24.03.2013 Views

Lecture 5: Polarization and Related Antenna Parameters

Lecture 5: Polarization and Related Antenna Parameters

Lecture 5: Polarization and Related Antenna Parameters

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Lecture</strong> 5: <strong>Polarization</strong> <strong>and</strong> <strong>Related</strong> <strong>Antenna</strong> <strong>Parameters</strong><br />

(<strong>Polarization</strong> of EM fields – revision. <strong>Polarization</strong> vector. <strong>Antenna</strong><br />

polarization. <strong>Polarization</strong> loss factor <strong>and</strong> polarization efficiency.)<br />

1. <strong>Polarization</strong> of EM fields<br />

The polarization of the EM field describes the orientation of its vectors at a<br />

given point <strong>and</strong> how it varies with time. In other words, it describes the way the<br />

direction <strong>and</strong> magnitude of the field vectors (usually E) change in time.<br />

<strong>Polarization</strong> is associated with TEM time-harmonic waves where the H vector<br />

relates to the E vector simply by H rˆ E<br />

/ .<br />

In antenna theory, we are concerned with the polarization of the field in the<br />

plane orthogonal to the direction of propagation—this is the plane defined by<br />

the vectors of the far field. Remember that the far field is a quasi-TEM field.<br />

The polarization is the locus traced by the extremity of the time-varying field<br />

vector at a fixed observation point.<br />

According to the shape of the trace, three types of polarization exist for<br />

harmonic fields: linear, circular <strong>and</strong> elliptical. Any polarization can be<br />

represented by two orthogonal linear polarizations, ( Ex, E y)<br />

or ( EH, E V),<br />

whose<br />

fields are out of phase by an angle of L .<br />

z<br />

y<br />

E<br />

x<br />

y<br />

z <br />

E<br />

x<br />

z E<br />

(a) linear polarization (b) circular polarization (c) elliptical polarization<br />

Nikolova 2012 1<br />

y<br />

x


If L 0 or n , then linear polarization results.<br />

t <br />

0<br />

t e ( t)<br />

only<br />

H<br />

e ( t)<br />

only<br />

H<br />

t <br />

e () t<br />

e () t<br />

Animation: Linear <strong>Polarization</strong>, L 0,<br />

Ex Ey<br />

Nikolova 2012 2<br />

0<br />

t H<br />

e () t<br />

V<br />

V<br />

e () t<br />

H


If / 2 (90 ) <strong>and</strong> | E | | E | , then circular polarization results.<br />

t1<br />

L<br />

x y<br />

t t <br />

2 1 /2<br />

Animation: Clockwise Circular Rotation<br />

In the most general case, elliptical polarization is defined.<br />

t <br />

0<br />

t /2<br />

Animation: Counter-clockwise Elliptical Rotation<br />

It is also true that any type of polarization can be represented by a righth<strong>and</strong><br />

circular <strong>and</strong> a left-h<strong>and</strong> circular polarizations ( E L,<br />

E R ). Next, we review<br />

the above statements <strong>and</strong> definitions, <strong>and</strong> introduce the new concept of<br />

polarization vector.<br />

Nikolova 2012 3


2. Field polarization in terms of two orthogonal linearly polarized<br />

components<br />

The polarization of any field can be represented by a set of two orthogonal<br />

linearly polarized fields. Assume that locally a far-field wave propagates along<br />

the z-axis. The far-zone field vectors have only transverse components. Then,<br />

the set of two orthogonal linearly polarized fields along the x-axis <strong>and</strong> along<br />

the y-axis, is sufficient to represent any TEMz field. We use this arrangement to<br />

introduce the concept of polarization vector.<br />

The field (time-dependent or phasor vector) is decomposed into two<br />

orthogonal components:<br />

e ex ey E Ex E y,<br />

(5.1)<br />

ex Excos tzxˆ e E cos t z <br />

yˆ<br />

<br />

Ex Exxˆ<br />

E EejLyˆ.<br />

(5.2)<br />

<br />

y y L<br />

y y<br />

At a fixed position (assume z 0),<br />

equation (5.1) can be written as<br />

e( t) xˆEcostyˆEcos( t )<br />

x y L<br />

ˆ E ˆ E e j L <br />

E x y <br />

x y<br />

Case 1: Linear polarization: Ln, n<br />

0,1,2,<br />

e( t) xˆEcos( t) yˆEcos(<br />

t n<br />

)<br />

E y<br />

y<br />

(a)<br />

x y<br />

E xˆE yˆE<br />

2k<br />

L<br />

0 E<br />

<br />

E x<br />

x<br />

x y<br />

Ey arctan <br />

E<br />

<br />

x <br />

(2k1) <br />

(5.3)<br />

(5.4)<br />

Nikolova 2012 4<br />

E<br />

y<br />

L<br />

E<br />

(b)<br />

y<br />

<br />

0<br />

Ex<br />

x


Case 2: Circular polarization:<br />

3<br />

t <br />

5<br />

2<br />

t <br />

4<br />

t 3<br />

t <br />

4<br />

Ex Ey Em <strong>and</strong> L n, n 0,1,2,<br />

2 <br />

e( t) xˆEcos( t) yˆEcos[<br />

t ( / 2 n<br />

)]<br />

x y<br />

E E ( xˆ jyˆ)<br />

E E ( xˆ jyˆ)<br />

m<br />

<br />

L2n 2<br />

y<br />

z<br />

t<br />

2<br />

<br />

<br />

m<br />

7<br />

t <br />

4<br />

t<br />

4<br />

<br />

<br />

t 0<br />

x<br />

If z ˆ is the direction of<br />

propagation: counterclockwise<br />

(CCW) or left-h<strong>and</strong> polarization<br />

t <br />

t 5<br />

t <br />

4<br />

E E ( xˆ jyˆ)<br />

t y<br />

2<br />

<br />

<br />

L2n 2<br />

<br />

3<br />

4<br />

3<br />

t <br />

2<br />

(5.5)<br />

t<br />

4<br />

<br />

<br />

t 0<br />

x<br />

7<br />

t <br />

4<br />

Note that the sense of rotation changes if the direction of propagation changes.<br />

In the example above, if the wave propagates along z, ˆ the plot to the left,<br />

where E Em( xˆ jy<br />

ˆ)<br />

, corresponds to a right-h<strong>and</strong> wave, while the plot to the<br />

right, where E E ( xˆ jy<br />

ˆ)<br />

, corresponds to a left-h<strong>and</strong> wave.<br />

m<br />

If ˆ<br />

z is the direction of<br />

propagation: clockwise (CW) or<br />

right-h<strong>and</strong> polarization<br />

Nikolova 2012 5<br />

m<br />

z


A snapshot of the field vector (at a particular moment of time) along the axis<br />

of propagation is given below for a left-h<strong>and</strong> circularly polarized wave<br />

travelling along z.<br />

Pick an observing position along the z axis <strong>and</strong><br />

imagine that the whole helical trajectory of the tip of the field vector moves<br />

along z.<br />

Are you going to see the vector rotating clockwise or counterclockwise<br />

(as you look toward z ). (Ans.: counter-clockwise)<br />

y<br />

Case 3: Elliptic polarization<br />

x<br />

The field vector at a given point traces an ellipse as a function of time. This<br />

is the most general type of polarization, obtained for any phase difference <br />

<strong>and</strong> any ratio ( Ex / E y)<br />

. Mathematically, the linear <strong>and</strong> the circular<br />

polarizations are special cases of the elliptical polarization. In practice,<br />

however, the term elliptical polarization is used to indicate polarizations other<br />

than linear or circular.<br />

( t) ˆExcostˆEycos( t L)<br />

ˆEˆEejL <br />

e x y <br />

(5.6)<br />

E x y<br />

x y<br />

<br />

z<br />

Nikolova 2012 6


Show that the trace of the time-dependent vector is an ellipse:<br />

e ( t) E (cost cos sin t sin )<br />

y y L L<br />

ex() t<br />

ex() t <br />

cost<br />

<strong>and</strong> sint 1<br />

E<br />

<br />

x<br />

E<br />

<br />

x <br />

2<br />

ex( t) ex( t)<br />

ey t ey t<br />

L L<br />

E <br />

x E <br />

<br />

x Ey Ey<br />

sin2 <br />

<br />

2<br />

<br />

<br />

<br />

<br />

( ) <br />

cos <br />

<br />

<br />

<br />

( ) <br />

<br />

<br />

or (dividing both sides by sin2 L ),<br />

1 x2( t) 2 x( t) y( t)cos 2<br />

L y ( t)<br />

,<br />

where<br />

ex( t) cost<br />

xt () ,<br />

Ex<br />

sinLsinL ey() t cos( tL) yt () .<br />

E sin sin<br />

(5.7)<br />

y L L<br />

Equation (5.7) is the equation of an ellipse centered in the xy plane. It<br />

describes the trajectory of a point of coordinates x(t) <strong>and</strong> y(t), i.e., normalized<br />

ex() t <strong>and</strong> ey() t values, along an ellipse where the point moves with an angular<br />

frequency .<br />

As the circular polarization, the elliptical polarization can be right-h<strong>and</strong>ed<br />

or left-h<strong>and</strong>ed, depending on the relation between the direction of propagation<br />

<strong>and</strong> the direction of rotation.<br />

e () t<br />

y<br />

major axis (2 OA)<br />

E<br />

<br />

Ey<br />

minor axis (2 OB)<br />

Nikolova 2012 7<br />

<br />

2<br />

Ex<br />

ex() t<br />

2


The parameters of the polarization ellipse are given below. Their derivation<br />

is given in Appendix I.<br />

a) major axis (2 OA)<br />

OA =<br />

1<br />

E22 x Ey <br />

2 <br />

E4 4 2 2 2<br />

x Ey Ex Ey cos(2 L<br />

) <br />

(5.8)<br />

b) minor axis (2 OB)<br />

OB =<br />

1<br />

E22 x Ey <br />

2 <br />

E4 4 2 2 2<br />

x Ey Ex Ey cos(2 L<br />

) <br />

(5.9)<br />

c) tilt angle <br />

1 2EE<br />

x y <br />

arctan cos<br />

2<br />

2 2<br />

L <br />

Ex Ey<br />

<br />

(5.10)<br />

Note: Eq. (5.10) produces an infinite number of angles, τ = (arctanA)/2<br />

n /2,<br />

n = 1,2,….Thus, it gives not only the angle which the major<br />

axis of the ellipse forms with the x axis but also the angle of the minor<br />

axis with the x axis. In spherical coordinates, τ is usually specified<br />

with respect to the ˆ θ direction<br />

d) axial ratio<br />

Nikolova 2012 8<br />

A<br />

major axis OA<br />

AR (5.11)<br />

minor axis OB<br />

Note: The linear <strong>and</strong> circular polarizations as special cases of the elliptical<br />

polarization:<br />

If L 2n<br />

2 <strong>and</strong> Ex Ey,<br />

then OA OB Ex Ey;<br />

the ellipse<br />

becomes a circle.<br />

If L n,<br />

then OB 0 <strong>and</strong> arctan( Ey / Ex)<br />

; the ellipse collapses<br />

into a line.


3. Field polarization in terms of two circularly polarized components<br />

The representation of a complex vector field in terms of circularly polarized<br />

components is somewhat less easy to perceive but it is actually more useful in<br />

the calculation of the polarization ellipse parameters. This time, the total field<br />

phasor is represented as the superposition of two circularly polarized waves,<br />

one right-h<strong>and</strong>ed <strong>and</strong> the other left-h<strong>and</strong>ed. For the case of a wave propagating<br />

along z [see Case 2 <strong>and</strong> Eq. (5.5)],<br />

E E ( xˆ jyˆ ) E ( xˆ jy<br />

ˆ)<br />

. (5.12)<br />

R L<br />

Here, ER <strong>and</strong> EL are in general complex phasors. Assuming a relative phase<br />

difference of C L R,<br />

one can write (5.12) as<br />

e ( ˆ ˆ) j C<br />

R j eLe( ˆ jˆ<br />

)<br />

E x y x y , (5.13)<br />

where e R <strong>and</strong> e L are real numbers.<br />

The relations between the linear-component <strong>and</strong> the circular-component<br />

representations of the field polarization are easily found as<br />

E xˆ( E E ) y ˆ j( E E )<br />

(5.14)<br />

R L R L<br />

E E<br />

x y<br />

Ex ER EL<br />

<br />

E j( E E)<br />

y R L<br />

ER 0.5( Ex jEy<br />

)<br />

<br />

E 0.5( E jE )<br />

L x y<br />

4. <strong>Polarization</strong> vector <strong>and</strong> polarization ratio<br />

The polarization vector is the normalized phasor of the electric field vector.<br />

It is a complex-valued vector of unit magnitude, i.e., ρˆ ρ ˆ 1.<br />

L L <br />

x y j L<br />

2 2<br />

L e Em Ex Ey<br />

Em Em Em<br />

(5.15)<br />

(5.16)<br />

E E E<br />

ρˆ xˆ y ˆ ,<br />

(5.17)<br />

The polarization vector takes the following specific forms:<br />

Case 1: Linear polarization<br />

Nikolova 2012 9


Ex<br />

Ey<br />

ρˆ xˆ y ˆ ,<br />

Em Em<br />

Em E2 2<br />

x Ey<br />

(5.18)<br />

where E x <strong>and</strong> E y are real numbers.<br />

Case 2: Circular polarization<br />

ρˆ L <br />

1<br />

xˆ jy ˆ ,<br />

2<br />

Em 2Ex 2Ey<br />

(5.19)<br />

The polarization ratio is the ratio of the phasors of the two orthogonal<br />

polarization components. In general, it is a complex number:<br />

E j L<br />

y Eye EV<br />

r L<br />

L rLe or rL<br />

(5.20)<br />

E E E<br />

x x H<br />

Point of interest: In the case of circular-component representation, the<br />

polarization ratio is defined as<br />

r r e<br />

j<br />

C <br />

C . (5.21)<br />

EL<br />

C R<br />

The circular polarization ratio r C is of particular interest since the axial ratio of<br />

the polarization ellipse AR can be expressed as<br />

rC<br />

1<br />

AR . (5.22)<br />

r 1<br />

Besides, its tilt angle with respect to the y (vertical) axis is simply<br />

/2<br />

Nikolova 2012 10<br />

C<br />

E<br />

V C . (5.23)<br />

Comparing (5.10) <strong>and</strong> (5.23) readily shows the relation between the phase<br />

difference δC of the circular-component representation <strong>and</strong> the linear<br />

polarization ratio r j L<br />

L rLe :<br />

2rL<br />

<br />

C arctan cos<br />

1 2<br />

L<br />

r<br />

.<br />

(5.24)<br />

L <br />

We can calculate r C from the linear polarization ratio r L making use of (5.11)<br />

<strong>and</strong> (5.22):


C 1<br />

1 r2 L 1 r4 2 2<br />

L rL<br />

cos(2 L<br />

)<br />

C 1 1 2<br />

L 1 4 2 2<br />

L L cos(2 L<br />

)<br />

r<br />

AR <br />

. (5.25)<br />

r r r r<br />

Using (5.24) <strong>and</strong> (5.25) allows switching between the representation of the<br />

wave polarization in terms of linear <strong>and</strong> circular components.<br />

5. <strong>Antenna</strong> polarization<br />

The polarization of a transmitting antenna is the polarization of its<br />

radiated wave in the far zone. The polarization of a receiving antenna is the<br />

polarization of a plane wave, incident from a given direction, which, for a<br />

given power flux density, results in maximum available power at the antenna<br />

terminals.<br />

The antenna polarization is defined by the polarization vector of the<br />

radiated (transmitted) wave. Notice that the polarization vector of a wave in the<br />

coordinate system of the transmitting antenna is represented by its complex<br />

conjugate in the coordinate system of the receiving antenna:<br />

ˆr ( ˆt<br />

w w) ρ ρ . (5.26)<br />

The conjugation is without importance for a linearly polarized wave since its<br />

polarization vector is real. It is, however, important in the cases of circularly<br />

<strong>and</strong> elliptically polarized waves.<br />

This is illustrated in the figure below with a right-h<strong>and</strong> CP wave. Let the<br />

t t t<br />

coordinate triplet ( x1, x2, x 3)<br />

represents the coordinate system of the<br />

r r r<br />

transmitting antenna while ( x1, x2, x 3 ) represents that of the receiving antenna.<br />

Note that in antenna theory the plane of polarization is usually given in<br />

spherical coordinates by ( xˆ ˆ<br />

1, xˆ2) ( θφ , ˆ ) <strong>and</strong> the third axis obeys xˆ 1 xˆ2x ˆ 3,<br />

i.e., xˆ3r. ˆ Since the transmitting <strong>and</strong> receiving antennas face each other, their<br />

t r<br />

coordinate systems are oriented so that xˆ3 x<br />

ˆ3<br />

(i.e., ˆr ˆt<br />

r r<br />

). If we align the<br />

axes ˆ1 t x <strong>and</strong> ˆ1 r x , then ˆt 2 ˆr<br />

x x<br />

2 must hold. This changes the sign in the<br />

imaginary part of the wave polarization vector.<br />

Nikolova 2012 11


RHCP wave<br />

t<br />

x2<br />

t<br />

x1<br />

ˆ ˆ t<br />

k x<br />

t /2<br />

x<br />

t 1 t t<br />

ρˆ w ( xˆ1 jxˆ2)<br />

2<br />

3<br />

t<br />

3<br />

Nikolova 2012 12<br />

r<br />

x3<br />

r<br />

x1<br />

t 0<br />

t 0<br />

r<br />

x2<br />

ˆ ˆ 3<br />

r<br />

k x<br />

t /2<br />

r 1 r r<br />

ρˆ w ( xˆ1 jxˆ2)<br />

2<br />

Bearing in mind the definitions of antenna polarization in transmitting <strong>and</strong><br />

receiving modes, we conclude that the transmitting-mode polarization vector<br />

of an antenna is the conjugate of its receiving-mode polarization vector.<br />

6. <strong>Polarization</strong> loss factor <strong>and</strong> polarization efficiency<br />

Generally, the polarization of the receiving antenna is not the same as the<br />

polarization of the incident wave. This is called polarization mismatch.<br />

The polarization loss factor (PLF) characterizes the loss of EM power<br />

because of polarization mismatch:<br />

PLF | ρˆ ˆ | 2<br />

iρ a . (5.27)<br />

The above definition is based on the representation of the incident field <strong>and</strong> the<br />

antenna polarization by their polarization vectors. If the incident field is<br />

Ei Ei<br />

mρ ˆ i,<br />

then the field of the same magnitude that would produce maximum received<br />

power at the antenna terminals is<br />

E Ei<br />

ρ ˆ .<br />

a m a


If the antenna is polarization matched, then PLF 1,<br />

<strong>and</strong> there is no<br />

polarization power loss. If PLF 0,<br />

then the antenna is incapable of receiving<br />

the signal.<br />

0 PLF 1<br />

(5.28)<br />

The polarization efficiency means the same as the PLF.<br />

Examples<br />

Example 5.1. The electric field of a linearly polarized EM wave is<br />

i ˆ E ( , ) j z<br />

m x y e <br />

E x <br />

.<br />

It is incident upon a linearly polarized antenna whose polarization is<br />

Ea ( xˆ y ˆ)<br />

Er ( , , ) .<br />

Find the PLF.<br />

Nikolova 2012 13


PLF xˆ <br />

1<br />

( xˆ y ˆ)<br />

2<br />

1<br />

<br />

2<br />

PLF 10log 0.5 3 dB<br />

[dB] 10<br />

2<br />

Example 5.2. A transmitting antenna produces a far-zone field, which is<br />

RH circularly polarized. This field impinges upon a receiving antenna,<br />

whose polarization (in transmitting mode) is also RH circular. Determine<br />

the PLF.<br />

Both antennas (the transmitting one <strong>and</strong> the receiving one) are RH<br />

circularly polarized in transmitting mode. Assume that a transmitting<br />

antenna is located at the center of a spherical coordinate system. The farzone<br />

field it would produce is described as<br />

E far E ˆ<br />

m cost ˆ cos( t <br />

/ 2) <br />

<br />

θ φ<br />

<br />

It is a RH circularly polarized field with respect to the outward radial<br />

direction. Its polarization vector is<br />

θˆjφˆ ρ ˆ .<br />

2<br />

This is exactly the polarization vector of the transmitting antenna.<br />

x<br />

<br />

z<br />

E <br />

r<br />

Nikolova 2012 14<br />

E<br />

y


This same field Ε far is incident upon a receiving antenna, which has the<br />

polarization vector ρˆ ( ˆ<br />

a θa jφ<br />

ˆa)<br />

/ 2 in its own coordinate system<br />

( ra , a, a)<br />

. However, Ε far propagates along r ˆa in the ( ra , a, a)<br />

coordinate system, <strong>and</strong>, therefore, its polarization vector becomes<br />

θˆ a jφˆa<br />

ρ ˆ i .<br />

2<br />

The PLF is calculated as<br />

ˆ ˆ ˆ ˆ 2<br />

2 | ( θa jφa)( θa jφa)<br />

|<br />

PLF | ρˆiρ ˆa<br />

| 1,<br />

PLF[dB] 10log101 0.<br />

4<br />

There are no polarization losses.<br />

Exercise: Show that an antenna of RH circular polarization (in transmitting<br />

mode) cannot receive LH circularly polarized incident wave (or a wave<br />

emitted by a left-circularly polarized antenna).<br />

Appendix I<br />

Find the tilt angle , the length of the major axis OA, <strong>and</strong> the length of the<br />

minor axis OB of the ellipse described by the equation:<br />

2<br />

x x<br />

( ) ( )<br />

2 e ( t) e ( t)<br />

ey t ey t <br />

sin 2 cos<br />

E <br />

x E <br />

x Ey Ey<br />

<br />

ey() t<br />

major axis (2 OA)<br />

E<br />

<br />

Ey<br />

minor axis (2 OB)<br />

ex() t<br />

Nikolova 2012 15<br />

<br />

Ex<br />

2<br />

.<br />

(A-1)


Equation (A-1) can be written as<br />

a x2bxycy2 1,<br />

(A-2)<br />

where<br />

x ex() t <strong>and</strong> y ey() t are the coordinates of a point of the ellipse<br />

centered in the xy plane;<br />

1<br />

a ;<br />

E2sin2 x <br />

2cos<br />

b ;<br />

EE sin2<br />

x y <br />

1<br />

c .<br />

E2sin2 y <br />

After dividing both sides of (A-2) by ( xy ) , one obtains<br />

x y 1<br />

a b c .<br />

(A-3)<br />

y x xy<br />

y ey() t<br />

Introducing , one obtains that<br />

x ex() t<br />

2 1<br />

x <br />

c2b a<br />

1<br />

<br />

( ) (1 ) .<br />

2<br />

2 x2 y2 x2<br />

2 <br />

c2b a<br />

Here, is the distance from the center of the coordinate system to the point on<br />

the ellipse. We want to know at what values of the maximum <strong>and</strong> the<br />

minimum of occur ( min , max ). This will produce the tilt angle . We also<br />

want to know the values of max (major axis) <strong>and</strong> min (minor axis). Then, we<br />

have to solve<br />

d(<br />

2)<br />

0,<br />

or<br />

d<br />

2 2( ac) m m<br />

1 0,<br />

where m min, max<br />

. (A-5)<br />

b<br />

(A-5) is solved for the angle τ, which relates to ξmax as<br />

tan y/ x<br />

.<br />

(A-6)<br />

max max<br />

(A-4)<br />

Nikolova 2012 16


Substituting (A-6) in (A-5) yields:<br />

sin sin<br />

<br />

2C 1 0<br />

cos cos<br />

<br />

where<br />

2 2<br />

ac Ey Ex<br />

C .<br />

b 2ExEycos Multiplying both sides of (A-7) by cos2 <strong>and</strong> re-arranging results in<br />

2 2 cos sin 2C sin cos 0.<br />

Thus, the solution of (A-7) is<br />

or<br />

2<br />

cos(2 ) Csin(2<br />

)<br />

tan(2 ) 1/ C<br />

1 2EE cos<br />

<br />

arctan ;<br />

x y<br />

1 2 2 2 1 .<br />

2 Ex Ey<br />

2<br />

The angles τ1 <strong>and</strong> τ2 are the angles between the major <strong>and</strong> minor axes with the x<br />

axis. Substituting 1 <strong>and</strong> 2 back in (see A-4) yields the expressions for OA<br />

<strong>and</strong> OB.<br />

(A-7)<br />

(A-8)<br />

Nikolova 2012 17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!