08.12.2012 Views

Lead and Lag Compensator Design using Frequency Domain

Lead and Lag Compensator Design using Frequency Domain

Lead and Lag Compensator Design using Frequency Domain

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

EE 3CL4, §9<br />

1 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

EE3CL4:<br />

Introduction to Linear Control Systems<br />

Section 9: <strong>Design</strong> of <strong>Lead</strong> <strong>and</strong> <strong>Lag</strong> <strong>Compensator</strong>s <strong>using</strong><br />

<strong>Frequency</strong> <strong>Domain</strong> Techniques<br />

Tim Davidson<br />

McMaster University<br />

Winter 2012


EE 3CL4, §9<br />

2 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

Outline<br />

1 <strong>Frequency</strong> <strong>Domain</strong> Approach to <strong>Compensator</strong> <strong>Design</strong><br />

2 <strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

3 <strong>Lag</strong><br />

<strong>Compensator</strong>s


EE 3CL4, §9<br />

4 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

<strong>Frequency</strong> domain analysis<br />

• Analyze closed loop <strong>using</strong> open loop transfer function<br />

L(s) = Gc(s)G(s)H(s).<br />

• Nyquist’s stability criterion<br />

1<br />

|L(jωx )| , where ωx is<br />

the frequency at which ∠L(jω) reaches −180 ◦<br />

• Gain margin:<br />

• Phase margin, φpm: 180 ◦ + ∠L(jωc), where ωc is<br />

the frequency at which |L(jω)| equals 1<br />

• Damping ratio: φpm = f (ζ),<br />

• Settling time related to the b<strong>and</strong>width of the loop


EE 3CL4, §9<br />

5 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

L(jω) =<br />

• Gain margin ≈ 15 dB<br />

• Phase margin ≈ 43 ◦<br />

Bode diagram<br />

1<br />

jω(1 + jω)(1 + jω/5)


EE 3CL4, §9<br />

6 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

<strong>Compensator</strong>s <strong>and</strong> Bode<br />

diagram<br />

• We have seen the importance of phase margin<br />

• If G(s) does not have the desired margin,<br />

how should we choose Gc(s) so that<br />

L(s) = Gc(s)G(s) does?<br />

• To begin, how does Gc(s) affect the Bode diagram<br />

• Magnitude:<br />

�<br />

20 log10 |Gc(jω)G(jω)| �<br />

�<br />

= 20 log10 (|Gc(jω)| � � �<br />

+ 20 log10 |G(jω)|<br />

• Phase:<br />

∠Gc(jω)G(jω) = ∠Gc(jω) + ∠G(jω)


EE 3CL4, §9<br />

8 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lead</strong> <strong>Compensator</strong>s<br />

• Gc(s) = Kc(s+z)<br />

s+p , with |z| < |p|, alternatively,<br />

• Gc(s) = Kc<br />

α<br />

• Bode diagram:<br />

1+sατ<br />

1+sτ , where p = 1/τ <strong>and</strong> α = p/z > 1


EE 3CL4, §9<br />

9 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lead</strong> Compensation<br />

• What will lead compensation, do?<br />

• Phase is positive: might be able to increase phase<br />

margin φpm<br />

• Slope is positive: might be able to increase the<br />

cross-over frequency, ωc, (<strong>and</strong> the b<strong>and</strong>width)


EE 3CL4, §9<br />

10 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

• Gc(s) = Kc 1+sατ<br />

α 1+sτ<br />

<strong>Lead</strong> Compensation<br />

• By making the denom. � real, � can show that<br />

ωτ(α−1)<br />

∠Gc(jω) = atan<br />

1+α(ωτ) 2<br />

• Max. occurs when ω = ωm = 1<br />

τ √ α = √ zp<br />

• Max. phase angle satisfies tan(φm) = α−1<br />

2 √ α<br />

• Equivalently, sin(φm) = α−1<br />

α+1<br />

• At ω = ωm, we have |Gc(jωm)| = Kc/ √ α


EE 3CL4, §9<br />

11 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

Bode <strong>Design</strong> Principles<br />

• Set the loop gain so that desired steady-state error<br />

constants are obtained<br />

• Insert the compensator to modify the transient<br />

properties:<br />

• Damping: through phase margin<br />

• Response time: through b<strong>and</strong>width<br />

• Compensate for the attenuation of the lead network, if<br />

appropriate<br />

To maximize impact of phase lead, want peak of phase near<br />

ωc of the compensated open loop


EE 3CL4, §9<br />

12 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

<strong>Design</strong> Guidelines<br />

1 For uncompensated (i.e., proportionally controlled)<br />

closed loop, set gain Kp so that steady-state error<br />

constants of the closed loop meet specifications<br />

2 Evaluate the phase margin, <strong>and</strong> the amount of phase<br />

lead required.<br />

3 Add a little “safety margin” to the amount of phase lead<br />

4 From this, determine α <strong>using</strong> sin(φm) = α−1<br />

α+1<br />

5 Determine the frequency at which open-loop frequency<br />

response has magnitude −10 log 10 (α)<br />

6 If we set ωm to be this frequency, then ωm will be the<br />

cut-off frequency of the compensated loop, <strong>and</strong> hence<br />

we will have maximum phase contribution to the<br />

compensated closed loop at the appropriate frequency<br />

√ √<br />

7 Choose τ = 1/(ωm α) <strong>and</strong> hence p = ωm α.<br />

8 Choose z = p/α. Set Kc = Kpα.<br />

9 <strong>Compensator</strong>: Gc(s) = Kc(s+z)<br />

s+p .


EE 3CL4, §9<br />

13 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

Example<br />

• Type 1 plant of order 2: G(s) = 5<br />

s(s+2)<br />

• <strong>Design</strong> goals:<br />

• Steady-state error due to a ramp input less than 5% of<br />

velocity of ramp<br />

• Phase margin at least 45 ◦ (implies a damping ratio)<br />

• Steady state error requirement implies Kv = 20.<br />

• For prop. controlled Type 1 plant: Kv = lims→0 sKpG(s).<br />

Hence Kp = 8.<br />

• To find phase margin of prop. controlled loop we need<br />

to find ωc, where |KpG(jωc)| = � �<br />

� 40 � = 1<br />

• ω ≈ 6.2rad/s<br />

• ∠KpG(jωc) = −90 ◦ − atan(ω/2)<br />

• Hence φpm, prop = 18 ◦<br />

jωc(jωc+2)


EE 3CL4, §9<br />

14 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

Example<br />

• φpm, prop = 18 ◦ . Hence, need 27 ◦ of phase lead<br />

• Let’s go for a little more, say 30 ◦<br />

• So, want peak phase of lead comp. to be 30 ◦<br />

• Solving α−1<br />

α+1 = sin(30◦ ) yields α = 3<br />

• Since 10 log10 (3) = 4.8 dB we should choose ωm �� �<br />

to be<br />

where 20 log � 40 �<br />

10 jωm(jωm+2)<br />

� = −4.8 dB<br />

• Solving this equations yields ωm = 8.4rad/s<br />

• Therefore z = ωm/ √ α = 4.8, p = αz = 14.4,<br />

Kc = 3 × 8<br />

• Gc(s) = 24(s+4.8)<br />

s+14.4<br />

• Gc(s)G(s) = 120(s+4.8)<br />

s(s+2)(s+14.4) , actual φpm = 43.6 ◦<br />

• Goal can be achieved by <strong>using</strong> a larger target for<br />

additional phase, e.g., α = 3.5


EE 3CL4, §9<br />

15 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

Bode Diagram


EE 3CL4, §9<br />

16 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

Step Response


EE 3CL4, §9<br />

17 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

Ramp Response


EE 3CL4, §9<br />

18 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

Ramp Response, detail


EE 3CL4, §9<br />

20 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong> <strong>Compensator</strong>s<br />

• Gc(s) = Kc(s+z)<br />

s+p , with |p| < |z|, alternatively,<br />

• Gc(s) = Kc 1+sτ<br />

α 1+sατ , where z = 1/τ <strong>and</strong> α = z/p > 1<br />

• We will consider case where Kc = α<br />

• Bode diagrams of lag compensators for two different αs


EE 3CL4, §9<br />

21 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

What will lag compensation do?<br />

• Since zero <strong>and</strong> pole are typically close to the origin,<br />

phase lag is not really used.<br />

• What is useful is the attenuation above ω = 1/τ:<br />

gain is −20 log 10 (α), with little phase lag<br />

• Can reduce cross-over frequency, ωc, without adding<br />

much phase lag<br />

• Tends to reduce b<strong>and</strong>width


EE 3CL4, §9<br />

22 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

Qualitative example<br />

• Uncompensated system has small phase margin<br />

• Phase lag of compensator does not play a large role<br />

• Attenuation of compensator does:<br />

ωc reduced by about a factor of a bit more than 3<br />

• Increased phase margin is due to the natural phase<br />

characteristic of the plant


EE 3CL4, §9<br />

23 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong> Compensation<br />

• Gc(s) = 1+sτ<br />

1+sατ<br />

• Attenuation above ω = 1/τ is 20 log 10 (α);<br />

i.e., gain is −20 log 10 (α)<br />

• Phase lag above ω = 1/τ is small


EE 3CL4, §9<br />

24 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

For lag compensators:<br />

Bode <strong>Design</strong> Principles<br />

• Set the loop gain so that desired steady-state error<br />

constants are obtained<br />

• Insert the compensator to modify the phase margin:<br />

• Do this by reducing the cross-over frequency<br />

• Observe the impact on response time<br />

Basic principle: Set attenuation to reduce ωc far enough so<br />

that uncompensated open loop has desired phase margin<br />

compensated open loop


EE 3CL4, §9<br />

25 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

<strong>Design</strong> Guidelines<br />

1 For uncompensated (i.e., proportionally controlled)<br />

closed loop, set gain Kp so that steady-state error<br />

constants of the closed loop meet specifications<br />

2 Obtain the Bode diagram, evaluate the phase margin.<br />

If that is insufficient. . .<br />

3 Determine ω ′ c, the frequency at which the<br />

uncompensated open loop has a phase margin equal<br />

to the desired phase margin plus 5 ◦ .<br />

4 Now design a lag compensator so that the gain of the<br />

compensated open loop at this frequency is 0 dB<br />

• Place the zero of the compensator around ω ′ c/10 to<br />

ensure we get almost full attenuation by the<br />

compensator at ω ′ c<br />

• Choose α so that 20 log 10 (α) is the attenuation needed<br />

to reduce the gain of the uncompensated closed loop at<br />

ω ′ c to 0 dB<br />

• Place the pole at p = z/α<br />

• Choose Kc = Kp/α, <strong>and</strong> hence Gc(s) = Kc(s+z)<br />

s+p


EE 3CL4, §9<br />

26 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

Example, same set up as lead<br />

design<br />

• Type 1 plant of order 2: G(s) = 5<br />

s(s+2)<br />

• <strong>Design</strong> goals:<br />

• Steady-state error due to a ramp input less than 5% of<br />

velocity of ramp<br />

• Phase margin at least 45 ◦ (implies a damping ratio)<br />

• Steady state error requirement implies Kv = 20.<br />

• For prop. controlled Type 1 plant: Kv = lims→0 sKpG(s).<br />

Hence Kp = 8.<br />

• To find phase margin of prop. controlled loop we need<br />

to find ωc, where |KpG(jωc)| = � �<br />

� 40 � = 1<br />

• ω ≈ 6.2rad/s<br />

• ∠KpG(jωc) = −90 ◦ − atan(ω/2)<br />

• Hence φpm, prop = 18 ◦<br />

jωc(jωc+2)


EE 3CL4, §9<br />

27 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

Example<br />

• Since want phase margin to be 45 ◦ , we set ω ′ c such that<br />

∠G(jω ′ c) = −180 ◦ + 45 ◦ + 5 ◦ = 130 ◦ . =⇒ ω ′ c ≈ 1.5<br />

• Required attenuation is 20 dB. Actual curves are around<br />

2 dB lower than the straight line approximation shown<br />

• Hence α = 10.<br />

• Zero set to be one decade below ω ′ c; z = 0.15<br />

• Pole is z/α = 0.015<br />

• Gain is Kc = Kp/α = 0.8<br />

• Hence Gc(s) = 0.8(s+0.15)<br />

s+0.015


EE 3CL4, §9<br />

28 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

Example: Comp’d open loop<br />

• Compensated open loop: Gc(s)G(s) =<br />

• Numerical evaluation:<br />

• new ωc = 1.58<br />

• new phase margin = 46.8 ◦<br />

• By design, Kv remains 20<br />

4(s+0.15)<br />

s(s+2)(s+0.015)


EE 3CL4, §9<br />

29 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

Step Response


EE 3CL4, §9<br />

30 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

Ramp Response


EE 3CL4, §9<br />

31 / 31<br />

Tim Davidson<br />

<strong>Frequency</strong><br />

<strong>Domain</strong><br />

Approach to<br />

<strong>Compensator</strong><br />

<strong>Design</strong><br />

<strong>Lead</strong><br />

<strong>Compensator</strong>s<br />

<strong>Lag</strong><br />

<strong>Compensator</strong>s<br />

Ramp Response, detail

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!