20.07.2013 Views

Standard Model - Herbstschule Maria Laach

Standard Model - Herbstschule Maria Laach

Standard Model - Herbstschule Maria Laach

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Standard</strong> <strong>Model</strong><br />

Ansgar Denner, Würzburg<br />

44. <strong>Herbstschule</strong> für Hochenergiephysik, <strong>Maria</strong> <strong>Laach</strong><br />

04. - 14. September 2012<br />

Lecture 1: Formulation of the <strong>Standard</strong> <strong>Model</strong><br />

Lecture 2: Precision tests of the <strong>Standard</strong> <strong>Model</strong><br />

Lecture 3: NLO Calculations for the LHC<br />

Lecture 4: Higgs physics at the LHC<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.0


Lecture 2<br />

Precision tests of the <strong>Standard</strong> <strong>Model</strong><br />

Ansgar Denner, Würzburg<br />

44. <strong>Herbstschule</strong> für Hochenergiephysik, <strong>Maria</strong> <strong>Laach</strong><br />

04. - 14. September 2012<br />

Relevance of radiative corrections<br />

Evaluation of radiative corrections<br />

Radiative corrections to muon decay<br />

Z physics at LEP and SLC<br />

Precision tests of the <strong>Standard</strong> <strong>Model</strong><br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.1


Relevance<br />

of radiative corrections<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.2


Perturbation theory and Feynman diagrams<br />

<strong>Standard</strong> <strong>Model</strong> is defined via its Lagrangian density<br />

predictions are obtained within perturbation theory<br />

Lagrangian is equivalent to Feynman rules<br />

propagators for free fields vertices for interactions<br />

e<br />

γ<br />

etc.<br />

γ<br />

Feynman diagrams provide an exact formulation of perturbation theory<br />

leading order (LO):<br />

next-to-leading order (NLO):<br />

tree diagrams<br />

loop diagrams<br />

e +<br />

e −<br />

γ<br />

e +<br />

e −<br />

e +<br />

e −<br />

e<br />

e<br />

γ<br />

e<br />

e<br />

γ<br />

etc.<br />

e +<br />

e −<br />

Φ TP 2<br />

matrix element = Mif = 〈f|M|i〉 = Σ all Feynman diagrams for |i〉 → |f〉<br />

perturbative series = series in coupling constant e or gs or both<br />

= expansion in # of loops of Feynman diagrams<br />

= expansion in powers of (quantum corrections)<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.2


e + e − collider 1989–2000<br />

Situation at LEP<br />

events<br />

1.5×10 7 e + e − → Z → hadrons, 1.7×10 6 e + e − → Z → leptons<br />

4.8×10 4 e + e − → W + W −<br />

typical accuracies < ∼ 0.1%<br />

e + e − → Z → hadrons: ∆σ/σ ∼ 0.09%<br />

∆sin 2 θ lept<br />

eff<br />

∼ 0.03%<br />

e + e − → W + W − : ∆σ/σ ∼ 1%<br />

∆MW/MW ∼ 0.05%<br />

predictions are calculated within perturbation theory<br />

expansion parameter: α/π ∼ 0.23%, α/(πsin 2 θw) ∼ 1%<br />

generic one-loop corrections: ∼ 2%<br />

generic two-loop corrections: ∼ 0.05%<br />

Φ TP 2<br />

implications<br />

complete one-loop electroweak radiative corrections (EWRC) mandatory<br />

for e + e − → Z (at least leading) two-loop corrections needed<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.3


Order of magnitude<br />

∼<br />

α<br />

π<br />

... α<br />

π<br />

Relevance of electroweak radiative corrections<br />

ln E2<br />

m 2 e<br />

<br />

×O(1) ∼ [0.2%...6%]×O(1) for E = 100GeV<br />

⇒ mandatory for precision tests of the electroweak (EW) <strong>Standard</strong> <strong>Model</strong> (SM)<br />

depend on all details of the theory<br />

• top quark<br />

µ<br />

νµ<br />

∼ α<br />

π<br />

W<br />

m 2 t<br />

s 2 w M2 W<br />

t<br />

b<br />

W<br />

≈ 0.05<br />

• gauge-boson self couplings<br />

µ<br />

νµ<br />

W<br />

W W<br />

• •<br />

Z,γ<br />

e<br />

νe<br />

e<br />

νe<br />

• Higgs boson<br />

µ<br />

νµ<br />

W<br />

∼ α<br />

π ln M H<br />

M W<br />

H<br />

W<br />

W<br />

e<br />

νe<br />

• New physics (supersymmetry) ?<br />

⇒ allow for indirect experimental tests of not directly accessible quantities<br />

µ<br />

νµ<br />

W<br />

?<br />

?<br />

W<br />

e<br />

νe<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.4


Evaluation<br />

of radiative corrections<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.5


Perturbative evaluation of quantum field theories<br />

Formulate theory: Lagrangian<br />

perturbative evaluation: Feynman rules<br />

⇓<br />

quantization → gauge fixing, Faddeev–Popov ghosts<br />

⇓<br />

⇓<br />

Feynman graphs<br />

⇓<br />

loop integrals → technical problem: divergences (UV, IR)<br />

⇓<br />

regularization → divergences mathematically meaningful<br />

⇓<br />

define input parameters: renormalization → absorbs UV divergences<br />

⇓<br />

theoretical predictions: calculation of observables (cross sections, decay widths, etc.)<br />

֒→ IR divergences cancel for sufficiently inclusive<br />

quantities (e.g. inclusion of photon bremsstrahlung)<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.5


Loop integrals and regularization<br />

Observation: loop integrals involve divergences<br />

Φ TP 2<br />

ultraviolet (UV) divergences for q → ∞ (large momenta), e.g.:<br />

<br />

d 4 1<br />

q<br />

(q2 −m2 0 )((q +p)2 −m2 <br />

dq<br />

∼ for q → ∞ → logarithmic divergence<br />

1 ) q<br />

infrared (IR) divergences for q → q0 (small/collinear momenta), e.g.:<br />

<br />

d 4 1<br />

q<br />

q2 (q2 +2qp1)(q 2 +2qp2) ∼<br />

<br />

dq<br />

for q → 0 → logarithmic divergence<br />

q<br />

regularization: extension of theory by free parameter δ (cut-off) such that<br />

original theory is obtained as limiting case δ → δ0<br />

integrals (and thus the theory) become finite, i.e. well defined for δ = δ0<br />

֒→ fix input parameters xi of regularized theory (δ = δ0) by experiment<br />

⇒ observables must have finite limit δ → δ0 as functions of xi<br />

(independent of regularization scheme)<br />

relations between physical quantities should be finite and indep. of cut-off<br />

if true: theory is renormalizable<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.6


Convenient regularization schemes<br />

Cut-off regularization: require q 2 0 +q 2 < Λ 2 in momentum space<br />

UV divergences appear as logΛ 2 , Λ 2 , . . .<br />

breaks Lorentz invariance and gauge invariance ⇒ not used<br />

dimensional regularization: switch to D = 4 space-time dimensions<br />

regularizes UV and IR divergences, respects gauge invariance, easy use<br />

prescription: (µ = arbitrary reference mass, drops out in observables)<br />

<br />

d 4 q → (2πµ) 4−D<br />

<br />

d D q and D-dim. momenta, metric, Dirac algebra<br />

and analytic continuation to continuous complex D !<br />

1<br />

divergences appear as poles<br />

4−D<br />

֒→ define ∆ ≡ 2<br />

4−D −γE +ln(4π) = 2<br />

+ const.<br />

4−D<br />

IR regularization by infinitesimal photon mass mγ<br />

and (if relevant) by small fermion mass mf<br />

prescription: photon propagator pole 1<br />

→<br />

q2 divergences appear as ln(mγ) and ln(mf) terms<br />

1<br />

q 2 −m 2 γ<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.7


Propagators and 2-point functions:<br />

Need for renormalization<br />

structure of one-loop self-energies (scalar case as example):<br />

p→<br />

= Σ(p 2 ) = C1p 2 ∆ + C2∆ + Σfinite(p 2 ) = UV divergent<br />

behaviour of propagator near pole for free propagation:<br />

G φφ (p 2 ) =<br />

i<br />

p2 −m2 +Σ(p2 ) p 2 →m 2<br />

1<br />

1+Σ ′ (m 2 )<br />

i<br />

p 2 −m 2 +Σ(m 2 )<br />

֒→ higher-order corrections change location and residue of propagator pole !<br />

interaction vertices:<br />

example: scalar 4-point interaction L φ 4 = −λφ 4 /4!<br />

Γ φφφφ (p1,p2,p3) = −iλ + iΛ(p1,p2,p3)<br />

momentum-dependent one-loop correction:<br />

Λ(p1,p2,p3) = C3∆ + Λfinite(p1,p2,p3) = UV divergent<br />

֒→ higher-order corrections change coupling strength !<br />

+<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.8


Renormalizable field theories:<br />

Structure of UV divergences<br />

UV divergences in vertex functions have analytical form of<br />

elementary vertex structures (directly related to L)<br />

֒→ idea: absorb divergences in free parameters<br />

⇒ reparametrization of theory = renormalization<br />

different types of renormalizable theories:<br />

◮ theories with unrelated couplings of non-negative mass dimensions<br />

֒→ renormalizability proven by power counting and “BPHZ procedure”<br />

◮ gauge theories (couplings unified by gauge invariance)<br />

֒→ renormalizability non-trivial consequence of gauge symmetry ‘t Hooft ’71<br />

non-renormalizable field theories:<br />

e.g. theories with couplings of negative mass dimensions<br />

(cf. Fermi model, effective field theories)<br />

operators of higher and higher mass dimensions needed to absorb<br />

UV divergences in higher orders<br />

֒→ infinitely many free parameters, much less predictive power<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.9


Practical procedure for renormalization<br />

Consider original (“bare”) parameters and fields as preliminary<br />

(denoted with subscripts “0” in the following)<br />

Φ TP 2<br />

֒→ introduce new “renormalized” parameters and fields that obey certain conditions<br />

propagators and 2-point functions:<br />

mass renormalization: m 2 0 = m 2 +δm 2 ,<br />

m 2 ! = location of propagator pole = “physical mass” → δm 2 = Σ(m 2 )<br />

field renormalization: rescale fields φ0 = Zφφ, G φφ = Z −1<br />

φ Gφ0φ0<br />

fix Zφ = 1+δZφ such that residue of G φφ at p 2 = m 2 equals 1<br />

֒→ δZφ = −Σ ′ (m 2 )<br />

⇒ renormalized propagator G φφ is UV finite:<br />

G φφ (p 2 i<br />

) =<br />

p2 −m2 +Σren(p2 ) ,<br />

renormalized self energy<br />

Σren(p 2 ) = Σ(p 2 )−δm 2 +(p 2 −m 2 )δZφ = Σ(p 2 )−Σ(m 2 )−(p 2 −m 2 )Σ ′ (m 2 )<br />

= Σfinite(p 2 )−Σfinite(m 2 )−(p 2 −m 2 )Σ ′ finite(m 2 ) = UV finite<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.10


Vertex functions for interactions:<br />

Practical procedure for renormalization<br />

coupling-constant renormalization: λ0 = λ+δλ<br />

fix δλ such that λ assumes a measured value for special kinematics p exp<br />

i<br />

(renormalization point)<br />

note: Γ φφφφ = Z 2 φΓ φ0φ0φ0φ0<br />

֒→ δλ = −2δZφλ−Λ(p exp<br />

1 ,p exp<br />

2 ,p exp<br />

3 )<br />

⇒ renormalized vertex function is UV finite:<br />

Γ φφφφ (p1,p2,p3) = −iλ+iΛren(p1,p2,p3),<br />

Λren(p1,p2,p3) = Λ(p1,p2,p3)−δλ−2δZφλ<br />

= Λfinite(p1,p2,p3) − Λfinite(p exp<br />

1 ,p exp<br />

2 ,p exp<br />

3 ) = UV finite<br />

֒→ all divergences of φ 4 theory can be absorbed by renormalization of parameters<br />

(masses and coupling constants) and the fields (δm,δλ,δZφ)<br />

Φ TP 2<br />

Any physical observable calculated in terms of renormalized parameters is finite and<br />

well-defined (although affected by a systematic perturbative uncertainty).<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.11


Renormalization of the <strong>Standard</strong> <strong>Model</strong><br />

Bare input parameters: e0,MW,0,MZ,0,MH,0,mf,0,Vij,0<br />

renormalization transformation:<br />

parameter renormalization:<br />

e0=(1+δZe)e,<br />

M 2 W,0=M 2 W +δM 2 W, M 2 Z,0=M 2 Z +δM 2 Z, M 2 H,0=M 2 H +δM 2 H,<br />

mf,0=mf +δmf, Vij,0=Vij +δVij, (both Vij,0,Vij unitary)<br />

note: renormalization of cw,sw fixed by on-shell condition cw = MW/MZ<br />

(sw is not a free parameter if MW, MZ are used as input parameters)<br />

field renormalization: (physical fields)<br />

W ±<br />

0 =√ZW W ± √ √ <br />

Z0 ZZZ ZZA Z<br />

, = √ √ , H0=<br />

A0 ZAZ ZAA A<br />

√ ZH H,<br />

ψ L <br />

f,0= ZL ff ′ ψ L<br />

f ′, ψR <br />

f,0= ZR ff ′ ψ R<br />

f ′,<br />

note: matrix renormalization necessary to account for loop-induced mixing<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.12


Renormalization of the <strong>Standard</strong> <strong>Model</strong><br />

Bare input parameters: e0,MW,0,MZ,0,MH,0,mf,0,Vij,0,gs<br />

renormalization transformation:<br />

parameter renormalization:<br />

e0=(1+δZe)e, gs,0=(1+δZgs)gs,<br />

M 2 W,0=M 2 W +δM 2 W, M 2 Z,0=M 2 Z +δM 2 Z, M 2 H,0=M 2 H +δM 2 H,<br />

mf,0=mf +δmf, Vij,0=Vij +δVij, (both Vij,0,Vij unitary)<br />

note: renormalization of cw,sw fixed by on-shell condition cw = MW/MZ<br />

(sw is not a free parameter if MW, MZ are used as input parameters)<br />

field renormalization: (physical fields)<br />

W ±<br />

0 =√ZW W ± √ √ <br />

Z0 ZZZ ZZA Z<br />

, = √ √ , H0=<br />

A0 ZAZ ZAA A<br />

√ ZH H,<br />

ψ L <br />

f,0= ZL ff ′ ψ L<br />

f ′, ψR <br />

f,0= ZR ff ′ ψ R<br />

f ′, Aa0 = √ ZAA a<br />

note: matrix renormalization necessary to account for loop-induced mixing<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.12


Mass renormalization:<br />

Renormalization conditions<br />

on-shell definition: mass 2 is location of pole in propagator<br />

֒→ δM 2 W = Re{Σ W T (M 2 W)}, similar expressions for δM 2 Z,δM 2 H,δmf<br />

note: ⋄ location of pole is complex for unstable particles<br />

֒→ important for processes with unstable-particle production<br />

(gauge-invariant definition: mass 2 as real part of pole location)<br />

⋄ other definitions of quark masses often more appropriate<br />

(e.g. running masses)<br />

field renormalization: (bosons and leptons)<br />

◮ residues of propagators (diagonal, transverse parts) normalized to 1<br />

W ′<br />

֒→ δZW = −Re{ΣT (M 2 W)},<br />

similar expressions for δZAA,δZZZ,δZH,δZ L/R<br />

ff<br />

◮ suppression of mixing propagators on particle poles<br />

physical on-shell particles do not mix<br />

֒→ fixes non-diagonal constants δZAZ,δZZA,δZ L/R<br />

ff ′ (f = f ′ )<br />

note: problems for unstable particles beyond one loop<br />

(field-renormalization constants become complex)<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.13


Renormalization conditions (cont.)<br />

Charge renormalization: define e in Thomson limit (low-energy-elastic scattering)<br />

e<br />

e<br />

k<br />

Aµ<br />

k→0<br />

−→ ieγµ for on-shell electrons<br />

֒→ e = elementary charge of classical electrodynamics<br />

fine-structure constant α(0) = e2<br />

= 1/137.03599976<br />

4π<br />

gauge invariance relates δZe to photon field renormalization:<br />

δZe = − 1<br />

2 δZAA − sw<br />

δZZA (at one loop)<br />

2cw<br />

CKM-matrix renormalization → fixes δVij<br />

rotation to mass eigenstates;<br />

CKM part requires a careful (non-trivial) investigation<br />

of mixing energies, mass eigenstates, LSZ reduction, etc.<br />

general result: all renormalization constants can be obtained from self-energies.<br />

different renormalization schemes are possible<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.14


Renormalization of strong coupling<br />

QCD becomes strongly interacting for small momentum transfers<br />

quarks and gluons are confined in hadrons<br />

֒→ on-shell renormalization makes no sense<br />

֒→ no obvious renormalization point for strong coupling<br />

renormalization schemes for QCD<br />

momentum subtraction scheme (MOM): choose symmetric Euclidean<br />

renormalization point, p 2 i = −M2 , for vertex functions<br />

minimal subtraction scheme (MS):<br />

subtract only UV divergences 1/(D −4)<br />

modified minimal subtraction scheme (MS): commonly used<br />

subtract ∆ (UV-divergences plus some universal constants)<br />

renormalized results depend on scale µ of dimensional regularization<br />

⇒ renormalization-scale dependence of observables<br />

renormalization constant δgs can be determined from one vertex function<br />

q<br />

g<br />

g or g<br />

q<br />

g<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.15


IR divergences and photon bremsstrahlung<br />

Consider processes with charged external particles, e.g., e + e − → µ + µ −<br />

virtual corrections: loop diagrams<br />

IR divergences from soft virtual photons (q → 0)<br />

<br />

d 4 q<br />

(q2 −m2 γ)(q2 +2qp1)(q 2 → Cln(mγ)<br />

+2qp2)<br />

“real” corrections: photon bremsstrahlung = “real” radiative corrections<br />

d 3 q<br />

2q0<br />

Bloch–Nordsieck theorem:<br />

2 IR divergences from soft real photons (q → 0)<br />

<br />

d 3 q<br />

→ −Cln(mγ)<br />

q2 +m2 γ(2qp1)(2qp2)<br />

IR divergences of virtual and real corrections cancel in the sum<br />

֒→ virtual and soft-photonic corrections cannot be discussed separately<br />

are related due to limited experimental resolution of soft photons<br />

֒→ cross-section predictions necessarily depend on treatment of photon<br />

emission (energy and angular cuts)<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.16


Radiative corrections<br />

to muon decay<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.17


Gauge-boson-mass relation<br />

MW and MZ correlated via muon lifetime ↔ Fermi constant Gµ<br />

Fermi model<br />

<strong>Standard</strong> <strong>Model</strong><br />

µ −<br />

νe<br />

τ −1<br />

µ = G2 µm 5 µ<br />

192π 3<br />

µ −<br />

νe<br />

Gµ = πα<br />

√ 2<br />

νµ<br />

e −<br />

µ −<br />

νµ νe<br />

W +<br />

e −<br />

e −<br />

νµ<br />

<br />

1−8 m2e m2 <br />

(1+δQED)<br />

µ<br />

µ −<br />

νe<br />

1<br />

M 2 W (1−M2 W /M2 Z )<br />

∆r: calculable quantum corrections<br />

loops<br />

1<br />

1−∆r<br />

(beyond electromagnetic corrections to Fermi model)<br />

νµ<br />

e −<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.17


Virtual correction – one-loop diagrams:<br />

Σ W<br />

T (s)<br />

W self-energy<br />

Electroweak corrections to µ decay<br />

W<br />

Wlνl vertex correction<br />

real correction – one-photon bremsstrahlung:<br />

µ<br />

νµ<br />

W<br />

W<br />

γ<br />

e<br />

νe<br />

µ<br />

νµ<br />

W<br />

e<br />

γ<br />

νe<br />

W<br />

box diagrams<br />

consistent use of Gµ:<br />

photonic QED corrections are treated in<br />

the Fermi model and subtracted from∆r etc.<br />

e<br />

µ<br />

νµ<br />

W<br />

µ<br />

γ<br />

e<br />

νe<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.18


W-boson self-energy:<br />

H,χ<br />

W W<br />

φ<br />

W<br />

W<br />

H,χ<br />

Feynman diagrams for vertex functions<br />

φ<br />

W W<br />

u−<br />

W<br />

W<br />

uγ,uZ<br />

Weνe vertex correction:<br />

H,χ<br />

W<br />

φ<br />

e<br />

e W<br />

νe<br />

box diagrams:<br />

µ<br />

µ<br />

νµ<br />

e<br />

νe<br />

γ,Z<br />

W<br />

e<br />

e<br />

νe<br />

e<br />

Z W<br />

νe<br />

µ<br />

νµ<br />

νµ<br />

φ<br />

Z<br />

γ,Z<br />

W W<br />

u+<br />

W<br />

W<br />

uγ,uZ<br />

e<br />

νe<br />

W<br />

W<br />

νe<br />

W<br />

Z<br />

e<br />

νe<br />

νe<br />

H<br />

W<br />

W W<br />

W<br />

e<br />

νe<br />

W<br />

γ,Z<br />

W<br />

e W<br />

µ<br />

νµ<br />

νµ<br />

W<br />

Z<br />

γ,Z<br />

e<br />

φ<br />

W<br />

W<br />

e<br />

νe<br />

l<br />

νl<br />

γ,Z<br />

e<br />

νe<br />

φ<br />

W<br />

W<br />

γ,Z<br />

e<br />

W<br />

W<br />

µ<br />

µ<br />

νµ<br />

W<br />

W<br />

Z<br />

νe<br />

W<br />

d<br />

u<br />

W<br />

H<br />

e<br />

νe<br />

W<br />

W<br />

e W<br />

e<br />

νe<br />

W<br />

Z<br />

e<br />

νe<br />

νe<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.19


O(α) corrections:<br />

∆α(M 2 Z<br />

Structure of electroweak corrections toµdecay<br />

∆r1-loop = ∆α(M2 Z ) −<br />

Sirlin ’80, Marciano, Sirlin ’80<br />

c2 w<br />

s2 ∆ρ + ∆rrem(MH)<br />

w<br />

∼ 6% ∼ 3% ∼ 1%<br />

αln(mf/MZ) Gµm 2 t αln(MH/MZ)<br />

γ<br />

f<br />

f<br />

γ W<br />

): contribution of running electromagnetic coupling<br />

∆α(M2 α<br />

Z ) ∼ 3π<br />

<br />

f Q2 f<br />

ln M2<br />

Z<br />

m 2 f<br />

֒→ large effects from small fermion masses<br />

∆ρ: leading corrections to the ρ-parameter<br />

ZZ ΣT (0)<br />

∆ρtop ∼<br />

M2 −<br />

Z<br />

ΣWW T (0)<br />

M2 <br />

∼<br />

W<br />

3Gµm2 t<br />

8 √ 2π2 ֒→ large effects from top–bottom loops in W self-energy Veltman ’77<br />

top<br />

b<br />

t<br />

W<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.20


∆α (5)<br />

had<br />

֒→ ∆α (5)<br />

had<br />

Hadronic contributions<br />

∆α(s) = −Re{Σ AA<br />

T,ren(s)/s} = −Re{Σ AA<br />

T (s)/s}+(Σ AA<br />

T ) ′ (0)<br />

= ∆αlept(s)+∆α (5)<br />

had (s)+∆αtop(s) ∼ α<br />

3π<br />

becomes sensitive to unphysical quark masses mq<br />

not calculable in perturbation theory<br />

solution: ∆α (5)<br />

had<br />

dispersion relation<br />

<br />

f<br />

Q 2 f ln M2 Z<br />

m 2 f<br />

obtainable from fit to experimental data with subtracted<br />

∆α (5)<br />

had<br />

= − α<br />

3π M2 Z Re<br />

∞<br />

4m 2 π<br />

ds ′<br />

R(s) = σ(e+ e − → γ ∗ → hadrons)<br />

σ(e + e − → γ ∗ → µ + µ − )<br />

R(s ′ )<br />

s ′ (s ′ −M 2 Z −iε)<br />

<br />

R(s) is taken from perturbative QCD for high energies ( √ s > ∼ 13GeV)<br />

⇒ ∆α (5)<br />

= 0.027498±0.000135<br />

had<br />

Jegerlehner; Burkhardt, Pietrzyk; Eidelman; Davier, Höcker,. . .<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.21


ΦTP 2<br />

Experimental confirmation of quantum corrections<br />

1−∆r = πα<br />

√ 2Gµ<br />

1<br />

M 2 W (1−M2 W /M2 Z )<br />

⇒ experimental determination of ∆r ∆r = 0.0350±0.0009<br />

∆r = 0 with 39σ ⇒ confirmation of quantum corrections<br />

∆r = ∆α ∼ 0.0594 wity 27σ ⇒ confirmation of weak corrections<br />

∆r<br />

<br />

<br />

(∆r)SM<br />

(∆r)exp<br />

<br />

∆mt<br />

<br />

mt = 173.2±0.9GeV<br />

Hollik ’00<br />

MH =<br />

1TeV<br />

⇒ limits on mt<br />

limits on MH<br />

113GeV<br />

mt [GeV]<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.22


Z physics<br />

at LEP and SLC<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.23


e −<br />

e +<br />

Z<br />

(γ)<br />

f = e − ,µ − ,τ − ,q<br />

¯f = e + ,µ + ,τ + ,¯q<br />

Z-boson resonance<br />

unfolded resonance cross-section s = E 2 CMS<br />

σf(s) = 12π s<br />

M 2 Z<br />

line shape ⇒ MZ,ΓZ<br />

peak cross section σ 0<br />

⇒ Γ(Z → l + l − )/ΓZ,<br />

Γ(Z → hadrons)/ΓZ<br />

Γ(Z → e + e − )Γ(Z → f ¯ f)<br />

(s−M 2 Z )2 +s 2 Γ 2 Z /M2 Z<br />

angular distributions,<br />

polarization asymmetries<br />

⇒ effective Zf ¯ f vector and<br />

axial-vector couplings gvf , gaf<br />

σ had [nb]<br />

40<br />

30<br />

20<br />

10<br />

LEP1: ∼ 16×10 7 events<br />

(1989–1995)<br />

sΓ 2 Z<br />

= σ 0<br />

(s−M 2 Z )2 +s2Γ2 Z /M2 Z<br />

ALEPH<br />

DELPHI<br />

L3<br />

OPAL<br />

measurements, error bars<br />

increased by factor 10<br />

σ from fit<br />

QED unfolded<br />

Γ Z<br />

M Z<br />

86 88 90 92 94<br />

σ 0<br />

E cm [GeV]<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.23


Z<br />

f<br />

Z-boson width and number of light neutrinos<br />

¯f<br />

ΓZ = Γ(e − e + ,µ − µ + ,τ − τ + )<br />

<br />

leptonic<br />

+ <br />

Γ(q¯q)<br />

q<br />

<br />

hadronic<br />

+NνΓ(ν¯ν)<br />

<br />

invisible<br />

= Γhad +Γe +Γµ +Γτ +Γinv<br />

ΓZ measured from Z line shape<br />

Γhad and Γl=e,µ,τ from Rl = Γhad<br />

Γl<br />

σ had [nb]<br />

30<br />

20<br />

10<br />

0<br />

ALEPH<br />

DELPHI<br />

L3<br />

OPAL<br />

average measurements,<br />

error bars increased<br />

by factor 10<br />

and σ 0 had = 12π<br />

M 2 Z<br />

2ν<br />

3ν<br />

4ν<br />

86 88 90 92 94<br />

E cm [GeV]<br />

ΓeΓhad<br />

Γ 2 Z<br />

Fit of ΓZ, Rl, and σ 0 had yields invisible Z-decay width: Γinv = Nν Γ theory<br />

Z→ν¯ν<br />

֒→ Nν = 2.9840±0.0082<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.24


Z-boson–fermion couplings<br />

Φ TP 2<br />

Z physics tests predominantly effective Z-boson–fermion couplings (on-shell)<br />

Z<br />

f<br />

¯f<br />

e<br />

= i γµ(gvf −gaf γ5)<br />

2swcw<br />

effective couplings contain weak corrections to on-shell Z ¯ ff vertex<br />

Z-boson width<br />

Γ(Z → f ¯ f) = GµM3 Z<br />

6π √ <br />

(gvf<br />

2<br />

)2 +(gaf )2 (1+δ QED<br />

f )<br />

forward–backward asymmetry<br />

A f<br />

FB = σf(θ < 90 ◦ )−σf(θ > 90 ◦ )<br />

σf(θ < 90 ◦ )+σf(θ > 90 ◦ )<br />

contribution of Z-boson exchange (pseudo observable)<br />

⇒ gvf<br />

, gaf<br />

A f<br />

FB (s = M2 Z) = 3<br />

4<br />

gve/gae<br />

(gve/gae) 2 +1<br />

gvf /gaf<br />

(gvf /gaf )2 +1<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.25


-0.032<br />

-0.035<br />

g Vl<br />

-0.038<br />

l + l −<br />

e + e −<br />

µ + µ −<br />

τ + τ −<br />

EffectiveZ-boson couplings<br />

LEPEWWG ’05<br />

-0.041<br />

-0.503 -0.502 -0.501 -0.5<br />

g Al<br />

m t = 178.0 ± 4.3 GeV<br />

m H = 114...1000 GeV<br />

m t<br />

m H<br />

∆α<br />

68% CL<br />

parameters<br />

mt = 178.0±4.3GeV<br />

MH = 114...1000GeV<br />

∆αhad = 0.02758±0.00035<br />

confirmation of<br />

lepton universality<br />

constraints onmt andMH<br />

experimental results<br />

for couplings<br />

gal<br />

gvl<br />

= −0.50123±0.00026<br />

= −0.03783±0.00041<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.26


Lowest order:<br />

Effective fermionic weak mixing angle<br />

gaf,0 = I 3 w,f, gvf,0 = (I 3 w,f −2Qfsin 2 θw)<br />

definition of effective fermionic mixing angle (pseudo observable)<br />

gaf = √ ρfI 3 w,f, gvf = √ ρf(I 3 w,f −2Qfsin 2 θ f eff)<br />

gvf ,gaf ⇒ sin2 θ f eff , ρf, gvf /gaf ⇒ sin2 θ f eff = I3 w,f<br />

2Qf<br />

lowest-order perturbation theory:<br />

including weak corrections:<br />

experiment:<br />

sin 2 θ f eff = sin 2 θw = 1− M2 W<br />

M 2 Z<br />

<br />

1− gv f<br />

ga f<br />

, ρf = 1<br />

sin 2 θ f eff = sin 2 θw, ρf = 1<br />

sin 2 θ lept<br />

eff ≈ 0.2315, sin2 θw ≈ 0.2229, sin 2 θ lept<br />

eff /sin2 θw ≈ 1.039<br />

ρf ≈ 1.005<br />

<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.27


sin 2 θ lept<br />

eff<br />

0.233<br />

0.232<br />

0.231<br />

Effective mixing angle versus leptonic ρ parameter<br />

∆α<br />

LEPEWWG ’05<br />

m t = 178.0 ± 4.3 GeV<br />

m H = 114...1000 GeV<br />

m H<br />

68% CL<br />

1 1.002 1.004 1.006<br />

ρ l<br />

m t<br />

parameters<br />

mt = 178.0±4.3GeV<br />

MH = 114...1000GeV<br />

∆αhad = 0.02758±0.00035<br />

preference for light Higgs<br />

boson<br />

experimental results<br />

Φ TP 2<br />

sin 2 θ lept<br />

eff = 0.23153±0.00016<br />

ρl = 1.0050±0.0010<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.28


Precision tests<br />

of the <strong>Standard</strong> <strong>Model</strong><br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.29


Global electroweak fit<br />

calculate all precision observables in SM including quantum corrections in<br />

terms of α(MZ), Gµ, MZ, mf=t, mt, MH, αs(MZ)<br />

determine parameters by fit to all precision data<br />

results<br />

good agreement between SM and data at the per-mille level<br />

(some exceptions)<br />

indirect determination of parameters<br />

all Z-pole data data, MW, ΓW: ⇒ mt = 179 +12<br />

−9 GeV<br />

1994: mt = 169 +24<br />

−27<br />

(top discovery 1995)<br />

present experimental value: mt = 173.2±0.9GeV<br />

all Z-pole data data, MW, ΓW, mt<br />

⇒ MH = 94 +29<br />

−24 GeV<br />

MH < 152GeV (95% C.L.) preference for light Higgs boson<br />

αs(MZ) = 0.1185±0.0026<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.29


LEPEWWG ’12<br />

∆α had (mZ )<br />

(5)<br />

Measurement Fit |O meas −O fit |/σ meas<br />

0 1 2 3<br />

0.02750 ± 0.00033 0.02759<br />

m Z [GeV] 91.1875 ± 0.0021 91.1874<br />

Γ Z [GeV] 2.4952 ± 0.0023 2.4959<br />

σ σhad [nb]<br />

0<br />

41.540 ± 0.037 41.478<br />

R l 20.767 ± 0.025 20.742<br />

A Afb 0,l<br />

0.01714 ± 0.00095 0.01645<br />

A l (P τ ) 0.1465 ± 0.0032 0.1481<br />

R b 0.21629 ± 0.00066 0.21579<br />

R c<br />

A Afb 0.1721 ± 0.0030 0.1723<br />

0,b<br />

0.0992 ± 0.0016 0.1038<br />

A Afb 0,c<br />

0.0707 ± 0.0035 0.0742<br />

A b 0.923 ± 0.020 0.935<br />

A c 0.670 ± 0.027 0.668<br />

A l (SLD) 0.1513 ± 0.0021 0.1481<br />

sin 2 sin θeff 2 θ lept (Qfb ) 0.2324 ± 0.0012 0.2314<br />

m W [GeV] 80.385 ± 0.015 80.377<br />

Γ W [GeV] 2.085 ± 0.042 2.092<br />

m t [GeV] 173.20 ± 0.90 173.26<br />

March 2012<br />

Global fit of LEP data<br />

0 1 2 3<br />

good agreement<br />

best fit for Higgs-boson mass:<br />

MH = 94 +29<br />

−24 GeV,<br />

MH < 152GeV @ 95% CL<br />

direct search at LEP2<br />

( e + e − → ZH) LEPHIGGS ’03<br />

MH > 114.4GeV<br />

Higgs discovery at LHC<br />

ATLAS/CMS July ’12<br />

MH ≈ 125GeV<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.30


Input-parameter scheme<br />

Natural input parameters: α, MW, MZ, mf, MH, αs<br />

weak mixing angle: on-shell definition sinθw = 1−M 2 W /M2 Z<br />

alternative input parameter sets: Gµ instead of MW or α<br />

Gµ no fundamental parameter, but precisely measured in µ decay<br />

definition of α<br />

◮ on-shell: α(0)<br />

appropriate for external photons<br />

◮ α(MZ), α( √ s):<br />

α(MZ)<br />

α(0)<br />

≈ 1.06<br />

absorbs running of α from Q = 0 to EW scale<br />

appropriate for internal photons and weak bosons<br />

◮ Gµ scheme: αGµ = √ 2GµM 2 W (1−M2 W /M2 Z )/π:<br />

αGµ<br />

α(0)<br />

≈ 1.03<br />

Φ TP 2<br />

absorbs running of α from Q = 0 to EW scale and ∆ρ in Wf ¯ f ′ coupling<br />

appropriate for processes with W bosons<br />

suitable choice of α reduces missing higher-order corrections<br />

gauge invariance demands unique input-parameter set!<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.31


Conclusions<br />

<strong>Standard</strong> <strong>Model</strong> established as a quantum field theory<br />

in agreement with all experiments (accuracy > ∼ 0.1%)<br />

quantum corrections = radiative corrections are established<br />

indirect and direct determinations of mt agree<br />

constraints on the Higgs-boson mass ⇒ light Higgs boson<br />

triple-gauge-boson self-interactions established at per-cent level<br />

candidate for Higgs boson has been found<br />

to be confirmed<br />

verification of Higgs boson<br />

measurement of Higgs-boson couplings to gauge bosons and fermions<br />

Higgs-boson self-interaction ⇒ Higgs potential<br />

Φ TP 2<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.32


Textbooks and Reviews:<br />

Literature<br />

◮ Peskin/Schroeder, An introduction to Quantum Field Theory<br />

◮ Itzykson/Zuber, Quantum Field Theory<br />

◮ Weinberg, The Quantum Theory of Fields, Vol. 1: Foundations;<br />

The Quantum Theory of Fields, Vol. 2: Modern Applications<br />

◮ Böhm/Denner/Joos, Gauge Theories of the Strong and Electroweak Interaction<br />

◮ Collins, Renormalization<br />

Experimental results:<br />

◮ The ALEPH, DELPHI, L3, OPAL, SLD Collaborations, the LEP Electroweak<br />

Φ TP 2<br />

Working Group, the SLD Electroweak and Heavy Flavour Groups, Phys. Rept.<br />

427 (2006) 257<br />

◮ The ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD Collaborations, the LEP<br />

Electroweak Working Group, the Tevatron Electroweak Working Group, and the<br />

SLD electroweak and heavy flavour groups, LEPEWWG/2010-01,<br />

http://lepewwg.web.cern.ch/LEPEWWG/<br />

<strong>Maria</strong> <strong>Laach</strong>, September 2012 Ansgar Denner (Würzburg) <strong>Standard</strong> <strong>Model</strong> – l.2 – p.33

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!