15.05.2013 Views

Influence of Excitonic Scattering on Charge Carrier Ambipolar ... - Imec

Influence of Excitonic Scattering on Charge Carrier Ambipolar ... - Imec

Influence of Excitonic Scattering on Charge Carrier Ambipolar ... - Imec

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Obviously some new physical effects should be implemented to explane the Da behaviour. In<br />

this paper we examine electr<strong>on</strong> and hole scattering <strong>on</strong> Wannier-type excit<strong>on</strong>s as a additi<strong>on</strong>al<br />

scattering mechanism to remove the above-menti<strong>on</strong>ed discrepancy.<br />

2 Model descripti<strong>on</strong> and calculati<strong>on</strong> results<br />

Present analysis is based <strong>on</strong> our previously published [13] charge carrier low-field transport and<br />

mobility model, developed by use <str<strong>on</strong>g>of</str<strong>on</strong>g> Kohler’s variati<strong>on</strong>al principle soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Boltzmann transport<br />

equati<strong>on</strong>. In additi<strong>on</strong> to c<strong>on</strong>venti<strong>on</strong>al lattice, i<strong>on</strong>ized impurity and inter- and intracarrier scattering,<br />

the scattering <str<strong>on</strong>g>of</str<strong>on</strong>g> free carriers <strong>on</strong> Wannier-type excit<strong>on</strong>s is taken into account assuming spherical<br />

parabolic bands for both electr<strong>on</strong>s and holes. Excit<strong>on</strong>s are c<strong>on</strong>sidered as positr<strong>on</strong>ium-like particles,<br />

which can scatter free carriers similar to neutral impurity atoms [14]. The relevant scattering terms<br />

e ex<br />

drs − *<br />

h ex<br />

and drs − *<br />

* ee * hh<br />

c<strong>on</strong>tribute to the determinant G elements Γrs<br />

and Γrs<br />

[13] like i<strong>on</strong><br />

e i<br />

scattering terms drs − *<br />

h i<br />

and drs − *<br />

do.<br />

For excit<strong>on</strong> density descripti<strong>on</strong> we propose two sub-models. The first (see Fig.1) is based <strong>on</strong><br />

thermodynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a mixed gas <str<strong>on</strong>g>of</str<strong>on</strong>g> free electr<strong>on</strong>s, holes, and excit<strong>on</strong>s. In this "chemical picture"<br />

the mass acti<strong>on</strong> law is written as nex = n ⋅ p K(<br />

T,<br />

γ ) , where the chemical mass equilibrium<br />

c<strong>on</strong>stant for excit<strong>on</strong> formati<strong>on</strong> and dissociati<strong>on</strong> in silic<strong>on</strong> is<br />

3 2<br />

K( T,<br />

γ ) = Ccv(<br />

T 300K<br />

) exp( −ΔEex<br />

⋅γ<br />

kBT<br />

) . In the present calculati<strong>on</strong>s we used excit<strong>on</strong><br />

unscreened ground state binding energy E = 14.<br />

7 meV and the state density coefficient<br />

18 -3<br />

cm<br />

Δ ex<br />

C cv = 1 . 43×<br />

10 , according to the degeneracy factor f = 21 [15]. The screening parameter<br />

γ ( n + p)<br />

, which approaches 1 at low carrier c<strong>on</strong>centrati<strong>on</strong> and turns to 0 at Mott transiti<strong>on</strong>, was<br />

calculated by use <str<strong>on</strong>g>of</str<strong>on</strong>g> a method proposed in [16]. For excit<strong>on</strong> effective mass the value<br />

m 0.<br />

1545 was chosen in order to assure γ = 0 Mott c<strong>on</strong>centrati<strong>on</strong><br />

* =<br />

ex<br />

17 -3<br />

cm<br />

n Mott = pMott<br />

= 5 . 2×<br />

10 [15] at T = 300 K.<br />

The sec<strong>on</strong>d excit<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> sub-model (see Fig. 2) is based <strong>on</strong> a rigorously derived<br />

quantum-statistical mass acti<strong>on</strong> law for two-comp<strong>on</strong>ent Fermi systems with statically screened<br />

Coulomb interacti<strong>on</strong>s [17], [18]. In this theory the correlated particle density includes<br />

c<strong>on</strong>tributi<strong>on</strong>s from bound (i.e. excit<strong>on</strong>s) and scattering states: at Mott transiti<strong>on</strong> the dissociati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bound states is fully compensated by the jump in the density <str<strong>on</strong>g>of</str<strong>on</strong>g> scattering states. In this work,<br />

when calculating mobilities (Fig. 3) and Da (Fig. 4) above Mott transiti<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>, we have<br />

c<strong>on</strong>sidered scattering state similarly to the excit<strong>on</strong>ic states.<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

In this work, we developed a model <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> and hole scattering <strong>on</strong> free excit<strong>on</strong>s and<br />

implemented it to explane the problematic ambipolar diffusi<strong>on</strong> coefficient reducti<strong>on</strong> at high excess<br />

carrier c<strong>on</strong>centrati<strong>on</strong>s in silic<strong>on</strong>. Despite <str<strong>on</strong>g>of</str<strong>on</strong>g> some eclecticism <str<strong>on</strong>g>of</str<strong>on</strong>g> our preliminary model, calculati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> drift mobilities and the ambipolar diffusi<strong>on</strong> coefficient are in a quite satisfactory agreement with<br />

experiments. It is deepening the belief that excit<strong>on</strong>s may have a remarkable effect <strong>on</strong> device<br />

behavior even at the room temperatures.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!