23.08.2013 Views

SECTION 1 / AFDELING 1 - MEMO Question 1: Give the following ...

SECTION 1 / AFDELING 1 - MEMO Question 1: Give the following ...

SECTION 1 / AFDELING 1 - MEMO Question 1: Give the following ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>SECTION</strong> 1 / <strong>AFDELING</strong> 1 - <strong>MEMO</strong><br />

FW LEUSCHNER<br />

Xformers & Electrical Machines / Xformators & Elektriese Masjiene<br />

<strong>Question</strong> 1: <strong>Give</strong> <strong>the</strong> <strong>following</strong> equations for: Vraag 1: Gee die<br />

volgende vergelykings vir:<br />

a. Transformer: The output voltage as a function of <strong>the</strong> winding ratio and <strong>the</strong><br />

input voltage.<br />

Transformator: Die uitgangspanning as ‘n funksie van die<br />

windingsvehouding en die insetspanning<br />

4<br />

Vout = Vin x N2 / N1<br />

Pout = Pin = Vout x Iout = Vin x Iin<br />

b. Transformer: The output impedance as viewed from <strong>the</strong> input voltage, as<br />

a function of <strong>the</strong> output impedance and <strong>the</strong> winding ratio<br />

Transformator: Die uitgangsimpedansie soos gesien vanaf die<br />

insetspanning, as ‘n funksie van die uitgangs-impedansie en die<br />

windingsverhouding<br />

Z’L = ZL x (N1 / N2) 2<br />

c. Machines: The ratio of Mechanical Torque and <strong>the</strong> Armature Current of a<br />

separately excited rotating DC machine.<br />

Masjiene: Die verhouding tussen die Meganiese Draaimoment en die<br />

Ankerstroom van ‘n apart-opgewekte GS masjien.<br />

d. Machines: The ratio of induced EMF EA and <strong>the</strong> rotating speed ω of a<br />

separately excited rotating DC machine.<br />

Masjiene: Die verhouding tussen die opgewekte EMK EA en die<br />

rotasiespoed ω van ‘n apart-opgewekte GS masjien.<br />

e. Machines: For calculating <strong>the</strong> synchronous speed in r.p.m. of an<br />

Induction Motor as a function of Pole Pairs and Supply Frequency.<br />

Masjiene: Vir die berekening van die sinchrone spoed in o.p.m. van ‘n<br />

Induksiemotor as ‘n funksie van Poolpare en<br />

Toevoerfrekwensie.<br />

ns = (60 x f) / Pp<br />

V2 / I2 = ZL + 15.51 & 15.56<br />

Tdev / IA = KΦ<br />

EA / ωm = KΦ<br />

Field rotates ns in r.p.m. / 60 gee o.p.s. Hz<br />

4<br />

4<br />

4<br />

4<br />

[20]


<strong>Question</strong> 2 / Vraag 2<br />

An electric vehicle (battery powered) is running uphill at constant speed and<br />

constant field current (separately excited DC machine).<br />

What happens when <strong>the</strong> vehicle runs down <strong>the</strong> o<strong>the</strong>r side of <strong>the</strong> hill (no<br />

change in field current or speed)?<br />

‘n Elektriese voertuig (aangedryf deur batterye) ry op teen ‘n bult teen ‘n<br />

konstante spoed en konstante veldstroom (apart opgewekte GS masjien.<br />

Wat gebeur wanneer die voertuig teen die anderkant van die bult afry (geen<br />

verandering in veldstroom of spoed)?<br />

Uphill / opdraend:<br />

Battery voltage = VB and EA = VB - ( IA x RA)<br />

EA = KΦωm ∴ωm = constant & Φ = constant ∴ EA = constant<br />

and < VB IA = constant ∴ Tdev = constant & P = constant<br />

Down hill / afdraend:<br />

IF = constant ∴ Φ = constant and K = constant. Assume ωm =<br />

constant ∴ same speed and wind losses<br />

∴ Tdev = constant in opposite direction (generator) i.e. Tinput to<br />

Rotor. Tin = KΦIA ∴ IA = Tin / KΦ in opposite direction but<br />

constant.<br />

∴ VB = EA + ( IA x RA) ∴ Battery gets charged at VB and IA ⇒<br />

NOTE: I A is now negative (∴ EA > VB )<br />

Assume constant battery voltage ???)<br />

<strong>Question</strong> 3 / Vraag 3<br />

For a three-phase squirrel cage induction motor, <strong>the</strong> <strong>following</strong> is known:<br />

Supply voltage 400V (line voltage). Frequency 50 Hz. Delivered output<br />

power 10kW at 20A input current and 0.75 power factor.<br />

What is? i. The electrical input power into <strong>the</strong> motor. ii. The efficiency of<br />

<strong>the</strong> motor in %. iii. The values of three capacitors to be connected across<br />

<strong>the</strong> three phase connections on <strong>the</strong> motor – namely A, B and C to<br />

improve <strong>the</strong> power factor to 0.90<br />

i.<br />

PIn = √3 VLine x I x cosθ = 10.39kW<br />

(3)<br />

ii.<br />

η = ( Pout / Pin ) x 100 = 96.2%<br />

(3)<br />

iii. Change PF from .75 to 0.90 by adding one capacitor across<br />

each line voltage. Total Qin = √3 VLine x I x sinθ = 9.17kVAr (9)<br />

For PF to be 0.90 we need cosθ = 0.90 or θ = 25.84° and Qin’ =<br />

√3 VLine x I x sinθ = 6.04kVAr<br />

∴ Add Q =3.13kVAr Capacitive or QEach = 1.04kVAr per phase.<br />

Q = VLine<br />

[15]<br />

2 / XC ∴ XC = VLine 2 / Q = 153.8Ω and<br />

XC = 1 / 2πfC ∴ C = 1 / 2πf XC = 20.7 µF<br />

[10]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!