01.05.2013 Views

Etudes des proprietes des neutrinos dans les contextes ...

Etudes des proprietes des neutrinos dans les contextes ...

Etudes des proprietes des neutrinos dans les contextes ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

tel-00450051, version 1 - 25 Jan 2010<br />

Since we want in the new referential the same equations than previously without<br />

matter, we have the following relation:<br />

and consequently<br />

Pu = cos α(t) Px − sin α(t) Py (D.20)<br />

Pv = sin α(t) Px + cosα(t) Py<br />

Pu<br />

˙ = ( ˙ Px − ˙αPy) cosα(t) − ( ˙αPx + ˙ Py) sin α(t) (D.21)<br />

Pv<br />

˙ = ( ˙ Px − ˙αPy) sin α(t) + ( ˙αPx + ˙ Py) cosα(t)<br />

Expressing ˙ Puu and ˙ Pvv in the previous referential and using Eq.(D.16), we<br />

obtain<br />

Pu<br />

˙ cos α(t) + ˙ Pv sin α(t) = ˙ Px + λ ˙ Py<br />

(D.22)<br />

which yields:<br />

˙α(t) = −λ and therefore α(t) = −λ t+cst. Since the two referentials coincide initially,<br />

i.e α(t = 0) = 0, we have: α = −λ t. Consequently, in the new referential,<br />

the equations of motion would be exactly the same than without matter:<br />

∂tPω = +ωB(t) + µ Pω − ¯ <br />

Pω × Pω ,<br />

∂t ¯ Pω = −ωB(t) + µ Pω − ¯ <br />

Pω × Pω<br />

¯ . (D.23)<br />

except that the magnetic field B(t) is now time dependent as:<br />

⎛<br />

⎞<br />

sin(2θ0) cos(−λt)<br />

B(t) = ⎝ sin(2θ0) sin(−λt) ⎠. (D.24)<br />

− cos(2θ0)<br />

We name this new referential, the rotating frame.<br />

D.3 The corotating frame and the adiabaticity<br />

The corotating frame<br />

To express the new E.O.M. in this frame, we perform a similar derivation than<br />

the one made previously to make disappear the matter effect. We define the new<br />

frame such that D is a constant vector in this frame.<br />

⎛<br />

∂tD − ωcB × D = ⎝<br />

( ˙ Dx + ωcDy)x<br />

( ˙ Dy − ωcDx)y<br />

˙Dzz<br />

⎞<br />

⎛<br />

⎠ = ⎝<br />

0u<br />

0v<br />

0w<br />

⎞<br />

⎛<br />

⎠ = ⎝<br />

˙Duu<br />

˙Dvv<br />

˙Dww<br />

⎞<br />

⎠ . (D.25)<br />

Using the same relation to move from one basis to another than before (see<br />

Eq.(D.18)) with α(t) = −ωct one obtains:<br />

⎛ ⎞ ⎛<br />

Pxx ˙ (<br />

⎝ Pyy ˙ ⎠ = ⎝<br />

Pzz ˙<br />

˙ Pu + ˙αPv)u<br />

( ˙<br />

⎞ ⎛ ⎞<br />

˙αPvu<br />

Pv − ˙αPu)v ⎠ + ⎝ − ˙αPuv ⎠ . (D.26)<br />

Pww ˙<br />

0w<br />

179

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!