03.05.2013 Views

Vakkursus EMS310/311 Course EMS310/311 - Electrical, Electronic ...

Vakkursus EMS310/311 Course EMS310/311 - Electrical, Electronic ...

Vakkursus EMS310/311 Course EMS310/311 - Electrical, Electronic ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Departement Elektriese,<br />

Elektroniese en Rekenaar-<br />

Ingenieurswese<br />

Klastoets 2<br />

Kopiereg voorbehou<br />

<strong>Vakkursus</strong> <strong>EMS310</strong>/<strong>311</strong><br />

19 April 2007<br />

Toetsinligting / Test information:<br />

Maksimum punte:<br />

Maximum marks:<br />

Duur van vraestel:<br />

Duration of paper:<br />

MODULASIESTELSELS<br />

MODULATION SYSTEMS<br />

30 Volpunte:<br />

Full marks:<br />

30 minute<br />

30 minutes<br />

Department of <strong>Electrical</strong>, <strong>Electronic</strong><br />

and Computer Engineering<br />

Oopboek / toeboek:<br />

Open / closed book:<br />

BELANGRIK- IMPORTANT<br />

Class Test 2<br />

Copyright reserved<br />

<strong>Course</strong> <strong>EMS310</strong>/<strong>311</strong><br />

19 April 2007<br />

<strong>EMS310</strong>_Klastoets2_07.wpd LPL/04/07 1 / 7<br />

30<br />

Toeboek<br />

Closed book<br />

1 Die eksamenregulasies van die Universiteit van Pretoria geld.<br />

2 Hierdie is ‘n toeboektoets. GEEN notas of los papiere word toegelaat nie.<br />

3 Beantwoord al die vrae. Doen asb Deel I en Deel II in aparte antwoordskrifte- hulle sal afsonderlik gemerk<br />

word.<br />

4 Antwoorde in potlood sal nie gemerk word nie.<br />

5 Nommer die antwoorde presies soos dit in die vraestel voorkom.<br />

6 Alle vrae moet in die toetsantwoordboek(e) wat verskaf word beantwoord word.<br />

7 Toon alle aannames, stappe en berekenings.<br />

8 Verwys ook na die Engelse bewoording indien daar onduidelikheid oor ‘n vraag is.<br />

1 The examination regulations of the University of Pretoria apply.<br />

2 This is a closed book test. NO notes or loose papers are allowed.<br />

3 Answer all questions. Please do Part I and Part II in separate answer books - they will be marked<br />

separately.<br />

4 Work in pencil will not be marked.<br />

5 Number your answers exactly as they appear in the question paper.<br />

6 All questions must be answered in the supplied answer book(s) or sheets.<br />

7 Show all assumption, steps and calculations.<br />

8 Also refer to the Afrikaans question if there is any uncertainty with a question.<br />

Dosent(e):<br />

Lecturer(s):<br />

1 Prof L.P. Linde<br />

2<br />

NAAM / NAME: Reg. No.<br />

Vraag /Quest 1 [6] 2 [6] 3 [6] 4 [6] 5 [6] TOTA(A)L [30]<br />

Punt / Mark<br />

DEEL I VRAAG 1 VOLG / PART I QUESTION 1 FOLLOWS . . .


1.<br />

1.1 Skets die blokdiagram van ‘n FSL en identifiseer die basiese substelsels of subelemente. Gee kortliks<br />

die funksie van elke boublok/substelsel. Toon alle seine en spesifiseer die ekwivalente Laplace<br />

oordragfunksie van elke element in u blokdiagram.<br />

Sketch the block diagram of a PLL and identify the basic subsystems or building blocks. Give a<br />

concise description of the function of each building block / subsystem. Show all signals and specify the<br />

equivalent Laplace transfer function of each building block in your block diagram.<br />

Fig. 1-1 FSL-blokdiagram / PLL block diagram (3)<br />

1.2 Funksie/beskrywing van elke FSL-substelsel / Function/description of each PLL subsystem:<br />

1.2.1<br />

1.2.2<br />

1.2.3<br />

<strong>EMS310</strong>_Klastoets2_07.wpd LPL/04/07 2 / 7<br />

[6]<br />

(1)<br />

(1)<br />

(1)


2 Identifiseer en skets die boublokke wat tesame die FSL fasedetektor vorm. Watter wiskundige funksie beskryf<br />

die werking van die fasedetektor? Gee ‘n uitdrukking in terme van die groothede in u fsl blokdiagram in 1.1<br />

hierbo. Skets die fasedetektor-oordragfunksie en toon aan hoe die fasedetektor-konstante bepaal word<br />

(spesifiseer eenhede!)<br />

Identify and sketch the building blocks which together form the PLL phase detector. What mathematical function<br />

best describes the operation of the phase detector? Write down an expression in terms of the quantities specified<br />

in your PLL block diagram in 1.1 above. Sketch the phase detector transfer function and show<br />

how the phase detector constant is determined (specify units!)<br />

[6]<br />

2.1 Skets fasedetektor / Sketch Phase detector (2) | Fasedetektoroordragfunksie / Phase detector transfer function (2)<br />

2.1.1 Fasedetektor ekwivalente wiskundige funksie / Phase detector equivalent mathematical function:<br />

2.1.2 Herlei fasedetektorkonstante, K D [Eenhede?] / Derive phase detector constant, K D [Units?]<br />

<strong>EMS310</strong>_Klastoets2_07.wpd LPL/04/07 3 / 7<br />

(1)<br />

(1)


3.<br />

3.1 Teken die blokdiagram van ‘n ideale basisband verwysingstelsel (sonder modulasie), met m(t) die intree-<br />

(informasie-)sein met drywing P m=S i [Watt]. Die SWGR-kanaal tel with Gauss-ruis met tweesydige<br />

DrywingsDigtheidSpektrum (DDS) N/2 [W/Hz] by. Aanvaar ‘n perfekte LDF in die ontvanger met bandwydte<br />

B$f m [Hz], waar f m die maksimum informasiefrekwensie voorstel.<br />

Draw the block diagram of an ideal reference baseband communication system (without modulation), with m(t)<br />

the input (information) signal with power P m=S i [Watt]. The AWGN channel adds white Gaussian noise with<br />

two-sided Power-Spectral-Density (PSD) N/2 [W/Hz]. Assume a perfect LPF in the receiver with bandwidth<br />

B$f m [Hz], where f m denotes the maximum information frequency.<br />

Fig. 3-1 Blokdiagram van ideale basisband verwysing-kommunikasiestelsel<br />

Block diagram of ideal reference baseband communication system. (3)<br />

3.2 Bereken die ontvangde informasie-seindrywing S i en die ruisdrywing N o by die uitgang van die<br />

basisbandontvanger, en bepaal ‘n uitdrukking vir die uitgang sein-tot-ruis-verhouding, (SNR) b.<br />

Calculate the received information signal power S i and the noise power N o at the output of the baseband<br />

receiver, and determine an expression for the output signal-to-noise-ratio, (SNR) b.<br />

Bereken P m= S i=S o [W] en N o [W], en gevolglik `n uitdrukking vir (SNR) b.<br />

Calculate P m= S i=S o [W] and N o [W], and hence an expression for (SNR) b:<br />

(SNR) b =<br />

<strong>EMS310</strong>_Klastoets2_07.wpd LPL/04/07 4 / 7<br />

[6]<br />

(3)


4 Herlei ‘n noubandmodel (tyd-uitdrukking) vir ideale bandlaatgefilterde SWGR, n(t), met tweesydige DDS N/2<br />

[W/Hz]. Gee ook `n skets van die fasordiagram van die komplekse omhulling van die ekwivalente<br />

nt ~ ()<br />

nouband basisband ruis en herlei uitdrukkings vir die infasige, nc(t), en haaksfasige, ns(t), komponente van die<br />

ruis in terme van (itv) die reële omhulling |n(t)|=| | en hoek θn [rad] van die bandlaatruis, n(t). Stel die<br />

nt ~ ()<br />

voorwaarde(s)/benadering(s) wat gemaak word om die noubandmodel vir die kanaal bandlaatruis af te lei.<br />

Derive a narrowband model (time expression) for ideal band-pass-filtered AWGN, n(t), with two-sided PSD N/2<br />

[W/Hz]. Also give a plot of the phasor diagram of the complex envelope nt ~ () of the equivalent narrowband<br />

baseband noise and derive expressions for the in-phase, nc(t), and quadrature, ns(t), components of the noise in<br />

terms of (ito) the real envelope |n(t)|=| nt ~ () | and angle θn [rad] of the band-pass noise, n(t). State the<br />

assumption/approximation(s) made to derive this (narrowband) model for the channel band-pass<br />

noise, n(t).<br />

[6]<br />

<strong>EMS310</strong>_Klastoets2_07.wpd LPL/04/07 5 / 7


5 Herlei uitdrukkings vir die ontvanger intree S/R (na die ontvanger-BDF) en die ontvanger uitgang S/R, (SNR) i<br />

and (SNR) 0 repektiewelik, in die geval van AM-DSB-OD met moduleersein m(t) en Tx en Rx draers van<br />

%2cos(ωct) en %2cos(ωct+θ), onderskeidelik, met θ=π/4 [rad]. Aanvaar `n perfekte BDF by die ontvanger en `n<br />

SWG- kanaal met tweesydige DDS N/2 [W/Hz]. Beskryf die volledige demodulasieproses analities. Hoe<br />

vergelyk die S/R-werkverrigting van hierdie AM-DSB-OD stelsel met die ideale basisband-verwysingstelsel in<br />

4 hierbo? Verklaar enige verskille.<br />

Derive expressions for the receiver input (after the Rx BPF) and the receiver output SNRs, (SNR) i and (SNR) 0,<br />

respectively, in the case of AM-DSB-SC with modulating signal m(t) and Tx and Rx carriers of %2cos(ωct) and<br />

%2cos(ωct+θ), respectively, with θ=π/4 [rad]. Assume a perfect BPF at the receiver and an AWGN channel with<br />

two-sided PSD N/2 [W/Hz]. Show the complete demodulation process analytically. How does the SNR<br />

performance of this AM-DSB-SC system compare with the ideal reference baseband system in 4 above? Explain<br />

any differences.<br />

EINDE<br />

END<br />

<strong>EMS310</strong>_Klastoets2_07.wpd LPL/04/07 6 / 7<br />

[6]


T<br />

F<br />

ω<br />

n<br />

ξ =<br />

APPENDIX A<br />

PLL IDENTITIES<br />

The following formulas are relevant to a second order PLL with passive loop filter, F(ω), with components (R 1, R 2, C). The natural<br />

angular frequency of the PLL is described by:<br />

K′ = K<br />

N<br />

⎡ K′<br />

⎤<br />

= ⎢ ⎥<br />

⎣τ<br />

T ⎦<br />

1 ⎡ K ′ ⎤<br />

⎢ ⎥<br />

2 ⎣ τ T ⎦<br />

1 2<br />

( ∆ ω )<br />

= 3<br />

2ξωn<br />

[sec]<br />

2<br />

4( ∆ f )<br />

= 3 ;<br />

B<br />

ξ = 1 = 0707 .<br />

2<br />

L<br />

2<br />

1 2<br />

[ rad / s]<br />

(1)<br />

where is the total loop gain, with N the loop division factor. The total loop filter constant is given by τT = ( R1 + R2) C .<br />

The damping constant of the PLL is given by:<br />

The -3dB bandwidth of the closed-loop transfer function, H(ω), is:<br />

[ τ + 1<br />

2 ]<br />

<strong>EMS310</strong>_Klastoets2_07.wpd LPL/04/07 7 / 7<br />

K ′<br />

2 2 2<br />

[ 2 1 2 1 1]<br />

ω− 3 = ω ξ + + ξ + +<br />

The closed-loop noise bandwidth, BL, of the PLL is given by:<br />

∞ 2<br />

dB n ( ) [ rad / s ]<br />

ω n ⎡ 1 ⎤<br />

BL= ∫ H( ω ) . df = ⎢ξ<br />

+ ⎥ [ Hz ]<br />

0<br />

2 ⎣ 4ξ<br />

⎦<br />

If the input signal frequency and phase falls within the bandwidth of the loop filter, locking will occur without cycle slipping, for a<br />

angular frequency difference of:<br />

∆ω<br />

K′<br />

. τ 2<br />

=<br />

τ + τ<br />

L n<br />

1 2<br />

≈ 2ξω [ rad/s] if K′<br />

>><br />

The maximum angular frequency difference which the PLL will be able to Pull-In (with or without cycle slipping) is approximately<br />

equal to:<br />

[ K ]<br />

1 2<br />

2<br />

∆ ω = 2 2ξω<br />

′ − ω<br />

1 2<br />

. [rad/s] (6)<br />

PI n n<br />

The maximum frequency-offset, ∆ωHI [rad/s], from the nominal VCO-frequency of ωo [rad/s], which the PLL will be able to track<br />

without cycle slipping, after it has already locked onto the input signal, is given by:<br />

∆ω HI = K′<br />

[rad / s] (7)<br />

The time it takes for a PLL to lock onto a frequency component ∆ω [rad/s] away from the nominal VCO frequency, is:<br />

(2)<br />

(3)<br />

(4)<br />

(5)<br />

(8)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!