03.08.2013 Views

Aplicación de la biología molecular en alergia a alimentos

Aplicación de la biología molecular en alergia a alimentos

Aplicación de la biología molecular en alergia a alimentos

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Alergol Inmunol Clin 2001;16 (Extraordinario Núm. 2):14-36<br />

Mo<strong>de</strong>rador: D. Barber<br />

Hernán<strong>de</strong>z<br />

ALK-Abelló. Madrid<br />

R. Sánchez-Monge,<br />

A. Díaz-Perales,<br />

G. García-Casado,<br />

G. Salcedo<br />

Unidad <strong>de</strong> Bioquímica.<br />

Departam<strong>en</strong>to <strong>de</strong><br />

Biotecnología. E.T.S. <strong>de</strong><br />

Ing<strong>en</strong>ieros Agrónomos.<br />

Universidad Politécnica.<br />

Madrid.<br />

14<br />

SESIÓN PLENARIA<br />

APLICACIÓN DE LA BIOLOGÍA<br />

MOLECULAR EN ALERGIA<br />

A ALIMENTOS<br />

Proteínas <strong>de</strong> <strong>de</strong>f<strong>en</strong>sa y <strong>de</strong> reserva<br />

como alerg<strong>en</strong>os <strong>de</strong> alim<strong>en</strong>tos vegetales<br />

CARACTERIZACIÓN DE ALERGENOS:<br />

ASPECTOS BÁSICOS Y APLICADOS<br />

La cuestión c<strong>en</strong>tral <strong>en</strong> <strong>la</strong>s reacciones <strong>de</strong> hipers<strong>en</strong>sibilidad mediadas por IgE<br />

–¿por qué una proteína es alergénica?–, está lejos <strong>de</strong> ser contestada. La respuesta<br />

posiblem<strong>en</strong>te pasa por <strong>la</strong> purificación, clonación y expresión heteróloga <strong>de</strong> <strong>la</strong>s proteínas<br />

alergénicas.<br />

La caracterización <strong>de</strong> alerg<strong>en</strong>os, que incluye <strong>la</strong> <strong>de</strong>terminación <strong>de</strong> su secu<strong>en</strong>cia<br />

<strong>de</strong> aminoácidos o estructura primaria, su estructura tridim<strong>en</strong>sional y <strong>la</strong> posible exist<strong>en</strong>cia<br />

<strong>de</strong> modificaciones postraduccionales (como glicosi<strong>la</strong>ciones), así como el estudio<br />

<strong>de</strong> su estabilidad térmica y digestiva y el mapeo <strong>de</strong> epítopos (B o T) secu<strong>en</strong>ciales<br />

o conformacionales, permitirá esc<strong>la</strong>recer <strong>la</strong>s características que <strong>de</strong>terminan <strong>la</strong><br />

capacidad <strong>de</strong> una proteína para provocar <strong>la</strong> respuesta inmune.<br />

La expresión <strong>de</strong>l correspondi<strong>en</strong>te clon <strong>en</strong> sistemas heterólogos, normalm<strong>en</strong>te<br />

bacterias o levaduras, permite obt<strong>en</strong>er el alerg<strong>en</strong>o recombinante <strong>en</strong> cantida<strong>de</strong>s<br />

apreciables. Por mutagénesis dirigida se pue<strong>de</strong>n localizar los aminoácidos<br />

es<strong>en</strong>ciales para su alerg<strong>en</strong>icidad y obt<strong>en</strong>er formas hipoalergénicas <strong>de</strong> <strong>la</strong> proteína<br />

para su posible utilización <strong>en</strong> inmunoterapia o <strong>en</strong> <strong>la</strong> producción <strong>de</strong> alim<strong>en</strong>tos no<br />

alergénicos.<br />

A<strong>de</strong>más, y ésta es posiblem<strong>en</strong>te su aplicación más inmediata, <strong>la</strong> disponibilidad<br />

<strong>de</strong> alerg<strong>en</strong>os vegetales purificados, nativos o recombinantes, pue<strong>de</strong> ser <strong>de</strong> utilidad<br />

para el diagnóstico, tanto in vitro como in vivo, al permitir <strong>la</strong> estandarización <strong>de</strong>l<br />

material utilizado.<br />

PROTEÍNAS DE DEFENSA Y DE RESERVA<br />

COMO ALERGENOS VEGETALES<br />

La caracterización <strong>de</strong> alerg<strong>en</strong>os vegetales y su inclusión <strong>en</strong> familias <strong>de</strong> proteínas<br />

ampliam<strong>en</strong>te distribuidas <strong>en</strong> el reino vegetal permite pre<strong>de</strong>cir reactivida<strong>de</strong>s<br />

cruzadas <strong>en</strong>tre distintos alim<strong>en</strong>tos, o <strong>en</strong>tre éstos y pól<strong>en</strong>es u otro tipo <strong>de</strong>


Tab<strong>la</strong> I. Familias <strong>de</strong> proteínas <strong>de</strong> <strong>de</strong>f<strong>en</strong>sa <strong>de</strong> p<strong>la</strong>ntas con<br />

miembros i<strong>de</strong>ntificados como alerg<strong>en</strong>os <strong>de</strong> alim<strong>en</strong>tos<br />

Familia/Especie Alerg<strong>en</strong>o<br />

Homólogos Bet v 1 (PR-10)<br />

Manzana Mal d 1<br />

Pera Pyr c 1<br />

Albaricoque Pru ar 1<br />

Cereza Pru av 1<br />

Avel<strong>la</strong>na Cor a 1<br />

Apio Api g 1<br />

Zanahoria Dau c 1<br />

Proteínas <strong>de</strong> transfer<strong>en</strong>cia <strong>de</strong> Lípidos (LTP) (PR-14)<br />

Manzana Mal d 3<br />

Melocotón Pru p 3<br />

Albaricoque Pru ar 3<br />

Cereza Pru av 3<br />

Cirue<strong>la</strong> Pru d 3<br />

Maíz Zea m 14<br />

Cebada (cerveza)<br />

Nuez Jug r 3<br />

Quitinasas <strong>de</strong> c<strong>la</strong>se I (PR- 3)<br />

Aguacate Prs a 1<br />

Castaña Cas s 5<br />

Plátano Mus a 1.1 y Mus a 1.2<br />

Proheveínas (PR-4)<br />

Nabo Bra r 2<br />

Taumatinas (PR-5)<br />

Manzana Mal d 2<br />

Cereza Pru av 2<br />

Pimi<strong>en</strong>ta Cap a 1<br />

Inhibidores <strong>de</strong> α-ami<strong>la</strong>sas/tripsina<br />

Trigo<br />

Cebada Hor v 1<br />

C<strong>en</strong>t<strong>en</strong>o Sec c 1<br />

Arroz RAP<br />

Inhibidores <strong>de</strong> proteasas (Kunitz)<br />

Soja<br />

Patata Solt t 2,3,4<br />

Peroxidasas<br />

Trigo<br />

Cebada<br />

Proteínas <strong>de</strong> <strong>de</strong>f<strong>en</strong>sa y <strong>de</strong> reserva como alerg<strong>en</strong>os <strong>de</strong> alim<strong>en</strong>tos vegetales<br />

ag<strong>en</strong>tes ambi<strong>en</strong>tales (látex, etc.). Permite, asimismo, pre<strong>de</strong>cir<br />

<strong>la</strong> alerg<strong>en</strong>icidad <strong>de</strong> nuevos tipos <strong>de</strong> preparados alim<strong>en</strong>ticios<br />

o <strong>de</strong> alim<strong>en</strong>tos proce<strong>de</strong>ntes <strong>de</strong> organismos g<strong>en</strong>éticam<strong>en</strong>te<br />

modificados.<br />

Una mayoría <strong>de</strong> los alerg<strong>en</strong>os vegetales actualm<strong>en</strong>te<br />

caracterizados pue<strong>de</strong>n incluirse <strong>en</strong> familias <strong>de</strong> proteínas<br />

implicadas <strong>en</strong> <strong>la</strong> <strong>de</strong>f<strong>en</strong>sa <strong>de</strong> <strong>la</strong>s p<strong>la</strong>ntas fr<strong>en</strong>te a organismos<br />

predadores o situaciones <strong>de</strong> estrés abiótico (frío, calor,<br />

sequía, salinidad, etc.). A<strong>de</strong>más, varios alerg<strong>en</strong>os son proteínas<br />

<strong>de</strong> reserva <strong>en</strong> semil<strong>la</strong>s u otros órganos (ver Breit<strong>en</strong>e<strong>de</strong>r<br />

y Ebner 2001 1 para una revisión). En <strong>la</strong> Tab<strong>la</strong> I se resum<strong>en</strong><br />

<strong>la</strong>s familias <strong>de</strong> proteínas <strong>de</strong> <strong>de</strong>f<strong>en</strong>sa <strong>de</strong> p<strong>la</strong>ntas <strong>en</strong> <strong>la</strong>s<br />

que se han i<strong>de</strong>ntificado alerg<strong>en</strong>os <strong>de</strong> alim<strong>en</strong>tos vegetales.<br />

La mayoría <strong>de</strong> estas familias están incluidas <strong>en</strong> <strong>la</strong>s <strong>de</strong>nominadas<br />

proteínas PR (pathog<strong>en</strong>esis re<strong>la</strong>ted o proteínas<br />

re<strong>la</strong>cionadas con <strong>la</strong> patogénesis) 2 . En <strong>la</strong> Tab<strong>la</strong> II aparec<strong>en</strong><br />

c<strong>la</strong>sificados por familias los alerg<strong>en</strong>os vegetales que son<br />

proteínas <strong>de</strong> reserva <strong>de</strong> semil<strong>la</strong>s.<br />

Tab<strong>la</strong> II. Familias <strong>de</strong> proteínas <strong>de</strong> reserva <strong>de</strong> p<strong>la</strong>ntas con<br />

miembros i<strong>de</strong>ntificados como alerg<strong>en</strong>os <strong>de</strong> alim<strong>en</strong>tos<br />

Familia/Especie Alerg<strong>en</strong>o<br />

Albúminas 2S<br />

Mostaza amaril<strong>la</strong> Sin a 1<br />

Mostaza ori<strong>en</strong>tal Bra j 1<br />

Colza Bra n 1<br />

Ricino Ric c 1<br />

Sésamo Ses i 1<br />

Nuez Jug r 1<br />

Nuez <strong>de</strong> Brasil Ber e 1<br />

Cacahuete Ara h 2, 6<br />

Girasol SFA8<br />

Vicilinas 7S<br />

Cacahuete Ara h 1<br />

Soja Gly m Bd 28 K y 60K<br />

L<strong>en</strong>teja Lec c 1<br />

Nuez Jug r 2<br />

Leguminas 11S<br />

Cacahuete Ara h 3<br />

Soja<br />

Proiaminas<br />

Trigo<br />

Cebada<br />

C<strong>en</strong>t<strong>en</strong>o<br />

15


R. Sánchez-Monge, et al<br />

Fig. 1. A: Pruebas cutáneas. B: Inmuno<strong>de</strong>tección (dot-blot) realizados<br />

con extractos proteicos <strong>en</strong>riquecidos <strong>en</strong> inhibidores WPI y BPI, y con<br />

proteínas purificadas <strong>de</strong> <strong>la</strong> familia <strong>de</strong> inhibidores <strong>de</strong> α-ami<strong>la</strong>sa/tripsina:<br />

W: trigo; B: cebada; TAI, DAI, y MAI: inhibidores tetráméricos,<br />

diméricos y monoméricos <strong>de</strong> α-ami<strong>la</strong>sa; TI: inhibidor monomérico <strong>de</strong><br />

tripsina. Los compon<strong>en</strong>tes glicosi<strong>la</strong>dos aparec<strong>en</strong> seña<strong>la</strong>dos con asterisco<br />

(*).<br />

A<strong>de</strong>más <strong>de</strong> <strong>la</strong>s proteínas incluidas <strong>en</strong> <strong>la</strong>s tab<strong>la</strong>s, también<br />

son importantes alerg<strong>en</strong>os vegetales <strong>la</strong>s profilinas y<br />

algunas tiol-proteasas. La profilinas son proteínas que un<strong>en</strong><br />

actina y participan <strong>en</strong> <strong>la</strong> organización <strong>de</strong>l citoesqueleto <strong>de</strong><br />

<strong>la</strong>s célu<strong>la</strong>s. Son panalerg<strong>en</strong>os implicados <strong>en</strong> reacciones cruzadas<br />

<strong>en</strong>tre pól<strong>en</strong>es y alim<strong>en</strong>tos. El alerg<strong>en</strong>o mayoritario<br />

<strong>de</strong> kiwi es una tiol-proteasa, actinidina (Act c 1), con<br />

homólogos responsables <strong>de</strong> pot<strong>en</strong>ciales reacciones cruzadas<br />

<strong>en</strong> otras frutas, como papaya, piña o higo. Uno <strong>de</strong> los<br />

principales alerg<strong>en</strong>os <strong>de</strong> <strong>la</strong> soja, Gly m 1 (antes Gly m Bd<br />

30K) es también una tiol- proteasa.<br />

LOS INHIBIDORES DE<br />

α-AMILASA/TRIPSINA DE HARINA DE<br />

CEREALES, IMPLICADOS EN ALERGIAS<br />

OCUPACIONALES, SON TAMBIÉN<br />

RESPONSABLES DE ALERGIAS<br />

ALIMENTARIAS<br />

Se han purificado y caracterizado diversos miembros<br />

<strong>de</strong> <strong>la</strong> familia <strong>de</strong> inhibidores <strong>de</strong> α-ami<strong>la</strong>sa/tripsina <strong>de</strong><br />

16<br />

trigo, cebada y c<strong>en</strong>t<strong>en</strong>o, y <strong>de</strong>mostrado su papel como<br />

alerg<strong>en</strong>os principales <strong>en</strong> <strong>la</strong> <strong>alergia</strong> ocupacional más<br />

importante asociada a <strong>la</strong> manipu<strong>la</strong>ción <strong>de</strong> harinas, <strong>de</strong>nominada<br />

“asma <strong>de</strong>l pana<strong>de</strong>ro” 3-6 . La mayoría <strong>de</strong> los miembros<br />

<strong>de</strong> <strong>la</strong> familia son reactivos, tanto in vitro como in<br />

vivo. Sin embargo, su capacidad <strong>de</strong> ligar IgE varía sustancialm<strong>en</strong>te<br />

(Figura 1). Son más reactivos los miembros<br />

que están glicosi<strong>la</strong>dos lo que ha permitido estudiar el<br />

papel <strong>de</strong> los N-oligosacáridos complejos <strong>de</strong> p<strong>la</strong>ntas <strong>en</strong> <strong>la</strong><br />

capacidad <strong>de</strong> unión <strong>de</strong> IgE, particu<strong>la</strong>rm<strong>en</strong>te el <strong>de</strong> los residuos<br />

<strong>de</strong> xilosa y fucosa, así como su implicación <strong>en</strong> reacciones<br />

cruzadas con glicoproteínas no re<strong>la</strong>cionadas<br />

secu<strong>en</strong>cialm<strong>en</strong>te 7-9 .<br />

Otro tipo <strong>de</strong> <strong>alergia</strong> ocupacional <strong>en</strong> el que está implicada<br />

<strong>la</strong> familia <strong>de</strong> inhibidores es <strong>en</strong> <strong>la</strong> industria ma<strong>de</strong>rera, <strong>en</strong> <strong>la</strong><br />

que se utilizan <strong>en</strong>grudos <strong>de</strong> cereales, habiéndose <strong>de</strong>mostrado<br />

<strong>la</strong> reactividad tanto in vivo como in vitro <strong>de</strong> varios <strong>de</strong> sus<br />

miembros 10-11 .<br />

A pesar <strong>de</strong> <strong>la</strong> importancia creci<strong>en</strong>te <strong>de</strong> <strong>la</strong> <strong>alergia</strong> alim<strong>en</strong>taria<br />

a diversos tipos <strong>de</strong> cereales, se sabe re<strong>la</strong>tivam<strong>en</strong>te<br />

poco <strong>de</strong> <strong>la</strong> naturaleza <strong>de</strong> los alerg<strong>en</strong>os implicados.<br />

Los datos acumu<strong>la</strong>dos sugier<strong>en</strong> un papel relevante <strong>de</strong> los<br />

miembros <strong>de</strong> <strong>la</strong> familia <strong>de</strong> inhibidores <strong>de</strong> α-ami<strong>la</strong>sa/tripsina.<br />

Diversos alerg<strong>en</strong>os localizados <strong>en</strong> el grano <strong>de</strong> arroz 12<br />

son homólogos a los inhibidores <strong>de</strong> trigo, cebada, y c<strong>en</strong>t<strong>en</strong>o.<br />

También es miembro <strong>de</strong> <strong>la</strong> familia el único alerg<strong>en</strong>o<br />

por ingestión localizado <strong>en</strong> trigo 13 . En un estudio reci<strong>en</strong>te<br />

(Arm<strong>en</strong>tia et al., datos sin publicar), los patrones <strong>de</strong> proteínas<br />

<strong>de</strong> extractos <strong>de</strong> trigo, cebada y c<strong>en</strong>t<strong>en</strong>o que ligan<br />

IgE son simi<strong>la</strong>res <strong>en</strong> paci<strong>en</strong>tes alérgicos a cereales por<br />

ingestión (niños y adultos) y por inha<strong>la</strong>ción (asma <strong>de</strong>l<br />

pana<strong>de</strong>ro).<br />

LTPs COMO PANALERGENOS VEGETALES<br />

EN POBLACIONES DEL ÁREA<br />

MEDITERRÁNEA<br />

En países <strong>de</strong>l c<strong>en</strong>tro y norte <strong>de</strong> Europa y <strong>de</strong> América<br />

<strong>de</strong>l Norte, <strong>la</strong> <strong>alergia</strong> a manzana y otros frutos <strong>de</strong> <strong>la</strong> familia<br />

Rosaceae aparece asociada con <strong>alergia</strong> al pol<strong>en</strong> <strong>de</strong> abedul,<br />

si<strong>en</strong>do los principales alerg<strong>en</strong>os miembros <strong>de</strong> <strong>la</strong> familia <strong>de</strong><br />

Bet v 1 y profilinas. En el área Mediterránea, con escasa<br />

pres<strong>en</strong>cia <strong>de</strong> abedules, los paci<strong>en</strong>tes alérgicos a este tipo <strong>de</strong><br />

frutos g<strong>en</strong>eralm<strong>en</strong>te no pres<strong>en</strong>tan IgE específica fr<strong>en</strong>te a<br />

Bet v 1. Tanto si <strong>la</strong> <strong>alergia</strong> aparece asociada a polinosis,<br />

como <strong>en</strong> paci<strong>en</strong>tes no polínicos, los principales alerg<strong>en</strong>os<br />

<strong>de</strong> manzana y melocotón son proteínas <strong>de</strong> alre<strong>de</strong>dor <strong>de</strong> 9


kDa, que fueron caracterizados como miembros <strong>de</strong> <strong>la</strong> familia<br />

<strong>de</strong> proteínas <strong>de</strong> transfer<strong>en</strong>cia <strong>de</strong> lípidos (LTPs) 14,15 . La<br />

utilidad <strong>de</strong> LTPs purificadas <strong>de</strong> distintas fu<strong>en</strong>tes <strong>en</strong> el diagnóstico<br />

<strong>de</strong> <strong>alergia</strong> a Rosáceas ha sido <strong>de</strong>mostrada <strong>en</strong> un<br />

estudio reci<strong>en</strong>te (García-Selles et al., datos sin publicar).<br />

Más <strong>de</strong>l 90% <strong>de</strong> los paci<strong>en</strong>tes alérgicos a melocotón y manzana<br />

reaccionan <strong>en</strong> pruebas cutáneas con <strong>la</strong> proteína correspondi<strong>en</strong>te<br />

(Pru p 3 y Mald d 3).<br />

Las LTPs son proteínas <strong>de</strong> <strong>de</strong>f<strong>en</strong>sa ampliam<strong>en</strong>te distribuidas<br />

<strong>en</strong> distintos tejidos <strong>de</strong> <strong>la</strong>s p<strong>la</strong>ntas, lo que sugiere<br />

su pot<strong>en</strong>cial papel como panalerg<strong>en</strong>os responsables <strong>de</strong><br />

reacciones cruzadas <strong>en</strong>tre frutas, semil<strong>la</strong>s y pól<strong>en</strong>es 16,17 . La<br />

alta estabilidad térmica y digestiva <strong>de</strong> estas proteínas posibilita<br />

su actuación como alerg<strong>en</strong>os <strong>en</strong> alim<strong>en</strong>tos o bebidas<br />

e<strong>la</strong>boradas tales como zumo <strong>de</strong> melocotón 18 , vino 19 , o cerveza<br />

20 .<br />

A partir <strong>de</strong> clones cDNA <strong>de</strong> <strong>la</strong>s LTPs <strong>de</strong> melocotón<br />

y manzana 21 , se ha <strong>de</strong>ducido <strong>la</strong> secu<strong>en</strong>cia completa <strong>de</strong><br />

aminoácidos <strong>de</strong> <strong>la</strong>s proteínas maduras que muestran un<br />

82% <strong>de</strong> i<strong>de</strong>ntidad. La comparación con <strong>la</strong>s secu<strong>en</strong>cias <strong>de</strong><br />

otras proteínas <strong>de</strong> <strong>la</strong> familia permite localizar zonas conservadas<br />

y variables que pue<strong>de</strong>n formar parte <strong>de</strong> epítopos<br />

secu<strong>en</strong>ciales implicados <strong>en</strong> reactivida<strong>de</strong>s cruzadas. El<br />

mo<strong>de</strong><strong>la</strong>do <strong>de</strong> <strong>la</strong> estructura tridim<strong>en</strong>sional, como el pres<strong>en</strong>tado<br />

<strong>en</strong> <strong>la</strong> Figura 2, permitirá localizar zonas pot<strong>en</strong>cialm<strong>en</strong>te<br />

expuestas, candidatas a incluir epítopos conformacionales.<br />

El clon <strong>de</strong> melocotón ha sido expresado <strong>en</strong> <strong>la</strong> levadura<br />

Pichia pastoris 21 . La purificación <strong>de</strong> <strong>la</strong> proteína recombinante,<br />

ha <strong>de</strong>mostrado que, al m<strong>en</strong>os in vitro, su capacidad <strong>de</strong> ligar<br />

IgE es simi<strong>la</strong>r a <strong>la</strong> <strong>de</strong> <strong>la</strong> proteína nativa.<br />

LOS PANALERGENOS RESPONSABLES<br />

DEL SÍNDROME LÁTEX/FRUTAS<br />

SON QUITINASAS DE CLASE I<br />

Alre<strong>de</strong>dor <strong>de</strong> un 30-50% <strong>de</strong> los paci<strong>en</strong>tes alérgicos a<br />

látex pres<strong>en</strong>ta hipers<strong>en</strong>sibilidad a frutas, principalm<strong>en</strong>te<br />

aguacate, castaña, plátano y kiwi. La <strong>de</strong>nominación "síndrome<br />

látex/frutas" fue propuesta 22 para <strong>de</strong>scribir este tipo<br />

<strong>de</strong> reacción cruzada, que <strong>de</strong>be implicar <strong>la</strong> pres<strong>en</strong>cia <strong>de</strong> epítopos<br />

comunes <strong>en</strong> alguno <strong>de</strong> los alerg<strong>en</strong>os <strong>de</strong> látex y <strong>en</strong><br />

proteínas <strong>de</strong> <strong>la</strong>s frutas. La purificación y caracterización <strong>en</strong><br />

aguacate 23-25 , castaña 23,25 y plátano 26,27 <strong>de</strong> los alerg<strong>en</strong>os principales<br />

ha permitido concluir que son quitinasas <strong>de</strong> c<strong>la</strong>se I.<br />

Estas proteínas pose<strong>en</strong> <strong>en</strong> <strong>la</strong> zona N-terminal <strong>de</strong> su secu<strong>en</strong>cia<br />

un dominio heveína con cerca <strong>de</strong> un 70% <strong>de</strong> i<strong>de</strong>ntidad<br />

Proteínas <strong>de</strong> <strong>de</strong>f<strong>en</strong>sa y <strong>de</strong> reserva como alerg<strong>en</strong>os <strong>de</strong> alim<strong>en</strong>tos vegetales<br />

Fig. 2. Mo<strong>de</strong><strong>la</strong>do <strong>de</strong> <strong>la</strong> LTP <strong>de</strong> melocotón, Pru p 3, a partir <strong>de</strong> su<br />

secu<strong>en</strong>cia <strong>de</strong> aminoácidos y tomando como refer<strong>en</strong>cia <strong>la</strong> LTP <strong>de</strong> maíz<br />

cuya estructura se ha <strong>de</strong>terminado por resonancia magnético nuclear.<br />

Ct y Nt seña<strong>la</strong>n los extremos carboxi y amino-terminal <strong>de</strong> <strong>la</strong> proteína.<br />

En colores se repres<strong>en</strong>tan los tramos <strong>de</strong> hélice α.<br />

con el alerg<strong>en</strong>o principal <strong>de</strong> látex, <strong>la</strong> heveína (Hev b 6.02).<br />

Este dominio no está pres<strong>en</strong>te <strong>en</strong> <strong>la</strong>s quitinasas <strong>de</strong> c<strong>la</strong>se II,<br />

que sin embargo pres<strong>en</strong>tan cerca <strong>de</strong>l 80% <strong>de</strong> i<strong>de</strong>ntidad <strong>de</strong><br />

secu<strong>en</strong>cia con el dominio catalítico <strong>de</strong> <strong>la</strong>s quitinasas <strong>de</strong> c<strong>la</strong>se<br />

I. En <strong>la</strong> Figura 3 se pres<strong>en</strong>tan los resultados <strong>de</strong> experim<strong>en</strong>tos<br />

<strong>de</strong> inmunoinhibición con <strong>la</strong>s quitinasas <strong>de</strong> ambas<br />

c<strong>la</strong>ses purificadas <strong>de</strong> castaña.<br />

El clonaje y expresión <strong>de</strong> <strong>la</strong> quitinasa <strong>de</strong> c<strong>la</strong>se I <strong>de</strong> castaña<br />

y <strong>de</strong> su dominio catalítico 28 ha permitido analizar el<br />

papel <strong>de</strong> los dos dominios <strong>de</strong> estas <strong>en</strong>zimas <strong>en</strong> su capacidad<br />

<strong>de</strong> ligar IgE. La importancia <strong>de</strong>l dominio heveína <strong>en</strong> dicho<br />

reconocimi<strong>en</strong>to es evi<strong>de</strong>nte pues <strong>la</strong> <strong>de</strong>leción <strong>de</strong>l mismo<br />

supone <strong>la</strong> pérdida completa <strong>de</strong> reactividad <strong>en</strong> <strong>en</strong>sayos <strong>de</strong><br />

inmuno<strong>de</strong>tección <strong>de</strong>spués <strong>de</strong> fraccionami<strong>en</strong>to por electroforesis<br />

<strong>en</strong> pres<strong>en</strong>cia <strong>de</strong> SDS (SDS-PAGE). Sin embargo, <strong>en</strong>sayos<br />

<strong>de</strong> RAST <strong>de</strong> inhibición <strong>en</strong> condiciones no <strong>de</strong>snaturalizantes<br />

sugier<strong>en</strong> <strong>la</strong> pres<strong>en</strong>cia <strong>de</strong> epítopos conformacionales <strong>en</strong><br />

el dominio catalítico.<br />

Las quitinasas <strong>de</strong> c<strong>la</strong>se I son proteínas <strong>de</strong> <strong>de</strong>f<strong>en</strong>sa <strong>de</strong> <strong>la</strong>s<br />

p<strong>la</strong>ntas ampliam<strong>en</strong>te distribuidas. Son, por tanto, pot<strong>en</strong>ciales<br />

panalerg<strong>en</strong>os responsables <strong>de</strong> reacciones cruzadas <strong>en</strong>tre distintos<br />

tipos <strong>de</strong> alim<strong>en</strong>tos vegetales. Son proteínas termolábiles,<br />

<strong>de</strong>bido a lo cual sólo los alim<strong>en</strong>tos consumidos crudos,<br />

pero no los que se consum<strong>en</strong> tras ser cocinados o <strong>de</strong>spués <strong>de</strong><br />

ser sometidos a tratami<strong>en</strong>tos térmicos industriales, están asociados<br />

con el síndrome látex-frutas 29,30 . Por otra parte el nivel<br />

<strong>de</strong> este tipo <strong>de</strong> alerg<strong>en</strong>os pue<strong>de</strong> verse increm<strong>en</strong>tado <strong>de</strong>spués<br />

<strong>de</strong> <strong>de</strong>terminados tratami<strong>en</strong>tos, como es el caso <strong>de</strong>l etil<strong>en</strong>o utilizado<br />

para acelerar <strong>la</strong> maduración <strong>de</strong> frutas 30 .<br />

17


R. Sánchez-Monge, et al<br />

Fig. 3. A. Inmunoinhibición <strong>de</strong> un extracto proteico <strong>de</strong> castaña fraccionado<br />

por SDS-PAGE y electrotransferido a membranas <strong>de</strong> PVDF. El<br />

pool <strong>de</strong> sueros <strong>de</strong> paci<strong>en</strong>tes alérgicos a látex y frutas utilizado se<br />

preincubó con los sigui<strong>en</strong>tes inhibidores: Albúmina <strong>de</strong> suero bovino<br />

(BSA), quitinasas purificadas <strong>de</strong> castaña <strong>de</strong> c<strong>la</strong>se I (QI) y II (QII),<br />

extracto <strong>de</strong> látex (Hb). B. CAP <strong>de</strong> inhibición <strong>de</strong> castaña. Inhibidores:<br />

Extracto proteico <strong>de</strong> castaña CsT, preparación <strong>en</strong>riquecida <strong>en</strong> quitinasas<br />

<strong>de</strong> castaña (CsQ), quitinasas <strong>de</strong> c<strong>la</strong>se I (QI) y II (QII) purificadas<br />

<strong>de</strong> castaña, y extracto <strong>de</strong> <strong>la</strong>tex (Hb). Se utilizó un extracto comercial<br />

<strong>de</strong> D.pteronyssinus como control negativo.<br />

VICILINAS Y LA ALERGIA A LEGUMINOSAS<br />

EN LA ZONA MEDITERRÁNEA<br />

Las semil<strong>la</strong>s <strong>de</strong> leguminosas son una <strong>de</strong> <strong>la</strong>s principales<br />

causas <strong>de</strong> <strong>alergia</strong>s alim<strong>en</strong>tarias infantiles. En países<br />

anglosajones y <strong>en</strong> Japón, cacahuete y soja son <strong>la</strong>s principales<br />

especies causantes <strong>de</strong> reacciones <strong>de</strong> hipers<strong>en</strong>sibilidad,<br />

mi<strong>en</strong>tras que <strong>en</strong> <strong>la</strong> zona Mediterránea y <strong>en</strong> <strong>la</strong> India <strong>la</strong>s<br />

especies más implicadas son l<strong>en</strong>teja y garbanzo. Los aler-<br />

18<br />

1 29<br />

L<strong>en</strong> c 1 306 D D D E E E E Q E E E T S K Q V Q R Y R A K L S P G D V F 339<br />

Vic-50kd G K E N D K E E E Q E E E T S K Q V Q L Y R A K L S P G D V F V I<br />

Ara h 1 G R R EE E E D E D E E E S N R E V R R Y T A R L K E G D V F I M<br />

478 _ 512<br />

EG<br />

Fig. 4. Alineami<strong>en</strong>to <strong>de</strong> <strong>la</strong> secu<strong>en</strong>cia N-terminal <strong>de</strong>l alerg<strong>en</strong>o <strong>de</strong> l<strong>en</strong>teja<br />

(L<strong>en</strong> c 1) con secu<strong>en</strong>cias <strong>de</strong> una provicilina <strong>de</strong> guisante (∆ seña<strong>la</strong> el<br />

sitio <strong>de</strong> procesami<strong>en</strong>to) y <strong>de</strong>l alerg<strong>en</strong>o <strong>de</strong> cacahuete (Ara h 1).<br />

g<strong>en</strong>os principales <strong>de</strong> cacahuete y soja han sido ampliam<strong>en</strong>te<br />

estudiados pero no así los <strong>de</strong> l<strong>en</strong>teja y garbanzo.<br />

Se han caracterizado dos tipos <strong>de</strong> alerg<strong>en</strong>os <strong>en</strong> l<strong>en</strong>tejas<br />

cocidas 31 . Uno <strong>de</strong> ellos es un grupo <strong>de</strong> isoalerg<strong>en</strong>os <strong>de</strong><br />

12-16 kDa (L<strong>en</strong> c 1), que son variantes <strong>de</strong> γ-vicilinas, presumiblem<strong>en</strong>te<br />

producto <strong>de</strong>l procesami<strong>en</strong>to <strong>de</strong> un precursor<br />

<strong>de</strong> 50 kDa. Son reconocidos por un 65% <strong>de</strong> sueros <strong>de</strong><br />

niños alérgicos a l<strong>en</strong>teja. Pres<strong>en</strong>tan homología <strong>de</strong> secu<strong>en</strong>cia<br />

con <strong>la</strong> región C-terminal <strong>de</strong> vicilinas <strong>de</strong> guisante y con<br />

el alérg<strong>en</strong>o Ara h 1 <strong>de</strong> cacahuete, ambos <strong>de</strong> 50-60 kDa<br />

(ver Figura 4). El clonaje y secu<strong>en</strong>ciación <strong>de</strong> <strong>la</strong> vicilina <strong>de</strong><br />

l<strong>en</strong>teja permitirá su comparación con Ara h 1 (que es también<br />

una vicilina) <strong>de</strong>l que se ha <strong>de</strong>scrito el mapeo <strong>de</strong> epítopos<br />

IgE 32 .<br />

El otro alerg<strong>en</strong>o es una proteína biotini<strong>la</strong>da <strong>de</strong> 66 kDa<br />

(L<strong>en</strong> c 2). Proteínas homólogas han sido <strong>de</strong>scritas <strong>en</strong> guisante<br />

y otras especies.<br />

La pres<strong>en</strong>cia <strong>de</strong> homólogos para ambos tipos <strong>de</strong> alerg<strong>en</strong>os<br />

<strong>en</strong> otras especies <strong>de</strong> leguminosas pue<strong>de</strong> explicar <strong>la</strong>s reactivida<strong>de</strong>s<br />

cruzadas observadas 33,34 .<br />

AGRADECIMIENTOS<br />

Los autores <strong>de</strong>sean reconocer <strong>la</strong>s aportaciones <strong>de</strong> los<br />

sigui<strong>en</strong>tes investigadores: Drs. A. Arm<strong>en</strong>tia (Hospital Río<br />

Hortega, Val<strong>la</strong>dolid), L. Gómez (E.T.S. Ing<strong>en</strong>ieros <strong>de</strong> Montes,<br />

UPM), D. Barber (ALK-Abelló, Madrid) e I. Moneo<br />

(Instituto <strong>de</strong> Salud Carlos III, Madrid), <strong>en</strong> el caso <strong>de</strong> los<br />

inhibidores <strong>de</strong> α-ami<strong>la</strong>sa/tripsina <strong>de</strong> cereales y su re<strong>la</strong>ción<br />

con asmas ocupacionales y <strong>alergia</strong> alim<strong>en</strong>taria; Drs. C.<br />

B<strong>la</strong>nco y T. Carrillo (Hospital Dr Negrín, Las Palmas <strong>de</strong><br />

Gran Canaria), y C. Aragoncillo y C. Col<strong>la</strong>da (E.T.S. Ing<strong>en</strong>ieros<br />

<strong>de</strong> Montes, UPM), <strong>en</strong> <strong>la</strong> i<strong>de</strong>ntificación <strong>de</strong> quitinasas<br />

<strong>de</strong> c<strong>la</strong>se I como panalerg<strong>en</strong>os asociados al síndrome látexfrutas;<br />

Drs. D. Barber y M. Lombar<strong>de</strong>ro (ALK-Abelló,<br />

Madrid), F.J. García Sellés (Hospital Virg<strong>en</strong> <strong>de</strong> <strong>la</strong> Arrixaca,<br />

Murcia), M. Fernán<strong>de</strong>z-Rivas (Hospital Fundación Alcorcón,<br />

Madrid), y J. Fernán<strong>de</strong>z Crespo y J. Rodríguez (Hospital<br />

12 <strong>de</strong> Octubre, Madrid) <strong>en</strong> el establecimi<strong>en</strong>to <strong>de</strong> LTPs


como pot<strong>en</strong>ciales panalerg<strong>en</strong>os vegetales; Drs. C. Pascual y<br />

M. Martín-Esteban (Hospital Infantil La Paz, Madrid) <strong>en</strong> <strong>la</strong><br />

i<strong>de</strong>ntificación <strong>de</strong> alerg<strong>en</strong>os <strong>de</strong> l<strong>en</strong>teja.<br />

REFERENCIAS BIBLIOGRÁFICAS<br />

1. Breit<strong>en</strong>e<strong>de</strong>r H, Ebner C. Atopic allerg<strong>en</strong>s of p<strong>la</strong>nt foods. Curr Opin<br />

Allergy Clin Imunology 2001; 1: 251-257.<br />

2. Van Loon LC, van Stri<strong>en</strong> EA. The families of pathog<strong>en</strong>esis-re<strong>la</strong>ted<br />

proteins, their activities, and comparative analysis of PR-1 type proteins.<br />

Physiol Mol P<strong>la</strong>nt Pathology 1999; 55: 85-97.<br />

3. Barber D, Sánchez-Monge R, Gomez L, Carpizo J, Arm<strong>en</strong>tia A,<br />

López C, Juan F, Salcedo G. A barley inhibitor of insect alpha-amy<strong>la</strong>se<br />

is a major allerg<strong>en</strong> associated with baker´s asthma. FEBS Lett<br />

1989; 348: 119-122.<br />

4. Arm<strong>en</strong>tia A, Sánchez-Monge R, Gómez L, Barber D, Salcedo G. In<br />

vivo allerg<strong>en</strong>ic activities of elev<strong>en</strong> purified members of a major allerg<strong>en</strong><br />

family from wheat and barley flour. Clin Exp Allergy 1993; 23:<br />

410-415.<br />

5. García-Casado G, Arm<strong>en</strong>tia A, Sánchez-Monge R, Malpica JM,<br />

Salcedo G. Rye flour allerg<strong>en</strong>s associated with baker´s asthma. Corre<strong>la</strong>tion<br />

betwe<strong>en</strong> in vivo and in vitro activities and comparison with<br />

their wheat and barley homologues. Clin Exp Allergy 1996; 26:<br />

428-435.<br />

6. García-Casado G, Arm<strong>en</strong>tia A, Sánchez-Monge R, Sánchez LM,<br />

Lopez-Otín C, Salcedo G. A major baker’s asthma allerg<strong>en</strong> from rye<br />

flour is consi<strong>de</strong>rably more active than its barley counterpart. FEBS<br />

Lett 1996; 364: 36-40.<br />

7. Sánchez-Monge R, Gomez I, Barber D, López C, Arm<strong>en</strong>tia A, Salcedo<br />

G. Wheat and barley allerg<strong>en</strong>s associated with baker’s asthma.<br />

Glycosy<strong>la</strong>ted subunits of the alpha-amy<strong>la</strong>se inhibitor family have <strong>en</strong>hanced<br />

IgE-binding capacity. Biochem J 1992; 281: 401-405.<br />

8. M<strong>en</strong>a M, Sánchez-Monge R, Gomez L, Salcedo G, Carbonero P. A<br />

major barley allerg<strong>en</strong> associated with baker´s asthma disease is a<br />

glycosy<strong>la</strong>ted monomeric inhibitor of insect alpha-amy<strong>la</strong>se: cDNA cloning<br />

and chromosomal location of the g<strong>en</strong>e. P<strong>la</strong>nt Mol Biol 1992;<br />

20: 451-458.<br />

9. García-Casado G, Sánchez-Monge R, Chrispeels MJ, Arm<strong>en</strong>tia A,<br />

Salcedo G, Gomez L. Role of complex asparagine-linked glycans in<br />

the allerg<strong>en</strong>icity of p<strong>la</strong>nt glycoproteins. Glycobiology 1996; 6: 471-<br />

477.<br />

10. Arm<strong>en</strong>tia A, Garcia-Casado G, Vega J, Sánchez-Monge R, Mén<strong>de</strong>z<br />

J, Salcedo G. Occupational allergy to rye flour in carp<strong>en</strong>ters.<br />

Allergy 1997; 52:1151-1152.<br />

11. López-Rico R, Moneo I, Rico G, Curiel G, Sánchez-Monge R,<br />

Salcedo G. Cereal a- amy<strong>la</strong>se inhibitors cause occupational s<strong>en</strong>sitization<br />

in the wood industry. Clin Exp Allergy 1998; 28: 1286-1291.<br />

12. Nakamura R, Matsuda T. Rice allerg<strong>en</strong>ic protein and molecu<strong>la</strong>rg<strong>en</strong>etic<br />

approach for hypoallerg<strong>en</strong>ic rice. Biosci Biotech Biochem<br />

1996; 60: 1215-1221.<br />

13. James JM, Sixbey JP, Helm RM, Bannon GA, Burks AW. Wheat<br />

α-amy<strong>la</strong>se inhibitor: A second route of allergic s<strong>en</strong>sitization. J Allergy<br />

Clin Immunol 1997; 99: 239-244<br />

14. Sánchez-Monge R, Lombar<strong>de</strong>ro M, García- Sellés FJ, Barber D,<br />

Salcedo G. Lipid transfer proteins are relevant allerg<strong>en</strong>s in fruit<br />

allergy. J Allergy Clin Immunol 1999; 103: 514-519.<br />

15. Pastorello EA, Farioli L, Pravettoni V, Orto<strong>la</strong>ni C, Ispano M, Monza<br />

M. et al. The major allerg<strong>en</strong> of peach (Prunus persica) is a lipid<br />

transfer protein. J Allergy Clin Immunol 1999; 103: 520-526.<br />

Proteínas <strong>de</strong> <strong>de</strong>f<strong>en</strong>sa y <strong>de</strong> reserva como alerg<strong>en</strong>os <strong>de</strong> alim<strong>en</strong>tos vegetales<br />

16. Díaz-Perales A, Lombar<strong>de</strong>ro M, Sánchez-Monge R, García-Sellés<br />

FJ, Pernas M, Fernán<strong>de</strong>z-Rivas M, et al. Lipid-transfer proteins as<br />

pot<strong>en</strong>tial p<strong>la</strong>nt panallerg<strong>en</strong>s: cross-reactivity among proteins of Artemisia<br />

poll<strong>en</strong>, Castanea nut and Rosaceae fruits, with differ<strong>en</strong>t IgEbinding<br />

capacities. Clin Exp Allergy 2000; 30: 1403-1410.<br />

17. Asero R, Mistrello G, Roncarolo D, <strong>de</strong> Vries SC, Gautier MF, Ciurana<br />

CLF, et al. Lipid transfer protein: A pan-allerg<strong>en</strong> in p<strong>la</strong>nt-<strong>de</strong>rived<br />

foods that is highly resistant to pepsin digestion. Int Arch Allergy Immunol<br />

2000; 122: 20-32.<br />

18. Br<strong>en</strong>na O, Pompei C, Orto<strong>la</strong>ni C, Pravettoni V, Farioli L, Pastorello<br />

EA. Technological processes to <strong>de</strong>crease the allerg<strong>en</strong>icity of peach<br />

juice and nectar. J Agric Food Chem 2000; 48: 493-497.<br />

19. García-Robaina JC, Torre-Morín F, Sánchez-Machín I, Sánchez-<br />

Monge R, Barber D, Lombar<strong>de</strong>ro M. Anaphy<strong>la</strong>xis induced by exercise<br />

and wine. Allergy 2001; 56: 357-358.<br />

20. García-Casado G, Fernán<strong>de</strong>z Crespo J, Rodríguez J, Salcedo G.<br />

Iso<strong>la</strong>tion and characterization of barley lipid transfer protein and<br />

protein Z as beer allerg<strong>en</strong>s. J Allergy Clin Immunol (<strong>en</strong> pr<strong>en</strong>sa)<br />

21. Díaz-Perales A, García-Casado G, Sánchez-Monge R, García-<br />

Sellés FJ, Barber D, Salcedo G. cDNA cloning and heterologous<br />

expression of the major alllerg<strong>en</strong>s from peach and apple belonging<br />

to the lipid transfer protein family. Clin Exp Allergy (<strong>en</strong> pr<strong>en</strong>sa).<br />

22. B<strong>la</strong>nco C, Carrillo T, Castillo R, Quiralte J, Cuevas M. Latex<br />

allergy: clinical features and cross-reactivity with fruits. Ann Allergy<br />

1994; 73: 309-314.<br />

23. Díaz-Perales A, Col<strong>la</strong>da C, B<strong>la</strong>nco C, Sánchez-Monge R,<br />

Carrillo T, Aragoncillo C, et al. C<strong>la</strong>ss I chitinases with hevein-like<br />

domain, but not c<strong>la</strong>ss II <strong>en</strong>zymes, are relevant chestnut and<br />

avocado allerg<strong>en</strong>s. J Allergy Clin Immunol 1998; 102: 127-<br />

133.<br />

24. Sowka S, Hsieh LS, Krebitz M, Akasawa A, Martin BM, Starrett<br />

D, et al. I<strong>de</strong>ntification and cloning of Prs a 1, a 32kDa <strong>en</strong>dochitinase<br />

and major allerg<strong>en</strong> of avocado, and its expression in<br />

the yeast Pichia pastoris. J Biol Chem 1998; 273: 28091-<br />

28097.<br />

25. B<strong>la</strong>nco C, Díaz-Perales A, Col<strong>la</strong>da C, Sánchez-Monge R, Aragoncillo<br />

C, Castillo R, et al. C<strong>la</strong>ss I chitinases as pot<strong>en</strong>tial panallerg<strong>en</strong>s<br />

involved in the <strong>la</strong>tex-fruit syndrome. J Allergy Clin Immunol 1999;<br />

103: 507-513.<br />

26. Mikko<strong>la</strong> JH, Al<strong>en</strong>ius H, Kalkkin<strong>en</strong> N, Turjanmaa K, Palosuo T,<br />

Reuna<strong>la</strong> T. Hevein-like protein domains as a possible cause for allerg<strong>en</strong><br />

cross-reactivity betwe<strong>en</strong> <strong>la</strong>tex and banana. J Allergy Clin Immunol<br />

1998; 102: 1005-1012.<br />

27. Sánchez-Monge R, B<strong>la</strong>nco C, Diaz-Perales A, Col<strong>la</strong>da C, Carrillo<br />

T, Aragoncillo C, et al. Iso<strong>la</strong>tion and characterization of major banana<br />

allerg<strong>en</strong>s: i<strong>de</strong>ntification as fruit c<strong>la</strong>ss I chitinases. Clin Exp Allergy<br />

1999; 29: 673-680.<br />

28. Díaz-Perales A, Sánchez-Monge R, B<strong>la</strong>nco C, Lombar<strong>de</strong>ro M,<br />

Carrillo T, Salcedo G. What is the role of the hevein-like domain of<br />

fruit c<strong>la</strong>ss I chitinases in their allerg<strong>en</strong>ic capacity? Clin Exp Allergy<br />

(<strong>en</strong> pr<strong>en</strong>sa).<br />

29. Díaz-Perales A, Col<strong>la</strong>da C, B<strong>la</strong>nco C, Sánchez-Monge R, Carrillo<br />

T, Aragoncillo C, et al. Cross reactions in the <strong>la</strong>tex-fruit syndrome:<br />

a relevant role of chitinases but not of complex asparagine-linked<br />

glycans. J Allergy Clin Immunol 1999; 104: 681-687<br />

30. Sánchez-Monge R, B<strong>la</strong>nco C, Díaz-Perales A, Col<strong>la</strong>da C, Carrillo<br />

T, Aragoncillo C, et al. C<strong>la</strong>ss I chitinases, the panallerg<strong>en</strong>s responsible<br />

for the <strong>la</strong>tex-fruit syndrome, are induced by ethyl<strong>en</strong>e treatm<strong>en</strong>t,<br />

and inactivated by heating. J Allergy Clin Immunol 2000; 106: 190-<br />

195.<br />

31. Sánchez-Monge R, Pascual CY, Díaz-Perales A, Fernán<strong>de</strong>z-Crespo J,<br />

Martín-Esteban M, Salcedo G. Iso<strong>la</strong>tion and characterization of relevant<br />

allerg<strong>en</strong>s from boiled l<strong>en</strong>tils. J Allergy Clin Immunol 2000; 106: 955-961.<br />

19


S. B. Lehrer, et al<br />

32. Burks AW, Shin D, Cockrell G, Stanley JS, Helm RM, Bannon<br />

GA. Mapping and mutational analysis of the IgE-binding<br />

epitopes on Ara h 1, a legume vicilin protein and a major allerg<strong>en</strong><br />

in peanut hypers<strong>en</strong>sitivity. Eur J Biochem 1997; 245: 334-<br />

339.<br />

33. Martínez San Ir<strong>en</strong>eo M, Ibáñez Sandín MD, Fernán<strong>de</strong>z-Cal-<br />

20<br />

S. B. Lehrer, G. Reese*<br />

Research Professor of<br />

Medicine<br />

Section of Clinical<br />

Immunology, Allergy, and<br />

Rheumatology<br />

Departm<strong>en</strong>t of Medicine<br />

Tu<strong>la</strong>ne University School of<br />

Medicine. New Orleans,<br />

EE.UU.<br />

* Paul-Ehrlich-Institut,<br />

Departm<strong>en</strong>t of Allergology<br />

Lang<strong>en</strong>. Germany<br />

Applications of Molecu<strong>la</strong>r Biology in<br />

Food Allergy Allerg<strong>en</strong>s of Animal Origin<br />

INTRODUCTION<br />

das E. Hypers<strong>en</strong>sitivity to members of the botanical or<strong>de</strong>r Fabales<br />

(legumes). J Investig Allergol Clin Immunol 2000; 10: 187-<br />

199.<br />

34. Pascual CY, Crespo JF, Pérez PG, Esteban NM. Food allergy and<br />

intolerance in childr<strong>en</strong>. An update. Eur J Clin Nutr 2000; 54: S75-<br />

S78.<br />

The mortality and morbidity resulting from hypers<strong>en</strong>sitivity reactions to<br />

foods 1 <strong>de</strong>monstrate that food allergy can be a very serious problem. Avoidance, traditionally<br />

recomm<strong>en</strong><strong>de</strong>d as treatm<strong>en</strong>t for food allergies, may not always be possible<br />

since some food products contain compon<strong>en</strong>ts that are seemingly unre<strong>la</strong>ted to<br />

their original source. Furthermore, there is concern about the safety and pot<strong>en</strong>tial<br />

allerg<strong>en</strong>icity of newly <strong>de</strong>veloped transg<strong>en</strong>ic crops 2 since these g<strong>en</strong>etically altered<br />

p<strong>la</strong>nts and their products may contain unknown allerg<strong>en</strong>s 3,4 . Despite r<strong>en</strong>ewned interest<br />

in food allergy, the immunochemical analysis of food allerg<strong>en</strong>s <strong>la</strong>gs behind<br />

that of injected allerg<strong>en</strong>s such as insect v<strong>en</strong>oms and inhaled aeroallerg<strong>en</strong>s such as<br />

poll<strong>en</strong>, dust mites, and cockroaches. Thus, it is important to i<strong>de</strong>ntify and characterize<br />

food allerg<strong>en</strong>s to elucidate the structural features that separate them from nonallerg<strong>en</strong>s<br />

and <strong>de</strong>velop better diagnosis and therapeutic regim<strong>en</strong>s for food allergic<br />

subjects.<br />

GENERAL PROPERTIES OF FOOD ALLERGENS<br />

Although allerg<strong>en</strong>ic foods may contain over 10,000 differ<strong>en</strong>t proteins, only a<br />

few (g<strong>en</strong>erally 10-20) elicit allergic reactions. The structural properties that are responsible<br />

for the allerg<strong>en</strong>icity of a food protein are g<strong>en</strong>erally still poorly <strong>de</strong>fined, although<br />

some broad characteristics of food allerg<strong>en</strong>s have be<strong>en</strong> i<strong>de</strong>ntified. These<br />

inclu<strong>de</strong> abundance of a giv<strong>en</strong> protein in a particu<strong>la</strong>r food; physicochemical properties,<br />

such as molecu<strong>la</strong>r weight (10-70 kD), acidic isoelectric point, and glycosy<strong>la</strong>tion;<br />

and resistance to heat and digestion 5 . Although these characteristics have be<strong>en</strong> associated<br />

with the allerg<strong>en</strong>icity of proteins, some if not all of these properties characterize<br />

a vast number of nonallerg<strong>en</strong>ic proteins as well and thus are not unique to food<br />

allerg<strong>en</strong>s.<br />

Food allerg<strong>en</strong>s frequ<strong>en</strong>tly account for a major fraction of the total protein cont<strong>en</strong>t<br />

within a giv<strong>en</strong> food. For example, the major shrimp allerg<strong>en</strong>, P<strong>en</strong> a 1, accounts<br />

for about 25%-30% of the total shrimp tail muscle protein 6 . An exception to this rule<br />

is the major allerg<strong>en</strong> of codfish Gadus cal<strong>la</strong>rias, Gad c 1; this molecule, i<strong>de</strong>ntified<br />

as parvalbumin, is not a dominant protein in cod muscle 7 . There are three aspects of


molecu<strong>la</strong>r size that may contribute to a protein allerg<strong>en</strong>icity.<br />

First, the molecule must be <strong>la</strong>rge <strong>en</strong>ough to elicit an immune<br />

response; second, it must be a suffici<strong>en</strong>t size for at least two<br />

IgE binding sites to bridge mast cell-bound IgE; third, the protein<br />

must be small <strong>en</strong>ough to cross the gut mucosal membrane<br />

barrier. Most known food allerg<strong>en</strong>s have molecu<strong>la</strong>r weights<br />

betwe<strong>en</strong> 10 and 70 kD, thus fulfilling these requirem<strong>en</strong>ts.<br />

Most allerg<strong>en</strong>s are glycoproteins with an acidic isoelectric<br />

point (pI). However, these characteristics are not<br />

unique to allerg<strong>en</strong>s and many nonallerg<strong>en</strong>ic proteins also<br />

exhibit them. Heat resistance is probably the most common<br />

feature of pot<strong>en</strong>t food allerg<strong>en</strong>s. Although heat <strong>de</strong>naturation<br />

may cause loss of the native protein’s conformation,<br />

pati<strong>en</strong>ts’ IgE antibodies can still react with these<br />

<strong>de</strong>natured food proteins, suggests that the allerg<strong>en</strong>s epitopes<br />

are not <strong>de</strong>p<strong>en</strong><strong>de</strong>nt on the native conformation.<br />

The ability of food allerg<strong>en</strong> to cross the mucosal<br />

membrane of the intestinal tract is most likely an important<br />

feature. As m<strong>en</strong>tioned earlier, size is one parameter in<br />

this context; another may be a resistance to digestion. The<br />

results of one study which used a gastric mo<strong>de</strong>l of mammalian<br />

digestion to study the digestibility of food allerg<strong>en</strong>s<br />

point in this direction 8 . In the study, the digestibility<br />

of allerg<strong>en</strong>s from egg, milk, peanut, soybean, and mustard<br />

Table I. I<strong>de</strong>ntified Major Allerg<strong>en</strong>s of Animal Origin 5,9-11<br />

Applications of Molecu<strong>la</strong>r Biology in Food Allergy Allerg<strong>en</strong>s of Animal Origin<br />

was evaluated. Food allerg<strong>en</strong>s tested resisted digestion for<br />

up to 1 hour, whereas nonallerg<strong>en</strong>s were digested within 1<br />

minute. However, there is still insuffici<strong>en</strong>t information to<br />

conclu<strong>de</strong> that the resistance to digestion is a major property<br />

that characterizes food allerg<strong>en</strong>s since <strong>la</strong>bile proteins<br />

can be allerg<strong>en</strong>ic and not all stable proteins are allerg<strong>en</strong>s.<br />

EXAMPLES OF COMMON FOOD ALLERGEN<br />

OF ANIMAL ORIGIN<br />

Of the eight major common allerg<strong>en</strong>ic foods, 4 (milk, egg,<br />

fish, and crustacea) are <strong>de</strong>rived from animal sources. An additional<br />

eight foods (abalone, beef, chick<strong>en</strong>, cuttlefish, oysters, pork, squid,<br />

and turkey) members of three major food groups (mollusks, fowl,<br />

mammalian meat) have be<strong>en</strong> m<strong>en</strong>tioned as less common allerg<strong>en</strong>ic<br />

foods 9 . Major allerg<strong>en</strong>s that have be<strong>en</strong> sequ<strong>en</strong>ced are summarized<br />

in Table I. The common allerg<strong>en</strong>ic foods of animal origin and their<br />

i<strong>de</strong>ntified allerg<strong>en</strong>s are <strong>de</strong>scribed as follows in more <strong>de</strong>tail.<br />

Cow’s Milk Allerg<strong>en</strong>s<br />

Cow’s milk, a very complex mixture of proteins, is<br />

one of the most common food allerg<strong>en</strong>s. Two major groups<br />

Food Allerg<strong>en</strong> Source Molecu<strong>la</strong>r weight Sequ<strong>en</strong>ce Comm<strong>en</strong>ts<br />

MILK Bos d 8 Bos Tauris (Cow’s Milk) 20-30 kDa C Caesins family of chemically<br />

re<strong>la</strong>ted proteins<br />

Bos d 5 Bos tauris (Cow’s milk) 18 kDa C Beta <strong>la</strong>ctoglobulin<br />

Most abdundant whey protein<br />

EGG Gal d 1 Gallus domesticus (chick<strong>en</strong>) 22.6 kDa C Ovomucoid<br />

Gal d 2 Gallus domesticus (chick<strong>en</strong>) 42.8 kDa C Ovalbumin<br />

Gal d 3 Gallus domesticus (chick<strong>en</strong>) 77.8 kDa C Ovotransferrin, conalbumin<br />

Gal d 4 Gallus domesticus (chick<strong>en</strong>) 16.2 kDa C Lysozyme C<br />

FISH Gad c 1 Gadus cal<strong>la</strong>rias (Baltic Cod) 12.1 kDa C Parvalbumin beta<br />

Sal s 1 Salmo sa<strong>la</strong>r (At<strong>la</strong>ntic salmon) C Parvalbumin<br />

CRUSTACEA Met e 1 Metap<strong>en</strong>aeus <strong>en</strong>sis (greasyback shrimp) 34.0 kDa C Tropomyosin<br />

P<strong>en</strong> a 1 Panaeus aztecus (brown shrimp) 36.0 kDa C Tropomyosin<br />

P<strong>en</strong> i 1 Panaeus indicus (Indian shrimp) 34.0 kDa P Tropomyosin<br />

Hom a 1 Homarus americanus (American lobster) 32.8 kDa C Tropomyosin<br />

Pan s 1 Panulirus stimpsoni (spiny lobster) 32.8 kDa C Tropomyosin<br />

Cha f 1 Charybdis feriatus (crab) 32.8 kDa C Tropomyosin<br />

21


S. B. Lehrer, et al<br />

of cow’s milk proteins, caseins and ß-<strong>la</strong>ctoglobulin, have<br />

be<strong>en</strong> i<strong>de</strong>ntified as major allerg<strong>en</strong>s. The caseins are a family<br />

of chemically re<strong>la</strong>ted proteins. The frequ<strong>en</strong>cy of reactivity<br />

to differ<strong>en</strong>t casein variants has not be<strong>en</strong> systematically studied.<br />

ß-<strong>la</strong>ctoglobulin is a whey protein that composes approximately<br />

20% of total milk proteins. It has a molecu<strong>la</strong>r<br />

weight of 18 kD, and at least six g<strong>en</strong>etic variants have be<strong>en</strong><br />

i<strong>de</strong>ntified. The whey proteins α-<strong>la</strong>ctalbumin and bovine<br />

serum albumin (BSA) have be<strong>en</strong> i<strong>de</strong>ntified as minor cow’s<br />

milk allerg<strong>en</strong>s 9 .<br />

Egg Allerg<strong>en</strong>s<br />

Food allergy to proteins from egg of the domestic chick<strong>en</strong><br />

(Gallus domesticus) is one of the most frequ<strong>en</strong>tly implicated<br />

causes of immediate food allergic reactions of childr<strong>en</strong><br />

in the United States and Europe 12 . Ovomucoid has be<strong>en</strong> i<strong>de</strong>ntified<br />

as the major egg white allerg<strong>en</strong> Gal d 1. It is a glycoprotein<br />

with a molecu<strong>la</strong>r weight of 28 kD and an isoelectric<br />

point of 4.1. Ovalbumin has be<strong>en</strong> i<strong>de</strong>ntified as the major egg<br />

white allerg<strong>en</strong> Gal d 2. It is a monomeric phosphoglycoprotein<br />

with a molecu<strong>la</strong>r weight betwe<strong>en</strong> 43 and 45 kD and an isoelectric<br />

point of 4.5. Ovotransferrin or conalbumin has be<strong>en</strong><br />

i<strong>de</strong>ntified as the major allerg<strong>en</strong> from egg white Gal d 3 with a<br />

molecu<strong>la</strong>r weight of 77 kD and an isoelectric point of 6.0.<br />

Lysozyme (Gal d 4) from egg has a molecu<strong>la</strong>r weight of 14.3<br />

kD and an isoelectric point of 10.7. In addition, a variety of<br />

other egg proteins have be<strong>en</strong> <strong>de</strong>scribed as minor allerg<strong>en</strong>s.<br />

These inclu<strong>de</strong> Ovomucin, Ovoinhibitor, Ovaf<strong>la</strong>voprotein<br />

(ribof<strong>la</strong>vin-binding protein), Apovitell<strong>en</strong>in I, and Apovitell<strong>en</strong>in<br />

VI.<br />

Fish Allerg<strong>en</strong>s<br />

The consumption of fish 13 is a frequ<strong>en</strong>t cause of IgEmediated<br />

reactions. Fish is one among the most commonly<br />

implicated allerg<strong>en</strong>ic foods and has be<strong>en</strong> incriminated in<br />

fatal anaphy<strong>la</strong>ctic reactions. Species-specific analysis of<br />

IgE reactivities has not be<strong>en</strong> performed and most studies<br />

refer only to cod or g<strong>en</strong>erally to fish. One of the first and<br />

most compreh<strong>en</strong>sive analysis of a food allerg<strong>en</strong> was the<br />

purification and characterization of the major codfish<br />

allerg<strong>en</strong>, Gad c 1. Gad c 1, originally <strong>de</strong>signated allerg<strong>en</strong><br />

M, from Baltic cod, Gadus cal<strong>la</strong>rias, has be<strong>en</strong> docum<strong>en</strong>ted<br />

to be the major codfish allerg<strong>en</strong>. It belongs to a group<br />

of muscle proteins called parvalbumins 7 and constitutes<br />

approximately 0.05% to 0.1% of the white cod muscle tissue.<br />

Minor cod fish allerg<strong>en</strong>s distinct from Gad c 1 were<br />

i<strong>de</strong>ntified by CRIE but have not yet be<strong>en</strong> further characterized.<br />

22<br />

Crustacea Allerg<strong>en</strong>s<br />

The c<strong>la</strong>ss Crustacea belongs to the phylum Arthropoda<br />

and inclu<strong>de</strong>s shrimp, prawns, crabs, lobster, and crawfish.<br />

Crustacea are common causes of hypers<strong>en</strong>sitivity. Like that of<br />

fish allergy, a higher inci<strong>de</strong>nce of crustacea allergy would be<br />

expected in geographic areas where greater amounts of shellfish<br />

are consumed on a regu<strong>la</strong>r basis. A 36 kD allerg<strong>en</strong>, <strong>de</strong>signated<br />

P<strong>en</strong> a 1, was iso<strong>la</strong>ted from boiled brown shrimp, P<strong>en</strong>aeus<br />

aztecus. Sequ<strong>en</strong>cing of a 21 amino acid Lys-C pepti<strong>de</strong> of<br />

P<strong>en</strong> a 1 <strong>de</strong>monstrated significant homology (60%-85%) with<br />

tropomyosin from various species consist<strong>en</strong>t with the conclusion<br />

that P<strong>en</strong> a 1 is tropomyosin 6 . P<strong>en</strong> a 1 constitutes 20% of<br />

the soluble protein and accounts for approximately 80% of<br />

pooled shrimp-allergic sera reactivity to shrimp meat extract.<br />

More than 80% of allergic subjects reacted to this allerg<strong>en</strong> 6 .<br />

P<strong>en</strong> a 1 was cloned and sequ<strong>en</strong>ced; its cDNA sequ<strong>en</strong>ce showed<br />

26 base pair substitutions wh<strong>en</strong> compared with the<br />

sequ<strong>en</strong>ce of Met e 1; these base pair substitutions resulted in<br />

only one amino acid substitution in position 69. Homologous<br />

proteins P<strong>en</strong> i 1, and Met e 1 from Indian shrimp P<strong>en</strong>aeus<br />

indicus and greasyback shrimp Metap<strong>en</strong>aeus <strong>en</strong>sis respectively<br />

have also be<strong>en</strong> studied 14,15 .<br />

EPITOPES IN ALLERGENS OF ANIMAL<br />

ORIGIN: STUDY OF SHRIMP TROPOMYOSIN<br />

Tropomyosin is a major muscle protein pres<strong>en</strong>t in all<br />

living creatures. These molecules appears to be highly conserved<br />

by the substantial amino acid sequ<strong>en</strong>ce i<strong>de</strong>ntity of tropomyosins<br />

from unre<strong>la</strong>ted species. For example, shrimp tropomyosin<br />

amino acid sequ<strong>en</strong>ce shares homology of<br />

approximately 60% with non-allerg<strong>en</strong>ic tropomyosins of vertebrates.<br />

Tropomyosin has a rather unique structure in that it is<br />

composed of two polypepti<strong>de</strong> chains each in alpha helix formation<br />

coiled around one another in the coiled-coil formation<br />

16 . Although the structure of tropomyosin is well known,<br />

little information about its B cell epitopes (IgE-binding epitopes)<br />

and no information about the T cell epitopes was avai<strong>la</strong>ble<br />

until rec<strong>en</strong>tly.<br />

In or<strong>de</strong>r to i<strong>de</strong>ntify areas of the tropomyosin molecule<br />

that contain important IgE binding regions, the following strategy<br />

was used by Ayuso et al 17 . Thirty-six over<strong>la</strong>pping pepti<strong>de</strong>s<br />

(15 amino acids long, offset 6 amino acids) were synthesized<br />

that spanned the <strong>en</strong>tire sequ<strong>en</strong>ce of P<strong>en</strong> a 1, shrimp<br />

tropomyosin allerg<strong>en</strong>. Testing the sera from 18 shrimp-allergic<br />

subjects, reactive to P<strong>en</strong> a 1, these synthetic pepti<strong>de</strong>s were<br />

scre<strong>en</strong>ed for IgE antibody reactivity. Based on the preval<strong>en</strong>ce


and int<strong>en</strong>sity of IgE antibody binding, five major IgE binding<br />

regions were i<strong>de</strong>ntified in shrimp tropomyosin (P<strong>en</strong> a 1) 17 .<br />

Further efforts were directed at i<strong>de</strong>ntification of the IgE binding<br />

epitopes (<strong>de</strong>fined as the smallest sequ<strong>en</strong>ce of amino acids<br />

that yields maximal IgE binding) within each region. The<br />

same system of over<strong>la</strong>pping synthetic pepti<strong>de</strong>s was employed<br />

using shorter pepti<strong>de</strong> l<strong>en</strong>gths with varying sizes to i<strong>de</strong>ntify the<br />

minimal pepti<strong>de</strong> that binds IgE. All pepti<strong>de</strong>s were synthesized<br />

and tested as <strong>de</strong>scribed previously.<br />

Using sera from 3 to 8 shrimp-allergic individuals who<br />

recognized a particu<strong>la</strong>r region, 8 IgE-binding epitopes were<br />

i<strong>de</strong>ntified within the 5 IgE-binding regions of P<strong>en</strong> a 1: epitope<br />

1 in region 1, epitope 2 in region 2, epitopes 3a and 3b in<br />

region 3, epitope 4 in region 4 and epitopes 5a, 5b and 5c in<br />

region 5 18 . In some cases the same epitope was recognized<br />

with maximal int<strong>en</strong>sity by all subjects showing IgE reactivity<br />

to a certain region. In other cases, a common sequ<strong>en</strong>ce was<br />

i<strong>de</strong>ntified (common core), recognized by all subjects tested to<br />

that particu<strong>la</strong>r region but the l<strong>en</strong>gth of the whole epitope<br />

recognized pres<strong>en</strong>ted personal variability. IgE binding sites<br />

varied from 8 to 15 amino acid long pepti<strong>de</strong>s, <strong>de</strong>p<strong>en</strong>ding on<br />

the region and the subject studied.<br />

MOLECULAR BASIS AND CLINICAL<br />

SIGNIFICANCE OF CROSS-REACTIVITIES<br />

OF FOOD ALLERGENS OF ANIMAL ORIGIN<br />

Cross-reactivities are found among foods of re<strong>la</strong>ted phylog<strong>en</strong>etic<br />

origin and betwe<strong>en</strong> foods and seemingly unre<strong>la</strong>ted<br />

nonfood allerg<strong>en</strong>s. Milk, eggs, crustacea and fishes are examples<br />

of phylog<strong>en</strong>etically re<strong>la</strong>ted cross-reacting allerg<strong>en</strong>s existing<br />

in certain food families. Nonfood allerg<strong>en</strong>s that crossreact<br />

with foods <strong>de</strong>rived from animals are insects and dust<br />

mites 19 . The origin of food allerg<strong>en</strong> cross-reactivity is still not<br />

clear. The clinical relevance of food allerg<strong>en</strong> cross-reactivity<br />

<strong>de</strong>p<strong>en</strong>ds on the food in question. For example, cross-reactivities<br />

among crustacea are thought to be clinically relevant, since<br />

shrimp allergic subjects can react with crawfish, lobster and<br />

crab; however, although the reactivity to differ<strong>en</strong>t fishes by<br />

RAST and skin test suggests cross-reactivity, the majority of<br />

fish-allergic subjects can eat other fish species or do not react<br />

during food chall<strong>en</strong>ge 20,21 , indicating that the in vitro crossreactivity<br />

may be of limited clinical relevance.<br />

The substantial cross-reactivity among Crustacea appears<br />

to be clinically important 22 ; shrimp-allergic subjects can<br />

react to other crustaceans without additional s<strong>en</strong>sitization. The<br />

cause of this cross-reactivity is probably due to the major<br />

Applications of Molecu<strong>la</strong>r Biology in Food Allergy Allerg<strong>en</strong>s of Animal Origin<br />

allerg<strong>en</strong> tropomyosin, a highly conserved muscle protein.<br />

Allerg<strong>en</strong>ic tropomyosin (P<strong>en</strong> a 1, P<strong>en</strong> i 1, and Met e 1) has<br />

be<strong>en</strong> i<strong>de</strong>ntified in three shrimp species: brown shrimp (P<strong>en</strong>aeus<br />

aztecus) 6 , Indian shrimp (P. indicus) 14 , and greasyback<br />

shrimp (Metap<strong>en</strong>aeus <strong>en</strong>sis) 15 . P<strong>en</strong> a 1-like proteins were<br />

<strong>de</strong>tected in crab, crawfish, and lobster using sera of shrimpallergic<br />

subjects and P<strong>en</strong> a 1-specific monoclonal antibodies 23 .<br />

The amino acid sequ<strong>en</strong>ce simi<strong>la</strong>rity among these differ<strong>en</strong>t<br />

shrimp tropomysosins is very high; for example, the amino<br />

acid sequ<strong>en</strong>ces of Met e 1 and P<strong>en</strong> a 1 only differ in one position.<br />

Inspite of the substantial cross reactivity among p<strong>la</strong>nt<strong>de</strong>rived<br />

allerg<strong>en</strong>s or among animal <strong>de</strong>rived allerg<strong>en</strong>s as <strong>de</strong>scribed<br />

above, there is little if any reports of cross reactivity betwe<strong>en</strong><br />

p<strong>la</strong>nt <strong>de</strong>rived and animal <strong>de</strong>rived allerg<strong>en</strong>s. Certainly from a<br />

phylog<strong>en</strong>etic and structural viewpoint, this makes s<strong>en</strong>se.<br />

Assessm<strong>en</strong>t of IgE antibody reactivity to foods and its<br />

re<strong>la</strong>tionship to specific food-allergic responses may be complicated<br />

by cross-reactivity that can occur among certain food<br />

families and betwe<strong>en</strong> foods and seemingly unre<strong>la</strong>ted allerg<strong>en</strong>s.<br />

Based on the fact that tropomyosin allerg<strong>en</strong>s have be<strong>en</strong> i<strong>de</strong>ntified<br />

in invertebrates such as cockroaches, dust mites, and<br />

shrimp, IgE antibody reactivity to the major shrimp allerg<strong>en</strong><br />

P<strong>en</strong> a 1 was assessed in an unexposed popu<strong>la</strong>tion of Orthodox<br />

Jews who observe Kosher dietary <strong>la</strong>ws that prohibit eating<br />

shellfish 24 . Sera from 9 subjects reporting to an allergy clinic<br />

located in a strictly orthodox town (Bnay Braq, Israel), who<br />

<strong>de</strong>monstrated positive skin tests to shrimp extract, were selected<br />

for study. Subjects were strictly observant with no prior<br />

exposure to seafood (regar<strong>de</strong>d as non-Kosher). Six/9 reported<br />

symptoms of asthma, atopic <strong>de</strong>rmatitis, rhinitis and/or sinusitis.<br />

All had positive skin prick tests to shrimp (P<strong>en</strong>aeus setiferous),<br />

and dust mite (Dematophagoi<strong>de</strong>s farinae, Dematophagoi<strong>de</strong>s<br />

pteronissynus or both); 2/7 subjects tested for<br />

cockroach (mix of B<strong>la</strong>ttel<strong>la</strong> germanica and Perip<strong>la</strong>neta americana)<br />

were found positive.<br />

All sera were tested for IgE antibody reactivity to<br />

shrimp and the major shrimp allerg<strong>en</strong> P<strong>en</strong> a 1 by radioallergosorb<strong>en</strong>t<br />

test (RAST) and immunoblot assay (IB). Crossreactivity<br />

of mite and/or cockroach with shrimp allerg<strong>en</strong>s was<br />

assessed by RAST and immunoblot inhibition assays. Three/9<br />

subjects <strong>de</strong>monstrated positive IgE antibody responses to both<br />

shrimp (RAST 7.0 to 15.2%), and to P<strong>en</strong> a 1 (6.3% to 24.1%).<br />

Significant IgE reactivity to P<strong>en</strong> a 1 and to mite extract was<br />

<strong>de</strong>monstrated in the 3 sera by IB. IgE binding to P<strong>en</strong> a 1 was<br />

inhibited with either mite or cockroach extracts as <strong>de</strong>monstrated<br />

by both RAST (Table II) and IB inhibition analysis. These<br />

studies indicate that IgE antibody reactivity to a major food<br />

23


S. B. Lehrer, et al<br />

Table II. Inhibition of P<strong>en</strong> a 1 IgE reactivity<br />

allerg<strong>en</strong>, shrimp, can occur in an unexposed popu<strong>la</strong>tion of<br />

individuals; subjects allergic to house dust mite and/or cockroach<br />

show substantial reactivity to the major shrimp allerg<strong>en</strong><br />

P<strong>en</strong> a 1 (tropomyosin). Based on inhibition with cockroach<br />

and/or dust mite extracts, this reactivity appears to be due<br />

to exposure to cross-reacting tropomyosins in indoor aeroallerg<strong>en</strong>s.<br />

This observation suggests that individuals may become<br />

inadvert<strong>en</strong>tly s<strong>en</strong>sitized to certain foods without prior<br />

exposure. Furthermore, it may exp<strong>la</strong>in the fact that many skin<br />

test positive individuals do not necessarily <strong>de</strong>velop clinically<br />

significant allergic reactivity to foods.<br />

SUMMARY AND CONCLUSIONS<br />

Although the mortality and morbidity resulting from<br />

food allergy can be quite serious, avoidance has be<strong>en</strong> traditionally<br />

the only recomm<strong>en</strong><strong>de</strong>d treatm<strong>en</strong>t. In<strong>de</strong>ed, our un<strong>de</strong>rstanding<br />

of the immunopathog<strong>en</strong>esis of ev<strong>en</strong>ts leading to induction<br />

of a food allergic reaction, and the molecu<strong>la</strong>r structure of<br />

those molecules, inducing such reactions has only rec<strong>en</strong>tly<br />

begun to be un<strong>de</strong>rstood. Of the 8 major food types or groups<br />

that cause food induced allergic reactions, 4 are of animal origin.<br />

In addition, there are some reports of other groups of animals,<br />

namely mollusks, meat of mammals, and avian meat<br />

that also may cause allergic reactions. In spite of the <strong>la</strong>ck of<br />

interest in the past concerning food allerg<strong>en</strong>s, rec<strong>en</strong>tly there<br />

has be<strong>en</strong> r<strong>en</strong>ewed efforts in better un<strong>de</strong>rstanding the structure<br />

24<br />

Inhibitor % Inhibition<br />

Allerg<strong>en</strong> Conc<strong>en</strong>tration (µg/ml) Orthodox Jews Shrimp Allergic Subjects<br />

White Shrimp 10 105.7 102.8<br />

(Panaeus setiferus) 1 90.3 92.8<br />

0.1 61.2 73.5<br />

0.01 53.1 48.6<br />

Dust Mite 800 63.0 82.1<br />

(Dermatophagoi<strong>de</strong>s farinae) 100 12.0 60.1<br />

10 0.0 31.6<br />

American Cockroach 720 95.7 96.8<br />

(Perip<strong>la</strong>neta americana) 100 37.8 53.8<br />

10 15.6 39.3<br />

Peanut 800 2.3 0.0<br />

of these molecules in re<strong>la</strong>tionship to <strong>de</strong>veloping improved<br />

diagnostic and therapeutic regim<strong>en</strong>s. The adv<strong>en</strong>t of molecu<strong>la</strong>r<br />

biology and its application to studies of food allerg<strong>en</strong>s has helped<br />

advance our knowledge. The major codfish allerg<strong>en</strong>, Gad<br />

c 1, was the first allerg<strong>en</strong> to be thoroughly investigated in the<br />

premolecu<strong>la</strong>r biology era 7 . The allerg<strong>en</strong> structure was accurately<br />

<strong>de</strong>termined, and the epitopes to which IgE antibodies bind<br />

i<strong>de</strong>ntified. This project occurred over a period of approximately<br />

5 years in contrast to curr<strong>en</strong>t allerg<strong>en</strong> i<strong>de</strong>ntification and<br />

characterization studies that now take months rather than years<br />

to complete.<br />

As an example of characterization of a major food allerg<strong>en</strong><br />

from an animal source, we reviewed our investigations of<br />

the major shrimp allerg<strong>en</strong>, shrimp tropomyosin. The i<strong>de</strong>ntification<br />

of eight IgE binding epitopes in this molecule and the<br />

fact that tropomyosin may be an important inha<strong>la</strong>nt allerg<strong>en</strong> in<br />

house dust mite and cockroach may exp<strong>la</strong>in our finding that<br />

an unexposed popu<strong>la</strong>tion of orthodox Jews has reactivity to<br />

shrimp tropomyosin. Most likely this is due to cross reactivity<br />

betwe<strong>en</strong> invertebrate tropomyosins since these individuals are<br />

also allergic to house dust mite, and cockroach. This observation<br />

is very important since it may exp<strong>la</strong>in the fact that some<br />

pati<strong>en</strong>ts who are skin test positive to a variety of foods, do not<br />

necessarily have clinical reactivity. It also suggests that perhaps<br />

we may need to further elevate the level by which allerg<strong>en</strong><br />

reactivity is measured. Could those epitopes to which<br />

pati<strong>en</strong>ts react <strong>de</strong>termine the course of their disease? It is possible<br />

that the affinity and/or spacial configuration of epitopes


to which IgE reacts affects the occurr<strong>en</strong>ce or severity of allergic<br />

diseases? The application of molecu<strong>la</strong>r biology to the<br />

study of food allerg<strong>en</strong>s of animal origin will help us further<br />

elucidate this.<br />

ACKNOWLEDGEMENT<br />

The authors wish to thank Pat Constance and Patricia<br />

Kirsch Duboue in preparation of this manuscript. Support for<br />

writing this article was provi<strong>de</strong>d by the National Fisheries Institute<br />

and the Departm<strong>en</strong>t of Medicine, Tu<strong>la</strong>ne University<br />

School of Medicine.<br />

REFERENCES<br />

1. Yunginger JW, Swe<strong>en</strong>ey KG, Sturner WQ, Giannandrea LA, Teig<strong>la</strong>nd,<br />

JD, Bray M, B<strong>en</strong>son PA, York JA, Biedrzycki L, Squil<strong>la</strong>ce DL,<br />

Helm RM. Fatal food induced anaphy<strong>la</strong>xis. JAMA 1988; 260: 1450-<br />

1452.<br />

2. Har<strong>la</strong>n<strong>de</strong>r SK. Biotechnology: a means for improving our food<br />

supply. Food Technol 1991; 45:841, 86, 91-92, 95.<br />

3. Kessler OA, Taylor MR, Maryanski JH, F<strong>la</strong>mm EL, Kahl LS. The<br />

safety of foods <strong>de</strong>veloped by biotechnology. Sci<strong>en</strong>ce 1992; 256:<br />

1747-1832.<br />

4. Lehrer S, Reese G. Food Allerg<strong>en</strong>s: Implications for Biotechnology.<br />

Biotechnology and Safety Assessm<strong>en</strong>t, 2nd Edition. J. Thomas, ed.,<br />

pp. 127-150 Taylor and Francis 1998.<br />

5. Reese G. Lehrer SB, Food Allerg<strong>en</strong>s. In: Food Hypers<strong>en</strong>sitivity and<br />

Adverse Reactions. Frieri/Kettelhut, ed., pp 69-97, Marcel Dekker,<br />

Inc., New York, 1999.<br />

6. Daul CB, S<strong>la</strong>ttery M, Reese G, Lehrer SB. I<strong>de</strong>ntification of the<br />

major brown shrimp (P<strong>en</strong>aeus aztecus) allerg<strong>en</strong> as the muscle<br />

protein tropomyosin. Int Arch Allergy Immunol 1994; 105: 49-<br />

55.<br />

7. Elsayed S, B<strong>en</strong>nich H. The primary structure of allerg<strong>en</strong> M from<br />

cod. Scand J Immunol 1975; 4: 203-208.<br />

8. Fuchs RL, Astwood JD. Allerg<strong>en</strong>icity assessm<strong>en</strong>t of foods <strong>de</strong>rived<br />

from g<strong>en</strong>etically modified foods. Food technol 1996; 50: 83-88.<br />

9. Robert K. Bush and Susan L. Hefle. Food Allerg<strong>en</strong>s. Critical Reviews<br />

in Food Sci<strong>en</strong>ce and Nutrition 1996; 36(s): S119-S163.<br />

M. Fernán<strong>de</strong>z-Rivas<br />

Unidad <strong>de</strong> Alergia.<br />

Fundación Hospital Alcorcón.<br />

Madrid.<br />

Pot<strong>en</strong>cial diagnóstico <strong>de</strong> los alerg<strong>en</strong>os purificados <strong>de</strong> alim<strong>en</strong>tos<br />

10. Internet Symposium on Food Allerg<strong>en</strong>s, Mattias Besler, Editor,<br />

1999-2000.<br />

11. Seafood Allergy and Allerg<strong>en</strong>s: A Review. Lehrer SB, Ayaso, R,<br />

Reese, G. J. Submitted for publication.<br />

12. Crespo JF, Pascual C, Ferrer A, Burks AW, Díaz P<strong>en</strong>a JM, Esteban<br />

MM. Egg white-specific IgE level as a tolerance marker in the<br />

IgE level as a tolerance marker in the follow-up of egg allergy. Allergy<br />

Proc 1994; 15: 73-76.<br />

13. Elsayed S, Aas K, Slette K, Johansson SGO. Tryptic cleavage of<br />

a homog<strong>en</strong>ous cod fish allerg<strong>en</strong> and iso<strong>la</strong>tion of two active polypepti<strong>de</strong><br />

fragm<strong>en</strong>ts. Immunochemistry 1972; 9: 647-661.<br />

14. Shatin KN, Martin BM, Nagpal S, Metcalfe DD, Sabba-Rao PV.<br />

I<strong>de</strong>ntification of tropomyosin as the major shrimp allerg<strong>en</strong> and characterization<br />

of its IgE binding epitopes. J Immunol 1993; 151:<br />

5354-5363.<br />

15. Leung PSC, Chu KH, Chow WK, Aftab A, Ban<strong>de</strong>a CI, Kwan HS,<br />

Nagy SM, Gershwin ME. Cloning, expression and primary structure<br />

of Metap<strong>en</strong>aeus <strong>en</strong>sis tropomyosin, the major heat-stable shrimp<br />

allerg<strong>en</strong>. J. Allergy Clin Immunol 1994; 92: 837-845.<br />

16. Smillie LB. Structure and functions of tropomyosins from muscle<br />

and non-muscle sources. Tr<strong>en</strong>ds Biochem Sci 1979; 4: 151-155.<br />

17. Ayuso R, Reese G, Lehrer SB. I<strong>de</strong>ntification of continuous, allerg<strong>en</strong>ic<br />

regions of the major shrimp allerg<strong>en</strong> P<strong>en</strong> a 1 (tropomyosin). Int<br />

Arch Allergy Immunol 2001 (Submitted).<br />

18. Reese G, Ayuso R, Leong-Kee, P<strong>la</strong>nte M, S, Lehrer S. Protein<br />

structure and allerg<strong>en</strong>icity: epitope analysis of shrimp tropomyosin<br />

(P<strong>en</strong> a 1). 2001 (Submitted).<br />

19. Lehrer SB and Reese G. Cross-reactivity betwe<strong>en</strong> cockroach<br />

allerg<strong>en</strong>s and arthropod, nemato<strong>de</strong> and mammalian allerg<strong>en</strong>s. Revue<br />

Francaise D’Allergologie 1998; 38: 846-850.<br />

20. Aas K. Studies of hypers<strong>en</strong>sitivity to fish: a clinical study. Int<br />

Arch Allergy Clin Immunol 1966; 29: 346-363.<br />

21. Bernhisel-Broadb<strong>en</strong>t J, Scanlon SM, Sampson HA. Fish hypers<strong>en</strong>sitivity.<br />

I. In vitro and oral chall<strong>en</strong>ge results in fish-allergic pati<strong>en</strong>ts.<br />

J Allergy Clin Immunol 1992; 89: 730-737.<br />

22. Daul CB, Morgan JE, Waring NP, McCants ML, Hughes J, Lehrer<br />

SB. Immunological evaluation of shrimp-allergic individuals. J.<br />

Allergy Clin Immunol 1987; 80: 716-722.<br />

23. Daul CB, S<strong>la</strong>ttery M, Morgan JE, Lehrer SB. Common Crustacea<br />

allerg<strong>en</strong>s: i<strong>de</strong>ntification of B cell epitopes with the shrimp specific<br />

monoclonal antibodies. In: Kraft D, Sehon A, eds. Molecu<strong>la</strong>r Biology<br />

and Immunology of Allerg<strong>en</strong>s. Pp 291-294.<br />

24. Fernan<strong>de</strong>s J, Reshef A, Ayuso R, Patton L, Reese G, and Lehrer<br />

S. IgE antibody reactivity to the major shrimp allerg<strong>en</strong> in unexposed<br />

Orthodox Jews. J Allergy and Clinical Immunology (abstract) in<br />

press.<br />

Pot<strong>en</strong>cial diagnóstico <strong>de</strong> los alerg<strong>en</strong>os<br />

purificados <strong>de</strong> alim<strong>en</strong>tos<br />

La r<strong>en</strong>tabilidad diagnóstica <strong>de</strong> <strong>la</strong>s pruebas in vivo e in vitro realizadas<br />

con alim<strong>en</strong>tos vegetales (especialm<strong>en</strong>te frutas y hortalizas) es baja,<br />

si<strong>en</strong>do uno <strong>de</strong> los factores cruciales <strong>la</strong> calidad <strong>de</strong> los extractos empleados.<br />

En <strong>la</strong> última década se ha producido un gran avance <strong>en</strong> el conocimi<strong>en</strong>to <strong>de</strong><br />

los alerg<strong>en</strong>os <strong>de</strong> alim<strong>en</strong>tos vegetales, habiéndose i<strong>de</strong>ntificado, clonado y se-<br />

25


M. Fernán<strong>de</strong>z-Rivas<br />

cu<strong>en</strong>ciado un notable número <strong>de</strong> proteínas alergénicas. Sin<br />

embargo, por el mom<strong>en</strong>to, esto no ha redundado <strong>en</strong> una<br />

mejora <strong>de</strong> <strong>la</strong>s pruebas diagnósticas accesibles al alergólogo.<br />

En <strong>la</strong> actualidad, <strong>en</strong> <strong>la</strong> Unidad <strong>de</strong> Alergia <strong>de</strong> <strong>la</strong> Fundación<br />

Hospital Alcorcón, estamos llevando a cabo un trabajo<br />

<strong>de</strong> investigación (FIS 00/0179) sobre <strong>la</strong> utilidad diagnóstica<br />

<strong>de</strong> los alerg<strong>en</strong>os purificados <strong>de</strong> melocotón. La base<br />

ci<strong>en</strong>tífica y los resultados iniciales con el alerg<strong>en</strong>o mayor<br />

<strong>de</strong> melocotón Pru p 3 (proteína transportadora <strong>de</strong> lípidos)<br />

aplicado <strong>en</strong> pruebas cutáneas, son el objeto <strong>de</strong> esta pres<strong>en</strong>tación.<br />

PROBLEMÁTICA ACTUAL EN EL<br />

DIAGNÓSTICO<br />

DE LA ALERGIA A FRUTAS<br />

La <strong>alergia</strong> a frutas frescas es <strong>la</strong> causa más frecu<strong>en</strong>te<br />

<strong>de</strong> <strong>alergia</strong> a alim<strong>en</strong>tos <strong>en</strong> paci<strong>en</strong>tes adultos 1-3 . Las más frecu<strong>en</strong>tem<strong>en</strong>te<br />

implicadas son <strong>la</strong>s pert<strong>en</strong>eci<strong>en</strong>tes a <strong>la</strong> familia<br />

Rosaceae, que compr<strong>en</strong><strong>de</strong> frutas <strong>de</strong> amplio consumo <strong>en</strong><br />

nuestro país como son melocotón, manzana, pera, albaricoque,<br />

cereza y cirue<strong>la</strong>, <strong>en</strong>tre otras 1,2,4 . De todas <strong>la</strong>s rosáceas,<br />

<strong>la</strong> que induce reacciones con mayor frecu<strong>en</strong>cia <strong>en</strong> nuestro<br />

área es el melocotón 4,5 (Fig. 1).<br />

26<br />

1989 paci<strong>en</strong>tes mayores <strong>de</strong> 14 años estudiados<br />

76 alérgicos a alim<strong>en</strong>tos<br />

76/1989 = 3,82%<br />

57 alérgicos a frutas<br />

57/76 = 75%<br />

39 alérgicos a rosáceas<br />

(>90% melocotón)<br />

39/57 = 68,42%<br />

39/1989 = 1,96%<br />

Fig. 1. Frecu<strong>en</strong>cia <strong>de</strong> <strong>alergia</strong> a rosáceas. Datos <strong>de</strong> <strong>la</strong> Unidad <strong>de</strong><br />

Alergia <strong>de</strong>l Hospital Ntra. Sra. <strong>de</strong> Sonsoles <strong>de</strong> Ávi<strong>la</strong>, años 1996-97.<br />

El diagnóstico se estableció por historia clínica junto con prueba<br />

cutánea y/o CAP y/o provocación oral abierta positiva.<br />

Para llevar a cabo el diagnóstico <strong>de</strong> <strong>alergia</strong> a un alim<strong>en</strong>to<br />

es necesario comprobar que éste es <strong>la</strong> causa <strong>de</strong> los<br />

síntomas referidos por el paci<strong>en</strong>te mediante una prueba <strong>de</strong><br />

provocación, si<strong>en</strong>do <strong>la</strong> mejor prueba diagnóstica <strong>la</strong> provocación<br />

oral doble ciego contro<strong>la</strong>da con p<strong>la</strong>cebo (PODCCP).<br />

A<strong>de</strong>más, es necesario <strong>de</strong>mostrar que existe un mecanismo<br />

inmunológico subyac<strong>en</strong>te mediado por IgE, mediante <strong>la</strong><br />

realización <strong>de</strong> pruebas cutáneas (PC) y <strong>de</strong>terminación <strong>de</strong><br />

IgE específica sérica 6,7 .<br />

Sin embargo, <strong>en</strong> <strong>la</strong> <strong>alergia</strong> a frutas <strong>la</strong> aplicación <strong>de</strong><br />

esta metodología ti<strong>en</strong>e unas limitaciones importantes. Las<br />

pruebas diagnósticas serológicas y cutáneas ti<strong>en</strong><strong>en</strong> una baja<br />

eficacia diagnóstica <strong>de</strong>bido a <strong>la</strong> inestabilidad <strong>de</strong> los alerg<strong>en</strong>os<br />

<strong>de</strong> frutas, y a su importante reactividad cruzada con<br />

otros alim<strong>en</strong>tos y pól<strong>en</strong>es.<br />

La mayoría <strong>de</strong> los alerg<strong>en</strong>os <strong>de</strong> frutas son muy s<strong>en</strong>sibles<br />

a <strong>la</strong> temperatura y pH, y pier<strong>de</strong>n su alerg<strong>en</strong>icidad con<br />

el almac<strong>en</strong>ami<strong>en</strong>to, y durante los procesos habituales <strong>de</strong><br />

extracción 8 . Esto conduce a una rápida <strong>de</strong>gradación y pérdida<br />

<strong>de</strong> <strong>la</strong> actividad biológica, produci<strong>en</strong>do resultados falsam<strong>en</strong>te<br />

negativos. Para subsanarlo se utiliza <strong>la</strong> prueba<br />

cutánea con <strong>la</strong> fruta fresca: el prick-prick 9 . Esta prueba es<br />

<strong>de</strong> realización simple, reproducible, fiable, y ti<strong>en</strong>e una r<strong>en</strong>tabilidad<br />

diagnóstica superior a <strong>la</strong>s PC realizadas con<br />

extractos comerciales 6,7,10-12 (Tab<strong>la</strong> I). Sus principales inconv<strong>en</strong>i<strong>en</strong>tes<br />

son <strong>la</strong> imposibilidad para su estandarización, y <strong>la</strong><br />

<strong>de</strong>p<strong>en</strong><strong>de</strong>ncia <strong>de</strong> <strong>la</strong> disponibilidad <strong>de</strong> <strong>la</strong> fruta, lo que supone<br />

una notable limitación <strong>en</strong> el caso <strong>de</strong> frutas estacionales.<br />

Existe una importante reactividad cruzada <strong>en</strong>tre los<br />

alerg<strong>en</strong>os <strong>de</strong> rosáceas, y <strong>de</strong> éstas con pól<strong>en</strong>es, <strong>la</strong> cual conduce<br />

a frecu<strong>en</strong>tes resultados positivos <strong>en</strong> paci<strong>en</strong>tes tolerantes.<br />

Estos “falsos positivos” son sujetos que aunque pres<strong>en</strong>tan<br />

IgE específica para el alerg<strong>en</strong>o, toleran <strong>la</strong> ingestión<br />

<strong>de</strong> <strong>la</strong> fruta.<br />

En resum<strong>en</strong>, <strong>la</strong> <strong>la</strong>bilidad <strong>de</strong> los alerg<strong>en</strong>os <strong>de</strong> frutas<br />

conduce a una importante pérdida <strong>de</strong> <strong>la</strong> s<strong>en</strong>sibilidad (Se)<br />

(aum<strong>en</strong>to <strong>de</strong>l número <strong>de</strong> falsos negativos), y <strong>la</strong> reactividad<br />

cruzada a una pérdida <strong>de</strong> especificidad (Es) (aum<strong>en</strong>to <strong>de</strong><br />

los falsos positivos) (Fig. 2). En <strong>la</strong> Tab<strong>la</strong> I se recog<strong>en</strong> datos<br />

<strong>de</strong> s<strong>en</strong>sibilidad y especificidad <strong>de</strong> pruebas cutáneas y serológicas<br />

con difer<strong>en</strong>tes frutas. Debido a <strong>la</strong>s limitaciones <strong>de</strong><br />

<strong>la</strong> capacidad diagnóstica <strong>de</strong> estas pruebas el diagnóstico<br />

<strong>de</strong>finitivo so<strong>la</strong>m<strong>en</strong>te se realiza con pruebas <strong>de</strong> provocación,<br />

si<strong>en</strong>do el gold standard <strong>la</strong> PODCCP.<br />

La PODCCP es una técnica compleja, que requiere<br />

gran número <strong>de</strong> personal sanitario y consume mucho tiempo,<br />

lo que limita su uso <strong>en</strong> <strong>la</strong> práctica clínica habitual. La<br />

ya com<strong>en</strong>tada <strong>la</strong>bilidad <strong>de</strong> los alerg<strong>en</strong>os obliga a <strong>la</strong> prepa-


Tab<strong>la</strong> I. S<strong>en</strong>sibilidad (%) <strong>de</strong> <strong>la</strong>s pruebas diagnósticas <strong>en</strong> <strong>la</strong> <strong>alergia</strong> a rosáceas<br />

ración <strong>de</strong> <strong>la</strong> fruta y el vehículo <strong>en</strong> el que va escondida,<br />

inmediatam<strong>en</strong>te antes <strong>de</strong> <strong>la</strong> administración al paci<strong>en</strong>te. El<br />

disponer <strong>de</strong> ciertas frutas so<strong>la</strong>m<strong>en</strong>te durante unos meses al<br />

año constituye un inconv<strong>en</strong>i<strong>en</strong>te adicional. Por todas estas<br />

razones, <strong>la</strong> PODCCP se utiliza casi exclusivam<strong>en</strong>te con<br />

fines <strong>de</strong> investigación. A<strong>de</strong>más, el diagnóstico se basa <strong>en</strong> <strong>la</strong><br />

inducción <strong>de</strong> una reacción alérgica (bajo condiciones contro<strong>la</strong>das),<br />

cuya int<strong>en</strong>sidad no es pre<strong>de</strong>cible. Sería, por tanto,<br />

<strong>de</strong>seable disponer <strong>de</strong> una técnica diagnóstica fácil <strong>de</strong><br />

realizar, ex<strong>en</strong>ta <strong>de</strong> riesgos, y eficaz.<br />

Pot<strong>en</strong>cial diagnóstico <strong>de</strong> los alerg<strong>en</strong>os purificados <strong>de</strong> alim<strong>en</strong>tos<br />

Serie Fruta Prick-prick Prick test con IgE específica<br />

Fruta fresca extracto comercial sérica<br />

Orto<strong>la</strong>ni et al. 2 Melocotón 86 11 59<br />

Manzana 84 4 70<br />

Orto<strong>la</strong>ni et al. 10 Melocotón 59 14 –<br />

Manzana 81 2 70<br />

Pera 43 0 –<br />

Cuesta et al. 11 Melocotón 100 4; 5; 13; 74<br />

Rodríguez et al. 12 Melocotón 71 – 68<br />

Manzana 53 – 65<br />

Pera 53 – 29<br />

Albaricoque 41 – 53<br />

Cirue<strong>la</strong> 56 – 47<br />

Fresa 38 – 41<br />

Fig. 2.<br />

Prueba<br />

diagnóstica<br />

Diagnóstico (gold standard)<br />

+<br />

–<br />

+<br />

–<br />

a b<br />

c d<br />

n 1<br />

a: verda<strong>de</strong>ros positivos<br />

b: falsos positivos<br />

c: falsos negativos<br />

d: verda<strong>de</strong>ros negativos<br />

n 2<br />

m 1<br />

m 2<br />

T<br />

S<strong>en</strong>sibilidad (Se): a/n 1<br />

Especificidad (Es): d/n 2<br />

Efici<strong>en</strong>cia: a+d/T<br />

ALERGENOS DE ROSÁCEAS<br />

Los principales alerg<strong>en</strong>os hasta ahora implicados <strong>en</strong><br />

<strong>la</strong> <strong>alergia</strong> a rosáceas son <strong>la</strong>s proteínas homólogas <strong>de</strong> Bet<br />

v 1, <strong>la</strong>s profilinas, y <strong>la</strong>s proteínas transportadoras <strong>de</strong> lípidos<br />

(PTL). Proteínas <strong>de</strong> estos tres grupos han sido clonadas<br />

y secu<strong>en</strong>ciadas <strong>en</strong> difer<strong>en</strong>tes frutas y pól<strong>en</strong>es. Se ha<br />

podido <strong>de</strong>mostrar que <strong>de</strong>ntro <strong>de</strong> cada grupo ti<strong>en</strong><strong>en</strong> una<br />

homología importante <strong>en</strong> sus secu<strong>en</strong>cias <strong>de</strong> aminoácidos,<br />

lo que explica <strong>la</strong> reactividad cruzada a nivel <strong>de</strong> epítopos<br />

IgE.<br />

La <strong>alergia</strong> a rosáceas <strong>en</strong> los países <strong>de</strong>l C<strong>en</strong>tro y Norte<br />

<strong>de</strong> Europa, zonas ricas <strong>en</strong> abedules, se asocia a <strong>la</strong> polinosis<br />

<strong>de</strong> abedul. Esto es <strong>de</strong>bido a que <strong>en</strong> esas frutas se<br />

expresan unas proteínas altam<strong>en</strong>te alergénicas re<strong>la</strong>cionadas<br />

con <strong>la</strong> patogénesis (proteínas PR), que pres<strong>en</strong>tan una alta<br />

homología <strong>en</strong> sus secu<strong>en</strong>cias con el Bet v 1, alerg<strong>en</strong>o<br />

mayor <strong>de</strong>l pol<strong>en</strong> <strong>de</strong> abedul. Los alerg<strong>en</strong>os homólogos <strong>de</strong><br />

Bet v 1 están implicados <strong>en</strong> más <strong>de</strong>l 90% <strong>de</strong> los paci<strong>en</strong>tes<br />

alérgicos a rosáceas <strong>de</strong>l Norte y C<strong>en</strong>tro <strong>de</strong> Europa 13-18 . En<br />

esta zona <strong>la</strong> rosácea más inductora <strong>de</strong> reacciones es <strong>la</strong> manzana,<br />

<strong>de</strong>bido a <strong>la</strong> alta homología <strong>en</strong>tre Bet v 1 y Mal d 1,<br />

el alerg<strong>en</strong>o mayor <strong>de</strong> manzana. Sin embargo, <strong>en</strong> <strong>la</strong> zona<br />

C<strong>en</strong>tro <strong>de</strong> España, área virtualm<strong>en</strong>te <strong>de</strong>sprovista <strong>de</strong> abedules,<br />

<strong>la</strong> s<strong>en</strong>sibilización a Bet v 1 se <strong>de</strong>tecta <strong>en</strong> m<strong>en</strong>os <strong>de</strong>l<br />

10% <strong>de</strong> los alérgicos a rosáceas 19,20 .<br />

Otro alerg<strong>en</strong>o implicado <strong>en</strong> <strong>la</strong> <strong>alergia</strong> a rosáceas es <strong>la</strong><br />

profilina, proteína altam<strong>en</strong>te conservada, pres<strong>en</strong>te <strong>en</strong> todas<br />

<strong>la</strong>s célu<strong>la</strong>s eucariotas, que forma complejos con <strong>la</strong> actina<br />

(profi<strong>la</strong>ctina). La profilina se comporta como alerg<strong>en</strong>o <strong>en</strong><br />

27


M. Fernán<strong>de</strong>z-Rivas<br />

pól<strong>en</strong>es y <strong>en</strong> una gran variedad <strong>de</strong> alim<strong>en</strong>tos <strong>de</strong> orig<strong>en</strong><br />

vegetal, incluy<strong>en</strong>do <strong>la</strong>s frutas rosáceas 21-23 . Su importancia<br />

también varía con el área geográfica. En los paci<strong>en</strong>tes<br />

alérgicos a pol<strong>en</strong> <strong>de</strong> abedul y rosáceas <strong>de</strong>l C<strong>en</strong>tro y Norte<br />

<strong>de</strong> Europa <strong>la</strong> profilina es un alerg<strong>en</strong>o m<strong>en</strong>or (


<strong>en</strong>ing para <strong>de</strong>tectar s<strong>en</strong>sibilización a melocotón. A cualquier<br />

punto <strong>de</strong> corte, <strong>la</strong> Se <strong>de</strong> <strong>la</strong> PC con Pru p 3 es inferior<br />

a <strong>la</strong> <strong>de</strong>l prick-prick, pero <strong>la</strong> Es es c<strong>la</strong>ram<strong>en</strong>te superior. Respecto<br />

al CAP <strong>la</strong>s difer<strong>en</strong>cias <strong>en</strong> Se y Es son m<strong>en</strong>os marcadas.<br />

Es notable <strong>la</strong> alta Es (92%) <strong>de</strong> <strong>la</strong> PC con Pru p 3 cuando<br />

se consi<strong>de</strong>ra positivo un tamaño igual o superior al<br />

control <strong>de</strong> histamina: el VPP es <strong>de</strong>l 92%, <strong>de</strong> manera que<br />

so<strong>la</strong>m<strong>en</strong>te 8 <strong>de</strong> cada 100 paci<strong>en</strong>tes diagnosticados <strong>de</strong> <strong>alergia</strong><br />

sin PODCCP estarían mal c<strong>la</strong>sificados. La baja Se<br />

(33%) a ese nivel imposibilita su uso como scre<strong>en</strong>ing <strong>de</strong><br />

s<strong>en</strong>sibilización. Globalm<strong>en</strong>te, <strong>la</strong> efici<strong>en</strong>cia <strong>de</strong> <strong>la</strong> PC con Pru<br />

p 3, es <strong>de</strong>cir <strong>la</strong> capacidad para c<strong>la</strong>sificar correctam<strong>en</strong>te a<br />

los paci<strong>en</strong>tes como verda<strong>de</strong>ros positivos y negativos, <strong>de</strong>crece<br />

al subir el punto <strong>de</strong> corte (61%, 59%, 50%).<br />

La utilización <strong>de</strong> Pru p 3 <strong>en</strong> el diagnóstico <strong>de</strong> <strong>la</strong> <strong>alergia</strong><br />

a melocotón ti<strong>en</strong>e <strong>la</strong> v<strong>en</strong>taja <strong>de</strong> que pue<strong>de</strong> ser estandarizado<br />

y ofrecer una alta reproducibilidad, características que<br />

<strong>la</strong> fruta fresca y los extractos hasta ahora comercializados<br />

no pres<strong>en</strong>tan. A<strong>de</strong>más, su disponibilidad durante todo el año<br />

está garantizada. A <strong>la</strong> luz <strong>de</strong> los datos <strong>de</strong> que ahora disponemos,<br />

<strong>la</strong> PC con Pru p 3 no parece ofrecer v<strong>en</strong>tajas <strong>en</strong> Se,<br />

pero su superior Es es atractiva. La conc<strong>en</strong>tración <strong>de</strong> Pru p<br />

3 testada <strong>de</strong>mostró una Se superior (91%, IC95%: 80%-<br />

98%) <strong>en</strong> un estudio previo 32 . La proce<strong>de</strong>ncia <strong>de</strong> <strong>la</strong> mitad <strong>de</strong><br />

los paci<strong>en</strong>tes allí estudiados <strong>de</strong> un área geográfica difer<strong>en</strong>te<br />

(Murcia), y el no haberse establecido el diagnóstico por<br />

PODCCP pue<strong>de</strong>n explicar <strong>la</strong> difer<strong>en</strong>te Se. La Se <strong>de</strong> PC con<br />

conc<strong>en</strong>traciones superiores <strong>de</strong> Pru p 3 está si<strong>en</strong>do investigada<br />

<strong>en</strong> <strong>la</strong> actualidad. Adicionalm<strong>en</strong>te, es necesario ampliar el<br />

tamaño muestral para po<strong>de</strong>r establecer conclusiones <strong>de</strong>finitivas.<br />

La utilización combinada <strong>de</strong> otros alerg<strong>en</strong>os importantes<br />

<strong>en</strong> nuestros paci<strong>en</strong>tes alérgicos al melocotón, como <strong>la</strong><br />

profilina, pue<strong>de</strong> mejorar <strong>la</strong> efici<strong>en</strong>cia diagnóstica.<br />

Pot<strong>en</strong>cial diagnóstico <strong>de</strong> los alerg<strong>en</strong>os purificados <strong>de</strong> alim<strong>en</strong>tos<br />

Tab<strong>la</strong> II. S<strong>en</strong>sibilidad (Se), especificidad (Es) y valores predictivos positivo (VPP) y negativo (VPN), y efici<strong>en</strong>cia (Ef) <strong>de</strong> <strong>la</strong>s<br />

pruebas diagnósticas <strong>en</strong> <strong>la</strong> <strong>alergia</strong> a melocotón<br />

Prueba diagnóstica Punto <strong>de</strong> corte Se (%) Es (%) VPP (%) VPN (%) Ef (%)<br />

Prick-prick 7 mm2 88 15 73 33 67<br />

Melocotón fresco 50% control histamina 79 39 77 42 67<br />

(piel) 100% control histamina 61 62 80 38 61<br />

CAP 0,35 kU/L 58 46 73 30 54<br />

0,70 kU/L 55 62 78 35 57<br />

3,5 kU/L 27 85 82 31 43<br />

Prick test con 7 mm2 61 62 80 38 61<br />

Pru p 3 50% control histamina 55 69 82 38 59<br />

100% control histamina 33 92 92 35 50<br />

AGRADECIMIENTOS<br />

A Rosa Rodríguez Pérez, por su trabajo <strong>en</strong> <strong>la</strong> purificación<br />

<strong>de</strong> Pru p 3, y a Eloína González Mancebo, por el<br />

trabajo clínico realizado. A los Dres. Rosa Sánchez-Monge<br />

y Gabriel Salcedo <strong>de</strong> <strong>la</strong> E.T.S. <strong>de</strong> Ing<strong>en</strong>ieros Agrónomos<br />

<strong>de</strong> Madrid por su ayuda <strong>en</strong> <strong>la</strong> purificación <strong>de</strong> Pru p 3.<br />

A los Dres. Mª Dolores Alonso, Ana Rosado, Miguel<br />

Angel Tejedor y Concepción Vi<strong>la</strong>, <strong>de</strong> <strong>la</strong> Unidad <strong>de</strong> Alergia<br />

<strong>de</strong> <strong>la</strong> FHA por su contribución <strong>en</strong> el estudio clínico. Este<br />

proyecto <strong>de</strong> investigación ha sido financiado con una beca<br />

FIS (00/0179), y ha recibido el Premio a <strong>la</strong> Investigación<br />

KPMG-Fundación Hospital Alcorcón <strong>de</strong>l año 2000.<br />

REFERENCIAS BIBLIOGRÁFICAS<br />

1. Eriksson NE. Food hypers<strong>en</strong>sitivity reported by pati<strong>en</strong>ts with asthma<br />

and hay fever. Allergy 1978; 33: 189-196.<br />

2. Orto<strong>la</strong>ni C, Ispano M, Pastorello EA, Bigi A, Ansaloni R. The oral<br />

allergy syndrome. Ann Allergy 1988; 61: 47-52.<br />

3. Sociedad Españo<strong>la</strong> <strong>de</strong> Alergología e Inmunología Clínica y Alergia<br />

e Inmunología Abelló S.A. Alergia a Alim<strong>en</strong>tos. En: Alergológica. Factores<br />

epi<strong>de</strong>miológicos, clínicos y socioeconómicos <strong>de</strong> <strong>la</strong>s <strong>en</strong>fermeda<strong>de</strong>s<br />

alérgicas <strong>en</strong> España. Madrid 1995; pag.: 163-183.<br />

4. Hernán<strong>de</strong>z J, García Sellés FJ, Pagán JA, Negro JM. Hipers<strong>en</strong>sibilidad<br />

inmediata a frutas y verduras y polinosis. Allergol Immunopathol<br />

1985; 13: 197-211.<br />

5. Fernán<strong>de</strong>z Rivas M, van Ree R, Martínez M, Cuevas M. Alergia a<br />

Rosáceas. Características clínicas y alerg<strong>en</strong>os implicados. Rev Esp<br />

Alergol Inmunol Clin 1996; 11 (Extr. 2): 50-59.<br />

6. Bruijnzeel-Koom<strong>en</strong> C, Orto<strong>la</strong>ni C, Aas K, Blindslev-J<strong>en</strong>s<strong>en</strong> C,<br />

Björkstén B, Moneret-Vautrin D, Wüthrich B. Adverse reactions to food.<br />

Position paper. Allergy 1995; 50: 623-635.<br />

7. Ibáñez MD, Alonso E, B<strong>la</strong>nco C, Cisteró AM, Cuesta Herranz J,<br />

Fernán<strong>de</strong>z Rivas M, et al. (Comité <strong>de</strong> Reacciones Adversas a Alim<strong>en</strong>tos<br />

<strong>de</strong> <strong>la</strong> SEAIC). Metodología diagnóstica <strong>en</strong> <strong>la</strong> <strong>alergia</strong> a alim<strong>en</strong>tos.<br />

Rev Esp Alergol Immunol Clin 1999; 14: 50-62.<br />

29


C. B<strong>la</strong>nco<br />

8. Björkstén F, Halmepuro L, Hannukse<strong>la</strong> M, Lahti A. Extraction and<br />

properties of apple allerg<strong>en</strong>s. Allergy 1980; 35: 671-677.<br />

9. Dreborg S, Foucard T. Allergy to apple, carrot and potato in childr<strong>en</strong><br />

with birch poll<strong>en</strong> allergy. Allergy 1983; 38: 167-172.<br />

10. Orto<strong>la</strong>ni C, Ispano M, Pastorello EA, Ansaloni R, Magri GC.<br />

Comparison of results of skin prick tests (with fresh foods and commercial<br />

food extracts) and RAST in 100 pati<strong>en</strong>ts with oral allergy<br />

syndrome. J Allergy Clin Immunol 1989; 83: 683-690.<br />

11. Cuesta J, Lázaro M, Martínez A, Alvarez-Cuesta E, Figueredo E,<br />

Martínez J, et al. A method for quantitation of food biologic activity:<br />

Results with peach allerg<strong>en</strong> extracts. J Allergy Clin Immunol 1998;<br />

102: 275-280.<br />

12. Rodríguez J, Crespo JF, López Rubio A, <strong>de</strong> <strong>la</strong> Cruz-Bertolo J, Ferrando-Vivas<br />

P, Vives R, et al. Clinical cross-reactivity among foods of<br />

the Rosaceae family. J Allergy Clin Immunol 2000; 106: 183-189.<br />

13. Breit<strong>en</strong>e<strong>de</strong>r H, Pett<strong>en</strong>burger K, Bito A, Val<strong>en</strong>ta R, Kraft D, Rumpold<br />

H, et al. The g<strong>en</strong>e coding for the major birch poll<strong>en</strong> allerg<strong>en</strong>,<br />

Bet v 1, is highly homologous to a pea disease resistance response<br />

g<strong>en</strong>e. EMBO J 1989; 8: 1935-1938.<br />

14. Val<strong>en</strong>ta R, Breit<strong>en</strong>e<strong>de</strong>r H, Pett<strong>en</strong>burger K, Breit<strong>en</strong>bach M, Rumpold<br />

H, Kraft D, et al. Homology of the major birch poll<strong>en</strong> allerg<strong>en</strong>,<br />

Bet v I, with the major poll<strong>en</strong> allerg<strong>en</strong>s of al<strong>de</strong>r, hazel and hornbeam<br />

at the nucleic acid level as <strong>de</strong>termined by cross-hybridization. J<br />

Allergy Clin Immunol 1991; 87: 677-682.<br />

15. Ebner C, Birkner T, Val<strong>en</strong>ta R, Rumpold H, Breit<strong>en</strong>bach M,<br />

Scheiner O, et al. Common epitopes of birch poll<strong>en</strong> and apples. Studies<br />

by Western and Northern blot. J Allergy Clin Immunol 1991;<br />

88: 588-594.<br />

16. Pastorello EA, Orto<strong>la</strong>ni C, Farioli L, Pravettoni V, Ispano M, Borga<br />

A, et al. Allerg<strong>en</strong>ic cross-reactivity among peach, apricot, plum<br />

and cherry in pati<strong>en</strong>ts with oral allergy syndrome: an in vivo and in<br />

vitro study. J Allergy Clin Immunol 1994; 94: 699-707.<br />

17. Ebner C, Hirschwehr R, Bauer L, Breit<strong>en</strong>e<strong>de</strong>r H, Val<strong>en</strong>ta R, Hollman<br />

V, et al. I<strong>de</strong>ntification of allerg<strong>en</strong>s in fruits and vegetables: IgE<br />

cross-reactivities with the important birch poll<strong>en</strong> allerg<strong>en</strong>s Bet v 1 and<br />

Bet v 2 (birch profilin). J Allergy Clin Immunol 1995; 95:962-969.<br />

18. Vanek-Krebitz M, Hoffmann-Sommergruber K, Laimer da Camara<br />

M, Susani M, Ebner C, Kraft D, et al. Cloning and sequ<strong>en</strong>cing of Mal<br />

d 1, the major allerg<strong>en</strong> from apple (Malus domestica), and its immunological<br />

re<strong>la</strong>tionship to Bet v 1, the major birch poll<strong>en</strong> allerg<strong>en</strong>.<br />

Biophys Res Comm 1995; 214: 538-551.<br />

19. van Ree R, Fernán<strong>de</strong>z Rivas M, Cuevas M, van Wijngaar<strong>de</strong>n M,<br />

Aalberse RC. Poll<strong>en</strong> re<strong>la</strong>ted allergy to peach and apple: an important<br />

role for profilin. J Allergy Clin Immunol 1995; 95: 726-734.<br />

20. Dashner A, Fernán<strong>de</strong>z Crespo J, Pascual CY. Specific IgE to recombinant<br />

vegetal panallerg<strong>en</strong> (rBet v 2) and fruit allergy in pollinic<br />

pati<strong>en</strong>ts. Allergy 1998; 53: 614-618.<br />

21. Val<strong>en</strong>ta R, Duchène M, Pett<strong>en</strong>burger K, Sil<strong>la</strong>ber C, Val<strong>en</strong>t P, Bet-<br />

30<br />

C. B<strong>la</strong>nco<br />

Sección <strong>de</strong> Alergia.<br />

Hospital <strong>de</strong> G. C. Dr. Negrín.<br />

Las Palmas <strong>de</strong> Gran Canaria.<br />

telheim P, et al. I<strong>de</strong>ntification of profilin as a novel poll<strong>en</strong> allerg<strong>en</strong>:<br />

IgE autoreactivity in s<strong>en</strong>sitized individuals. Sci<strong>en</strong>ce 1991; 253: 557-<br />

560.<br />

22. Val<strong>en</strong>ta R, Duchène M, Ebner C, Val<strong>en</strong>t P, Sil<strong>la</strong>ver C, Deviller P,<br />

et al. Profilins constitute a novel family of functional p<strong>la</strong>nt pan-allerg<strong>en</strong>s.<br />

J Exp Med 1992; 175: 377-385.<br />

23. Van Ree R, Voit<strong>en</strong>ko V, van Leeuw<strong>en</strong> WA, Aalberse RC. Profilin<br />

is a crossreactive allerg<strong>en</strong> in poll<strong>en</strong> and vegetable foods. Int Arch<br />

Allergy Immunol 1992; 98: 97-104.<br />

24. Lleonart R, Cisteró A, Carreira J, Batista A, Moscoso <strong>de</strong>l<br />

Prado J. Food allergy: i<strong>de</strong>ntification of the major IgE binding<br />

compon<strong>en</strong>t of peach (Prunus persica). Ann Allergy 1992; 69:<br />

128-130.<br />

25. Pastorello EA, Farioli L, Pravettoni V, Orto<strong>la</strong>ni C, Ispano M, Monza<br />

M, et al. The major allerg<strong>en</strong> of peach (Prunus persica) is a lipid<br />

tranfser protein. J Allergy Clin Immunol 1999; 103:520-526.<br />

26. Sánchez Monge R, Lombar<strong>de</strong>ro M, García Sellés FJ, Barber D,<br />

Salcedo G. Lipid transfer proteins are relevant allerg<strong>en</strong>s in fruit<br />

allergy. J Allergy Clin Immunol 1999, 103:514-519.<br />

27. Pastorello EA, Pravettoni V, Farioli L, Ispano M, Fortunato D,<br />

Monza M, et al. Clinical role of a lipid transfer protein that acts as a<br />

new apple-specific allerg<strong>en</strong>. J Allergy Clin Immunol 1999; 104:<br />

1099-1106.<br />

28. Pastorello EA, Purello D’ Ambrosio F, Pravettoni V, Farioli L, Giuffrida<br />

G, Monza M, et al. Evi<strong>de</strong>nce for a lipid transfer protein as the major<br />

allerg<strong>en</strong> of apricot. J Allergy Clin Immunol 2000; 105: 371-377.<br />

29. Scheurer S, Pastorello EA, Wangorsch A, Kästner M, Haustein D,<br />

Vieths S. Recombinant allerg<strong>en</strong>s Pru av 1 and Pru av 4 and a newly<br />

i<strong>de</strong>ntified lipid transfer protein in the in vitro diagnosis of cherry<br />

allergy. J Allergy Clin Immunol 2001; 107: 724-731.<br />

30. Asero R, Mistrello G, Roncarolo D, <strong>de</strong> Vries SC, Gautier MF, Ciurana<br />

CLF, et al. Lipid transfer protein: a pan-allerg<strong>en</strong> in p<strong>la</strong>nt-<strong>de</strong>rived<br />

foods that is highly resistant to pepsin digestion. Int Arch Allergy Immunol<br />

2000; 122: 20-32.<br />

31. Díaz-Perales A, Lombar<strong>de</strong>ro M, Sánchez-Monge R, García-Sellés<br />

FJ, Pernas M, Fernán<strong>de</strong>z-Rivas M, et al. Lipid-transfer proteins as<br />

pot<strong>en</strong>tial p<strong>la</strong>nt panallerg<strong>en</strong>s: cross-reactivity among proteins of Artemisia<br />

poll<strong>en</strong>, Castaneae nut and Rosaceae fruits, with differ<strong>en</strong>t IgEbinding<br />

capacities. Clin Exp Allergy 2000; 30: 1403-1410.<br />

32. Fernán<strong>de</strong>z-Rivas M, Alcántara M, Díaz-Perales A, Lombar<strong>de</strong>ro<br />

M, Sánchez-Monge R, Barber D, et al. Skin test evaluation of pati<strong>en</strong>ts<br />

allergic to Rosaceae fruits with purified lipid transfer proteins.<br />

Allergy 2000; 55 (Suppl. 63): 54.<br />

33. Fernán<strong>de</strong>z Rivas M, van Ree R, Cuevas M. Allergy to Rosaceae<br />

fruits without re<strong>la</strong>ted pollinosis. J Allergy Clin Immunol 1997; 100:<br />

728-733.<br />

34. Fernán<strong>de</strong>z Rivas M, Cuevas M. Peels of Rosaceae fruits have a higher<br />

allerg<strong>en</strong>icity than pulps. Clin Exp Allergy 1999; 29: 1239-1247.<br />

Repercusión clínica <strong>de</strong> <strong>la</strong> reactividad<br />

cruzada<br />

INTRODUCCIÓN<br />

D<strong>en</strong>tro <strong>de</strong>l sistema inmunológico, una <strong>de</strong> <strong>la</strong>s características principales <strong>de</strong> los<br />

anticuerpos es su gran especificidad. Sin embargo, se sabe que una <strong>de</strong>terminada IgE


pue<strong>de</strong> reconocer antíg<strong>en</strong>os difer<strong>en</strong>tes. La base etiopatogénica<br />

<strong>de</strong> este hecho está <strong>en</strong> que el anticuerpo reconoce tan solo una<br />

ca<strong>de</strong>na corta <strong>de</strong> aminoácidos <strong>de</strong>l antíg<strong>en</strong>o (son sufici<strong>en</strong>tes<br />

unos 10 aminoácidos para constituir un epítopo), por lo que<br />

basta que dos proteínas se asemej<strong>en</strong> <strong>en</strong> unos cuantos aminoácidos<br />

para que pueda existir reactividad cruzada (RC) <strong>en</strong>tre<br />

el<strong>la</strong>s. Por lo tanto y <strong>de</strong>ntro <strong>de</strong> nuestra especialidad, <strong>en</strong>t<strong>en</strong><strong>de</strong>mos<br />

por RC al reconocimi<strong>en</strong>to <strong>de</strong> distintos antíg<strong>en</strong>os por un<br />

mismo anticuerpo IgE. La RC se <strong>de</strong>muestra <strong>en</strong> <strong>la</strong>boratorio por<br />

experim<strong>en</strong>tos <strong>de</strong> inhibición <strong>de</strong> captación <strong>de</strong> IgE (inhibición <strong>de</strong><br />

ELISA, inhibición <strong>de</strong> inmuno<strong>de</strong>tección, etc.). Si lo que se<br />

quiere es i<strong>de</strong>ntificar a los alerg<strong>en</strong>os responsables <strong>de</strong> <strong>la</strong> RC, se<br />

<strong>de</strong>be recurrir a técnicas más complejas que <strong>en</strong>tran <strong>en</strong> el campo<br />

<strong>de</strong> <strong>la</strong> <strong>biología</strong> molecu<strong>la</strong>r, como por ejemplo a <strong>la</strong> utilización<br />

<strong>de</strong> anticuerpos monoclonales o antíg<strong>en</strong>os recombinantes.<br />

Des<strong>de</strong> el punto <strong>de</strong> vista clínico y c<strong>en</strong>trándonos <strong>en</strong> <strong>la</strong><br />

<strong>alergia</strong> a alim<strong>en</strong>tos, <strong>la</strong> RC se traduce <strong>en</strong> <strong>alergia</strong>s asociadas<br />

<strong>de</strong> forma estadísticam<strong>en</strong>te significativa. Por ejemplo, los<br />

paci<strong>en</strong>tes alérgicos a gambas suel<strong>en</strong> serlo también a <strong>la</strong>ngosta,<br />

si<strong>en</strong>do fácil <strong>de</strong>mostrar <strong>en</strong> <strong>la</strong>boratorio que <strong>de</strong>trás <strong>de</strong><br />

esta <strong>alergia</strong> asociada existe una RC <strong>en</strong>tre los antíg<strong>en</strong>os <strong>de</strong><br />

ambas especies. El problema es más complejo, porque con<br />

frecu<strong>en</strong>cia <strong>la</strong> RC se traduce <strong>en</strong> pruebas cutáneas positivas<br />

que se asocian <strong>de</strong> forma significativa <strong>en</strong> grupos <strong>de</strong> alim<strong>en</strong>tos,<br />

sin que esto t<strong>en</strong>ga trasc<strong>en</strong><strong>de</strong>ncia clínica alguna. En<br />

este caso, se hab<strong>la</strong> <strong>de</strong> s<strong>en</strong>sibilizaciones asociadas, que son<br />

muy frecu<strong>en</strong>tes <strong>en</strong> <strong>alergia</strong> a alim<strong>en</strong>tos. Para complicar mis<br />

el panorama, po<strong>de</strong>mos <strong>de</strong>mostrar RC in vitro que no t<strong>en</strong>ga<br />

ninguna repercusión in vivo, <strong>en</strong> cuyo caso se trataría <strong>de</strong><br />

simples hal<strong>la</strong>zgos <strong>de</strong> <strong>la</strong>boratorio que no se traduc<strong>en</strong> <strong>en</strong><br />

s<strong>en</strong>sibilizaciones o <strong>alergia</strong>s asociadas.<br />

El estudio <strong>de</strong> <strong>la</strong> RC y <strong>de</strong> su repercusión clínica ha<br />

sido uno <strong>de</strong> los temas principales <strong>de</strong> preocupación <strong>en</strong> <strong>alergia</strong><br />

a alim<strong>en</strong>tos a lo <strong>la</strong>rgo <strong>de</strong> los últimos años 1,2 . La reci<strong>en</strong>te<br />

aplicación <strong>de</strong> técnicas <strong>de</strong> <strong>biología</strong> molecu<strong>la</strong>r ha permitido<br />

i<strong>de</strong>ntificar diversos alerg<strong>en</strong>os responsables <strong>de</strong><br />

síndromes clínicos <strong>de</strong> <strong>alergia</strong>s asociadas, que hasta hace<br />

pocos años eran <strong>de</strong> difícil explicación. A continuación se<br />

resum<strong>en</strong> <strong>de</strong> forma sucinta algunos <strong>de</strong> los conceptos básicos<br />

y avances <strong>en</strong> el campo <strong>de</strong> <strong>la</strong> RC <strong>en</strong> <strong>alergia</strong> a alim<strong>en</strong>tos.<br />

LA REACTIVIDAD CRUZADA EN FAMILIAS<br />

DE ALIMENTOS<br />

A priori parece razonable que exista RC <strong>en</strong>tre antíg<strong>en</strong>os<br />

<strong>de</strong> especies filog<strong>en</strong>éticam<strong>en</strong>te cercanas. Por ejemplo,<br />

Repercusión clínica <strong>de</strong> <strong>la</strong> reactividad cruzada<br />

es lógico que una misma IgE reconozca una insulina humana<br />

y otra porcina, habida cu<strong>en</strong>ta <strong>de</strong> <strong>la</strong> gran similitud <strong>en</strong> su<br />

secu<strong>en</strong>cia <strong>de</strong> aminoácidos. La experi<strong>en</strong>cia <strong>en</strong> <strong>alergia</strong> a alim<strong>en</strong>tos<br />

indica que con frecu<strong>en</strong>cia el paci<strong>en</strong>te que sufre<br />

reacciones con un alim<strong>en</strong>to concreto <strong>de</strong> una familia <strong>de</strong>terminada,<br />

suele t<strong>en</strong>er problemas con otros miembros <strong>de</strong> <strong>la</strong><br />

misma familia. Hoy <strong>en</strong> día se conoc<strong>en</strong> varios <strong>de</strong> los alerg<strong>en</strong>os<br />

principales responsables <strong>de</strong> esta RC, que se traduce clínicam<strong>en</strong>te<br />

<strong>en</strong> s<strong>en</strong>sibilización o <strong>alergia</strong> asociada a una familia<br />

<strong>de</strong> alim<strong>en</strong>tos concreta 1,2 .<br />

Des<strong>de</strong> el punto <strong>de</strong> vista práctico, al paci<strong>en</strong>te que pres<strong>en</strong>ta<br />

<strong>alergia</strong> a un miembro <strong>de</strong> una familia alim<strong>en</strong>taria <strong>en</strong> <strong>la</strong><br />

que se sabe que existe RC, se le prohibe el resto <strong>de</strong> los<br />

compon<strong>en</strong>tes <strong>de</strong> dicha familia hasta que por medio <strong>de</strong>l<br />

estudio alergológico se <strong>de</strong>muestra <strong>la</strong> pres<strong>en</strong>cia o aus<strong>en</strong>cia<br />

<strong>de</strong> <strong>alergia</strong> a cada uno <strong>de</strong> ellos. Dicho estudio se basa <strong>en</strong> <strong>la</strong><br />

historia clínica <strong>de</strong> consumo y posible tolerancia a cada uno<br />

<strong>de</strong> los miembros <strong>de</strong> <strong>la</strong> familia <strong>en</strong> cuestión, con fecha posterior<br />

a <strong>la</strong> reacción motivo <strong>de</strong> consulta. La historia clínica<br />

se complem<strong>en</strong>ta con pruebas in vivo e in vitro (prick con<br />

extractos comerciales, prick <strong>en</strong> fresco con los alim<strong>en</strong>tos,<br />

<strong>de</strong>terminación <strong>de</strong> IgE específica) para <strong>de</strong>mostrar <strong>la</strong>s s<strong>en</strong>sibilizaciones<br />

exist<strong>en</strong>tes. Por último y <strong>en</strong> los casos <strong>en</strong> que<br />

esté indicado, <strong>la</strong>s pruebas <strong>de</strong> provocación oral dilucidan <strong>la</strong><br />

tolerancia a aquellos alim<strong>en</strong>tos a los que se ha <strong>de</strong>mostrado<br />

s<strong>en</strong>sibilización 3 .<br />

Es fundam<strong>en</strong>tal recordar que, mi<strong>en</strong>tras que <strong>la</strong> aus<strong>en</strong>cia<br />

<strong>de</strong> s<strong>en</strong>sibilización es un indicador muy fiable <strong>de</strong> tolerancia,<br />

<strong>la</strong> pres<strong>en</strong>cia <strong>de</strong> s<strong>en</strong>sibilización a un <strong>de</strong>terminado<br />

alim<strong>en</strong>to <strong>de</strong>be seguirse <strong>de</strong> una prueba <strong>de</strong> provocación oral<br />

si se quiere <strong>de</strong>terminar si el paci<strong>en</strong>te es o no alérgico al alim<strong>en</strong>to<br />

<strong>en</strong> cuestión. Esto es así por ser muy frecu<strong>en</strong>tes <strong>la</strong>s<br />

s<strong>en</strong>sibilizaciones asintomáticas a alim<strong>en</strong>tos. Por supuesto,<br />

el estudio alergológico <strong>de</strong>scrito <strong>de</strong>be realizarse <strong>en</strong> unida<strong>de</strong>s<br />

capacitadas para ello, es <strong>de</strong>cir, que cu<strong>en</strong>t<strong>en</strong> con el personal,<br />

<strong>la</strong> experi<strong>en</strong>cia y los medios precisos para tratar todo<br />

tipo <strong>de</strong> reacciones alérgicas. Pasamos a <strong>en</strong>umerar brevem<strong>en</strong>te<br />

<strong>la</strong>s RC que con más frecu<strong>en</strong>cia <strong>en</strong>contramos <strong>en</strong><br />

familias <strong>de</strong> alim<strong>en</strong>tos, con m<strong>en</strong>ción a los posibles alerg<strong>en</strong>os<br />

implicados, <strong>en</strong> los casos <strong>en</strong> los que se haya podido<br />

i<strong>de</strong>ntificar (Tab<strong>la</strong> I).<br />

Crustáceos<br />

La RC <strong>en</strong>tre los mariscos es frecu<strong>en</strong>te y bi<strong>en</strong> conocida<br />

4 . Pue<strong>de</strong> implicar no sólo a los crustáceos, sino también<br />

a los cefalópodos y a los bivalvos. Los síntomas abarcan<br />

todo el espectro posible, <strong>de</strong>s<strong>de</strong> reacciones leves hasta <strong>la</strong>s<br />

más graves, si<strong>en</strong>do muy frecu<strong>en</strong>tes <strong>la</strong>s s<strong>en</strong>sibilizaciones<br />

31


C. B<strong>la</strong>nco<br />

Tab<strong>la</strong> I. La reactividad cruzada <strong>en</strong> familias <strong>de</strong> alim<strong>en</strong>tos. Resum<strong>en</strong> <strong>de</strong> <strong>la</strong>s familias implicadas con más frecu<strong>en</strong>cia y <strong>de</strong> los<br />

posibles alerg<strong>en</strong>os responsables<br />

Familia <strong>de</strong> alim<strong>en</strong>tos Alerg<strong>en</strong>os responsables Peso molecu<strong>la</strong>r ~Kd Refer<strong>en</strong>cias<br />

Crustáceos Tropomiosinas 34-36 4-6<br />

Pescados Parvalbúminas 12 7-10<br />

Leguminosas Vicilinas 12-16 11-13<br />

asintomáticas. La base molecu<strong>la</strong>r <strong>de</strong> esta RC estriba <strong>en</strong> <strong>la</strong><br />

tropomiosina, proteína muscu<strong>la</strong>r y alerg<strong>en</strong>o principal <strong>de</strong> <strong>la</strong><br />

gamba 5 . Se han i<strong>de</strong>ntificado tropomiosinas pot<strong>en</strong>cialm<strong>en</strong>te<br />

alergénicas <strong>en</strong> todos los crustáceos investigados, a<strong>de</strong>más <strong>de</strong><br />

<strong>en</strong> moluscos, insectos, ácaros <strong>de</strong>l polvo y nemátodos, s<strong>en</strong>tando<br />

<strong>la</strong> base <strong>de</strong> un síndrome clínico que se m<strong>en</strong>cionará<br />

más a<strong>de</strong><strong>la</strong>nte 6 . Otra proteína muscu<strong>la</strong>r, <strong>la</strong> paramiosina,<br />

podría también jugar un papel.<br />

Pescados<br />

Los pescados son una causa frecu<strong>en</strong>te <strong>de</strong> <strong>alergia</strong> a alim<strong>en</strong>tos<br />

y, a su vez, un c<strong>la</strong>ro ejemplo <strong>de</strong> RC. De hecho, se<br />

ha <strong>de</strong>mostrado <strong>la</strong> exist<strong>en</strong>cia <strong>de</strong> RC clínicam<strong>en</strong>te relevante<br />

<strong>en</strong>tre varias especies <strong>de</strong> pescados 7,8 . El más estudiado <strong>de</strong>s<strong>de</strong><br />

el punto <strong>de</strong> vista antigénico es el baca<strong>la</strong>o, cuyo alerg<strong>en</strong>o<br />

principal Gad c 1 es una parvoalbúmina, proteína transportadora<br />

<strong>de</strong> calcio. La s<strong>en</strong>sibilización a homólogos <strong>de</strong> Gad c<br />

1 parece ser responsable <strong>de</strong> <strong>la</strong> RC <strong>en</strong>tre los distintos pescados<br />

9,10 .<br />

Legumbres<br />

Si bi<strong>en</strong> <strong>la</strong> mayoría <strong>de</strong> los paci<strong>en</strong>tes alérgicos a<br />

cacahuete toleran el resto <strong>de</strong> <strong>la</strong>s legumbres 11 , los alérgicos<br />

a otras leguminosas <strong>de</strong> mayor consumo <strong>en</strong> el área mediterránea,<br />

como por ejemplo <strong>la</strong>s l<strong>en</strong>tejas, suel<strong>en</strong> ser alérgicos<br />

a otros miembros <strong>de</strong> <strong>la</strong> familia 12 . Reci<strong>en</strong>tem<strong>en</strong>te se ha<br />

caracterizado a dos c<strong>la</strong>ses distintas <strong>de</strong> alerg<strong>en</strong>os <strong>en</strong> l<strong>en</strong>tejas<br />

cocidas, posibles responsables <strong>de</strong> <strong>la</strong> RC 13 . L<strong>en</strong> c 1 ha<br />

resultado pert<strong>en</strong>ecer a un grupo <strong>de</strong> proteínas <strong>de</strong> reserva<br />

<strong>de</strong>nominadas vicilinas, mi<strong>en</strong>tras que L<strong>en</strong> c 2 se correspon<strong>de</strong><br />

con una proteína fijadadora <strong>de</strong> biotina específica <strong>de</strong><br />

semil<strong>la</strong>s.<br />

32<br />

Proteínas biotini<strong>la</strong>das 66<br />

Frutos secos Albúminas 2S 9 14, 15<br />

Frutas rosáceas PTL 9 16-18<br />

Cereales Inhibidores <strong>de</strong> <strong>la</strong> α-ami<strong>la</strong>sa 14-16 19, 20<br />

Gliadinas 65<br />

Frutos secos<br />

La <strong>alergia</strong> a cacahuete se asocia significativam<strong>en</strong>te<br />

con <strong>alergia</strong> a frutos secos como <strong>la</strong> avel<strong>la</strong>na y <strong>la</strong> nuez 14 . En<br />

<strong>la</strong> práctica clínica, el paci<strong>en</strong>te con reacción alérgica a un<br />

fruto seco suele mostrar s<strong>en</strong>sibilización a otros frutos<br />

secos, que <strong>en</strong> muchos casos ti<strong>en</strong>e una c<strong>la</strong>ra repercusión clínica.<br />

Sin embargo, por el mom<strong>en</strong>to se <strong>de</strong>sconoc<strong>en</strong> los antíg<strong>en</strong>os<br />

responsables <strong>de</strong> esta RC, si bi<strong>en</strong> se ha <strong>de</strong>mostrado <strong>la</strong><br />

alerg<strong>en</strong>icidad <strong>de</strong> unas proteínas <strong>de</strong> reserva <strong>de</strong>nominadas<br />

albúminas 2S <strong>en</strong> varios frutos secos y semil<strong>la</strong>s comestibles<br />

15 . Estas proteínas podrían dar cu<strong>en</strong>ta <strong>de</strong> <strong>la</strong> RC <strong>en</strong>tre los<br />

distintos frutos secos, así como <strong>en</strong>tre éstos y el cacahuete.<br />

Frutas rosáceas<br />

La <strong>alergia</strong> a frutas rosáceas como el melocotón, el<br />

albaricoque, <strong>la</strong> cirue<strong>la</strong> y <strong>la</strong> cereza, es una asociación bi<strong>en</strong><br />

conocida 16 . La clínica característica es el síndrome <strong>de</strong> <strong>alergia</strong><br />

oral (SAO), sobre todo cuando esta <strong>alergia</strong> se asocia a<br />

polinosis (ver más a<strong>de</strong><strong>la</strong>nte). Sin embargo, <strong>en</strong> el área Mediterránea<br />

se observa con re<strong>la</strong>tiva frecu<strong>en</strong>cia <strong>alergia</strong> a rosáceas<br />

sin polinosis asociada, <strong>en</strong> cuyo caso <strong>la</strong> clínica varía<br />

<strong>de</strong>s<strong>de</strong> SAO hasta reacciones graves 17 . Reci<strong>en</strong>tem<strong>en</strong>te, se ha<br />

<strong>de</strong>mostrado que los alerg<strong>en</strong>os principales reconocidos por el<br />

suero <strong>de</strong> los paci<strong>en</strong>tes alérgicos a rosáceas sin polinosis asociada<br />

son <strong>la</strong>s proteínas trasportadoras <strong>de</strong> lípidos (PTL) 18 .<br />

Cereales<br />

La mayoría <strong>de</strong> los estudios sobre RC <strong>en</strong>tre cereales se<br />

han realizado con suero <strong>de</strong> paci<strong>en</strong>tes con <strong>alergia</strong> respiratoria<br />

por inha<strong>la</strong>ción <strong>de</strong> harinas (asma <strong>de</strong>l pana<strong>de</strong>ro), i<strong>de</strong>ntificándose<br />

como principales alerg<strong>en</strong>os responsables a inhibidores<br />

<strong>de</strong> <strong>la</strong> α-ami<strong>la</strong>sa 19 . Con respecto a <strong>la</strong> ingestión <strong>de</strong>


cereales, parece existir RC al m<strong>en</strong>os <strong>en</strong>tre trigo, cebada y<br />

c<strong>en</strong>t<strong>en</strong>o, habiéndose <strong>de</strong>mostrado reci<strong>en</strong>tem<strong>en</strong>te que una<br />

gliadina <strong>de</strong> trigo reacciona <strong>de</strong> forma cruzada con otras proteínas<br />

<strong>de</strong> cereales 20 .<br />

LOS SÍNDROMES DE REACTIVIDAD<br />

CRUZADA ENTRE AEROALERGENOS<br />

Y ALIMENTOS<br />

L<strong>la</strong>ma po<strong>de</strong>rosam<strong>en</strong>te <strong>la</strong> at<strong>en</strong>ción el hecho <strong>de</strong> que<br />

exista RC <strong>en</strong>tre alerg<strong>en</strong>os <strong>de</strong> especies que no ti<strong>en</strong><strong>en</strong><br />

re<strong>la</strong>ción taxonómica directa <strong>en</strong>tre sí. En los últimos<br />

años, se han <strong>de</strong>scrito varios síndromes <strong>de</strong> <strong>alergia</strong>s asociadas<br />

<strong>en</strong>tre especies distantes, g<strong>en</strong>eralm<strong>en</strong>te <strong>de</strong> aeroalerg<strong>en</strong>os<br />

y alim<strong>en</strong>tos, habiéndose <strong>de</strong>mostrado <strong>la</strong> exist<strong>en</strong>cia<br />

<strong>de</strong> RC <strong>en</strong>tre el<strong>la</strong>s. La aplicación <strong>de</strong> técnicas <strong>de</strong><br />

<strong>biología</strong> molecu<strong>la</strong>r al estudio <strong>de</strong> estos síndromes clínicos<br />

ha permitido i<strong>de</strong>ntificar distintas familias <strong>de</strong> antíg<strong>en</strong>os<br />

que reaccionan <strong>de</strong> forma cruzada, tanto <strong>en</strong> el reino<br />

animal como <strong>en</strong> el vegetal. Reci<strong>en</strong>tem<strong>en</strong>te se ha acuñado<br />

el término panalerg<strong>en</strong>o para <strong>de</strong>finir a estos antíg<strong>en</strong>os,<br />

responsables <strong>de</strong> RC <strong>en</strong>tre diversas especies que no<br />

se re<strong>la</strong>cionan <strong>de</strong> forma directa <strong>en</strong>tre sí 21 . Des<strong>de</strong> el punto<br />

<strong>de</strong> vista clínico, los síndromes <strong>de</strong> <strong>alergia</strong> asociada <strong>en</strong>tre<br />

aeroalerg<strong>en</strong>os y alim<strong>en</strong>tos son <strong>de</strong> difícil diagnóstico y<br />

manejo, si no se conoce una serie <strong>de</strong> conceptos básicos<br />

sobre ellos. Por lo tanto, es fundam<strong>en</strong>tal familiarizarse<br />

con estos síndromes para po<strong>de</strong>r hacer un diagnóstico<br />

correcto y dar unas indicaciones terapéuticas a<strong>de</strong>cuadas.<br />

La i<strong>de</strong>ntificación <strong>de</strong> diversos panalerg<strong>en</strong>os y <strong>la</strong> actual<br />

disponibilidad diagnóstica <strong>de</strong> algunos <strong>de</strong> ellos ha<br />

Repercusión clínica <strong>de</strong> <strong>la</strong> reactividad cruzada<br />

Tab<strong>la</strong> II. Los síndromes <strong>de</strong> reactividad cruzada <strong>en</strong>tre aeroalerg<strong>en</strong>os y alim<strong>en</strong>tos. Resum<strong>en</strong> <strong>de</strong> los alim<strong>en</strong>tos implicados con más<br />

frecu<strong>en</strong>cia y <strong>de</strong> los posibles panalerg<strong>en</strong>os responsables<br />

Síndrome Alim<strong>en</strong>tos implicados Panalerg<strong>en</strong>os responsables Refer<strong>en</strong>cias<br />

Abedul-manzana Manzana, zanahoria, patata, kiwi, otros Familia Bet v 1 21, 25-27<br />

Profilinas<br />

Artemisa-apio- Múltiples alim<strong>en</strong>tos vegetales Profilinas 28, 29<br />

zanahoria-especias ¿Homólogos Art v 1?<br />

Gramíneas-melocotón Rosáceas Profilinas 31, 32<br />

Látex-frutas Aguacate, castaña, plátano, kiwi, otros Quitinasas <strong>de</strong> c<strong>la</strong>se I 34-41<br />

Ácaros-mariscos Crustáceos, moluscos Tropomiosina 6, 42-47<br />

PTL<br />

supuesto un gran avance <strong>en</strong> este s<strong>en</strong>tido. En un futuro<br />

no lejano, será posible <strong>la</strong> aplicación terapéutica <strong>de</strong><br />

dichos panalerg<strong>en</strong>os.<br />

Con respecto a <strong>la</strong> etiopatog<strong>en</strong>ia, los panalerg<strong>en</strong>os suel<strong>en</strong><br />

ser proteínas conservadas por <strong>la</strong> evolución, <strong>de</strong>bido a<br />

que <strong>de</strong>sempeñan una función muy importante <strong>en</strong> <strong>la</strong>s especies<br />

animales o vegetales correspondi<strong>en</strong>tes. Por ejemplo,<br />

los panalerg<strong>en</strong>os hasta ahora i<strong>de</strong>ntificados se <strong>en</strong>cuadran <strong>en</strong><br />

grupos <strong>de</strong> proteínas <strong>de</strong> <strong>de</strong>f<strong>en</strong>sa, proteínas <strong>de</strong>l citoesqueleto<br />

o proteínas muscu<strong>la</strong>res, todas el<strong>la</strong>s con funciones relevantes<br />

22 . Por otra parte, es muy interesante consi<strong>de</strong>rar que<br />

mi<strong>en</strong>tras que los niños se s<strong>en</strong>sibilizan a alim<strong>en</strong>tos por vía<br />

digestiva y <strong>de</strong>bido a un fallo <strong>de</strong>l mecanismo <strong>de</strong> tolerancia<br />

inmunológica, los adultos con <strong>alergia</strong> asociada a aeroalerg<strong>en</strong>os<br />

y alim<strong>en</strong>tos probablem<strong>en</strong>te se s<strong>en</strong>sibilic<strong>en</strong> al panalerg<strong>en</strong>o<br />

por vía respiratoria. Como consecu<strong>en</strong>cia <strong>de</strong> <strong>la</strong> RC<br />

<strong>en</strong>tre el aeroalerg<strong>en</strong>o y los antíg<strong>en</strong>os alim<strong>en</strong>tarios, dicha<br />

s<strong>en</strong>sibilización daría lugar a reacciones alérgicas a <strong>de</strong>terminados<br />

alim<strong>en</strong>tos 23 . A continuación se resum<strong>en</strong> brevem<strong>en</strong>te<br />

algunos <strong>de</strong> los conceptos básicos sobre los síndromes <strong>de</strong><br />

RC <strong>en</strong>tre aeroalerg<strong>en</strong>os y alim<strong>en</strong>tos mejor conocidos (Tab<strong>la</strong><br />

II).<br />

Alergia a alim<strong>en</strong>tos vegetales y polinosis<br />

Una <strong>de</strong> <strong>la</strong>s formas más frecu<strong>en</strong>tes <strong>de</strong> <strong>alergia</strong> a alim<strong>en</strong>tos<br />

<strong>en</strong> paci<strong>en</strong>tes adultos es el SAO por alim<strong>en</strong>tos vegetales<br />

<strong>en</strong> polínicos 24 . Los alim<strong>en</strong>tos implicados con más frecu<strong>en</strong>cia<br />

pert<strong>en</strong>ec<strong>en</strong> a <strong>la</strong>s familias <strong>de</strong> rosáceas y<br />

umbelíferas, mi<strong>en</strong>tras que los pól<strong>en</strong>es habitualm<strong>en</strong>te implicados<br />

son los <strong>de</strong> abedul y <strong>de</strong> artemisa. En <strong>la</strong> mayoría <strong>de</strong> los<br />

casos, los síntomas respiratorios por pól<strong>en</strong>es prece<strong>de</strong>n a <strong>la</strong><br />

aparición <strong>de</strong> <strong>la</strong>s reacciones adversas a alim<strong>en</strong>tos, lo que<br />

33


C. B<strong>la</strong>nco<br />

sugiere que <strong>la</strong> s<strong>en</strong>sibilización primaria es por vía respiratoria.<br />

Con respecto a <strong>la</strong> polinosis por abedul, característica<br />

<strong>de</strong>l norte <strong>de</strong> Europa, es muy frecu<strong>en</strong>te que se asocie con<br />

SAO por manzana y otros alim<strong>en</strong>tos vegetales 25 . Este síndrome<br />

abedul-manzana se basa <strong>en</strong> <strong>la</strong>s familias <strong>de</strong>l Bet v 1<br />

y <strong>de</strong> <strong>la</strong>s profilinas 26 . El Bet v 1 es una proteína <strong>de</strong> <strong>de</strong>f<strong>en</strong>sa<br />

que se comporta como alerg<strong>en</strong>o principal <strong>de</strong>l abedul,<br />

habiéndose <strong>de</strong>mostrado homólogos <strong>en</strong> diversos alim<strong>en</strong>tos<br />

vegetales como <strong>la</strong> manzana 27 . Las profilinas son unas proteínas<br />

<strong>de</strong>l citoesqueleto <strong>de</strong> los eucariotas, ubicuas <strong>en</strong> el reino<br />

vegetal, a <strong>la</strong> cual pert<strong>en</strong>ece el alerg<strong>en</strong>o 2 <strong>de</strong> abedul (Bet<br />

v 2) 21 . Si bi<strong>en</strong> <strong>la</strong> profilina <strong>de</strong> abedul se comporta como un<br />

alerg<strong>en</strong>o m<strong>en</strong>or, el paci<strong>en</strong>te s<strong>en</strong>sibilizado a Bet v 2 suele<br />

mostrar también pruebas cutáneas positivas a pól<strong>en</strong>es <strong>de</strong><br />

gramíneas y malezas, es <strong>de</strong>cir, suele estar polis<strong>en</strong>sibilizado.<br />

Por su parte, <strong>en</strong> el c<strong>en</strong>tro <strong>de</strong> Europa se ha <strong>de</strong>scrito el<br />

síndrome artemisa-apio-zanahoria-especias, que se manifiesta<br />

con clínica variable <strong>de</strong>s<strong>de</strong> SAO hasta reacciones graves<br />

28 . En este caso no están implicados los homólogos a Bet<br />

v 1, <strong>de</strong>l que carece <strong>la</strong> artemisa, mi<strong>en</strong>tras que <strong>la</strong>s profilinas<br />

parec<strong>en</strong> jugar un papel. A<strong>de</strong>más, hay otro grupo <strong>de</strong> antíg<strong>en</strong>os<br />

<strong>de</strong> peso molecu<strong>la</strong>r alto y función <strong>de</strong>sconocida, <strong>en</strong> el<br />

rango <strong>de</strong>l alerg<strong>en</strong>o principal <strong>de</strong> artemisa Art v 1, que podrían<br />

también participar <strong>en</strong> <strong>la</strong> RC 29 . En nuestro medio, dado<br />

que el consumo <strong>de</strong> apio y especias es más limitado que <strong>en</strong><br />

el c<strong>en</strong>tro <strong>de</strong> Europa, no se suele diagnosticar este síndrome.<br />

Sin embargo, es frecu<strong>en</strong>te observar múltiples <strong>alergia</strong>s a alim<strong>en</strong>tos<br />

vegetales (frutos secos, rosáceas, crucíferas, leguminosas)<br />

<strong>en</strong> paci<strong>en</strong>tes polínicos por artemisa, con expresión<br />

clínica variable 30 . También <strong>en</strong> el sur <strong>de</strong> Europa, <strong>la</strong><br />

<strong>alergia</strong> a gramíneas se asocia con SAO por melocotón u<br />

otras rosáceas 31 . Los alerg<strong>en</strong>os responsables <strong>de</strong> esta RC<br />

parec<strong>en</strong> ser <strong>la</strong>s profilinas y <strong>la</strong>s PTL 32 . A<strong>de</strong>más, es frecu<strong>en</strong>te<br />

el SAO por cucurbitáceas <strong>en</strong> polínicos por p<strong>la</strong>ntago o<br />

gramíneas, pudi<strong>en</strong>do estar implicadas <strong>la</strong>s profilinas 33 .<br />

Alergia a látex y frutas<br />

Durante <strong>la</strong> última década, <strong>la</strong> <strong>alergia</strong> mediada por IgE<br />

al látex ha sido reconocida como un problema médico <strong>de</strong><br />

<strong>en</strong>orme trasc<strong>en</strong><strong>de</strong>ncia. Esto es <strong>de</strong>bido al aum<strong>en</strong>to observado<br />

<strong>en</strong> su preval<strong>en</strong>cia, a su pres<strong>en</strong>tación como <strong>en</strong>fermedad<br />

profesional <strong>en</strong>tre trabajadores que usan guantes y a <strong>la</strong> gravedad<br />

pot<strong>en</strong>cial <strong>de</strong> <strong>la</strong>s reacciones que induce. En el año<br />

1994 se <strong>de</strong>scribió <strong>la</strong> exist<strong>en</strong>cia <strong>de</strong> un síndrome látex-frutas,<br />

al evi<strong>de</strong>nciarse una asociación clínica significativa <strong>en</strong>tre<br />

estas <strong>alergia</strong>s 34 . De hecho, diversos estudios han <strong>de</strong>mostrado<br />

que <strong>en</strong>tre un 20% y un 60% <strong>de</strong> los paci<strong>en</strong>tes alérgicos a<br />

látex pres<strong>en</strong>tan reacciones mediadas por IgE a una amplia<br />

34<br />

variedad <strong>de</strong> alim<strong>en</strong>tos, principalm<strong>en</strong>te a frutas como el plátano,<br />

el aguacate, <strong>la</strong> castaña y el kiwi 35 . La variedad y proporción<br />

<strong>de</strong> alim<strong>en</strong>tos implicados varía <strong>en</strong> función <strong>de</strong>l consumo<br />

re<strong>la</strong>tivo <strong>de</strong> los mismos <strong>en</strong> cada zona. Muchos <strong>de</strong> los<br />

paci<strong>en</strong>tes muestran <strong>alergia</strong> simultánea a 3 o más alim<strong>en</strong>tos.<br />

Las manifestaciones clínicas <strong>de</strong> estas reacciones pue<strong>de</strong>n<br />

variar <strong>de</strong>s<strong>de</strong> SAO hasta reacciones anafilácticas. Si bi<strong>en</strong> <strong>la</strong><br />

clínica con látex suele prece<strong>de</strong>r a <strong>la</strong>s reacciones adversas a<br />

alim<strong>en</strong>tos, <strong>en</strong> algunos casos se observa lo contrario.<br />

Reci<strong>en</strong>tem<strong>en</strong>te, se ha logrado caracterizar a algunos <strong>de</strong><br />

los alerg<strong>en</strong>os comunes responsables <strong>de</strong> <strong>la</strong> RC <strong>en</strong>tre el látex<br />

y <strong>la</strong>s frutas. Estos panalerg<strong>en</strong>os han resultado ser quitinasas<br />

<strong>de</strong> c<strong>la</strong>se I, que pose<strong>en</strong> un dominio heveína N-terminal 36 . La<br />

heveína es uno <strong>de</strong> los alerg<strong>en</strong>os principales <strong>de</strong>l látex, al<br />

m<strong>en</strong>os <strong>en</strong> paci<strong>en</strong>tes adultos, por lo que existe RC <strong>en</strong>tre <strong>la</strong>s<br />

quitinasas <strong>de</strong> los alim<strong>en</strong>tos vegetales y <strong>la</strong> heveína <strong>de</strong>l látex 37 .<br />

Hasta el mom<strong>en</strong>to, se ha <strong>de</strong>mostrado <strong>la</strong> exist<strong>en</strong>cia <strong>de</strong> quitinasas<br />

alergénicas <strong>en</strong> castaña, aguacate y plátano, a<strong>de</strong>más <strong>de</strong><br />

<strong>en</strong> otros alim<strong>en</strong>tos implicados <strong>en</strong> el síndrome con m<strong>en</strong>or<br />

frecu<strong>en</strong>cia 38,39 . Puesto que <strong>la</strong>s quitinasas son proteínas <strong>de</strong><br />

<strong>de</strong>f<strong>en</strong>sa <strong>de</strong> los vegetales 40 , su expresión aum<strong>en</strong>ta con <strong>de</strong>terminados<br />

estímulos, como por ejemplo al tratar <strong>la</strong>s p<strong>la</strong>ntas<br />

con óxido <strong>de</strong> etil<strong>en</strong>o 41 . Este producto se emplea para estimu<strong>la</strong>r<br />

cultivos y madurar frutas, por lo que es posible que<br />

<strong>la</strong>s frutas que se consum<strong>en</strong> hoy <strong>en</strong> día t<strong>en</strong>gan un cont<strong>en</strong>ido<br />

alergénico muy superior a <strong>la</strong>s que se consumían años atrás.<br />

Este hecho podría explicar, al m<strong>en</strong>os <strong>en</strong> parte, el aum<strong>en</strong>to<br />

observado <strong>en</strong> <strong>la</strong> preval<strong>en</strong>cia <strong>de</strong>l síndrome látex-frutas. Por el<br />

contrario, el tratami<strong>en</strong>to térmico inactiva <strong>la</strong>s quitinasas, lo<br />

que explica qué alim<strong>en</strong>tos que expresan quitinasas pot<strong>en</strong>cialm<strong>en</strong>te<br />

alergénicas, pero que se suel<strong>en</strong> comer cocinados<br />

(como <strong>la</strong>s judías ver<strong>de</strong>s), no caus<strong>en</strong> problemas clínicos <strong>en</strong><br />

paci<strong>en</strong>tes afectos <strong>de</strong>l síndrome látex-frutas 41 .<br />

Alergia a crustáceos/moluscos y <strong>alergia</strong> respiratoria<br />

a ácaros<br />

Des<strong>de</strong> hace años se sabe que <strong>la</strong> <strong>alergia</strong> respiratoria a ácaros<br />

<strong>de</strong>l polvo se asocia con re<strong>la</strong>tiva frecu<strong>en</strong>cia con <strong>alergia</strong> alim<strong>en</strong>taria<br />

a mariscos 42 . La clínica con mariscos varía <strong>de</strong>s<strong>de</strong><br />

SAO hasta reacciones graves, si<strong>en</strong>do frecu<strong>en</strong>tes <strong>la</strong>s s<strong>en</strong>sibilizaciones<br />

asintomáticas 43 . Más raram<strong>en</strong>te, los paci<strong>en</strong>tes afectos<br />

pres<strong>en</strong>tan reacciones clínicas con moluscos bivalvos o cefalópodos.<br />

A<strong>de</strong>más, estos paci<strong>en</strong>tes suel<strong>en</strong> mostrar prueba cutánea<br />

positiva a cucaracha, cuya significación clínica es incierta 44 .<br />

Tal y como se com<strong>en</strong>tó anteriorm<strong>en</strong>te, <strong>la</strong> tropomiosina<br />

es el panalerg<strong>en</strong>o responsable <strong>de</strong> esta RC 6 . A<strong>de</strong>más <strong>de</strong><br />

ser el alerg<strong>en</strong>o principal <strong>de</strong> <strong>la</strong> gamba, se han i<strong>de</strong>ntificado<br />

tropomiosinas alergénicas <strong>en</strong> otros crustáceos, ácaros <strong>de</strong>l


polvo, insectos, caracoles y nemátodos 45,46 . Por otra parte, se<br />

conoce <strong>la</strong> exist<strong>en</strong>cia <strong>de</strong> RC <strong>en</strong>tre moluscos, crustáceos y<br />

<strong>de</strong>terminados insectos, causada por <strong>de</strong>terminantes carbohidratados<br />

que reaccionan <strong>de</strong> forma cruzada (CCD), si bi<strong>en</strong><br />

su trasc<strong>en</strong><strong>de</strong>ncia clínica es más que dudosa 47 .<br />

Otros síndromes <strong>de</strong> reactividad cruzada<br />

Aunque <strong>en</strong> este caso no se trate <strong>de</strong> RC <strong>en</strong>tre especies<br />

distantes, convi<strong>en</strong>e m<strong>en</strong>cionar otros síndromes <strong>en</strong>cuadrados<br />

<strong>de</strong>ntro <strong>de</strong> <strong>la</strong> RC <strong>en</strong>tre aeroalerg<strong>en</strong>os y alim<strong>en</strong>tos. En primer<br />

lugar, el síndrome ave-huevo, que <strong>de</strong>staca por su trasc<strong>en</strong><strong>de</strong>ncia<br />

clínica 48 . Se caracteriza por <strong>la</strong> asociación <strong>en</strong>tre reacciones<br />

alérgicas por ingestión <strong>de</strong> huevo y <strong>alergia</strong> respiratoria<br />

por inha<strong>la</strong>ción <strong>de</strong> antíg<strong>en</strong>os <strong>de</strong>rivados <strong>de</strong> aves, si<strong>en</strong>do<br />

más frecu<strong>en</strong>te <strong>en</strong> paci<strong>en</strong>tes adultos. Se ha i<strong>de</strong>ntificado a <strong>la</strong><br />

seroalbúmina <strong>de</strong> aves o α-livetina como <strong>la</strong> responsable <strong>de</strong><br />

esta RC 49 .<br />

Del mismo modo, se ha <strong>de</strong>scrito <strong>la</strong> asociación <strong>de</strong> <strong>alergia</strong><br />

respiratoria a animales con reacciones alérgicas por<br />

ingestión <strong>de</strong> carne. Un ejemplo es el síndrome gato-cerdo,<br />

<strong>en</strong> el que paci<strong>en</strong>tes con <strong>alergia</strong> respiratoria a gato pres<strong>en</strong>tan<br />

reacciones por ingestión <strong>de</strong> carne <strong>de</strong> cerdo 50 . En éste y <strong>en</strong><br />

otros casos <strong>de</strong> reacciones cruzadas por ingestión <strong>de</strong> carnes<br />

parece estar implicada <strong>la</strong> seroalbúmina animal.<br />

REFERENCIAS BIBLIOGRÁFICAS<br />

1. Bernhisel-Broadb<strong>en</strong>t J. Allerg<strong>en</strong>ic cross-reactivity of foods and<br />

characterization of food allerg<strong>en</strong>s and extracts. Ann Allergy Asthma<br />

Immunol 1995; 75: 295-303.<br />

2. Pastorello EA, Incorvaia C, Pravettoni V, Orto<strong>la</strong>ni C. Crossreactions<br />

in food allergy. Clin Rev Allergy Immunol 1997, 15; 415-427.<br />

3. Comité <strong>de</strong> Reacciones Adversas a Alim<strong>en</strong>tos. Metodologia diagnóstica<br />

<strong>en</strong> <strong>la</strong> <strong>alergia</strong> a alim<strong>en</strong>tos. Rev Esp Alergol Inmunol Clin<br />

1999; 14: 50-62.<br />

4. Musmand JJ, Daul CB, Lehrer SB. Crustacea allergy. Clin Exp<br />

Allergy 1993; 23: 722-732.<br />

5. Shanti KN, Martin BM, Nagpal S, Metcalfe DD, Rao PV. I<strong>de</strong>ntification<br />

of tropomyosin as the major shrimp allerg<strong>en</strong> and characterization<br />

of its IgE-binding epitopes. J Immunol 1993; 151: 5354-5363.<br />

6. Leung PS, Chow WK, Duffey S, Kwan HS, Gershwin ME, Chu<br />

KH. IgE reactivity against a cross-reactive allerg<strong>en</strong> in crustacea and<br />

mollusca: evi<strong>de</strong>nce for tropomyosin as the common allerg<strong>en</strong>. J<br />

Allergy Clin Immunol 1996; 98: 954-961.<br />

7. <strong>de</strong> Martino M, Novembre E, Galli L, <strong>de</strong> Marco A, Botarelli P, Marano<br />

E, Vierucci A. Allergy to differ<strong>en</strong>t fish species in cod-allergic<br />

childr<strong>en</strong>: in vivo and in vitro studies. J Allergy Clin Immunol 1990;<br />

86: 909-914.<br />

8. Helbling A, Hay<strong>de</strong>l R Jr, McCants ML, Musmand JJ, El-Dahr<br />

J, Lehrer SB. Fish allergy: is cross-reactivity among fish species<br />

relevant? Double-blind p<strong>la</strong>cebo-controlled food chall<strong>en</strong>ge studies<br />

of fish allergic adults. Ann Allergy Asthma Immunol 1999; 83:<br />

517-523.<br />

Repercusión clínica <strong>de</strong> <strong>la</strong> reactividad cruzada<br />

9. Pascual C, Martín Esteban M, Crespo JF. Fish allergy: evaluation<br />

of the importance of cross-reactivity. J Pediatr 1992; 121: S29-34.<br />

10. Hans<strong>en</strong> TK, Bindslev-J<strong>en</strong>s<strong>en</strong> C, Skov PS, Pouls<strong>en</strong> LK. Codfish<br />

allergy in adults: IgE cross-reactivity among fish species. Ann Allergy<br />

Asthma Immunol 1997; 78: 187-194.<br />

11. Bernhisel-Broadb<strong>en</strong>t J, Sampson HA. Cross-allerg<strong>en</strong>icity in the<br />

legume botanical family in childr<strong>en</strong> with food hypers<strong>en</strong>sitivity. J<br />

Allergy Clin Immunol 1989; 83: 435-440.<br />

12. Martínez San Ir<strong>en</strong>eo M, Ibañez Sandín MD, Femán<strong>de</strong>z-Caldas E.<br />

Hypers<strong>en</strong>sitivity to members of the botanical ar<strong>de</strong>r Fabales (legumes).<br />

J Investig Allergol Clin Immunol 2000; 10: 187-199.<br />

13. Sánchez-Monge R, Pascual CY, Díaz-Perales A, Fernán<strong>de</strong>z-Crespo<br />

J, Martín Esteban M, Salcedo G. Iso<strong>la</strong>tion and characterization of relevant<br />

allerg<strong>en</strong>s from boiled l<strong>en</strong>tils. J Allergy Clin Immunol 2000;<br />

106: 955-961.<br />

14. Ewan PW. Clinical study of peanut and nut allergy in 62 consecutive<br />

pati<strong>en</strong>ts: new features and associations. BMJ 1996; 312:<br />

1074-1078.<br />

15. Pastorello EA, Pompei C, Pravettoni V, Br<strong>en</strong>ua O, Farioli L, Trambaioli<br />

C, Conti A. Lipid transfer proteins and 2S albumins as allerg<strong>en</strong>s.<br />

Allergy 2001; 56 (Suppl 67): 45-47.<br />

16. Pastorello EA, Orto<strong>la</strong>ni C, Farioli L, Pravettoni V, Ispano M, Borga<br />

A, B<strong>en</strong>gtsson A, Incorvaia C, Berti C, Zanussi C. Allerg<strong>en</strong>ic crossreactivity<br />

among peach, apricot, plum, and cherry in pati<strong>en</strong>ts wim<br />

oral allergy syndrome: an in vivo and in vitre study. J Allergy Clin Immunol<br />

1994; 94: 699-707.<br />

17. Fernán<strong>de</strong>z-Rivas M, van Ree R, Cuevas M. Allergy to Rosaceae<br />

fruits without re<strong>la</strong>tad pollinosis. J Allergy Clin Immunol 1997; 100:<br />

728-733.<br />

18. Sánchez-Monge R, Lombar<strong>de</strong>ro M, García-Selles FJ, Barber D,<br />

Salcedo G. Lipid-transfer proteins are relevant allerg<strong>en</strong>s in fruit<br />

allergy. J Allergy Clin Immunol 1999; 103: 514-519.<br />

19. Gómez L, Martín E, Hernán<strong>de</strong>z D, Sánchez-Monge R, Barber V,<br />

<strong>de</strong>l Pozo V, <strong>de</strong> Andrés B, Arm<strong>en</strong>tia A, Lahoz C, Salcedo G, et al.<br />

Members of the alphaamy<strong>la</strong>se inhibitors family from wheat <strong>en</strong>dosperm<br />

are major allerg<strong>en</strong>s associated with baker's asthma. FEBS Lett<br />

1990; 261: 85-88.<br />

20. Palosuo K, Al<strong>en</strong>ius H, Varjon<strong>en</strong> E, Kalkkin<strong>en</strong> N, Reuna<strong>la</strong> T. Rye<br />

gamma-70 and gamma-35 secalins and barley gamma-3 hor<strong>de</strong>in<br />

cross-react with omega-5 gliadin, a maior allerg<strong>en</strong> in wheat-<strong>de</strong>p<strong>en</strong><strong>de</strong>nt,<br />

exercise-induced anaphy<strong>la</strong>xis. Clin Exp Allergy 2001; 31: 466-473.<br />

21. Vallier P, DeChamp C, Val<strong>en</strong>ta R, Vial O, Deviller P. Purification<br />

and characterization of an allerg<strong>en</strong> from celery immunochemically re<strong>la</strong>ted<br />

to an allerg<strong>en</strong> pres<strong>en</strong>t in several other p<strong>la</strong>nt species. I<strong>de</strong>ntification<br />

as a profilin. Clin Exp Allergy 1992; 22: 774-782.<br />

22. Vuitton DA. Allergic crossreactions. G<strong>en</strong>eral and practical aspects.<br />

Clin Rev Allergy Immunol 1997; 15: 367-374.<br />

23. Kazemi-Shirazi L, Pauli G, Purohit A, Spitzaner S, Froschl R,<br />

Hoffmann-Sommergruber K, Breit<strong>en</strong>e<strong>de</strong>r H, Scheiner O, Kraft D, Val<strong>en</strong>ta<br />

R. Quantitative IgE inhibition experim<strong>en</strong>ts with purified recombinant<br />

allerg<strong>en</strong>s indicate poll<strong>en</strong>-<strong>de</strong>rived allerg<strong>en</strong>s as the s<strong>en</strong>sitizing<br />

ag<strong>en</strong>ts responsible for many forms of p<strong>la</strong>nt food allergy. J Allergy Clin<br />

Immunol 2000; 105: 116-125.<br />

24. Orto<strong>la</strong>ni C, Ispano M, Pastorello E, Bigi A, Ansaloni R. The oral<br />

allergy syndrome. Ann Allergy 1988; 61: 47-52.<br />

25. Dreborg S, Foucard T. Allergy to apple, carrot and potato in childr<strong>en</strong><br />

with birch poll<strong>en</strong> allergy. Allergy 1983; 38: 167-172.<br />

26. Ebner C, Hirschwebr R, Bauer L, Breit<strong>en</strong>e<strong>de</strong>r H, Val<strong>en</strong>ta R, Ebner<br />

H, Kraft D, Scheiner O. I<strong>de</strong>ntification of allerg<strong>en</strong>s in fruits and<br />

vegetables: IgE cross-reactivities with the important birch poll<strong>en</strong><br />

allerg<strong>en</strong>s Bet v 1 and Bet v 2 (birch profilin). J Allergy Clin Immunol<br />

1995; 95: 962-969.<br />

35


C. B<strong>la</strong>nco<br />

27. Ebner C, Birkner T, Val<strong>en</strong>ta R, Rumpold H, Breit<strong>en</strong>bach M,<br />

Scheiner O, Kraft D. Conmon epitopes of birch poll<strong>en</strong> and applesstudies<br />

by westem and northem blot. J Allergy Clin Immunol 1991;<br />

88: 588-594.<br />

28. Stager J, Wuthrich B, Johansson SG. Spice allergy in celery-s<strong>en</strong>sitive<br />

pati<strong>en</strong>ts. Allergy 1991; 46: 475-478.<br />

29. Heiss S, Fischer S, Muller WD, Weber B, Hirschwehr R, Spitzauer<br />

S, Kraft D, Val<strong>en</strong>ta R. I<strong>de</strong>ntification of a 60 kd cross-reactive<br />

allerg<strong>en</strong> in poll<strong>en</strong> and p<strong>la</strong>nt-<strong>de</strong>rived food. J Allergy Clin Immunol<br />

1996; 98: 938-947.<br />

30. Caballero T, Martin-Esteban M. Association betwe<strong>en</strong> poll<strong>en</strong> hypers<strong>en</strong>sitivity<br />

and edible vegetable allergy: a review. J Investig Allergol<br />

Clin Immunol 1998; 8: 6-16.<br />

31. Cuesta-Herranz J, Lázaro M, Figueredo E, Igea JM, Umpierrez A,<br />

De-Las-Heras M. Allergy to p<strong>la</strong>nt-<strong>de</strong>rived fresh foods in a birch- and<br />

ragweed-free area. Clin Exp Allergy 2000; 30: 1411-1416.<br />

32. Asero R, Mistrello G, Roncarolo D, <strong>de</strong> Vries SC, Gautier MF, Ciurana<br />

CL, Verbeek E, Mohammadi T, Knul-Brettlova V, Akkerdaas JH,<br />

Bul<strong>de</strong>r I, Aalberse RC, van Ree R. Lipid transfer protein: a pan-allerg<strong>en</strong><br />

in p<strong>la</strong>nt-<strong>de</strong>rived foods that is highly resistant to pepsin digestion.<br />

Int Arch Allergy Irnmunol 2001, 124: 67-69.<br />

33. García Ortiz JC, Cosmes Martin P, López-Asunolo A. Melon s<strong>en</strong>sitivity<br />

shares allerg<strong>en</strong>s with P<strong>la</strong>ntago and grass poll<strong>en</strong>s. Allergy<br />

1995; 50: 269-273.<br />

34. B<strong>la</strong>nco C, Carrillo T, Castillo R, Quiralte J, Cuevas M. Latex<br />

allergy: clinical features and cross-reactivity with fruits. Ann Allergy<br />

1994; 73: 309-314.<br />

35. B<strong>la</strong>nco C. The <strong>la</strong>tex-fruit syndrome: a review on clinical features.<br />

Internet Symp Food Allerg<strong>en</strong>s 2000; 2: 125-135.<br />

36. Díaz-Perales A, Col<strong>la</strong>da C, B<strong>la</strong>nco C, Sánchez-Monge R, Carrillo<br />

T, Aragoncillo C, Salcedo G. C<strong>la</strong>ss I chitinases with hevein-like domain,<br />

but not c<strong>la</strong>ss II <strong>en</strong>zymes, are relevant chestnut and avocado<br />

allerg<strong>en</strong>s. J Allergy Clin Immunol 1998; 102: 127-133.<br />

37. B<strong>la</strong>nco C, Díaz-Perales A, Col<strong>la</strong>da C, Sánchez-Monge R, Aragoncillo<br />

C, Castillo R, Ortega N, Alvarez M, Carrillo T, Salcedo G. C<strong>la</strong>ss I<br />

chitinases as pot<strong>en</strong>tial panallerg<strong>en</strong>s involved in the <strong>la</strong>tex-fruit syndrome.<br />

J Allergy Clin Immunol 1999; 103: 507-513.<br />

38. Sánchez-Monge R, B<strong>la</strong>nco C, Díaz-Perales A, Col<strong>la</strong>da C, Carrillo<br />

T, Aragoncillo C, Salcedo G. Iso<strong>la</strong>tion and characterization of major<br />

banana allerg<strong>en</strong>s: i<strong>de</strong>ntification as fruit c<strong>la</strong>ss I chitinases. Clin Exp<br />

Allergy 1999; 29: 673-680.<br />

39. Díaz-Perales A, Col<strong>la</strong>da C, B<strong>la</strong>nco C, Sánchez-Monge R, Carrillo<br />

T, Aragoncillo C, Salcedo G. Cross-reactions in the <strong>la</strong>tex-fruit syndro-<br />

36<br />

me: A relevant role of chitinases but not of complex asparagine-linked<br />

glycans. J Allergy Clin Immunol 1999; 104: 681-687.<br />

40. Breit<strong>en</strong>e<strong>de</strong>r H, Ebner C. Molecu<strong>la</strong>r and biochemical c<strong>la</strong>ssification<br />

of p<strong>la</strong>nt-<strong>de</strong>rived food allerg<strong>en</strong>s. J Allergy Clin Immunol 2000; 106:<br />

27-36.<br />

41. Sánchez-Monge R, B<strong>la</strong>nco C, Díaz-Perales A, Col<strong>la</strong>da C, Carrillo T,<br />

Aragoncillo C, Salcedo G. C<strong>la</strong>ss I chitinases, the panallerg<strong>en</strong>s responsible<br />

for the <strong>la</strong>tex-fruit syndrome, are induced by ethyl<strong>en</strong>e treatm<strong>en</strong>t and<br />

inactivated by heating. J Allergy Clin Immunol 2000; 106: 190-195.<br />

42. Castillo R, Delgado J, Quiralte J, B<strong>la</strong>nco C, Carrillo T. Food hypers<strong>en</strong>sitivity<br />

among adult pati<strong>en</strong>ts: epi<strong>de</strong>miological and clinical aspects.<br />

Allergol Immunopathol (Madr) 1996; 24: 93-97.<br />

43. Castillo R, Carrillo T, B<strong>la</strong>nco C, Quiralte J, Cuevas M. Shellfish<br />

hypers<strong>en</strong>sitivity: clinical and immunological characteristics. Allergol<br />

Immunopathol (Madr) 1994; 22: 83-87.<br />

44. Liccardi G, Salzillo A, Noschese P, Piccolo A, Cal<strong>de</strong>raro F, D'Amato<br />

M, D’Amato G. Clinical significance of allergic s<strong>en</strong>sitization to<br />

cockroaches in pati<strong>en</strong>ts with mite re<strong>la</strong>ted respiratory allergy. J Investig<br />

Allergol Clin Immunol 1996; 6: 283-287.<br />

45. Aki T, Kodama T, Fujikawa A, Miura K, Shigeta S, Wada T, Jyo T,<br />

Murooka Y, Oka S, Ono K. Immunochemical characterization of recombinant<br />

and native tropomyosins as a new allerg<strong>en</strong> from the house<br />

dust mite, Dermatophagoi<strong>de</strong>s farinae. J Allergy Clin Immunol<br />

1995; 96: 74-83.<br />

46. Pascual CY, Crespo JF, San Martín S, Ornia N, Ortega N, Caballero<br />

T, Muñoz-Pereira M, Martín-Esteban M. Cross-reactivity betwe<strong>en</strong><br />

IgE-binding proteins from Anisakis, German cockroach, and chironomids.<br />

Allergy 1997, 52: 514-520.<br />

47. van <strong>de</strong>r Ve<strong>en</strong> MT, van Ree R, Aalberse RC, Akkerdaas J, Koppelman<br />

SJ, Jans<strong>en</strong> HM, van <strong>de</strong>r Zee JS. Poor biologic activity of crossreactive<br />

IgE directed to carbohydrate <strong>de</strong>terminants of glycoproteins. J<br />

Allergy Clin Immunol 1997; 100: 327-334.<br />

48. Mandal<strong>la</strong>z MM, <strong>de</strong> Weck AL, Dahin<strong>de</strong>n CA. Bird-egg syndrome.<br />

Cross-reactivity betwe<strong>en</strong> bird antig<strong>en</strong>s and egg-yolk livetins in IgEmediated<br />

hypers<strong>en</strong>sitivity. Int Arch Allergy Appl Immunol 1988; 87:<br />

143-150.<br />

49. Szepfalusi Z7 Ebner C, Pandjaitan R, Orlicek F, Scheiner O,<br />

Boltz-Nitulescu G, Kraft D, Ebner H. Egg yolk alpha-livetin (chick<strong>en</strong><br />

serum albumin) is a crossreactive allerg<strong>en</strong> in the bird-egg syndrome.<br />

J Allergy Clin Immunol 1994; 93: 932-942.<br />

50. Drouet M, Sabbah A. The pork/cat syndrome or crossed reactivity<br />

betwe<strong>en</strong> cat epithelia and pork meat. Monogr Allergy 1996; 32:<br />

164-173.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!