29.04.2013 Views

TESI DOCTORAL - La Salle

TESI DOCTORAL - La Salle

TESI DOCTORAL - La Salle

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

E.1. CAL500 data set<br />

φ (NMI)<br />

CSPA agglo−cos−upgma<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

E λc<br />

λ 2 c<br />

λ 5 c<br />

λ 10<br />

c<br />

λ 15<br />

c<br />

λ 20<br />

c<br />

(a) CSPA<br />

φ (NMI)<br />

λ 30<br />

c<br />

λ 40<br />

c<br />

λ 50<br />

c<br />

λ 75<br />

c<br />

φ (NMI)<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

EAC agglo−cos−upgma<br />

E λc<br />

λ 2 c<br />

λ 5 c<br />

ALSAD agglo−cos−upgma<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

E λc<br />

λ 2 c<br />

λ 5 c<br />

λ 10<br />

c<br />

λ 15<br />

c<br />

λ 20<br />

c<br />

λ 30<br />

c<br />

(e) ALSAD<br />

λ 40<br />

c<br />

λ 10<br />

c<br />

λ 15<br />

c<br />

λ 20<br />

c<br />

(b) EAC<br />

λ 50<br />

c<br />

λ 75<br />

c<br />

φ (NMI)<br />

λ 30<br />

c<br />

λ 40<br />

c<br />

λ 50<br />

c<br />

λ 75<br />

c<br />

φ (NMI)<br />

HGPA agglo−cos−upgma<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

E λc<br />

λ 2 c<br />

λ 5 c<br />

KMSAD agglo−cos−upgma<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

E λc<br />

λ 2 c<br />

λ 5 c<br />

λ 10<br />

c<br />

λ 15<br />

c<br />

λ 20<br />

c<br />

λ 30<br />

c<br />

(f) KMSAD<br />

λ 40<br />

c<br />

λ 10<br />

c<br />

λ 15<br />

c<br />

λ 20<br />

c<br />

(c) HGPA<br />

λ 50<br />

c<br />

λ 75<br />

c<br />

φ (NMI)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

λ 30<br />

c<br />

0<br />

λ 40<br />

c<br />

λ 50<br />

c<br />

λ 75<br />

c<br />

φ (NMI)<br />

MCLA agglo−cos−upgma<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

E λc<br />

λ 2 c<br />

λ 5 c<br />

SLSAD agglo−cos−upgma<br />

1<br />

E λc<br />

λ 2 c<br />

λ 5 c<br />

λ 10<br />

c<br />

λ 15<br />

c<br />

λ 20<br />

c<br />

λ 30<br />

c<br />

(g) SLSAD<br />

λ 40<br />

c<br />

λ 10<br />

c<br />

λ 15<br />

c<br />

λ 20<br />

c<br />

(d) MCLA<br />

Figure E.5: φ (NMI) boxplots of the self-refined intermodal consensus clustering solutions<br />

using the agglo-cos-upgma algorithm on the CAL500 data set.<br />

E.1.2 Self-refined consensus clustering across modalities<br />

In this section, the results of running the self-refining procedure on the intermodal consensus<br />

clustering solution λc are evaluated. Firstly, the results of the process applied on<br />

the cluster ensemble created by the compilation of the clusterings output by the agglo-cosupgma<br />

clustering algorithm are presented in figure E.5. On each one of the seven boxplot<br />

charts displayed (one per consensus function), the clustering solution selected by the supraconsensus<br />

function, λfinal c , is highlighted by a green dashed vertical line. Notice that in<br />

all cases there exists at least one self-refined consensus clustering λpi c that attains a higher<br />

φ (NMI) than the non-refined consensus clustering solution, λc. However, the supraconsensus<br />

function mostly fails to select the top quality clustering as the final partition of the data<br />

—in fact, it only does so in the experiments based on the CSPA, ALSAD and KMSAD<br />

consensus functions. This situation is a clear illustrative example of the advantages of the<br />

proposed self-refining procedures and the shortcomings of the φ (NMI) based supraconsensus<br />

function.<br />

Figures E.6 to E.8 present the self-refining results obtained on the cluster ensembles<br />

constructed upon the clusterings generated by the direct-cos-i2, graph-cos-i2 and rb-cosi2<br />

clustering algorithms. Notice that, in most cases, the self-refining procedure yields at<br />

least one clustering of superior quality than the non-refined consensus clustering solution.<br />

Exceptions to this behaviour occur, for instance, when the KMSAD and EAC consensus<br />

functions are employed for clustering combination on the direct-cos-i2 and graph-cos-i2<br />

cluster ensembles (see figures E.6(f) and E.7(b), respectively). Again, the supraconsensus<br />

function performs with modest accuracy, managing to select the top quality clustering<br />

solution in some cases (see figure E.8(b)) and failing clamorously in others (as in figure<br />

362<br />

λ 50<br />

c<br />

λ 75<br />

c<br />

λ 30<br />

c<br />

λ 40<br />

c<br />

λ 50<br />

c<br />

λ 75<br />

c

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!