20.03.2013 Views

Total Charge: Line, Surface and Volume Integrals

Total Charge: Line, Surface and Volume Integrals

Total Charge: Line, Surface and Volume Integrals

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Lecture 4<br />

<strong>Total</strong> <strong>Charge</strong>:<br />

<strong>Line</strong>, <strong>Surface</strong> <strong>and</strong> <strong>Volume</strong> <strong>Integrals</strong><br />

Sections: 1.8, 1.9, 2.3<br />

Homework: D2.4; 1.23, 1.27, 2.14, 2.16<br />

LECTURE 4 slide 1


<strong>Line</strong> Elements – 1<br />

metric increment due to the differential increment of a coordinate<br />

a y<br />

dya<br />

a<br />

y<br />

dl b<br />

dxa<br />

dl = dxa + dya<br />

x<br />

ax<br />

x y<br />

dφ<br />

aρ<br />

a dρa φ ρ<br />

a b<br />

dl<br />

ρdφaφ dl = dρa ρ + ρdφaφ<br />

LECTURE 4 slide 2


<strong>Line</strong> Elements – 2<br />

line increment is a vector → has direction: point of integration<br />

moves from point a to point b<br />

each of its components is a linear increment (in meters)<br />

RCS: dx, dy, <strong>and</strong> dz are linear by default<br />

CCS: dρ <strong>and</strong> dz are linear, dφ is not<br />

SCS: dr is linear, dθ <strong>and</strong> dφ are not<br />

example: angular increment dφ corresponds to linear<br />

increment ρdφ<br />

LECTURE 4 slide 3


CCS:<br />

dl = dρa + ρdφa + dza<br />

ρ φ<br />

SCS:<br />

dl = dra + rdθa + rsinθdφa r<br />

θ φ<br />

x<br />

<strong>Line</strong> Elements – 3<br />

z<br />

z<br />

θ<br />

dθ<br />

φ dφ<br />

r sinθ<br />

dl<br />

rdθ<br />

dr<br />

a<br />

r<br />

ar<br />

a<br />

LECTURE 4 slide 4<br />

θ<br />

φ<br />

rsinθdφ y


<strong>Line</strong> Integration: <strong>Charge</strong> on <strong>Line</strong>s – 1<br />

B<br />

Q= ∫ ρldl<br />

A<br />

the direction of integration does<br />

not matter: charge is scalar<br />

SPECIAL CASES: CHARGE ON COORDINATE GRID LINES<br />

straight line: choose RCS xB<br />

axis along charged line Q= ∫ ρl<br />

( x) dx<br />

φ-line in CCS: circular<br />

φB<br />

charges in the x-0-y plane Q= ∫ l ( ) ⋅ 0d<br />

θ-line <strong>and</strong> φ-line in SCS<br />

x<br />

φ<br />

A<br />

A<br />

ρ φ ρ φ<br />

θB<br />

φB<br />

∫ ρl ( θ) 0 θ = ∫<br />

l ( ) ⋅ 0sin 0<br />

θ<br />

φ<br />

Q= ⋅r<br />

d<br />

Q ρ φ r θ dφ<br />

A<br />

A<br />

LECTURE 4 slide 5


x<br />

<strong>Line</strong> Integration: <strong>Charge</strong> on <strong>Line</strong>s – 2<br />

GENERAL CASE curved line: need line equation in parametric form<br />

r( u) = x( u) ax+ y( u) ay + z( u)<br />

az ⇒ dl= dr = dxax+ dyay + dzaz<br />

2 2 2 2<br />

⇒ dl = dx + dy + dz<br />

dl<br />

⇒<br />

⎛ ⎞<br />

⎜ ⎟<br />

⎝du ⎠<br />

dx<br />

=<br />

⎛ ⎞<br />

⎜ ⎟<br />

⎝du ⎠<br />

⎛ dy<br />

+<br />

⎞<br />

⎜ ⎟<br />

⎝du ⎠<br />

⎛ dz<br />

+<br />

⎞<br />

⎜ ⎟<br />

⎝du ⎠<br />

2<br />

⎛ dl ⎞ dr dr<br />

⇒ ⎜ ⎟ = ⋅<br />

⎝du ⎠ du du<br />

z<br />

dl<br />

⇒<br />

⎛ ⎞<br />

⎜ ⎟=<br />

⎝du ⎠<br />

dr dr<br />

⋅<br />

du du<br />

⇒ dl =<br />

dr dr<br />

⋅ du<br />

du du<br />

u<br />

B<br />

dr dr<br />

LAB = ∫ ⋅ du<br />

du du<br />

uA<br />

r(<br />

u)<br />

A<br />

dr<br />

y<br />

B<br />

2 2 2 2<br />

B<br />

dr dr<br />

Q= ∫ ρl<br />

( u) ⋅ du<br />

du du<br />

LECTURE 4 slide 6<br />

u<br />

u<br />

A


<strong>Surface</strong> Elements – 1<br />

The surface element is defined by two line elements:<br />

ds= dl × dl<br />

1 2<br />

surface elements in the RCS principal planes<br />

z = const plane: ds=± dxdya<br />

y = const plane: ds=± dxdza<br />

x = const plane: ds=± dydza<br />

dl2 ds<br />

z<br />

y<br />

x<br />

dz<br />

dl<br />

dx<br />

LECTURE 4 slide 7<br />

1<br />

x = a /2<br />

dy<br />

y = −a<br />

/ 2<br />

dy<br />

z<br />

dz<br />

0 y dx<br />

x<br />

2 /<br />

x = − a /2<br />

z = −a<br />

/2<br />

a<br />

z = a<br />

/2<br />

y = a


<strong>Surface</strong> Elements – 2<br />

surface elements in the CCS principal planes<br />

ρ = const plane: ds=± ρdφdza φ = const plane: ds=± dρdzaφ z = const plane: ds=± ρdρdφaz ρ<br />

dz<br />

LECTURE 4 slide 8<br />

z<br />

z = consta<br />

z<br />

a d ρ<br />

ρdφ aφ<br />

dz aρ<br />

ρdφ dρ<br />

const<br />

φ =<br />

ρ =<br />

const


<strong>Surface</strong> Elements – 3<br />

surface elements in the SCS principal planes<br />

r = const surface (sphere):<br />

2 ds= r sinθdθdφar θ = const surface (cone):<br />

ds= rsinθdrdφaθ φ = const surface (circular plane):<br />

ds= rdrdθaφ LECTURE 4 slide 9


<strong>Surface</strong> Integration: <strong>Charge</strong> on <strong>Surface</strong>s – 1<br />

We will limit ourselves to SPECIAL CASES<br />

charges on principal coordinate planes<br />

charge on a plane<br />

y x<br />

2 2<br />

Q= ∫∫ρs(<br />

x, y) dxdy<br />

y x<br />

1 1<br />

charge on a circular disk or ring<br />

ρ φ<br />

2 2<br />

Q= ∫∫ρs(<br />

ρφρ , ) dφdρ ρ φ<br />

1 1<br />

y2<br />

y1<br />

LECTURE 4 slide 10<br />

y<br />

Q= ∫∫<br />

ρsds<br />

x<br />

ρ1<br />

S<br />

x1 x2<br />

φ2<br />

ρ2 1 φ


x<br />

<strong>Surface</strong> Integration: <strong>Charge</strong> on <strong>Surface</strong>s – 2<br />

charge on a cylinder<br />

z<br />

2<br />

2<br />

Q= ∫∫ρs<br />

(, z φρ ) 0dφdz<br />

z<br />

φ<br />

φ<br />

1 1<br />

charge on a sphere<br />

z<br />

0<br />

θ1<br />

r<br />

0<br />

θ2<br />

φ1<br />

φ2<br />

y<br />

φ θ<br />

2 2<br />

1 1<br />

ρ0<br />

2<br />

0<br />

LECTURE 4 slide 11<br />

z2 1 φ φ2<br />

z1<br />

Q= ∫∫ρs<br />

( θφ , ) r sinθdθdφ<br />

φ θ


<strong>Surface</strong> Integration: <strong>Charge</strong> on <strong>Surface</strong>s – 3<br />

charge on a cone<br />

φ2<br />

r2<br />

= ∫∫ρs (, φ)sinθ0 φ r<br />

φ<br />

r2<br />

1<br />

Q r r drd<br />

1 1<br />

NOTE: If you set ρ s = 1 in the above formulas, you can compute<br />

the area of the respective surfaces.<br />

φ<br />

r1<br />

θ0<br />

LECTURE 4 slide 12<br />

φ2


<strong>Volume</strong> Elements – 1<br />

The volume element is defined by three line elements<br />

RCS: dv = dxdydz<br />

dv = ( dl × dl ) ⋅dl<br />

1 2 3<br />

dl2<br />

dl 3 dl<br />

LECTURE 4 slide 13<br />

1


CCS: dv = ρd ρdφdz <strong>Volume</strong> Elements – 2<br />

LECTURE 4 slide 14


2<br />

SCS: dv = r sinθ<br />

drdθdφ <strong>Volume</strong> Elements – 3<br />

LECTURE 4 slide 15


parallelogram<br />

<strong>Volume</strong> Integration: <strong>Volume</strong> <strong>Charge</strong>s<br />

z y x<br />

2 2 2<br />

Q = ∫∫∫ρv(<br />

x, y, z) dxdydz<br />

z y x<br />

1 1 1<br />

cylindrical volume<br />

z<br />

1 2 2<br />

Q= ∫∫∫ρ<br />

v ( ρφ , , z) ρdρdφdz z<br />

φ ρ<br />

φ ρ<br />

1 1 1<br />

spherical volume<br />

φ θ<br />

r<br />

2 2 2<br />

Q= ∫∫∫ρv(,<br />

r θφ , ) r sinθdrdθdφ<br />

φ θ<br />

r<br />

1 1 1<br />

2<br />

Q= ∫∫∫ ρvdv<br />

NOTE: You can find the volume of the element by setting ρ v = 1.<br />

LECTURE 4 slide 16<br />

V


<strong>Volume</strong> Integration: Example<br />

A light source shines onto a hemispherical dome of radius a = 5 m,<br />

<strong>and</strong> makes a round spot 2 m in diameter, d = 2 m. What is the<br />

volume of the light cone from the light source to the dome?<br />

Work in SCS. Assume the z-axis is along the axis of the<br />

symmetrical conical light beam. The sine of the half the<br />

subtended angle of the beam is<br />

d /2<br />

sinα = = 0.2<br />

2<br />

⇒ cosα = 1− sin α =<br />

0.9798<br />

a<br />

2π<br />

α a<br />

V = ∫∫∫ dv= ∫ ∫ ∫<br />

2 r sin drd d<br />

V φ= 0θ= 0r= 0<br />

θ θ φ<br />

3 3<br />

a<br />

5<br />

V = × 2 π× (1− cos α) = × 2π× 0.0202 = 0.21, m<br />

3 3<br />

LECTURE 4 slide 17<br />

3


You have learned how to<br />

find the total charge along a straight line or any other curved line<br />

find the total charge on any portion of the surface of a plane, disk,<br />

cylinder, sphere, cone<br />

find the total charge on any portion of a parallelogram, cylinder,<br />

sphere, cone<br />

use integration to find length, area <strong>and</strong> volume<br />

LECTURE 4 slide 18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!