05.08.2013 Views

3D pixel detector

3D pixel detector

3D pixel detector

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ATLAS <strong>3D</strong>Si Sensors<br />

Project Status Report<br />

Ole Myren Røhne, University of Oslo<br />

For the ATLAS <strong>3D</strong>Si R&D Project


Outline<br />

• Progress at the fabrication facilities<br />

• Lab characterization<br />

• Measurements w/ATLAS FE-I3<br />

• Test beam program<br />

• Outlook


The <strong>3D</strong>Si ATLAS Upgrade R&D Project<br />

Development, Testing and Industrialization of Full-<strong>3D</strong> Active-Edge<br />

and Modified-<strong>3D</strong> Silicon Radiation Pixel Sensors with<br />

Extreme Radiation Hardness Results, Plans.<br />

Proponents: C. Da Viá, S. Parker, G. Darbo<br />

Status: APPROVED<br />

Topics and goals of the R&D proposal:<br />

The primary goal is the development, fabrication, characterization, and testing, with and without the front-end readout chip, of Full-<strong>3D</strong>– activeedge<br />

and Mod-<strong>3D</strong> silicon <strong>pixel</strong> sensors of extreme radiation hardness and high speed for the the Super-LHC ATLAS upgrade and, possibly, the<br />

ATLAS B-layer replacement. A secondary goal is to start design work for a reduced material B-layer <strong>detector</strong> module using these sensors.<br />

FP420 is used as a test bench for the technology<br />

Participating ATLAS Institutions: 10<br />

Bonn University, Freiburg University, University of Genova, Glasgow University, the University of Hawaii, Lawrence Berkeley National<br />

Laboratory, Manchester University, the University of New Mexico, Oslo University and the Czech Technical University.<br />

Fabrication Facilities: 4<br />

CNM/Valencia, IceMOS/Belfast, IRST/Trento and SINTEF/Oslo.<br />

At present C. Kenney (Molecular Biology Consortium) and Jasmine Hasi (Manchester University), working at the Stanford Nanofabrication<br />

Facility, made all of the Full-<strong>3D</strong> sensors. For this project industrial companies will join the above mentioned institutions to study the feasibility<br />

of a large volume production in time for the upgrade.


<strong>3D</strong>Si basics<br />

• MEMS technology + VLSI to sensor fab: Deep Reactive Ion Etching (DRIE)<br />

• Electrode implants: etched, doped, filled columns (S. Parker 1995)<br />

• Dicing: etched, doped edge trench (C. Kenney 1997)<br />

• Key benefits: Radiation hardness and active edges<br />

wafer diced by<br />

etching edges doped<br />

Silicon chip<br />

n - and p – electrode holes<br />

etched through wafer. Doped<br />

and filled with poly-silicon


Fabrication facilities: Overview<br />

Full <strong>3D</strong><br />

Active edge<br />

iceMOS- Being presently fabricated<br />

Work performed in the RD50 framework<br />

(No data available yet)<br />

The <strong>3D</strong> sensors family:<br />

<strong>3D</strong>C Fabricated at Stanford<br />

and tested with Atlas <strong>pixel</strong><br />

Readout – and SLHC fluences<br />

Design at its 5 th<br />

Generation<br />

Being also fabricated at SINTEF in<br />

the ATLAS Upgrade framework as<br />

part of the <strong>3D</strong>C Consortium.<br />

(No data available yet)<br />

Full <strong>3D</strong><br />

No active edge<br />

Single column<br />

No active edge<br />

IRST and separately CNM.<br />

Being presently fabricated<br />

(No data available yet)<br />

IRST/CNM fabricated in the RD50<br />

Framework in 2005 Tested with SCTA<br />

readout Electronics. Data and Simulations<br />

show that the design is NOT radiation hard<br />

For B-layer replacement.<br />

Double column<br />

No active edge


CNM (Barcelona/Valencia)<br />

FIRST BATCH COMPLETED<br />

•First run on n-type substrate, p-type column read-out<br />

(not usable w/FE-I3)<br />

•Strip sensor w/Beetle chip<br />

•Basic characterization started in CNM, Glasgow<br />

•Next run starting before end 2007: p-type substrate, ntype<br />

column<br />

p-on-n<br />

300-250µm<br />

Full depletion occurs at 2-3 V since<br />

the electrode pitch is 55µm<br />

Strips


FBK-IRST (Trento, Italy)<br />

FIRST BATCH COMPLETED<br />

<strong>3D</strong> Double-side Double-Type Column (<strong>3D</strong>-DDTC) <strong>detector</strong>s<br />

Detector concept able to ease the fabrication process, and<br />

expected to have performance comparable to standard <strong>3D</strong><br />

<strong>detector</strong>s (if d is much smaller than t )<br />

First batch (p-on-n version) completed at FBK-irst in October<br />

2007 Second batch (n-on-p) available by the end of 2007<br />

<strong>3D</strong> diodes2.56mm 2 area<br />

Single-Type-Column<br />

80 μm pitch,<br />

400 columns<br />

100 μm pitch,<br />

256 columns<br />

G.F. Dalla Betta, IEEE-NSS 2007, N18-3<br />

• Very low lateral depletion voltage(


IceMOS (Glasgow)<br />

FIRST BATCH will be COMPLETED by end of 2007<br />

• Full-<strong>3D</strong> sensors<br />

• No support wafer<br />

• Etch from top, back-grind<br />

• First run: p-on-n<br />

SAMPLES EXPECTED BEFORE END 2007


SINTEF/Stanford<br />

(<strong>3D</strong>C Hawaii, Manchester, Oslo, Prague, SINTEF)<br />

FIRST BATCH will be COMPLETED by end 2007<br />

• Implement Stanford design “technology transfer”<br />

• 2nd source full-<strong>3D</strong> active-edge sensors<br />

• In-house DRIE etching<br />

• Out-of-house polysilicon filling<br />

WAFER AFTER 2nd ELECTRODE FILLING AT<br />

STANFORD<br />

Ready for contact hole opening and metal<br />

PROCESSING WILL BE COMPLETED BY<br />

THE END OF 2007<br />

Detail of hole<br />

Detail from wafer showing holes and trench<br />

2


Stanford (Manchester)<br />

<strong>3D</strong> electrode configurations<br />

Design and fabrication by:<br />

J. Hasi, Manchester<br />

C. Kenney, MBC at CIS-Stanford<br />

50 µm<br />

50 µm<br />

50 µm<br />

2E<br />

400 µm<br />

p 103µm<br />

Vfd ~20V<br />

3E<br />

400 µm<br />

4E<br />

n<br />

n<br />

p<br />

71 µm<br />

Vfd ~8V<br />

400 µm<br />

p<br />

Vfd ~5V<br />

n<br />

56 µm<br />

Thickness <br />

p-type substrate 12kΩcm<br />

Baby-2E Baby-3E<br />

Financial support:<br />

STFC-UK for the FP420 project<br />

DOE, USA for ATLAS Upgrade<br />

10 wafers competed. Yield~80% (1 wafer)<br />

Atlas chip<br />

picture from<br />

Bekerle<br />

Vertex03<br />

ATLAS <strong>pixel</strong> chip<br />

7.2 x 8 mm 2<br />

2880 <strong>pixel</strong>s


<strong>3D</strong>Si basics - Radiation hardness<br />

• Decoupled directions: track traversal versus drift field<br />

• Low depletion voltage<br />

• Short charge collection path, fast signal<br />

• Retain full charge from MIP in 250μm Si<br />

• Signal loss dominated by trapping


Radiation hardness<br />

Irradiation and measurements performed in Prague<br />

C. Da Viá, T. Slaviceck, V. Linhart, P. Bem, S. Parker,<br />

S. Pospisil, S. Watts (process J. Hasi, C. Kenney)<br />

Samples/fluence As measured<br />

n/cm 2<br />

1MeV n<br />

(1.784)<br />

n/cm 2<br />

Protons<br />

(1/0.51)<br />

p/cm 2<br />

2E, 3E, 4E 4.23 10 14 7.55 10 14 1.48 10 15<br />

2E, 3E, 4E 1.12 10 15 2.00 10 15 3.92 10 15<br />

2E, 3E, 4E 4.94 10 15 8.81 10 15 1.73 10 16<br />

bias<br />

T=-20C<br />

IR Laser<br />

1060nm<br />

Gain = ~10000<br />

Oscilloscope


Radiation Hardness tests with neutrons<br />

using an IR laser source<br />

Irradiation and measurements performed in Prague<br />

C. Da Viá, T. Slaviceck, V. Linhart, P. Bem, S. Parker,<br />

S. Pospisil, S. Watts (process J. Hasi, C. Kenney)<br />

50 µm<br />

50 µm<br />

50 µm<br />

p<br />

2E<br />

V fd ~20V<br />

p<br />

V fd ~8V<br />

V fd ~5V<br />

400 µm<br />

3E<br />

400 µm<br />

4E<br />

n<br />

103µm<br />

400 µm<br />

p<br />

n<br />

71 µm<br />

n<br />

56µm<br />

2E<br />

9000e -<br />

V b ~130V<br />

3E<br />

10200e -<br />

V b ~112V<br />

4E<br />

13200e -<br />

V b ~94V<br />

C. DA VIA presented at the IEEE-NSS 2007<br />

threshold<br />

threshold<br />

threshold<br />

45%<br />

51%<br />

66%<br />

8.81x10 15 n/cm 2<br />

1.73x10 16 p/cm 2


Tests with the FE-I3 chip<br />

Bump bonded at IZM in 2006<br />

Mounted in Bonn<br />

Leakage currents<br />

before irradiation<br />

~325 pA/<strong>pixel</strong><br />

Noise vs<br />

Bias voltage<br />

Tests by E. Bolle, O. Rohne (Oslo) help from M. Garcia-Sciveres and K. Einweiler (LBL)


Estimated S/N at<br />

3.5x10 15 n/cm 2 and 8.81x10 15 n/cm 2<br />

Initial measurements, error bars<br />

would require more statistics<br />

Noise measured on non-irradiated bump-bonded<br />

FE-I3-ATLAS chip<br />

Noise measurements performed at CERN by E. Bolle and O. Rohne (Oslo)<br />

Help from K. Einweiler, M. Garcia-Sciveres (LBL), data analysis and plots from<br />

C. Da Via (Manchester)


Time walk with the FE-I3 chip<br />

•Threshold triggered system<br />

•Difference between t and t gives the time walk<br />

•New bunch crossing every 25ns<br />

•Need to cross threshold within 20ns to be accepted<br />

•How much overdrive is needed to cross threshold within 20ns?<br />

ASIC<br />

settings<br />

sensors<br />

IP = 64<br />

IL = 64<br />

IP = 128 1<br />

IL = 96<br />

Measurements by E. Bolle, K. Einweiler, O.Rohne. Plots by C. Da Viá<br />

IL68 IP68 – STANDARD PLANAR SETTINGS: Analogue current=91mA., VDDA = 1.6V and VDD = 2.0V<br />

IL96 IP128- Analogue current=126mA (+38%) VDDA = 1.6V VDD= 2.0V<br />

IL64 IP192 Analogue current =158mA (+76%) VDDA = 1.6V VDD= 2.0V<br />

IP = 196 2<br />

IL = 64<br />

2E-A 1807e - 1119e - 813e -<br />

3E-G 2798e - 1828e - 1434e -<br />

4E-C 3338e - 2122e - 1597e -<br />

Planar 1244e -


Data analysis<br />

By M. Mathes/Bonn<br />

Test beam setup 2006 M. Mathes, Presented at the IEEE-NSS 2007<br />

Picture by F. Roncarolo<br />

Manchester<br />

M. Mathes1, C. DaVia2, J. Hasi2, S. Parker3, M. Ruspa4,<br />

L. Reuen1, J. Velthuis1, S. Watts2, M. Cristinziani1, K.<br />

Einsweiler4, M. Gracia-Sciveres4,K. Kenney5, N. Wermes1<br />

1Bonn, Germany<br />

2Manchester University, UK<br />

3University of Hawaii, USA<br />

4LBL, Berkeley, USA<br />

5Molecular Biology Consortium, Stanford, USA<br />

Analysis<br />

By S. Watts/Manchester Beam profile<br />

Using 3x3mm 2<br />

scintillator


Tracking efficiency – 2006 test beam<br />

bump-bonding at IZM (Bonn)- not problematic<br />

M. Mathes1, C. DaVia2, J. Hasi2, S. Parker3, M. Ruspa4,<br />

L. Reuen1, J. Velthuis1, S. Watts2, M. Cristinziani1, K.<br />

Einsweiler4, M. Gracia-Sciveres4,K. Kenney5, N. Wermes1<br />

1Bonn, Germany<br />

2Manchester University, UK<br />

3University of Hawaii, USA<br />

4LBL, Berkeley, USA<br />

5Molecular Biology Consortium, Stanford, USA<br />

beam<br />

0 o<br />

ε = (95.9 ± 0.1) %<br />

beam<br />

15 o<br />

ε = (99.9 ± 0.1) %<br />

3E 3200 e -<br />

threshold<br />

Data analyisis and silulation by M. Mathes, M. Cristinziani (Bonn)<br />

S. Watts (Manchster)<br />

data<br />

simulation<br />

data<br />

simulation


Test beam 2007<br />

• Infrastructure from ATLAS Pixel TB<br />

• Stanford full <strong>3D</strong> FE-I3, irrad’ed<br />

• IRST STC <strong>3D</strong> strips<br />

• FP420 “blades” (Stanford full-<strong>3D</strong> FE-I3)<br />

Participating Institutions:<br />

Bonn, CERN, Freiburg, Glasgow, Hawaii, Manchester, Oslo,<br />

Prague, Trento


Test beam 2007 - preliminary plots<br />

IRST STC strip correlation with telescope<br />

Stanford full-<strong>3D</strong> (Håvard Gjersdal, Oslo)<br />

Stanford full-<strong>3D</strong> time vs charge


Active edge (Kenney 97)<br />

• DRIE trench etch can replace saw<br />

dicing<br />

• Horizontal field, no need for guard<br />

ring structures<br />

• Edge itself is an electrode<br />

• 2-way butt-able, edge sensitive<br />

tiles<br />

~4µm<br />

trench<br />

electrode


Conclusions and 2008 Plans<br />

<strong>3D</strong>Si project formed and approved as ATLAS upgrade project<br />

Tests with <strong>3D</strong>+FE-I3 chip completed and promising:<br />

S/N estimated before and after irradiation<br />

Time walk under control with moderate extra power<br />

Radiation Hardness proven with neutrons and IR laser source:<br />

IRRADIATED <strong>3D</strong>-<strong>pixel</strong> assembly (1x10 15 p/cm 2 ) under bias tested at RT in the beam<br />

WORKED! More tests after bonding mystery solved…<br />

ACTIVE EDGE PROCESSING : standard in Stanford and SINTEF, will be implemented<br />

at CNM, IceMOS, IRST<br />

ALL COMMERCIAL PARTNERS COMPLETED FIRST BATCH<br />

CNM / Barcellona-Valencia<br />

IceMos/Glasgow<br />

IRST/Trento<br />

SINTEF/Stanford<br />

First common test beam completed in October 2007 – data being analysed<br />

PLANS:<br />

Test beam period requested for 1 week in June and 1 in November 2008<br />

Irradiations and tests will be performed at CERN (common lab-space) and Institutes<br />

OVERALL PROGRESS ENCOURAGING!!!


Back-up slides


TIMESCHEDULE 3-D PROCESSING AT SINTEF<br />

6-weeks delay waiting for fix of boron deposition tube.<br />

Did go to Stanford instead for poly silicon filling of electrodes<br />

Expected completion January 04, 2008<br />

ICT

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!