17.07.2013 Views

Kemira Oyj/Kemira M&I ABSTRACT Vesa Kettunen ... - Svenskt Vatten

Kemira Oyj/Kemira M&I ABSTRACT Vesa Kettunen ... - Svenskt Vatten

Kemira Oyj/Kemira M&I ABSTRACT Vesa Kettunen ... - Svenskt Vatten

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Kemira</strong> <strong>Oyj</strong>/<strong>Kemira</strong> M&I <strong>ABSTRACT</strong><br />

<strong>Vesa</strong> <strong>Kettunen</strong> 17th Jan 2013<br />

Author: <strong>Vesa</strong> <strong>Kettunen</strong><br />

Application Manager<br />

<strong>Kemira</strong> <strong>Oyj</strong> / Municipal&Industrial<br />

vesa.kettunen@kemira.com<br />

This abstract is meant for platform presentation. Presentation language is<br />

English.<br />

CHEMICAL METHODS IN THE CONTROLLING OF<br />

CORROSION AND ODOURS IN MUNICIPAL SEWERS<br />

Due to the new wastewater purification demands and cost optimisation, the<br />

number of municipal wastewater treatment plants is decreasing. This means<br />

that longer sewer systems need to be constructed. Today even 10-20km<br />

long sewers are not rare any more.<br />

In the long sewers there is more time for microbiological activity and this<br />

may cause problems. The most common problems in sewers are odour<br />

formation and corrosion. Hydrogen sulphide(H2S) formation in the sewer<br />

systems is the main reason for problems.<br />

H2S gas is toxic to humans in high concentrations and causes unpleasant<br />

odours even at very low concentrations. These odours may be released to<br />

air in sewer pumping stations causing odour problems.<br />

In the existing sewer network concrete is widely used construction material.<br />

H2S gas may cause severe corrosion to concrete, because in contact with air<br />

and moisture, H2S gas will react and form sulphuric acid.<br />

H2S formation in municipal sewer systems can be controlled in several<br />

ways. Aeration and the use of oxidative chemicals provide the oxygen to<br />

the water and will prevent H2S formation. However, many times the<br />

problem with these methods is very short effect. Microbiological activity<br />

consumes oxygen fast and then H2S formation starts again.<br />

The addition of iron is efficient in H2S control, because iron can chemically<br />

bind sulphide and this way prevent H2S release and sulphuric acid<br />

formation. Iron also gives clearly longer lasting effect compared to oxygen.<br />

The efficiency of iron can be further improved by combining it with nitrate.<br />

Nitrate will function like oxygen, will release oxygen and this way prevent<br />

H2S formation.<br />

H2S Guard is <strong>Kemira</strong>s concept for corrosion and odour control is sewers. It<br />

provides continuous H2S measurement from sewer. Iron (and nitrate)<br />

containing chemicals can be dosed to the sewer in order to decrease H2S to<br />

the target level.


PDF-XChange<br />

w w w.tracker-software.co m<br />

Click to buy NOW!<br />

Wastewater Overflow Reduction Project in Vantaa River Catchment Area<br />

Aninka Urho, project coordinator, Helsinki Region Environmental Services<br />

Authority<br />

Aninka.urho@hsy.fi, Platform presentation in English<br />

Vantaa River catchment area is located in the most densely populated area of Finland. Wastewater overflows<br />

into the river have been a matter of great public interest of great interest recently. The current method of<br />

leading untreated wastewater into the nearest watercourse when there is a fault or overload in the sewer<br />

system has faced strong resistance among environmentalists.<br />

There are 9 participating organisations in this project:<br />

Helsinki Region Environmental Services Authority, Project coordination<br />

Municipal utilities from Riihimäki, Hyvinkää, Nurmijärvi, Kerava, Tuusula and Järvenpää<br />

Keski-Uusimaa Joint Municipal Board for Water Pollution Control (KUVES)<br />

The Water Protection Association of the River Vantaa and Helsinki Region<br />

This cooperation project is financed by Regional Development Fund of Uusimaa (national allowance) and<br />

Water Utilities Development Fund. Project duration is 2 years (2012-2013) and total budget 170 000 €.<br />

The aim of the project is to decrease wastewater overflows by various means:<br />

1. The project was started by defining a Vision, a Strategy and an Action Plan for stopping<br />

wastewater discharges into the Vantaa River. The vision is: “No untreated wastewater spills into<br />

waters”. Significant investments and an attitude change within the utilities are demanded to reach<br />

this challenging vision.<br />

The Strategy and Action programme is divided into three themes: a) Reliable pumping stations, b)<br />

adequate condition and correct sizing of wastewater networks c) I/I control management. The cost<br />

impacts of the Action Plan will be assessed by consultant.<br />

2. Reliable pumping stations are the key aspect when fighting against sewer overflows. In this project<br />

the pumping specialists from the utilities defined together the best practices concerning a) pumping<br />

station equipment and b) operation and maintenance procedures.<br />

3. The performance of utilities can be enhanced by developing staff training, interest group<br />

cooperation and customer guidance. Small pilot projects related to these topics are to be launched<br />

during 2013.<br />

PDF-XChange<br />

w w w.tracker-software.co m<br />

Click to buy NOW!


Distribueret temperatur måling til opsporing af<br />

fejlkoblinger i spildevandsledninger<br />

Mads Uggerby 1 , Anne Laustsen 2 , Bo Snediker Jacobsen 2 , Peter Hjortdal 2 , Jes Vollertsen 3 , Carsten Jensen 4 ,<br />

Rémy Schilperoort 5 , Jeroen Langeveld 6<br />

1 EnviDan A/S; 2 Aarhus Vand A/S; 3 Aalborg Universitet; 4 Per Aarslef A/S; 5 Royal HaskoningDHV; 6 Delft<br />

University of Technology<br />

E-mail of presenting author, Mads Uggerby: mau@envidan.dk<br />

Platform presentation<br />

Danish language<br />

Fejlkobling af spildevand og regnvand er et hyppigt forekommende problem i separatkloakerede oplande.<br />

Undersøgelser udført af Aarhus Vand viser, at en fejlkoblingsgrad på 5-10% ikke er ualmindelig, hvilket<br />

betyder hydraulisk overbelastning af spildevandsledninger, såvel som uønsket miljøbelastning via<br />

regnvandsledninger. Specielt førstnævnte er et væsentligt problem for forsyningen, idet folk i<br />

separatkloakerede oplande oplever kælderoversvømmelser via spildevansledningen.<br />

Fejlkoblet regnvand kan spores på en række måder, hvor den hyppigst anvendte er at hælde vand i nedløb<br />

og riste samtidigt med, at spildevandsstik inspiceres med tv. Metoden kræver, at den udførende<br />

entreprenør får adgang til privat grund, samt at alle nedløb og riste er tilgængelige. Metoden er derfor ikke<br />

uproblematisk, og man har derfor været på udkik efter alternativer hertil.<br />

Ny forskning udført i især Holland har vist, at distribueret temperatur måling (Distributet Temperature<br />

Sensor, DTS) – som det kendes fra en række applikationer indenfor fx olie- og gasindvinding – også kan<br />

anvendes til at opspore fejlkoblinger i afløbssystemer. En DTS måling foretages med et fiberoptisk kabel,<br />

der installeres på bunden af en regnvands- eller spildevandsledning. Kablet forbindes med et instrument,<br />

der sender laserimpulser ind i kablet, og analyserer på det signal, der reflekteres af glassets amorfe<br />

struktur. Mønsteret med hvilken signalet reflekteres bestemmes bl.a. af kablets temperatur, og kablet<br />

fungerer herved som én lang temperaturføler, hvor temperaturen kan registreres kontinuert i hele kablets<br />

længde. Der anvendes et specialbygget instrument, der integrerer laser, dataopsamling og computer i én<br />

enhed. I praksis er det computerens ydeevne, der sætter grænsen for den nøjagtighed med hvilken<br />

temperaturen kan måles, og den opløsning, der kan opnås i tid og sted. Typiske nøjagtigheder er en<br />

temperaturopløsning på 0,1°C, en stedslig opløsning på 1-2 meter og en tidslig opløsning på 15-60<br />

sekunder. Typiske maksimale kabelængder er i praksis knap 2 km.<br />

EnviDan A/S, Aarhus Vand A/S, Aalborg Universitet og Per Aarslef A/S har, i samarbejde med Royal<br />

HaskoningDHV iHolland, og støttet af Vandteknologiudviklingsfonden (VTUF), igangsat et forsknings- og<br />

udviklingsprojekt hvor vi videreudvikler DTS teknologien og implementerer den i et forsøgsopland i Aarhus<br />

kommune. Vi udvikler teknologien til danske forhold, og anvender den i et antal separate<br />

spildevandssystemer, hvor vi benytter temperaturmålingen til at identificere lokaliteter, hvor


uvedkommende regnvand er koblet på spildevansledningen. En sådan tilledning vil ses som en pludselig<br />

temperaturstigning eller –fald når regnvand når ned i ledningen. Endvidere vil vi kunne se hvor der sker<br />

anden sporadisk tilledning af uvedkommende vand, så som overlækning og omfangsdræn.<br />

DTS giver en meget stor datamængde, der efterfølgende kræver systematisk behandling. Således vil en<br />

enkelt målekampagne let føre til i størrelsesorden 100 millioner individuelle temperaturregistreringer. I<br />

projektet udvikler vi et GIS baseret værktøj, der automatisk analyserer disse datamængder og fortæller<br />

brugeren hvor der sker tilledning af uvedkommende vand, samt tilledningens natur.<br />

I nærværende præsentation viser vi resultaterne af den første målekampagne udført på cirka 1½ km<br />

spildevandsledning i en mindre by nord for Aarhus. Vi viser hvordan metoden kan benyttes til at<br />

identificere forskellig former for uvedkommende vand, og viser detaljer af værktøjet til dataanalyse. På<br />

samme opland identificere vi endvidere uvedkommende vand på traditionel vis – altså ved at hælde vand i<br />

nedløb og riste under samtidig visuel inspektion med kloak-tv. Vi sammenligner herpå de to metoder og<br />

diskuterer praktisk og økonomisk fordele og ulemper ved DTS.


Inlägg 13:e Nordiska Avloppskonferensen, Malmö 8-10 oktober 2013<br />

Annika Malm, kretslopp och vatten<br />

David Jacobsson, kretslopp och vatten<br />

Karin Thörnqvist, kretslopp och vatten*<br />

*karin.thornqvist@kretsloppochvatten.goteborg.se<br />

KRITISKA LEDNINGSNÄTET I GÖTEBORG<br />

Bakgrund<br />

Riskanalyser är en tillgång inom förebyggande arbete, och genom att använda riskanalyser<br />

kan man hitta svaga punkter i avloppsledningsnätet innan något akut inträffar. Kretslopp och<br />

vatten bedömer att ett effektivt förebyggande arbete inte innebär att utföra riskanalyser för<br />

hela ledningsnätet, utan att riktade insatser inom vissa strategiska områden är mer effektivt.<br />

De riktade insatserna skall göras för de ledningar som, vid problem, ger stor påverkan på<br />

samhälle, verksamhet och brukare. Dessa ledningar, som kallas kritiska ledningar, skall<br />

inspekteras i förebyggande syfte, med målsättningen att samtliga kritiska ledningar skall<br />

inspekteras under en tioårsperiod med start 2010. Övriga ledningar inspekteras inte i<br />

förebyggande syfte, utan åtgärdas efter driftstörningar.<br />

Metodik<br />

Ledningar, där sannolikheten att något allvarligt kommer att ske är hög, kallas<br />

sannolikhetsledningar, och kan exempelvis vara ledningar där många stopp inträffar eller<br />

ledningar där problem med svavelväte förekommer. Sannolikhetsledningar har tagits fram på<br />

erfarenhetsbasis. Utfallet är lågt då många av dessa ledningar åtgärdats när väl problemen<br />

upptäckts. Det är i många fall inte effektivt att ta fram alla sannolikhetsledningar på förhand,<br />

utan bättre att lösa problemen när de väl uppstår.<br />

Exempel på sannolikhetsledningar:<br />

• Ledningar med mycket stopp<br />

• Träledningar<br />

• Lergodsledningar med större dimension än 300 mm<br />

Ledningar, som vid driftavbrott ger stora konsekvenser, t.ex. ledningar i hårt trafikerade gator<br />

eller ledningar som vid driftavbrott drabbar många brukare, kallas konsekvensledningar. Ju<br />

större konsekvens desto mer kostar det. Konsekvensledningarna har tagits fram ur GISdatabasen<br />

samt kompletterats med erfarenheter från både kretslopp och vatten och Göteborg<br />

Energi.<br />

Exempel på konsekvensledningar:<br />

• Dagvattenledningar med större dimension än 1 500 mm<br />

• Kombinerade ledningar med större dimension än 1000 mm<br />

• Spillvattenledningar med dimension som är större eller lika med 500 mm<br />

• Ledningar under järnväg, spårväg, motorväg, vattendrag och byggnader<br />

• Ledningar som vid störning ger konsekvenser för råvattnet<br />

En risk definieras som en konsekvens sammanvägt med sannolikhet. Stor konsekvens och hög<br />

sannolikhet innebär en hög risk. Kritiska ledningar kan vara antingen sannolikhetsledningar,


konsekvensledningar eller både och. Detta kan redovisas i en riskmatris, se figur, där de<br />

kritiska ledningarna hamnar inom rött område.<br />

Resultat<br />

Kretslopp och vatten har totalt 2 500 km avloppsledningar, av vilka kritiska ledningsnätet<br />

utgör 265 km, dvs. omkring 10 %. För att uppfylla målsättningen skall drygt 25 km av dessa<br />

inspekteras varje år. De kritiska ledningarna finns redovisade i kretslopp och vattens GISdatabas.<br />

Prioritering av vilka ledningar som skall inspekteras när, görs på följande kriterier:<br />

• Kritiska ledningar med störst konsekvens<br />

• Driftstörningar i det kritiska ledningsnätet<br />

• Kommunens beläggningsprogram<br />

• Planerade spårvägsavstängningar<br />

• Remisser<br />

• Detaljplaner och bygglov<br />

• Kritiska ledningar i investeringsprojekt eller planerat underhåll<br />

• Planlagda inspektioner av ledningar som skall inspekteras för andra gången<br />

Ledningarna inspekteras med hjälp av filmkamera eller okulärt, genom att en person går i<br />

ledningen. Okulär besiktning är dock enbart möjligt i stora ledningar som ej står dämda. När<br />

en ledning inspekteras bedöms status, om åtgärder krävs samt när nästa inspektion skall göras.<br />

Resultaten dokumenteras väl och skall följas upp. Grundtanken är att samtliga kritiska<br />

ledningar skall besiktas vart tionde år, men detta bedöms från fall till fall.<br />

Kretslopp och vatten anser att detta arbetssätt ger en bra uppfattning om ledningsnätets status.<br />

Det anses inte motiverat att regelbundet inspektera hela ledningsnätet, utan det är fullt<br />

tillräckligt att besiktiga de kritiska ledningarna. Man har möjlighet att hitta problem och hinna<br />

åtgärda ledningar innan något händer, och slipper på så sätt de stora konsekvenser för<br />

samhället som en driftstörning hos en kritisk ledning skulle innebära.


Pres_Agertved_Samstyring_ Reneseanlæg og afløbssystem_regnprogose.docx<br />

13 th Nordic Wastewater Conference, 2013<br />

Abstract til mundtlig præsentation under temaet:<br />

“Integrated wastewater systems – a holistic approach”<br />

Sprog -Dansk<br />

Titel<br />

”Intelligent Spildevandshåndtering – regnprognose og integreret styring af afløbssystem og renseanlæg”<br />

Forfattere<br />

Jeanette Agertved 1* , Henrik Sønderup 2 , Henrik Dehn 3 , Lorenzo Benedetti 4 , Carsten Thirsing 5 og Kim<br />

Rindel 5<br />

1 EnviDan A/S, Fuglebækvej 1A, 2770 Kastrup, Danmark * e-mail adresse: jam@envidan.dk<br />

2 Rambøll, Hannemanns Alle 53, 2300 København, Danmark<br />

3 HOFOR A/S, Ørestads Boulevard 35, 2300 København S, Danmark<br />

4 WATERWAYS srl Via del Ferrone 88 50023 Impruneta (FI) Italy<br />

5 Lynettefælleskabet, Refshalevej 250, 1432 København K<br />

Stikord<br />

MIKE URBAN, WEST, Integrering af matematiske modeller, styring og regulering, reduktion af bypass,<br />

regnprognose, forvarsling, tilbageholdelse i afløbssystem, driftsomkostninger<br />

Abstract<br />

Modelberegninger viser, at tilbageholdelse af spildevandvand i afløbssystemet på Amager ved styring<br />

af pumpestationer kombineret med anvendelse af radarbaseret prognose for indløbsflow til<br />

Renseanlæg Lynetten samlet set kan halverer aflastningerne fra anlægget, hvormed den stofmæssige<br />

belastning af recipienten reduceres betragteligt.<br />

EnviDan Øst, A/S • Fuglebækvej 1A • DK-2770 Kastrup • Tlf.: 32 50 79 44• www.envidan.dk


Pres_Agertved_Samstyring_ Reneseanlæg og afløbssystem_regnprogose.docx<br />

EnviDan Øst, A/S • Fuglebækvej 1A • DK-2770 Kastrup • Tlf.: 32 50 79 44• www.envidan.dk<br />

Side 2 af 4<br />

Projektet Intelligent Spildevandshåndtering blev i gangsat af Lynettefællesskabet I/S i samarbejde<br />

med de otte ejerkommuner og deres respektive Forsyningsselskaber i 2008. De otte kommuner afleder<br />

regn-og spildevand til to renseanlæg med en kapacitet på hhv. Renseanlæg Damhusåen (350.000<br />

PE) og Renseanlæg Lynetten (750.000 PEProjektet har haft til formål;<br />

At udvikle en optimal driftsmæssig styring af det samlede eksisterende spildevandssystem i<br />

Lynettefællesskabets opland<br />

At gøre Lynettefællesskabet og dets ejerkommuner som centrale udførende virksomheder<br />

indenfor udvikling af området<br />

Projektet er gennemført i 4 faser, og projektforløbet fremgår af nedenstående figur:<br />

Figur 1: Faseopdelt projektforløb<br />

Renseanlæg Lynetten aflaster forrenset spildevand efter primærtankene via et bypass til recipienten<br />

Øresund. Aflastningerne sker næsten hver gang det regner og udgør typisk 1-2 mio m 3 på årsbasis.<br />

Vandkvalitetsmålinger viser, at koncentrationerne af forureningsparameter i bypass er meget<br />

høje i betragtning af, at der er tale om fortyndet spildevand og at vandet har passeret primærtankene.<br />

Der er identificeret to årsager aflastningerne fra Lynetten:<br />

1. Den samlede kapacitet af de tre hovedpumpestationer, der pumper vand fra oplandet til<br />

renseanlægget, er væsentlig større end den biologiske kapacitet på Lynetten. Der er således<br />

tale om trykledninger, hvormed der ved en stigning i flowet indledningsvist aflastes ufortyndet<br />

spildevand.<br />

2. Omstilling til regnstyring på anlægget sker i dag, når indløbsflowet til anlægget overskrider<br />

den biologiske kapacitet. Herved øges den hydrauliske kapacitet fra 17.000 m 3 /h tl 23.000<br />

m 3 /h over to timer. En rettidig omstilling kan potentielt reducere aflastning via bypass.<br />

I projektet er det undersøgt to tiltag til reduktion af hyppigheden af bypass:


Pres_Agertved_Samstyring_ Reneseanlæg og afløbssystem_regnprogose.docx<br />

EnviDan Øst, A/S • Fuglebækvej 1A • DK-2770 Kastrup • Tlf.: 32 50 79 44• www.envidan.dk<br />

Side 3 af 4<br />

1. Øget tilbageholdelse af spildevand i store magasineringsvoluminer på Øst- og Vestamager<br />

gennem styring af pumpestationer, således at afledningen herfra begrænses, når tilløbshydrografen<br />

til Lynetten overskrider anlæggets biologiske kapacitet.<br />

2. Anvendelse af prognose for indløbsflow til Lynetten til omstilling til regnstyring. Der er regnet<br />

på forvarsling fra regnmålere samt forvarsling på basis af egentlig flowprognose, der<br />

forudsiger indløbet til Lynetten en eller to timer i forvejen.<br />

Vurderingen af tiltagene er gennemført ved at anvende modeller for hhv. renseanlægget (WEST) og<br />

for afløbssystemet (MIKE URBAN).<br />

Modelberegningerne viser et stort potentiale for en miljømæssig optimering af det samlede spildevandssystemet<br />

gennem bedre udnyttelse af magasineringsvolumner på Amager og forvarsling for<br />

omstilling til regnstyring på renseanlæget, se figur 2 og 3.<br />

Figur 2: Beregnet reduktion af aflastede stofmængder ved optimering af tilløbshydrografen til Renseanlæg<br />

Lynetten.


Pres_Agertved_Samstyring_ Reneseanlæg og afløbssystem_regnprogose.docx<br />

EnviDan Øst, A/S • Fuglebækvej 1A • DK-2770 Kastrup • Tlf.: 32 50 79 44• www.envidan.dk<br />

Side 4 af 4<br />

Figur 3: Beregnet reduktion af aflastede stofmængder til recipienten ved forvarsling til omstilling af<br />

regnstyring på renseanlæg Lynetten.<br />

Ved at optimere i forhold til vandmiljøet gennem reduktion af bypass mængden ledes en tilsvarende<br />

øget mængde spildevand til renseanlægget. Dette resulterer i ekstra driftsomkostninger samt en<br />

øget statsafgift for afledning af forureningsparameterne (BOD, Total-N og Total-P).<br />

Ud over disse resultaterne er der i projektgruppen foregået en løbende erfaringsudveksling og dermed<br />

en bedre forståelse for funktionen af det samlede spildevandssystem og hvilke potentialer der<br />

eksistere for optimering af spildevandssystemet.<br />

De beregningsmodeller, der er opstillet i projektet Intelligent Spildevandshåndtering, er sideløbende<br />

blevet anvendt til projektering og planlægning hos flere af forsyningsselskaberne til andre projekter,<br />

bl.a. til klimatilpasningsplan for Københavns Kommune, projekter for reduktion af aflastninger<br />

til Damhusåen, spildevandsplanlægning i Gentofte og Gladsaxe, projekter på DTU og til udviklingsprojekterne<br />

METSAM og SWI.


Presentation på svenska<br />

Rubrik: ”Är bräddning från avloppsledningsnät ett hot mot miljökvalitetsnormer och<br />

dricksvattenförsörjning?”<br />

Författare: Åsa Bengtsson Sjörs, Daniel Larson, Lena Thyberg och Sofia Billvik<br />

Föredragshållare: Åsa Bengtsson Sjörs och Daniel Larsson<br />

Organisation: WSP Samhällsbyggnad<br />

Epost: asa.bengtsson.sjors@wspgroup.se daniel.larson@wspgroup.se<br />

Nyckelord: Bräddning miljöpåverkan avloppsledningsnät<br />

WSP utför under våren 2013 en förstudie inom bräddningars påverkan på recipienter med<br />

avseende på övergödning och hygieniska risker. Metoden som vi vill presentera på<br />

NORDIWA 2013 kommer att användas vid en huvudstudie där den nationella problembilden<br />

av bräddning ska kartläggas.<br />

Abstract<br />

Bräddning från avloppsledningsnät leder till utsläpp av näringsämnen och smittoämnen som<br />

kan bidra till både övergödning och att försämra vattenkvaliteten i dricksvattentäkter. Det<br />

finns ingen rikstäckande kvantifiering av bräddproblemets omfattning och riskerna med<br />

bräddning från avloppsledningsnäten är oftast inte kartlagda. Samtidigt finns en fara att<br />

klimatförändringar kommer att innebära en ökning av mängden avloppsvatten som bräddas.<br />

Det finns idag inga utarbetade riktlinjer om hur kvantifiering av bräddning från ledningsnät<br />

ska utföras. Många VA-huvudmän har bräddregistrering eller utför någon form av<br />

bräddberäkning idag, men man använder många olika metoder och det finns ingen säkerhet<br />

för hur tillförlitliga metoderna är. För att få ett samlat grepp har en tillämpbar metodik<br />

arbetats fram.<br />

<strong>Svenskt</strong> <strong>Vatten</strong> har med hjälp av WSP arbetat fram en metodik för kartläggning och<br />

kvantifiering av bräddningars påverkan. I metodiken ingår att kartlägga bräddningens<br />

omfattning samt att koppla omfattningen till påverkan på recipient och<br />

dricksvattenförsörjning. För påverkan på recipient utgår metoden från bedömningssystemet<br />

för miljökvalitetsnormer i ytvatten.<br />

Inom tillsyn och prövning har miljökvalitetsnormer för vatten fått ett allt större fokus. Målet<br />

är att samtliga ytvatten ska uppvisa en god ekologisk status. Ett av de miljöproblem som<br />

särskilt uppmärksammats är övergödning, där avloppsförsörjning pekats ut som en viktig<br />

källa. Eftersom bräddning kan utgöra en betydande, men ofta okänd del, av<br />

näringsämnesbelastningen från avloppsförsörjningsanläggningar så är det troligt att krav på<br />

utredningar och åtgärder som avser bräddning kommer att öka. Det är också av intresse att få<br />

fram underlag som kan användas i kommunernas arbete med lokala åtgärdsprogram som en<br />

del i vattenförvaltningsarbetet.<br />

Den brädddata som nu kommer att tas fram i Sveriges kommuner kan analyseras på många<br />

sätt. Exempel på detta är en bedömning av vilken utsträckning som bräddning i ledningsnät<br />

orsakas av påkopplade takavlopp, brister på privata fastigheter eller otäta självfallsledningar.<br />

Att identifiera de olika skälen för bräddning ger en uppfattning om hur kostnaden för att<br />

åtgärda problemet kan räknas fram. Tidpunkt på året då bräddningen sker kan ge en hint om<br />

lämplig åtgärd, och kan också ställas i relation till hur känslig en recipient är för orenat<br />

avloppsvatten vid denna tidpunkt.


Disinfection of Combined Sewer Overflow with Micro-Screening<br />

Combined with Ozone or Chlorine Dioxide<br />

F. Nilsson A , J. Väänänen B , S. Haghighatafshar C , M. Hagman D , G. Hey E & K. Jönsson F<br />

A: Corresponding Author, Ind. Ph.D student, Water & Env. Eng. at Dep. Chem. Eng. Lund University and<br />

Primozone Production AB, Terminalvägen 2, SE-24642, Löddeköpinge, Sweden, filip.nilsson@primozone.com<br />

B: Ind. Ph.D student, Water & Env. Eng. at Dep. Chem. Eng. Lund University and Hydrotech AB<br />

C: Project Assistant, Water & Env. Eng. at Dep. Chem. Eng. Lund University<br />

D: Ph.D, NSVA (municipal company operating Öresundsverket WWTP)<br />

E: Ph.D student, Water & Env. Eng. at Dep. Chem. Eng. Lund University<br />

F: Associate professor, Water & Env. Eng. at Dep. Chem. Eng, Lund University<br />

Abstract<br />

During wet weather flow (WWF) the capacity of a wastewater treatment plant (WWTP) can<br />

be exceeded, leading to a portion of the flow being discharged into the recipient either untreated<br />

or only partially treated . This flow, combined sewer overflow (CSO), can be a major<br />

contributor of pathogens found in receiving waters. It is possible to disinfect CSO with a<br />

number of methods including UV, ozone, hydrogen peroxide, chlorine, chlorine dioxide etc.<br />

But due to the fickle nature of the appearance of CSO, high chemical oxygen demand (COD)<br />

and particle content, it can be difficult and costly to implement [1]. In 2006, the EU issued a<br />

new bathing water directive which specifies that for sufficient quality coastal bathing water,<br />

Escherichia Coli and intestinal Enterococci levels cannot exceed 500 and 185 cfu/100 ml,<br />

respectively [2]. The aim of this study is to evaluate the efficiency of ozone and chlorine<br />

dioxide for reducing Escherichia Coli, intestinal Enterococci and total coliform bacteria in<br />

CSO to comply with the EU directive.<br />

A pilot plant was set up in order to treat the incoming wastewater at Öresundsverket WWTP<br />

in southern Sweden. The wastewater passed through screens and aerated grit chambers before<br />

being pumped into the pilot plant. The pilot plant consisted of chemical phosphorus<br />

precipitation (coagulation/flocculation) and 100 µm screening as a primary treatment<br />

followed by ozone injection for disinfection. In parallel to the ozone treatment, the screened<br />

water was treated in lab-scale with chlorine dioxide. Since the CSO had been treated by<br />

micro-screening prior to addition of disinfection agent it was hypothesised that the dose<br />

needed would be in a range of 3-12 g O3/m 3 for ozone and 5-15 g ClO2/m 3 for chlorine<br />

dioxide, with 8 minutes hydraulic retention times for both disinfection agents. Along with<br />

microbiological analysis of the three target organisms, the pilot plant was evaluated for<br />

phosphorus-, SS-, COD-, BOD- and turbidity reductions.


The trial experiments showed that lab-scale chlorine dioxide addition to chemically<br />

precipitated and screened wastewater was the most effective disinfectant, achieving a<br />

reduction of all three target organisms down to


Jukka Yli-Kuivila, project manager, investments for water services<br />

Helsinki Region Environmental Services Authority HSY<br />

jukka.yli-kuivila@hsy.fi<br />

NORDIWA 2013 13th Nordic Wastewater Conference, platform presentation, English<br />

No prolonged maintenance breaks in a sewer rocktunnel<br />

A general plan for a new 150 000 m 3 /d wastewater treatment plant in Espoo, Finland was completed in<br />

October 2011. Purified wastewater should be transferred 8,5 km via a rocktunnel to the outlet tunnel of the<br />

present WWTP. The tunnel would be below a river at -20 m depth and further below a metro at -60 m. If<br />

water could not pass through the tunnel, a six months period was estimated to be needed for fixing it.<br />

Meanwhile the water would be discharged to the crossing river. This was estimated to happen once within a<br />

hundred years.<br />

The river leads to the Gulf of Espoo (Baltic Sea), where lives a population of Macroplea pubipennis– very<br />

rare water insect, protected by a national law and Natura-2000 program. Regional environmental authorities<br />

wrote in November 2012, that no major risk for that insect population could be allowed. This meant a delay<br />

risk for the whole 286 million euros WWTP project, and possible 20 million euros extra investment costs for<br />

an emergency outlet tunnel. Therefore the outlet tunnel plans are updated as follows and extra costs limited<br />

to about 2 million euros.<br />

The part of the outlet tunnel from the new WWTP to the river will be blasted above the sea level. This part<br />

can be reached by men and vehicles whenever needed. Most inspection and maintenance can take place,<br />

while the WWTP and the outlet tunnel are operated normally. If those duties can’t be completed when water<br />

is flowing on the bottom of the tunnel, treated wastewater can be turned back to the inlet tunnel to avoid a<br />

total break in the WWTP. The storage capacity of the inlet tunnel enables one to two days break for the<br />

WWTP use, or running it with diluted wastewater. Excellent purification results are easier to maintain, if the<br />

exception period doesn’t last longer than 8 h/d. That enables repeatedly one working shift for tunnel<br />

maintenance and two shifts for emptying the inlet tunnel storage. The fixing of the tunnel bottom can be<br />

done part by part while the flow is isolated from the part under construction. Therefore no prolonged<br />

maintenance breaks are needed for this part of the tunnel.<br />

Before the tunnel would cross the river, a 20 m vertical shaft is needed to remain the tunnel in a solid rock.<br />

After that the slope of the tunnel is towards the seashore, where another vertical shaft is needed from -60 m<br />

to the present outlet tunnel. Normally this 7,5 km part of the tunnel is full of water. A pumping station will<br />

be built beside the tunnel before it dives deed because of the metro. This pumping station can raise water<br />

about 30 m, from tunnel bottom level to sea level behind a pressure wall in the tunnel. If the tunnel from the<br />

pumping station to the present outlet tunnel should be emptied, water would be pumped via another pipe to<br />

the street level above and from there further to a nearby ditch and seashore. When inspections or<br />

maintenance is needed, water level could be kept low in the tunnel and vehicles driven in.<br />

The normal outlet tunnel discharge is 7.5 km to deeper sea and a discharge to seashore should also be<br />

avoided. Therefore the last tunnel part will be inspected by a diving robot and kept empty only during<br />

essential maintenances.<br />

Another benefit of the pumping station is the adaptation to climate change. The WWTP can be built to lower<br />

position and booster pumps used only, when the sea level or water flow is too high for gravity discharge.


Wastewater pipes in Oslo: from condition monitoring to<br />

rehabilitation planning<br />

Ugarelli R.M. 1 , I. Selseth 1 , Y. Le Gat 2 , J. Rostum 1 and A. H. Krogh 3<br />

1 SINTEF Building and infrastructure, contact detail: Dr. Rita Maria Ugarelli, SINTEF Building<br />

and Infrastructure, Pb. 124 Blindern, NO-0314 Oslo, Norway, rita.ugarelli@sintef.no<br />

2 Irstea Bordeaux – REBX, 50 avenue de Verdun, 33 612 Cestas<br />

3 Vann- og avløpsetaten, Oslo kommune<br />

Abstract Strategic use of condition monitoring to support rehabilitation planning of the Oslo<br />

wastewater network is the topic presented. The full paper will describe the process followed<br />

from investigating the quality of the data, overcoming limitations of the Nordic standard for<br />

condition assessment, selecting the final dataset for models calibration and finally modelling<br />

the prediction of the deterioration process under selected rehabilitation strategies. The model<br />

applied for the analysis is termed GompitZ and it based on the probabilistic theory of Markov<br />

chains; it defines the relationship between the current state and the expected service time of<br />

sewer pipes using Close Circuit TV inspections (CCTV) as classification input.<br />

The GompitZ deterioration modeling tool has been delivered by IRSTEA (Le Gat, 2008) within<br />

the framework of the CARE-S FP5 project (Sægrov, 2005). The model has been further<br />

developed in the last years also thanks to the testing and validation done in Oslo.<br />

Besides a model parameter calibration module, the GompitZ tool contains a module devoted<br />

to long term simulation of rehabilitation programmes. Four rehabilitation strategies can be<br />

performed and therefore compared: i) a "do-nothing" option that simulates the "natural"<br />

evolution of the pipes in the absence of rehabilitation, ii-iii) a "length-driven" and a "budgetdriven"<br />

option that simulates the annual rehabilitation of the most deteriorated pipes up to a<br />

total length/budget fixed by the user for each year belonging to the simulation period, and iv)<br />

an "optimization" option that estimates the optimal mean annual rehabilitation length of most<br />

deteriorated pipes to be implemented in order to bring the network just below a given global<br />

deterioration condition at a user-given time horizon.<br />

By comparing different strategies is possible to see (and calculate) the benefit in terms of<br />

improvement of the network conditions obtained by applying a given rehabilitation strategy,<br />

instead of “doing nothing”. Costs versus benefits can therefore be balanced in order to choose<br />

the winning and more feasible solution.<br />

The research also highlighted a major issue: the need to review the Norwegian standard<br />

(NorskVann, 2007) used to classify pipes from visual inspection. The problem consists on the<br />

standard being too pessimistic in the pipe classification leading to a much more negative<br />

figure of the overall network need for rehabilitation that it is in reality. By classifying the pipes<br />

as much more close to collapse than thy actually are, brings also to a too high estimation of<br />

the investment needs for rehabilitation plans.<br />

1


The research is currently focused on further developing the GompitZ tool by introducing the<br />

concept of “risk” in the ranking of segments for prioritizing rehabilitations in long term<br />

simulations. The choice of the strategy to undertake would be then based on a trade-off<br />

between costs, conditions and risk.<br />

Reference<br />

Le Gat, Y. 2008. Modelling the deterioration process of drainage pipelines. Urban Water<br />

Journal, 5, 10.<br />

NORSKVANN 150/2007: Dataflyt - Klassifisering av avløpsledninger (Dataflow. Classification of<br />

sewer pipes.<br />

Sægrov S, 2005. CARE-S Computer Aided Rehabilitation of Sewer and storm water networks,<br />

IWA publication 2005, ISBN 1843391155.<br />

Information<br />

The abstract is meant as a platform presentation and the language of the platform<br />

presentation is English.<br />

2


Prioritering av flomforebyggende tiltak i norske avløpssystemer<br />

G. Torgersen*, J. Bjerkholt**<br />

*geir.torgersen@hiof.no Høgskolen i Østfold / Universitetet for miljø og biovitenskap, Norge<br />

** Universitetet for miljø og biovitenskap, Norge<br />

Abstract<br />

I denne artikkelen presenteres det en studie av 22 store norske byers forhold til metoder for<br />

bærekraftig overvannshåndtering og flomforebyggende tiltak. Studien omfatter også noen<br />

svenske og danske byer. Målet med studien har vært å finne ut hvordan kommunene<br />

prioriterer dette i praksis ved utbedring av eksisterende avløpssystem.<br />

Klimaendringer fører til mer intens nedbør i mange deler av verden, også i Norge. Det gir<br />

blant annet store utfordringer i forhold til å håndtere vannet i byer. Ledningene i byene er<br />

dimensjonert for lavere nedbørsintensiteter enn det som forventes i framtiden, og allerede i<br />

dag merkes endringene i klima. Disse utfordringer kommer i tillegg til lav utskiftingstakt på<br />

avløpssystemet og økt urbanisering.<br />

I Norge har det ennå ikke vært oversvømmelser i den størrelsesorden som man har sett i<br />

København de siste årene. Fra 1992-2007 ble det utbetalt 5 milliarder kroner fra<br />

forsikringsselskapene knyttet til vannskader i kjellere, naturskader ikke medregnet. I det<br />

nasjonale vannskaderegisteret har det vært en økning i antall kjelleroversvømmelser fra ca.<br />

2000 i 2008 til ca. 3000 i 2012. Forsikringsbransjen regner med at utbetalingene for skader vil<br />

øke med 40 % de neste 10 årene. Det har de siste årene vært flere rettsaker som følge av at<br />

forsikringsselskaper har krevd at kommunene holdes ansvarlige for skader på grunn av<br />

manglende kapasitet på det offentlige avløpsnettet.<br />

Internasjonal forskning konkluderer med at lokal overvannshåndtering med minst mulig bruk<br />

av ledningsnett, er den beste og mest fleksible måten å møte framtidens overvannsutfordringer<br />

på. Et skifte fra tradisjonell metode der overvannet føres i ledninger, til en mer bærekraftig<br />

metode, er som prinsipp en så fundamental endring at det betegnes som et «regimeskifte». En<br />

slik overgang forventes å tvinge seg fram som følge av bl.a. klimaendringer.<br />

I spørreundersøkelsen til Norges største kommuner framkom det at byene i dag har store<br />

utfordringer i forhold til personellsituasjonen, og aktiviteten ikke uten videre kan økes fra<br />

dagens nivå. Undersøkelsen viste at større satsing på flomforebyggende tiltak må skje<br />

gjennom strengere prioritering innenfor dagens økonomiske rammer. For å undersøke<br />

satsingen på bærekraftige løsninger og flomforebyggende tiltak, var det derfor relevant å finne<br />

ut hva som i praksis prioriteres når avløpssystemet skal utbedres. Undersøkelse ble gjort i 2<br />

steg:<br />

Steg 1 var en undersøkelse av hva som var utløsende årsaker og hvilke metoder som ble<br />

benyttet ved utbedring av avløpssystemene. Det for å gi et bilde på hvor kommunen står i dag<br />

på overgangen mot et nytt «regime».


Steg 2 var en gruppering og vurdering av drivere som ble antatt å påvirke utviklingen. Det er<br />

bl.a.: dagens tilstand, virkemidler, hendelser, myndighetskrav, press fra opinionen. Ved<br />

intervjuer / litteratursøk ble kvantitative data vurdert i forhold til hvor mye/lite de betyr for<br />

overgangen til et mer bærekraftig regime.<br />

Resultatene fra undersøkelsen viste at i Norge står tradisjonelle metoder som åpen grøft og<br />

separering veldig sterkt i de undersøkte byene. I 2010 ble 75 % av eksisterende<br />

avløpssystemet utbedret ved åpen grøft og separering. Utløsende årsak oppgis å være<br />

flomreduksjon i 23 % av tilfellene. De forespurte kommunene i Sverige og Danmark syntes å<br />

ha kommet lenger i bruk av bærekraftige løsninger for overvannshåndtering. Sentrale<br />

myndighetskrav etterfulgt av økonomiske incentiver i forhold til rapporterte resultater, kan<br />

være viktig for svenske og danske kommuners prioriteringer. Norge har i praksis ingen slike<br />

økonomiske incentivordninger. Dagens innrapporteringssystem oppfordrer kommunene til å<br />

være aktivitetsorienterte, bl.a. gjennom fokus på investeringsbeløp og antall meter utskiftet<br />

ledning. Et rapporteringssystem bør heller sette krav til å måle effekten av et tiltak, f.eks.<br />

redusert vannføring. Det kan føre til mer innovasjon, bærekraftige løsninger og gi større fokus<br />

på flomforebyggende tiltak.


Abstract - presentation January 31, 2013<br />

WANDER Nordic Water and Materials Institute 1<br />

Sinkokatu 11, FI-26100 Rauma, Finland<br />

Title: Developing the renovation of the sewerage and the drainage standards, quality and<br />

harmonization process chains in Finland<br />

Authors: Pelto-Huikko, A.* and Kaunisto, T.*<br />

* WANDER Nordic Water and Materials Institute / Prizztech Ltd., Sinkokatu 11, FI-26100 Rauma,<br />

Finland.<br />

Contact person: Aino Pelto-Huikko, email: aino.pelto-huikko@wander.fi<br />

Presentation in English.<br />

In Finland, the rehabilitation of sewerage and drainage can be done with many techniques. These include<br />

total repair, replacement and renovation. The renovation techniques have been used for several years in<br />

sewerage (>DN 150) but drainage have had a minor role until recent years. However, there are still many<br />

questions concerning for example selection of the right technique.<br />

The renovation techniques include many technical solutions including linings with different materials and<br />

slip linings. The technique can crack the old pipe or not. The structure of the new pipe can be a part of the<br />

old pipe or it can be self-supporting.<br />

The standardization of the methods is done mostly in European level or in some cases in international<br />

level. The content of the standards have to be evaluated. Because the European product acceptance<br />

system for these products is still under preparation, national regulation is needed to set the requirements.<br />

Besides the composition of the material, also the work performance affects the quality of renovation<br />

significantly. Corporate or personal certificates, internal and external quality control and documentation<br />

of work performance are all factors to be examined. These issues need to be decided and implemented<br />

nationally. For sewerage, there is no authority which would be responsible for what material is placed,<br />

and how the renovations are done. For the drainage, the local authority evaluates whether the building<br />

license is needed.<br />

The aim of the project is to evaluate the renovation situation, the standardization, quality, harmonization<br />

schemes, assistance to the workmanship and the evaluation of the work quality.<br />

The report will be published in December 2013 (in Finnish).<br />

WANDER<br />

www.wander.fi<br />

first.last@wander.fi


Title: Demand Driven Distribution<br />

Author Jim Rise<br />

Company Grundfos AS<br />

Email jimrise@grundfos.com<br />

Type Platform presentation<br />

Language Can do it in English as well as Scandinavian<br />

Reduce water loss with flow-dependant pressure management<br />

Leakages can cost water companies much more than the water lost from the distribution<br />

system. Demand-driven distribution solutions can help reduce and control leakage by<br />

compensating for surplus pressure in the pipes system and by reducing water hammer which<br />

causes new holes.<br />

The solution in both these cases is the control system, and in particular proportional pressure control<br />

– a unique solution that automatically optimises energy consumption and minimises water loss by<br />

15%.<br />

Reduce leakage<br />

Water companies continue to dedicate significant resources to resolve issues related to non-revenue<br />

water (NRW). NRW is water that has been produced and is “lost” before it reaches the customer,<br />

thereby costing water companies’ money.<br />

Reducing leakage and water loss requires initiatives such as increasing the speed of leakage<br />

detection, optimising asset management and not least by designing a pressure management strategy.<br />

Pressure management is now well recognised as being essential to effective leakage management.<br />

The benefits of reducing and controlling NRW and leakage reduction in particular include financial<br />

gains from the increased amount of water reaching the customer, effectively meaning a reduction in<br />

water production. This includes the possible delay of costly capacity expansion, the increased<br />

knowledge about the distribution system gained in the process, and the reduced risk of damage and<br />

contamination.<br />

Water hammer a major issue<br />

An important contributing factor behind new leaks is water hammer. Caused by sudden momentum<br />

changes in a pipe system, this phenomenon can be reduced or eliminated by lowering fluid<br />

velocities, gradual pump ramp-up/ramp-down or reducing pump size, for example. Software<br />

analysis packages exist today; these vary in complexity, dependent on the processes modelled.<br />

For example, a big pump has a big water hammer effect; this is a factor of the pump’s inertia.<br />

Smaller pumps reduce the risk of water hammer and involve cost savings from lower operating<br />

costs, reduced energy consumption and less leakage loss.<br />

Compensating for friction loss


The central challenges for any water distribution system are to secure a stable water supply, manage<br />

what may be scarce water resources, locate and remedy pipe breaks, reduce leakages, and keep<br />

operating costs as low as possible.<br />

Traditionally, a water distribution system would consist of one duty pump supplying demand at<br />

constant pressure maintained by valves or variable frequency drives (VFD). In addition, an identical<br />

pump and VFD would be installed as a backup, in case of failure.<br />

With a demand-driven distribution solution.. The system is designed to supply precisely the flow<br />

needed at the pressure required, with a number of parallel-coupled pumps running at best efficiency<br />

point, instead of one big pump. Surplus pressure in the pipes system is considerably reduced, and<br />

the risk of water hammer causing new leakages is substantially lessened. For the consumer there is<br />

no change in tap pressure, but leakage is reduced significantly.<br />

Reduce leaks with a pressure management strategy<br />

Proportional pressure control automatically optimises energy consumption and minimises water by<br />

automatically adapting the set point to the actual flow.<br />

If the pressure loss in the pipe system is 2 bar during high flow periods, the pump discharge<br />

pressure must be set to 6 bar in order to deliver a tap pressure of 4 bar.<br />

However, in a low-flow situation, the pressure loss in the pipe system may only be 1 bar. If the set<br />

point remains fixed at 6 bar, this would increase tap pressure to 5 bar. The surplus 1 bar in the<br />

system increases leakage loss and represents excess energy consumption, hitting your cost level in<br />

two ways.


c:\users\icnmsm\desktop\pres_clementson_inlackage_atgardsforslag_helhetssyn.doc<br />

Abstract<br />

Beställare NORDIWA 2013<br />

Från Ingemar Clementson/ Viveka Lidström<br />

Till nordiwa2013@svensktvatten.se<br />

Tillskottsvatten i ledningsnät - en ansvarsfråga<br />

Att ha ett klart definierat verksamhetsområde för VA är viktigt. Detta ger en<br />

tydlighet i ansvarsfördelningen för de olika vattenslag som hanteras både vad gäller<br />

skyldigheter och rättigheter. Ett fall då oklarheter i ansvarsfrågan och<br />

åtgärdshanteringen råder är t.ex. då flödet ökar i spillvattennätet vid nederbörd i ett<br />

område där det inte är samma huvudman för spillvattenhantering och<br />

dagvattenhantering. För att ta reda på vem som har juridiskt och tekniskt ansvar<br />

behöver kommunen ha en god översikt över vilka ledningar som finns i marken<br />

och vilka flöden och avrinningsområden som gäller.<br />

Ramböll Sverige har för Staffanstorps kommun genomfört en större utredning<br />

kring problematiken med ökat flöde i spillvattennätet i samband med nederbörd.<br />

Det ökade flödet i spillvattennätet har lett till flera översvämningar inne på<br />

fastigheter, ökat slitage på pumpstationer, oönskad breddning samt svårigheter i att<br />

optimera reningsprocessen i reningsverk.<br />

Inom uppdraget har olika källor till inläckage lokaliserats för att ge ledningsägare<br />

möjlighet att göra kostnadseffektiva åtgärder. I fält har ca 650 fastigheter, ett flertal<br />

ledningssträckor samt andra möjliga källor till inläckage undersökts med röktest,<br />

färgning av vatten samt flödesmätningar. Källorna till inläckage har varierat<br />

beroende på vilket område som undersökts. I tätorter har felkopplingar varit den<br />

största enskilda källan, i rurala områden är det främst dräneringsledningar och i<br />

vissa områden har läckande ledningar stått för en stor del av inläckaget.<br />

Genom att känna till de felkällor för tillskottsvatten som finns kan konstruktiva<br />

åtgärder genomföras i samarbete med fastighetsägare inom ett område där<br />

dagvatten ej ingår i kommunens verksamhetsområde.<br />

Datum 2013-01-30<br />

Ramböll Sverige AB<br />

Skeppsgatan 5<br />

211 11 Malmö<br />

T: +46-10-615 60 00<br />

www.ramboll.se<br />

Ramböll Sverige AB<br />

Org nr 556133-0506<br />

1(2)


c:\users\icnmsm\desktop\pres_clementson_inlackage_atgardsforslag_helhetssyn.doc<br />

Resultatet av projektet har givit en helhetsbild av flödessituationen i aktuellt<br />

område. Denna har redovisats i en GIS-modell där anteckningar, beräkningar,<br />

fotodokumentation samt klassificeringsstatus visas på ett sätt som är kompatibelt<br />

med kommunens nuvarande och framtida digitala VA-system. Modellen är också<br />

gjord för att kunna anpassas till VA-banken samt ligga till underlag för<br />

översvämnings/ledningsmodeller såsom Mike Urban/ Mike She.<br />

Helhetsgreppet som tagits har bidragit till att skapa ett underlag för kommunen att<br />

på ett systematiskt sätt räta ut frågetecken om ansvarsfördelningen i<br />

dagvattenhanteringen.<br />

Vidare har hanteringen av information gjorts på ett sätt som förbereder kommunen<br />

för en möjlig utvidgning av verksamhetsområdet som inkluderar även<br />

dagvattenhantering.<br />

2(2)


Title: Focusing of sewer network renovations<br />

Authors: Laakso, Tuija; Vahala, Riku, Aalto University<br />

E-mail addresses: tuija.laakso@aalto.fi, riku.vahal@aalto.fi<br />

Abstract for a platform presentation to be held in English.<br />

Abstract<br />

Getting accurate and up-to-date information on the renovation need of sewer assets is difficult; on<br />

the other hand, the sewer network needs to be renovated periodically. Traditionally, in Finland, the<br />

sewer network inspections and renovations have been made based on few sources of data (e.g., pipe<br />

age and material) and not necessarily using a systematic planning approach. In such a context, the<br />

EfeSus project aims at developing a systematic, comprehensive and a partly automated procedure<br />

for deciding which assets to renovate in the network and when. The main aim of this paper is to<br />

present the project and its objectives as an example on how the improvement of sewer network can<br />

be challenged in practice.<br />

Efesus, financed largely by the Finnish Funding Agency for Technology and Innovation (Tekes),<br />

focuses on the separate sewer network of the Finnish city Espoo (population of around 250 000) and<br />

analyzes in detail 20 representative network areas. The data utilized in the assessment include:<br />

GIS data from the utility’s network information system:<br />

o pipe locations and depths, pipe diameters, slopes, materials, installation years;<br />

o closed circuit television (CCTV) inspections;<br />

o occurred operational disturbances;<br />

o water consumption in different network areas (on annual level).<br />

Flow data from the utility’s telemetry system.<br />

Rainfall data.<br />

Environmental data concerning:<br />

o ecological status of groundwater areas;<br />

o ecological status of surface water areas;<br />

o road type classifications.<br />

In order to achieve efficient prioritization of the sewer renovations these data need to be collected,<br />

evaluated and analyzed. Efesus starts by gathering and combining from different sources data that<br />

are considered useful for renovation planning. Similar to the projects CARE-S (Saegrov 2005) and<br />

COST-S (Savic et al 2005), the approach in EfeSus is includes: 1) decision-making based on<br />

available data, and 2) automated data analysis and decision support by means of a software<br />

(prototype) created in the project. The software, using as inputs all the different data collected,<br />

assesses each pipe with respect to its estimated structural and operational condition, as well as to its<br />

importance in the network structure and the vulnerability of the surrounding environment.<br />

As a result of the analysis, an index will be assigned to each pipe indicating how often the pipe<br />

should be inspected and what its renovation need is. After this, so-called renovation entities are<br />

built up from a number of pipes that can be considered similar enough to be renovated at the same<br />

time. Based on this assessment, further on-site investigations such as CCTV inspections, smoke<br />

tests and manhole inspections as well as actual renovations can be targeted and scheduled much


more accurately than currently. As a result, both financial and human resources are expected to be<br />

allocated more efficiently than currently.<br />

References:<br />

Saegrov, S. (ed.) 2005. CARE-S. Computer-Aided Rehabilitation of Sewer Networks. International<br />

Water Association.<br />

Savic, D.A., Djordjevic, S., Dorini, G. 2005 COST-S: a new methodology and tools for sewerage<br />

asset management based on whole life costs. Water Asset Management International December<br />

2005, Vol. 20.


Title: A GIS based environmental risk assessment of wastewater pumping station overflows<br />

Name of author: Leena Sänkiaho, M.Sc(Eng.)<br />

Name of the institution: Pöyry Finland Oy, Jaakonkatu 3, 01621 Vantaa, Finland<br />

E-­‐mail address to the author: leena.sankiaho@poyry.com<br />

Platform presentation<br />

Language of the platform presentation: English<br />

The Helsinki Region Environmental Services Authority (HSY) operates nearly 500 wastewater<br />

pumping stations around the Helsinki metropolitan area. As HSY is currently renewing its<br />

environmental permit, they are obliged by the environmental authority to conduct an environmental<br />

risk assessment, which reviews the wastewater pumping station overflows. Similar studies have not<br />

been conducted before, hence there are no common guidelines or previous examples of how the study<br />

should be carried out.<br />

To go through all 500 pumping stations individually would have been time consuming and inefficient.<br />

This led to the development of a new geographic information system (GIS) based method. The<br />

presentation will include a description of the method used and how the results can be utilized.<br />

In Finland the Finnish Environment Institute and The National Land Survey of Finland publish free GIS<br />

data. For instance all groundwater areas, lakes, rivers, sea shore and nature reserves are available in<br />

GIS formats. In addition the metropolitan area cities have conducted surveys that map the ecologically<br />

valuable small streams. Beaches can be mapped according to the address details available. HSY<br />

supplied the coordinates of the fresh water intakes. All these data was used as separate risk layers in<br />

the GIS analysis. The layers were rated according to the severity and consequence a sewer overflow<br />

may pose. The rating method has been modified from the rating method used in Water Safety Plans<br />

(WSP) (Bartramet al. 2009).<br />

HSY provided the pumping station coordinates and capacities. The GIS analysis is based on an overlay<br />

operation. If a pumping station overlaps a risk layer, the pumping station will be awarded with the risk<br />

rating.<br />

There are three ways to utilize the results: risk layers, risk sums or risk scores.<br />

Risk layers:<br />

This method detects the pumping stations which are located on certain risk layer. For instance<br />

pumping stations which are located less than 500 m from a beach can be listed and certain risk<br />

prevention methods can be applied to these stations or beaches.<br />

Risk sums:<br />

A risk sum is the aggregated risk rate for each pumping station. It is assumed that a pumping station<br />

will have a higher environmental risk if it is located on more than one risk layer. The values range<br />

from 0 to 6. For instance, the highest risk sum was allocated to a pumping station that is located on a<br />

groundwater area, it is also on the buffer zone of a groundwater well (< 500 m) and less than 100 m<br />

radius from an ecologically valuable small stream.<br />

Risk scores:<br />

It is assumed that the overall risk is also related to the pumping station capacity as the pumping<br />

station capacities vary from 3 l/s up to 2000 l/s. Therefore the risk sums were weighted by the


pumping capacities. Based on HSY’s experience several assumptions were made: For instance, it was<br />

assumed that the risk score of a mega sized (> 200 l/s) pumping station with a risk sum value 3 equals<br />

a small pumping station (< 10 l/s) with a risk sum value of 6.<br />

This analysis will help HSY to prioritize the pumping stations on which risk prevention actions should<br />

be taken. It will also give valuable information about which actions should be taken if an overflow<br />

occurs.<br />

References:<br />

Bartram, J. Corrales, L.; Davison, A.; Deere, D.; Drury, D.; Gordon, B.; Howard, G.; Rinehold, A.; Stevens,<br />

M. (2009) Water safety plan manual: step-­‐by-­‐step risk management for drinking-­‐water suppliers.<br />

World Health Organization (WHO), Geneva


Methane formation in sewer systems<br />

Malin Isgren I *, Patrick Mårtensson I , Jes la Cour Jansen I , David J. I. Gustavsson II , Oriol Gutierrez III<br />

I<br />

Water and Environmental Engineering, Department of Chemical Engineering, Lund University, Box 124,<br />

SE-221 00 Lund, Sweden<br />

(E-mail:kt08mi2@student.lth.se, kt08pm4@student.lth.se, jes.la_cour_jansen@vateknik.lth.se)<br />

II<br />

VA SYD, Box 191, SE-201 21 Malmö, Sweden (E-mail: david.gustavsson@vasyd.se)<br />

III<br />

Catalan Institute for Water Research, ICRA. Scientific and Technological park of the UdG. Emili Grahit, 101<br />

17003 Girona, Spain (E-mail: ogutierrez@icra.cat)<br />

* Speaker We would like to present this paper as an oral presentation in English.<br />

INTRODUCTION<br />

Hydrogen sulphide in sewer systems is a well-known problem. However, formation of the potent<br />

greenhouse gas methane has not received as much attention. A few studies have been executed on<br />

rising mains (i.e. Guisasola et al., 2009) since these are theoretically the ones with the highest<br />

potential for methane formation. Gravity mains are the most common kinds of pipes but are still<br />

poorly investigated. Investigations of these are necessary if methane formation in sewer systems<br />

shall be fairly evaluated. Factors that affect methane formation are among other things the presence<br />

of organic carbon together with anaerobic conditions. The amount of methane formed per volume<br />

wastewater depends on the ratio between the inner surface wall area covered with biofilm and the<br />

volume of the pipe. This theory has been proved, not only in studies on rising mains but correlate<br />

also well with formation of hydrogen sulphide. The main aim of this work was to develop a<br />

sampling method for determination of dissolved methane in wastewater samples and to detect any<br />

methane content in gravity mains with the highest potential for methane production in Malmö,<br />

Sweden.<br />

METHOD<br />

Field samples were collected at the inlet, downstream a pressurized system at Sjölunda Wastewater<br />

Treatment Plant (WWTP) and in scattered selected manholes in the sewer system of Malmö,<br />

Sweden. The sampling technique enables sampling and at the same time avoids getting air into the<br />

sampling bottles. This was accomplished by keeping the collection vials under water, while putting<br />

the cap on (Alberto et al., 2000). Wastewater sampling at the WWTP was executed by lowering a<br />

sampling bottle close to the incoming pipe, the device is shown in Figure 1. The rubber stopper was<br />

released when the bottle reached the selected level.<br />

Figure 1. Device for wastewater collection at WWTP.<br />

Sampling in manholes was executed by climbing down and filling sampling bottles. From the<br />

sampling occasions all laboratory analysis were performed within 24 hours. The sampling analyses<br />

were done by filling half of a vacuum tube with wastewater and then allow equilibrium. The<br />

methane content was determined with a gas chromatograph and the amount of methane was


calculated with Henry´s law.<br />

RESULTS AND DISCUSSION<br />

The methane analysis of the samples taken from the manholes located in Malmö showed that<br />

methane exists. The concentration varied in every manhole and the highest and lowest encountered<br />

was 0.58 and 0.11 mg CH4/L respectively. Since none of the examined sewers were pressurised and<br />

only the wastewater was analysed, the emitted amount was probably higher than the encountered as<br />

most of the methane formed will be released to the air. The methane from the incoming pipe at<br />

Sjölunda WWTP was examined twice and the result is shown in Figure 2.<br />

Figure 2. Variation in amount of methane in the influent to Sjölunda WWTP.<br />

The methane amount varies during the day and the amount released is about 2 kg/h. The samples<br />

were taken in the middle of the winter (water temperature around 14°C) and as methane is favoured<br />

by increased temperature this value can be taken as minimum that enters the WWTP.<br />

The full paper will present all the measurements and evaluate research needs in order to be able to<br />

estimate the potential contribution of methane formation in the sewer system in Malmö to global<br />

warming.<br />

REFERENCES<br />

Alberto M.C.R., Arah J.R.M., Neue H.U., Wassmann R., Lantin R.S., Aduna J.B., Bronson K.F.,<br />

2000. A sampling technique for the determination of dissolved methane in soil solution. Soil and<br />

Water Science Division, International Rice Research institute P.O Box 3127, MCPO 1271, Makati<br />

City, Philippines. Global Change Science 2 (2000) pp. 57-63.<br />

Guisasola A., de Haas D., Keller J., Yuan Z., 2008. Methane formation in sewer system, Advanced<br />

Water Management Center, The University of Queensland, St Lucia, 4067 Queensland, Australia.<br />

Water Research, 42 (6–7) (2008), pp. 1421–1430.


Abstract for:<br />

13 th Nordic Wastewater Conference<br />

To be considered in all categories<br />

Title:<br />

Laboratory and field investigation of Chemical disinfection of sewer overflow in<br />

Copenhagen Area<br />

Authors:<br />

Henrik R. Andersen, DTU Miljø, hran@env.dtu.dk<br />

Anitha K. Sharma , DTU Miljø<br />

Ravi K. Chhetri , DTU Miljø<br />

Jesper Berner, KEMIRA<br />

Robin Gramstad KEMIRA<br />

Öjstedt Ulrik KEMIRA<br />

Dines Thornberg, Udviklingssamarbejdet.<br />

Kasper Juel-Berg , HOFOR<br />

Annette Kolte-Olsen , Nordvand<br />

Jean De Dieu Otoa , Greve-Solrød forsyning<br />

Abstract<br />

Combined Sewer Overflow (CSO) has been a problem in every large city with old sewers resulting in<br />

deterioration of water quality of receiving waters around the city. . With the anticipated increased rain<br />

intensity due to climate change and increased loads on sewer system due to urbanisation the problem is<br />

expected to be magnified in the future. Copenhagen has many beaches and several public baths in the old<br />

harbour and to maintain the high water quality for bathing it is necessary to reduce the microbial pollution<br />

from the CSOs.<br />

Disinfection of CSOs reduces the load of microorganisms and the most common methods are UV-light or<br />

addition of different forms of chlorine. However, UV-disinfection of CSOs is not attractive due to high<br />

capital cost and non-predictive occurrence of CSOs. Disinfection with chlorine forms toxic by-products. In<br />

recent years, laboratory and full scale investigation of novel organoperoxide disinfectants, peracetic<br />

acid(PAA) and performic acid(PFA) have shown that these chemicals can be attractive disinfectants. We<br />

presents results from laboratory and field investigations on disinfection of CSOs using PFA and PAA.<br />

The laboratory part of the study aims to produce the relevant information in order to find the most suitable<br />

chemical disinfections agents for CSOs in different contexts: Concentration profiles, disinfection efficiency,<br />

byproducts and residual toxicity is investigated. Additionally a literature study is performed to describe the<br />

costs and handling of each chemical. The project, “DesiCSO”, partly funded by Vand-i-Byer and will be<br />

finished in March 2013.<br />

The field investigations will be performed at 3 different sites with the aim to investigate whether it is<br />

possible to obtain bathing water shortly after heavy rainstorms in full-scale. The project named FRODO,


which is partly funded by the Danish VTU-fond. The full-scale test will mainly take place in the spring and<br />

summer of 2013.<br />

The first field test is at a large pumping station north of Copenhagen (Skovshoved), where frequent CSOs<br />

occur and the CSOs are discharged 1,6 km out to the sea through a pipe. Performic Acid will be tested due<br />

to a short retention time in the pipes.<br />

Example of full scale dosing equipment from <strong>Kemira</strong><br />

The second field test will investigate the combination of filtration and chemical disinfection with PFA and<br />

will be performed at an existing test site in Copenhagen, Scherfigsvej facility. This facility consists of two<br />

filtration units (100µ and 20µ) and in 2003-2006 investigations were performed in a LIFE project, where<br />

filtration in combination with UV-disinfection was tested for disinfection of CSOs with no success.<br />

The new beach at the effluent from Scherfigsvej is very popular in the summer


The third site is a series of overflow retention basins in Tune south of Copenhagen, where CSOs occur from<br />

the final basin to a small stream which merges in to the sea near the beach. PAA will be tested at this site<br />

since the CSOs occur very rarely like once a year with a long reaction time of 6 hours for the chemical<br />

disinfection in the basins.


Flood Risk Assessment Implementing GIS hydrological Computation and 1-D<br />

Hydraulic Model to Determine Service Level Capacity in Drainage Systems – A<br />

Case Study from Brøndby – Denmark<br />

Sabah Al-Shididi 1 & Joshkun Yolju 2<br />

1 MSc Environmental Eng., MSc Environmental Policy, BSc Building and Construction Eng.,<br />

Project Manager/Modeller at Avedøre Wastewater Services (Spildevandscenter Avedøre),<br />

sas@spvand.dk, +45 3634 3854.<br />

2 BSc Environmental Eng., BSc Civil Eng., Drainage Engineer at Avedøre Wastewater Services<br />

(www.spildevandscenter.dk) for Brøndby Utility, jy@spvand.dk, +45 3634 3819.<br />

(Platform Presentation, English) Open for Poster.<br />

Abstract<br />

Climate change is already a challenge for water companies to optimize drainage systems capacity<br />

and it will continuously intensify. A need occurred to determine service level capacity and flood<br />

risk assessment in Brøndby – Denmark,<br />

which was exposed to the challenge of<br />

extensive flood in recent years and<br />

particularly during the monster rain event of<br />

July the 2 nd 5-year event<br />

2011.<br />

Potential flood<br />

This paper reviews a new method to<br />

combine GIS hydrological computation and<br />

1-D hydraulic model to determine flood and<br />

hydraulic capacity of the drainage system in<br />

Horsedammen in Brøndby, a catchment of<br />

78 ha. This new method has the ability to<br />

overcome the present hardware limitations<br />

regardless of size of the catchment and the<br />

resolution of the flood grid implemented in<br />

the model and still reaching accurate results.<br />

The results have saved a great deal of<br />

modelling and simulation time. Simulations<br />

of status scenario, solution scenario, future<br />

climate change solution scenario and<br />

monster rain event scenario have been<br />

carried out producing a flood map for each<br />

scenario including regulated terrain for<br />

solution purposes and an optimised drainage<br />

system capacity for the determined service<br />

1 - 2


level capacity. The method is an effective tool for analysis, assessment, planning and design of<br />

drainage systems and can be used for river systems and other 1-D modelled systems applied to rain<br />

events.<br />

A supplementary presentation of the results in 3-D images and video records presenting the<br />

simulation results on time step basis has been possible to produce. Results can be presented on<br />

Google Earth and similar online GIS programmes.<br />

Key word: Flood, GIS hydrological Computation, Climate Change, 1-D hydraulic model, Brøndby.<br />

2 - 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!