05.05.2013 Views

Methodologies for Assessing On-line Probe Process Parameters

Methodologies for Assessing On-line Probe Process Parameters

Methodologies for Assessing On-line Probe Process Parameters

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Jan Martens<br />

NXP Semiconductors Germany<br />

Simon Allgaier<br />

Feinmetall GmbH<br />

Jerry Broz, Ph.D.<br />

International Test Solutions<br />

<strong>Methodologies</strong> <strong>for</strong> <strong>Assessing</strong> <strong>On</strong>-<strong>line</strong> <strong>On</strong> <strong>line</strong><br />

<strong>Probe</strong> <strong>Process</strong> <strong>Parameters</strong><br />

June 8-11, 8 11, 2008<br />

San Diego, CA USA


• Motivation<br />

Content<br />

• Joint Venture Overview<br />

– FM: <strong>Probe</strong> Materials<br />

– ITS: Lab Capabilities<br />

– NXP: Production Environment<br />

• Contact Resistance and Fritting Theory<br />

• Experimental Data<br />

• Production Data<br />

• Results & Future Work<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 2


Motivation<br />

Joint Venture Overview<br />

FM: <strong>Probe</strong> Materials<br />

ITS: Lab Capabilities<br />

NXP: Production Environment<br />

Contact Resistance and Fritting Theory<br />

Experimental Data<br />

Production Data<br />

Results & Future Work<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 3


Motivation<br />

• Production sort floors are often manpower, materials,<br />

and financially limited <strong>for</strong> fundamental characterization<br />

studies which could lead to process understanding and<br />

improvement.<br />

• Testing with “full-build” probe cards is expensive and<br />

often not feasible, particularly with large array probe<br />

cards.<br />

• <strong>Assessing</strong> combinations of key parameters, such as<br />

current amplitude and directionality, probe needle<br />

materials, and FAB processing effects on bond pads,<br />

requires substantial resource allocation.<br />

• Bench-top testing with a single probe or reduced probe<br />

count test vehicles can be per<strong>for</strong>med quickly under<br />

known and controlled conditions.<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 4


Motivation<br />

Joint Venture Overview<br />

FM: <strong>Probe</strong> Materials<br />

ITS: Lab Capabilities<br />

NXP: Production Environment<br />

Contact Resistance and Fritting Theory<br />

Experimental Data<br />

Production Data<br />

Results & Future Work<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 5


Feinmetall Vi<strong>Probe</strong> ®<br />

New Beam Material<br />

• Beam material with improved per<strong>for</strong>mance:<br />

- high amperage (current carrying capacity,<br />

up to 800 mA)<br />

- low voltage/current applications<br />

- electrical resistivity: 0.12 Ω . mm 2 /m<br />

• Both materials (existing and new one) are<br />

palladium - silver alloys<br />

• Mechanical behaviour of the new beams similar<br />

to the existing beams with 2.0 mil, 2.5 mil and<br />

3.0 mil diameter<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 6


Feinmetall Vi<strong>Probe</strong> ®<br />

New Beam Material<br />

• <strong>Probe</strong> Force vs. Applied Current<br />

<strong>Probe</strong> Force (grams)<br />

9.00<br />

8.00<br />

7.00<br />

6.00<br />

5.00<br />

4.00<br />

3.00<br />

2.00<br />

1.00<br />

0.00<br />

Current Carrying Capacity<br />

(3-mil Vi<strong>Probe</strong> Beams at 100-um OT)<br />

Existing Material<br />

CCC ~ 560 mA<br />

0 100 200 300 400 500 600 700 800 900 1000<br />

Applied Current (mA)<br />

Existing New Material<br />

New Exist Material<br />

New Material<br />

CCC ~ 780 mA<br />

20% Reduction<br />

~ 6.50 g<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 7


Vi<strong>Probe</strong> ® Testvehicle<br />

• Smallest Vi<strong>Probe</strong> ® test head ever designed and built<br />

– 2mil, 2.5mil and 3mil Vi<strong>Probe</strong> compatibility<br />

25-PIN D-Sub<br />

Connector<br />

<strong>Probe</strong> Head<br />

Electrical<br />

Connection<br />

Connector<br />

Beams<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 8


Controlled Test Conditions<br />

• Bench-top instrument <strong>for</strong> material characterization and probe<br />

per<strong>for</strong>mance testing.<br />

NI LabVIEW<br />

Motion Control<br />

Data Acquisition<br />

Precision Stages<br />

ITS LTU <strong>Probe</strong>-Gen System<br />

• Testing System Details<br />

– Variable z-speed and z-acceleration.<br />

– Low gram load cell measurements.<br />

– Synchronized load vs. overtravel<br />

vs. CRES data acquisition.<br />

– High resolution video imaging and<br />

still image capture.<br />

– Current <strong>for</strong>cing and measurement<br />

with Keithley 2400 source-meter.<br />

– Micro-stepping capable to maximize<br />

number of touchdowns.<br />

– Multi-zone cleaning functionalities.<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 9


High resolution imaging<br />

system <strong>for</strong> video acquisition<br />

Test Vehicle<br />

Vi<strong>Probe</strong> Test vehicle installed<br />

onto 50 gram load cell<br />

<strong>Probe</strong> / Material Interaction<br />

and Buckling Visualization<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 10


NXP Testcenter Hamburg<br />

Production Environment<br />

• Mass production and engineering site <strong>for</strong><br />

Automotive and Identification business,<br />

digital and mixed signal<br />

• Applications with high multisite factors and<br />

small pad pitch<br />

• Capability to collect contact resistance<br />

data within production environment<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 11


Motivation<br />

Joint Venture Overview<br />

FM: <strong>Probe</strong> Materials<br />

ITS: Lab Capabilities<br />

NXP: Production Environment<br />

Contact Resistance and<br />

Fritting Theory<br />

Experimental Data<br />

Production Data<br />

Results & Future Work<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 12


Contact Resistance (CRES)<br />

• Contact Resistance is a combination two main parameters<br />

– Localized physical mechanisms … metallic contact<br />

– Non-conductive contribution … film resistance<br />

• Model <strong>for</strong> CRES has two main factors<br />

C RES<br />

=<br />

• ρpad , ρprobe , σfilm = resistivity values<br />

• H = hardness of softer material<br />

METALLIC<br />

CONTACT<br />

• P = contact pressure<br />

( ρ + ρ )<br />

probe<br />

4<br />

πH<br />

P<br />

– Contact pressure (P) applied <strong>for</strong>ce normalized by true contact area<br />

• Unstable CRES is dominated by the film contribution term<br />

due to the accumulation of non-conductive materials<br />

pad<br />

σ<br />

+<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 14<br />

film<br />

P<br />

H<br />

FILM<br />

RESISTANCE


Key Factors that affect CRES<br />

• Presence of contamination, e.g. debris, oxides, residues, etc.<br />

– Film resistance eventually dominates the magnitude and stability of<br />

the CRES<br />

• <strong>Probe</strong> tip shape plays an important role in displacing the<br />

contaminants from the true contact area<br />

– True Contact Area = F (Tip Shape, Applied Force, Surface Finish)<br />

• True contact are is “large” applied pressure and a-Spot density are “low”<br />

• True contact area is “small” applied pressure and a-Spot density are “large”<br />

• <strong>Probe</strong> tip surface characteristics affect the “a-Spot” density<br />

– Asperity density depends on the microscopic surface roughness<br />

• Smooth surfaces have a high asperity density<br />

• The increase in asperity density decreases the electrical CRES<br />

• A “rough” finish facilitates material accumulation on contact surface<br />

• Amplitude and directionality of the voltage or current applied.<br />

– Voltage or current must be sufficient to breakdown the oxide.<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 15


Fritting – Theory<br />

• The vertical <strong>Probe</strong> tip<br />

touches the contact pad.<br />

• Depending on the contact<br />

pressure the oxide film is<br />

broken partly and<br />

electrical bridges arise.<br />

• The number and size of<br />

the bridges is equivalent<br />

to the CRES quality<br />

<strong>Probe</strong> Tip<br />

Contact Pad<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 16


<strong>Probe</strong> tip<br />

Oxide film<br />

Contact pad<br />

Fritting – Theory<br />

• What happens, if bridges<br />

are only few and small?<br />

Small bridge through oxide film.<br />

Be<strong>for</strong>e high current flow.<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 17


Fritting – Theory<br />

• Current must flow through small bridge.<br />

• Bridge and neighbourhood are heated up<br />

• Contact Pad material migrates to the bridge.<br />

<strong>Probe</strong> tip<br />

Oxide film<br />

Contact pad<br />

High current flow situation:<br />

Black Lines of current flow.<br />

White Lines of equipotential surface.<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 18


Fritting – Theory<br />

• Bridge is widened C RES decreased<br />

• Contact pad material migrated to the bridge and tip<br />

surface<br />

<strong>Probe</strong> tip<br />

Oxide film<br />

Contact pad<br />

Wide bridge through oxide film.<br />

After high current flow.<br />

Tip surface is contaminated.<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 19


<strong>Probe</strong> Tip<br />

Contact Pad<br />

Fritting – What‘s What that? that<br />

• Fritting is a kind of electrical breakdown at the<br />

contact surface between the probe tip and the<br />

contact pad of the IC.<br />

• It improves the electrical contact by building or<br />

stabilizing bridges through the oxide film, if the<br />

film was not mechanically broken completely.<br />

• After Fritting the probe tip is welded with the<br />

contact pad. After removing the contact<br />

residuals of the welding remain at the probe<br />

tip and will oxidize.<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 20


Motivation<br />

Joint Venture Overview<br />

FM: <strong>Probe</strong> Materials<br />

ITS: Lab Capabilities<br />

NXP: Production Environment<br />

Contact Resistance and Fritting Theory<br />

Experimental Data<br />

Production Data<br />

Results & Future Work<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 21


Experimental Data / <strong>Parameters</strong><br />

• Input <strong>Parameters</strong>:<br />

– Overtravel (OT, µm)<br />

– <strong>Probe</strong> Material<br />

– Contact Material (Rhodium, Rh, Aluminum 600nm, Al)<br />

– Electrical Conditions (Current and direction, mA)<br />

– Number of Touchdowns (TDs)<br />

• Output Measures:<br />

– Contact Resistance (Cres, Ohm)<br />

– Contact Force (CF, cN)<br />

– Visual Inspection (Video Camera System)<br />

– Scanning Electron Microscope (SEM)<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 22


What is a “Bathtub Bathtub” Curve ?<br />

• A symmetric “bathtub” curve at full overtravel is<br />

preferable.<br />

If fritting occurs, will be<br />

observed in this region<br />

Full<br />

Overtravel<br />

OT increase | OT decrease<br />

A shift is indicative of material<br />

Accumulation on contact area<br />

Intrinsic<br />

CRES<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 24


Bathtub Experiments<br />

• Test Sequence<br />

– CRES vs Overtravel per<strong>for</strong>mance tests up to 100µm<br />

overtravel (OT)<br />

– CRES measurement Pin-to-Pin with 3mil diameter<br />

• Test Execution <strong>for</strong> total 30 TDs each<br />

– Per<strong>for</strong>med on Rh-Plate and Al-Wafer<br />

– Per<strong>for</strong>med with existing and new beam material<br />

– Per<strong>for</strong>med at 1mA and 100mA<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 26


Contact Resistance Cres [Ohm]<br />

1000<br />

100<br />

10<br />

1<br />

Bathtub Comparison I<br />

600nm Al @ 1mA/exist. Mat<br />

Rhodium @ 1mA/exist. Mat<br />

Film<br />

Resistance<br />

Metallic<br />

Contact<br />

-5 5 15 25 35 45 55 65 75 85 95 105 95 85 75 65 55 45 35 25 15 5 -5<br />

OT [µm]<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 27


Contact Resistance Cres [Ohm]<br />

1000<br />

100<br />

Bathtub Comparison II<br />

10<br />

1<br />

Existing Mat @ 1mA/600nm Al<br />

New Mat @ 1mA/600nm Al<br />

Difference in CRES<br />

New Mat -550 mOhm<br />

-5 5 15 25 35 45 55 65 75 85 95 105 95 85 75 65 55 45 35 25 15 5 -5<br />

OT [µm]<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 28


Contact Resistance Cres [Ohm]<br />

Bathtub Comparison III<br />

1000<br />

100<br />

10<br />

1<br />

Fritting<br />

1mA @ 600nm Al/exist. Mat<br />

100mA @ 600nm Al/exist. Mat<br />

-5 5 15 25 35 45 55 65 75 85 95 105 95 85 75 65 55 45 35 25 15 5 -5<br />

OT [µm]<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 29


CRES vs. Current<br />

• Test Sequence<br />

– 30 TDs at 38µm Overtravel (no intermetallic contact<br />

on Al-Wafer)<br />

– CRES measurement Pin-to-Pin with 3mil beam<br />

diameter<br />

• Test Execution <strong>for</strong> total 30 TDs each<br />

– Per<strong>for</strong>med <strong>for</strong> a set of currents (1mA-1A)<br />

– Per<strong>for</strong>med on Rh-Plate and on Al-Wafer<br />

– Per<strong>for</strong>med with existing and new beam material<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 30


Contact Resistance Cres [Ohm]<br />

10<br />

8<br />

6<br />

4<br />

Difference in CRES<br />

New Mat 2 -550 mOhm<br />

0<br />

CRES vs. Current<br />

CRES decrease<br />

Because of Fritting<br />

0 100 200 300 400 500 600 700 800 900 1000<br />

Measurement Current [mA]<br />

Exist. Mat on Rhodium @ 38µm OT<br />

New Mat on Rhodium @ 38µm OT<br />

Exist. Mat on 600nm Al @38µm OT<br />

New Mat on 600nm Al @ 38µm OT<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 31


Visualization of Test<br />

• Pin-to-Pin CRES across substrates<br />

– NO FRITTING observed on Rhodium plate<br />

– FRITTING observed 600nm Aluminum wafer<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 32


CRES Longterm tests<br />

• Test Sequence<br />

– 200 TDs on a 600nm Aluminum Wafer at 38µm<br />

Overtravel<br />

– CRES vs Overtravel per<strong>for</strong>mance tests up to 100µm<br />

overtravel on a Rh-Plate<br />

• Test Execution <strong>for</strong> total of 20K TDs on wafer<br />

– Al-wafer with 1mA and Rh-Plate at 1mA<br />

– Al-wafer with 300mA and Rh-Plate at 300mA<br />

– Per<strong>for</strong>med with existing and new beam material<br />

– Per<strong>for</strong>med Pin-To-Pin<br />

– No Cleaning at all<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 33


Contact Resistance Cres [Ohm]<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

CRES Longterm Tests<br />

-5<br />

5<br />

Fritting<br />

15<br />

25<br />

35<br />

45<br />

55<br />

65<br />

75<br />

Start of Longtermtest 1mA (Exist Mat)<br />

Start of Longtermtest 300mA (Exist Mat)<br />

End of Longtermtest 1mA (Exist Mat)<br />

End of Longtermtest 300mA (Exist Mat)<br />

More Cur. = More CRES<br />

(Film resistance)<br />

85<br />

95<br />

105<br />

95<br />

OT [µm]<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 34<br />

85<br />

75<br />

65<br />

55<br />

45<br />

35<br />

25<br />

15<br />

5<br />

-5


Contact Resistance Cres [Ohm]<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

CRES Longterm Tests<br />

-5<br />

5<br />

Fritting<br />

Expected Offset<br />

Exist vs new Mat<br />

15<br />

25<br />

35<br />

45<br />

55<br />

65<br />

75<br />

Exist. Mat: Start of longtermtest @ 300mA<br />

New Mat: Start of longtermtest @ 300mA<br />

Exist. Mat: End of longtermtest @ 300mA<br />

New Mat: End of longtermtest @ 300mA<br />

85<br />

95<br />

105<br />

95<br />

OT [µm]<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 35<br />

85<br />

75<br />

65<br />

55<br />

45<br />

35<br />

25<br />

15<br />

5<br />

-5


SEM Images after 20K TD Longterm Test<br />

@ 1 and 300mA without any Cleaning<br />

Existing Material - Initial<br />

New Material - Initial<br />

20K 1mA Al + 1mA Rh<br />

20K 1mA Al + 1mA Rh<br />

20K 300mA Al + 300mA Rh<br />

20K 300mA Al + 300mA Rh<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 36


CRES Longterm Tests<br />

• Test Sequence<br />

Pin High / Low<br />

– 200 TDs on a 600nm Aluminum Wafer at 25µm<br />

Overtravel<br />

– CRES vs Overtravel per<strong>for</strong>mance tests up to 100µm<br />

overtravel on a Rh-Plate<br />

• Test Execution <strong>for</strong> total of 20K TDs on wafer<br />

– Pin with 300mA (High) and Rh-Plate (Low)<br />

– Pin with 300mA (Low) and Rh-Plate (High)<br />

– Per<strong>for</strong>med with existing and new probe material<br />

– Per<strong>for</strong>med without cleaning<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 37


CRES Longterm Tests<br />

CRES Histogram after 15K TDs @ 300mA without Cleaning<br />

Number of Contacts<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Metallic<br />

Contact<br />

Exist Mat<br />

Metallic<br />

Contact<br />

New Mat<br />

Film<br />

Resistance<br />

New Mat<br />

Film<br />

Resistance<br />

Exist Mat<br />

0 1 2 3 4 5 6<br />

Contact Resistance [Ohm]<br />

Exist mat / Pin low<br />

Exist Mat / Pin high<br />

New Mat / Pin low<br />

New Mat / Pin high<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 38


CRES Longterm tests<br />

CRES Cum. Probability after 15K TDs @ 300mA without Cleaning<br />

Cumulative Probability<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

Metallic<br />

Contact<br />

Exist Mat<br />

Metallic<br />

Contact<br />

New Mat<br />

90% Film Resistance<br />

90% Film Res.<br />

0 1 2 3 4 5 6<br />

Contact Resistance [Ohm]<br />

Less<br />

Film resistance<br />

<strong>for</strong> pos. Volt.<br />

at new Mat<br />

Exist mat / Pin low<br />

Exist Mat / Pin high<br />

New Mat / Pin low<br />

New Mat / Pin high<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 39


Exist<br />

Mat<br />

New<br />

Mat<br />

SEM Images after 20K TD Longterm Test<br />

@ 300mA without any Cleaning<br />

Pin low Pin High<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 40


Motivation<br />

Joint Venture Overview<br />

FM: <strong>Probe</strong> Materials<br />

ITS: Lab Capabilities<br />

NXP: Production Environment<br />

Contact Resistance and Fritting Theory<br />

Experimental Data<br />

Production Data<br />

Results & Future Work<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 41


Production CRES Measurement<br />

• Smartcard application 32x parallel<br />

• <strong>On</strong>e <strong>Probe</strong>card with<br />

16 sites existing Material (red)<br />

16 sites new Material (green)<br />

with symmetric pattern<br />

• CRES Monitor on digital channel<br />

put into std. Production Test<br />

Program<br />

1 2 3 4<br />

5 6 7 8<br />

9 10 11 12<br />

13 14 15 16<br />

17 18 19 20<br />

21 22 23 24<br />

25 26 27 28<br />

29 30 31 32<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 42


Number of Contacts<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Production Data<br />

Exist Material<br />

New Material<br />

CRES Difference<br />

550 mOhm<br />

4 4.2 4.4 4.6 4.8 5 5.2 5.4<br />

Overall Path Resistance [Ohm]<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 43


Motivation<br />

Joint Venture Overview<br />

FM: <strong>Probe</strong> Materials<br />

ITS: Lab Capabilities<br />

NXP: Production Environment<br />

Contact Resistance and Fritting Theory<br />

Experimental Data<br />

Production Data<br />

Results & Future Work<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 44


Results & Future Work I<br />

• New beam material was evaluated in lab and production<br />

environments<br />

– Decrease of resistivity proven: -550 mOhm compared to existing<br />

material<br />

– New Beam material shows better film contact resistance and fritting<br />

per<strong>for</strong>mance<br />

• Amplitude and directionality of applied current/voltage highly<br />

influenced the accumulation of debris as well as the increase of film<br />

resistance<br />

– Higher currents lead to higher CRES<br />

– Positive voltages higher affected than negative voltages<br />

• Off-<strong>line</strong> testing under controlled conditions with “standardized”<br />

methods can provide key insights <strong>for</strong> understanding CRES behavior<br />

that can help a probe engineer develop wafer sort processes and<br />

define cleaning practices.<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 45


Results & Future Work II<br />

(many interestesting studies !)<br />

• Evaluate fab processed materials<br />

– Shorted wafers and test die<br />

• Define an “<strong>On</strong><strong>line</strong> Cleaning Rules Set”<br />

• Investigating the effects and repercussions<br />

of the Fritting mechanisms<br />

• Temperature influence on film resistance<br />

– Range similar to production<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 46


Acknowledgements<br />

• Feinmetall Engineering Development and<br />

Design Teams<br />

• ITS Applications Engineering Team<br />

– Andrea Haag (Engineering Technician)<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 47


Men At Work<br />

June 11 / 2008 Martens, Allgaier, Allgaier Allgaier, , Broz IEEE SW Test Workshop 48


Thank you! you<br />

Questions?<br />

Questions

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!