha raumber of experimenlis iradicated in each case. Each<br />

axperimeratal coraditiara was always carried out at least ira quadruplicate. Sliatistical analysis was performed<br />

by the Stu<strong>de</strong>rat’s t tost.<br />

RESULTS AND DISCUSSION<br />

‘¡‘be properties of CPT-I ware studied ira twa hepatoma cdl liraes, namel>’ human HepG2 celís and rat Fao<br />

calís, which are commoraly usad as a modal ro sliudy liver lipid matabolism (cf. [12-14]).As showra ira Table<br />

1, CPT-I specific activity was not sigraificantly different in mitachondria iso<strong>la</strong>ted from hepatoma cells than<br />

ira mitochondria iso<strong>la</strong>tad from hepatacytes ira primary culture. Simi<strong>la</strong>r qualitative resullis were olitairaed<br />

whera values of enzyma activity ware referred ta mass of mitachondrial protein arad to activity unilis of<br />

GDH, a mirochoradrial marker (Table 1). ‘¡‘bis indicares that no differeraces ira the mass of mitochoradria<br />

are evi<strong>de</strong>nt araiorag tite threa types of celís.<br />

CPT-I activity was subsequantly moraitorad in a permeabiized-celí system. The use of this assay<br />

allows measuremerar of heparocellu<strong>la</strong>r CP’T-I activity in its physialogical environirnerat [7].As showra ira Fig.<br />

1, CF1-I activity ira primary hepatocytes was about half of that ira hepatoma celis. This clearly indicates<br />

that CPT-I activity irasi<strong>de</strong> tite hepatacyte is subjected to certaira corastricti¿ns that do raot aperate ira<br />

hepatoma celís or ira preparatians of purified bepatic mirochoradria. ‘¡‘bis is ira lina with libe recerar i<strong>de</strong>a<br />

lihat interactioras betweera libe mitocharadrial auter membrane arad extra-mitacharadrial celí componanlis,<br />

mast Iikely localizad in the cytoskeleron, might be involved ira the caratrol of hepatic CPT-I activity [8,9].<br />

‘¡‘bese interactioras could be readily lost ira preparations of purified mitochondria.<br />

Ta test libis hyparhesis, the offact of libe phosphaliasa inhibilior okadaic acid on CPT-I activity was<br />

<strong>de</strong>terminad ira lihe libree celís testad. One of libe most remarkable effects elicited by okadaic acid ira<br />

hepatocylias arad arber calI typas is libe hyperphosphoxy<strong>la</strong>liiora arad subsequerat disruptiora of libe cytoskeleton<br />

(cg. [15,16]).Fig. 1 sbaws that a remarkable 80% srimu<strong>la</strong>tion of CPT-I ansued upan exposure of primary<br />

hapaliocytas to akadaic acid. Fifty percarar activariara of CP’1’-I accurred at ca. 10 raM okadaic acid,


TABLE 1. CPT-I acrivity in mitochondria iso<strong>la</strong>ted fi-orn hepatoma celis<br />

and prhnary hepatocytes<br />

CPT-I activity<br />

(ramal/mira par (nniol/mira par<br />

Celís mg protein) unir GDH activity)<br />

Fao 1.87±0.25 2.56±0.79<br />

HapG2 2.19±0.34 1.87±0.41<br />

Hepatacytas 1.81±0.22 2.34±0.68<br />

Values corresporad to 3 separate experiments. Seo Llie Materials arad Methods for further <strong>de</strong>tails.<br />

iradicatirag that CPT-I stimu<strong>la</strong>tiora is mediatad by the inhibitiora of protein phasphatase 1 [9,16].Titis is ira<br />

agraemerar wilih tha obsarvatiara tbat prateira pbosphatase 1 seams to be libe maira phospbatase iravolvad<br />

ira tbe ragu<strong>la</strong>rion of libe phospbary<strong>la</strong>tiora state of libe cytoskoleton, arad ira turra ira libe control ofcytoskeletal<br />

iraliagrity [16]. Ira caratrast ta beparocytes, a sligbt but raot staliisliically sigraificarat stimu<strong>la</strong>tiora of CPT-I lio<br />

okadaic acid was avi<strong>de</strong>nli ira bepalioma celís (Fig. 1). Tbarefora, libe bigh ‘CPT-I activity disp<strong>la</strong>yed 1,>’<br />

bepatama celís may be reached by hepatacytas upan challerage lic akadaic acid.<br />

E<br />

a)<br />

o<br />

> D~<br />

tE<br />

E<br />

1---<br />

E<br />

1.2 -<br />

1.0<br />

0.8<br />

0.8<br />

0.4<br />

*<br />

tH’ 0 1 2 3<br />

¡cg [okadaicacíd] (riM)<br />

FIG. 1. Effect of okadaic acid on CPT-I activity in atrached<br />

hepatoma celis and priniary hepatocytes. Feo celis (e),<br />

HepGl celis (o) and primary hepatocytes (‘)were incubated<br />

with varying concentrations of okadaic acid (0, 5, 50, 100and<br />

500 nM) for 45 mm and CPT-I activil>’ was subsequentí>’<br />

<strong>de</strong>termined with the permeabilized-ceII assay. See the<br />

Materisis and Methods for further <strong>de</strong>talis. Values<br />

correspond tu 4 separate experiments. Significantly different<br />

(P


TABLE 2. Comparative effect of okadaic acid on CPT-l act¡vity in hepatoina celis and<br />

hepatocytes, both in suspension and in atrached state<br />

CPT-l re<strong>la</strong>rive activiliy (%)<br />

CelIs<br />

Okadaic acid<br />

(500 raM) Attached celís Celís in suspensiora<br />

Fao No 100±17 100±22<br />

Yes 112±11 (5) 119±10(3)<br />

HepG2 No 100±23 rad.<br />

Yes 120±7(4) rad.<br />

Hepatocyres No 100±18 100±12<br />

Yes 180±1» (5) 171±18 (4)<br />

Values correspand ro the number of experiments indicated un parentheses. Sea rite Materíals arad Metboda<br />

for furtiter <strong>de</strong>tails. rad.: noÉ <strong>de</strong>terminad. Signiflcantly dilferent (P ’ ira tui-ra involve differanr<br />

configurations of tba cytoskeletora. Henca, CPT-I acrivir>’ was moraitored ira ccli susperasions afler cali<br />

scraping from tbe f<strong>la</strong>sks. As showra ira Tab<strong>la</strong> 2, okadaic acid produced a significant stimu<strong>la</strong>tion of CPT-I<br />

ira hapatocyte susperasiaras but nat ira Fao-cell susparasions.<br />

Ira conclusion, libe prasarar data support libe notion libat disruptian of irataractioras beliweera<br />

mitochondria arad irahibiliary cytaske<strong>la</strong>tal comporaerats ma>’ be iravolved ira tba okadaic acid-iraduced<br />

activadora of hepaliic CPT-I [9].Wc haya recaratly observad (autbors’ urapublished data) rhat iratermadiate<br />

fi<strong>la</strong>merats are libe camparaents of libe cytoskeletan most likoly involved ira the control of CPT-I activity.<br />

Irateresdngly, libe intaractioras betwaera iratermediata fi<strong>la</strong>maralis and mitochoradria become disrupted ira a<br />

sliress situatiora such as haat shock [17].Our rcsults indicate tbat this might be libe reasora far libe enhanced<br />

CPT-I activiliy ira hepatama celís.<br />

Titase iravastigatioras were supportod by libe Sparaish Comisión Interministerial <strong>de</strong> Ciencia y Tecnología (SAF<br />

96/0113), the Frencb ARC (Association pour <strong>la</strong> Reclierche sur le Cancer), arad the Ligue Baurguignone<br />

contre le Cancer.<br />

Referentes<br />

1. Guzmán M arad Gae<strong>la</strong>n MJH, Regu<strong>la</strong>dora of falir>’ acid oxidatiara ira mammalian liver. Biochim<br />

Biophys Acta 1167: 227-241, 1993.<br />

2. Zammit VA, Regu<strong>la</strong>tioraof keliorae bady metabolism. A cellu<strong>la</strong>rperspectiva. Diabetes Ra’ 2:132-155,<br />

1994.<br />

3. McGarry JD arad Brown NF, Tite mitachandrial caritina palmitoyltransferase system. Fi-orn coracapt<br />

to molecu<strong>la</strong>r analysis. Eur J Biochem 244: 1-14, 1997.


4. Diynan L, Quant PA arad Zaminir VA, Flux control exerted by mitochondrial outer membrana<br />

carnirine palmitoyltransferase ovar 13-oxidatiora, kctogenesis arad tricarboxylic acid cycle activity ira<br />

hepatocytas iso<strong>la</strong>ted from rats ira differarar metabolic states. Biochem J 317: 791-795, 1996.<br />

5. Spurway T, Sberrat HSA, Pagsara CI arad Agius 1., The flux control coefflcierat of camitine<br />

palmilioyltrarasferasa 1 ora palmitate 13-oxidation ira rat bepatacyta cultures. Biochem J 323: 119-122,<br />

1997.<br />

6. Guzmán M. arad Castro J, Okadaic acid stimu<strong>la</strong>tes carraitine palmitoyltransferase 1 activity arad<br />

palmitate oxidation in iso<strong>la</strong>ted rat hepatocytes. FEES Lea 291: 105-108, 1991.<br />

7. Guzmán M arad Geelera MJH, Acdvity of carnitine palmiroyltransferase in mitochoradrial auter<br />

membranas arad peroxisomes ira digitonira-panraeabilizad hapatocytes.’ Salective modu<strong>la</strong>tion of<br />

mitochondrial enzyma activiry by okadaic acid. Biochem J 287: 487-492, ‘1992.<br />

8. Guzmán M, Kolodziej MP, Caldwell A, Costorphine CG arad Zamniit VA, Evi<strong>de</strong>raca against direel<br />

iravolvemerat of phosphory<strong>la</strong>tion ira tbe activation of carnitine palmitoyltransfarase by okadaic acid<br />

ira rat hapatocylies. Biochem J 300: 693-699, 1994.<br />

9. Ve<strong>la</strong>sco O, Sánchez C, Gae<strong>la</strong>ra MJH arad Guzmán M, Are cytaskaletal comporaeralis iravolved in the<br />

control of bepatic carraitine palmitayltrarasferase 1 activity? Biochem Biophys Res Commun 224: 754-<br />

759, 1996.<br />

10. Ve<strong>la</strong>sco G, Guzmán M, Zammit VA arad Gee<strong>la</strong>n MJH, Iravolvement of Ca 2jcalmodulira-<strong>de</strong>pera<strong>de</strong>rat<br />

protein kiraasa II ira the activadora of carraitina palmitoyltrarasferase 1 by okadaic acid ira rat<br />

bepatocylies. Biochem J 321: 211-216, 1997.<br />

11. Passilly P, Jannin B and Latruffe N, Influance ofperoxisame proliferators an phospboproteira leveis<br />

ira human arad hepatic-darived ccli unes. Eur J Biochem 230: 3 16-321, 1995.<br />

12. Prip-Buus C, Bouthillier-Voisin AC, Kohl C, Demaugra F, Girard J arad Pegoriar JP, Evidarace for<br />

ara impaired long-chaira fatty acid oxidatiora arad ketagaraasis in Fao bepatoma calis. Eta J Biochem<br />

209: 291-298, 1992.<br />

13. Dixon JL arad Girasberg HN, Regu<strong>la</strong>tion of heparic sectadora of apolipoprotein B-contairairag<br />

lipoproteiras: inforination obtairaed from cultured liver celis. J Lipid Res 34: 167-179, 1993.<br />

14. Ducías 5, Bri<strong>de</strong> J, Ramiraz LC arad Baurnor P, Proxisome proliferatiora arad beta-oxidatiora ira Fao<br />

arad MH1C1 rat hepatoma celís, HapG2 human bepatob<strong>la</strong>stoma calis arad culturad human<br />

bepatocytes: effect of cipofibrate. EurJ Ccli Biol 72: 314-323, 1997.<br />

15. Ha<strong>la</strong>n 1, Gordon PB arad Saglen PO, Proteira kiraasa-<strong>de</strong>pan<strong>de</strong>rat affedts ofokadaic acid ora hapatocytic<br />

autophagy arad cyliaskeletal iratagrity. Biochem J 284: 633-636, 1992.<br />

16. Gur<strong>la</strong>rad G arad Guradarsara GO, Proteira phospbatasa irahibitors induce libe selectiva breakdown of<br />

stable microtubules ira fibrab<strong>la</strong>slis arad epilihelial calís. Proc Nos) Acad Sc) USA 90: 8827-8831, 1993.<br />

17. Collier NC, Sbeerz MP arad Scblesiragar MJ, Coraeamirant changas ira mirochoradria arad intermediare<br />

fi<strong>la</strong>maralis durirag bear shock arad recovar>’ of chickara ambryo fibrob<strong>la</strong>sts.J Ccli Biochem 52: 297-307,<br />

1993.


ARCHIVES OF BIOCHEMJSTRY AND BIOPHYSICS<br />

Vol. 337. No. 2, January 15, pp. 169—175, 1997<br />

Article No. BB969784<br />

Control of Hepatio Fatty Acid Oxidation by 5’—AMP-<br />

Activated Protein Kinase Involves a Malonyl-CoA-<br />

Depen<strong>de</strong>nt and a Malonyl-CoA-In<strong>de</strong>pen<strong>de</strong>nt Mechanism<br />

Guillermo Ve<strong>la</strong>sco,* Math J. H. Geelen,t” arad Manuel Guzmán*<br />

*Department of Biochemistry and Molecu<strong>la</strong>r Biology 1, Faculty of Biology, <strong>Complutense</strong> University, 28040-Madrid, Spain;<br />

aná tLaboratory of Veterinary Biochemistry, Graduate School of Animal Health, Utreche Uniuersity, PO. Box 80.176,<br />

3508 TD Utreeht, Tite Nether<strong>la</strong>nds<br />

Received July 30, 1996, and in revised fon,, October 25, 1996<br />

Incubation of rat hepatocytes with 5-aminoimidazo¡e-4-carboxami<strong>de</strong><br />

ribonucleosi<strong>de</strong> (AICAR), aix activaliar<br />

of the 5’-AM?P-activated protein kinase (AMPK),<br />

produced a twofoíd stimuíation of palmitate oxidation<br />

arad of the activity of carnitine pahnitoyltransferase<br />

1 (CPT-I), together with a profonrad <strong>de</strong>crease of the<br />

activity of acetyí-CoA carboxyíase arad of lihe iratracellu<strong>la</strong>r<br />

level of malorayí-CoA. AICAR-induced CPT-I stimu<strong>la</strong>tion<br />

progressively blunted with time after ccli permeabilization,<br />

pointing to reversal of conformational<br />

eonstraints of the enzyme ira control celis due to the<br />

permeabilizatiora-triggered dilution of intracelu<strong>la</strong>r<br />

malonyl-CoA. The stimu<strong>la</strong>tion stabilized at a steady<br />

20—25%. This 20—25% mercase ira CPT-I activity survived<br />

upon complete removal of malonyl-CaA from the<br />

permeabilized celís, indicating that it was not <strong>de</strong>pen<strong>de</strong>nt<br />

on the malonyí-CoA concentration oflibe eclI. This<br />

malonyl-CoA-indcpen<strong>de</strong>ixt activatiora of CPT-I was not<br />

cvi<strong>de</strong>nt wheix mitochondria wcre iso<strong>la</strong>ted for assay of<br />

enzyme activity or when celís were disrupted by vigoraus<br />

sonication. lix addition, libe microtubule stabilizcr<br />

taxol prevented lihe malonyí-CoA-in<strong>de</strong>pen<strong>de</strong>nt stimu<strong>la</strong>tion<br />

of CPT-I induced by AICAR. Henee, stimuíation<br />

of hepatic fatty acid oxidatiora by AMPK seems to rely<br />

on lihe activation of CPT-I by two different mechanisms:<br />

<strong>de</strong>inhibition of CPT-I induced by <strong>de</strong>píetion of<br />

intracellu<strong>la</strong>r maíonyl-CoA leveís and maíonyl-CoA-iradcpen<strong>de</strong>nt<br />

stimu<strong>la</strong>tion of CPT-I, which might involve<br />

modu<strong>la</strong>tion of interaetioras between CPT-I arad cytoskelctal<br />

Components. o 1997 Aca<strong>de</strong>mie Press<br />

To whom correspon<strong>de</strong>nce should be addressed. Fax: **3130<br />

2535492. E-mail: m.geelen~biochemdgk.niunl.<br />

0003-9861,97 $2500<br />

Copyright 0 1997 by Aca<strong>de</strong>mic Presa<br />

MI rights of reproduction jo any form reserved.<br />

The 5’-AMP-activated proteira kinase (AMPK? p<strong>la</strong>ys<br />

a majar role ira tbe regu<strong>la</strong>tiora of lipid metabolism ira<br />

mammals. Thus, AMPK pbospbory<strong>la</strong>tes and inactivates<br />

key regu<strong>la</strong>tory enzymes of lipid metabolism such<br />

as aeetyl-CoA carboxy<strong>la</strong>se (fatty acid syratbesis), 3-hydroxy-S-methylglutaryl-CoA<br />

reductase (sterol/isopreraoid<br />

syratbesis), arad bormone-serasitive lipase (triacylglycerol/cholesteryl<br />

ester breakdowra) [reviewed ira Ref.<br />

(1)]. Although several protein kinases cara pbospbory<strong>la</strong>te<br />

purified acetyl-CoA earboxy<strong>la</strong>se arad S-hydroxy-3metbylglutaryl-CoA<br />

reductase in vitro, it is curreratly<br />

accepted thaI ira iratact hepatocytes arad ira the liver in<br />

vivo this phosphory<strong>la</strong>tion. is mairaly performed by<br />

AMPK [cf. Refs. (1—3)].<br />

Several studies have beera performed ora the potential<br />

involvemerat ofAMPK ira Ibe control offatty acid oxidatiora<br />

ira the isehemié beart (4, 5) arad the workirag muscle<br />

(6). However, the possible role of this kiraase ira tbe<br />

control of hepatie fatty acid oxidation has raot beera<br />

studied to date. Uralike tbe beart arad the skeletal muscíe,<br />

the liver is capable of expressirag eitber bigh rates<br />

of lipogeraesis or higb rates of fatty acid oxidatiora <strong>de</strong>peradirag<br />

on Ihe hormonal arad rautritional status of the<br />

animal, arad herace regu<strong>la</strong>tiora of fatty acid axidatiora<br />

seems to be more complex ira liver [reviewed ira Ref. (7)]<br />

than ira heart [reviewed ira Ref. (8)] arad skeletal niuscle<br />

[reviewed ira Ref. (9)]. Carnitine palmitoyltrarasferase<br />

1 (CPT-I) is the key regu<strong>la</strong>tory erazyme ira the trarasport<br />

of long-chaira fatty acids irato the mitochoradrial matrix<br />

(7, 10, 11). This enzyme is subject to allosterie inhibition<br />

by malorayl-CoA, the produet of the reactiora caía-<br />

2 Ahbreviations used: AMPK, 5’-AMP-activated protein kinnse:<br />

CoA, coenzyme A: CPT-I, carnitine palmitoyltransferase 1; AICAR,<br />

5-aminoimidazote-4-carboxami<strong>de</strong> ribonucleosi<strong>de</strong>; ZMP, 5-aminoin,idazole-4-carboxami<strong>de</strong><br />

ribonucleosi<strong>de</strong> monophosphate.<br />

169


lyzed by acetyl-CoA earboxy<strong>la</strong>se (7, 10, 11). Durirag the<br />

past few years, a novel meeharaism of sbort-term control<br />

of hepatie CPT-I has beera put forward [reviewed<br />

ira Ref. (7)]. Several studies using permeabilized hepatocytes<br />

have showra that various agerats exert shortterm<br />

effects ora CPT-I activity ira parallel witb charages<br />

ira the rate of long-chaira fatty acid oxidation measured<br />

ira Ihe same celí preparatioras. Thus, cAMP araalogs<br />

(e.g., dibutyryl-cAMP) (12), effectors that marease iratracellu<strong>la</strong>r<br />

cAMP leveis (e.g., glucagora arad forskolin)<br />

(12), arad proteira phosphatase inhibitors (e.g., okadaic<br />

acid) (18) are able to stimu<strong>la</strong>te hepatia CPT-I, whereas<br />

Ca 2~-mobilizirag agerats (e.g., vasopressira, a 1-adreraergie<br />

agoraists, arad extracellu<strong>la</strong>r ATP) irahibit hepatia<br />

CPT-I (14). Sirace these short-term changes ira CPT-I<br />

activity are very stable arad survive complete removal<br />

of malonyl-CoA from the medium, they are assumed to<br />

be mediated by a malorayl-CoA-ira<strong>de</strong>pera<strong>de</strong>rat mataraism<br />

which might iravolve phosphory<strong>la</strong>tiora of putative<br />

mediator protein(s) (7, 16).<br />

I<strong>de</strong>ratificatiora of physiological substrates of AMPK<br />

has beera bampered by the <strong>la</strong>ek of specific methods for<br />

aetivatirag tbe kiraase ira iratací celís. AMPK was routiraely<br />

activated ira iratact hepatocytes by incubatiora<br />

witb fructose or by heat shock or arseraite [cf. Ref. (1)].<br />

These treatments alí <strong>de</strong>plete iratracellu<strong>la</strong>r ATP arad,<br />

tberefore, bave rraaray noraspecifie si<strong>de</strong> effects. However,<br />

a more specific melbod for activatirag AMPK ira iratact<br />

celís has beera receratly reparted. Incubation of intaet<br />

hepatocytes with 5-amiraoimidazole-4-carboxami<strong>de</strong> riboraucleosi<strong>de</strong><br />

(AICAR) causes uptake of this componrad<br />

arad subsequerat accumu<strong>la</strong>tiora withira the cefi of its<br />

moraophospbory<strong>la</strong>ted form, 5-amiraoimidazole-4-carboxami<strong>de</strong><br />

ribonucleosi<strong>de</strong> moraophosphate (ZMP) (16).<br />

The <strong>la</strong>tíer has been showra to mimie the effect of 5’-<br />

AMP ora allosterie activatiora ofrat liver AMPK without<br />

cbaragirag tbe levels of ATP, ADP, arad AMP withira tbe<br />

hepatoeyte (16, 17). Thus, exposure to AICAR has beera<br />

showra lo inactivate acetyl-CoA carboxy<strong>la</strong>se arad 3-hydroxy-8-methylglutaryl-CoA<br />

reduetase ira iso<strong>la</strong>ted hepatocytes<br />

(8, 17) as well as hormone-serasitive upase ira<br />

iso<strong>la</strong>ted adipocytes (18). Ira the preserat repod we show<br />

that activation ofAMPK produces a stimu<strong>la</strong>tiara ofhepatie<br />

long-chaira fatty acid oxidatiora, which relies ira<br />

turra ora activatiora of CPT-I by malorayl-CoA-<strong>de</strong>pera<strong>de</strong>rat<br />

arad ira<strong>de</strong>pera<strong>de</strong>nt mecharaisms.<br />

MATERIAIS AND METHODS<br />

4ClPalmitie acid, LL-’4C]octanoic acid, L-[Me-’4C]carnitine.<br />

Materia/a. rl-’4C<strong>la</strong>cetyl-CoA. L1-’ and 3H,O were supptied hy Amersham<br />

International (Amersham, Bucks, UK). Digitonin, col<strong>la</strong>gerarase (type<br />

1), AICAR. ZMP, 5-AMP, arad taxol were purchased froin Sigma<br />

Chemical Co. (St. Lorais, MO). Okadaic acid wras supplied by Calbiochem<br />

(San Diego, CA). Tetra<strong>de</strong>cylglycidic acid was a kirad gift from<br />

Dr. J. Nl. Lowensteira (Brara<strong>de</strong>is University, Wraltham, MA).<br />

VELASCO ET AL.<br />

Hepatocyte iso<strong>la</strong>tion and incubation. Malo Wistar rats (250—300<br />

g) which had free acceas to food arad water were used throughout in<br />

this study. l-Iepatocytes ‘vero iso<strong>la</strong>ted by the col<strong>la</strong>genase perfusiora<br />

method <strong>de</strong>scribed ira Ref. (19). Because lipogenesis is markedly <strong>de</strong>pressed<br />

just after hepatocyte iso<strong>la</strong>tion, celia were incubated for 15<br />

mio at 37~C ira a gyratory metabolic shaker arad subsequently filtered<br />

through nylon mesh prior to use (20). Celí viability, as <strong>de</strong>termined by<br />

trypan blue exelusiora, always excee<strong>de</strong>d 95% in the final hepatocyte<br />

suspension.<br />

Hepatocytes were incubated irn Krebs—Heraseleit bicarbonato<br />

bulfer supplemented with 10 mM glucose and 1% (w/v> <strong>de</strong>fatted and<br />

dialyzed bovino serum albumin. Incuhatioras (4—6 mg of cellu<strong>la</strong>r proteira/mí)<br />

were perforined ira a total volume of 2 ml at M’C, with<br />

constant shakirag (85 oscil<strong>la</strong>tiona/min) arad un<strong>de</strong>r an atinosphere of<br />

0<br />

2/C02 (19:1). Stock solutiona ofAICAR, okadaic acid, arad taxol were<br />

prepared in Me2SO. Therefore, control incubatioras had the corresponding<br />

Me,SO coratent. No significarat irafluence of Me2SO on any<br />

of the experira,eratally <strong>de</strong>termined parametera was observed at the<br />

final coracentration used (0.1%, y/y).<br />

Rete offatty acid oxidation. For <strong>de</strong>tern,inatiora ofthe rate of fatty<br />

acid oxidatiora, hepatocytes were incubated for 15 mm with the cellu<strong>la</strong>r<br />

effectors iradicated in every case. Reactiona 4C]fatty were subsequently acid (either<br />

started palmitate by the or octanoate, addition to0.05 celí incubátioras Ci/mol, 0.5 of nn¡ L1-’ final coracentration)<br />

bourad to albura,in. Afrer 10 mm, renetions were stopped with 0.5 ml<br />

of 2 M perchlorie acid and oxidation producta were extracted arad<br />

quaratified exactly as <strong>de</strong>scribed before (13). Total oxidatiora producta<br />

were calcu<strong>la</strong>ted ras the Sun, of acid-soluble producta and CO,. Acidsoluble<br />

producta (mostly ketone Sodios) routinely accounted for 90—<br />

95% of total oxidation producta (18):<br />

CPT-I assay. Tho activity of CPT-I was <strong>de</strong>termiraed ras the tetra<strong>de</strong>cylglycidate-sensitive<br />

incorporatiora of radio<strong>la</strong>beled t-carnitirae<br />

into palmitoylcarnitine by four difi’erent methods (A, B, C, and O).<br />

fn brief, hopatocytes woro preiracubated for 20 mira in the abserace or<br />

In the presence of 10 pM tetra<strong>de</strong>cylglycidate, a apecifie irreversible<br />

inhihitor of CPT-I (13, 21). Incubationa were coratinued for an additional<br />

15-mira period ira the presenee of the collu<strong>la</strong>r elYectors indicated<br />

In every case. Subsequently, aliquota were removed from the incubatioras<br />

to monitor CPT activity with the four differeat types of assay.<br />

In methods A arad B, CPT activity was measured ira digitoninpernicabilized<br />

hepatocytes. Both methods were performed using the<br />

sanie <strong>de</strong>tergerat/cell proteira ratio (about 40 pg digitonin/nig ceIlprotein).<br />

Enzyme activity was routiraely <strong>de</strong>tennined by method A (“onostep<br />

assay”). Ira this method, 100 pl of hepatocyte suspensiora <strong>la</strong> diroctly<br />

ad<strong>de</strong>d te 100 pl of prowarmed digitorain-containirag assay mediun,<br />

exactly as <strong>de</strong>scribed ira Rol. (13). Renco, monitorirag ofenzyn,e<br />

activity is perforzraed imn,ediately upora permeabilization of the celís<br />

(13, 22). In method 3 (“two-atep assay”), hepatocytea are permeabilized<br />

arad thoroughly washed prior to <strong>de</strong>tern,inatiora of erazynxe activity.<br />

Thus, 1.0 ml of hepatocyte susperasion was permeabilized with<br />

0.20 mg of digitorain dissolved ira 1.0 ml of 5 mp.x Tris—HCI (pH 7.4),<br />

50 mM RE, 100 m¿ KCI, 2.5 mM EDTA, arad 2.5 mr¿ BOTA (F<br />

mediumí. The resultirag mix was gently shaken for 5 s and rapidly<br />

diluted by tranafer Lo trabes coratainirag 40 ml of ice-cold F~ medium.<br />

Cotí ghosts were sodimoratod by centrifugation at 350g for 15 a, and<br />

pellota were taken up ira 1.0 ml of prewarnied F mediuni. The resultirag<br />

susperasiona of coll ghosts were incubatod at 370C for 5—15<br />

mira and thon CPT activity was moraitored (15).<br />

Ira method C, CPT activity was measured ira sonicated hopatoeytos.<br />

Celís were sedimoratod by low-apeed centrifugatiora (50g, 2 mira). The<br />

celí peltet was resuspora<strong>de</strong>d ira F medium arad soraicated for two<br />

periods of 10 a while beirag cooled in ico/water. Saniples of soraicated<br />

proparations were used for <strong>de</strong>tern,inatiora of CPT activity (15).<br />

Jo method D. CPT activity was measurod ira mitochoradria iso<strong>la</strong>ted<br />

from hepatocyto suspensioras exactly as <strong>de</strong>scribed before (15). Preparatioras<br />

of mitochondria were practically <strong>de</strong>void of peroxisomes, as


CONTROL OF FATTY ACID OXIDATION BY M4P-ACTtVATED PROTEIN KINASE 171<br />

judgod froni measuromonta of recovery of cata<strong>la</strong>se activity (alwnys<br />

<strong>la</strong>sa thara 10% of total cellu<strong>la</strong>r activity).<br />

Other ana¿ytical methods. Intracollu<strong>la</strong>r lovels of malorayl-CoA<br />

‘vero <strong>de</strong>terminad jo neutralized perchtoric acid cett extracta by n<br />

rndioerazymntic rnothod as doscribed ira RoL (19). Ratos of <strong>de</strong> novo<br />

fatty acid arad cholesterol syutheaia woro monitorod as the iracorporation<br />

of ~H 2Ointo total fntty acida and digitorain-precipitablo sterols,<br />

i-ospectivoly (23). Acotyl-CoA carboxy<strong>la</strong>se activity was measured ira<br />

digitonira-pormeabilized hepatocytes ras te incorporation of radio<strong>la</strong>beled<br />

acetyl-CoA mro fatry acids in a reaction coeplod to the fatty<br />

acid synrhaae reactiora (23). Fntty acid synthaso activity ‘vas <strong>de</strong>termiraed<br />

jo digitonira-permeabitized hopatocytos ras the malorayl-CoA<strong>de</strong>poradorar<br />

incorporation of radio<strong>la</strong>beled acotyl-CoA irato fatty racida<br />

(23). Protoin wras doterminod by the method of Lowry et al. (24), with<br />

bovirae serum albumira as a standard.<br />

Sto tistical anolysis. Resulta ahown roprosorat tSe means a SD of<br />

tho number of hopatocyto preparationa indicated ira evory caao. CalI<br />

incubatioras arad/or orazyrno assrays were always carried out in triplicate.<br />

Statistical analysis was porformed by Stu<strong>de</strong>nt’a t teat.<br />

RESULTS AND DISCUSSION<br />

The effect ofAICAR ora fatty acid oxidatiora was studied<br />

ira iracubatioras of rat hepatocytes. Pilot experimerats<br />

were performed to test the validity of aur experimental<br />

system. As previously <strong>de</strong>scribed (3, 16), addition of 0.5<br />

mM AICAR to the hepatocyte iracubatiora medium<br />

stroragly <strong>de</strong>pressed acetyl-CoA carboxy<strong>la</strong>se activity (94<br />

o% inhibitiora, n = 4) arad <strong>de</strong> novo fatty acid syrathesis<br />

(92 t 16% irahibitiora, n = 4). De novo cholesterol syrathesis<br />

was simi<strong>la</strong>rí>’ <strong>de</strong>pressed (90 ±8% inhibitiora, n<br />

= 3). Ira additiora, 0.5 mM AICAR had no effect on the<br />

activity of fatty acid syrathase (results raot showra), a<br />

lipogeraic erazyme which is raot believedto be a substrate<br />

for AMPK.<br />

AICAR stimu<strong>la</strong>tes fis parallel CPT-I and long-chain<br />

frztty acid oxidation. Figure 1 shows the effect of<br />

AICAR ora hepatie fatty acid oxidatiora. AICAR produeed<br />

a dose-<strong>de</strong>pera<strong>de</strong>rat iracrease ira the rate of [‘ 4C]palmitate<br />

oxidatiora. Simi<strong>la</strong>r results were obíairaed<br />

whera [‘4C]oleate was used as substrate (results raot<br />

shown). Ira contrast, [‘4C]oetaraoate oxidatiora was raot<br />

affected by ALCAR. It is well established that longchaira<br />

fatty aeids like palmitate arad oleate are traraspo<strong>de</strong>d<br />

irato mitochoradria by a carraitirae-<strong>de</strong>pera<strong>de</strong>rat process,<br />

whereas medium-chaira fatty acids like octanoate<br />

erater mitochondria ira<strong>de</strong>pera<strong>de</strong>ratly of carraitine (7, 10,<br />

11>. Therefore, this observation suggests that the targel<br />

for AICAR actiora might be CPT-I, the erazynre that<br />

catalyzes the pace-settirag step of long-chaira fatty acid<br />

transíacatiora irato the mitochoradrial matrix (7, 10, 11).<br />

The other comporaerats of the fatty acid-traraslocatirag<br />

sysrem, raamely acyl-CoA syrathetase, CPT-II, arad carnitirae:acylcarmtirae<br />

traraslocase. are geraerally not consi<strong>de</strong>red<br />

to p<strong>la</strong>y a sigraiflcarat regu<strong>la</strong>tory role in the<br />

trarasport of lorag-chain fhtty acids irato the mitochoradrial<br />

matrix (7, 10, 11).<br />

As shown ira Fig. 1, CPT-I activity was enharaced by<br />

o<br />

oc<br />

o<br />

Co<br />

o—<br />

-fl<br />

o<br />

o<br />

0=.<br />

r 5<br />

“o c0<br />

Li-ji o-<br />

(3<br />

200 -<br />

100 -<br />

0Y<br />

00 -4 -3<br />

)og LAICARI


However, no effect of AlGAR, ZMP, or 5’-AMP ora CPT-<br />

1 activity ira either of the twa systems coníd be <strong>de</strong>tected<br />

(results raot showra>.<br />

VELASCO ET AL.<br />

Malonyl-CoA-<strong>de</strong>pen<strong>de</strong>nt and .in<strong>de</strong>pen<strong>de</strong>nt mechan¿sms<br />

are invol ved in tite AJCAR-induced stimu<strong>la</strong>tion<br />

of CPT-1? It has been showra that CPT-I is reversibly<br />

serasitized to malonyl-CoA inhibition by malonyl-CoA<br />

itself[reviewed ira Ref. (11)]. Thus, whera mitoehondí<strong>la</strong><br />

are incubated ira the abserace or preserace of malorayl-<br />

CoA, the enzyme becomes less or more serasitive to irabibitiora,<br />

respectively (11). This effect is also observed ira<br />

whole-cell systems: incubatiora of iso<strong>la</strong>ted hepatocytes<br />

witb compounds thaI <strong>de</strong>crease intracellu<strong>la</strong>r malorayl-<br />

CoA leveis makes the enzyme acquire a re<strong>la</strong>xed coraformation<br />

which exhibits high activity arad low serasitivity<br />

to inhibitiora by malonyl-CoA ira a subsequerat assay<br />

(11). The opposite ensues whera hepatocytes are exposed<br />

to compounds that iracrease malonyl-CoA conceratration,<br />

i.e, Ihe enzyme acquires a tight coraformatiora<br />

with low activity arad enhaneed sensitivity to inhibitiora<br />

by malorayl-CoA (11). Because permeabilization of Ihe<br />

p<strong>la</strong>sma membrane of Ihe hepatocyte leads lo a <strong>la</strong>rge<br />

dilutiora of cytosolic comporaents iracludirag malonyl-CoA<br />

(22), arad the transitiora between Ihe two different sensi-<br />

tivity states is very fasí at 37<br />

0C (11), tbe coraformational<br />

state of CPT-I within the intaet hepatocyte is<br />

only retairaed for very short periods of time ira permeabilized<br />

celís [cf. Ref. (15)]. The permeabilized-hepatocyte<br />

system tbus allows monitorirag the conformational<br />

state of CPT-I when tbe assay of erazyme activity is<br />

performed at different times after permeabilization.<br />

We used Ihis experimental approach lo leal whether<br />

the stimu<strong>la</strong>tion of CPT-I observed ira AICAR-treated<br />

hepatocytes aetuaily iravolves a <strong>de</strong>erease of intracellu<strong>la</strong>r<br />

malonyl-CoA leve<strong>la</strong>. As atated aboye, the AlGARiradueed<br />

atimu<strong>la</strong>tion of [‘4G]palmitate oxidatiora corre<strong>la</strong>ted<br />

well with the AICAR-iraduced stimu<strong>la</strong>tion of CPT-<br />

1 whera erazyme activity was <strong>de</strong>termiraed 20 s after permeabilizatiora<br />

of Ihe hepalocyte p<strong>la</strong>sma membrane<br />

(Pig. 1). Ira control incubatioras, a <strong>la</strong>g phase ira Ihe CPT-<br />

1 assay was observed at very short reaction times (Fig.<br />

2). This <strong>la</strong>g phase seems tobe dueto the coraformational<br />

corastrainís of the CPT-I protein iraduced by intracellu<strong>la</strong>r<br />

malonyl-CoA [cf. Ref. (15)], arad it rapidly disappears<br />

after complete leakage of malorayl-CoA from the<br />

permeabilized ceils, allowing re<strong>la</strong>xation of the enzyme<br />

(Fig. 2). Ira contrast, by <strong>de</strong>pletirag intracellu<strong>la</strong>r malorayl-<br />

CoA, ALGAR was in<strong>de</strong>ed able to eliminate Ihe <strong>la</strong>g pbase<br />

inhererat to the permeabilized-ceil assay of CPT-I activity<br />

(Fig. 2). The magnitu<strong>de</strong> of the AICAR-induced stimu<strong>la</strong>tion<br />

of CPT-I was reduced lo 45 t 14% at 40 s afler<br />

permeabilizatiora arad lo 30 t 12% at 60 s after permeabilization<br />

(Fig. 2), indicating thaI differences in the<br />

conformational state of the CPT-1 protein belweera con-<br />

o<br />

o.<br />

o<br />

o.<br />

o<br />

o<br />

s c<br />

-s<br />

e<br />

2’—<br />

oa<br />

o<br />

o 60<br />

Reaction time (s)<br />

¡ ¡ 1 ¡<br />

FIO. 2. Effact of AICAR on CP’I’-l activity at dilfororat reaction<br />

timos. Hepatocytes were proincubated for 15 mira ira tSe abseraco (O)<br />

or ira the preserace (e) of0.5 mM AICAR. Subsoqueratly, aliquots wOre<br />

removed to dotermirae CPT-I activity at difToront reaction times by<br />

method A. Noto that enzyme volocity (arad not product accurnu<strong>la</strong>tiora)<br />

‘a represerated ora tSey-axis. Results corresporad to six different Sopatocyte<br />

preparratioras.<br />

trol arad AICAR-treated celís are disappearing. However,<br />

a constaral 20—25% stimu<strong>la</strong>tiora of CPT-I activity<br />

was observed ira MCAR-treated hepatocytes up to 140<br />

a after hepatocyte permeabilizatiora (Fig. 2). Ira aur ayatem,<br />

this time is believed to ‘be more than eraough to<br />

allow reversal of coraformational corastrairata of CPT-I<br />

induced by charages ira intraceilu<strong>la</strong>r ma<strong>la</strong>rayl-CoA conceníratiora<br />

[cf. Ref. (11)].<br />

To obtain more direcí evi<strong>de</strong>nce for the involvemeral of<br />

a malonyl-CoA-in<strong>de</strong>pen<strong>de</strong>nt componení ira the AlGARiraduced<br />

atimu<strong>la</strong>tiora of CPT-L erazyme aetivity was <strong>de</strong>termiraed<br />

by a more complex procedure whicb eliminates<br />

any posaible interfereraceofmalorayl-CoA. Ira such<br />

ara assay (method B), hepalocytes are penneabilized<br />

with digitonira, followed by rapid arad extensive washíng<br />

of permeabilized celís to al<strong>la</strong>w complete remaval of<br />

malorayl-CoA. Thera, permeabilized celís are iracubated<br />

al 370C for up <strong>la</strong> 15 mira prior lo <strong>de</strong>terminatiora of erazyme<br />

activity, so thaI any conformational carastrairal of<br />

the CPT-I enzyme will disappear (15). The use of tbis<br />

pracedure corroborated thaI a 20—25% atimu<strong>la</strong>tion of<br />

CPT-I by AlGAR is exerted by a malorayl-CaA-ira<strong>de</strong>pera<strong>de</strong>ní<br />

mecharaism (Fig. 3). Mareover, Ihe magrailu<strong>de</strong> of<br />

tbe stimu<strong>la</strong>liora of CPT-I as <strong>de</strong>lermiraed by method B<br />

was i<strong>de</strong>ratical with reactiora times of 20, 60, arad 120 s<br />

(resulta nol shown). Note thaI for <strong>de</strong>terminaban of<br />

CPT-I activity by method B cytosolie proteira that<br />

leaked from the permeabilized cel<strong>la</strong> is removed prior<br />

to <strong>de</strong>terminatiora of erazyme aetivity, arad so erazyme<br />

specific activity (referred lo as milligrama of prolein)<br />

waa always higher ira melbod B Ihan ira method A (note<br />

to Table 1).<br />

120


-co 100<br />

n<br />

H<br />

o ocoo<br />

E<br />

ci,<br />

Method<br />

50<br />

o’<br />

ere<br />

CONTROL OF’ FArPY ACID OXIDATION BY AMP-ACTI7VATED PROTEIN tUNASE<br />

* *<br />

A 8 8(15> C D<br />

FIG. 3. Differential offect of AICAR on CPT-l activity as <strong>de</strong>termineé<br />

by methods A, B, C, arad D. Hepatocytes wero preiracubated<br />

for 15 mira ira tho absence or ira tSe preserace of 0.5 m=¿AICAR.<br />

Subaequeratly, aliquots were removed to <strong>de</strong>termine CPT-t activity by<br />

the various methoda. In tSe case of method B, the ghosts of permeabilized<br />

celia woro iracubated at Mt for Sor 15 mira prior to doterminatiora<br />

of enzyxrao activity. Roactiora time waa 20 a for method A arad<br />

60 a for methods B, C, ané D. Resulta corresporad to eight differerat<br />

hepatocyte preparatioras. Significaratly difforerat vorsus incubatioras<br />

with rao additions: *~P c 0.05; **~P < 0.01.<br />

Malonyl-CoA-in<strong>de</strong>pen<strong>de</strong>nt stimu<strong>la</strong>tion of CPT-I by<br />

AICA.R may involve interaction of CPT-Iwith cytoskeletal<br />

components. The obaervatiora thaI Ibe phospbatase<br />

irahibitor okadaic acid atimu<strong>la</strong>tes hepatie CPT-I by<br />

a stable mecharaism led lo Ihe auggeslion thaI irabibihora<br />

of Ihe pbospha<strong>la</strong>aes might have resulled ira iracreased<br />

phosphory<strong>la</strong>tion of CPT-I, with a corasequeral<br />

iracrease of erazyrrae aetivity (7). However, iracubalion<br />

of purified mitochoradrial auter membranes or iso<strong>la</strong>ted<br />

mitoehoradria with differerat proteira kiraases (iracluding<br />

TABLE 1<br />

173<br />

AMPK) arad protein phosphatases did nol lead to aray<br />

charage ira Ihe kiraetic arad regu<strong>la</strong>tory properties of CPT-<br />

1(15). It has also been showra thaI the malonyl-CoAira<strong>de</strong>pera<strong>de</strong>ní<br />

iracrease of CPT-I activity observed ira okadaic<br />

acid-treated hepatoeytes is not due lo Ihe direcí<br />

phoaphorylátiora of Ihe erazyme, buí may involve modu<strong>la</strong>tion<br />

of interactioras between CPT-I arad raoradiffusible<br />

extramitochoradrial comporaerata (15). Three observationa<br />

indicate that Ibis may also be Ihe case of the<br />

malorayl-CoA-ira<strong>de</strong>pera<strong>de</strong>rat componení ofIhe ALGAR-iraduced<br />

stimu<strong>la</strong>íiora of CPT-I::<br />

(1) Stimu<strong>la</strong>tion of CPT-I was nol apparent when erazyme<br />

activity waa measured,ira mIad mitochoradria iso<strong>la</strong>ted<br />

from ALCAR-treated hepatocytes (meihod D), <strong>de</strong>spile<br />

Ihe presence of 50 mM fluori<strong>de</strong> ira ah Ibe iso<strong>la</strong>tiora<br />

buifera (Fig. 3). Likewise, when hepatocyles were vigoroualy<br />

disrupled by soraicatiora after AlGAR trealmení<br />

(methad G), Ihe stimu<strong>la</strong>tory effect of ALGAR ora GPT-I<br />

waa nol preserved (Fig. 3). Thus, malorayl-GoA-in<strong>de</strong>pen<strong>de</strong>ní<br />

stimu<strong>la</strong>tiora ofCPT-I by ALGAR is oraly evi<strong>de</strong>ral<br />

whera mitochoradria are still assoeiated with olber cellu<strong>la</strong>r<br />

fractioras, le., ira Ihe ghosta of Ihe permeabilized<br />

celís, buí nol after separaliora of mitochondria from<br />

olber celí componerats. Therefore, it appeara thai the<br />

malonyl-GoA-ira<strong>de</strong>pera<strong>de</strong>rat stimu<strong>la</strong>tiora of CPT-I by<br />

AlGAR requires comporaenís of Ihe extramitocharadrial<br />

compartmerat of Ihe celí.<br />

(u) Tbe possibility Ihat cytoakeleíal comporaerais<br />

may be involved ira Ihe malorayl-GoA-ira<strong>de</strong>pera<strong>de</strong>ní aIimu<strong>la</strong>tiora<br />

of CPT-I by AlGAR was leated by usirag taxol.<br />

This complex dilerpenoid binda lo tubulin arad atabilizos<br />

mierotubules, preveratirag the disaasembly of microtubules<br />

ira a very effieientfashion (25). Iraterestiragly,<br />

malorayl-GoA-ira<strong>de</strong>pera<strong>de</strong>rat activatiora of CPT-I iraduced<br />

Combinod Effects of AICAR, Okadaic Acid. arad Taxol on the Activities of CP’I’-I and Acetyl-CoA Garboxy<strong>la</strong>se<br />

Adéitiona<br />

CPT-I activity (ramol/minlmg protoira)<br />

Method A Method E<br />

Acetyl-CoA carboxy<strong>la</strong>se activity<br />


174 VELASCO ET AL.<br />

by ALGAR was eompletely abolished by preírealmeral<br />

of hepatocytes wiíh taxol (Table 1, method B). Likewise,<br />

<strong>la</strong>xol aratagoraized Ihe okadaic acid-induced stimu<strong>la</strong>tion<br />

of GPT-I (Table 1). It is also raoteworlhy that Ihe inhibitiora<br />

of acelyl-GoA carboxy<strong>la</strong>se by okadaic acid or<br />

ALGAR waa raot preverated by taxol (Table 1), iradicatirag<br />

lhat the aratagoraistic effect of taxol ora okadaie acidarad<br />

AIGAR-iraduced CPT-I stimu<strong>la</strong>lion is ira<strong>de</strong>pera<strong>de</strong>ral<br />

of charages ira iratracellu<strong>la</strong>r malorayl-CoA coneentralion.<br />

Herace, it seems thaI blocka<strong>de</strong> of microtubule dyraamics<br />

prevenls malonyl-GoA-ira<strong>de</strong>pera<strong>de</strong>nt atimu<strong>la</strong>liora of GPT-I<br />

by AlGAR.<br />

(iii) Síimu<strong>la</strong>tiora of GPT-I by ALGAR arad okadaic<br />

acid waa raearly additive whera enzyme activiíy was<br />

<strong>de</strong>termined by method A, buí nol whera enzyme activiíy<br />

was <strong>de</strong>lermined by method B (Table 1). Thia iradicates<br />

thaI Ihe effecí ofALGAR observed ira method A is mosíly<br />

due lo a malonyl-GoA-<strong>de</strong>pera<strong>de</strong>rat meeharaism, whereas<br />

AlGAR and okadaic acid seem lo ahare a commora malorayl-GoA-ira<strong>de</strong>pera<strong>de</strong>rat<br />

pathway to stimu<strong>la</strong>le CPT-I as<br />

evi<strong>de</strong>nced by meíhod E.<br />

CONCLUDINO COMMENTS<br />

Ira Ihe preaent reportwe show thaI exposure of mIad<br />

hepatocytes lo ALGAR produces a atrorag (twofold) síimu<strong>la</strong>liora<br />

of long-chaira fatly acid oxidatiora. Thia effecí<br />

seema lo rely on Ibe activatiora of GPT-I by Iwo differerat<br />

mechanisma. Ora Ihe ono harad, AMPK-iraduced acetyl-<br />

CoA carboxy<strong>la</strong>ae inactivatiora would load lo Ihe <strong>de</strong>plehora<br />

of iratraceilu<strong>la</strong>r malorayl-GoA, with coracomitaní<br />

<strong>de</strong>inhibilion of CPT-I. This meehaniam, which has beera<br />

proposed lo operate ira Ihe isehemic heart (4, 5) arad Iho<br />

workirag muscle (6), seems to make a major coratributiora<br />

? of Ihe milochondrial<br />

outer membrane lo ADP (29). Mitochondria have also<br />

boera showra lo cora<strong>la</strong>ira apecific bindirag siles for phalloidira-síabilized<br />

F-actin (30) as well aa fon fodrira, ara aetira-birading<br />

proteira (27). Ira hepalocyles and ira several<br />

celí linos, hyperphosphory<strong>la</strong>tiora of microtubules, actira<br />

microfi<strong>la</strong>merats, arad iralermediale fi<strong>la</strong>merals leada lo<br />

disruplion of Ihe cytoskelelon (31—33). Ira fact, we have<br />

recently ob<strong>la</strong>ined da<strong>la</strong> iradicalirag thaI cytoskeletal<br />

comporaenta might be iravolved ira Ihe okadaic acid-iraduced<br />

atimu<strong>la</strong>tiora of GPT-I (34). Whether AMPK may<br />

phosphory<strong>la</strong>te cyloakele<strong>la</strong>l comporaerata re<strong>la</strong>ted to Iho<br />

control of CPT-I activity ja an intriguirag posaibilily<br />

which is currently un<strong>de</strong>r sludy ira our <strong>la</strong>boratory.<br />

The resulta shown ira Ihis reporí muat be inlerpreled<br />

with caution, since ALGAR may have effecta apart fnom<br />

activalion of AMPK. Thua, for example, ZMP mimica<br />

Ihe inhibitiora of fructose 1,6-bis-phosphatase by AiMP,<br />

arad thua Irealmoral ofhepalocytes wilh ALGAR inhibita<br />

gluconeogeraesis (17). Ira olhor celí types such as Ghinose<br />

bamster fibrob<strong>la</strong>sís arad ovary col<strong>la</strong>, exposure lo<br />

ALGAR has beera showra lo alíen Ihe leve<strong>la</strong> of differerat<br />

purine arad pyrimidirae raucleoli<strong>de</strong>s (35—37). However,<br />

as discuased by Cortan et al. (16), nono of Ihese aracil<strong>la</strong>ry<br />

changos ira nucleoti<strong>de</strong>a are evi<strong>de</strong>ní ira ral bepatocytea.<br />

Ira Ihe <strong>la</strong>lter, ALGAR aeems lo be a rather apecifie<br />

activator of AMPK or al leasí Iho mosí apocifie eompound<br />

for activaliora of AMPK avai<strong>la</strong>ble to dale (16).<br />

The ALGAR-induced malorayl-GoA-<strong>de</strong>pera<strong>de</strong>nl <strong>de</strong>inhibitiora<br />

ofGPT-I isquantitatively more importaral Ihara<br />

Ihe malorayl-GoA-ira<strong>de</strong>pera<strong>de</strong>ral doirahibilion of erazyme<br />

activity. Nonetheleas, Ihe <strong>la</strong>lton da<strong>la</strong> are aclually<br />

highly reproducible arad statiatically sigraificaral (Table<br />

1). II is remarkable thaI the two mochanisma oporalo<br />

simultaneously ira the short-lerm control of hepalie<br />

GPT-I activily, especially sinco ALGAR is nol expecled<br />

lo produce aray atable (covaloral) modificatiora of GPT-I<br />

or Iho putalivo regu<strong>la</strong>tory proteina of Ihe cytoskeletora.<br />

¡lis also worlh notirag thaI whera GPT-I activity is measured<br />

by melhod E lo <strong>de</strong>termine Iho malonyl-GaA-in<strong>de</strong>pon<strong>de</strong>ral<br />

companeral of Ihe ALGAR effect, cel<strong>la</strong>are exíensively<br />

washed arad furíhor iracubaled for up lo 15 mira<br />

al 37<br />

0G. Iclorace, if Ihe malonyl-GoA-indopen<strong>de</strong>rat domhibilion<br />

of CPT-I activity relies ora proteira—protein irateractioras,<br />

ihese may partially disappear aflor Ihe potential<br />

modiflealiona of Ihe orazyrrae microenviroramoral.<br />

Therefore, il is conceivable thaI malonyl-GoA-iradoperadoral<br />

control of GPT-I aclivily may be quaratitalively<br />

more impontaní withira the celí Ihan is evi<strong>de</strong>ní urador<br />

the coraditioras of aun assay.<br />

ACKNOWLEDGMENTS<br />

Thia study wna finaracially supported by a grnrat fron, tSe Sparaish<br />

CICX’T (SAF93/0281>. We also ackraowledge tSe support in pad by


CONTROL OF FAflY ACID OXIDATION BY AMP-ACTIVATED PROTEIN TUNASE<br />

tha Nether<strong>la</strong>rads Fonradation for Chemical Researeh (SON) with financial<br />

aid from tSe Nether<strong>la</strong>rads Orgaraization for Scientific Resoarch<br />

(NWO)<br />

REFERENCES<br />

1 Hardie, D G (1992> Biochim. Biop/ays. Acta 1123, 231—238.<br />

2. Woods, A.. Muraday, MR., Scott, J., Yang, X., Carísora, M., arad<br />

Carlirag, D. (1994) J. Biol. Chem. 269, 19509—19515.<br />

3. Herain, N.. Viracerat, M. F., Gruber. fi. E., arad van dora Berghe,<br />

G. (1995) FASER ,J. 9, 541—546.<br />

4. Kudo, N., Earr, A. J., Earr, R. L., Desai, 5., arad Lopaschuk, O. D.<br />

(1995) 4. Biol. Chem. 270, 17513—17520.<br />

5. Kudo, N., Gilleapie, 4. G., Kung, L., Wittors, L. A., Sehu<strong>la</strong>, fi.,<br />

Círanachan, A. 5., arad Lopaschuk. O. D. (1996) Biochim. Biophys.<br />

Acta 1301, 67—75.<br />

6. Windor, W. W., arad Hardie, D. 0. (1996) Am. 4. Physiol. 270,<br />

E299—E304.<br />

7. Guzmán, M., arad Geelen, M. J. fi. 1993) Biochim. Biophys. Acta<br />

1167, 227—241.<br />

8. Lopasehuk, O. D., Belke, D. D., Gamble, 4., Itol, T., arad Schónekess,<br />

E. 0. (1994) Biochira. Biophys. Acta 1213, 263—276.<br />

9, BÚlow, 4. (1993) Med. Sport Sci. 38, 158—185.<br />

10. McGarry, 4. D., Woeltje, K. F., Kuwajima, M., and Postor, D. W.<br />

(1989)Diabetes Metal,. Reo. 5, 271—284.<br />

11. Zammit, VA. (1994) Diabetes Reo. 2, 132—155.<br />

12. Guzmán, M., arad Castro, 4. (1991) FEBS Lett. 291, 105—108.<br />

13. Guzmán, M., arad Geelera, M. 4. fi. (1992) Biochem. 4. 287, 487—<br />

492.<br />

14. Guzmán, M., Ve<strong>la</strong>sco, G., arad Castro, 4. (1996) Am. 4. Phyaiol.<br />

270, 0701—0707.<br />

15. Guzmán, M., Kolodziej, M. P., CaldwelI, A., Costorphine, C. O.,<br />

arad Zrammit, VA. (1994) Biochern. 4. 300, 693—699.<br />

16. Corton. 4. M., Gillespies, 4. 0., Hawloy, 5. A., arad Hardie, D. 0.<br />

(1995) Sur 4. Biochem. 229, 558—565.<br />

17. Vincent, M. F., Marangos, P. 4., Grubor, fi. E., and Van <strong>de</strong>n<br />

Eerghe, 0. (1991) Diabetes 40, 1259—1266.<br />

18. Sullivan, 4. E.. Brocklehurst, K. 4., Martoy, A. E., Carey, F., Carling,<br />

D., arad Ben, fi. K. (1994) FF55 Lett. 353, 33—36.<br />

175<br />

19. Eoynera,A. C.,Vaartjea,W.4.,andGoolon,M.J. fi. (1979)Diabetes<br />

28, 828—835.<br />

20. Hol<strong>la</strong>rad, R., Wittera, L. A., aad Hardie, E. 0. (1984)Lur. 4. Riociten..<br />

140, 325—333.<br />

21. Declercq, it E.,Falck, 4. R., Kuwajima, M., Tyminski, fi., Foater,<br />

D. W., arad McGarry, 4. D. (1987)3? Biol. Citen.. 262,9812—9821.<br />

22. Guzmán, M., nad Goelen, M. 4. fi. (1988) Biochem. Biophys. Res.<br />

Commun. 151, 781—787.<br />

23. Bijíevold, C., arad Geelen, M. 4. fi. (1987) Biochim. Biophys. Acta<br />

918, 274—283.<br />

24. Lowry, O. fi., Rosebrough, N. 4., Farr, A. L., arad Randalí, fi. 4.<br />

(1951) 4. Biol. Chem. 193, 265—275.<br />

25. Nogales, E., Grayer Wolf, 5., Khan, 1. A., Luduoña, fi. F., arad<br />

Downirag, K. fi. (1995) Nature 375, 424—427.<br />

26. Bereiter-Hahra, 4., arad Vñth, M. (1994) Microse. Res. Technol.<br />

27, 198—219.<br />

27. Leternier, 4. F., Rusakov, D. A., Nelson, E. D., arad Lin<strong>de</strong>n, M.<br />

(1994) Microsc. Res. Technol. 27, 233—261.<br />

28. Lindón, M., Nelson, B. E., Loncar, D., arad Leterrier, 4. F. (1989)<br />

Biochen.. 3? 261, 167—173 (Erratum, Bloc/ten.. 4. 262, 1002,<br />

1989).<br />

29. Fontaine, E. M., Keriel, C., Laratuejoul, 5., Rigoulot, M., Levorve,<br />

X. M., arad Saka, V. A. (1995) Biochen.. Biophys. Res. Commun.<br />

213, 138—146.<br />

30. Lazzarino, D. A., Eoldogh, 1., Smith, M. 0., Rosarad, .1%, arad Pon,<br />

U. A. (1994> Mol. Biol. Celí 5, 807—818.<br />

31. Yarao, Y., Sakora, M., Kambayashi, 4., Kawaaaki, T., Senda, T.,<br />

Taraaka,K.,Yamada,F., arad Shibata, N. (1995)Biochem.J. 307,<br />

439—449.<br />

32. Seglon, P. O., arad Bohley, P. (1992) Experientia 48, 158—172.<br />

33. Ohta, T., Nishiwaki, fi., Yatsuraami, 4., Komori, A., Suganuma,<br />

M., arad Fujiki, fi. (1992) Carcinogenesis 13, 2443—2447.<br />

34. Ve<strong>la</strong>sco, 0., Sánchez, C., Geelora, M. J. fi., arad Guzmán, M.<br />

(1996) Biochem. Biophys. Res. Commun. 224, 754—759.<br />

35. Thomas, C. E., Meado, J.C., arad Holmes, E. W. (1981)4. CeIl<br />

Physiol. 107, 335—344.<br />

36. Sabina, fi. L., Holmes, E. W., arad Eecker, M. A. (1984) Science<br />

223, 1193—1195.<br />

37. Sabina, fi. L., Pattorson, D., and Holmes, E. W. (1985) 4. RbI.<br />

Citen.. 260, 6107—6114.


BIOCHEMICAL A=4DBIOPH’YSJCAI. RE5EARCH cOMMUNICAflONS 233, 253—257 (1997)<br />

ARTICLE NO. RC976437<br />

Studies on the Intracellu<strong>la</strong>r Locatization<br />

of Acetyl-CoA Carboxy<strong>la</strong>se<br />

Math J. Hl. Geelen,*l Caspaar Bijleveld,* Guillermo Ve<strong>la</strong>sco,t<br />

Ronald J. A. Wara<strong>de</strong>rs,t arad Manuel Guzmánt<br />

*Laborato,y of Veterinary Biochemistry and In-stitute of Biomembranes, Utrecht University, 3508 TD Utrecht,<br />

Tite Nether<strong>la</strong>nds; tDepartment ofBiochemistry and Molecu<strong>la</strong>r Biology 1, Faculty of Biology, <strong>Complutense</strong> University,<br />

28040-Madrid, Spain; and tEmma Children’s Hospita4 Amsterdam University, 1100 DD Amsterdam, Tite Nether<strong>la</strong>nds<br />

Reccived March 7, 1997<br />

The present work was performed to i<strong>de</strong>ntify the subcelu<strong>la</strong>r<br />

¡ocalizatioix of hepatie acetyl-CoA carboxy<strong>la</strong>se<br />

ACC). Celu<strong>la</strong>r organeiles involved ira fatty acid ondadon<br />

that contain a malonyl-CoA sensitive carnitine<br />

pa]mitoyltransferase (CP’r> activity or that are linked<br />

to the control of this activity were analysed fon the<br />

presence of ACC. No significant amount of ACC was<br />

observed ira the mitochondrial fraetion prepared frorn<br />

iso<strong>la</strong>ted rat hepatocytes. Furthermore, no association<br />

of ACC aetivity sud mass with iso<strong>la</strong>ted hepatie peroxísornes<br />

could be <strong>de</strong>tectad. Ira cubation of iso<strong>la</strong>ted hepatocytes<br />

-with cornpounds known to affect the integrity<br />

of the cytoskeleton like okadaic acid or taxol indicates<br />

that ACO is associated with this subeeflu<strong>la</strong>r structurc<br />

of dxc hepatocyte. Such assoeiation ma>’ allow for effieient<br />

regu<strong>la</strong>tion of CPT activity arad thus of fatty acid<br />

oxidation. e ini Aca<strong>de</strong>aúc Presa<br />

Deperading ora Ihe pbyaiological atale of the animal,<br />

Ihe liver is a tiasue thaI can ejther exhibil high rates<br />

of fatty acid biosyralbesis or high ralea of fatty acid<br />

oxidation. Control of Ihe aclivily of acelyl-GoA carbaxy<strong>la</strong>se<br />

(ACO) is of apecial irateresí in Ibis nespecí becanse<br />

tbe product of ACO, malorayl-GoA, is nol only a substrato<br />

far Ihe cytosolic procesa of long-chaira falty acid<br />

syntbeais buí ja also ara inhibitor of the activily of carraitine<br />

palmiloyllranaferase (GPT), ara impor<strong>la</strong>ral pacesetting<br />

onzyme of long-chaira falí>’ aeid oxidatiora (1).<br />

As a mallen of fací, malorayl-GoA sensitive GPT activily<br />

is prosent both ira mitochondrial ouler membranea<br />

(GPT-I) (2) and ira Iho peroxisomal matrix (3).<br />

Givera Ihe funclioras of malonyl-GoA ira or on differenl<br />

organelles of Ihe coil, Ihe enzyme reaporasible for its<br />

produclion, ACO, may be eompartmeratalized as well,<br />

1 To whom correapon<strong>de</strong>nco ahould be addreased.<br />

253<br />

Sirace ita original discovery as a soluble enzyme (4) AAC<br />

has been asaurned to be localed ira Ihe cytop<strong>la</strong>sm. Ealier<br />

work coraclu<strong>de</strong>d Ihal Ihe activily of Ihe enzyrne was<br />

nol associaled wilh subeellu<strong>la</strong>r particles (5), buí <strong>la</strong>ler<br />

reparta iradicated lhat activily ofACO canid be <strong>de</strong>tected<br />

ira high apead precipitaba of ral-liver bamogenalea (6-<br />

8) and ira a so-called mitocharadrial fraclion of such hamogenales<br />

(9,10). Furlhermore, permeabilizaliora of<br />

iso<strong>la</strong>led hepatocytes wilh digitoraira alsa auggested association<br />

of Ihe enzyme witb sorne kind ofintracelu<strong>la</strong>r<br />

slructure (11).<br />

These canclusiona haya ralied on aasays of erazyme<br />

activity ira cellu<strong>la</strong>r fraclioña (6-11) arad on meaauremonI<br />

of AGG masa by a lecbnique employing Ihe biradirag<br />

of radio<strong>la</strong>belled avidin (9,10). Bolb procedurea are<br />

prono to error. The measurameral ofte activity ofAGO<br />

is aubject lo modifi cation of lbat activity by sevaral<br />

fac<strong>la</strong>ra (12-18), arad Ihe avidin bindingmeihod is serasílive<br />

lo iratenfererace by ollien biolin-containing proteína<br />

compeling for <strong>la</strong>befled avidin (16)- Therefore, Ibe datarminalion<br />

of subcellu<strong>la</strong>r diatnibulion ora Iba basia of avídin<br />

biradirag or enzyme activily ja difeulí lo interpret.<br />

The avai<strong>la</strong>bility of ACG anlibodies (17) sud Iba tecbnique<br />

of penmeabilizing iso<strong>la</strong>led hapa taeytea wilh digitonira<br />

(15) has permutad lo ne-addraas ihe issue of <strong>la</strong>calizaliora<br />

ofACO arad ta cir cumvanl sorne ofthe rnethodo<strong>la</strong>gical<br />

problema.<br />

MATERIALS AND METI-


Vol. 233, No. 1. 1997<br />

íonxc streragth, iso-osmotio mediun, consistirag of 0.3 M maranitol arad<br />

2 mM lepas pH 7.4 ira the preserace of a proteinase inhibitor mixture<br />

(17). The homogenate was ceratrifuged at 1500 >< g for 2 mira. The<br />

pellot was discar<strong>de</strong>d arad the superraatant ceratrifuged lcr 2 mira at<br />

16.000 x g. The resulting aupernatarat was termed the cytosolic fractiora.<br />

The pellet was washod once by resuaperasiora ira tSe low ionic<br />

strength medium and receratrifugation at 16.000 >< g. TSe resuspen<strong>de</strong>d<br />

firaral pollot was terrned the mitochondrial fraction. Peroxisornes<br />

were iso<strong>la</strong>ted from animals fed a standard pelleted diet supplemerated<br />

with 1% di(2-ethylhexyl)phtaiate ira or<strong>de</strong>r to proliferate the<br />

peroxisomal compartmorat (20). Treatment of anúna<strong>la</strong> arad iso<strong>la</strong>tiora<br />

of peroxisomes was performed as ira (20). .4.11 homogeraizing atepa and<br />

aubsequent procedures were porformed at 4’ C. Theiso<strong>la</strong>ted fractioras<br />

xvere sraap frozera ira liquid raitrogera arad atored at —20’ C. To <strong>de</strong>termine<br />

the aniourat clACO retained ira the cdl ghosts followirag incubatiora<br />

of tho intact hepatocytes with different cellu<strong>la</strong>r cifectora, the<br />

iso<strong>la</strong>ted celia were pornioabiized arad thoroughly washod prior to<br />

harvesting the ccli ghosts. Thus, 1.0 ml of hepatocyte ausperasion<br />

waa pormeabilized with digitorain (ca. 60 gg por mg cdl prateira)<br />

diasolved ira a medium corataining 50 mM Hopes (pH 7.5), 0.25 M<br />

inannitol, 5 mM 2-mercaptoetharaoi arad a proteinase irahibitor mixture<br />

as ira (17). The reaultirag mix of col<strong>la</strong> arad penneabilizing median,<br />

was gently shakera for 5 a. arad rapidly diluted by trarasfer te tabes<br />

contairairag 40 ml of ice-cold madium without digitoraira. Ceil ghosts<br />

were sedimerated by ceratrifugation at SSOg for 15 s, arad peílota were<br />

takera up ira 1.0 ml ice-coid medium coratairairag 50 pl oftha proteinase<br />

inhibitor mixture. The reaulting susperasiona ofcell ghosts were kept<br />

at —80’ C tul mass niensurementa were parformed. Detenninatiora<br />

of total ACC masa retairaed ira ceil ghoata following digitonira traatmentor<br />

associated either with iso<strong>la</strong>tad mitochondria or peroxisomes,<br />

wasperfornied with an ELISA assay esseratially za <strong>de</strong>acribad by Iverson<br />

et al. (21) employirag a primary aratiserum agairast rat-liver ACO<br />

(17). The distribatiora of isoforma was <strong>de</strong>termined using immunopracipitatiora,<br />

SDS/PAGE, immunoblotting arad auto radiography as iii<br />

(17). Activities of ACO arad fatty acid synthase were monitored exactly<br />

ng <strong>de</strong>scribed before (15,17). Seurces of chemicais za ira (17).<br />

RESULTS<br />

me prasent study waa un<strong>de</strong>n<strong>la</strong>kora lo i<strong>de</strong>ntifr Ihe<br />

subeellu<strong>la</strong>r <strong>la</strong>calizatiora of ACO. Ira or<strong>de</strong>n lo invealigate<br />

a posaible assaciation of ACG with mitochondnia—as<br />

auggestad by Alíred arad co-workers (9,10)—milochoradha<br />

were preparad from iso<strong>la</strong>ted hepalocyles. Witb<br />

such a praparalion leas mechanical fonce is roquired te<br />

liberale milochondria as compared lo whole liasne aa<br />

the a<strong>la</strong>r lirag material. Mechanical interference with su<br />

associaliora of ACC arad mitochondnia was further kept<br />

to a minirnunx by using a loase-fiítirag Daunce bomagaraizer.<br />

To iratenfene aa litíle as poasib<strong>la</strong> with polenlial<br />

olectrostatie interactioras betweara arazyrrae arad onganelle,<br />

a low ionic slrength medium was chosora fon iso<strong>la</strong>lion<br />

of the aubeellu<strong>la</strong>r fraelioras. Ira addiliora, the whole<br />

iso<strong>la</strong>tion procedure—iracludirag subcellu<strong>la</strong>r fraclionation<br />

by coralnifugalion—was aimed al spaed rather<br />

Iban al racovery. Aclivily measuremenís fon AGG ofIba<br />

resnlting subeellu<strong>la</strong>r fraclioras could not be ponformed<br />

bocausa of Iba preserace of malorayl-GoA <strong>de</strong>carboxy<strong>la</strong>sa<br />

ira mitachandnia. The <strong>la</strong>ltor enzyme iralenferas wilb Ihe<br />

assay fon AGG activity (15). The subeellu<strong>la</strong>r fracliona<br />

wara sualysad by SUS gel electrophoresia fon Iba proaonce<br />

of Ihe 265-kDa azul 280-ma iaofonms of AGC<br />

BIOCHEMICAL ANO BIOPHYSICAL RESEARCH COMMT.JNICATIONS<br />

254<br />

ASO - 250<br />

265<br />

‘9<br />

“ ,~<br />

,$ ‘.<br />

N~ ,‘9 ~<br />

0 ‘-u<br />

.~‘ -No<br />

o<br />

‘., 0~<br />

Ns-<br />

4>4? 4><br />

FIG. 1. Acetyl-CoA carboxy<strong>la</strong>se (ACO) araalysia of subeellu<strong>la</strong>r<br />

fractioras of hepatocytes from noz~mahly fed rato by SDS gel electrophoresis.<br />

Cytcsolic (Cyto) arad milochoradrial (Mito) fractioras obtairaed<br />

from iso<strong>la</strong>ted hepatocytes (sea Materia<strong>la</strong> and Methoda) were<br />

araalysed for tSe preserace of the ACC-265 arad ACC-280. A sample<br />

equivalerat te 100 gg of proteira of each fiaction was loa<strong>de</strong>d te the<br />

<strong>la</strong>nas ng iradicated. Following <strong>la</strong>belirag with [~S]streptavidin, SDS/<br />

PAGE arad trarasfer to nitrocellulose, the biotira-coratairaing proteina<br />

were visualizad by aatoradiography. “Indicates that the inimunoprecipitate<br />

with a priman’ antiseruni against rat-liver AOC waa loadad<br />

ira that Jane; iradicates that nra iiramunoprecipitate with a pre-immufle<br />

serun, was loa<strong>de</strong>d; the prefix sup. iradicates that Ihe supernatant<br />

of tizo imniunoprecipitate wás loa<strong>de</strong>d.<br />

(AGG-265 arad ACG-280, reapectivaly). The twa isaforma<br />

hayo been auggastad lo p<strong>la</strong>y differeral bio<strong>la</strong>gical<br />

roles. Ira particu<strong>la</strong>r, ACC-280 is of intaresí ira ibis reapecí<br />

because it mighl be involvad ira Ibe syntbesis of<br />

malonyl-GoA fon inhibition of GPT-I (22,23). Since Iba<br />

<strong>la</strong>lter enzyma has a milocharadnial locajization (24), su<br />

assoeiatian of AGG-280 witb milochondria would be<br />

foasible. Fig. 1 shows Iba analysis of ihe presence of<br />

AGG isoforma ira Iba subeaflu<strong>la</strong>r fractiona fram iso<strong>la</strong>ted<br />

hepatocytes. The resulta da nol reveal a mitochondnial<br />

localization of ejíher of Ihé two AGC isofarma. Ira su<br />

atíempí lo spare potential hydrapbobicinteraclioras betweera<br />

AGG sud mitochoradria, Ihe <strong>la</strong>lter organaf<strong>la</strong>s<br />

were also preparad from is¿<strong>la</strong>led hepatocy<strong>la</strong>s ira a bigh<br />

iaraic strength madium (0.9% NaCí sud 20 mM Tris<br />

pH 7.4) exactly as <strong>de</strong>scribed for Iba <strong>la</strong>w jonie slrenglh<br />

medium. Mao ira Ibis case no aasociaíion of any of Iba<br />

AGO-isaforma wilb Iba miloebandrial fractiora waa appareral<br />

(da<strong>la</strong> nol sbowra). The analysis of Iba presence<br />

of AGC-isoformna ira Ihe mitochondnial fraction was repeated<br />

witb lwo diffenerat pximary anlisena also naisad<br />

againal ral-liver AGG. Thé resulís wera idanlical lo<br />

Ibose presentad ira Fig. 1. (da<strong>la</strong> nol abowra). Tha sualysis<br />

of Iba prasorace of ACO isoforma was also performed<br />

en subcellu<strong>la</strong>r fractiona of tal-livor cal<strong>la</strong> from araimais<br />

ira differerat nutrilional atatea, Le. síarvad fon 48 b sud<br />

síarved fon 48 h fol lowad by refeading a carbohydrateíicb,<br />

fal-peor diet fon 48 h. No sigraifiesulmasa ofeitber<br />

ACC isoform waa observad ira Iha mitochoradrial fractiara<br />

ira suy of Iba nutritional sIales (da<strong>la</strong> nol sbown).


Vol. 233. No. 1, 1997<br />

TABLE 1<br />

Activities ofPizospizogiucoisomerase (PGI), Gata<strong>la</strong>se, Faíty<br />

Acid Syníhase (FAS), arad Acetyl-CoA Carbozyiase (AGC) ira<br />

Post-Nuclear Supernataral (PNS) arad in Iso<strong>la</strong>ted Peroxisornes<br />

from Livor of Control arad Di(2-ethylhexyl)phtaiate<br />

(DEHP)-Treated Rata<br />

Erazvnie<br />

Cata<strong>la</strong>se<br />

PGI<br />

FAS<br />

ACC<br />

PNS Peroxisonies<br />

Coratrol DEHP<br />

(gmol/min/mg proteira)<br />

0.83 0.97<br />

0.55 0.39<br />

(omol/min/mg proteja)<br />

1.88 0.11 1.14 = 0.03<br />

0.34 t 0.03 0.42 0.01<br />

Control DEHP<br />

10.6<br />

0.013<br />

rad.<br />

raM.<br />

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS<br />

6.64<br />

0.023<br />

rad.<br />

rad.<br />

Note. PGI and catainse are marker enzymes for cytosol arad peroxisornes,<br />

reapectiveiy. Data roproaerat mearas of two control arad two<br />

DEHP-treated aninials. nd., nora<strong>de</strong>tectable.<br />

Hapatie peroxisames axbibil GPTactivity thaI is sensitive<br />

lo inhibilion by malorayl-CoA (3, 25). To study a<br />

poasible aaaociation ofAGG with Ibis organelle, peroxisornes<br />

wore iso<strong>la</strong>led from liven liaaue ob<strong>la</strong>inad from<br />

rata treated with di(2-olhylbexyl)pbía<strong>la</strong>te (DEll?), a<br />

proliferator afilie peroxisomal comparlmení (20). The<br />

data ira Table 1 indicale Ihat Ibera is no associalian of<br />

ACG aclivily witb peroxisomea from both control sud<br />

DEHP-lraated aninia<strong>la</strong>. Likewise, no signiñcaní asaaciahora<br />

of AGG lo peroxisomes was obsanved ora Ihe basia<br />

of measunemerata of enzyxna masa (da<strong>la</strong> nol sbawn).<br />

Qur receral abservation Ibal cyloakeletal compananta<br />

are mosí likely involved ira Ihe control of Ihe activily<br />

of GPT-I (26) prompted us lo corasi<strong>de</strong>r a cyloskele<strong>la</strong>l<br />

localizaliora of ACG, since the <strong>la</strong>tían erazyme is pivo<strong>la</strong>l<br />

ira Iha conírol of CPT-I activity (1). To sualyae a polential<br />

aasociatiora of AGG witb Iba cytoskeleíon, iso<strong>la</strong>led<br />

hepatocy<strong>la</strong>a ware ineubaled wilh vanioua compaunda<br />

knowra lo affect cyloake<strong>la</strong>tal integrily. Subaequenlly,<br />

celis were permeabilized by shorl-term trealmeral wilh<br />

digilorain followed by rapid removal of released eytosalic<br />

proteiras iracluding ACG. Ira Ibis approacb, AGG<br />

asaoeiated with a aubeellu<strong>la</strong>r síruelune will be sedimeníed.<br />

Tbe resulting pellel waa used lo <strong>de</strong>tennine<br />

AGG masa. The poasibilily of ara aaaacialiora betweora<br />

ACO arad cytoakeletal comporaenta was tes<strong>la</strong>d by the<br />

use of okadaic acid (OA), taxol arad colchieine. QA has<br />

beera ahown to disrupí Ihe cytoskelelora of hepalocytos<br />

(27). Taxol birada lo lubulira arad síabilizea microtnbules,<br />

preveraíirag Iba diaaaaembly of microlubulea ira a<br />

veryefficieralfasbiora (28). Tbe polymaric atate of microtubules<br />

can be dissociated by colehicine (29). Tbe data<br />

of <strong>la</strong>Me 2 shaw thaI incubatiora of bepalocytea wilb OA<br />

255<br />

resulted ira Ibe release of substaratially more AGC tbsu<br />

ira control col<strong>la</strong>. Interestiiigly, Iba OA-iraduced effecl<br />

was eomp<strong>la</strong>lely abolisbed by pretraating Iba hepalocytea<br />

wilh taxol (Tab<strong>la</strong> 2). Likewiaa, prelreatmeral of<br />

tha col<strong>la</strong> wilh KN-62, a specific inhibitor of Ca 2t’calmodulin-<strong>de</strong>pera<strong>de</strong>ral<br />

proleira binase II, also prevera<strong>la</strong>d<br />

Ihe OA-iraduced releasa of hapatie AGO. 5-Aminoimidazole-4-carboxami<strong>de</strong><br />

ribonucleasi<strong>de</strong> (AlGAR), a spaciñc<br />

activa<strong>la</strong>r of5’-AMP-activaíed pro<strong>la</strong>in binase, was wilhout<br />

effect on Ihe retaralion of AGG maas ira celí gbosls<br />

(Tab<strong>la</strong> 2). Incubaliora of he~alocytes witb colehicine did<br />

nol affecl tbe release ofACC from digilorain-permeabilized<br />

cel<strong>la</strong> ajíhar. The da<strong>la</strong> obtained witb amyloglucosidase<br />

(Tab<strong>la</strong> 2) suggeat thaI glycogan granu<strong>la</strong>s nepresoral<br />

a subeellu<strong>la</strong>r síructure caSable of binding AGG. To <strong>de</strong>termina<br />

whelher Ibe two AGG isofonma will diffareratially<br />

release upan permeabilization, Ihe ceil gbosts<br />

wene a<strong>la</strong>o analyaad for Ihe presence of ACC-265 sud<br />

AGG-280. However, irrespeclive of Iba incubaliora condition,<br />

Iba ratio ofAGC-265/AGG-280 was i<strong>de</strong>ntical, j.c.<br />

AGG-280 was always about ana third of Ihe total ACO<br />

masa (da<strong>la</strong> nol ahown).<br />

DISCUSSION<br />

Saveral aludies perfornied by albera (6-10) as well as<br />

by our group (11) lod lo Ibe auggastion of aasocialion of<br />

TABLE 2<br />

Mass Measuremerata of Acetyl-GoA Carboxy<strong>la</strong>se Re<strong>la</strong>med<br />

ira Digitorain-Penneabiized Ral Hepalocyles<br />

Additioras<br />

Perceratage of total ACO masa<br />

retairaed ira ce11 ghosts<br />

Control 53.2 ±18.0<br />

OA 20.6 ±8.0*<br />

Taxol + OA 55.5 ±6.6<br />

KN-62 -4- (JA 48.5 z 10.5<br />

AICAR 46.0 ±19.5<br />

Colchicine 64.5 8.7<br />

Taxol + colchicine 67.9 ±1.0<br />

Control’ 15.8 ±2.8<br />

Control -4- amyloglucosidase’ 4.6 ±1.0*<br />

Note. Hepatocytes were prein¿ibated for 20 mira with or without<br />

10 pM taxol or 30 gM KN-62. incubadoras were coratinaed for 15<br />

additional mira with or without 0.5 mM 5-amiraoimidazoie-4-carboxami<strong>de</strong><br />

riboraucleosi<strong>de</strong> (AiICAR), 0.5 gM okadaic acid (OA) or 0.1 mM<br />

coichicine. Subsequently, ccli ghosts were prepared as <strong>de</strong>scribed ira<br />

Materia<strong>la</strong> arad Metizoda. ACC retained ira tize cefighosts was quanti-<br />

Sed by avidin-based ELISA annlysis using as tize probirag aratihody<br />

a primary antiaerum against rat-liver ACC (17).<br />

‘mese resuits aro from two seta of ccii gizoste of control celia<br />

resuspen<strong>de</strong>d arad iracubated for 15 ndditionai mira with or without 50<br />

U amylogiucosidnse. Resulta represerat the mean 5.1). of3 different<br />

hepatocyte preparatioras. Tize aniourat ofACC preserat ira intact hepatocytes<br />

was set nt 100%. Values of OA are signiñcantiy differerat<br />

(Pco.01) versas ita control using the Stu<strong>de</strong>rat 1 test. This also applies<br />

to aznyloglucosidase (P.


Vol. 233, No. 1, 1997 BIOCIjEMICAL AND BIOPHYSICAIL: RESEARCII COMMUNICATIONS<br />

may be iravolved ira Ihe iníracellu<strong>la</strong>n bahavior of Iba<br />

AGC to a subeellu<strong>la</strong>r organal<strong>la</strong>. However, after careful<br />

iso<strong>la</strong>tiora, no associaliora of ACO wilh eilhar milochondria<br />

or peroxisomes could be observad ira Iba proseral<br />

síudy. Nonelbeleas, ira Iba mIad calí ara aasocialiora<br />

may exisí thaI is nol firm so thaI Ibe enzyine cara escape<br />

into Iba supannataral durirag Ihe biochemical preparatiara<br />

procadure. The presení approach of using Ihe techraique<br />

of pormaabilizirag iso<strong>la</strong><strong>la</strong>d bepalocytes raíhar<br />

lbsu bomogenizirag Ibe cel<strong>la</strong> ravealed su associalion<br />

of AGG wilb Iba cytoakelelon. The implicalion of Ibis<br />

cytoake<strong>la</strong>tal connection of bolh ACG (Ibis síudy) sud<br />

GPT-I (26) is thaI it allowa fon an efficienl raga<strong>la</strong>liora<br />

of fatly acid oxidation lbrougb malonyl-CoA-iraducad<br />

charages ira GPT-I activily. Furtbarinore, Iba differenl<br />

digilorain-releasa-paltarra of ACG following iracubalion<br />

ofhepatocyles witb OA as comparad lo Iba control situalían<br />

raises Iba possibiily thaI AGG may Irsuslocate<br />

fram ono comparlmerat lo anolber, <strong>de</strong>pandirag ora Ihe<br />

silualiora of Iba celí, and Ihus efficiently control Ihe<br />

activily of GP’r-I.<br />

II could be arguad thaI Iba release palterra of ACG<br />

fol<strong>la</strong>wing digilorain penneabilizatian is a refiaction of<br />

its síate of aggragaliora arad thaI OA by favoring Iba<br />

monomeric a<strong>la</strong>le of Iba erazyima wauld cause <strong>la</strong>sa AGG<br />

to be ratainad by Iba celí gliosta. Howaver, the i<strong>de</strong>ntical<br />

AGG ralease pal<strong>la</strong>rra following iracubalion of hapalocytea<br />

wilb inaulin on glucagora— putalive affectors of<br />

Ihe aggregaliora stale of AGO (30)—is nol ira lina with<br />

Ibis reasoning (urapublished data of Iba aulliora). The<br />

inability of ALCAR lo altar ACG retentiora by calí gbosta<br />

may also indica<strong>la</strong> thaI Ibera is no re<strong>la</strong>tiora betwaara<br />

phoaphory<strong>la</strong>liora—aI least by 5’-AMP-acliva<strong>la</strong>d pro-<br />

1am kinaae—arad ratenlion of Ihe enzyma by cali<br />

gbosts.<br />

The sutagoraislic affecí of KN-62 arad taxol 011 OAiraduced<br />

release of ACG is quita simi<strong>la</strong>r lo Iba an<strong>la</strong>goniatie<br />

affecl of Iba Iwo forman compaurada on Iba OAinducad<br />

atimu<strong>la</strong>lian of CPT-I aclivity (26,31). Da<strong>la</strong> of<br />

KN-62 are of apacial interesí since Ibis compound also<br />

prevenís qui<strong>la</strong> affactively Iba OA-iraduced irahibiliora of<br />

AGGactivily as measured ira a permeabilizad-cail assay<br />

(unpublished da<strong>la</strong> of Iba antbors). This implicales<br />

Ca<br />

2~/calnodulin-<strong>de</strong>pen<strong>de</strong>nt prolein kinaaa II ira Ihe<br />

control of both AGO and CPT-I arad ja at odda with<br />

Ibe opinion thaI 8’-AMP-acíivated protein binase is Ibe<br />

moal impartant—if nol unique—protein binase iravolved<br />

ira Ihe control of ACO ira ira<strong>la</strong>ct bapaloeylea (32).<br />

Ira addiíion, pbosphory<strong>la</strong>liora of cytoskele<strong>la</strong>l componenIa—as<br />

showra by Iba effacls of KN-62 sud QA—<br />

may be raquired fon AGC lo be roleased ftam ita anchaning<br />

p<strong>la</strong>ca on Iba cytaskele<strong>la</strong>ra. Iralenealingly, colebicina<br />

waa withaut eltecí jusí like ira Iba case of GPT-I aelivily<br />

(26) auggealing Ibal apecifie protain-protein iraleractioras<br />

beíween Iba lwo arazymes sud cytoske<strong>la</strong><strong>la</strong>l componenIa<br />

sud nol Iba mere disruption of Iba cyloaka<strong>la</strong>tora<br />

256<br />

twa enzymea sud Ibeir control.<br />

ACKNOWLEDGMENTS<br />

Tizese investigatioras were supported ira pafl by tize Nether<strong>la</strong>rads<br />

Foundatiora for Chemical ReseaÑiz (SON) with firaaracial aid from the<br />

Netizer<strong>la</strong>rada Orgaraizatiora for Scieratific Researciz (NWO) as well as<br />

by tize Spanish “Comisión Interministerial <strong>de</strong> Cieracia y Tecraologia<br />

(SAE 98/0281).”<br />

REFERENCES<br />

1. McGarry, 3. 1)., arad Foster, 1). W. (1980) Annu. Ra’. Biochern.<br />

49, 395—420.<br />

2. Murthy, M. SR., arad Parada, 5V. (1987) ¡‘toe. Natí. Acad. 3d.<br />

USA 84, 378—382.<br />

3. Derrick, 3. P., arad Ramsay, R. R. (1989) Biocitem. 4. 262, 801—<br />

806.<br />

4. Wakil, S.J., Titcheraer, E. B., arad Gibsora, DM. (1958) Bloc/ti..<br />

Biopitys. Acta 29, 225—226.<br />

5. Wakil, S.J., MeLain, L. W<br />

4 arad Warshaw, 3. B. (1960)4. Bid.<br />

Citen.. 235, PCS1-PC32.<br />

6. Abiaham, 5., Lorciz, E., arad Chaikoff, 1. L. (1962) Bloc/ten.. Riop/tys.<br />

Res. Commun. 7, 190-193.<br />

7. Margolis, 5. A., arad Baam, 11. (1966) Arch. Biociten.. Biopitys.<br />

114, 445—451.<br />

8. Witters, LA., Friedmara, SA., arad Bacora, 43. W. (1981) Proc.<br />

Natí. Acad. Sol. USA 78, 3639—3643.<br />

9. Aflred, 3. B., Romara-Lapez, O. R., Pope, T. 5., arad Goodson, 4.<br />

(1985) Bioc/tem. Biophys. Res. Commun. 129, 453—460.<br />

10. Roman-Lopez, O. R., Shriver, B. J., Joseph, C. R., arad Allred,<br />

3. B. (1989) Bloc/te.. 4. 260, 927—930.<br />

11. Bijíeveid, O., Vaartjes, W. J., arad Geelen, M. J. 11. (1989> Horm.<br />

Metab. Res. 21, 602—605.<br />

12. Lane, M. 1)., and Moas, 3. (1971) in Metaboiic Pathways (Vogel,<br />

H. J., Ed.), Vol. 5, Pp. 23—SS, Aca<strong>de</strong>mic Presa, New York.<br />

13. Volpe, 3. 3., arad Vagelos, P.R. (1976) P/tysioL Ra’. 56,339—417.<br />

14. Wakil, S.J., Stoops, 3. K, arad Joshi, V. 0. (1983) Arma. Reo.<br />

Bloc/ten.. 52, 537—579.<br />

15. Bijíeveld, O., arad Geelera, M. 3. H. (1987) Bloc/ti.. Biophys. Acta<br />

918, 274—288.<br />

16. Romara-Lopez, CH., Goodson, 3., andAflred, J. E. (1987)3? Lipid<br />

Res. 28, 599—604. -<br />

17. Gazmára, M., Bijieveid, O., arad Geelen, M. 3. II. (1995) Biochem.<br />

4. 311, 853—860. -<br />

18. Beynen,A. O., Vaartjes, W. 3., arad Geelen, M. J. 11. (1979)Diabetea<br />

28, 828—835. ¡<br />

19. Romara-Lopez, 0. R., Shriver, E. 3., Joseph, O. R., arad AJired,<br />

31 E. (1989) Bloc/ten.. 4. 260, 927—930.<br />

20. Wara<strong>de</strong>rs, R. JA., Romeijn, O. 4., Schutgeras, R. E. 11., arad<br />

Tager, 3. M. (1989) B¿oe/tem Bzop/tys. Res. Comn.an. 164, 550—<br />

555.<br />

21. Iversara, A. J., Biarachi, A., Nordiarad, A-O., arad Witters, LA.<br />

(1990> Bloc/ten.. 4. 269, 365—371.<br />

22. Bianchi, A., Evaras, 3. L., Iverson, A. 3., Nord<strong>la</strong>rad, A. O., Watts,<br />

T. 1)., arad Witters, LA. (1990)4. Bid. Cite.. 265, 1502—1509.<br />

28. Lopaschak, 43. 1)., Belke, 1). 1)., Gamble. 3., Itol, T., arad Schónekesa,<br />

E. 0. (1994) Bioc/tim. Biop/tys. Acto 1213, 263—276.<br />

24. Gazniára, M., arad Geelen, Ml 3.11(1993) Bloc/ti.. Biop/tys. Acta<br />

1167, 227—241. ¡


Vol. 233, No- 1, 1997 BIOCHEMICAL AND BIOPHYSIOAI RÉSEAROH COMMUNIOATIONS<br />

25. Guzmán, M., and Geolen, M.J. fi. (1992) Biochen.. £287, 487— 29. Timasheff, 5. N., arad Grishain, L. M. (1980>Annu. Reo. Bloc/ten..<br />

492. 49. 565—591.<br />

26. Ve<strong>la</strong>sco, O., Sánchez. C., Geelen. M. J. fi., arad Gnzmára, M. 30. Mabrouk, O. M., Helmy, 1. M., Thampy, E. O., arad Wakil, 5. 5.<br />

(1996) Biociten.. Biop/tys. Res. Comn.un. 224, 754—759. (1990)3? Bid. Citen.. 265,6330—6338.<br />

27. Holera, 1., Gordora, 1’. E., arad Soglen, P. 0. (1993) Eur 4. Bio.<br />

citen,. 215, 113—122. 31. Ve<strong>la</strong>sco, 43., Guzmára, M., Zarnmit, VA., arad Geelen, M. 3. fi.<br />

28. Nogales, E., Grayer Wolf, 5., Khan, lA.. Ludueña, fi. E., arad (1997) Biochen.. 4. 32t 211—216.<br />

Downirag, K. fi. (1995) Nature 375, 424—427. 32. Hardie, 1). 43. (1992) Bloc/ti.. Biopitys. Acta 1123, 231—238.<br />

257


Capítulo 2<br />

DISCUSIÓN<br />

Relvultados y Discusión<br />

Los datos expuestos en el presente capitulo permiten sugerir que el<br />

mecanismo <strong>de</strong> regu<strong>la</strong>ción <strong>de</strong> <strong>la</strong> CPT-l in<strong>de</strong>pendiente <strong>de</strong> malonil-CoA podría<br />

<strong>de</strong>sempeñar un papel significativo en el control <strong>de</strong>l metabolismo <strong>de</strong> ácidos grasos.<br />

En primer lugar, los resultados obtenidos con célu<strong>la</strong>s <strong>de</strong> hepatoma (capítulo<br />

3.1), aunque todavía preliminares, son acor<strong>de</strong>s con <strong>la</strong> i<strong>de</strong>a <strong>de</strong> que <strong>la</strong>s interacciones<br />

con el citoesqueleto están implicadas en el control <strong>de</strong> <strong>la</strong> actividad CPT-l. La<br />

capacidad carcinogénica <strong>de</strong>l ácido okadaico, cuyas acciones sobre <strong>la</strong> célu<strong>la</strong><br />

incluyen <strong>la</strong> ruptura <strong>de</strong>l citoesqueleto y <strong>la</strong> alteración <strong>de</strong> <strong>la</strong> forma celu<strong>la</strong>r, podría<br />

conllevar alteraciones <strong>de</strong>bidas a <strong>la</strong> <strong>la</strong> pérdida <strong>de</strong> divetsas interacciones <strong>de</strong>l<br />

citoesqueleto con diferentes enzimas tales como <strong>la</strong> CPT-l. Así, los efectos que el<br />

ácido okadaico ejerce sobre <strong>la</strong> CPT-I en hepatocitos podrían mimetizar a los que<br />

tienen lugar durante <strong>la</strong> transformación <strong>de</strong> una célu<strong>la</strong> en tumoral, en <strong>la</strong> que diversas<br />

proteínas sufren alteraciones <strong>de</strong> su fimcionalidad. Durante estos procesos,<br />

numerosas quinasas ven alterada su regu<strong>la</strong>ción y sufren un aumento <strong>de</strong> su actividad<br />

2+<br />

por encima <strong>de</strong> loslímites fisiológicos. Así, <strong>la</strong> activación <strong>de</strong> <strong>la</strong> Ca /CMPKII que el<br />

ácido okadaico trae consigo en hepatocitos ais<strong>la</strong>dos, podría no ser equiparable a <strong>la</strong><br />

que tendría lugar tras <strong>la</strong> activación mediante mediadores fisiológicos en una célu<strong>la</strong><br />

no transformada, pero pudiera ser <strong>de</strong>l mismo or<strong>de</strong>n que <strong>la</strong> ‘que tiene lugar en una<br />

célu<strong>la</strong> tumoral.<br />

Por otra parte, <strong>la</strong> AMPK también parece estar implicada era el control a<br />

corto píazo <strong>de</strong> <strong>la</strong> CPT-l. Los efectos <strong>de</strong>l AlGAR sobre <strong>la</strong> actividad <strong>de</strong> esta enzima<br />

pue<strong>de</strong>n dividirse en <strong>de</strong>pendientes e in<strong>de</strong>pendientes <strong>de</strong> malonil-OoA (capítulo<br />

2.3.2). Estos datos, junto a <strong>la</strong> posible localización <strong>de</strong> parte <strong>de</strong> <strong>la</strong>s molécu<strong>la</strong>s <strong>de</strong><br />

ACG en el citoesqueleto, indican que ambos mecanismos pudieran estar<br />

interre<strong>la</strong>cionados.<br />

La regu<strong>la</strong>ción <strong>de</strong> <strong>la</strong> CPT-l <strong>de</strong>pendiente <strong>de</strong> malonil-CoA ha venido siendo<br />

consi<strong>de</strong>rada como el principal mecanismo <strong>de</strong> regu<strong>la</strong>ción a corto píazo <strong>de</strong> <strong>la</strong> enzima.<br />

En el interior <strong>de</strong> <strong>la</strong> célu<strong>la</strong>, don<strong>de</strong> no es esperable que ningún agoraista ejerza<br />

alteraciones tan drásticas como <strong>la</strong>s producidas por el ácido okadaico, <strong>la</strong><br />

contribución <strong>de</strong>l mecanismo in<strong>de</strong>pendiente <strong>de</strong> malonil-CoA podría ser<br />

complementaria a <strong>la</strong> <strong>de</strong>l <strong>de</strong>pendiente <strong>de</strong> los niveles <strong>de</strong> este metabolito. En este<br />

sentido, los datos obtenidos trás <strong>la</strong> activación <strong>de</strong> <strong>la</strong> AMIPK por AICAR podrían<br />

acercarse más a lo que ocurre in vivo. A<strong>de</strong>más, <strong>la</strong> posible localización <strong>de</strong> <strong>la</strong> ACC<br />

en el citoesqueleto sugiere asimismo que ambos mecanismos actúan <strong>de</strong> forma<br />

coordinada, ya que si <strong>la</strong> ACC y <strong>la</strong> CPT-l se localizasen próximas entre si en el<br />

interior <strong>de</strong> <strong>la</strong> célu<strong>la</strong>, <strong>la</strong> concentración efectiva <strong>de</strong> malonii-CoA en esos puntos<br />

podría ser mucho mayor produciendo así una inhibición mucho más efectiva <strong>de</strong> <strong>la</strong><br />

CPT-l. Así, <strong>la</strong> <strong>de</strong>sorganización <strong>de</strong>l citoesqueleto traería consigo no solo <strong>la</strong> pérdida<br />

<strong>de</strong> <strong>la</strong>s posibles interacciones regu<strong>la</strong>doras can <strong>la</strong> GPT-l sino un alejamiento fisico <strong>de</strong><br />

<strong>la</strong> ACC y con el<strong>la</strong> <strong>de</strong> <strong>la</strong>fuente <strong>de</strong> malonil-CoA.


3. Discusión<br />

Generaly<br />

Conclusiones


Cavitulo .3 ¡3kcu~ión General y Conclusiones<br />

Des<strong>de</strong> que hace ahora 20 años, McGarry y<br />

co<strong>la</strong>boradores <strong>de</strong>scubrieran que <strong>la</strong> CPT-l es inhibida<br />

por malonil-CoA dicha inhibición (que permite<br />

el establecimiento <strong>de</strong> un control coordinado <strong>de</strong><br />

síntesis y oxidación <strong>de</strong> ácidos grasos) ha venido<br />

siendo consi<strong>de</strong>rada como el principal mecanismo<br />

<strong>de</strong> regu<strong>la</strong>ción <strong>de</strong> esta enzima (McGarry y Erowra,<br />

1997). Sin embargo, a lo <strong>la</strong>rgo <strong>de</strong> los últimos años<br />

se ha puesto <strong>de</strong> manifiesto que <strong>la</strong> regu<strong>la</strong>ción <strong>de</strong> <strong>la</strong><br />

CPT-l también <strong>de</strong>pen<strong>de</strong> <strong>de</strong> un mecanismo in<strong>de</strong>pendiente<br />

<strong>de</strong> malonil-CoA (Guzmán y Geelen,<br />

1993; <strong>la</strong> presente memoria), que se basaría en <strong>la</strong><br />

existencia <strong>de</strong> interacciones entre ciertos componentes<br />

<strong>de</strong>l citoesqueleto (probablemente los fi<strong>la</strong>mentos<br />

intermedios) y <strong>la</strong>s mitocondrias. Así, el<br />

control <strong>de</strong> <strong>la</strong> actividad GPT-I podría ejercerse a<br />

tres niveles (Esquema 1):<br />

i) Actividad <strong>de</strong> <strong>la</strong> ACO/niveles <strong>de</strong> malorail-<br />

CoA.<br />

u) Interacciones citoesqaeleto-mitocondrias.<br />

iii) Localización subcelu<strong>la</strong>r <strong>de</strong> <strong>la</strong> ACC.<br />

1. Regu<strong>la</strong>ción a corto p<strong>la</strong>zo <strong>de</strong> <strong>la</strong> CPT-I<br />

z) Actividad ACC.<br />

El primer punto <strong>de</strong> control <strong>de</strong> <strong>la</strong> actividad CPT-l<br />

seria el <strong>de</strong> los niveles <strong>de</strong> malonil-CoA, que vienen<br />

Esquema 1<br />

~ccAc 6-. 2<br />

Estimu<strong>la</strong>ción <strong>de</strong> <strong>la</strong> CPT-I<br />

e<br />

¾ e CPT-I<br />

(mas activa)<br />

<strong>de</strong>terminados por <strong>la</strong> actividad <strong>de</strong> <strong>la</strong> ACG. El control<br />

<strong>de</strong> esta actividad enzimática en hígado <strong>de</strong>pen<strong>de</strong><br />

<strong>de</strong> diferentes factores, pero fundamentalmente<br />

<strong>de</strong>l grado <strong>de</strong> fosfori<strong>la</strong>ción <strong>de</strong><strong>la</strong> enzima y por tanto<br />

<strong>de</strong> <strong>la</strong> actividad <strong>de</strong> <strong>la</strong>s quinasas implicadas en su<br />

fosfori<strong>la</strong>ción (Hillgartner el aL, 1995).<br />

~0Interacciones citoesquelet¿-mitocondrias.<br />

En el interior <strong>de</strong> <strong>la</strong> célu<strong>la</strong> podrían establecerse una<br />

serie <strong>de</strong> interacciones entre diferentes componentes<br />

<strong>de</strong>l citoesqueleto (probablemente <strong>la</strong>s citoqueratinas)<br />

y <strong>la</strong> CPT-l (o alguna otra proteína que pudiera<br />

estar implicada en regu<strong>la</strong>ría). Estas interacciones<br />

podrían constituir un mecanismo rega<strong>la</strong>dor <strong>de</strong> <strong>la</strong><br />

CPT-I, <strong>de</strong> tal manera que su ruptura produjese un<br />

aumento <strong>de</strong> <strong>la</strong> actividad <strong>de</strong> <strong>la</strong> enzima (Capítulo<br />

2.2). -<br />

La naturaleza <strong>de</strong> estas interacciones aún<br />

no ha sido <strong>de</strong>terminada, pero el hecho <strong>de</strong> que <strong>la</strong><br />

CPT-l pueda adoptar diferentes conformaciones en<br />

función <strong>de</strong> <strong>la</strong> concentración <strong>de</strong> malonil-OoA a <strong>la</strong><br />

que ha sido expuesta (Zammit, 1994), junto a que<br />

<strong>la</strong> mayor parte <strong>de</strong> <strong>la</strong> enzima (incluyendo los dominios<br />

catalítico y regu<strong>la</strong>dor parecen encontrarse<br />

localizados hacia <strong>la</strong> cara citoplásmica <strong>de</strong> <strong>la</strong> membrana<br />

mitocoradrial extema (Fraser et aL, 1997),<br />

posibilitaría <strong>la</strong> existencia <strong>de</strong> contactos con proíef-<br />

(menos activa),<br />

Esquema 1. Mo<strong>de</strong>lo <strong>de</strong> regu<strong>la</strong>ción acorto p<strong>la</strong>zo <strong>de</strong> <strong>la</strong> actividad CPT-I. La actividad CPT-l podría verse regu<strong>la</strong>da<br />

acorto p<strong>la</strong>zo a tres niveles: 1) Actividad ACC/niveles <strong>de</strong> malonil-CoA. 2) Jnteracciones entre citoesqueleto y mitocondrias.<br />

3) Localización subcelu<strong>la</strong>r <strong>de</strong> <strong>la</strong> ACC. Estos tres niveles <strong>de</strong> regu<strong>la</strong>ción podrían actuar <strong>de</strong> manera coordinada para<br />

<strong>de</strong>terminar <strong>la</strong> actividad <strong>de</strong> <strong>la</strong> CPT-l en <strong>la</strong>s diferentes situaciones fisiopatológicas. Abreviaturas: ACC, acetil-CoA carboxi<strong>la</strong>sa;<br />

CPT-l, carnitina palmitoiltransferasa 1; M-CoA, malonil-CoA


Canitulo 3<br />

nas localizadas fuera <strong>de</strong> <strong>la</strong> mitocondria (como por<br />

ejemplo <strong>la</strong>s citaqueratinas) que pudieran favorecer<br />

<strong>la</strong> conformación menos activa (tensa) <strong>de</strong> <strong>la</strong> enzima.<br />

En este contexto resulta interesante <strong>la</strong> sugerencia<br />

<strong>de</strong> que una proteína <strong>de</strong> <strong>la</strong> membrana externa mitocondrial<br />

(bcl-2) interacciona con <strong>la</strong> CPT-l en lo<br />

que podria constituir también una forma <strong>de</strong> regu<strong>la</strong>ción<br />

<strong>de</strong> <strong>la</strong> enzima (Paumen el aL, 1997b). La regu<strong>la</strong>ción<br />

<strong>de</strong> esas interacciones podría <strong>de</strong>pen<strong>de</strong>r <strong>de</strong><br />

<strong>la</strong> actividad <strong>de</strong> una serie <strong>de</strong> proteína quinasas que<br />

contro<strong>la</strong>n el grado <strong>de</strong> organización <strong>de</strong>l citoesqaeleto.<br />

iii) Localización subeelu<strong>la</strong>r <strong>de</strong> IaACC.<br />

Se ha propuesto que <strong>la</strong> isoenzima <strong>de</strong> 280<br />

KDa <strong>de</strong> <strong>la</strong> ACC podría tener una localización subcelu<strong>la</strong>r<br />

próxima a <strong>la</strong> CPT-l, asociándose a <strong>la</strong> propia<br />

membrana mitocondrial externa (Ha el aL, 1996).<br />

En <strong>la</strong> memoria se sugiere que una fracción <strong>de</strong> <strong>la</strong><br />

ACC hepatocelu<strong>la</strong>r se encontraría asociada al citoesqueleto<br />

(Capítulo 2.3.3). Así, <strong>la</strong> concentración<br />

efectiva <strong>de</strong> malonil-CoA para inhibir a <strong>la</strong> CPT-l<br />

podría ser mucho mayor cuando <strong>la</strong> ACO se encontrase<br />

en <strong>la</strong>s proximida<strong>de</strong>s <strong>de</strong> <strong>la</strong> enzima. Los mismos<br />

factores que están implicados en el control <strong>de</strong>l<br />

grado <strong>de</strong> polimerización <strong>de</strong>l citoesqueleto podrían<br />

contro<strong>la</strong>r el porcentaje <strong>de</strong> ACC asociada al mismo,<br />

y con ello <strong>la</strong> proximidad <strong>de</strong> ésta a <strong>la</strong> CPT-I.<br />

2. Principales proteína quinasas implicadas en<br />

el control a corto p<strong>la</strong>zo <strong>de</strong> <strong>la</strong> CPT-I<br />

Puesto que el control <strong>de</strong> esas tres vías <strong>de</strong> regu<strong>la</strong>ción<br />

<strong>de</strong> <strong>la</strong> CPT-l <strong>de</strong>pen<strong>de</strong> en gran parte <strong>de</strong>l grado<br />

<strong>de</strong> fosfori<strong>la</strong>ción <strong>de</strong> <strong>la</strong>s diferentes proteínas implicadas,<br />

el control <strong>de</strong> <strong>la</strong> actividad <strong>de</strong> ciertas quinasas<br />

es el que <strong>de</strong>termina <strong>la</strong> actividad a corto p<strong>la</strong>zo <strong>de</strong> <strong>la</strong><br />

CPT-l.<br />

2 ¡ /CMPKIL<br />

¡) Ca<br />

La activación <strong>de</strong> esta quinasa que induce el ácido<br />

okadaico conlíeva: 1) <strong>la</strong> fosfori<strong>la</strong>ción y ruptura <strong>de</strong><br />

los fi<strong>la</strong>mentos intermedios (CapItulo 2.2; Toivo<strong>la</strong><br />

el aL, 1997) y 2) <strong>la</strong> fosfori<strong>la</strong>ción e inactivación <strong>de</strong><br />

<strong>la</strong> ACC (Haystead el aL, 1988). Ambos procesos<br />

traen consigo una fuerte estimu<strong>la</strong>ción <strong>de</strong> <strong>la</strong> actividad<br />

CPT-l. Sin embargo, <strong>la</strong> incubación con diferentes<br />

compuestos que producen un incremento en<br />

<strong>la</strong> concentración <strong>de</strong> Oa2~ intracelu<strong>la</strong>r no modifica<br />

<strong>la</strong> actividad <strong>de</strong> <strong>la</strong> CPT-l, lo que -como ya se ha<br />

discutido anteriormente (CapItulo 2.2)- podría ser<br />

el reflejo <strong>de</strong> un diferente patrón <strong>de</strong> activación <strong>de</strong> <strong>la</strong><br />

Ca2~/CMPKll <strong>de</strong> hígado con respecto a <strong>la</strong> <strong>de</strong> otros<br />

tejidos más estudiados como el cerebro. Por ello<br />

nos p<strong>la</strong>nteamos si el papel fisiológico que <strong>de</strong>sempeña<br />

esta quinasa en <strong>la</strong> regu<strong>la</strong>ción <strong>de</strong> <strong>la</strong> CPT-I<br />

podría <strong>de</strong>pen<strong>de</strong>r no tanto <strong>de</strong> un aumento transitorio<br />

<strong>de</strong> <strong>la</strong> concentración <strong>de</strong> Ca2 intracelu<strong>la</strong>r como <strong>de</strong><br />

Discusión General y Conclusiones<br />

otros factores que hicieran que <strong>la</strong> Ca2~/CMPKll se<br />

viera estimu<strong>la</strong>da <strong>de</strong> una forma más prolongada.<br />

Puesto que el ácido okadaico es un agente<br />

promotor <strong>de</strong> tumores (Wera y Hemmings, 1995) y<br />

en célu<strong>la</strong>s <strong>de</strong> hepatoma tieñe lugar <strong>la</strong> sobreexpresión<br />

<strong>de</strong> diferentes proteína’ quinasas (Yang el al.,<br />

1996; Tanaka y Wands, 1996), el nivel <strong>de</strong> activación<br />

<strong>de</strong> <strong>la</strong> Ca2~/CMPKll que induce el ácido okadaico<br />

podría ser más parecido al que pue<strong>de</strong> encontrarse<br />

en el interior <strong>de</strong> <strong>la</strong>s célu<strong>la</strong>s transformadas<br />

que al <strong>de</strong>bido a una activación mediada por un<br />

incremento <strong>de</strong> <strong>la</strong> concentración <strong>de</strong> Ca2~ intracelu<strong>la</strong>r.<br />

Dado que una <strong>de</strong> <strong>la</strong>s características <strong>de</strong> dichas<br />

célu<strong>la</strong>s transformadas es qúe se producen gran<strong>de</strong>s<br />

alteraciones en <strong>la</strong> morfología celu<strong>la</strong>r mediadas por<br />

una <strong>de</strong>sorganización <strong>de</strong>l citoesqueleto, los estudios<br />

llevados a cabo en célu<strong>la</strong>s ‘<strong>de</strong> hepatoma (Capitulo<br />

2.3.1) son<strong>de</strong> gran interés, Estos datos indican que,<br />

en célu<strong>la</strong>s Fao y HepG2 el ‘ácido okadaico no modu<strong>la</strong><br />

<strong>la</strong> actividad <strong>de</strong> CPT-I, que estaría aumentada<br />

con respecto a <strong>la</strong> <strong>de</strong> hepatocitos. La posibilidad <strong>de</strong><br />

que esa falta <strong>de</strong> respuesta sea <strong>de</strong>bida a una pérdida<br />

(que podría ser constitutiva en esas célu<strong>la</strong>s) <strong>de</strong> <strong>la</strong>s<br />

interacciones con el citoesqueleta aparece como<br />

atractiva, puesto que estaria~ en consonancia con los<br />

datos anteriormente expuestos.<br />

Por otra parte, como ya se ha mencionado,<br />

recientemente se ha establecido una re<strong>la</strong>ción entre<br />

actividad CPT-I y apoptosis (Paumen el aL,<br />

1997a), <strong>de</strong> tal manera que una inhibición <strong>de</strong> <strong>la</strong><br />

CPT-l aumentaría <strong>la</strong> disponibilidad <strong>de</strong> palmitoil-<br />

CoApara <strong>la</strong> síntesis <strong>de</strong> cerámidas que actúan como<br />

mediadores en dichos procesos <strong>de</strong> apoptosis<br />

(Hanraun, 1996). Es interesante que: 1) <strong>la</strong>s célu<strong>la</strong>s<br />

<strong>de</strong> hepatoma cuya actividad GPT-l es más alta que<br />

<strong>la</strong> <strong>de</strong> los hepatocitos normales (Gapítulo 2.3.1), son<br />

resistentes a <strong>la</strong> inducción <strong>de</strong> apoptosis por ácido<br />

palmítico (Paumen el al, 1997a); 2) parte <strong>de</strong> los<br />

efectos <strong>de</strong> <strong>la</strong>s ceramidas están mediados por una<br />

proteína fosfatasa activada’ por ceramida (CAPE’)<br />

que es inhibible por ácido okadaico (Hanraun,<br />

1996); 3) bcl-2, una proteína que <strong>de</strong>sempeña un<br />

papel importante en <strong>la</strong> regu<strong>la</strong>ción <strong>de</strong> <strong>la</strong> apoptosis<br />

interacciona con <strong>la</strong> CPT-l en <strong>la</strong> membrana mitocondrial<br />

externa (Paumen el aL, 1997b). Todos<br />

estos datos consi<strong>de</strong>rados conjuntamente apuntan a<br />

que <strong>la</strong> regu<strong>la</strong>ción <strong>de</strong> <strong>la</strong> actividad GPT-I podría ser<br />

importante en el control <strong>de</strong> los procesos apoptóticos.<br />

Era suma, <strong>la</strong> activación <strong>de</strong> <strong>la</strong> CPT-l observada<br />

era célu<strong>la</strong>s <strong>de</strong> hepatoma podría ser una forma <strong>de</strong><br />

favorecer que <strong>la</strong> célu<strong>la</strong> no ~ntrase en apoptosis. En<br />

ese sentido resulta muy atractivo consi<strong>de</strong>rar que <strong>la</strong><br />

<strong>de</strong>sorganización <strong>de</strong>l citoesqueleto (característica <strong>de</strong><br />

<strong>la</strong>s célu<strong>la</strong>s tumorales y que ‘ha sido <strong>de</strong>scrita en este<br />

trabajo como un mecanismo <strong>de</strong> regu<strong>la</strong>ción <strong>de</strong> <strong>la</strong><br />

GPT-l ) pudiera contribuir a dicho bloqueo <strong>de</strong> <strong>la</strong><br />

apoptosis (Esquema 2).


Cacílulo 3<br />

Esquema 2<br />

>1.<br />

APOPTOSIS<br />

AciI-CoA<br />

OA Célu<strong>la</strong>s transformadas<br />

Discusión General y Conclusiones<br />

Apoptosis >4 Cer<br />

1$-<br />

mitocondi<br />

•..r~ A1CA<br />

¡<br />

r ¡<br />

a 1<br />

Esquema 2. La pérdida <strong>de</strong> <strong>la</strong>s interacciones con el citoesqueleto podría contribuir a <strong>la</strong> inhibición <strong>de</strong> <strong>la</strong> apoptosís en<br />

célu<strong>la</strong>s <strong>de</strong> hepatoma. La actividad OPT-l podría estar aumentada en célu<strong>la</strong>s <strong>de</strong> hepatoma <strong>de</strong>bido a <strong>la</strong> pérdida <strong>de</strong> <strong>de</strong> <strong>la</strong>s<br />

interacciones con proteínas <strong>de</strong>l citoesqueleto. Este aumento <strong>de</strong> actividad podría favorecer <strong>la</strong> metabolización <strong>de</strong>l palmitoil-CoA<br />

(precursor <strong>de</strong> <strong>la</strong> síntesis <strong>de</strong> ceramidas) contribuyendo así al bloqueo <strong>de</strong> <strong>la</strong> apoptosis~ Abreviaturas: Cer, ceramida;<br />

CKJI, Ca<br />

2t’calmodulina proteína quinasa II; (JA, ácido okadaico.<br />

W AMPK<br />

Diferentes datos aportados en esta memoria apuntan<br />

a que esta qumasa participaría en <strong>la</strong> regu<strong>la</strong>ción<br />

<strong>de</strong> <strong>la</strong> actividad CpT-l a través <strong>de</strong> los mecanismos<br />

<strong>de</strong>pendiente e in<strong>de</strong>pendiente <strong>de</strong> malonil-CoA. Así,<br />

el AICAR, un activador <strong>de</strong> <strong>la</strong> AMPK (Vincent el<br />

al., 1996) estimu<strong>la</strong> <strong>la</strong> GPT-l (Capítulo 2.3.2). En<br />

hígado, <strong>la</strong> AMPK es <strong>la</strong> principal quinasa responsable<br />

<strong>de</strong> <strong>la</strong> fosfori<strong>la</strong>ción e inactivación <strong>de</strong> <strong>la</strong> ACC,<br />

con lo que los niveles <strong>de</strong> malonil-CoA <strong>de</strong>pen<strong>de</strong>n<br />

en gran medida <strong>de</strong> <strong>la</strong> actividad <strong>de</strong> <strong>la</strong> AMPK<br />

(Hardie y Carlirag, 1997). Sin embargo, parte <strong>de</strong>l<br />

efecto activador <strong>de</strong>l AICAR no es <strong>de</strong>bido al <strong>de</strong>scenso<br />

en los niveles <strong>de</strong> malonil-CoA y pue<strong>de</strong> ser<br />

prevenido por el taxol. Recientemente, hemos<br />

observado que <strong>la</strong> adición <strong>de</strong> AMPK a célu<strong>la</strong>s permeabilizadas<br />

produce un fuerte incremento en <strong>la</strong><br />

actividad CPT-l (datos no publicados), lo que<br />

sugiere que esta quinasa (al igual que <strong>la</strong><br />

Ca2~/CMPKll) podría afectar al estado <strong>de</strong> polimerización<br />

<strong>de</strong>l citoesqueleto y estimu<strong>la</strong>r así a <strong>la</strong> GPT-<br />

1. Aunque por lo que sabemos aún no se ha <strong>de</strong>scrito<br />

que <strong>la</strong> AMPK fosforile a elementos <strong>de</strong>l citoesqueleto,<br />

esta hipótesis resulta muy atractiva<br />

pues implicaría que <strong>la</strong> principal quinasa encargada<br />

<strong>de</strong> <strong>la</strong> regu<strong>la</strong>ción <strong>de</strong>l metabolismo lipidico podría<br />

establecer un control coordinado <strong>de</strong> <strong>la</strong> síntesis y<br />

oxidación <strong>de</strong> ácidos grasos incidiendo en los tres<br />

mecanismos <strong>de</strong>scritos al comienzo <strong>de</strong> <strong>la</strong> presente<br />

discusión: actividad AGO/niveles <strong>de</strong> malonil-CoA,<br />

interacciones citoesqueletó-mitocondrias y por<br />

tanto localización subeelu<strong>la</strong>r <strong>de</strong> <strong>la</strong> ACO (Esquema<br />

3).<br />

3. Efectos <strong>de</strong> otros mediadores<br />

Numerosos mediadores extracelu<strong>la</strong>res<br />

ejercen sus efectos sobre <strong>la</strong> GPT-l y muchos <strong>de</strong><br />

ellos lo hacen a través <strong>de</strong> un mecanismo in<strong>de</strong>pendiente<br />

<strong>de</strong> malonil-CoA (Guzmán y Geelen, 1993;<br />

<strong>la</strong> presente memoria). El principal factor regu<strong>la</strong>dor<br />

<strong>de</strong>l metabolismo <strong>de</strong> ácidos! grasos es el cociente<br />

insulina/glucagón (Zammit, 1996). Sin embargo el<br />

mecanismo a través <strong>de</strong>l cual <strong>la</strong>s variaciones en<br />

dicho cociente pue<strong>de</strong>n inducir <strong>la</strong>s modificaciones<br />

en <strong>la</strong> actividad CPT-l no ha sido completamente<br />

ac<strong>la</strong>rado. La incubación <strong>de</strong> ‘hepatocitos con glucagón,<br />

forskolina o db-cAMP produce una activación<br />

<strong>de</strong> <strong>la</strong> CPT-l (Guzmán y Geelen, 1993), pero <strong>la</strong><br />

adición <strong>de</strong> PICA a célu<strong>la</strong>s permeabilizadas no produce<br />

ningún cambio en dicha actividad enzimática<br />

(CapItulo 2.2.2). A<strong>de</strong>más, esta quinasa no parece


Capítulo 3<br />

Cítoesqueleto<br />

Estados cetóticos<br />

(l~1ipogluce,raia, 4lnsulina?Olucagón, ¿7)<br />

—st<br />

OA<br />

X~PK<br />

AMP<br />

---.9<br />

A<br />

9<br />

AG<br />

Mitocondria<br />

Discusión General y Conclusiones<br />

Esquema 3<br />

¡ GG<br />

2~/CMPKII y <strong>la</strong> AMPK son <strong>la</strong>s dos primeipales proteínas quinasas responsables <strong>de</strong>l control <strong>de</strong><br />

Esquema <strong>la</strong> actividad 3. La CPT-1. Ca La fosfori<strong>la</strong>ción y <strong>de</strong>sorganización <strong>de</strong> los fi<strong>la</strong>mentos intermedios podría ser llevada a cabo por <strong>la</strong><br />

Ca2t’CMPKII y quizás también por <strong>la</strong> AMPK. Abreviaturas: ACC, acetil-CoA carboxi<strong>la</strong>sa; AMPK, proteína quinasa<br />

activada por AMP; CKJI, Ca2~/calmodulina proteína quinasa II; CC, cuerpos cetónicos; CPT-l, carnitina palmitoilrransferasa<br />

1; M-CoA, malonil-Co; (JA, ácido okadaico.<br />

ser responsable <strong>de</strong> <strong>la</strong> fosfori<strong>la</strong>ción in viyo <strong>de</strong> <strong>la</strong>s<br />

citoqueratinas (Toivo<strong>la</strong> el aL, 1997) por lo que su<br />

implicación en <strong>la</strong> regu<strong>la</strong>ción <strong>de</strong> <strong>la</strong>s interacciones<br />

entre citoesqueleto y mitocondrias parece poco<br />

probable. Por otra parte aunque se ha <strong>de</strong>scrito que<br />

<strong>la</strong> PKA pue<strong>de</strong> fosfori<strong>la</strong>r a <strong>la</strong> ACG (Hillgartner el<br />

aL, 1995) y que los niveles <strong>de</strong> malonil-GoA disminuyen<br />

tras <strong>la</strong> incubación <strong>de</strong> los hepatocitos con<br />

glucagón (Guzmán y Geelen, 1993), actualmente<br />

se consi<strong>de</strong>ra que <strong>la</strong> principal proteína quinasa<br />

responsable <strong>de</strong> <strong>la</strong> inactivacióra <strong>de</strong> <strong>la</strong> ACO era hígado<br />

es <strong>la</strong> AMPK (Hardie y Carling, 1997); cuya<br />

activación no se ha podido <strong>de</strong>mostrar aún que<br />

<strong>de</strong>penda <strong>de</strong> <strong>la</strong> acción <strong>de</strong> mediadores extracelu<strong>la</strong>res.<br />

Tanto <strong>la</strong> insulina (Guzmán y Geelen,<br />

1993) como los agentes que movilizan Ca2~<br />

(Capítulo 2.1.1) o el hinchamiento celu<strong>la</strong>r<br />

(Capítulo 2.1.2) inhiben a <strong>la</strong> CPT-l utilizando un<br />

mecanismo <strong>de</strong>sconocido. Si bien en todos esos<br />

casos se ha <strong>de</strong>scrito <strong>la</strong> activación <strong>de</strong> proteína qui-<br />

- nasas o fosfatasas, <strong>la</strong>s posibles dianas <strong>de</strong> su acción<br />

no han sido <strong>de</strong>terminadas . Por ejemplo, el ATP<br />

extracelu<strong>la</strong>r parece mediar sus efectos inhibitorios<br />

sobre <strong>la</strong> CPT-l a través <strong>de</strong> <strong>la</strong> activación <strong>de</strong> <strong>la</strong> PKC<br />

(capItulo 2.1.1). Sin embargo, <strong>la</strong> adición <strong>de</strong> esta<br />

quinasa a célu<strong>la</strong>s permeabitizadas no tiene ningún<br />

efecto sobre <strong>la</strong> actividad GPT-l (Capitulo 2.2.3), y<br />

aunque se ha <strong>de</strong>scrito que <strong>la</strong> PKC pue<strong>de</strong> estar<br />

implicada en <strong>la</strong> fosfori<strong>la</strong>ción <strong>de</strong> citoqueratinas, no<br />

parece afectar a <strong>la</strong> fosfori<strong>la</strong>ción <strong>de</strong> los fi<strong>la</strong>mentos<br />

intermedios (Gadrin el aL, 1992).<br />

Así., aunque permanece abierta <strong>la</strong> posibilidad<br />

<strong>de</strong> que otras proteína quinasas que se vean<br />

activadas en respuesta a <strong>la</strong>s diferentes situaciones<br />

fisiopatológicas que regu<strong>la</strong>n <strong>la</strong> oxidación <strong>de</strong> ácidos<br />

grasos y <strong>la</strong> cetogénesis puedan fosfori<strong>la</strong>r a diferentes<br />

elementos <strong>de</strong>l citoesqueleto y modu<strong>la</strong>r así <strong>la</strong><br />

actividad <strong>de</strong> <strong>la</strong> GPT-l, hasta el momento solo hay<br />

pruebas <strong>de</strong> <strong>la</strong> implicación <strong>de</strong> <strong>la</strong> Ca2~/CMPK11 en <strong>la</strong><br />

fosfori<strong>la</strong>ción y reorganización <strong>de</strong>l citoesqueleto lo<br />

que junto a <strong>la</strong> modu<strong>la</strong>ción ¿le los niveles <strong>de</strong> malonil-CoA,<br />

podría mediar <strong>la</strong> activación <strong>de</strong> <strong>la</strong> CPT-l.<br />

Bibliografía<br />

Citop<strong>la</strong>sma<br />

Cadrin, M., McFar<strong>la</strong>ne-An<strong>de</strong>rson, N., Aashein,, L.i-1., Kawahara,<br />

H., Franks, Di., Marceau, NS’ French, SM. (1992) Cdl.<br />

Signal. 4, 715-722


Canítulo 3 Discusión Géneral y Conclusiones<br />

Fraser, F.,Corstorph¡ne, C.C. y Zammít, VA. (1997) Biochem.<br />

J. 323,711-717<br />

Cuzn,án, M. y Ce<strong>de</strong>n, MJ.l-1. (1993) Biochim. Biphys. Acta<br />

1167,227-241<br />

Ida, J., Lee, i.K., Kim, K.S., W¡tters, L.A. y Kim, K.H. (1996)<br />

Proc, Natí. Acad. Sci. USA. 93, 11466-11470<br />

Idannun, Y. (1996) Selence 274, 1855-1859<br />

Hardie, D.C. y Carling, D. (1997> Eur. i. Biocbem. 246, 259-<br />

273<br />

I-<strong>la</strong>ystead, TAJ., Campbell, 0.0. y Hardie, D.C. (1988) Bur. Y<br />

Biochem ¡75, 347-354<br />

Hilígartoer, VB., Sa<strong>la</strong>d, L.M. y Goodridge. A.G. (1995) Physiol<br />

Rey. 75, 47-76<br />

Meúarry, ID. y Brown, NF. (1997) Eur. ]. Biochen,. 244, 1-<br />

14<br />

Paun,en, M,B., Ishida, Y., Muramatsu, M., Yamamoto, M.y<br />

Honjo, Y. (1997a) 1. Biol. Chem. 272, 3324-3329<br />

Paumen, MB., Ishída, Y., Han, 1-1., Muramatsu, M., Eguchi,<br />

Y., Tsujin~oto, Y.y Honjo, T. (1997b) Biochem. Bíophys. Res.<br />

Con,m. 231, 523-525<br />

Tanaka, S.y Warads, J.R. (1996) Cancer Res56, 3391-3394<br />

Toivo<strong>la</strong>, DM., Goldman, RO., Garrod, DR. y Eríksson, JE.<br />

(1997) J. Ccl!. Scí. 110, 23-33<br />

Vincent, MF., Bontemos, F.y van <strong>de</strong>r Berghe, 0. (¡996)<br />

Biochen, Pharmacol. 52, 999-1006<br />

Weara, 5. y Hemmings, RA. (1995) Biochem. J. 311, ¡7-29<br />

Yang, S.D., Yu, 1.5., Yang, C.C., Lee, TT., Ni, Mli., Kuan,<br />

C.Y. y Chen, liC. (1996)1, Cdl. Biochein. 61, 238-245<br />

Zammít, VA. (1994) Diabetes Rey. 2, 132-155<br />

Zamramit, VA. (1996) Biochen,. J. 314, 1-14

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!