02.06.2013 Views

TLS / OBIRCH / TIVA

TLS / OBIRCH / TIVA

TLS / OBIRCH / TIVA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

MICROELECTRONICS<br />

THALES Microelectronics S.A.<br />

FAILURE ANALYSIS LABORATORY<br />

THERMAL LASER STIMULATION<br />

(<strong>TLS</strong> / <strong>OBIRCH</strong> / <strong>TIVA</strong>)


I.C. FA flow<br />

Electrical<br />

MICROELECTRONICS<br />

diagnostic<br />

Defect<br />

localization<br />

Physical<br />

analysis<br />

<strong>TLS</strong> in the FA flow<br />

Current related defects<br />

Emission<br />

microscopy<br />

– I leakage junctions<br />

– I leakage oxides<br />

Thermal Laser<br />

Stimulation<br />

– I leakage metallic<br />

shorts<br />

2


MICROELECTRONICS<br />

LASER<br />

λ = 1,3 µm<br />

<strong>TLS</strong> Principles<br />

• Heating<br />

High absorption in:<br />

– Metals<br />

– Polysilicon<br />

• No e-h pair<br />

generation<br />

– Highly doped silicon<br />

α<br />

Aluminium<br />

=<br />

Conduction band<br />

E photon < E b.g.<br />

Valence band<br />

1,<br />

1x10<br />

6<br />

cm<br />

−1<br />

3


MICROELECTRONICS<br />

Laser Heating of Metals<br />

Electric current density :<br />

j ≅ σ<br />

E<br />

[ + Q( − ∇T<br />

) ]<br />

↑ T ° → Current variation<br />

∇ T ° → Additional current<br />

4


MICROELECTRONICS<br />

A. Resistance Variation<br />

ρ L<br />

∆ = 0 α 2δ<br />

S<br />

TCR<br />

( − ) ∆T<br />

R T<br />

Aluminium<br />

α TCR = 4,29x10 -3<br />

α TCR → Temperature<br />

Coefficient of Resistivity<br />

δ T → Coefficient of<br />

Thermal linear dilatation<br />

Current Source (<strong>TIVA</strong>)<br />

∆V<br />

= ∆R<br />

⋅<br />

Voltage Source (<strong>OBIRCH</strong>)<br />

δ = 2,36x10 T -5 ( ∆I<br />

= − ∆R<br />

R<br />

2<br />

)V<br />

I<br />

5


B. Electromotive Force Generation<br />

MICROELECTRONICS<br />

T > T 0<br />

Laser<br />

T 0 M 1 M 2<br />

12<br />

Q → Thermoelectric power or<br />

Seebeck coefficient<br />

T 0<br />

( Q Q )( T T ) Q ( T T )<br />

V = − − = −<br />

1<br />

2<br />

12<br />

Q 12 → Relative Thermoelectric power<br />

0<br />

0<br />

Materials Q 12 (µV/ o C)<br />

Al / W 7,0<br />

Al / n+ Poly<br />

Al / n+ Si<br />

(10 20 cm -3 )<br />

-121<br />

-105<br />

6


Parameters:<br />

T ini : 25 o C<br />

P laser : 100mW<br />

R laser : 0,65µm<br />

V fast :1,23m/s<br />

V slow : 0,00768m/s<br />

MICROELECTRONICS<br />

<strong>TLS</strong> Model<br />

SiO 2<br />

1µm<br />

Al<br />

Silicon<br />

10µm<br />

1µm<br />

0.5µm<br />

1µm<br />

4µm<br />

Model: 1µm Al line, Gaussien Laser<br />

2 cases:<br />

- Transversal<br />

- Longitudinal<br />

Length = 120µm<br />

7


MICROELECTRONICS<br />

A. Transversal Case<br />

• Rapid thermal equilibrium and heat dissipation<br />

• Hottest temperature occurs at laser spot<br />

Slowest scanning speed<br />

T (°C)<br />

75<br />

65<br />

55<br />

45<br />

35<br />

25<br />

transversal slow<br />

transversal fast<br />

0 1 2 3 4 5 6 7 8 9 101112 13<br />

Position (µm) Elapsed time (µs)<br />

8


MICROELECTRONICS<br />

B. Longitudinal Case<br />

• Thermal equilibrium reached after 10µs<br />

Slowest scanning speed<br />

T (°C)<br />

75<br />

65<br />

55<br />

45<br />

35<br />

25<br />

longitudinal slow<br />

longitudinal fast<br />

0,0E+00 5,0E-06 1,0E-05 1,5E-05 2,0E-05<br />

Time (s)<br />

9


trans. slow<br />

trans. fast<br />

long. slow<br />

long. fast<br />

MICROELECTRONICS<br />

Temperature Calculation<br />

75<br />

65<br />

55<br />

45<br />

35<br />

25<br />

T (°C)<br />

-20 -10 0 10 20<br />

Position from the laser center (µm)<br />

At thermal<br />

equilibrium:<br />

Thermal spreading<br />

limited to ~ 30µm<br />

Temperature varies<br />

linearly with laser<br />

power<br />

∆T max = 0.55 o C/mW<br />

10


Resistance Variation (Ω)<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

0,00<br />

MICROELECTRONICS<br />

Resistance Calculation<br />

∆R = 0,17Ω<br />

0 20 40 60 80 100<br />

Laser Power(mW)<br />

∆R max = 1,7 mΩ/mW<br />

ρ α<br />

∆R<br />

=<br />

−<br />

L 0 TCR T T<br />

S<br />

( )<br />

Moy 0<br />

11


MICROELECTRONICS<br />

Model Conclusion<br />

Localization of defects and lines submitted to I leakage<br />

∆R 1/∝ Section<br />

∆V ∝ I leakage<br />

Localization of junctions and interface defects<br />

Q 12 or ∆T<br />

Precise localization<br />

Thermal diffusion < 30µm<br />

T max at center of line and laser beam<br />

12


MICROELECTRONICS<br />

<strong>TLS</strong> System Requirements<br />

• Laser scanning microscope (LSM)<br />

– Gaussian laser of λ >1,1µm<br />

• Acquisition and imaging system<br />

• Biasing and amplification scheme :<br />

Techniques Inventor Bias<br />

<strong>OBIRCH</strong><br />

CC-<strong>OBIRCH</strong><br />

<strong>TIVA</strong><br />

TBIP<br />

XIVA<br />

Nikawa<br />

Nikawa<br />

Cole<br />

Palaniappan<br />

Falk<br />

SEI Cole<br />

V<br />

I<br />

V<br />

I / None<br />

Amplifier<br />

I<br />

V<br />

V<br />

V<br />

<strong>TLS</strong><br />

13


<strong>OBIRCH</strong><br />

<strong>TIVA</strong><br />

MICROELECTRONICS<br />

I.C.<br />

I.C.<br />

Configurations<br />

AMPLI<br />

I / V<br />

AMPLI<br />

V / V<br />

I.C.<br />

AMPLI<br />

V / V<br />

• Other configurations:<br />

– Inductance (TBIP / XIVA)<br />

– No bias (SEI)<br />

14


Poly line<br />

MICROELECTRONICS<br />

<strong>TLS</strong> on Test Structures<br />

Al line<br />

N+ resistance<br />

No bias (SEI)<br />

15


• Failed CMOS IC<br />

– I ~ 2mA @ 5V<br />

• No emission<br />

• Front-side<br />

MICROELECTRONICS<br />

<strong>TLS</strong> 5X<br />

<strong>TLS</strong> Case Study #1<br />

<strong>TLS</strong> 200X<br />

Metal short<br />

(M1-M2)<br />

16


• Failed BICMOS IC<br />

– I > 100 µA(I/O)<br />

• Backside<br />

– 4 metal levels<br />

MICROELECTRONICS<br />

EMMI (20x)<br />

<strong>TLS</strong> Case Study #2<br />

<strong>TLS</strong> (20x)<br />

W short<br />

(Drain-Source)<br />

17


• Failed CMOS IC<br />

– I ~ 2 mA @ 3V<br />

• Front-side<br />

MICROELECTRONICS<br />

<strong>TLS</strong> (20x)<br />

<strong>TLS</strong> Case Study #3<br />

<strong>TLS</strong> (20x)<br />

Metal short<br />

(M2-M3)<br />

18


MICROELECTRONICS<br />

<strong>TLS</strong> Case Study #4<br />

• ESD failed commercial ICs<br />

– HBM and MM stressed<br />

• Front-side<br />

– No bias applied (SEI)<br />

SEI (200x)<br />

Molten Si/Al<br />

filament<br />

Molten Si<br />

spike<br />

SEI (50x)<br />

19


• GaAs failed ASICS<br />

– I ~ 50 µA@ 3V<br />

• Front-side<br />

MICROELECTRONICS<br />

<strong>TLS</strong> (100x)<br />

<strong>TLS</strong> Case Study #5<br />

Defects induced by<br />

CDM type ESD stress<br />

Gold filament<br />

20


Conclusion : <strong>TLS</strong> Application Field<br />

Thermal<br />

Laser<br />

Stimulation<br />

Bias<br />

No Bias<br />

MICROELECTRONICS<br />

Signature Defect type Material<br />

Ileakage >1µA<br />

All circuits<br />

Comparison<br />

Current lines<br />

Shorts<br />

ESD defects<br />

Voids<br />

ESD defects<br />

Interface<br />

defects<br />

AI, W, Au,<br />

PolySi,<br />

Doped Si,<br />

Amorph. Si<br />

Metal / Metal<br />

Metal / Si<br />

Metal / Poly Si<br />

Melted Si / Si<br />

21

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!