01.05.2013 Views

Etudes des proprietes des neutrinos dans les contextes ...

Etudes des proprietes des neutrinos dans les contextes ...

Etudes des proprietes des neutrinos dans les contextes ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

tel-00450051, version 1 - 25 Jan 2010<br />

Indeed, initially we consider a time where the temperature is between 100 MeV<br />

and 10 MeV, and <strong>neutrinos</strong> are in thermal and chemical equilibrium. The equations<br />

of motion for the density matrices in an expanding universe are :<br />

<br />

UM<br />

i(∂t−Hp∂p)ρ(p, t) =<br />

2U †<br />

2p − 8√2GFp 3m2 <br />

E +<br />

W<br />

√ <br />

2GF(ρ − ρ), ρ(p, t) +C[ρ(p, t)],<br />

(8.19)<br />

where H = ˙a(t)/a(t) is the Hubble parameter (a(t) the expansion parameter),<br />

GF is the Fermi constant and mW the W boson mass. On the l.h.s. of Eq.(8.19),<br />

we substituted ∂t → ∂t − Hp∂p with H the cosmic expansion parameter because<br />

the Universe is expanding.<br />

The vacuum term<br />

The first term in the commutator [·, ·] UM2U †<br />

is the vacuum oscillation term where<br />

2p<br />

M2 = diag(m2 1 , m22 , m23 ) and U the unitary Maki-Nakagawa-Sakata-Pontecorvo<br />

matrix as <strong>des</strong>cribed in appendix A.<br />

The matter term<br />

The second term in the commutator<br />

− 8√ 2GFp<br />

3m 2 W<br />

E ≡ − 8√2GFp 3m2 (〈Eℓ−〉nℓ− + 〈Eℓ +〉nℓ +) (8.20)<br />

W<br />

represents the energy densities of charged leptons and corresponds to the refractive<br />

effects of the medium that <strong>neutrinos</strong> experience. Actually, this term is due<br />

to the presence of thermally populated charged leptons in the plasma, which induces<br />

a thermal potential from finite-temperature modification of the neutrino<br />

mass [108, 91]. E is the 3 × 3 flavor matrix of charged-lepton energy densities:<br />

where<br />

⎛<br />

E = ⎝<br />

Eαα = gα<br />

2π 2<br />

Eee + Eµµ 0 0<br />

0 Eµµ 0<br />

0 0 0<br />

∞<br />

dpp 2<br />

0<br />

E<br />

⎞<br />

1 + exp E<br />

T<br />

⎠ . (8.21)<br />

(8.22)<br />

with E = p2 + mµ ±2 and gα is the number of spin states of the species, for<br />

electrons for instance ge = 2×2 = 4, since the spin can be + 1 or −1 and we have<br />

2 2<br />

to count the particle and its anti-particle, here the positron. For electrons and<br />

positrons, since T, p >> me ± we consider that those partic<strong>les</strong> are ultra-relativistic<br />

then E ≃ p. Therefore, we have:<br />

4 2T<br />

Eee =<br />

π2 ∞<br />

u<br />

du<br />

3<br />

4<br />

= −2T<br />

1 + exp u π2 Li4(−1)Γ(4) (8.23)<br />

0<br />

140

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!