04.06.2013 Views

Paleontological and Magnetostratigraphic Data on Upper ...

Paleontological and Magnetostratigraphic Data on Upper ...

Paleontological and Magnetostratigraphic Data on Upper ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ISSN 0869-5938, Stratigraphy <str<strong>on</strong>g>and</str<strong>on</strong>g> Geological Correlati<strong>on</strong>, 2013, Vol. 21, No. 1, pp. 48–78. © Pleiades Publishing, Ltd., 2013.<br />

Original Russian Text © N.K. Lebedeva, G.N. Aleks<str<strong>on</strong>g>and</str<strong>on</strong>g>rova, B.N. Shurygin, M.N. Ovechkina, Z.N. Gnibidenko, 2013, published in Stratigrafiya. Geologicheskaya Korrelyatsiya,<br />

2013, Vol. 21, No. 1, pp. 43–73.<br />

<str<strong>on</strong>g>Pale<strong>on</strong>tological</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Magnetostratigraphic</str<strong>on</strong>g> <str<strong>on</strong>g>Data</str<strong>on</strong>g><br />

<strong>on</strong> <strong>Upper</strong> Cretaceous Deposits from Borehole no. 8<br />

(Russkaya Polyana District, Southwestern Siberia)<br />

N. K. Lebedeva a , G. N. Aleks<str<strong>on</strong>g>and</str<strong>on</strong>g>rova b , B. N. Shurygin a , M. N. Ovechkina c, d , <str<strong>on</strong>g>and</str<strong>on</strong>g> Z. N. Gnibidenko a<br />

a Trofimuk Institute of Petroleum Geology <str<strong>on</strong>g>and</str<strong>on</strong>g> Geophysics, Siberian Branch of Russian Academy of Sciences,<br />

pr. Akad. Koptyuga 3, Novosibirsk, 630090 Russia<br />

b Geological Institute, Russian Academy of Sciences, Pyzhevskii per. 7, Moscow, 119017 Russia<br />

c School of Agricultural, Earth & Envir<strong>on</strong>mental Sciences, University of KwaZulu-Natal, Durban, Republic of South Africa<br />

KwaZulu-Natal Museum, Pietermaritzburg, Republic of South Africa<br />

d <str<strong>on</strong>g>Pale<strong>on</strong>tological</str<strong>on</strong>g> Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia<br />

e-mail: LebedevaNK@ipgg.sbras.ru<br />

Received February 7, 2012; in final form, April 4, 2012<br />

Abstract—This work presents results of complex research (palynological, macro- <str<strong>on</strong>g>and</str<strong>on</strong>g> microfaunistic, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

paleomagnetic) of <strong>Upper</strong> Cretaceous deposits, opened by borehole no. 8 in the Russkaya Polyana District<br />

(the southern margin of the Omsk Depressi<strong>on</strong>, Southwestern Siberia). The pale<strong>on</strong>tological data obtained<br />

allowed us to establish the age of deposits. Based <strong>on</strong> dinocysts, nannoplankt<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> spore-pollen complexes,<br />

the secti<strong>on</strong> of borehole no. 8 has been divided into Pokur, Kuznetsovo, Ipatovo, Slavgorod, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Gan’kino Formati<strong>on</strong>s. This work gives data <strong>on</strong> the compositi<strong>on</strong> of z<strong>on</strong>al palynomorphs, nannoplankt<strong>on</strong>,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> microfaunistic complexes. Based <strong>on</strong> the complex data obtained, the magnetostratigraphic secti<strong>on</strong> of<br />

<strong>Upper</strong> Cretaceous deposits has been developed. The secti<strong>on</strong> c<strong>on</strong>sists of three magnetoz<strong>on</strong>es: normal <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

two reversed polarity magnetoz<strong>on</strong>es. The Pokur, Kuznetsovo <str<strong>on</strong>g>and</str<strong>on</strong>g> Ipatovo Formati<strong>on</strong> (Cenomanian–Sant<strong>on</strong>ian)<br />

bel<strong>on</strong>g to the l<strong>on</strong>g normal polarity magnetoz<strong>on</strong>e; the Slavgorod <str<strong>on</strong>g>and</str<strong>on</strong>g> Gan’kino Formati<strong>on</strong>s (Campanian–Maastrichtian),<br />

separated by a stratigraphic break, bel<strong>on</strong>g to reversed polarity magnetoz<strong>on</strong>es. The<br />

magnetostratigraphic secti<strong>on</strong> has been correlated with the general magnetostratigraphic <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetochr<strong>on</strong>ological<br />

time scales.<br />

Keywords: biostratigraphy, <strong>Upper</strong> Cretaceous, southwestern Siberia, palynology, dinocyst, amm<strong>on</strong>ites,<br />

bivalves, nannoplankt<strong>on</strong>, magnetostratigraphy, magnetoz<strong>on</strong>es, polarity<br />

DOI: 10.1134/S086959381301005X<br />

INTRODUCTION<br />

As was noted at the Interdepartmental Stratigraphic<br />

Meeting (Novosibirsk, 2003), where improved<br />

regi<strong>on</strong>al stratigraphic schemes of Mesozoic deposits of<br />

Western Siberia were under discussi<strong>on</strong>, there is a lack<br />

of the new pale<strong>on</strong>tological material for regi<strong>on</strong>al correlati<strong>on</strong><br />

of the <strong>Upper</strong> Cretaceous geochr<strong>on</strong>ological<br />

scheme of Southwestern Siberia. This is due to a sharp<br />

reducti<strong>on</strong> in drilling, in general, <str<strong>on</strong>g>and</str<strong>on</strong>g> a lack of actual<br />

data <strong>on</strong> the <strong>Upper</strong> Cretaceous deposits, in particular.<br />

In recent years, as a result of drilling works with total<br />

core sampling carried out by the Omsk geological survey<br />

expediti<strong>on</strong> it has become possible to perform<br />

detailed palynological, magnetostratigraphic, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

micropale<strong>on</strong>tological research in the Russkaya Polyana<br />

District. Much of the published works <strong>on</strong> results of<br />

studying the borehole secti<strong>on</strong>s describe <strong>on</strong>ly Cenozoic<br />

deposits (Volkova et al., 2002, 2005; Akhmetiev et al.,<br />

2004a, 2004b, 2010; Iakovleva et al., 2010, 2011; Akh-<br />

48<br />

metiev, 2011; Iakovleva, Heilmann-Clausen, 2010;<br />

etc.). <strong>Upper</strong> Cretaceous deposits were described <strong>on</strong>ly<br />

in some intervals of the Gan’kino Formati<strong>on</strong> (Benyamovskii<br />

et al., 2002; Kuzmina et al., 2003; Aleks<str<strong>on</strong>g>and</str<strong>on</strong>g>rova<br />

et al., 2004).<br />

In the period 2007-2009, researchers from IPGG<br />

RAS <str<strong>on</strong>g>and</str<strong>on</strong>g> GIN RAS (Z.N. Gnibidenko,<br />

O.B. Kuzmina, N.K. Lebedeva, G.N. Aleks<str<strong>on</strong>g>and</str<strong>on</strong>g>rova,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> V.N. Benyamovskii) have collected rock samples<br />

for palynological, micropale<strong>on</strong>tological <str<strong>on</strong>g>and</str<strong>on</strong>g> paleomagnetic<br />

studies, <str<strong>on</strong>g>and</str<strong>on</strong>g> also macrofauna from <strong>Upper</strong><br />

Cretaceous <str<strong>on</strong>g>and</str<strong>on</strong>g> Cenozoic deposits in boreholes,<br />

drilled in the Russkaya Polyana District, the south of<br />

the Omsk Regi<strong>on</strong> (Fig. 1).<br />

The borehole no. 8 was drilled within the southern<br />

flank of the Omsk Depressi<strong>on</strong>. According to the<br />

scheme of z<strong>on</strong>al distributi<strong>on</strong> of <strong>Upper</strong> Cretaceous<br />

deposits in Western Siberia, this borehole is located<br />

within the Omsk-Lar’yak facies z<strong>on</strong>e (Reshenie …,


Moscow<br />

PALEONTOLOGICAL AND MAGNETOSTRATIGRAPHIC DATA 49<br />

A R C T I C O C E A N<br />

Russian Federati<strong>on</strong><br />

55°<br />

N<br />

50°<br />

Ishim<br />

Tobolsk<br />

Omsk<br />

1991). It opened a nearly 600-meter thick secti<strong>on</strong> of<br />

Mesozoic-Cenozoic deposits, including those of the<br />

Pokur, Kuznetsovo, Ipatovo, Slavgorod <str<strong>on</strong>g>and</str<strong>on</strong>g> Gan’kino<br />

Formati<strong>on</strong>s.<br />

The first pale<strong>on</strong>tological <str<strong>on</strong>g>and</str<strong>on</strong>g> paleomagnetic data<br />

were published (Podobina <str<strong>on</strong>g>and</str<strong>on</strong>g> Kseneva, 2007; Gnibidenko<br />

et al., 2008; Aleks<str<strong>on</strong>g>and</str<strong>on</strong>g>rova et al., 2011). This<br />

paper aims to clarify the age of <strong>Upper</strong> Cretaceous<br />

deposits <str<strong>on</strong>g>and</str<strong>on</strong>g> their divisi<strong>on</strong> <strong>on</strong> the basis of pale<strong>on</strong>tological,<br />

palynological, paleoalgologic <str<strong>on</strong>g>and</str<strong>on</strong>g> paleomagnetic<br />

data.<br />

Irtysh<br />

borehole no. 8<br />

Barabinsk<br />

Pavlodar<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013<br />

Ket’<br />

Tomsk<br />

Novosibirsk<br />

70° E 75° 80° 85°<br />

Fig. 1. Locati<strong>on</strong> of the borehole no. 8 in the Russkaya Polyana District.<br />

Irtysh<br />

Ob<br />

MATERIAL AND RESEARCH METHODS<br />

Palynological Researches<br />

Chulym<br />

Biya<br />

For palynological <str<strong>on</strong>g>and</str<strong>on</strong>g> paleoalgologic researches<br />

105 samples have been collected in the secti<strong>on</strong> of the<br />

borehole no. 8. To extract microphytofossils from rock<br />

samples, Sodium Pyrophosphate, as water treatment<br />

agent to remove clayparticles, <str<strong>on</strong>g>and</str<strong>on</strong>g> cadmium liquid<br />

with a specific gravity of 2.25, to separate mineral <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

organic fracti<strong>on</strong>s from the residue, were used. Glycerol<br />

Jelly reagent has been used for making permanent<br />

preparati<strong>on</strong>s.<br />

Katun


50<br />

In fact, in all the samples diverse phytofossil<br />

remains with satisfactory <str<strong>on</strong>g>and</str<strong>on</strong>g> good preservati<strong>on</strong> have<br />

been described. They are represented by mosses <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

fern spores, pollen of gymnosperms <str<strong>on</strong>g>and</str<strong>on</strong>g> angiosperms,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> cysts of dinoflagellates (Divisi<strong>on</strong> Dinoflagellata),<br />

prasinophytes (Divisi<strong>on</strong> Chlorophyta, Class Prasinophyceae),<br />

acritarchs (a group of uncertain systematics),<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> freshwater microscopic algae (Divisi<strong>on</strong><br />

Chlorophyta, similar to the modern Zygnemataceae).<br />

To calculate the palynological spectra the volume<br />

of all microphytofossils (spores, pollen <str<strong>on</strong>g>and</str<strong>on</strong>g> microphytoplankt<strong>on</strong>)<br />

was normalized to 100%. At this, not less<br />

200–300 grains of different comp<strong>on</strong>ents were taken<br />

into c<strong>on</strong>siderati<strong>on</strong>.<br />

The palynomorph complexes were selected <strong>on</strong> the<br />

basis of their first appearance, the disappearance of<br />

taxa <str<strong>on</strong>g>and</str<strong>on</strong>g> their number.<br />

The collecti<strong>on</strong> of studied samples from the borehole<br />

no. 8 is stored in the laboratory of Mesozoic <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Cenozoic pale<strong>on</strong>tology <str<strong>on</strong>g>and</str<strong>on</strong>g> stratigraphy of the Institute<br />

of Petroleum Geology <str<strong>on</strong>g>and</str<strong>on</strong>g> Geophysics of SB RAS<br />

(Novosibirsk, Russia).<br />

Researches of Calcareous Nannoplankt<strong>on</strong><br />

In order to study calcareous nannoplankt<strong>on</strong>, the<br />

st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard methodology (Bown <str<strong>on</strong>g>and</str<strong>on</strong>g> Young, 1998;<br />

Ovechkina, 2007) was used. Permanent preparati<strong>on</strong>s<br />

were studied using a light microscope (Zeiss Axiolab)<br />

in the Department of Natural Sciences KwaZulu-<br />

Natal Museum (Pietermaritzburg, Republic of South<br />

Africa) with magnificati<strong>on</strong> of ×1200.<br />

For biostratigraphic subdivisi<strong>on</strong> two z<strong>on</strong>al scales:<br />

the Sissingh’s st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard scale (Sissingh, 1977), modified<br />

by K. Perch-Nielsen (CC) (Perch-Nielsen, 1985)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the Barnett’s boreal scale (UC) (Burnett, 1998)<br />

were used. Photographs were taken with a light microscope<br />

using crossed nicols <str<strong>on</strong>g>and</str<strong>on</strong>g> a scanning electr<strong>on</strong><br />

microscope at the Center for Electr<strong>on</strong> Microscopy of<br />

the University of KwaZulu-Natal (Pietermaritzburg,<br />

Republic of South Africa).<br />

In order to describe the frequency of occurrence of<br />

species <str<strong>on</strong>g>and</str<strong>on</strong>g> a preservati<strong>on</strong> degree of nannofossils the<br />

following characteristics have been taken into c<strong>on</strong>siderati<strong>on</strong>:<br />

The amount of grains in the field of view: a<br />

lot⎯6–10 grains; many⎯1–5 grains, usual⎯1 grain<br />

for 2–5 fields of view, <str<strong>on</strong>g>and</str<strong>on</strong>g> small⎯1 grain for 6–<br />

10 fields of view, rare grains⎯1 grain for more than<br />

10 fields of view, single grains⎯1 grain for a preparati<strong>on</strong>.<br />

Preservati<strong>on</strong>: G (good)⎯most nannofossils are not<br />

broken, there is no evidence of sec<strong>on</strong>dary recrystallizati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> dissoluti<strong>on</strong>, A (average)⎯there are insignificant<br />

signs of sec<strong>on</strong>dary recrystallizati<strong>on</strong>; nannofossils<br />

may be slightly broken (identificati<strong>on</strong> is possible),<br />

LEBEDEVA et al.<br />

P (poor)—grains are badly broken; evidence of significant<br />

recrystallizati<strong>on</strong> (identificati<strong>on</strong> is problematic).<br />

Paleomagnetic Researches <str<strong>on</strong>g>and</str<strong>on</strong>g> Apparatus<br />

In general, collecti<strong>on</strong> of oriented samples for paleomagnetic<br />

research <str<strong>on</strong>g>and</str<strong>on</strong>g> data processing were carried<br />

using the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard procedures (Khramov <str<strong>on</strong>g>and</str<strong>on</strong>g> Sholpo,<br />

1967; Paleomagnitologiya, 1982; Molostovskii <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Khramov, 1997, etc.). It should be noted that collecti<strong>on</strong><br />

of oriented massive samples was carried out during<br />

drilling works.<br />

The samples were oriented in the “top-down”<br />

directi<strong>on</strong>. In total, 500 oriented samples, representing<br />

159 temporary stratigraphic levels were collected.<br />

Measurement of the natural remanent magnetizati<strong>on</strong><br />

has been carried out using a JR-4 <str<strong>on</strong>g>and</str<strong>on</strong>g> JR-6 spinner<br />

magnetometers; measurement of magnetic susceptibility<br />

was performed with KT-5 <str<strong>on</strong>g>and</str<strong>on</strong>g> KLY-2 kappameters.<br />

Magnetic cleaning was performed using<br />

TD48 <str<strong>on</strong>g>and</str<strong>on</strong>g> LDA-3A demagnetizers (Czech Republic).<br />

In order to plot the normal magnetizati<strong>on</strong> curves of<br />

rock samples, a static 5-R electromagnet with an electromagnet<br />

with a maximum magnetizing field of<br />

1088 kA/m was used.<br />

LITHOLOGY<br />

The Pokur Formati<strong>on</strong> (depth interval of 593–408 m,<br />

thickness of 185 m) is represented by complex alternati<strong>on</strong><br />

of clays, aleurolites, s<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> s<str<strong>on</strong>g>and</str<strong>on</strong>g>st<strong>on</strong>es of paleto<br />

dark-gray <str<strong>on</strong>g>and</str<strong>on</strong>g> greenish-gray color. In the lower part<br />

of the secti<strong>on</strong> s<str<strong>on</strong>g>and</str<strong>on</strong>g>st<strong>on</strong>es <str<strong>on</strong>g>and</str<strong>on</strong>g> argillites predominate<br />

with interbeds clays <str<strong>on</strong>g>and</str<strong>on</strong>g> argillites. <strong>Upper</strong> in the successi<strong>on</strong>,<br />

the clay c<strong>on</strong>tent in deposits increases. Variability<br />

in lithology of deposits is clearly seen <strong>on</strong> the<br />

well log as differentiable apparent resistivity (AR) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

sp<strong>on</strong>taneous polarizati<strong>on</strong> (SP) curves (Fig. 2).<br />

Kuznetsovo Formati<strong>on</strong> (depth interval of 408–380 m,<br />

thickness of 28 m) is represented by gray, dark- <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

greenish-gray, massive, thin-platy, silty to s<str<strong>on</strong>g>and</str<strong>on</strong>g>y clays;<br />

in the upper part of the secti<strong>on</strong>⎯gray, fine-grained,<br />

micaceous s<str<strong>on</strong>g>and</str<strong>on</strong>g>s. Clays are characterized by low (1–<br />

2.5 Ohm) AR values <str<strong>on</strong>g>and</str<strong>on</strong>g> undifferentiated SP curve.<br />

Ipatovo Formati<strong>on</strong> (depth interval of 380–343 m,<br />

thickness of 37 m) is represented by inhomogeneous<br />

interbedding of s<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> subordinate interbeds of<br />

s<str<strong>on</strong>g>and</str<strong>on</strong>g>st<strong>on</strong>es, aleurites <str<strong>on</strong>g>and</str<strong>on</strong>g> clays. Rocks vary in color<br />

from gray to dark-gray <str<strong>on</strong>g>and</str<strong>on</strong>g> greenish-gray. In additi<strong>on</strong>,<br />

inclusi<strong>on</strong>s of pyrite <str<strong>on</strong>g>and</str<strong>on</strong>g> glauc<strong>on</strong>ite, as well as plant<br />

detritus occur. S<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> s<str<strong>on</strong>g>and</str<strong>on</strong>g>st<strong>on</strong>es are fine- to<br />

coarse-grained, quartz-glauc<strong>on</strong>ite <str<strong>on</strong>g>and</str<strong>on</strong>g> feldsparquartz,<br />

with low mica c<strong>on</strong>tent, with rounded quartz<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> flint pebbles, <str<strong>on</strong>g>and</str<strong>on</strong>g> rare interbeds of gravellites.<br />

Aleurites are massive, clayey <str<strong>on</strong>g>and</str<strong>on</strong>g> s<str<strong>on</strong>g>and</str<strong>on</strong>g>y, calcareous.<br />

Clays are silty <str<strong>on</strong>g>and</str<strong>on</strong>g> s<str<strong>on</strong>g>and</str<strong>on</strong>g>y, m<strong>on</strong>tmorill<strong>on</strong>ite, opoka-<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013


Stage<br />

Formati<strong>on</strong><br />

Cenomanian–Tur<strong>on</strong>ian<br />

Albian<br />

Pokur<br />

Depth, m<br />

430<br />

450<br />

470<br />

490<br />

510<br />

530<br />

550<br />

570<br />

590<br />

Lithology<br />

PALEONTOLOGICAL AND MAGNETOSTRATIGRAPHIC DATA 51<br />

–<br />

SP<br />

+<br />

10 mV<br />

AR<br />

2.5 5.0 7.5 10.012.515.017.5<br />

AR, Ohm/m<br />

3 5 7 9 11 13 15<br />

GRL, µR/h<br />

Paleomagnetic<br />

secti<strong>on</strong><br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013<br />

N(al-st)<br />

Stage<br />

Formati<strong>on</strong><br />

S T 270<br />

Maastrichtian<br />

Gan’kino<br />

Campanian<br />

C<strong>on</strong>iacian–Sant<strong>on</strong>ian<br />

Ipatovo<br />

Middle–<strong>Upper</strong> Tur<strong>on</strong>ian<br />

Kuznetsovo<br />

Cenomanian–Tur<strong>on</strong>ian<br />

Pokur<br />

1 2 3 4 5 6 7 8 9 10 11<br />

Slavgorod ?<br />

Depth, m<br />

290<br />

310<br />

330<br />

350<br />

370<br />

390<br />

410<br />

430<br />

Lithology<br />

–<br />

SP<br />

+<br />

10 mV<br />

AR<br />

2.5 5.0 7.5 10.012.515.017.5<br />

AR, Ohm/m<br />

3 5 7 9 11 13 15<br />

GRL, µR/h<br />

Paleomagnetic<br />

secti<strong>on</strong><br />

R 2(mt)<br />

R 1(km)<br />

N(al-st)<br />

Fig. 2. Secti<strong>on</strong> of the borehole no. 8, drilled in the Russkaya Polyana District <str<strong>on</strong>g>and</str<strong>on</strong>g> its geophysical descripti<strong>on</strong>. 1⎯clays; 2⎯aleurites; 3⎯s<str<strong>on</strong>g>and</str<strong>on</strong>g>s; 4⎯s<str<strong>on</strong>g>and</str<strong>on</strong>g>st<strong>on</strong>es; 5⎯gravellites;<br />

6⎯opoka; 7⎯gap; 8⎯sites of faunistic findings; 9, 10⎯polarity: 9⎯direct, 10⎯reverse; 11⎯absence of data. Abbreviati<strong>on</strong>s: S⎯Sel<str<strong>on</strong>g>and</str<strong>on</strong>g>ian; T⎯Talitsa.


52<br />

like, with rare quartz pebbles. At the base of Formati<strong>on</strong>,<br />

a 13 m thick bench of c<strong>on</strong>glomerates lies.<br />

Slavgorod Formati<strong>on</strong> (depth interval of 343–319 m,<br />

thickness of 24 m) is composed of clays with subordinate<br />

interbeds of aleurites, aleurolites, s<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> s<str<strong>on</strong>g>and</str<strong>on</strong>g>st<strong>on</strong>es.<br />

Clays are gray to dark-gray <str<strong>on</strong>g>and</str<strong>on</strong>g> greenish-gray,<br />

dark green, silty, s<str<strong>on</strong>g>and</str<strong>on</strong>g>y, sometimes opoka-like, homogeneous,<br />

with polished surfaces. Aleurites <str<strong>on</strong>g>and</str<strong>on</strong>g> aleurolites<br />

are clayey, s<str<strong>on</strong>g>and</str<strong>on</strong>g>y, glauc<strong>on</strong>itic <str<strong>on</strong>g>and</str<strong>on</strong>g> quartz-glauc<strong>on</strong>itic,<br />

micaceous. In additi<strong>on</strong>, plant remnants, fragments<br />

of shells, <str<strong>on</strong>g>and</str<strong>on</strong>g> inclusi<strong>on</strong>s of pyrite occur.<br />

Gan’kino Formati<strong>on</strong> (depth interval of 319–273 m;<br />

thickness of 46 m) is represented by greenish-gray <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

dark gray, massive, calcareous <str<strong>on</strong>g>and</str<strong>on</strong>g> silty clays. Gray to<br />

dark gray, dark green, quartz-glauc<strong>on</strong>itic s<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

s<str<strong>on</strong>g>and</str<strong>on</strong>g>st<strong>on</strong>es are in less volume. Throughout the secti<strong>on</strong><br />

of this Formati<strong>on</strong> isolati<strong>on</strong>s of pyrite <str<strong>on</strong>g>and</str<strong>on</strong>g> rare plant<br />

detritus occur. In the lower part of the Formati<strong>on</strong> are<br />

beds with abundant fauna.<br />

PALYNOLOGICAL CHARACTERISTICS<br />

Beds with Palynological Complexes<br />

Based <strong>on</strong> changes in the compositi<strong>on</strong> of spores <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

pollen of l<str<strong>on</strong>g>and</str<strong>on</strong>g> plants, five biostrat<strong>on</strong>s of the same rank<br />

as beds with spores <str<strong>on</strong>g>and</str<strong>on</strong>g> pollen have been established.<br />

The descripti<strong>on</strong> of palynocomplexes (PC), characteristic<br />

for these biostrat<strong>on</strong>s are given below. Characteristic<br />

species are listed in Plate I.<br />

Beds with PC I (Depth interval of 590.5–500.5 m).<br />

Pokur Formati<strong>on</strong>. In some samples collected in the<br />

lower <str<strong>on</strong>g>and</str<strong>on</strong>g> upper parts of this interval (Fig. 3) extremely<br />

poor palynological spectra have been established.<br />

Am<strong>on</strong>g spores of mosses <str<strong>on</strong>g>and</str<strong>on</strong>g> ferns the next types have<br />

been found: Leiotriletes spp., Gleicheniidites spp.,<br />

Cyathidites sp., Trilobosporites sp., Stereisporites spp.,<br />

Cicatricosisporites spp., Appendicisporites sp. etc. Pollen<br />

of gymnosperms is represented by Alisporites spp.,<br />

Cedripites sp., Taxodiaceaepollenites hiatus (Pot.)<br />

Kremp, Ginkgocycadophytus sp. In additi<strong>on</strong>, pollen of<br />

angiosperms (Tricolpites sp.) occurs. In some s<str<strong>on</strong>g>and</str<strong>on</strong>g>st<strong>on</strong>e<br />

samples microphytofossils are absent.<br />

The rest of samples are characterized by significantly<br />

more diverse spore-pollen complexes. The<br />

quantitative c<strong>on</strong>tent of single groups of palynomorphs<br />

varies. The c<strong>on</strong>tent of spores of 17–87%, pollen of<br />

gymnosperms⎯12–79%, pollen of angiosperms—0–<br />

4%, microphytoplankt<strong>on</strong>⎯0–3%.<br />

In the spore compositi<strong>on</strong>, the next types are in predominance:<br />

Leiotriletes spp., Gleicheniidites spp.<br />

(G. sen<strong>on</strong>icus Ross, G. circinidites (Cook.) Dett.,<br />

G. carinatus (Bolkh.) Bolkh., G. umb<strong>on</strong>atus (Bolkh.)<br />

Bolkh., Plicifera delicata (Bolkh.) Bolkh., <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Cyathidites sp. (C. minor Coup., C. australis Coup.).<br />

Representatives of Family Schizaeaceae (Cicatricosisporites<br />

spp., Appendicisporites spp., Trilobosporites sp.)<br />

LEBEDEVA et al.<br />

are numerous <str<strong>on</strong>g>and</str<strong>on</strong>g> diverse. In additi<strong>on</strong>, there are<br />

Aequitriradites verrucosus Cook. et Dett., Stereisporites<br />

spp., Ornamentifera echinata Bolkh., Laevigatosporites<br />

ovatus Wils. et Web., Appendicisporites sp.,<br />

A. bilateralis Singh, A. matesovae (Bolkh.) Nor.,<br />

A. macrorhyzus (Mai.) B<strong>on</strong>d., A. markovae Vor., Cicatricosisporites<br />

annulatus Arch. et Gam., C. dorogensis<br />

Pot. et Gell., C. ludbrookiae Dett., Mat<strong>on</strong>isporites sp.,<br />

Biretisporites sp., Kuylisporites lunaris Cook. et Dett.,<br />

Ruffordia aralica Bolkh., Rouseisporites reticulatus<br />

Poc., R. laevigatus Poc., Lobatia involucrata (Chl<strong>on</strong>.)<br />

Chl<strong>on</strong>., Impardecispora apiverrucata (Coup.) Venk.,<br />

Kar et Raza, Lycopodiumsporites sp., Densoisporites<br />

microrugulatus Brenn., Balmeisporites glenelgensis<br />

Cook. et Dett., etc.<br />

Pollen of gymnosperms are represented by numerous<br />

poorly preserved bisaccate c<strong>on</strong>ifer pollen<br />

(C<strong>on</strong>iferales gen. indet., as well as Pinuspollenites spp.,<br />

Alisporites spp., Phyllocladidites sp., Cedripites sp.,<br />

Taxodiaceaepollenites hiatus, <str<strong>on</strong>g>and</str<strong>on</strong>g> Ginkgocycadophytus sp.).<br />

Pollen of angiosperms (Tricolpites spp. <str<strong>on</strong>g>and</str<strong>on</strong>g> Retitricolpites<br />

spp.) always occur. Other palynomorphs are<br />

characterized by occurrence of prasinophytes<br />

(Leiosphaeridia sp.), acritarchs (Michrystridium sp.),<br />

freshwater green algae species of the Family Zygnemataceae<br />

(Ovoidites, Schizosporis).<br />

According to the regi<strong>on</strong>al stratigraphic schemes for<br />

Mesozoic deposits of the West Siberian Plain (Reshenie<br />

…, 1991), a similar complex is typical of the Albian<br />

Stage. The Albian palynocomplexes are well studied<br />

throughout the territory of Western Siberia. The fundamental<br />

works were published where the characteristics<br />

of spore-pollen complexes from different regi<strong>on</strong>s<br />

of Western Siberia are given (Markova, 1971; Chl<strong>on</strong>ova,<br />

1974; Rovnina et al., 1978). However, as was<br />

noted in (Markova, 1971), Albian spore-pollen complexes<br />

are sufficiently homogeneous <str<strong>on</strong>g>and</str<strong>on</strong>g> do not differ<br />

from each other throughout the studied territory. In<br />

works (Strepetilova, 1980, 1984), <strong>on</strong> the basis of the<br />

data of study of Albian palynological complexes (PC)<br />

from samples from a large number of boreholes,<br />

drilled within the Nadym-Taz interfluve area the main<br />

features of these complexes have been revealed.<br />

According to these features, the Albian palynological<br />

complexes differ from older <str<strong>on</strong>g>and</str<strong>on</strong>g> younger complexes.<br />

In the secti<strong>on</strong> of the borehole no. 41-R (depth interval<br />

of 1583–1610 m), drilled in the Nakhodka area, the<br />

characteristic Albian palynological complex has been<br />

found with the Lower <str<strong>on</strong>g>and</str<strong>on</strong>g> Middle Albian foraminifera<br />

complex. According to (Strepetilova, 1980, 1984), the<br />

main part of the spore part of the spectrum is represented<br />

by Leiotriletes, Gleicheniaceae (typical species<br />

with exine sculpture, such as Ornamentifera echinata),<br />

species of Family Schizeaceae are not diverse, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

their c<strong>on</strong>tent does not exceed 9%.<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013


Stage/Sub-stage<br />

Formati<strong>on</strong><br />

Depth, m<br />

Albian Cenomanian–Tur<strong>on</strong>ian Middle–<strong>Upper</strong> C<strong>on</strong>iacian–<br />

Maastrichtian<br />

Tur<strong>on</strong>ian<br />

Sant<strong>on</strong>ian<br />

Campanian <strong>Upper</strong> Lower S<br />

Pokur Kuznetsovo Ipatovo Slavgorod<br />

Gan’kino T<br />

590 570 550 530 510 490 430 410 390 370 350 330 310 290 270<br />

?<br />

?<br />

Lithology<br />

PALEONTOLOGICAL AND MAGNETOSTRATIGRAPHIC DATA 53<br />

Spores of mosses <str<strong>on</strong>g>and</str<strong>on</strong>g> ferns<br />

Samples<br />

Leiotriletes spp.<br />

Cyathidites spp.<br />

Gleicheniidites spp.<br />

Stereisporites spp.<br />

Aequitriradites verrucosus<br />

Laevigatosporites ovatus<br />

Ornamentifera echinata<br />

Cicatricosisporites spp.<br />

Appendicisporites spp.<br />

Camaroz<strong>on</strong>osporites insignis<br />

Cyathidites minor<br />

Ruffordia aralica<br />

Mat<strong>on</strong>isporits sp.<br />

Trilobosporites spp.<br />

Osmundacidites spp.<br />

Rouseisporites reticulatus<br />

Kuylisporites lunaris<br />

Lobatia involucrata<br />

Impardecispora apiverrucata<br />

Foveosporites cenomanicus<br />

Foraminisporis dailyi<br />

Appendicisporites matesovae<br />

Lycopodiumsporites sp.<br />

Undulatisporites sp.<br />

Cicatricosisporites pacificus<br />

Densoisporites microrugulatus<br />

Lygodiumsporites jap<strong>on</strong>iformis<br />

Leptolepidites sp.<br />

Rouseisporites laevigatus<br />

Taurocusporites reduncus<br />

Lophotriletes babsae<br />

Klukisporites spp.<br />

C<strong>on</strong>cavisporites juriensis<br />

C<strong>on</strong>cavissimisporites punctatus<br />

Crybelosporites sp.<br />

Cicatricosisporites annulatus<br />

Appendicisporites macrorhyza<br />

Polypodiaceae<br />

Coptospora striata<br />

Velosporites triquetrus<br />

Plicifera delicata<br />

Clavifera triplex<br />

Stenoz<strong>on</strong>otriletes radiatus<br />

Reticulasporites irregularis<br />

Hemitelia mirabilis<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013<br />

Fig. 3. Distributi<strong>on</strong> of characteristic spores <str<strong>on</strong>g>and</str<strong>on</strong>g> pollen taxa of l<str<strong>on</strong>g>and</str<strong>on</strong>g> plants in the secti<strong>on</strong> of the borehole no. 8 in the Russkaya Polyana District.<br />

Symbols are the same as in Fig. 2. Abbreviati<strong>on</strong>s: S⎯Sel<str<strong>on</strong>g>and</str<strong>on</strong>g>ian, T⎯Talitsa.


54<br />

Stage/Sub-stage<br />

Formati<strong>on</strong><br />

Albian Cenomanian–Tur<strong>on</strong>ian Middle–<strong>Upper</strong><br />

C<strong>on</strong>iacian–<br />

Maastrichtian<br />

Tur<strong>on</strong>ian<br />

Sant<strong>on</strong>ian Campanian Lower <strong>Upper</strong> S<br />

Pokur Kuznetsovo Ipatovo Slavgorod<br />

Gan’kino T<br />

590 570 550 530 510 490 430 410 390 370 350 330 310 290 270<br />

?<br />

?<br />

Depth, m<br />

LEBEDEVA et al.<br />

Pollen of Pollen of angiosperms<br />

gymnosperms<br />

Samples<br />

Cedripites spp.<br />

Alisporites spp.<br />

Taxodiaceaepollenites hiatus<br />

Ginkgocycadophytus spp.<br />

Pinuspollenites spp.<br />

Phyllocladidites spp.<br />

Eucommiidites sp.<br />

Vitreisporites spp.<br />

Rugubivesiculites spp.<br />

Ephedripites costatus<br />

Podocarpidites spp.<br />

Sequoiapollenites sp.<br />

Tricolpites spp.<br />

Retitricolpites spp.<br />

Fraxinoipollenites costrictus<br />

Kuprianopollis spp.<br />

Triorites harrisii<br />

Plicapollis retusus<br />

Plicapollis serta<br />

Trudopollis spp.<br />

Triporopollenites plicoides<br />

Pseudovacuopollis sp.<br />

Vacuopollis spp.<br />

Tricerapollis minimus<br />

Tricolpites sagax<br />

Vacuopollis c<strong>on</strong>cavus<br />

Aquilapollenites spp.<br />

Myricaceae<br />

Proteacidites spp.<br />

Nyssapollenites sp.<br />

Oculopollis spp.<br />

Mancicorpus spp.<br />

Nudopollis sp.<br />

Trudopollis protrudens<br />

Beaupreadites elegansiformis<br />

Nyssapollenites puercoensis<br />

Oculopollis extensa<br />

PC II PC II PC III PC IV PC V Palynocomplexes (PC)<br />

Percentage of palynomorphs<br />

0–5%<br />

5–10%<br />

>10%<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013<br />

?<br />

Fig. 3. (C<strong>on</strong>td.)


PALEONTOLOGICAL AND MAGNETOSTRATIGRAPHIC DATA 55<br />

Osmundaceae <str<strong>on</strong>g>and</str<strong>on</strong>g> Polypodiaceae dominate. Lycopodium,<br />

Rouseisporites, Camaroz<strong>on</strong>osporites insignis<br />

are less comm<strong>on</strong>. In the pollen compositi<strong>on</strong> of gymnosperms,<br />

saccate c<strong>on</strong>ifers (Pinaceae), Ginkgoaceae,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Podocarpaceae dominate; ancient pollen of Taxodiaceae<br />

(sometimes up to 20%) also occurs. Pollen of<br />

angiosperms occurs in small amounts. Palynologists<br />

from the city of Tyumen (Russia) have studied the<br />

Albian palynological complexes from different localities<br />

in Siberia (Shirokova, 1972; Purtova et al., 1980;<br />

Strepetilova, 1989, 1994), which are characterized by<br />

an increase (compared to the Aptian palynological<br />

complexes) in the diversity of the Family Gleicheniaceae<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the comm<strong>on</strong> occurrence of Ornamentifera<br />

echinata, different species of Rouseisporites <str<strong>on</strong>g>and</str<strong>on</strong>g> Polypodiaceae,<br />

typical ribbed spores of Schizaeaceae, less<br />

numerous Kuylisporites lunaris, Cooks<strong>on</strong>ites variabilis,<br />

Klukisporites sp. <str<strong>on</strong>g>and</str<strong>on</strong>g> some other species.<br />

In the Tanopcha Formati<strong>on</strong> of Northern Siberia<br />

the Albian palynological complex (Strepetilova <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Popovicheva, 1980), similar to the PC I has been<br />

established.<br />

Similar spore-pollen complex has been established<br />

in deposits of the Khanty-Mansi Formati<strong>on</strong>, spread<br />

al<strong>on</strong>g the western margin of Western Siberia. Deposits of<br />

this Formati<strong>on</strong> have been opened by the Sogomskaya 1<br />

borehole. This PC has been dated <strong>on</strong> the basis of finding<br />

of Early Albian amm<strong>on</strong>ite (Savchenkova, 2004).<br />

Thus, a comparative analysis of Albian palynocomplexes<br />

(often dated <strong>on</strong> the basis of findings of amm<strong>on</strong>ites<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> foraminifera) c<strong>on</strong>firms the Albian age of the Pokur<br />

Formati<strong>on</strong> in the depth interval of 590.5–500.5 m<br />

(borehole no. 8).<br />

Beds with PC II (depth interval of 500.5–382.0 m).<br />

The upper part of the Pokur Formati<strong>on</strong>, Kuznetsovo<br />

Formati<strong>on</strong>. The c<strong>on</strong>tent of spores is 11–40%, gymnosperm<br />

pollen⎯14–57%, angiosperm pollen⎯2–<br />

54%, <str<strong>on</strong>g>and</str<strong>on</strong>g> microphytoplankt<strong>on</strong>⎯12–43%.<br />

In the spore part of the complex, Gleicheniidites spp.,<br />

Leiotriletes spp., <str<strong>on</strong>g>and</str<strong>on</strong>g> Cyathidites sp. dominate. In<br />

additi<strong>on</strong>, there are Todisporites minor Coup., Laevigatosporites<br />

ovatus, Stereisporites spp., Rouseisporites<br />

laevigatus, Taurocusporites reduncus (Bolkh.) Stov.,<br />

Camaroz<strong>on</strong>osporites insignis Nor., Ornamentifera echinata,<br />

Cicatricosisporites spp., Appendicisporites sp.,<br />

Foveosporites cenomanicus (Chl<strong>on</strong>.) Schvet., Aequitriradites<br />

verrucosus, Baculatisporites comaumensis<br />

(Cook.) Pot., Velosporites triquetrus (Lantz) Dett.,<br />

Foraminisporis asymmetricus (Cook. et Dett.) Dett.,<br />

Lophotrilets babsae (Bren.) Singh., Mat<strong>on</strong>isporites sp.,<br />

Polypodiaceae (fabaceous, ornamented), Plicifera delicata<br />

(Bolkh.) Bolkh., etc. (Fig. 3). Single Stenoz<strong>on</strong>otriletes<br />

radiatus Chl<strong>on</strong>., Cicatricosisporites hallei Delc.<br />

et Spr., <str<strong>on</strong>g>and</str<strong>on</strong>g> Camaroz<strong>on</strong>osporites bullatus Kr. have been<br />

noted. Compared to PC I, a number <str<strong>on</strong>g>and</str<strong>on</strong>g> variety of<br />

Schizaeaceae decreases.<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013<br />

In the pollen compositi<strong>on</strong> of gymnosperms<br />

C<strong>on</strong>iferales gen. indet, Cedripites sp., <str<strong>on</strong>g>and</str<strong>on</strong>g> Taxodiaceaepollenites<br />

hiatus dominate. In additi<strong>on</strong>, there are Pinuspollenites<br />

spp., Alisporites spp., Phyllocladidites sp.,<br />

Ginkgocycadophytus sp., Ephedripites costatus Bolch.,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Eucommiidites sp.<br />

Compared to PC I, an amount of angiosperm pollen<br />

(Tricolpnes sp., Retitrcolpites sp., Fraxinoipollenites<br />

c<strong>on</strong>strictus (Chl<strong>on</strong>.) Chl<strong>on</strong>., Menispermum tur<strong>on</strong>icum<br />

N. Mtch., Vacuopollis sp.) essentially increases (4–<br />

9%, <strong>on</strong> average).<br />

Am<strong>on</strong>g microphytofossils, the next species have<br />

been established: Chomotriletes fragilis Pos., Scatula<br />

baccata Chl<strong>on</strong>., Sangarella lenaensis (Frad.) Frad. et<br />

Pesch.<br />

According to the spore-pollen compositi<strong>on</strong>, the<br />

complex described corresp<strong>on</strong>ds the Cenomanian<br />

(PC VII (5)) <str<strong>on</strong>g>and</str<strong>on</strong>g> Tur<strong>on</strong>ian (PC VIII (3)) complexes<br />

(Reshenie …, 1991). The works, describing the sporepollen<br />

complexes of Southwestern Siberia (Chl<strong>on</strong>ova,<br />

1976) <str<strong>on</strong>g>and</str<strong>on</strong>g> the Southern Trans-Urals (Verhnemelovye …,<br />

1990) c<strong>on</strong>tains informati<strong>on</strong> about the PC of undifferentiated<br />

Cenomanian–Tur<strong>on</strong>ian interval without<br />

clear evidence to allow us to distinguish it from underlying<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> overlying complexes, except for quantitative<br />

variati<strong>on</strong>s in the c<strong>on</strong>tents of some comp<strong>on</strong>ents,<br />

mainly pollen of angiosperms.<br />

Am<strong>on</strong>g spores, Taurocusporites reduncus <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Stenoz<strong>on</strong>otriletes radiatus play the leading role; Gleicheniidites<br />

sp., Aequitriradites verrucosus, A. spinulosus,<br />

Rouseisporites reticulatus, Cicatricosisporites, Appendicisporites<br />

sp., etc. are comm<strong>on</strong>.<br />

Quantity <str<strong>on</strong>g>and</str<strong>on</strong>g> diversity of angiosperm pollen<br />

increases. In the Cenomanian–Tur<strong>on</strong>ian palynological<br />

complex of the Southeast of Western Siberia (Chulym-type<br />

complex), this group of pollen is morphologically<br />

uniform <str<strong>on</strong>g>and</str<strong>on</strong>g> represented mainly by small tricolpate<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> tricolpate-porous grains (Chl<strong>on</strong>ova, 1976).<br />

The same feature is noted for the PC II, described in<br />

the secti<strong>on</strong> of the borehole no. 8. Fraxinoipollenites is<br />

a comm<strong>on</strong> comp<strong>on</strong>ent in both complexes being compared.<br />

Due to the occurrence of Menispermum tur<strong>on</strong>icum<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Vacuopollis sp., the PC II is similar to the<br />

Cenomanian–Tur<strong>on</strong>ian complexes of <strong>Upper</strong> Tobol<br />

(Verhnemelovye …, 1990), although the latter are characterized<br />

by a much more diverse tax<strong>on</strong>omic compositi<strong>on</strong>.<br />

The appearance of the genus Vacuopollis is<br />

noted in the Tur<strong>on</strong>ian deposits of the studied regi<strong>on</strong>.<br />

The upper part of the interval of the PC II distributi<strong>on</strong><br />

in the borehole no. 8 is characterized by occurrence of<br />

Tur<strong>on</strong>ian dinocyst complex.<br />

Thus, the age of the deposits, c<strong>on</strong>taining the PC II,<br />

opened by the borehole no. 8 can be c<strong>on</strong>sidered as<br />

Cenomanian–Tur<strong>on</strong>ian. Poor spore-pollen compositi<strong>on</strong><br />

prevents separati<strong>on</strong> of the Cenomanian <str<strong>on</strong>g>and</str<strong>on</strong>g> Turo-


56<br />

nian palynocomplexes, although in more northern<br />

areas they differ quite clearly.<br />

Beds with PC III (depth interval is 372.1–343.0 m).<br />

Ipatovo Formati<strong>on</strong>.<br />

The c<strong>on</strong>tent of spores of mosses <str<strong>on</strong>g>and</str<strong>on</strong>g> ferns is 11–21%,<br />

the pollen of gymnosperms⎯18–34%, the pollen of<br />

angiosperms⎯2–56%, <str<strong>on</strong>g>and</str<strong>on</strong>g> microphytoplankt<strong>on</strong>⎯14–<br />

43%. Tax<strong>on</strong>omic compositi<strong>on</strong> is very poor. The quantity<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> diversity of spores decreases. Gleicheniidites spp.,<br />

Leiotriletes spp., Cyathidites sp., Stereisporites spp., <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Laevigatosporites ovatus are comm<strong>on</strong> comp<strong>on</strong>ents. Taurocusporites<br />

reduncus, Cicatricosisporites spp., Foveosporites<br />

cenomanicus, <str<strong>on</strong>g>and</str<strong>on</strong>g> Densoisporites sp. are less comm<strong>on</strong>.<br />

There are no essential changes in the pollen compositi<strong>on</strong><br />

of angiosperms.<br />

The diversity of angiosperm pollen essentially<br />

increases. The following species have been established:<br />

Tricolpites sp., Triorites harrisii Coup., Kuprianipollenites<br />

sp., Plicapollis retusus Tsch., P. serta Pf., Causarinidites<br />

cainozoicus Cook. et Pike, Trudopollis sp., Triporopollenites<br />

plicoides Zakl., Pseudovacuopollis sp.,<br />

Vacuopollis sp., Tricerapollis minimus Chl<strong>on</strong>. (Fig. 3).<br />

A similar compositi<strong>on</strong> of the pollen of angiosperms<br />

has been noted in the palynocomplex from the C<strong>on</strong>iacian-Sant<strong>on</strong>ian<br />

deposits of the Southern Trans-Urals<br />

(Verhnemelovye …, 1990), although it is much more<br />

diverse than the PC III. In the modern regi<strong>on</strong>al stratigraphic<br />

schemes of Western Siberia (Reshenie …, 1991),<br />

undifferentiated C<strong>on</strong>iacian–Sant<strong>on</strong>ian palynological<br />

complex (PC IX (3)), similar to III PC in the taxa compositi<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the ratio between some comp<strong>on</strong>ents is<br />

indicated for the Omsk–Chulym Regi<strong>on</strong>.<br />

However, in the PC III the pollen of angiosperm<br />

(Stemm Normapolles) is more abundant <str<strong>on</strong>g>and</str<strong>on</strong>g> diverse.<br />

According to the above data, the age of the Ipatovo<br />

Formati<strong>on</strong>, the secti<strong>on</strong> of which in the borehole no. 8<br />

is well-studied, is C<strong>on</strong>iacian–Sant<strong>on</strong>ian.<br />

Beds with PC IV (depth interval is 343.10–<br />

311.2 m). Slavgorod Formati<strong>on</strong>–Lower Part Gan’kino<br />

Formati<strong>on</strong>.<br />

The c<strong>on</strong>tent of spores is 19–33%, gymnosperm<br />

pollen⎯16–34%, angiosperm pollen⎯15–48%, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

microphytoplankt<strong>on</strong>⎯7–35%. The compositi<strong>on</strong> of<br />

spores <str<strong>on</strong>g>and</str<strong>on</strong>g> pollen of gymnosperms again becomes<br />

more diverse, although there no significant changes<br />

compared with the palynological complex PC III.<br />

Quantitatively, an amount of angiosperm pollen<br />

increases. In additi<strong>on</strong>, an amount of Trudopollis sp.<br />

(6–8%, <strong>on</strong> average) increases.<br />

The pollen of betuloid-myricoid-type always<br />

occurs. This is characteristic of the Campanian<br />

palynological complexes. Species such as Triorites<br />

harrisii, Kuprianipollenites sp., Plicapollis serta, Aquilapollenites<br />

sp. are comm<strong>on</strong>. Proteacidites sp., Nyssapollenites<br />

sp., Oculopollis sp., Mancicorpus sp.,<br />

Nudopollis sp. <str<strong>on</strong>g>and</str<strong>on</strong>g> some others appear.<br />

LEBEDEVA et al.<br />

In general, the palynological complex PC IV corresp<strong>on</strong>ds<br />

the Campanian palynocomplex (PC X (3))<br />

(Reshenie …, 1991). Characteristic features of the<br />

PC IV are an occurrence of the Normapolles Group in<br />

the compositi<strong>on</strong> of subdominants, the absence of such<br />

important taxa as Chl<strong>on</strong>ovaia sibirica (Chl<strong>on</strong>.) Elsik,<br />

Orbiculapollis globosus Chl<strong>on</strong>., abundance of microphytoplankt<strong>on</strong><br />

compared to an occurrence of single<br />

species in the PC X (3). It is probably due to the fact<br />

that in the regi<strong>on</strong>al stratigraphic schemes of Western<br />

Siberia, <strong>on</strong>ly data for the Chulym Regi<strong>on</strong> are given, as<br />

there were no data for the Omsk Regi<strong>on</strong> in time of<br />

compilati<strong>on</strong> of these schemes.<br />

The Campanian palynoflora of <strong>Upper</strong> Tobol, as<br />

well as the PC IV are characterized by an increase in an<br />

amount <str<strong>on</strong>g>and</str<strong>on</strong>g> diversity of pollen of genera Trudopollis,<br />

an appearance of Nudopollis, as well as the pollen of<br />

Aquilapollenites <str<strong>on</strong>g>and</str<strong>on</strong>g> Mancicorpus, characteristic of the<br />

Siberian-Canadian paleofloristic regi<strong>on</strong> (Verhnemelovye<br />

.., 1990). Thus, the age of the PC IV can be<br />

c<strong>on</strong>sidered as Campanian.<br />

Beds with PC V (depth interval of 309.9–274.2 m).<br />

Gan’kino Formati<strong>on</strong>.<br />

The c<strong>on</strong>tent of spores is 2–16%, gymnosperm<br />

pollen⎯12–25%, angiosperm pollen⎯4–22%, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

microphytoplankt<strong>on</strong>⎯46–74%.<br />

The amount <str<strong>on</strong>g>and</str<strong>on</strong>g> variety of spores <str<strong>on</strong>g>and</str<strong>on</strong>g> pollen of<br />

l<str<strong>on</strong>g>and</str<strong>on</strong>g> plants decreases significantly compared to the<br />

palynological complex PC IV, due to increasing an<br />

amount of marine microphytoplankt<strong>on</strong>.<br />

Am<strong>on</strong>g spores, the following species, Gleicheniidites<br />

spp., Leiotriletes spp., Cyathidites sp., Laevigatosporites<br />

ovatus, Stereisporites spp. are comm<strong>on</strong>;<br />

Ornamentifera echinata, Osmundacidites sp., Cicatricosisporites<br />

spp., Camaroz<strong>on</strong>osporites insignis, Polypodiaceae<br />

(bean-shaped, ornamented), Lycopodiumsporites<br />

sp., Leptolepidites sp., <str<strong>on</strong>g>and</str<strong>on</strong>g> Lophotriletes sp.<br />

occur as single grains.<br />

The pollen of gymnosperms is represented by<br />

C<strong>on</strong>iferales gen. indet., Cedripites sp., Taxodiaceaepollenites<br />

hiatus, Pinuspollenites spp., Alisporites spp.,<br />

Rugubivesiculites sp., Podocarpidites sp., Phyllocladidites<br />

sp., Ginkgocycadophytus sp., <str<strong>on</strong>g>and</str<strong>on</strong>g> Ephedripites costatus.<br />

In the pollen of angiosperms, species such as Tricolpites<br />

sp., Retitricolpites sp., Kuprianipollis sp., Triorites<br />

harrisii, Plicapollis serta, Trudopollis sp., Aquilapollenites<br />

sp., Myricaceae, Oculopollis sp., Proteacidites<br />

sp. have been identified.<br />

The palynocomplex PC V is poor in the compositi<strong>on</strong><br />

of spores <str<strong>on</strong>g>and</str<strong>on</strong>g> pollen due to their low quantities. However,<br />

the PC V corresp<strong>on</strong>ds in general to the Maastrichtian<br />

palynocomplex (PC XI (3)) (Reshenie …, 1991).<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013


PALEONTOLOGICAL AND MAGNETOSTRATIGRAPHIC DATA 57<br />

Beds with Dinocysts<br />

At a depth of 412 m, marine microphytoplankt<strong>on</strong><br />

appears, sometimes reaching 74% of the total palynomorphs.<br />

Cysts of dinoflagellates (dinocysts) in this<br />

microphytoplankt<strong>on</strong> play the most important stratigraphic<br />

role. Changes in their compositi<strong>on</strong> allow us to<br />

distinguish five biostrat<strong>on</strong>s at the rank of beds with<br />

characteristic complexes of dinocysts (DC) (Fig. 4).<br />

Throughout the borehole secti<strong>on</strong> the following taxa<br />

occur: Spiniferites ramosus (Ehr.) Mant., Kallosphaeridium<br />

? ringnesiorum (Man. et Cook.) Helby,<br />

Palaeotetradinium silicorum Defl., Rhiptocorys veligera<br />

(Defl.) Lej.-Carp. et Sarj., Trithyrodinium suspectum<br />

(Man. et Cook.) Dav., Glyphanodinium facetum<br />

Drugg, Trig<strong>on</strong>opyxidia ginella (Cook. et Eis.) Dow. et<br />

Sarj., Chl<strong>on</strong>oviella agapica Leb., Eisenackia sp., Oligosphaeridium<br />

complex (White) Dav. et Will., Leberidocysta<br />

chlamydata (Cook. et Eis.) Stov. et Evitt,<br />

Group Circulodinium/Cycl<strong>on</strong>ephelium, Microdinium<br />

ornatum Cook. et Eis.<br />

Typical <str<strong>on</strong>g>and</str<strong>on</strong>g> index taxa are given in Plates II–IV.<br />

Marine microphytoplankt<strong>on</strong> appears in the upper<br />

part of the Pokur Formati<strong>on</strong>. In additi<strong>on</strong>, prasinophytes<br />

(Leiosphaeridia sp., 9%) occur. The species<br />

Geiselodinium cenomanicum Leb., an index species<br />

species of the biostrat<strong>on</strong>, identified earlier in the Ust’-<br />

Yenisei Regi<strong>on</strong> in <strong>Upper</strong> Cenomanian deposits (Lebedeva,<br />

2006) has been established. This allows us to suggest<br />

that there are <strong>Upper</strong> Cenomanian deposits in<br />

borehole no. 8, but there are no reliable data to support<br />

this assumpti<strong>on</strong>.<br />

Beds with Heterosphaeridium difficile–Chatangiella<br />

spectabilis (depth interval of 407.0–380.0 m). Kuznetsovo<br />

Formati<strong>on</strong>.<br />

In these beds, species such as Surculosphaeridium<br />

l<strong>on</strong>gifurcatum (Firt.) Dav. et al., Heterosphaeridium<br />

difficile (Man. et Cook.) loan., Dorocysta sp. A, Alterbidinium<br />

sp., Microdinium sp., Palaeohystrichophora<br />

infusorioides Defl., Od<strong>on</strong>tochitina operculata (Wetz.)<br />

Defl. et Cook., Chatangiella sp. are comm<strong>on</strong>. In the<br />

s<str<strong>on</strong>g>and</str<strong>on</strong>g>y part of the secti<strong>on</strong> (from a depth of 399.7 m),<br />

Chatangiella spectabilis (Alb.) Lent. et Will., C. b<strong>on</strong>darenkoi<br />

(Vozzh.) Lent. et Will., C. tripartita (Cook. et<br />

Eis.) Lent. et Will. appear.<br />

Eurydinium sp., E. sax<strong>on</strong>iense Mar. et Bat., Isabelidinium<br />

magnum (Dav.) Stov. et Evitt, Od<strong>on</strong>tochitina<br />

costata Alb., Laciniadinium sp., Leberidocysta sp.,<br />

Chatangiella serratula (Cook. et Eis.) Lent. et Will. <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

some others occur rarely.<br />

A dinocyst complex similar to the above-described<br />

<strong>on</strong>e has been established in boreholes of 1002 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2031<br />

drilled within the Var’egan Megabar (Aleks<str<strong>on</strong>g>and</str<strong>on</strong>g>rova<br />

et al., 2010), together with Early Tur<strong>on</strong>ian foraminifera<br />

species. This complex is characterized by the<br />

absence of the genus Chatangiella <str<strong>on</strong>g>and</str<strong>on</strong>g> more diverse<br />

compositi<strong>on</strong> of chorate dinocysts. The presence of these<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013<br />

taxa as Heterosphaeridium difficile, Chatangiella sp.,<br />

C. spectabilis, Surculosphaeridium l<strong>on</strong>gifurcatum, Dorocysta<br />

sp. is characteristic of beds with Chatangiella<br />

spectabilis–Heterosphaeridium difficile, established<br />

in the <strong>Upper</strong>–Middle Tur<strong>on</strong>ian stratigraphic interval<br />

of the Western Siberia, dated based <strong>on</strong> the inoceramid<br />

fauna (Zakharov et al., 2002; Lebedeva, 2006).<br />

Beds with DC II (depth interval of 372.1–343.0 m).<br />

Ipatovo Formati<strong>on</strong>.<br />

The palynological complex is extremely poor. In<br />

c<strong>on</strong>trast to the above-described complex, the number<br />

of members of the genus Chatangiella increases. In<br />

additi<strong>on</strong>, Alterbidinium sp., Palaeotetradinium silicorum,<br />

Microdinium sp., Glyphanodinium facetum,<br />

Od<strong>on</strong>tochitina costata, <str<strong>on</strong>g>and</str<strong>on</strong>g> O. operculata occur. Taxa<br />

such as Eurydinium sp., E. sax<strong>on</strong>iense, Heterosphaeridium<br />

difficile, Surculosphaeridium l<strong>on</strong>gifurcatum, Dorocysta<br />

sp. A. disappear. Compositi<strong>on</strong> of dinocysts does<br />

not allow us to determine the age of the country rocks.<br />

According to the positi<strong>on</strong> of representative complexes<br />

in the secti<strong>on</strong> in overlying <str<strong>on</strong>g>and</str<strong>on</strong>g> underlying sediments<br />

<strong>on</strong>e can <strong>on</strong>ly suggest a wide age range (C<strong>on</strong>iacian–<br />

Sant<strong>on</strong>ian).<br />

Beds with Chatangiella manumii–Chatangiella vnigrii<br />

(depth interval of 339.9–311.2 m). Slavgorod Formati<strong>on</strong>-Lower<br />

part of Gan’kino Formati<strong>on</strong>, the compositi<strong>on</strong><br />

of dinocysts increases. Chl<strong>on</strong>oviella agapica,<br />

Chatangiella sp., C. serratula, C. spectabilis, C. b<strong>on</strong>darenkoi,<br />

Alterbidinium sp., Microdinium sp., Eisenackia<br />

sp., Laciniadinium sp., L. arcticum (Man. et<br />

Cook.) Lent. et Will., Fromea chytra (Drugg) Stov. et<br />

Evitt, F. ? laevigata (Drugg) Stov. et Evitt. <str<strong>on</strong>g>and</str<strong>on</strong>g> some<br />

others (Fig. 4).<br />

In additi<strong>on</strong>, Chatangiella manumii (Vozzh.) Lent.<br />

et Will., C. vnigrii (Vozzh.) Lent. et Will., C. ditissima<br />

(Mclnt.) Lent. et Will., Amphigymnium mitratum<br />

(Vozzh.) Lent. et Will., Laciniadinium rhombiforme<br />

(Vozzh.) Lent. et Will., Phoberocysta sp., Dinogymnium<br />

sp., D. sibiricum (Vozzh.) Lent. et Will., D. digitus<br />

(Defl.) Evitt et al., Microdinium kustanaicum Vozzh.<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> some others appear.<br />

The dinocyst complex established is similar in the<br />

tax<strong>on</strong>omic compositi<strong>on</strong> to the Campanian complexes<br />

of the Polar Fore-Ural Regi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the Ust’-Yenisei<br />

Regi<strong>on</strong> (Lebedeva, 2005, 2006, 2007), but differs in<br />

the absence of large ribbed forms of Chatangiella (Chatangiella<br />

niiga Vozzh., Chatangiella spinata Leb.),<br />

fewer members of Laciniadinium, Alterbidinium, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

more abundant <str<strong>on</strong>g>and</str<strong>on</strong>g> diverse members of Dinogymnium,<br />

that seems to be associated with the provincialism of<br />

dinoflagellates.<br />

In the Kushmurun secti<strong>on</strong> (Northern Kazakhstan)<br />

beds with Chatangiella manumii have been established<br />

(Vasilieva, 2005; Vasilieva <str<strong>on</strong>g>and</str<strong>on</strong>g> Levina, 2007). A comm<strong>on</strong><br />

feature of comparable complexes is the presence of such<br />

taxa as Chatangiella manumii, Ch. vnigrii, Ch. ditissima,


58<br />

<strong>Upper</strong> Cretaceous Divisi<strong>on</strong><br />

Cenomanian– Middle–<br />

Maastrichtian<br />

<strong>Upper</strong> Tur<strong>on</strong>ian C<strong>on</strong>iacian–Sant<strong>on</strong>ian Campanian<br />

Tur<strong>on</strong>ian<br />

Lower <strong>Upper</strong><br />

Stage/Substage<br />

Pokur Kuznetsovo Ipatovo Slavgorod<br />

Gan’kino<br />

Formati<strong>on</strong><br />

Depth, m<br />

Pal.<br />

S T<br />

?<br />

?<br />

270<br />

290<br />

310<br />

330<br />

350<br />

370<br />

390<br />

410<br />

430<br />

Lithology<br />

LEBEDEVA et al.<br />

Samples<br />

Geiselodinium cenomanicum<br />

Spiniferites ramosus<br />

Surculosphaeridium l<strong>on</strong>gifurcatum<br />

Kallosphaeridium (?) ringnesiorum<br />

Heterosphaeridium difficile<br />

Rhiptocorys veligera<br />

Chlamydophorella nyei<br />

Microdinium sp.<br />

Trithyrodinium suspectum<br />

Glyphanodinium facetum<br />

Chl<strong>on</strong>oviella agapica<br />

Dorocysta sp. A<br />

Eisenackia sp.<br />

Palaeohystrihophora infusorioides<br />

Od<strong>on</strong>tochitina operculata<br />

Chatangiella sp.<br />

Oligosphaeridium complex<br />

Isabelidinium magnum<br />

Leberidocysta chlamydata<br />

Cycl<strong>on</strong>ephelium/Circulodinium<br />

Chatangiella spectabilis<br />

Leberidocysta sp.<br />

Microdinium ornatum<br />

Laciniadinium sp.<br />

Chatangiella tripartita<br />

Alterbidinium sp.<br />

Eurydinium sp.<br />

Alterbidinium acutulum<br />

Chatangiella b<strong>on</strong>darenkoi<br />

Od<strong>on</strong>tochitina costata<br />

Fromea fragilis<br />

Wallodinium luna<br />

Chatangiella serratula<br />

Palaeotetradinium silicorum<br />

Trithyrodinium sp. A<br />

Eurydinium sax<strong>on</strong>iense<br />

Laciniadinium arcticum<br />

Trig<strong>on</strong>opyxidia ginella<br />

Alterbidinium minus<br />

Spinidinium sp.<br />

?Canningia macroreticulata<br />

Exochosphaeridium bifidum<br />

Fig. 4. Distributi<strong>on</strong> of dinocysts in the secti<strong>on</strong> of the borehole no. 8 in the Russkaya Polyana District.<br />

Symbols are the same as in Fig. 2. Abbreviati<strong>on</strong>s: Pal⎯Paleogene, S⎯Sel<str<strong>on</strong>g>and</str<strong>on</strong>g>ian, T⎯Talitsa.<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013


<strong>Upper</strong> Cretaceous Divisi<strong>on</strong><br />

Cenomanian– Middle–<strong>Upper</strong><br />

Maastrichtian<br />

Tur<strong>on</strong>ian C<strong>on</strong>iacian–Sant<strong>on</strong>ian Campanian<br />

Tur<strong>on</strong>ian<br />

Lower <strong>Upper</strong><br />

Stage/Substage<br />

Pokur Kuznetsovo Ipatovo Slavgorod<br />

Gan’kino<br />

Formati<strong>on</strong><br />

Depth, m<br />

Pal.<br />

S T<br />

?<br />

?<br />

270<br />

290<br />

310<br />

330<br />

350<br />

370<br />

390<br />

410<br />

430<br />

PALEONTOLOGICAL AND MAGNETOSTRATIGRAPHIC DATA 59<br />

Samples<br />

Circulodinium distinctum<br />

Cor<strong>on</strong>ifera oceanica<br />

Oligosphaerodium pulcherrimum<br />

Amphigymnium mitritum<br />

Dinogymnium kazachstanicum<br />

Fromea chytra<br />

Fromea laevigata<br />

Chatangiella vnigrii<br />

Dinogymnium sp.<br />

Chatangiella manumii<br />

Fromea amphora<br />

Pterodinium sp.<br />

Fibrocysta sp.<br />

Chatangiella ditissima<br />

Dinogymnium sibiricum<br />

Microdinium kustanaicum<br />

Dinogymnium digitum<br />

Dinogymnium rigaudiae<br />

Spinidinium uncinatum<br />

Laciniadinium rhombiforme<br />

Alisogymnium euclaense<br />

Chatangiella verrucosa<br />

Phellodinium sp.<br />

Isabelidinium spp.<br />

Isabelidinium microarmum<br />

Fromea sp. A<br />

Achomosphaera ramulifera<br />

Dinogymnium alberti<br />

Cerodinium diebellii<br />

Cladopyxidium sp.<br />

Prolixosphaeridium c<strong>on</strong>ulum<br />

Membranosphaera maastrichtica<br />

Trithyrodinium quingueangulare<br />

Eat<strong>on</strong>icysta hapala<br />

Hystrichosphaeropsis quasicribrata<br />

Isabelidinium cooksaniae<br />

Isabelidinium bujaki<br />

Pterodinium cingulatum<br />

Spinidinium lanterna<br />

Hystrichosphaeridium tubiferum<br />

Rhiptocorys sp.<br />

Chatangiella chetiensis<br />

Isabelidinium belfastense<br />

Isabelidinium rectangulatum<br />

Dinogymnium curvatum<br />

Cribroperidinium cooks<strong>on</strong>iae<br />

Triblastula utinensis<br />

Leberidocysta verrucata<br />

Chatangiella granulifera<br />

Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>rea sp.<br />

Alterbidinium varium<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013<br />

Fig. 4. (C<strong>on</strong>td.)


60<br />

<strong>Upper</strong> Cretaceous Divisi<strong>on</strong><br />

Cenomanian– Middle–<strong>Upper</strong><br />

Maastrichtian<br />

Tur<strong>on</strong>ian C<strong>on</strong>iacian–Sant<strong>on</strong>ian Campanian<br />

Tur<strong>on</strong>ian<br />

Lower <strong>Upper</strong><br />

Stage/Substage<br />

Pokur Kuznetsovo Ipatovo Slavgorod<br />

Gan’kino<br />

Formati<strong>on</strong><br />

Depth, m<br />

Pal.<br />

S T<br />

?<br />

?<br />

270<br />

290<br />

310<br />

330<br />

350<br />

370<br />

390<br />

410<br />

430<br />

Samples<br />

LEBEDEVA et al.<br />

Tanyosphaeridium isocalamus<br />

Florentinia ferox<br />

Sp<strong>on</strong>godinium delitiense<br />

Cladopyxidium reticulatum<br />

Saml<str<strong>on</strong>g>and</str<strong>on</strong>g>ia mayii<br />

Alterbidinium acuminatum<br />

Palaeoperidinium cretaceum<br />

Phanerodinium squamosum<br />

Cladopyxidium verrucosum<br />

Cladopyxidium saeptum<br />

Exochosphaeridium phragmites<br />

Trichodinium castanea<br />

Microdinium bens<strong>on</strong>ii<br />

Pulchrasphaera minuscula<br />

Gillina chymenophora<br />

Fibradinium anettorpense<br />

Phanerodinium s<strong>on</strong>ciniae<br />

Laciniadinium firmum<br />

Elytrocysta brevis<br />

Sen<strong>on</strong>iasphaera rotundata<br />

Glaphyrocysta ordinata<br />

Glaphyrocysta sp.<br />

Dapsilidinium laminaspinosum<br />

Palaeocystodinium golzowense<br />

Chatangiella tanamaensis<br />

Litosphaeridium sp.<br />

Cerodinium speciosum<br />

Triblastula wils<strong>on</strong>ii<br />

Areoligera volata<br />

Areoligera sen<strong>on</strong>ensis<br />

Glaphyrocysta perforata<br />

Membranilarnacia liradiscoides<br />

Chatangiella biapertura<br />

Areoligera cor<strong>on</strong>ata<br />

Palynodinium sp. A/P. helveticum<br />

Lejeunecysta sp.<br />

Dinogymnium dentaculatum<br />

Cerodinium leptodermum<br />

Trithyrodinium evittii<br />

Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>rea galeata<br />

Phelodinium kozlowskii<br />

Hystrichostrogyl<strong>on</strong> membraniphorum<br />

Hystrichosphaerina schindewolfii<br />

Florentinia buspina<br />

Calaiosphaeridium asymmetricum<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013<br />

Beds with dinocysts<br />

Palynodinium<br />

sp. A<br />

Cerodinium diebelii Cerodinium<br />

speciosum<br />

Chatangiella manumii–<br />

Chatangiella vnigrii<br />

DC II<br />

Heterosphaeridium difficile–<br />

Chatangiella spectabilis<br />

Fig. 4. (C<strong>on</strong>td.)


PALEONTOLOGICAL AND MAGNETOSTRATIGRAPHIC DATA 61<br />

Spinidinium uncinatum, Alterbidinium acutulum,<br />

Amphigymnium mitratum, Laciniadinium rhombiforme,<br />

L. arcticum, Microdinium kustanaicum, Dinogymnium spp.<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> some others. Based <strong>on</strong> the presence of the amm<strong>on</strong>ite<br />

Placenticeras meeki (Boehm.), the age of the beds<br />

has been defined as Late Campanian. Since the compositi<strong>on</strong><br />

of dinocysts in the secti<strong>on</strong> of borehole no. 8 is<br />

not as rich as in the Kushmurun secti<strong>on</strong>. Moreover,<br />

am<strong>on</strong>g dinocysts there are no taxa typical of <strong>Upper</strong><br />

Campanian deposits. Thus, we can assume a wide age<br />

range (Campanian) for beds characterized by dinocyst<br />

complexes with Chatangiella manumii–Chatangiella<br />

vnigrii.<br />

In general, the combinati<strong>on</strong> of taxa such as Chatangiella<br />

manumii, S. vnigrii, S. ditissima, Spinidinium<br />

uncinatum, Laciniadinium arcticum, Microdinium sp.,<br />

Eisenackia sp., Dinogymnium spp. is typical of Campanian<br />

dinocysts complexes in North America <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

northwestern Europe. Detailed analysis of this combinati<strong>on</strong><br />

is given in the following works (Lebedeva, 2005;<br />

Vasilieva <str<strong>on</strong>g>and</str<strong>on</strong>g> Levina, 2007).<br />

Beds with Cerodinium diebelii (depth interval of<br />

309.9–288.4 m) Gan’kino Formati<strong>on</strong>. The complex<br />

dinocysts becomes significantly richer. An amount of<br />

chorate forms, such as Spiniferites ramosus, Oligosphaeridium<br />

complex, Kiokansium sp., Pterodinium sp.,<br />

Achomosphaera ramulifera (Defl.) Evitt, Cor<strong>on</strong>ifera<br />

oceanica Cook. et Eis., Hystrichosphaeridium tubiferum<br />

(Her.) Defl., Reciculacysta sp., Prolixosphaeridium<br />

sp. increases. Cladopyxidium spp. <str<strong>on</strong>g>and</str<strong>on</strong>g> Fromea<br />

chytra are numerous. Such taxa as Chatangiella sp.,<br />

C. spectabilis, Alterbidinium sp., A. minus (Alb.) Lent.<br />

et Will., Microdinium sp., Eisenackia sp., Rhiptocorys<br />

veligera, Laciniadinium sp., L. arcticum, L. rhombiforme,<br />

Dinogymnium sp., Membranosphaera maastrichtica<br />

Samoil., Trithyrodinium quingueangulare<br />

Marheinecke, Microdinium kustanaicum are comm<strong>on</strong><br />

in the complex. Palaeocystodinium golzowense Alb.,<br />

Chatangiella ditissima, Isabelidinium rectangulatum<br />

Leb., Alterbidinium varium Kirsch <str<strong>on</strong>g>and</str<strong>on</strong>g> some others<br />

occur sporadically. Many new taxa such as Cerodinium<br />

diebelii (Alb.) Lent. et Will., Isabelidinium sp.,<br />

I. microarmum (Mclnt.) Lent. et Will., I. belfastense<br />

(Cook. et Eis.) Lent. et Will, I. cooks<strong>on</strong>iae (Alb.) Lent.<br />

et Will., I. bujaki Marh., Dinogymnium albertii Clarke<br />

et Verd., D. l<strong>on</strong>gicorne (Vozzh.) Harl., Microdinium<br />

reticulatum Vozzh., Triblastula utinensis Wetz., Hystrichosphaeropsis<br />

quasicribrata (O. Wetzel) Gocht <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

some others appear. Chatangiella manumii, S. vnigrii,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Od<strong>on</strong>tochitina operculata (Wetz.) Defl. et Cook.<br />

disappear.<br />

The work (Ioannides, 1986) describes the Maastrichtian<br />

complex from the Eureka Sound Formati<strong>on</strong><br />

<strong>on</strong> the Bellot <str<strong>on</strong>g>and</str<strong>on</strong>g> Dev<strong>on</strong> isl<str<strong>on</strong>g>and</str<strong>on</strong>g>s (Arctic Archipelago),<br />

where the index species are Cerodinium diebelii, Palaeocystodinium<br />

golzowense, Spinidinium uncinatum, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Membranosphaera maastrichtica. In beds with Cerod-<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013<br />

inium diebelii all these species occur. It is difficult to<br />

compare the identified DC complex with that from the<br />

Tunhout secti<strong>on</strong> of Maastrichtian deposits in Belgium,<br />

dated <strong>on</strong> the basis of findings of belemnites due<br />

to much greater diversity of dinocysts in the latter <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

a small number of comm<strong>on</strong> taxa (Slimani, 2001).<br />

However, the joint occurrence of Cerodinium diebelii,<br />

Palaeocystodinium golzowense, Cladopyxidium spp.,<br />

Alterbidinium varium, Trithyrodinium quingueangulare<br />

in the Alterbidinium varium subz<strong>on</strong>e of the Tunhout<br />

secti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> in beds with Cerodinium diebelii indicates<br />

that these beds are of Early Maastrichtian age. The<br />

palynological complex from beds with Cerodinium<br />

diebelii is also similar in compositi<strong>on</strong> of dinocysts to<br />

the Early Maastrichtian Bavarian complex of the<br />

Alterbidinium varium subz<strong>on</strong>e of the Cerodinium diebelii<br />

z<strong>on</strong>e (Kirsch, 1991). This gives grounds to refer the<br />

depth interval of 309.9–288.4 m in the borehole no. 8<br />

to the Lower Maastrichtian, which is c<strong>on</strong>sistent with<br />

the faunistic data.<br />

Beds with Cerodinium speciosum (depth interval of<br />

288.4–278 m). Gan’kino Formati<strong>on</strong>.<br />

The palynological complex of these beds include<br />

numerous Cladopyxidium spp., Fromea chytra, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Chl<strong>on</strong>oviella agapica. In additi<strong>on</strong>, there are Chatangiella<br />

sp., Leberidocysta chlamydata, Triblastula utinensis,<br />

Exochospharidium bifidum (Clarke et Verd.) Clarke et al.,<br />

Cerodinium diebelii, Hystrichosphaeridium tubiferum,<br />

Cor<strong>on</strong>ifera oceanica, Microdinium kustanaicum, Areoligera<br />

spp., Glaphyrocysta spp., Spiniferites spp., etc.<br />

A number of chatangielles decreases; members of<br />

the genera Isabelidinium <str<strong>on</strong>g>and</str<strong>on</strong>g> Dinogymnium practically<br />

disappear; a number of new taxa appear: Chatangiella<br />

biapertura (Mclnt.) Lent. et Will., Triblastula wils<strong>on</strong>ii<br />

Slim., Areoligera cor<strong>on</strong>ata (Wetz.) Lej.-Carp., A . volata<br />

Drugg, Pulchrasphaera minuscula Sch. et al.,<br />

Cerodinium speciosum (Alb.) Lent. et Will., Sp<strong>on</strong>godinium<br />

delitiense (Ehr.) Defl., <str<strong>on</strong>g>and</str<strong>on</strong>g> Palynodinium helveticum<br />

Kirsch. There are single Florentinia buspina (Dav.<br />

et Verd.) Dux., F. ferox (Defl.) Dux., Lejeunecysta sp.<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> some others.<br />

The Late Maastrichtian complex of dinocysts,<br />

established by O.N. Vasilieva (Vasilieva <str<strong>on</strong>g>and</str<strong>on</strong>g> Levina,<br />

2007) in the upper part of Zhuravlevskaya Formati<strong>on</strong>,<br />

the Kushmurun secti<strong>on</strong> (Northern Kazakhstan) differs<br />

significantly from that described complex from<br />

beds with Cerodinium speciosum opened in the borehole<br />

no. 8. Similar features of these complexes are<br />

abundance of members of genera Fromea <str<strong>on</strong>g>and</str<strong>on</strong>g> Microdinium,<br />

the presence of Cerodinium diebelii <str<strong>on</strong>g>and</str<strong>on</strong>g> Triblastula<br />

utinensis. However, if in the secti<strong>on</strong> of the<br />

borehole no. 8 the index tax<strong>on</strong> is Cerodinium speciosum,<br />

then in the Kushmurun secti<strong>on</strong>–Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>rea<br />

galeata (Lej.-Carp.) Lent. et Will. Perhaps, in the<br />

Kushmurun secti<strong>on</strong> younger deposits have Maastrichtian<br />

age.


62<br />

1<br />

2<br />

3<br />

11 12 13<br />

17<br />

18<br />

24 25 26<br />

29<br />

41 42<br />

50 51<br />

52<br />

53<br />

54<br />

4<br />

30<br />

19<br />

5<br />

LEBEDEVA et al.<br />

6 7<br />

20<br />

31<br />

14<br />

8 9<br />

Plate I<br />

10<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013<br />

21<br />

22<br />

27 28<br />

35 36 37 38<br />

43<br />

55<br />

44<br />

45<br />

56<br />

34<br />

23<br />

33<br />

46<br />

48<br />

15<br />

16<br />

57<br />

39<br />

40<br />

47<br />

32<br />

49


PALEONTOLOGICAL AND MAGNETOSTRATIGRAPHIC DATA 63<br />

Drilled within the Omsk Depressi<strong>on</strong>, the borehole<br />

no. 9 opened deposits of the Gan’kino Formati<strong>on</strong><br />

in a depth interval of 527.0–521.0 m. In these<br />

deposits, the complex with dinocysts of Cerodinium<br />

diebelii of Middle Late Maastrichtian has been established<br />

(Benyamovskii et al., 2002, Akhmetiev et al.,<br />

2004a, 2004b; Aleks<str<strong>on</strong>g>and</str<strong>on</strong>g>rova et al., 2004). The data <strong>on</strong><br />

nannoplankt<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> foraminifera from this depth<br />

interval also indicate Late Maastrichtian age. The complex<br />

of dinocysts, established in the borehole no. 9 is<br />

most similar to the complex from beds with Cerodinium<br />

speciosum from the borehole no. 8. Comm<strong>on</strong><br />

species of both complexes being compared are Cerodinium<br />

diebelii, C. speciosum, Rhiptocorys veligera,<br />

Microdinium kustanaicum, Laciniadinium firmum,<br />

Membranosphaera maastrichtica, Chatangiella granulifera,<br />

Isabelidinium sp., Exochospharidium bifidum,<br />

Areoligera sp., Chl<strong>on</strong>oviella sp., Hystrichosphaeridium<br />

tubiferum, <str<strong>on</strong>g>and</str<strong>on</strong>g> Glaphyrocysta ordinata.<br />

The appearance of Cerodinium speciosum, as<br />

assumed in a number of publicati<strong>on</strong>s, marks the<br />

boundary between the Lower <str<strong>on</strong>g>and</str<strong>on</strong>g> Middle Maastrichtian<br />

(Kirsch, 1991; Slimani, 2001). This complex of<br />

dinocysts is similar to that described from the Middle<br />

Maastrichtian deposits of <strong>Upper</strong> Bavaria (Kirsch,<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013<br />

1991). At a depth of 288 m, Eat<strong>on</strong>icysta hapala has<br />

been noted for the last time. In the secti<strong>on</strong>s of the<br />

North Sea, Eat<strong>on</strong>icysta hapala disappears at the top of<br />

the belemnites z<strong>on</strong>e Belemnella lanceolata (Schiøler<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Wils<strong>on</strong>, 1993).<br />

In the upper part of beds with Cerodinium speciosum,<br />

the last appearance of Alterbidinium acutulum is<br />

noted. This is closer to the Lower–<strong>Upper</strong> Maastrichtian<br />

boundary (somewhat below the top of the z<strong>on</strong>e<br />

Belemnella occidentalis). Given the above, as well as<br />

the data <strong>on</strong> other groups of fauna, the age of the beds<br />

is c<strong>on</strong>sidered as transitive from Early to Late Maastrichtian.<br />

Beds with Falynodinium sp. A (depth interval of<br />

278–270.5 m). Gan’kino Formati<strong>on</strong>.<br />

In the upper part of the Gan’kino Formati<strong>on</strong>, beds<br />

with Palynodinium sp. A have been established <strong>on</strong> the<br />

basis of the first appearance of the species.<br />

In the complex of dinocysts a number of Areoligera<br />

spp. <str<strong>on</strong>g>and</str<strong>on</strong>g> Glaphyrocysta spp. significantly decreases,<br />

Cladopyxidium reticulatum (Defl.) Marh., C. verrucosum<br />

Marh., C. saeptum (Morgen.) Stov. et Evitt, Membranosphaera<br />

maastrichtica, Fromea chytra, Phanerodinium<br />

spp. often occur, <str<strong>on</strong>g>and</str<strong>on</strong>g> most of species from<br />

underlying beds occur as well.<br />

Plate I. Palynomorphs from <strong>Upper</strong> Cretaceous deposits opened by the borehole no. 8 in the Russkaya Polyana District. Magnificati<strong>on</strong><br />

of all samples is ×550.<br />

(1) Stereisporites pocockii Burger, depth int.: 283.2–283.3 m, prep. (preparati<strong>on</strong>) 2446.2; (2) S. antiquasporites (Wils<strong>on</strong> et Webster)<br />

Dettman, depth int.: 540.0–540.1 m, prep. 2508.3; (3) Clavifera sp., depth int.: 316.1–316.2 m, prep. 2463.2; (4) Gleicheniidites<br />

carinatus (Bolkhovitina) Bolkhovitina, depth int.: 538.0–538.1 m, prep. 2507.2; (5) G. umb<strong>on</strong>atus (Bolkhovitina) Bolkhovitina,<br />

depth int.: 540.0–540.1 m, prep. 2508.3; (6) G. sen<strong>on</strong>icus Ross, the same depth int., prep. 2508.1; (7) Plicifera delicata (Bolkhovitina)<br />

Bolkhovitina, depth int.: 546.0–546.1 m, prep. 2511.2; (8) Ornamentifera echinata (Bolkhovitina) Bolkhovitina, depth<br />

int.: 538.0–538.1 m, prep. 2507.3; (9) O. granulata (Bolkhovitina) Bolkhovitina, depth int.: 568.0–568.1 m, prep. 2522.1;<br />

(10) Cyathidites minor Couper, depth int.: 546.0–546.1 m, prep. 2511.1; (11) Trilobosporites purverulentus (Vervitskaya) B<strong>on</strong>darenko,<br />

the same depth int., prep. 2511.2; (12) Impardecispora apiverrucata (Couper) Venkatachala, Kar et Raza, the same depth<br />

int., prep. 2511.1; (13) Trilobosporites trioreticulosus Cooks<strong>on</strong> et Dettmann, depth int.: 538.0–538.1 m, prep. 2507.1; (14) C<strong>on</strong>cavissimisporites<br />

punctatus (Delcourt et Sprum<strong>on</strong>t) Brenner, depth int.: 546.0–546.1 m, prep. 2511.1; (15) Cyathidites australis<br />

Couper, the same depth int., prep. 2511.2; (16) Baculatisporites comaumensis (Cooks<strong>on</strong>) Pot<strong>on</strong>ie, depth int.: 568.0–568.1 m,<br />

prep. 2522.3; (17) Velosporites sp., depth int.: 427.0–427.1 m, prep. 2485.1; (18) Densoisporites microrugulatus Brenner, depth<br />

int.: 546.0–546.1 m, prep. 2511.1; (19) Rouseisporites reticulates Pocock, the same depth int., prep. 2511.4; (20) R. triangularis<br />

Pocock, the same depth int., prep.2511.3; (21) Laevigatosporites ovatus Wils<strong>on</strong> et Webster, the same depth int., prep. 2511.2;<br />

(22) Polypodiaceae (fabaceous, ornamented), depth int.: 292.9–293.0 m, prep. 2451.1; (23) Crybelosporites punctatus Dettmann,<br />

depth int.: 546.0–546.1 m, prep. 2511.4; (24) Cicatricosisporites striatus Rouse, the same depth int., prep. 2511.1; (25) C. mtchedlishviliae<br />

Griazeva, depth int.: 540.0–540.1 m, prep. 2508.1; (26) Appendicisporites macrorhyzus (Maljavkina) B<strong>on</strong>darenko, depth int.:<br />

568.0–568.1 m, prep. 2522.2; (27) A. markovae Vor<strong>on</strong>ova, depth int.: 546.0–546.1 m, prep. 2511.2; (28) Spores gen. indet., depth<br />

int.: 526.0–526.1 m, prep. 2501.2; (29) Alisporites gr<str<strong>on</strong>g>and</str<strong>on</strong>g>is (Cooks<strong>on</strong>) Dettmann, depth int.: 540.0–540.1 m, prep. 2508.4;<br />

(30) A. similis (Balme) Dettmann, the same depth int., (31) Cedripites parvisaccatus (Sauer) Chl<strong>on</strong>ova, the same depth int.,<br />

(32) Ginkgocycadophytus sp., depth int.: 308.9–309.0 m, prep. 2460.1; (33) Gnetaceapollenites sp., depth int.: 290.3–290.4 m,<br />

prep. 2449.1; (34) Podocarpidites multesimus (Bochovitina) Pocock, depth int.: 500.0–500.1 m, prep. 2488.1; (35) Pinuspollenites<br />

minimus (Couper) Kemp, depth int.: 526.0–526.1, prep. 2501.2; (36) Taxodiaceaepollenites hiatus (Pot<strong>on</strong>ie) Kremp, depth<br />

int.: 316.1–316.2 m, prep. 2463.2; (37) Fraxiniopollenites sp., depth int.: 538.0–538.1 m, prep. 2507.2; (38) Nyssapollenites sp.,<br />

depth int.: 343.0–343.1 m, prep. 2473.1; (39) Menispermum tur<strong>on</strong>icum N. Mtchedlishvili, depth int.: 546.0–546.1 m,<br />

prep. 2511.1; (40) Tricolporopollenites sp., depth int.: 318.4–318.5 m, prep. 2464.3; (41) Proteacidites tumidiporis Samoilovich,<br />

the same depth int., prep. 2464.1; (42) Triprojectus dispositus N. Mtchedlishvili, depth int.: 323.5–323.5 m, prep. 2466.1;<br />

(43) Aquilapollenites unicus Chl<strong>on</strong>ova, depth int.: 299.3–299.4 m, prep. 2455.3; (44) A. quadrilobus Rouse, depth int.: 302.8–<br />

302.9 m, prep. 2457.2; (45) Mancicorpus anchoriforme N. Mtchedlishvili, the same depth int., prep. 2457.1; (46) Triorites harrisii<br />

Couper, depth int.: 290.3–290.4 m, prep. 2449.1; (47) Kuprianipollis sp., depth int., 326.9–327.0 m, prep. 2467.2; (48) Pseudovacuopollis<br />

sp., depth int.: 301.0–301.1 m, prep. 2456.1; (49) Tricolpites sp., depth int.: 304.6–304.7 m, prep. 2458.1;<br />

(50) Cupaniedites sp., the same depth int., prep. 2458.3; (51) Trudopollis protrudens Pflug, depth int.: 291.3–291.4 m,<br />

prep. 2450.1; (52) Trudopollis sp., depth int.: 316.1–316.2 m, prep. 2463.1; (53) Ocullopollis sp., depth int.: 318.4–318.5 m,<br />

prep. 2464.2; (54) Form 1 indet., depth int.: 498.0–498.1 m, prep. 2487.1; (55) Form 2 indet., depth int.: 538.0–538.1 m,<br />

prep. 2507.1; (56) Schizosporis sp., depth int.: 540.0–540.1 m, prep. 2508.1; (57) Ovoidites sp., depth int.: 546.0–546.1 m, prep. 2511.4.


64<br />

In additi<strong>on</strong> to the index-species, the next <strong>on</strong>es<br />

appear in the complex: Cerodinium leptodermum<br />

(Vozz.) Lent. et Will., Phelodinium kozlowskii (Córka)<br />

Lind., Trithyrodinium evittii Drugg, <str<strong>on</strong>g>and</str<strong>on</strong>g> Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>rea<br />

galeata (Lej.-Carp.) Lent. et Will.<br />

Palynodinium sp. A (Plate IV) is probably the vicariate<br />

of Palynodinium grallator Gocht, which is the<br />

index-species of the same-name <strong>Upper</strong> Maastrichtian<br />

z<strong>on</strong>e of the stratotype area (Schiøler et al., 1997; etc.).<br />

This allows us to correlate this z<strong>on</strong>e with beds with<br />

Palynodinium sp. A. In the established complex the<br />

index species of the upper subz<strong>on</strong>e of the z<strong>on</strong>e of<br />

Palynodinium grallator–Thalassiphora pelagica (Eis.)<br />

Eis. et Gocht is absent.<br />

The presence of this subz<strong>on</strong>e in the stratotype area<br />

(Hansen, 1979; Schiøler <str<strong>on</strong>g>and</str<strong>on</strong>g> Wils<strong>on</strong>, 1993; Brinkhuis<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Schiøler, 1996; Schiøler et al., 1997; Herngreen<br />

et al., 1998) is correlated with the upper part of the<br />

Belemnitella kazimirovensis belemnite z<strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

CC26 nannoplankt<strong>on</strong> z<strong>on</strong>e. The above data, as well as<br />

those <strong>on</strong> nannoplankt<strong>on</strong> allow us to c<strong>on</strong>sider beds<br />

with Palynodinium sp. A as Early Late Maastrichtian.<br />

Deposits of the Talitsa Formati<strong>on</strong> (Sel<str<strong>on</strong>g>and</str<strong>on</strong>g>ian)<br />

(Iakovleva et al., 2011) erosively overlie those of the<br />

Gan’kino Formati<strong>on</strong>.<br />

CALCAREOUS NANNOPLANKTON<br />

Calcareous nannoplankt<strong>on</strong> has been found in large<br />

quantities. It is characterized by a rich diversity of species<br />

(64, in total) (Fig. 5). Preservati<strong>on</strong> in the lower<br />

part of the studied interval is average,—mainly good.<br />

In general, the complex of nannofossils is typical of<br />

Maastrichtian deposits <str<strong>on</strong>g>and</str<strong>on</strong>g> is characterized by a large<br />

number of Arkhangelskiella cymbiformis, A. specillata,<br />

Cribrosphaerella ehrenbergii, <str<strong>on</strong>g>and</str<strong>on</strong>g> the presence of Eiffellithus<br />

parallelus, Lithraphidites praequadratus <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Zeugrhabdotus bicrescenticus (Plate V). In the complex<br />

LEBEDEVA et al.<br />

there are large Kamptnerius magnificus (Plate VI),<br />

Microrhabdulus undosus <str<strong>on</strong>g>and</str<strong>on</strong>g> M. helicoides. In additi<strong>on</strong>,<br />

from a depth of 294.7 m Rhagodiscus angustus, R. reniformis<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Rhombolithi<strong>on</strong> rhombicum are comm<strong>on</strong>.<br />

The lower part of the Gan’kino Formati<strong>on</strong> (depth<br />

interval of 304–286.4 m) refers to Lower Maastrichtian<br />

z<strong>on</strong>es CC24 (Perch-Nielsen, 1985) or UC18 (Burnett,<br />

1998) due to the presence of Reinhardtites levis. The disappearance<br />

of this species marks the upper boundary of<br />

z<strong>on</strong>es. The upper part of the Gan’kino Formati<strong>on</strong> (a<br />

depth interval of 284–274 m) refers to the subz<strong>on</strong>e<br />

CC25a (Perch-Nielsen, 1985) or the z<strong>on</strong>e UC19 (Burnett,<br />

1998) of <strong>Upper</strong> Maastrichtian. The lower boundaries<br />

of these z<strong>on</strong>es have been established by the disappearance<br />

of R. levis (a depth of 284 m). In the terminal<br />

part of the Gan’kino Formati<strong>on</strong> (a depth interval of<br />

273.5–270 m) nannoplankt<strong>on</strong> has been noted.<br />

FINDINGS OF FAUNA<br />

Macrofauna has been found <strong>on</strong>ly in deposits of the<br />

Gan’kino Formati<strong>on</strong>. In a depth interval of 285.8–<br />

286.3 m, a complex of bivalves characteristic of the<br />

Maastrichtian has been established. Am<strong>on</strong>g them are<br />

Chlamys (Aequipecten) pseudopulchellus Glasunova<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Nuculoma cf. variabilis (Sowerby).<br />

In a depth interval of 288.0–288.5 m the next fauna<br />

species have been recognised: amm<strong>on</strong>ites Hoploscaphites<br />

cf. c<strong>on</strong>strictus (Sowerby), <str<strong>on</strong>g>and</str<strong>on</strong>g> Baculites cf. knorrianus<br />

Desmarest (4 units); bivalves Spyridoceramus ravni sp.<br />

juv. Dobrov, Entolium anlaevis Glasunova, Oxytoma cf.<br />

uralica Glasunova, Chlamys (Aequipecten) cf. pseudopulchellus<br />

Glasunova; <str<strong>on</strong>g>and</str<strong>on</strong>g> gastropods Turritella sp. ind.<br />

The amm<strong>on</strong>ite species found are characteristic of<br />

Lower Maastrichtian. The finding of Hoploscaphites<br />

cf. c<strong>on</strong>strictus (Sowerby) indicates <strong>Upper</strong> Lower<br />

Maastrichtian age of deposits, <str<strong>on</strong>g>and</str<strong>on</strong>g> the level of the<br />

Acanthoscaphites tridens z<strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> the Belemnella<br />

Plate II. Dinocysts from <strong>Upper</strong> Cretaceous deposits opened by the borehole no. 8 in the Russkaya Polyana District. Magnificati<strong>on</strong><br />

in figs. 17–18 is ×900. In other figures ×550.<br />

(1) Heterosphaeridium difficile (Manum et Cooks<strong>on</strong>) Ioannides, depth int.: 402.0–402.1 m, prep. 2480.2; (2) Chatangiella tripartita<br />

(Cooks<strong>on</strong> et Eisenack) Lentin et Williams, depth int.: 283.2–283.3 m, prep. 2446.2; (3) Chatangiella granulifera (Manum)<br />

Lentin et Williams, the same depth int., prep. 2446.1; (4) Surculosphaeridium l<strong>on</strong>gifurcatum (Firti<strong>on</strong>) Davey et al., depth int.:<br />

402.0–402.1 m, prep. 2480.2; (5) Chatangiella b<strong>on</strong>darenkoi (Vozzhennikova) Lentin et Williams, depth int.: 316.1–316.2 m,<br />

prep. 2463.2; (6) Chatangiella spectabilis (Alberti) Lentin et Williams, depth int.: 294.3–294.4 m, prep. 2452.2; (7) Isabelidinium<br />

cooks<strong>on</strong>iae (Alberti) Lentin <str<strong>on</strong>g>and</str<strong>on</strong>g> Williams, depth int.: 288.4–288.5 m, prep. 2448.1; (8) Isabelidinium rectangulatum Lebedeva,<br />

depth int.: 302.8–302.9 m, prep. 2457.2; (9) Chatangiella ditissima (McIntyre) Lentin et Williams, depth int.: 326.9–327.0 m,<br />

prep. 2467.2; (10) Chatangiella manumii (Vozzhennikova) Lentin et Williams, depth int.: 316.1–316.2 m, prep. 2463.3;<br />

(11) Palaeoperidinium pyrophorum (Ehrenberg) Sarjeant, depth int.: 302.8–302,9 m, prep. 2457.3; (12, 13) Trithyrodinium<br />

quingueangulare Marheinecke: 12⎯depth int.: 288.4-288.5 m, prep. 2448.1, 13–depth int.: 278.0–278.1 m, prep. 2444.3;<br />

(14) Leberidocysta chlamydata (Cooks<strong>on</strong> et Eisenack) Stover et Evitt, depth int.: 283.2–283.3 m, prep. 2446.4; (15) Fromea fragilis<br />

(Cooks<strong>on</strong> et Eisenack) Stover et Davey, depth int.: 297.4–297.5 m, prep. 2454.1; (16) Fromea ? laevigata (Drugg) Stover et<br />

Evitt, depth int.: 308.9–309.0 m, prep. 2460.2; (17, 18) Fromea chytra (Drugg) Stover et Evitt, depth int.: 304.6–304.7 m,<br />

prep. 2458.2; (19) Hystrichosphaeridium tubiferum (Ehrenberg) Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re, depth int.: 288.4–288.5 m, prep. 2448.1; (20) Dingymnium<br />

digitus (Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re) Evitt et al., depth int.: 318.4–318.5 m, prep. 2464.1; (21) Alterbidinium acutulum (Wils<strong>on</strong>) Lentin et Williams,<br />

depth int.: 304.6–304.7 m, prep. 2458.2; (22) Xeniko<strong>on</strong> sp., depth int.: 297.4–297.5 m, prep. 2454.1; (23) Glaphyrocysta sp.,<br />

depth int.: 283.2–283.3 m, prep. 2446.3; (24) Paralecaniella indentata (Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re et Cooks<strong>on</strong>) Cooks<strong>on</strong> et Eisenack, depth int.:<br />

316.1–316.2 m, prep. 2463.1; (25) Pterospermella australiensis Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re et Cooks<strong>on</strong>, depth int.: 291.3–291.4 m, prep. 2450.1.<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013


5<br />

1<br />

10<br />

15<br />

PALEONTOLOGICAL AND MAGNETOSTRATIGRAPHIC DATA 65<br />

16<br />

6<br />

11<br />

17<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013<br />

2<br />

7<br />

21 22 23 24 25<br />

12<br />

18<br />

3<br />

8<br />

19<br />

13<br />

9<br />

4<br />

14<br />

20<br />

Plate II


66<br />

9<br />

1<br />

15<br />

10<br />

2<br />

5<br />

LEBEDEVA et al.<br />

16 17 18<br />

6<br />

3<br />

11<br />

Plate III<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013<br />

4<br />

8<br />

7<br />

12<br />

13<br />

19<br />

20<br />

14


PALEONTOLOGICAL AND MAGNETOSTRATIGRAPHIC DATA 67<br />

sumensis subz<strong>on</strong>e (Olfer’ev <str<strong>on</strong>g>and</str<strong>on</strong>g> Alekseev, 2003). The<br />

complex of bivalves c<strong>on</strong>tains species, typical of Maastrichtian<br />

(Glazunova, 1960). Findings of gastropods<br />

do not c<strong>on</strong>tradict this c<strong>on</strong>clusi<strong>on</strong>.<br />

MAGNETOSTRATIGRAPHIC SECTION<br />

A detailed descripti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> analysis of paleomagnetic<br />

data obtained for <strong>Upper</strong> Cretaceous deposits in<br />

the borehole no. 8 are given in (Gnibidenko et al.,<br />

2012). This paper presents a generalized magnetostratigraphic<br />

secti<strong>on</strong> for these deposits.<br />

Let us briefly recall that, in general, Cretaceous<br />

deposits in the secti<strong>on</strong> of the borehole no. 8 are<br />

referred to the class of weakly magnetic rocks <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

heterogeneous in their magnetic properties. The<br />

magnetic susceptibility (χ) varies in the range of 4.7–<br />

135.7 × 10 –5 SI units (11.7–22.4 × 10 –5 SI units for<br />

Formati<strong>on</strong>, <strong>on</strong> average). The value of the natural<br />

remanent magnetizati<strong>on</strong> (Jn) varies from unit fracti<strong>on</strong>s<br />

to 33.5 mA/m (0.48–5.37 mA/m for Formati<strong>on</strong>, <strong>on</strong><br />

average). The Koenigsberger ratio (Q) varies from 0.01<br />

to 4.12. Deposits of the Pokur Formati<strong>on</strong> are characterized<br />

by higher values of χ, Jn, <str<strong>on</strong>g>and</str<strong>on</strong>g> Q in a depth interval<br />

of 495–482 m. Major magnetic minerals are magnetite,<br />

hematite <str<strong>on</strong>g>and</str<strong>on</strong>g> ir<strong>on</strong> hydroxides.<br />

The magnetostratigraphic secti<strong>on</strong> was plotted <strong>on</strong><br />

the basis of the primary comp<strong>on</strong>ent or characteristic<br />

remanent magnetizati<strong>on</strong> (ChRM), measured according<br />

to the results of step thermodemagnetizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

demagnetizati<strong>on</strong> with an alternating magnetic field.<br />

According to the data of thermodemagnetizati<strong>on</strong><br />

(step of 25–50–100°С), most Carb<strong>on</strong>aceous deposits<br />

are characterized by low- <str<strong>on</strong>g>and</str<strong>on</strong>g> high-temperature magnetizati<strong>on</strong><br />

comp<strong>on</strong>ents. As a rule, the first comp<strong>on</strong>ent<br />

is recorded to the temperature values of 100–180–<br />

280°С, the sec<strong>on</strong>d <strong>on</strong>e preserves to 550–600°C <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

above.<br />

Results of stepwise demagnetizati<strong>on</strong> with an alternating<br />

magnetic field (step of 5–10 mT) have dem<strong>on</strong>strated<br />

the presence of <strong>on</strong>e or two magnetizati<strong>on</strong> comp<strong>on</strong>ents:<br />

unstable, detected in small alternating fields<br />

up to 12–20 mT, <str<strong>on</strong>g>and</str<strong>on</strong>g> very stable, detected in fields<br />

from 20 to 80 mT.<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013<br />

Some rock samples are very stable to alternating<br />

magnetic field, when, in the fields of 100–110 mT<br />

<strong>on</strong>ly 10% of the natural remanent magnetizati<strong>on</strong> was<br />

removed, <str<strong>on</strong>g>and</str<strong>on</strong>g> the magnetizati<strong>on</strong> directi<strong>on</strong> remains<br />

unchanged.<br />

The selecti<strong>on</strong> of the characteristic comp<strong>on</strong>ent has<br />

been performed using the Zijderveld’s diagrams<br />

(Zijderveld, 1967), Kirschvink’s algorithms (Kirschvink,<br />

1980) <str<strong>on</strong>g>and</str<strong>on</strong>g> Enkin’s programs (Enkin, 1994). All<br />

the samples studied, represented by clays, aleurites,<br />

aleurolites, s<str<strong>on</strong>g>and</str<strong>on</strong>g>st<strong>on</strong>es <str<strong>on</strong>g>and</str<strong>on</strong>g> s<str<strong>on</strong>g>and</str<strong>on</strong>g>s have oriented magnetizati<strong>on</strong>,<br />

which indicates the primacy of the natural<br />

remanent magnetizati<strong>on</strong>.<br />

The nature of oriented magnetizati<strong>on</strong> of these<br />

rocks is also c<strong>on</strong>firmed by low values of the Koenigsberger<br />

ratio (hundredths <str<strong>on</strong>g>and</str<strong>on</strong>g> tenths of unit. In a depth<br />

interval of 495–482 m aleurolites of the Pokur Formati<strong>on</strong><br />

have orientated chemical magnetizati<strong>on</strong>, as evidenced<br />

by the Q ratio, varying from 1.5 to 4.12.<br />

In additi<strong>on</strong>, the compiled magnetostratigraphic<br />

secti<strong>on</strong> corresp<strong>on</strong>ds the criteri<strong>on</strong> of external c<strong>on</strong>vergence,<br />

which is the most important factor indicating<br />

the primacy of the natural remanent magnetizati<strong>on</strong>.<br />

Thus, the paleomagnetic z<strong>on</strong>ing identified is well c<strong>on</strong>sistent<br />

with magnetostratigraphic data obtained for the<br />

coeval deposits of other regi<strong>on</strong>s, such as Tuarkyr, Caucasus,<br />

Kopet-Dag, the Volga Regi<strong>on</strong> (Guzhikov et al.,<br />

2007).<br />

The paleomagnetic secti<strong>on</strong> has been compiled <strong>on</strong><br />

the basis of the characteristic magnetizati<strong>on</strong> comp<strong>on</strong>ent,<br />

detected as a result of magnetic cleaning. This<br />

secti<strong>on</strong> is c<strong>on</strong>trolled by the pale<strong>on</strong>tological data <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

divided into three distinct magnetic z<strong>on</strong>es (from bottom<br />

to top): normal polarity <str<strong>on</strong>g>and</str<strong>on</strong>g> two reverse polarity<br />

(Fig. 2). The Pokur Formati<strong>on</strong> (thickness of 185 m,<br />

palynological complexes of PC I <str<strong>on</strong>g>and</str<strong>on</strong>g> PC II (Albian-<br />

Tur<strong>on</strong>ian)) has normal polarity in general. On the<br />

background of this polarity are two thin horiz<strong>on</strong>s with<br />

reverse magnetizati<strong>on</strong> in the lower (545–543 m) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

middle (468–466 m), parts of the secti<strong>on</strong> of the Pokur<br />

Formati<strong>on</strong>. According to the age dating of deposits,<br />

using the available palynological data, the first of these<br />

R-horiz<strong>on</strong>s corresp<strong>on</strong>ds to the Albian Stage, the sec<strong>on</strong>d-to<br />

the Cenomanian.<br />

Plate III. Dinocysts from <strong>Upper</strong> Cretaceous deposits opened by the borehole no. 8 in the Russkaya Polyana District. Magnificati<strong>on</strong><br />

in figs. 7, 8 is ×900. In other figures ×550.<br />

(1) Cerodinium diebelii (Alberti) Lentin et Williams, depth int.: 297.4–297.5 m, prep. 2454.2; (2) Cerodinium speciosum (Alberti)<br />

Lentin et Williams, depth int.: 283.2–283.3 m, prep. 2446.1; (3, 4) Triblastula utinensis Wetzel, depth int.: 274.2–274.3 m,<br />

prep. 2442.1; (5) Cerodinium albertii (Corradini) Lentin et Williams, depth int.: 283.2–283.3 m, prep. 2446.3; (6) Reciculacysta sp.,<br />

the same depth int., prep. 2446.1; (7, 8) Cladopyxidium reticulatum (Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re) Marheinecke, depth int.: 304.6–304.7 m,<br />

prep. 2458.1; (9) Palaeocystodinium golzowense Alberti, depth int.: 274.2–274.3 m, prep. 2442.1; (10, 11) Areoligera cor<strong>on</strong>ata<br />

(Wetzel) Lejeune-Carpentier, depth int.: 283.2–283.3 m, prep. 2446.1; (12) Rhiptocorys veligera (Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re) Lejeune-Carpentier<br />

et Sarjeant, depth int.: 302.8–302.9 m, prep. 2457.1; (13, 14) Microdinium carpentieriae Slimani, depth int.: 290.3–290.4 m,<br />

prep. 2449.1; (15, 16) Pulchrasphaera minuscula Schiøler et al., depth int.: 273.5 m, prep. 8/273.5; (17) Palynodinium sp. A, depth<br />

int.: 276.8–276.9 m, prep. 2443.1; (18) Palynodinium helveticum Kirsch, depth int.: 274.2–274.3 m, prep. 2442.1;<br />

(19, 20) Microdinium kustanaicum Vozzhennikova, depth int.: 276.8–276.9 m, prep. 2443.1.


68<br />

Nannoplankt<strong>on</strong><br />

z<strong>on</strong>es<br />

Preservati<strong>on</strong><br />

Depth of sampling, m<br />

Lithology<br />

Depth, m<br />

Formati<strong>on</strong><br />

Substage<br />

Stage<br />

Perch-Nielsen, 1985<br />

Burnett, 1998<br />

Reinhardtites levis Prins & Sissingh<br />

Microrhabdulus belgicus Hay & Towe<br />

Zeugrhabdotus bicrescenticus (Stover) Burnett<br />

Staurolithites imbricatus (Gartner) Burnett<br />

Eiffellithus turriseiffelii (Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re) Reinhardt<br />

Prediscosphaera stoveril(Perch-Nielsen) Shafik & Stradner<br />

Vekshinella crux (Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re & Pert) Risatti<br />

Microrhabdulus attenuatus Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re<br />

Ahmuellerella octoradiata (Górka) Reinhardt<br />

Biscutum c<strong>on</strong>stans (Gorka) Black<br />

Microrhabdulus decoratus Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re<br />

M. undosus Perch-Nielsen<br />

M. helicoides Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re<br />

Micula decussata Vekshina<br />

Arkhangelskiella cymbiformis Vekshina<br />

Watznaueria fossacincta (Black) Bown & Cooper<br />

Cribrosphaerella ehrenbergii (Arkhangelsky) Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re<br />

Prediscosphaera gr<str<strong>on</strong>g>and</str<strong>on</strong>g>is Perch-Nielsen<br />

Eiffellithus parallelus Perch-Nielsen<br />

Prediscosphaera cretacea (Arkhangelsky) Gartner<br />

Arkhangelskiella specillata Vekshina<br />

Kamptnerius magnificus Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re<br />

Prediscosphaera columnata (Stover) Perch-Nielsen<br />

Micula c<strong>on</strong>cava (Stradner) Verbeek<br />

Zeugrhabdotus spiralis (Bramlette & Martini) Burnett<br />

Watznaueria barnesae (Black) Perch-Nielsen<br />

Prediscosphaera spinosa (Bramlette & Martini) Gartner<br />

Manivitella pemmatoidea (Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re) Thierstein<br />

Helicolithus trabeculatus (Gorka) Verbeek<br />

Arkhangelskiella c<strong>on</strong>fusa Burnett<br />

Cretarhabdus c<strong>on</strong>icus Bramlette & Martini<br />

Lithraphidites carniolensis Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re<br />

Chiastozygus litterarius (Gorka) Manivit<br />

Zeugrhabdotus diplogrammus (Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re) Burnett<br />

Watznaueria biporta Bukry<br />

Cretarhabdus crenulatus Bramlette & Martini<br />

Tranolithus manifestus Stover<br />

Ceratolithoides aculeus (Stradner) Prins & Sissingh<br />

Tetrapogorhabdus decorus (Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re) Wind & Wise<br />

Prediscosphaera arkhangelskyi (Reinhardt) Perch-Nielsen<br />

Eiffellithus gorkae Reinhardt<br />

Thoracosphaera operculata Bramlette & Martini<br />

Scapholithus fossiiis Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re<br />

Staurolithites mielnicensis (Gorka) Perch-Nielsen<br />

Lithraphidites praequadratus Roth<br />

Manivitella solida Stover<br />

Ahmuellerella regularis (Gorka) Reinhardt & Gorka<br />

Braarudosphera bigelowii (Gran & Braarud) Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re<br />

Markalius inversus (Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re) Bramlette &Martini<br />

Biscutum ellipticum (Gorka) Grün<br />

Rhombolithi<strong>on</strong> rhombicum (Stradner & Adamiker) Black<br />

Rhagodiscus angustus (Stradner) Reinhardt<br />

Biscutum magnum Wind & Wise<br />

Rhagodiscus reniformis Perch-Nielsen<br />

Loxolithus armilla (Black) Noel<br />

Gartnerago obliquum Stradner<br />

Acutturis scotus (Risatti) Wind & Wise<br />

Retacapsa angustiforata Black<br />

Placozygus fibuliformis (Reinhardt) Hoffmann<br />

Ceratolithoides sesquipedalis Burnett<br />

Zeugrhabdotus sissiphys (Gartner) Crux<br />

Zeugrhabdotus sigmoides (Bramlette & Martini) Bown & Young<br />

Tranolithus gabalus Stover<br />

Lucianorhabdus cayeuxii Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re<br />

270<br />

270.4<br />

272.3<br />

272.8<br />

273.5<br />

274<br />

275.5<br />

276.5<br />

278<br />

269<br />

271<br />

273<br />

The Kuznetsovo <str<strong>on</strong>g>and</str<strong>on</strong>g> Ipatovo Formati<strong>on</strong>s, as well as<br />

the base of the Slavgorod Formati<strong>on</strong> (palynological complexes<br />

PC II <str<strong>on</strong>g>and</str<strong>on</strong>g> PC III <str<strong>on</strong>g>and</str<strong>on</strong>g> the complex of dinocysts in<br />

beds with Heterosphaeridium difficile–Chatangiella<br />

T<br />

S<br />

An absence of nannoplankt<strong>on</strong><br />

G<br />

LEBEDEVA et al.<br />

275<br />

G<br />

M<br />

277<br />

CC25a<br />

UC19<br />

279<br />

281<br />

281<br />

G<br />

G<br />

283<br />

284<br />

283<br />

285<br />

286.4<br />

287<br />

spectabilis, as well as Tur<strong>on</strong>ian <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>iacian-Sant<strong>on</strong>ian<br />

complex of dinocysts), also have normal polarity.<br />

On the background of this polarity are three horiz<strong>on</strong>s<br />

with reverse magnetizati<strong>on</strong> in the lower, middle<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013<br />

288<br />

289<br />

Gan’kino<br />

Maastrichtian<br />

290<br />

292<br />

292.5<br />

293.1<br />

294.7<br />

291<br />

293<br />

СС24<br />

UC18<br />

295<br />

abundant<br />

many<br />

comm<strong>on</strong><br />

little<br />

rarely<br />

singly<br />

good<br />

mediocre<br />

297<br />

297<br />

Lower <strong>Upper</strong><br />

Fig. 5. Distributi<strong>on</strong> of calcacerous nannoplankt<strong>on</strong> in the secti<strong>on</strong> of the borehole no. 8 in the Russkaya Polyana District.<br />

Symbols are the same as in Fig. 2. Abbreviati<strong>on</strong>s: S⎯Sel<str<strong>on</strong>g>and</str<strong>on</strong>g>ian, T⎯Talitsa.<br />

G<br />

G<br />

M<br />

G<br />

G<br />

G<br />

M<br />

299<br />

299<br />

M<br />

301<br />

301<br />

G<br />

M<br />

M<br />

M<br />

303<br />

304<br />

303<br />

305


1<br />

3<br />

PALEONTOLOGICAL AND MAGNETOSTRATIGRAPHIC DATA 69<br />

5 6<br />

Plate IV. Dinocysts from <strong>Upper</strong> Cretaceous deposits opened by the borehole no. 8 in the Russkaya Polyana District. Magnificati<strong>on</strong><br />

of all samples is ×500.<br />

(1–6) Palynodinium sp. A: (1, 2) depth int.: 273.5 m, prep. 8/273.5; (3–6) depth int.: 272.3 m, prep. 8/272.3.<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013<br />

2<br />

4<br />

4<br />

Plate IV


70<br />

LEBEDEVA et al.<br />

1 2 3 4 5<br />

6 7 8 9 10<br />

11 12 13 14 15<br />

16 17 18 19 20<br />

21 22 23 24 25<br />

26 27 28 29 30<br />

31 32 33 34 35<br />

Plate V<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013


PALEONTOLOGICAL AND MAGNETOSTRATIGRAPHIC DATA 71<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> upper parts of this z<strong>on</strong>e. The lower horiz<strong>on</strong> (thickness<br />

of 14 m, a depth interval of 406–392 m) with<br />

reverse magnetizati<strong>on</strong> is c<strong>on</strong>fined to the middle part of<br />

the Kuznetsovo Formati<strong>on</strong>. Two other horiz<strong>on</strong>s with<br />

reverse magnetizati<strong>on</strong> are located in the lower (a depth<br />

interval of 372–368 m) <str<strong>on</strong>g>and</str<strong>on</strong>g> upper (a depth interval of<br />

347–345 m) parts of the Ipatovo Formati<strong>on</strong>.<br />

According to the age dating of deposits <strong>on</strong> the basis<br />

of complexes of dinocysts <str<strong>on</strong>g>and</str<strong>on</strong>g> the palynological data,<br />

R-horiz<strong>on</strong> in the secti<strong>on</strong> of the Kuznetsovo Formati<strong>on</strong><br />

corresp<strong>on</strong>ds to the Middle–<strong>Upper</strong> Tur<strong>on</strong>ian; two<br />

overlying R-horiz<strong>on</strong>s⎯to C<strong>on</strong>iacian–Sant<strong>on</strong>ian.<br />

In the Gan’kino <str<strong>on</strong>g>and</str<strong>on</strong>g> Slavgorod Formati<strong>on</strong>s<br />

(palynological complexes PC IV <str<strong>on</strong>g>and</str<strong>on</strong>g> PC V; Campanian–Maastrichtian<br />

complexes of dinocysts) two<br />

magnetoz<strong>on</strong>es with reverse polarity are noted up to<br />

Paleogene, except for a 3-m horiz<strong>on</strong> with reverse magnetizati<strong>on</strong><br />

at the base of the Slavgorod Formati<strong>on</strong>,<br />

which is referred to the upper part of the underlying<br />

magnetoz<strong>on</strong>e with normal polarity. On the background<br />

of reverse polarity, at the base of the Gan’kino<br />

Formati<strong>on</strong> (312–310.5 m) the N-horiz<strong>on</strong> with normal<br />

magnetizati<strong>on</strong> is noted.<br />

Summarizing the data obtained, it should be noted<br />

that secti<strong>on</strong> of deposits of the Pokur, Kuznetsovo, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Ipatovo Formati<strong>on</strong>s (a total thickness of 210 m) is a<br />

thick z<strong>on</strong>e of normal polarity (N(al-st)) with five subhoriz<strong>on</strong>s<br />

of reverse magnetizati<strong>on</strong>. In turn, the<br />

Slavgorod <str<strong>on</strong>g>and</str<strong>on</strong>g> Gan’kino Formati<strong>on</strong>s (thickens of<br />

about 70 m) form two z<strong>on</strong>es with reverse polarity of<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013<br />

R1(km) <str<strong>on</strong>g>and</str<strong>on</strong>g> R2(mt). As for the structure of the paleomagnetic<br />

record as a whole, it should be noted that the<br />

presence of gaps (up to 10 m) in the paleomagnetic<br />

secti<strong>on</strong> does not preclude the presence of R-intervals<br />

here.<br />

However, it is unlikely that the paleomagnetic secti<strong>on</strong><br />

can be essentially modified due to identificati<strong>on</strong><br />

of these horiz<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> this will affect correlati<strong>on</strong> of this<br />

secti<strong>on</strong> with the global paleomagnetic scale. Thus,<br />

paleomagnetic column, compiled <strong>on</strong> the basis of pale<strong>on</strong>tological,<br />

lithological <str<strong>on</strong>g>and</str<strong>on</strong>g> stratigraphic data is c<strong>on</strong>trolled<br />

by the regi<strong>on</strong>al stratigraphic scale.<br />

Based <strong>on</strong> reference levels (magnetoz<strong>on</strong>es), which<br />

are well characterized by pale<strong>on</strong>tological data, the compiled<br />

magnetostratigraphic secti<strong>on</strong> can be correlated<br />

with the internati<strong>on</strong>al scales (Fig. 6). Recently, there are<br />

several magnetostratigraphic (Dopolneniya …, 2000;<br />

Molostovskii, 2002; Guzhikov et al., 2007) <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetochr<strong>on</strong>ological<br />

(Harlend et al., 1985; C<str<strong>on</strong>g>and</str<strong>on</strong>g>e <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Kent, 1992; Gradstein et al., 1995, 2004, 2008; etc.)<br />

scales. The l<strong>on</strong>g magnetoz<strong>on</strong>e with normal polarity<br />

N(al-st), established in the paleomagnetic secti<strong>on</strong> of<br />

the borehole cover the Albian, Cenomanian, Tur<strong>on</strong>ian,<br />

C<strong>on</strong>iacian, <str<strong>on</strong>g>and</str<strong>on</strong>g> Sant<strong>on</strong>ian deposits. According<br />

to the general magnetostratigraphic scale (Dopolneniya…,<br />

2000; Molostovskii, 2002; etc.), this magnetoz<strong>on</strong>e<br />

corresp<strong>on</strong>ds to the Jalal hyperz<strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> can be<br />

associated with chr<strong>on</strong> C34 of the internati<strong>on</strong>al magnetochr<strong>on</strong>ological<br />

global scale in the age intervals of<br />

112.5–83.6 Ma (Gradstein et al., 2004, 2008).<br />

Plate V. Nannoplankt<strong>on</strong> from the Gan’kino Formati<strong>on</strong> in the Russkaya Polyana District. All photos are in crossed nicols. Magnificati<strong>on</strong><br />

in figs. 1–30, 32, 34, 35 is ×3800; figs. 31, 33 ×2800.<br />

(1) Ahmuellerella octoradiata (Górka) Reinhardt, Lower Maastrichtian, borehole no. 8, depth, 303 m; (2) Staurolithites<br />

mielnicensis (Górka) Perch-Nielsen, Lower Maastrichtian, borehole no. 8, depth, 293.1 m; (3) Tranolithus manifestos Stover,<br />

Lower Maastrichtian, borehole no. 8, depth, 293.1 m; (4) Reinhardtites levis Prins et Sissingh, Lower Maastrichtian, borehole<br />

no. 8, depth, 303 m; (5) Zeugrhabdotus bicrescenticus (Stover) Burnett, Lower Maastrichtian, borehole no. 8, depth, 293.1 m;<br />

(6) Placozygus fibuliformis (Reinhardt) Hoffmann, Lower Maastrichtian, borehole no. 8, depth, 292.5 m; (7) Zeugrhabdotus spiralis<br />

(Bramlette et Martini) Burnett, <strong>Upper</strong> Maastrichtian, borehole no. 10, depth, 262 m; (8) Chiastozygus litterarius (Gorka)<br />

Manivit, <strong>Upper</strong> Maastrichtian, borehole no. 10, depth, 262 m; (9) Loxolithus armilla (Black) Noel, Lower Maastrichtian, borehole<br />

no. 8, depth, 293.1 m; (10) Helicolithus trabeculatus (Gorka) Verbeek, Lower Maastrichtian, borehole no. 8, depth, 293.1 m;<br />

(11) Eiffellithus turriseiffelii (Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re) Reinhardt, Lower Maastrichtian, borehole no. 8, depth, 292.5 m; (12) Eiffellithus parallelus<br />

Perch-Nielsen, Lower Maastrichtian, borehole no. 8, depth, 286.4 m; (13) Rhagodiscus angustus (Stradner) Reinhardt,<br />

Lower Maastrichtian, borehole no. 8, depth, 290 m; (14) Rhagodiscus reniformis Perch-Nielsen, Lower Maastrichtian, borehole<br />

no. 8, depth, 292.5 m; (15) Rhombolithi<strong>on</strong> rhombicum (Stradner et Adamiker) Black, Lower Maastrichtian, borehole no. 8, depth,<br />

290 m; (16) Scapholithus fossilis Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re, Lower Maastrichtian, borehole no. 8, depth, 290 m; (17) Cribrosphaerella ehrenbergii<br />

(Arkhangelsky) Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re, Lower Maastrichtian, borehole no. 8, depth, 292.5 m; (18) Tetrapodorhabdus decorus (Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re)<br />

Wind et Wise, Lower Maastrichtian, borehole no. 8, depth, 293.1 m; (19) Biscutum magnum Wind et Wise, Lower Maastrichtian,<br />

borehole no. 8, depth, 293.1 m; (20) Prediscosphaera gr<str<strong>on</strong>g>and</str<strong>on</strong>g>is Perch-Nielsen, <strong>Upper</strong> Maastrichtian, borehole no. 10, depth,<br />

262 m; (21) Cretarhabdus c<strong>on</strong>icus Bramlette et Martini, Lower Maastrichtian, borehole no. 8, depth, 292.5 m; (22) Cretarhabdus<br />

crenulatus Bramlette et Martini, <strong>Upper</strong> Maastrichtian, borehole no. 10, depth, 262 m; (23) Manivitella pemmatoidea (Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re)<br />

Thierstein, Lower Maastrichtian, borehole no. 8, depth, 293.1 m; (24) Arkhangelskiella cymbiformis Vekshina, Lower Maastrichtian,<br />

borehole no. 8, depth, 290 m; (25) Gartnerago obliquum Stradner, Lower Maastrichtian, borehole no. 8, depth, 290 m;<br />

(26) Kamptnerius magnificus Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re, Lower Maastrichtian, borehole no. 8, depth, 286.4 m; (27) Markalius inversus (Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re)<br />

Bramlette et Martini, Lower Maastrichtian, borehole no. 8, depth, 292.5 m; (28) Braarudosphaera bigelowii (Gran et<br />

Braarud) Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re, Lower Maastrichtian, borehole no. 8, depth, 292.5 m; (29) Micula decussata Vekshina, Lower Maastrichtian,<br />

borehole no. 8, depth, 303 m; (30) Ceratolithoides sesquipedalis Burnett, Lower Maastrichtian, borehole no. 8, depth,<br />

292.5 m; (31) Microrhabdulus helicoides Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re, Lower Maastrichtian, borehole no. 8, depth, 286.4 m; (32) Microrhabdulus<br />

decoratus Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re, Lower Maastrichtian, borehole no. 8, depth, 292.5 m; (33) Microrhabdulus undosus Perch-Nielsen, Lower<br />

Maastrichtian, borehole no. 8, depth, 292.5 m; (34) Lithraphidites carniolensis Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re, Lower Maastrichtian, borehole no. 8,<br />

depth, 293.1 m; (35) Lithraphidites praequadratus Roth, Lower Maastrichtian, borehole no. 8, depth, 293.1 m.


72<br />

75<br />

80<br />

90<br />

Ma 60<br />

100<br />

105<br />

110<br />

115<br />

120<br />

125<br />

Paleocene<br />

Campanian<br />

Sant<strong>on</strong>ian<br />

C<strong>on</strong>iacian<br />

Tur<strong>on</strong>ian<br />

LEBEDEVA et al.<br />

<str<strong>on</strong>g>Magnetostratigraphic</str<strong>on</strong>g> scale (Gradstein et al., 2008)<br />

Epoch Epoch<br />

Magnetopolar<br />

chr<strong>on</strong>s<br />

Sel<str<strong>on</strong>g>and</str<strong>on</strong>g>ian<br />

С26<br />

Danian<br />

С27<br />

С28<br />

65<br />

С29<br />

С30<br />

70<br />

Maastrichtian<br />

С31<br />

85<br />

95<br />

L a t e C r e t a c e o u s<br />

E a r l y C r e t a c e o u s<br />

Ceno-<br />

manian<br />

Albian<br />

Aptian<br />

Barremian<br />

С32<br />

<str<strong>on</strong>g>Magnetostratigraphic</str<strong>on</strong>g> secti<strong>on</strong> of<br />

Cretaceous deposits, borehole no. 8<br />

System<br />

Formati<strong>on</strong><br />

Pal. S T<br />

С33 ?<br />

С34<br />

М0r<br />

M1<br />

Stage<br />

Maastrichtian<br />

Campanian<br />

C<strong>on</strong>iacian-<br />

Sant<strong>on</strong>ian<br />

Cretaceous<br />

Middle–<br />

<strong>Upper</strong><br />

Tur<strong>on</strong>ian<br />

?<br />

Albian<br />

Cenomanian–Tur<strong>on</strong>ian ?<br />

Gan’kino<br />

Slavgorod<br />

Ipatovo<br />

Kuznetsovo<br />

Pokur<br />

Paleomagnetic<br />

secti<strong>on</strong><br />

R 2(mt)<br />

R 1(km)<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013<br />

N(al-st)<br />

Fig. 6. Comparis<strong>on</strong> of the magnetostratigraphic secti<strong>on</strong> of <strong>Upper</strong> Cretaceous deposits in the borehole no.8 with the magnetochr<strong>on</strong>ological scale (Gradstein et al., 2008).


Divisi<strong>on</strong><br />

Stage<br />

Formati<strong>on</strong><br />

Depth, m<br />

U p p e r C r e t a c e o u s<br />

Cenomanian<br />

L o w e r C r e t a c e o u s<br />

Albian<br />

430<br />

450<br />

470<br />

490<br />

Pokur<br />

510<br />

530<br />

550<br />

570<br />

590<br />

Lithology<br />

Palynocomplexes<br />

PC II<br />

PC I<br />

PALEONTOLOGICAL AND MAGNETOSTRATIGRAPHIC DATA 73<br />

Paleomagnetic<br />

secti<strong>on</strong><br />

N(al-st)<br />

Divisi<strong>on</strong><br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013<br />

Stage/Substage<br />

Formati<strong>on</strong><br />

Pal. S T<br />

U p p e r C r e t a c e o u s<br />

Maastrichtian<br />

<strong>Upper</strong> Lower<br />

Gan’kino<br />

Campanian<br />

C<strong>on</strong>iacian–<br />

Sant<strong>on</strong>ian<br />

?<br />

Cenomanian<br />

?<br />

Slavgorod<br />

Ipatovo<br />

Pokur<br />

Depth, m<br />

270<br />

290<br />

310<br />

330<br />

350<br />

370<br />

Middle–<strong>Upper</strong><br />

Tur<strong>on</strong>ian<br />

Kuznetsovo<br />

390<br />

410<br />

430<br />

Lithology<br />

Palynocomplexes<br />

PC IV PC V<br />

PC III<br />

PC II<br />

Beds with dinocysts<br />

Palynodinium<br />

sp. A<br />

Cerodinium<br />

speciosum<br />

Cerodinium<br />

diebelii<br />

Chatangiella manumii–<br />

Chatangiella vnigrii<br />

DC II<br />

? ?<br />

Heterosphaeridium difficile–<br />

Chatangiella spectabilis<br />

Nannoplankt<strong>on</strong><br />

z<strong>on</strong>es<br />

CC25a/<br />

UC19<br />

CC24/<br />

UC18<br />

Faunistic<br />

findings<br />

Chlamys (Aequipecten)<br />

pseudopulchellus, Nuculoma<br />

cf. variabilis<br />

Hoplpscaphites cf. c<strong>on</strong>strictus<br />

c<strong>on</strong>strictus, Baculites cf.<br />

knorrianus, Spyridoceramus<br />

ravni sp. juv., Entolium<br />

anlaevis, Oxytoma cf. uralica,<br />

Chlamys (Aequipecten)<br />

cf. pseudopulchellus,<br />

Turritella sp. indet.<br />

Paleomagnetic<br />

secti<strong>on</strong><br />

N(al-st) R 1 (km) R 2 (mt)<br />

Fig. 7. Magnetobiostratigraphic secti<strong>on</strong> of <strong>Upper</strong> Cretaceous deposits of the borehole no. 8 in the Russkaya Polyana District.<br />

Symbols are the same as in Fig. 2. Abbreviati<strong>on</strong>s: Pal⎯Paleocene, S⎯Sel<str<strong>on</strong>g>and</str<strong>on</strong>g>ian, T⎯Talitsa.


74<br />

1<br />

4<br />

LEBEDEVA et al.<br />

Plate VI<br />

1 µm 1 µm 2 µm<br />

2<br />

3<br />

8<br />

5<br />

1 µm 1 µm<br />

1 µm<br />

7 9<br />

10<br />

11<br />

2 µm<br />

1 µm<br />

12<br />

2 µm<br />

1 µm<br />

1 µm<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013<br />

6<br />

13<br />

2 µm<br />

2 µm


PALEONTOLOGICAL AND MAGNETOSTRATIGRAPHIC DATA 75<br />

Plate VI. Nannoplankt<strong>on</strong> from the Gan’kino Formati<strong>on</strong>, the Russkaya Polyana District.<br />

(1) Kamptnerius magnificus Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re, distal side, Lower Maastrichtian, borehole no. 8, depth, 292 m; (2) Arkhangelskiella cymbiformis<br />

Vekshina, distal side, Lower Maastrichtian, borehole no. 8, depth, 292 m; (3) Prediscosphaera cretacea (Arkhangelsky)<br />

Gartner, general view of rhabdolith, Lower Maastrichtian, borehole no. 8, depth, 292.5 m; (4) Biscutum ellipticum (Górka) Grün,<br />

distal side, Lower Maastrichtian, borehole no. 8, depth, 292.5 m; (5) Micula c<strong>on</strong>cava (Stradner) Verbeek, general view, Lower<br />

Maastrichtian, borehole no. 8, depth, 292.5 m; (6) Cretarhabdus c<strong>on</strong>icus Bramlette et Martini, distal side, <strong>Upper</strong> Maastrichtian,<br />

borehole no. 10, depth, 262 m; (7) Cribrosphaerella ehrenbergii (Arkhangelsky) Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re, distal side, Lower Maastrichtian, borehole<br />

no. 8, depth, 292 m; (8) Lithraphidites carniolensis Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re, general view, Lower Maastrichtian, borehole no. 8, depth,<br />

292 m; (9) Scapholithus fossilis Defl<str<strong>on</strong>g>and</str<strong>on</strong>g>re, general view, Lower Maastrichtian, borehole no. 8, depth, 286.4 m; (10) Stradnerlithus<br />

geometricus (Górka) Bown et Cooper, general view, <strong>Upper</strong> Maastrichtian, borehole no. 10, depth, 262 m; (11) Cretarhabdus<br />

crenulatus Bramlette et Martini, distal side, <strong>Upper</strong> Maastrichtian, borehole no. 10, depth, 262 m; (12) Rhombolithi<strong>on</strong> speet<strong>on</strong>ensi<br />

Rood et Barnard, general view, <strong>Upper</strong> Maastrichtian, borehole no. 10, depth, 262 m; (13) Thoracosphaera operculata Bramlette<br />

et Martini, general view, Lower Maastrichtian, borehole no. 8, depth, 286.4 m.<br />

Two magnetoz<strong>on</strong>es with reverse polarity, separated<br />

by a stratigraphic break (R1(km) <str<strong>on</strong>g>and</str<strong>on</strong>g> R2(mt)) cover the<br />

lower part of the Campanian (Slavgorod Formati<strong>on</strong>)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Maastrichtian (Gan’kino Formati<strong>on</strong>). These<br />

magnetoz<strong>on</strong>es are correlated with chr<strong>on</strong>es of C33(r)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> C31(r) <str<strong>on</strong>g>and</str<strong>on</strong>g> 83.6–80 <str<strong>on</strong>g>and</str<strong>on</strong>g> 71–68.5 Ma, respectively<br />

(Fig. 6).<br />

Comparing the magnetostratigraphic secti<strong>on</strong> of<br />

Cretaceous deposits opened in the borehole no. 8 with<br />

the internati<strong>on</strong>al magnetochr<strong>on</strong>ological scale (Gradstein<br />

et al., 2008), we can estimate a break interval<br />

between the Slavgorod (R1(km)) <str<strong>on</strong>g>and</str<strong>on</strong>g> the Gan’kino<br />

(R2(mt)) Formati<strong>on</strong>s as approximately 9 Ma (a part of<br />

<strong>Upper</strong> Campanian). Thus, chr<strong>on</strong>s with normal polarity<br />

of C33(n) <str<strong>on</strong>g>and</str<strong>on</strong>g> C32 (<strong>Upper</strong> Campanian) in the age<br />

interval of 80–71 Ma are absent in the secti<strong>on</strong>.<br />

In turn, a break interval between the Gan’kino<br />

(R2(mt)) <str<strong>on</strong>g>and</str<strong>on</strong>g> the Talitsa Formati<strong>on</strong>s will be determined<br />

by the durati<strong>on</strong> of chr<strong>on</strong>es of C31(n), C30,<br />

C29, C28 <str<strong>on</strong>g>and</str<strong>on</strong>g> C27 (~68.5–61.5 Ma).<br />

CONCLUSIONS<br />

As a result of our work, the complex stratigraphic<br />

(paleomagnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> pale<strong>on</strong>tological) researches of<br />

<strong>Upper</strong> Cretaceous deposits of the southern margin of<br />

the Omsk depressi<strong>on</strong> (<strong>on</strong> the example of the secti<strong>on</strong> of<br />

the borehole no. 8, drilled in the Russkaya Polyan District)<br />

for the first time.<br />

Stratigraphically, the studied secti<strong>on</strong> includes<br />

deposits of Albian–Cenomanian (Pokur Formati<strong>on</strong>),<br />

Middle–<strong>Upper</strong> Tur<strong>on</strong>ian (Kuznetsovo Formati<strong>on</strong>),<br />

undifferentiated C<strong>on</strong>iacian–Sant<strong>on</strong>ian (Ipatovo Formati<strong>on</strong>),<br />

Campanian (Slavgorod Formati<strong>on</strong>), <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Maastrichtian (Gan’kino Formati<strong>on</strong>) (Fig. 7).<br />

Palynological studies in the southern part of the<br />

Omsk depressi<strong>on</strong> make it possible to add the tax<strong>on</strong>omic<br />

characteristics of Late Cretaceous palynomorphs,<br />

identify the tax<strong>on</strong>omic compositi<strong>on</strong> of dinocysts<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> other groups microphytoplankt<strong>on</strong> for the first<br />

time, justify the age of deposits, determine intervals of<br />

stratigraphic breaks <str<strong>on</strong>g>and</str<strong>on</strong>g> divide the secti<strong>on</strong> of the borehole<br />

no. 8. All of this will allow us in the future to mod-<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013<br />

ify the regi<strong>on</strong>al stratigraphic schemes of Western Siberia<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> correct paleogeographic rec<strong>on</strong>structi<strong>on</strong>s.<br />

In additi<strong>on</strong>, it has been established that nannoplankt<strong>on</strong><br />

occurs in deposits of the Gan’kino Formati<strong>on</strong>.<br />

Based <strong>on</strong> this, we have been able to establish the<br />

age of deposits <strong>on</strong> the <strong>on</strong>e h<str<strong>on</strong>g>and</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> to compare<br />

palynological biostrat<strong>on</strong>s with the comm<strong>on</strong> scale <strong>on</strong><br />

the other. An absence of nannoplankt<strong>on</strong> in the terminal<br />

parts of the Gan’kino Formati<strong>on</strong> has been<br />

revealed. This can be c<strong>on</strong>nected with sec<strong>on</strong>dary<br />

changes, as deposits of this Formati<strong>on</strong> is overlain with<br />

a great stratigraphic break by Paleocene deposits, or<br />

with variati<strong>on</strong>s in hydrological c<strong>on</strong>diti<strong>on</strong>s in a sedimentati<strong>on</strong><br />

basin in the Late Maastrichtian.<br />

In additi<strong>on</strong>, the complex of amm<strong>on</strong>ites, bivalves<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> gastropods has been identified. This is a unique<br />

case for weakly c<strong>on</strong>solidated <strong>Upper</strong> Cretaceous<br />

deposits, opened in boreholes.<br />

Using the data obtained as a result of detailed paleomagnetic<br />

studies, as well as pale<strong>on</strong>tological data, a<br />

magnetostratigraphic secti<strong>on</strong> of the <strong>Upper</strong> Cretaceous<br />

deposits opened in the borehole no. 8 has been compiled.It<br />

has been established that in Albian, Cenomanian,<br />

Tur<strong>on</strong>ian, C<strong>on</strong>iacian, Sant<strong>on</strong>ian (Pokur, Kuznetsovo,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Ipatovo Formati<strong>on</strong>s) there existed a l<strong>on</strong>g<br />

period of predominantly normal polarity N(al-st).<br />

This period corresp<strong>on</strong>ds to the chr<strong>on</strong> C34 with five<br />

thin (14–2 m) horiz<strong>on</strong>s with reverse magnetizati<strong>on</strong>. In<br />

the upper part of these deposits, two separated z<strong>on</strong>es<br />

with reverse polarity (R 1(km) <str<strong>on</strong>g>and</str<strong>on</strong>g> R 2(mt)), covering<br />

the most part of the Slavgorod (Campanian) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Gan’kino Formati<strong>on</strong>s (Maastrichtian) have been<br />

established.<br />

These z<strong>on</strong>es corresp<strong>on</strong>d to chr<strong>on</strong>s C33(r) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

C31(r).<br />

The c<strong>on</strong>clusi<strong>on</strong> that there was a stratigraphic break<br />

in a part of <strong>Upper</strong> Campanian, does not c<strong>on</strong>tradict the<br />

above pale<strong>on</strong>tological evidence.<br />

The correctness of the paleomagnetic data, that<br />

was the basis for c<strong>on</strong>structi<strong>on</strong> of the paleomagnetic<br />

secti<strong>on</strong> of Cretaceous deposits (borehole no. 8) is c<strong>on</strong>trolled<br />

by comp<strong>on</strong>ent compositi<strong>on</strong> of the natural<br />

remanent magnetizati<strong>on</strong> of rocks <str<strong>on</strong>g>and</str<strong>on</strong>g> possibility to<br />

determine its primary comp<strong>on</strong>ent, as well as the struc-


76<br />

tural similarity of the paleomagnetic secti<strong>on</strong> of Cretaceous<br />

deposits with magnetostratigraphic <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetochr<strong>on</strong>ological<br />

scales <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetostratigraphic secti<strong>on</strong>s<br />

of coeval deposits in other regi<strong>on</strong>s.<br />

Thus, complex pale<strong>on</strong>tological <str<strong>on</strong>g>and</str<strong>on</strong>g> paleomagnetic<br />

studies allowed us to get new data <strong>on</strong> the structure <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

age of <strong>Upper</strong> Cretaceous deposits of Southwestern<br />

Siberia, identify key milest<strong>on</strong>es in rearrangements of<br />

plankt<strong>on</strong>ic organisms <str<strong>on</strong>g>and</str<strong>on</strong>g> to correlate the data<br />

obtained with adjacent <str<strong>on</strong>g>and</str<strong>on</strong>g> stratotype regi<strong>on</strong>s.<br />

ACKNOWLEDGMENTS<br />

We are grateful to Zh.A. Dolya (Omsk geological<br />

prospecting expediti<strong>on</strong>) for providing geological<br />

materials, O.B. Kuzmina for providing the collecti<strong>on</strong><br />

of palynological samples, A.Yu. Guzhikov (Saratov<br />

State University), <str<strong>on</strong>g>and</str<strong>on</strong>g> E.A. Scherbinina (GIN RAS)<br />

for valuable comments <str<strong>on</strong>g>and</str<strong>on</strong>g> remarks that helped us to<br />

improve the manuscript.<br />

This work was supported by the Grants of the Presidium<br />

of the Russian Academy of Sciences (Fundamental<br />

problems of oceanology, physics, geology, biology,<br />

ecology <str<strong>on</strong>g>and</str<strong>on</strong>g> The Origin of the biosphere <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

evoluti<strong>on</strong> of geo-biological systems), the Russian<br />

Foundati<strong>on</strong> for Basic Researches (projects nos. 10-05-<br />

00021 <str<strong>on</strong>g>and</str<strong>on</strong>g> 12-05-00196a), <str<strong>on</strong>g>and</str<strong>on</strong>g> the Nati<strong>on</strong>al Research<br />

Foundati<strong>on</strong>, South Africa via Incentive Funding for<br />

Rated Researchers.<br />

Reviewers A.Yu. Guzhikov,<br />

E.A. Scherbinina, <str<strong>on</strong>g>and</str<strong>on</strong>g> V.A. Zakharov<br />

REFERENCES<br />

Akhmetiev, M.A., Aleks<str<strong>on</strong>g>and</str<strong>on</strong>g>rova, G.N., Ben’yamovskii, V.N.,<br />

et al., New <str<strong>on</strong>g>Data</str<strong>on</strong>g> <strong>on</strong> the Marine Paleogene of the Southwestern<br />

Siberian Plate, Paper 1, Stratigr. Geol. Correlati<strong>on</strong>,<br />

2004a, vol. 12, no. 1, pp. 67–93.<br />

Akhmetiev, M.A., Aleks<str<strong>on</strong>g>and</str<strong>on</strong>g>rova, G.N., Ben’yamovskii, V.N.,<br />

et al., New <str<strong>on</strong>g>Data</str<strong>on</strong>g> <strong>on</strong> the Marine Paleogene of the Southwestern<br />

Siberian Plate, Paper 2, Stratigr. Geol. Correlati<strong>on</strong>,<br />

2004b, vol. 12, no. 5, pp. 65–86.<br />

Akhmetiev, M.A., Zaporozhets, N.I., Iakovleva, A.I., et al.,<br />

Comparative analysis of Marine Paleogene Secti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Biota from West Siberia <str<strong>on</strong>g>and</str<strong>on</strong>g> the Arctic Regi<strong>on</strong>, Stratigr.<br />

Geol. Correlati<strong>on</strong>, 2010, vol. 18, no. 6, pp. 635–659.<br />

Akhmetiev, M.A., Problems of Paleogene Stratigraphy <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Paleogeography in Mid-Latitudes of Central Eurasia, Geol.<br />

Geofiz., 2011, no. 10, pp. 1367–1387.<br />

Aleks<str<strong>on</strong>g>and</str<strong>on</strong>g>rova, G.N., Alekseev, A.S., Ben’yamovskii, V.N.,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Ovechkina, M.N., New data <strong>on</strong> Terminal Cretaceous<br />

Dinocysts, Nannoplankt<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Foraminifers from the<br />

South of the West Siberian Lowl<str<strong>on</strong>g>and</str<strong>on</strong>g> in Melovaya sistema<br />

Rossii: problemy stratigrafii i paleogeografii. Shkola “Printsipy<br />

i metody stratigraficheskikh issledovanii”. Tez. dokladov<br />

(Cretaceous System of Russia: Problems of Stratigraphy<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Paleogeography. School: Principles <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods of<br />

Stratigraphic Researches. Book of Abstracts), Arkad’ev V.V.,<br />

Ed., St. Petersburg, 2004.<br />

LEBEDEVA et al.<br />

Aleks<str<strong>on</strong>g>and</str<strong>on</strong>g>rova, G.N., Kosmynin, V.A., <str<strong>on</strong>g>and</str<strong>on</strong>g> Postnikov, A.V.,<br />

Stratigraphy <str<strong>on</strong>g>and</str<strong>on</strong>g> Sedimentary Envir<strong>on</strong>ments for Cretaceous<br />

Deposits in the Southern Part of the Var’egansk<br />

Megabar (Western Siberia), Stratigr. Geol. Correlati<strong>on</strong>, 2010,<br />

vol. 18, no. 4, pp. 411–435.<br />

Aleks<str<strong>on</strong>g>and</str<strong>on</strong>g>rova, G.N., Ovechkina, M.N., <str<strong>on</strong>g>and</str<strong>on</strong>g> Ben’yamovskii,<br />

V.N., <str<strong>on</strong>g>Data</str<strong>on</strong>g> <strong>on</strong> Dinocysts, Nannoplankt<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> Foraminifers<br />

from <strong>Upper</strong> Cretaceous <str<strong>on</strong>g>and</str<strong>on</strong>g> Paleocene Deposits<br />

of the South of the Russian <str<strong>on</strong>g>and</str<strong>on</strong>g> West Siberian Plates, in<br />

Pale<strong>on</strong>tologiya, stratigrafiya i paleogeografiya mezozoya i<br />

kainozoya boreal’nykh rai<strong>on</strong>ov. Materialy nauchn. sessii. T. I<br />

(Pale<strong>on</strong>tology, Stratigraphy <str<strong>on</strong>g>and</str<strong>on</strong>g> Paleogeography of the<br />

Mesozoic <str<strong>on</strong>g>and</str<strong>on</strong>g> Cenozoic of Boreal Regi<strong>on</strong>s. Proc. of Sci.<br />

Sessi<strong>on</strong>. Vol. 1) Shurygin, B.N., Lebedeva, N.K., <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Goryacheva, A.A., Eds., Novosibirsk: INGG SO RAN,<br />

2011.<br />

Ben’yamovskii, V.N., Akhmetiev, M.A., Alekseev, A.S.,<br />

et al., Marine Terminal Cretaceous <str<strong>on</strong>g>and</str<strong>on</strong>g> Paleogene in the<br />

South of Western Siberia, Byull. Mosk. O-va Isp. Prir. Otd.<br />

Geol, 2002, vol. 77, no. 5, pp. 28–48.<br />

Bown, P.R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Young, J.R., Technique, in Calcareous<br />

Nannofossil Biostratigraphy. British Micropale<strong>on</strong>tol. Soc.<br />

Series, Bown P.R., Ed., L<strong>on</strong>d<strong>on</strong>: Chapman & Hall, 1998,<br />

pp. 16–28.<br />

Brinkhuis, H. <str<strong>on</strong>g>and</str<strong>on</strong>g> Schiøler, P., Palynology of the Geulhemmerberg<br />

Cretaceous/Tertiary Boundary Secti<strong>on</strong> (Limburg,<br />

SE Netherl<str<strong>on</strong>g>and</str<strong>on</strong>g>s in The Geulhemmerberg Cretaceous/Tertiary<br />

boundary secti<strong>on</strong> (Maastrichtian type area, SE Netherl<str<strong>on</strong>g>and</str<strong>on</strong>g>s),<br />

Brinkhuis, H. <str<strong>on</strong>g>and</str<strong>on</strong>g> Smit, J. Eds., Geologie en Mijnbouw,<br />

1996, vol. 75, nos. 2–3, pp. 193–213.<br />

Burnett, J.A., <strong>Upper</strong> Cretaceous in Calcareous Nannofossil<br />

Biostratigraphy, Ed. Bown P.R., Dordrecht, the Netherl<str<strong>on</strong>g>and</str<strong>on</strong>g>s:<br />

Kluwer Acad. Publ., 1998, pp. 132–199.<br />

C<str<strong>on</strong>g>and</str<strong>on</strong>g>e, S.C. <str<strong>on</strong>g>and</str<strong>on</strong>g> Kent, D.V., A New Geomagnetic Polarity<br />

Time Scale for the Late Cretaceous <str<strong>on</strong>g>and</str<strong>on</strong>g> Cenozoic, J. Geophys.<br />

Res., 1992, vol. 97, no. B10, pp. 13917–13951.<br />

Dopolneniya k stratigraficheskomu kodeksu Rossii (Supplements<br />

to the Stratigraphic Code of Russia), St. Petersburg:<br />

Izd. VSEGEI, 2000 [in Russian].<br />

Enkin, R.J., A Computer Program Package for Analysis <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Presentati<strong>on</strong> of Paleomagnetic <str<strong>on</strong>g>Data</str<strong>on</strong>g>, Pacific Geosci. Centre.<br />

Geol. Surv. Canada. Sidney, 1994.<br />

Glazunova, A.E., New Cretaceous Pectinidae in Western<br />

Siberia in Novye vidy drevnikh rastenii i bespozv<strong>on</strong>ochnykh<br />

SSSR. Chast’ II (New Species of Ancient Plants <str<strong>on</strong>g>and</str<strong>on</strong>g> Invertebrates<br />

of the USSR. Part II) Markovskii, B.P., Ed., Moscow:<br />

Gos. Nauch.-tekh. Izd. Lit. po Geologii i Okhrane<br />

Nedr, 1960, pp. 47–60.<br />

Gnibidenko, Z.N., Lebedeva, N.K., <str<strong>on</strong>g>and</str<strong>on</strong>g> Dolya, Zh.A.,<br />

<str<strong>on</strong>g>Magnetostratigraphic</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Palynological Analysis of Cretaceous<br />

(Borehole no. 8, the Russkaya Polyana District, the<br />

Southeastern Part of Western Siberia) in Melovaya sistema<br />

Rossii i blizhnego zarubezh’ya: problemy stratigrafii i paleogeografii.<br />

Materialy IV Vseross. soveshch. (Cretaceous System<br />

of Russia <str<strong>on</strong>g>and</str<strong>on</strong>g> CIS Countries: Problems of Stratigraphy<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Palaeogeography. Proc. IV All-Russ. Meet.)<br />

Dzyuba, O.S., Zakharov, V.A., <str<strong>on</strong>g>and</str<strong>on</strong>g> Shurygin, B.N., Eds.,<br />

Novosibirsk: Izd. SO RAN, 2008.<br />

Gnibidenko, Z.N., Lebedeva, N.K., <str<strong>on</strong>g>and</str<strong>on</strong>g> Shurygin, B.N.,<br />

<str<strong>on</strong>g>Magnetostratigraphic</str<strong>on</strong>g> Secti<strong>on</strong> of Cretaceous Deposits of<br />

the South of Western Siberia, Geol. Geofiz., 2012 (in press).<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013


PALEONTOLOGICAL AND MAGNETOSTRATIGRAPHIC DATA 77<br />

Gradstein, F.M., Agterberg, F.P., Hardenbol, J., et al., Triassic,<br />

Jurassic <str<strong>on</strong>g>and</str<strong>on</strong>g> Cretaceous Time Scale, Geochr<strong>on</strong>ology<br />

Time Scales <str<strong>on</strong>g>and</str<strong>on</strong>g> Global Stratigraphic Correlati<strong>on</strong>. SEPM<br />

Spec. Publ., 1995, no. 54, pp. 95–126.<br />

Gradstein, F.M., Ogg, J.G., Smith, A.G., et al., A Geological<br />

Time Scale, Cambridge: Cambridge Univ. Press, 2004,<br />

vol. 43, no. 1, pp. 5–13.<br />

Gradstein, F.M., Ogg, J.G., <str<strong>on</strong>g>and</str<strong>on</strong>g> van Kranend<strong>on</strong>k, M., On<br />

the Geological Time Scale 2008, Newsletters <strong>on</strong> Stratigraphy,<br />

2008, vol. 43, no. 1, pp. 5–13.<br />

Guzhikov, A.Yu., Baraboshkin, E.Yu., <str<strong>on</strong>g>and</str<strong>on</strong>g> Fomin, V.A.,<br />

<str<strong>on</strong>g>Magnetostratigraphic</str<strong>on</strong>g> Scale of the Cretaceous System:<br />

Modern State, Problems of Rec<strong>on</strong>structi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> Trends, in<br />

Melovaya sistema Rossii i blizhnego zarubezh’ya: problemy<br />

stratigrafii i paleogeografii (Cretaceous System of Russia <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

CIS Countries: Problems of Stratigraphy <str<strong>on</strong>g>and</str<strong>on</strong>g> Paleogeography),<br />

Saratov: Izd. SGU, 2007, pp. 69–86.<br />

Hansen, J.M., A New Dinoflagellate Z<strong>on</strong>e at the Maastrichtian/Danian<br />

Boundary in Denmark, Danmarks Geol.<br />

Unders., Arbog., 1979, pp. 131–140.<br />

Herngreen, G.F.W., Schuurman, H.A.H.M., Verbeek, J.W.,<br />

et al., Biostratigraphy of Cretaceous/Tertiary Boundary<br />

Strata in the Curfs Quarry, the Netherl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, Mededelingen<br />

Nederl<str<strong>on</strong>g>and</str<strong>on</strong>g>s Instituut voor Toegepaste Geowetenschappen<br />

TNO, 1998, no. 61, pp. 3–58.<br />

Iakovleva, A.I. <str<strong>on</strong>g>and</str<strong>on</strong>g> Heilmann-Clausen, C., Eocene Dinoflagellate<br />

Cyst Biostratigraphy of Research Borehole 011-BP, Omsk<br />

Regi<strong>on</strong>, Southwestern Siberia, Palynology, 2010, vol. 34,<br />

no. 2, pp. 195–232.<br />

Ioannides, N.S., Dinoflagellate Cysts from <strong>Upper</strong> Cretaceous–Lower<br />

Tertiary Secti<strong>on</strong>s Byl<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Dev<strong>on</strong> Isl<str<strong>on</strong>g>and</str<strong>on</strong>g>s<br />

Arctic Archipelago, Geol. Surv. Canada, 1986, Bull. 371,<br />

pp. 3–99.<br />

Kharlend, U.V., Koks, A.V., Llevelin, P.G., et al., Shkala<br />

geologicheskogo vremeni (Scale of Geological TIme), Moscow:<br />

Mir, 1985 [in Russian].<br />

Chl<strong>on</strong>ova, A.F., Palinologiya melovykh otlozhenii Sibiri i<br />

Dal’nego Vostoka (Palynology of Cretaceous Deposits of<br />

Siberia <str<strong>on</strong>g>and</str<strong>on</strong>g> the Far East), Novosibirsk: Nauka, 1974<br />

[in Russian].<br />

Chl<strong>on</strong>ova, A.F., Palinologicheskaya kharakteristika<br />

melovykh otlozhenii na r. Kie (Zapadnaya Sibir’) (Palynology of<br />

Cretaceous Deposits <strong>on</strong> the Kiya River (Western Siberia),<br />

Moscow: Nauka, 1976 [in Russian].<br />

Khramov, A.N. <str<strong>on</strong>g>and</str<strong>on</strong>g> Sholpo, L.E., Paleomagnetizm (Paleomagnetism),<br />

Leningrad: Nedra, 1967 [in Russian].<br />

Kirsch, K.-H., Dinoflagellatenzysten aus der Obekreide des<br />

Helvetikums und Nordultrahelvetikums v<strong>on</strong> Oberbayern,<br />

Abh. Munchner Geowiss, 1991, A. 92, pp. 1–306.<br />

Kirschvink, J.L., The Least Square Line <str<strong>on</strong>g>and</str<strong>on</strong>g> Plane <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

Analysis of Paleomagnetic <str<strong>on</strong>g>Data</str<strong>on</strong>g>, Geophys. J. R. Astr<strong>on</strong>. Soc.,<br />

1980, vol. 62, pp. 699–718.<br />

Kuz’mina, O.B., Volkova, V.S., Gnibidenko, Z.N., <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Lebedeva, N.K., Microphytofossils <str<strong>on</strong>g>and</str<strong>on</strong>g> Magnetostratigraphy<br />

of <strong>Upper</strong> Cretaceous <str<strong>on</strong>g>and</str<strong>on</strong>g> Cenozoic Deposits of the<br />

Southeastern Part of the West Siberian Plane, Geol. Geofiz.,<br />

2003, vol. 44, no. 4, pp. 348–363.<br />

Lebedeva, N.K., Dinocyst Biostratigraphy of <strong>Upper</strong> Cretaceous<br />

Deposits in the Usa River Basin (Polar Cis-Urals),<br />

Stratigr. Geol. Correlati<strong>on</strong>, 2005, vol. 13, no. 3, pp. 310–326.<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013<br />

Lebedeva, N.K., Dinocyst Biostratigraphy of the <strong>Upper</strong><br />

Cretaceous of Northern Siberia, Pale<strong>on</strong>tol. J., 2006, vol. 40,<br />

Suppl. 5, pp. S604–S621.<br />

Lebedeva, N.K., Dinocyst Biostratigraphy of <strong>Upper</strong> Cretaceous<br />

Deposits of Northern Siberiain Melovaya sistema<br />

Rossii i blizhnego zarubezh’ya: problemy stratigrafii i paleogeografii.<br />

Sb. nauch. tr. (Cretaceous System of Russia <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Adjacent Countries: Problems of Stratigraphy <str<strong>on</strong>g>and</str<strong>on</strong>g> Paleogeography.<br />

Book of Abstracts), Pervushov, E.M., Ed., Saratov:<br />

Izd. Saratov Univ., 2007.<br />

Markova, L.G., Istoriya razvitiya rannemelovoi flory<br />

Zapadno-Sibirskoi nizmennosti (po dannym palinologii)<br />

(History of Development of Early Cretaceous Flora in West<br />

Siberian Lowl<str<strong>on</strong>g>and</str<strong>on</strong>g>), Moscow: Nedra, 1971 [in Russian].<br />

Molostovskii, E.A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Khramov, A.N., Magnitostratigrafiya<br />

i ee znachenie v geologii (Magnetostratigraphy <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Its Geological Significance), Saratov: Izd. SGU, 1997<br />

[in Russian].<br />

Molostovskii, E.A., <str<strong>on</strong>g>Magnetostratigraphic</str<strong>on</strong>g> Timescale of the<br />

Phanerozoic. Its Modern Structure <str<strong>on</strong>g>and</str<strong>on</strong>g> Significance for<br />

Stratigraphy <str<strong>on</strong>g>and</str<strong>on</strong>g> Geodynamics, in Geologiya, geokhimiya i<br />

geofizika na rubezhe XX i XXI vekov. T. 3. Geofizika (Proc.<br />

All-Russian C<strong>on</strong>f. Geology, Geochemistry, <str<strong>on</strong>g>and</str<strong>on</strong>g> Geophysics<br />

at the Boundary of XX–XXI Centuries. Vol. 3. Geophysics),<br />

Moscow: Regi<strong>on</strong>al. Obsh. Organiz. Uchenykh po Probl.<br />

Prikladn. Geofiz., 2002, pp. 63–64.<br />

Olfer’ev, A.G. <str<strong>on</strong>g>and</str<strong>on</strong>g> Alekseev, A.S., Z<strong>on</strong>al Stratigraphic Scale<br />

of the <strong>Upper</strong> Cretaceous of the East-European Platform,<br />

Stratigr. Geol. Correlati<strong>on</strong>, 2003, vol. 11, no. 2, pp. 75–101.<br />

Ovechkina, M.N., Izvestkovyi nannoplankt<strong>on</strong> verkhnego<br />

mela (kampan i maastrikht) yuga i vostoka Russkoi plity<br />

(Calcareous Nannoplankt<strong>on</strong> of the <strong>Upper</strong> Cretaceous<br />

(Campanian <str<strong>on</strong>g>and</str<strong>on</strong>g> Maastrichtian) of the South <str<strong>on</strong>g>and</str<strong>on</strong>g> East of<br />

the Russian Plate), Moscow: Nauka, 2007 [in Russian].<br />

Paleomagnitologiya (Paleomagnetology) Khramov, A.N.,<br />

Ed., Leningrad: Nedra, 1982 [in Russian].<br />

Perch-Nielsen, K., Cenozoic Nannofossils in Plankt<strong>on</strong><br />

Stratigraphy, Bolli, H.M., Saunders, J.B., <str<strong>on</strong>g>and</str<strong>on</strong>g> Perch-<br />

Nielsen, K., Eds., Cambridge: Cambridge Univ. Press,<br />

1985, pp. 329–426.<br />

Podobina, V.M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Kseneva, T.G., Stratigraphy <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Microfauna of the <strong>Upper</strong> Cretaceous of the South of Western<br />

Siberia (Borehole no. 8, Russkaya Polyana District),<br />

Izv. Biiskogo Otd. Russk. Geogr. Obsh., 2007, no. 28,<br />

pp. 26–30.<br />

Purtova, S.I., Strepetilova, V.G., Shirokova, Yu.F., <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Bezrukova, T.S., Major Types of Spore-Pollen Complexes<br />

from <strong>Upper</strong> Cretaceous Deposits of the West Siberian Plane<br />

in Palinologicheskie issledovaniya mezozoya i kainozoya<br />

Zapadnoi Sibiri. Tr. ZapSibNIGNI (Palynologicval Studies<br />

of the Mesozoic <str<strong>on</strong>g>and</str<strong>on</strong>g> Cenozoic in Western Siberia. Tr.<br />

ZapSibNIGNI), 1980, no. 149, pp. 37–43.<br />

Reshenie 5-go Mezhvedomstvennogo regi<strong>on</strong>al’nogo stratigraficheskogo<br />

soveshchaniya po mezozoiskim otlozheniyam<br />

Zapadno-Sibirskoi ravniny (Resoluti<strong>on</strong> of the 5th Interdepartmental<br />

Regi<strong>on</strong>al Stratigraphic C<strong>on</strong>ference <strong>on</strong> the<br />

Mesozoic Deposits of the West Siberian Plane) Tyumen’:<br />

ZapSibNIGNI, 1991.<br />

Rovnina, L.V., Rodi<strong>on</strong>ova, M.K., Sadovnikova, T.K., et al.,<br />

Kompleksnye issledovaniya stratigrafii yury i nizhnego mela<br />

Zapadnoi Sibiri (Complex Studies of Jurassic <str<strong>on</strong>g>and</str<strong>on</strong>g> Lower


78<br />

Cretaceous in Western Siberia), Moscow: Nauka, 1978<br />

[in Russian].<br />

Savchenkova, O.O., First Finding of Dinocysts in Albian<br />

Deposits of Western Siberia, in Novosti pale<strong>on</strong>tologii i stratigrafii.<br />

Prilozhenie k zhurnalu “Geologiya i geofizika” (News<br />

of Pale<strong>on</strong>tology <str<strong>on</strong>g>and</str<strong>on</strong>g> Stratigraphy. Supplement to the Journal<br />

Geologiya i Geofizika), 2004, vol. 45, nos. 6–7,<br />

pp. 183–190.<br />

Schiøler, P. <str<strong>on</strong>g>and</str<strong>on</strong>g> Wils<strong>on</strong>, G.J., Maastrichtian Dinoflagellate<br />

Z<strong>on</strong>ati<strong>on</strong> in the Dan Field, Danish North Sea, Rev. Palaeobot.<br />

Palynol., 1993, vol. 78, pp. 321–351.<br />

Schiøler, P., Brinkhuis, H., R<strong>on</strong>caglia, L., <str<strong>on</strong>g>and</str<strong>on</strong>g> Wils<strong>on</strong>, G.J.,<br />

Dinoflagellate Biostratigraphy <str<strong>on</strong>g>and</str<strong>on</strong>g> Sequence Stratigraphy<br />

of the Type Maastrichtian (<strong>Upper</strong> Cretaceous), ENCI<br />

Quarry, the Netherl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, Marine Micropale<strong>on</strong>tol., 1997,<br />

vol. 31, pp. 321–351.<br />

Shirokova, Yu.F., Aptian, Albian, <str<strong>on</strong>g>and</str<strong>on</strong>g> Senomanian Stages<br />

in Stratigrafo-pale<strong>on</strong>tologicheskaya osnova detal’noi korrelyatsii<br />

neftegaz<strong>on</strong>osnykh otlozhenii Zapadno-Sibirskoi nizmennosti,<br />

Tr. ZapSibNIGNI (Stratigraphic-<str<strong>on</strong>g>Pale<strong>on</strong>tological</str<strong>on</strong>g><br />

Basis for Detail Correlati<strong>on</strong> of Oil-<str<strong>on</strong>g>and</str<strong>on</strong>g>-Gas Deposits of<br />

West Siberian Lowl<str<strong>on</strong>g>and</str<strong>on</strong>g>. Tr. ZapSibNIGNI), 1972, no. 48,<br />

pp. 202–205.<br />

Sissingh, W., Biostratigraphy of Cretaceous Calcareous Nannoplankt<strong>on</strong>,<br />

Geol. Mijnbouw., 1977, vol. 56(1), pp. 37–65.<br />

Slimani, H., Les Kystes de Dinoflagelles du Campanien au<br />

Danien dans la Regi<strong>on</strong> de Maastricht (Belgique, Pays-Bas)<br />

et de Turnhout (Belgique): Bioz<strong>on</strong>ati<strong>on</strong> et Correlati<strong>on</strong> Avec<br />

d’Autres Regi<strong>on</strong>s en Europe Occidentale, Geol. Pale<strong>on</strong>tol.,<br />

2001, vol. 35, pp. 161–201.<br />

Strepetilova, V.G. <str<strong>on</strong>g>and</str<strong>on</strong>g> Popovicheva, L.V., Justificati<strong>on</strong> of<br />

the Age of the Tanopcha Formati<strong>on</strong> Based <strong>on</strong> Palynological<br />

<str<strong>on</strong>g>Data</str<strong>on</strong>g> in Palinologicheskie issledovaniya mezozoya i kainozoya<br />

Zapadnoi Sibiri. Tr. ZapSibNIGNI (Palynological<br />

Studies of Mesozoic <str<strong>on</strong>g>and</str<strong>on</strong>g> Cenozoic in Western Siberia. Tr.<br />

ZapSibNIGNI), 1980, no. 149, pp. 89–96.<br />

Strepetilova, V.G., Biostratigraphy of Aptian–Tur<strong>on</strong>ian<br />

Deposits in the Nadym-Taz Interfluve, in Palinologicheskie<br />

issledovaniya mezozoya i kainozoya Zapadnoi Sibiri. Tr.<br />

ZapSibNIGNI (Palynological Studies of Mesozoic <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Cenozoic in Western Siberia. Tr. ZapSibNIGNI), 1980,<br />

no. 149, pp. 103–109.<br />

Strepetilova, V.G., Palynological Correlati<strong>on</strong> of Lower Cretaceous<br />

Deposits in the Nadym-Taz Interfluve, in Sporovopyl’tsevoi<br />

metod pri rek<strong>on</strong>struktsii paleorastitel’nosti i opredelenii<br />

biofatsii. Tr. ZapSibNIGNI (The Use of Spore-Pollen<br />

Method for Rec<strong>on</strong>structi<strong>on</strong> of Paleovegetati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Determinati<strong>on</strong><br />

of Paleofacies), 1984, no. 187, pp. 80–87.<br />

Strepetilova, V.G., Features of Spore-Pollen Complexes at<br />

the Early–Late Cretaceous Boundary in Biostratigrafiya<br />

osadochnogo chekhla Zapadno-Sibirskoi ravniny (Biostratigraphy<br />

of the Sedimentary Cover of the West Siberian<br />

Plane), Tyumen: ZapSibNIGNI, 1989, pp. 107–115.<br />

LEBEDEVA et al.<br />

Strepetilova, V.G., Palinostratigraphy of Aptian–Albian<br />

Deposits of the Eastern Part of the West Siberian Plane, in<br />

Palinologiya v stratigrafii (Palynology in Stratigraphy),<br />

Moscow: Nauka, 1994, pp. 90–92.<br />

Vasilieva, O.N., <strong>Upper</strong> Cretaceous Dinocysts in the Kushmurun<br />

Secti<strong>on</strong> (Northern Kazakhstan), in Palinologiya:<br />

teoriya i praktika. Materialy IX Vserossiiskoi palinologicheskoi<br />

k<strong>on</strong>ferentsii (Palynology: Theory <str<strong>on</strong>g>and</str<strong>on</strong>g> Practice.<br />

Proc. IX All-Russian Palynol. C<strong>on</strong>f.), Moscow: PIN RAN,<br />

2005, pp. 40–41.<br />

Vasilieva, O.N. <str<strong>on</strong>g>and</str<strong>on</strong>g> Levina, A.P., Organic-Walled Phytoplankt<strong>on</strong><br />

in <strong>Upper</strong> Cretaceous <str<strong>on</strong>g>and</str<strong>on</strong>g> Paleogene Deposits in<br />

the Kushmurun Secti<strong>on</strong>, Turgai Depressi<strong>on</strong> (Kazakhstan),<br />

Byull. Mosk. O-va Ispyt. Prir. Otd. Geol., 2007, vol. 82, no. 2,<br />

pp. 40–55.<br />

Verkhnemelovye otlozheniya Yuzhnogo Zaural’ya (rai<strong>on</strong><br />

verkhnego Pritobol’ya) (<strong>Upper</strong> Cretaceous Deposits of the<br />

Southern Trans-Urals (Regi<strong>on</strong> of the <strong>Upper</strong> Tobol River)),<br />

Papulov, G.N., Zhelezko, V.I., <str<strong>on</strong>g>and</str<strong>on</strong>g> Levin, A.P., Eds., Sverdlovsk:<br />

Izd. UrO AN SSSR, 1990 [in Russian].<br />

Volkova, V.S., Kul’kova, I.A., <str<strong>on</strong>g>and</str<strong>on</strong>g> Kuz’mina, O.B.,<br />

Palynostratigraphy of Paleogene <str<strong>on</strong>g>and</str<strong>on</strong>g> Neogene Deposits of<br />

the Baraba-Kulunda Facies Z<strong>on</strong>e of West Siberia, Geol.<br />

Geofiz., 2002, vol. 43, no. 11, pp. 1017–1037.<br />

Volkova, V.S., Kuz’mina, O.B., <str<strong>on</strong>g>and</str<strong>on</strong>g> Kul’kova, I.A., Marine<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>tinental Paleogene <str<strong>on</strong>g>and</str<strong>on</strong>g> Miocene of Southern Part<br />

of the Baraba Facies Z<strong>on</strong>e of West Siberia, Geol. Geofiz.,<br />

2005, vol. 46, no. 1, pp. 60–71.<br />

Iakovleva, A.I., Aleks<str<strong>on</strong>g>and</str<strong>on</strong>g>rova, G.N., <str<strong>on</strong>g>and</str<strong>on</strong>g> Zaporozhets, N.I.,<br />

The Results of Studying Dinocysts from <strong>Upper</strong> Cretaceous–Lower<br />

Paleogene (Boreholes nos. 8, 10; Russkaya<br />

Polyana Area, Southwestern Siberia) in Evolyutsiya zhizni<br />

na Zemle. Materialy IV Mezhdunarodnogo simpoziuma, 10–<br />

12 noyabrya 2010 g. (Evoluti<strong>on</strong> of Life in the Earth. Proc.<br />

IV Intern. Symp. November, 10–12, 2010), Podobina V.M.,<br />

Ed., Tomsk: TML-Press, 2010, pp. 432–435.<br />

Iakovleva, A.I., Aleks<str<strong>on</strong>g>and</str<strong>on</strong>g>rova, G.N., <str<strong>on</strong>g>and</str<strong>on</strong>g> Gnibidenko, Z.N.,<br />

Age Refinement of Lyulinvor Formati<strong>on</strong> in the South of<br />

Western Siberia in Pale<strong>on</strong>tologiya, stratigrafiya i paleogeografiya<br />

mezozoya i kainozoya boreal’nykh rai<strong>on</strong>ov. Materialy<br />

nauch. sessii. T. II (Pale<strong>on</strong>tology, Stratigraphy <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Paleogeography of the Mesozoic <str<strong>on</strong>g>and</str<strong>on</strong>g> Cenozoic of Boreal<br />

Regi<strong>on</strong>s. Proc. of Sci. Sessi<strong>on</strong>. Vol. 2) Shurygin, B.N., Lebedev,<br />

N.K., <str<strong>on</strong>g>and</str<strong>on</strong>g> Goryachev, A.A., Eds., Novosibirsk: INGG<br />

SO RAN, 2011.<br />

Zakharov, V.A., Lebedeva, N.K., <str<strong>on</strong>g>and</str<strong>on</strong>g> Khomentovsky, O.V.,<br />

<strong>Upper</strong> Cretaceous Inoceramid <str<strong>on</strong>g>and</str<strong>on</strong>g> Dinoflagellate Cysts<br />

Biostratigraphy of the Northern Siberia, in Tethyan/Boreal<br />

Cretaceous Correlati<strong>on</strong>. Mediterranean <str<strong>on</strong>g>and</str<strong>on</strong>g> Boreal Cretaceous<br />

Paleobiogeographic Areas in Central <str<strong>on</strong>g>and</str<strong>on</strong>g> Eastern<br />

Europe, Michalik J., Ed., Bratislava: VEDA, Publ. House<br />

Slovak Ac. Sci., 2002, pp. 137–172.<br />

Zijderveld, J.D.A., A.C. Demagnetizati<strong>on</strong> of Rocks: Analysis<br />

of Results, in Methods in Paleomagnetism, Amsterdam:<br />

Elsevier, 1967, pp. 254–286.<br />

STRATIGRAPHY AND GEOLOGICAL CORRELATION Vol. 21 No. 1 2013

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!