10.08.2013 Views

Rational Curves in Calabi-Yau Threefolds

Rational Curves in Calabi-Yau Threefolds

Rational Curves in Calabi-Yau Threefolds

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

COMMUNICATIONS IN ALGEBRA Õ<br />

Vol. 31, No. 8, pp. 3917–3953, 2003<br />

<strong>Rational</strong> <strong>Curves</strong> <strong>in</strong> <strong>Calabi</strong>-<strong>Yau</strong> <strong>Threefolds</strong> #<br />

Trygve Johnsen 1, * and Andreas Leopold Knutsen 2<br />

1 Department of Mathematics, University of Bergen,<br />

Bergen, Norway<br />

2 Universitat Essen, Essen, Germany<br />

ABSTRACT<br />

We study the set of rational curves of a certa<strong>in</strong> topological type <strong>in</strong><br />

general members of certa<strong>in</strong> families of <strong>Calabi</strong>-<strong>Yau</strong> threefolds. For<br />

some families we <strong>in</strong>vestigate to what extent it is possible to conclude<br />

that this set is f<strong>in</strong>ite. For other families we <strong>in</strong>vestigate whether this<br />

set conta<strong>in</strong>s at least one po<strong>in</strong>t represent<strong>in</strong>g an isolated rational curve.<br />

Our study is <strong>in</strong>spired by Johnsen and Kleiman (Johnsen, T.,<br />

Kleiman, S. (1996). <strong>Rational</strong> <strong>Curves</strong> of degree at most 9 on a general<br />

qu<strong>in</strong>tic threefold. Comm. Algebra 24(8):2721–2753).<br />

Key Words: <strong>Rational</strong> curves; <strong>Calabi</strong>-<strong>Yau</strong> threefolds.<br />

# Dedicated to Steven L. Kleiman on the occasion of his 60th birthday.<br />

*Correspondence: Trygve Johnsen, Department of Mathematics, University of<br />

Bergen, Johs. Bruns gt 12, N-5008 Bergen, Norway; E-mail: johnsen@mi.uib.no,<br />

andreask@mi.uib.no.<br />

3917<br />

DOI: 10.1081/AGB-120022448 0092-7872 (Pr<strong>in</strong>t); 1532-4125 (Onl<strong>in</strong>e)<br />

Copyright # 2003 by Marcel Dekker, Inc. www.dekker.com


3918 Johnsen and Knutsen<br />

1991 Mathematics Subject Classification: Primary 14J32;<br />

Secondary: 14H45, 14J28.<br />

1. INTRODUCTION<br />

The famous Clemens conjecture says, roughly, that for each fixed d<br />

there is only a f<strong>in</strong>ite, but non-empty, set of rational curves of degree d<br />

on a general qu<strong>in</strong>tic threefold F <strong>in</strong> complex P 4 . A more ambitious version<br />

is the follow<strong>in</strong>g:<br />

The Hilbert scheme of rational, smooth and irreducible curves C of<br />

degree d on a general qu<strong>in</strong>tic threefold <strong>in</strong> P 4 is f<strong>in</strong>ite, nonempty and reduced,<br />

so each curve is embedded with balanced normal bundle O( 1) O( 1).<br />

Katz proved this statement for d 7, and <strong>in</strong> Nijsse (1995) and Johnsen<br />

and Kleiman (1996) the result was extended to d 9. An even more ambitious<br />

version also <strong>in</strong>cludes the statement that for general F, there are no<br />

s<strong>in</strong>gular rational curves of degree d, and no <strong>in</strong>tersect<strong>in</strong>g pair of rational<br />

curves of degrees d 1 and d 2 with d 1 þ d 2 ¼ d. This was proven (<strong>in</strong> Johnsen<br />

and Kleiman, 1996) to hold for d 9, with the important exception for<br />

d ¼ 5, where a general qu<strong>in</strong>tic conta<strong>in</strong>s a f<strong>in</strong>ite number of 6-nodal plane<br />

curves. This number was computed <strong>in</strong> Va<strong>in</strong>sencher (1995).<br />

We see that, <strong>in</strong> rough terms, the conjecture conta<strong>in</strong>s a f<strong>in</strong>iteness part<br />

and an existence part (existence of at least one isolated smooth rational<br />

curve of fixed degree d on general F, for each natural number d ). For<br />

the qu<strong>in</strong>tics <strong>in</strong> P 4 , the existence part was proved for all d by S. Katz<br />

(1986), extend<strong>in</strong>g an argument from Clemens (1983), where existence<br />

was proved for <strong>in</strong>f<strong>in</strong>tely many d.<br />

In this paper we will sum up or study how the situation is for some<br />

concrete families of embedded <strong>Calabi</strong>-<strong>Yau</strong> threefolds other than the<br />

qu<strong>in</strong>tics <strong>in</strong> P 4 .<br />

In Sec. 2 we will briefly sketch some f<strong>in</strong>iteness results for <strong>Calabi</strong>-<strong>Yau</strong><br />

threefolds that are complete <strong>in</strong>tersections <strong>in</strong> projective spaces. There are<br />

four other families of <strong>Calabi</strong>-<strong>Yau</strong> threefolds F that are such complete<br />

<strong>in</strong>tersections, namely, those of type (2, 4) and (3, 3) <strong>in</strong> P 5 , those of type<br />

(2, 2, 3) <strong>in</strong> P 6 , and those of type (2, 2, 2, 2) <strong>in</strong> P 7 . For these families we<br />

have f<strong>in</strong>iteness results comparable to those for qu<strong>in</strong>tics <strong>in</strong> P 4 <strong>in</strong>volv<strong>in</strong>g<br />

smooth curves. The existence question has been answered <strong>in</strong> positive<br />

terms for curves of low genera, <strong>in</strong>clud<strong>in</strong>g g ¼ 0 and all positive d, <strong>in</strong> these<br />

cases. See Kley (2000) and Ekedahl et al. (1999).<br />

In Sec. 3 we study the five other families of <strong>Calabi</strong>-<strong>Yau</strong> threefolds F<br />

that are complete <strong>in</strong>tersections with Grassmannians G(k, n), namely, those<br />

of type (1, 1, 3) and (1, 2, 2) with G(1, 4), those of type (1, 1, 1, 1, 2) with


<strong>Rational</strong> <strong>Curves</strong> <strong>in</strong> <strong>Calabi</strong>-<strong>Yau</strong> <strong>Threefolds</strong> 3919<br />

answered, <strong>in</strong> positive terms for curves with g ¼ 0, for the types (1, 1, 3),<br />

(1, 2, 2), and (1, 1, 1, 1, 2). See Knutsen (2001b).<br />

In Sec. 4 we will study rational curves <strong>in</strong> families of <strong>Calabi</strong>-<strong>Yau</strong><br />

threefolds F on four-dimensional rational normal scrolls <strong>in</strong> projective<br />

spaces. These threefolds will then correspond to sections of the anticanonical<br />

l<strong>in</strong>e bundle on the scroll, a very simple case of ‘‘complete<br />

<strong>in</strong>tersection’’.<br />

The ma<strong>in</strong> result of this paper, Theorem 4.3, ensures existence of at<br />

least one isolated smooth rational curve of given fixed topological type<br />

on general F, for each topological type (a bidegree (d, a)) with<strong>in</strong> a certa<strong>in</strong><br />

range. The ma<strong>in</strong> steps of the proof of Theorem 4.3 are sketched <strong>in</strong> Sec. 4.<br />

There we also briefly <strong>in</strong>vestigate the possibilities for show<strong>in</strong>g f<strong>in</strong>iteness,<br />

apply<strong>in</strong>g similar methods developed to handle the complete <strong>in</strong>tersection<br />

cases described above.<br />

Sections 5 and 6 are devoted to the details of the proof of Theorem<br />

4.3. In Sec. 5 we describe some general, useful facts about polarized K3<br />

surfaces, and we make some specific lattice-theoretical considerations<br />

that will be useful to us.<br />

In Sec. 6 we prove Theorem 4.3 step by step. In Step (I) we prove<br />

Proposition 6.2, which describes curves on K surfaces, <strong>in</strong> Steps (II)–<br />

(IV) we produce threefolds, which are unions of one-dimensional families<br />

of K3 surfaces. We produce the desired rational curves on such threefolds<br />

and on smooth deformations of such threefolds.<br />

1.1. Conventions and Def<strong>in</strong>itions<br />

The ground field is the field of complex numbers. We say a curve<br />

C <strong>in</strong> a variety V is geometrically rigid <strong>in</strong> V if the space of embedded<br />

deformations of C <strong>in</strong> V is zero-dimensional. If, furthermore, this space is<br />

reduced, we say that C is <strong>in</strong>f<strong>in</strong>itesimally rigid or isolated <strong>in</strong> V.<br />

A curve will always be reduced and irreducible.<br />

2. COMPLETE INTERSECTION CALABI-YAU<br />

THREEFOLDS IN PROJECTIVE SPACES<br />

In this section we will sketch the situation for the complete <strong>in</strong>tersection<br />

<strong>Calabi</strong>-<strong>Yau</strong> threefolds <strong>in</strong> projective spaces. In Johnsen and Kleimen<br />

(1996) one wrote, regard<strong>in</strong>g the f<strong>in</strong>iteness question for (smooth) rational<br />

curves: ‘‘The authors have checked the key details, and believe the follow<strong>in</strong>g<br />

ranges come out: d 7 for types (3, 3) and (2, 4), and d 6 for types


3920 Johnsen and Knutsen<br />

(2, 2, 3) and (2, 2, 2, 2). In fact, except for the case d ¼ 6 and F of type<br />

(2, 2, 2, 2), the <strong>in</strong>cidence scheme Id of pairs (C, F) is almost certa<strong>in</strong>ly irreducible,<br />

generically reduced, and of the same dimension as the space P of<br />

F.’’ Moreover, the ‘‘full theorem’’ for smooth rational curves <strong>in</strong> qu<strong>in</strong>tics,<br />

parallel to that of Nijsse (1995), was:<br />

Theorem 2.1. Let d 9, and let F be a general qu<strong>in</strong>tic threefold <strong>in</strong> P 4 .In<br />

the Hilbert scheme of F, form the open subscheme of rational, smooth and<br />

irreducible curves C of degree d. Then this subscheme is f<strong>in</strong>ite, nonempty,<br />

and reduced; <strong>in</strong> fact, each C is embedded <strong>in</strong> F with normal bundle<br />

1( 1) OP1( 1).<br />

OP<br />

We are now ready to give correspond<strong>in</strong>g results for the four other<br />

complete <strong>in</strong>tersection cases:<br />

Theorem 2.2. Assume that we are <strong>in</strong> one of the follow<strong>in</strong>g cases:<br />

(a) d 7, and F is a general complete <strong>in</strong>tersection threefold of type<br />

(2, 4) or (3, 3) <strong>in</strong> P 5 .<br />

(b) d 6, and F is a general complete <strong>in</strong>tersection threefold of type<br />

(2, 2, 3) <strong>in</strong> P 6 .<br />

(c) d 5, and F is a general complete <strong>in</strong>tersection threefold of type<br />

(2, 2, 2, 2) <strong>in</strong> P 5 .<br />

In the Hilbert scheme of F, form the open subscheme of rational, smooth and<br />

irreducible curves C of degree d. Then this subscheme is f<strong>in</strong>ite, nonempty,<br />

and reduced; <strong>in</strong> fact, each C is embedded <strong>in</strong> F with normal bundle<br />

O P 1( 1) O P 1( 1). Moreover, <strong>in</strong> the cases (2, 2, 3) and d ¼ 7, and <strong>in</strong> the<br />

case (2, 2, 2, 2) and d ¼ 6, this subscheme is f<strong>in</strong>ite and non-empty, and there<br />

exists a rational curve C <strong>in</strong> F with normal sheaf OP1( 1) OP1( 1).<br />

Proof. In all cases of (a), (b), and (c) one proceeds as follows: Let Id be<br />

the natural <strong>in</strong>cidence of smooth rational curves C and smooth complete<br />

<strong>in</strong>tersection threefolds F <strong>in</strong> question. One then shows that Id is irreducible,<br />

and dimId ¼ dimG, where G is the parameter space of complete <strong>in</strong>tersection<br />

threefolds <strong>in</strong> question. This is enough to prove f<strong>in</strong>iteness. In<br />

Jordanger (1999) not only the key details, but a complete proof of this<br />

result, was given.<br />

Secondly, for each of the five <strong>in</strong>tersection types (of CICY’s <strong>in</strong> some<br />

P n ) one has the follow<strong>in</strong>g existence result, proven <strong>in</strong> Kley (2000) and<br />

Ekedahl et al. (1999). (Oguiso (1994) settled the (2, 4) case). It is also a<br />

special case of Knutsen (2001b, Thm. 1.1 and Rem. 1.2) and Kley<br />

(1999, Thm. 2.1).


<strong>Rational</strong> <strong>Curves</strong> <strong>in</strong> <strong>Calabi</strong>-<strong>Yau</strong> <strong>Threefolds</strong> 3921<br />

Theorem 2.3. For all natural numbers d there exists a smooth rational<br />

curve C of degree d and a smooth CICY F, with normal sheaf NCjF ¼<br />

OP 1( 1) OP 1( 1) (which gives h0 (NCjF) ¼ 0).<br />

Us<strong>in</strong>g these two pieces of <strong>in</strong>formation Theorem 2.2 follows as <strong>in</strong><br />

Katz (1986, p. 152–153).<br />

In the cases (2, 2, 3) and d ¼ 7, and (2, 2, 2, 2) and d ¼ 6, one proves<br />

dim Id ¼ dim G and comb<strong>in</strong>es with Theorem 2.3. &<br />

3. CICY THREEFOLDS IN GRASSMANNIANS<br />

There are several ways of describ<strong>in</strong>g and compactify<strong>in</strong>g the set of<br />

smooth rational curves of degree d <strong>in</strong> the Grassmann variety G(k, n).<br />

See for example (Strømme, 1987). Let M d,k,n denote the Hilbert scheme<br />

of smooth rational curves of degree d <strong>in</strong> G(k, n). It is well known that<br />

the dimension of Md,k,n is (n þ 1)d þ (k þ 1)(n k) 3.<br />

Let each G(k, n) be embedded <strong>in</strong> P N , where N ¼ nþ1<br />

kþ1<br />

1, by the<br />

Plücker embedd<strong>in</strong>g. Let G parametrize the set of smooth complete <strong>in</strong>tersection<br />

threefolds with G(k, n) by hypersurfaces of degrees (a1, ..., as) <strong>in</strong><br />

P N , where s ¼ dim G(k, n) 3 ¼ (k þ 1)(n k) 3, and a1 þ þas ¼<br />

n þ 1. Adjunction gives that the complete <strong>in</strong>tersections thus def<strong>in</strong>ed have<br />

trivial canonical sheaves, and thus are <strong>Calabi</strong>-<strong>Yau</strong> threefolds. An easy<br />

numerical calculation gives that there are five families of <strong>Calabi</strong>-<strong>Yau</strong><br />

threefolds F that are complete <strong>in</strong>tersections with Grassmannians G(k, n),<br />

beside those that are straightforward complete <strong>in</strong>tersections of projective<br />

spaces P N (correspond<strong>in</strong>g to the special case k ¼ 0, n ¼ N). It will be<br />

natural for us to divide these five cases <strong>in</strong>to two categories:<br />

(a) Those where ai ¼ 1, for all i. These are of type (1, 1, 1, 1, 1, 1, 1) <strong>in</strong><br />

G(1, 6) <strong>in</strong> P 20 , or of type (1, 1, 1, 1, 1, 1) <strong>in</strong> G(2, 5) <strong>in</strong> P 19 . The<br />

dimensions of the parameter spaces G of F <strong>in</strong> question, are 98<br />

and 84, respectively.<br />

(b) Those where ai 2, for some i. These are of type (1, 1, 3) or<br />

(1, 2, 2) <strong>in</strong> G(1, 4) <strong>in</strong> P 9 , or of type (1, 1, 1, 1, 2) <strong>in</strong> G(1, 5) <strong>in</strong><br />

P 14 . The dimensions of the parameter spaces of F <strong>in</strong> question,<br />

are 135, 95 and 109, respectively.<br />

The existence question for rational curves of all degrees has been<br />

settled by the second author <strong>in</strong> Knutsen (2001b, Thm. 1.1 and Rem.<br />

1.2), where it is concluded that for general F of types (1, 1, 3), (1, 2, 2),


3922 Johnsen and Knutsen<br />

or (1, 1, 1, 1, 2), and any <strong>in</strong>teger d > 0, there exists a smooth rational curve<br />

C of degree d <strong>in</strong> F with NCjF ¼ OP1( 1) OP1( 1) (which gives<br />

h 0 (NCjF) ¼ 0). For the types (1, 1, 1, 1, 1, 1, 1) and (1, 1, 1, 1, 1, 1) we know<br />

of no such result.<br />

The f<strong>in</strong>iteness question seems hard to handle <strong>in</strong> all these cases. Let Id be the <strong>in</strong>cidence of C and complete <strong>in</strong>tersection F. Denote by a the projection<br />

to the parameter space Md,k,n of po<strong>in</strong>ts [C] represent<strong>in</strong>g smooth<br />

rational curves C of degree d <strong>in</strong> G(k, n), and by b the projection to the<br />

parameter space of complete <strong>in</strong>tersections of the G(k, n) <strong>in</strong> question. A<br />

natural strategy is to look at each fixed rational curve C and study the<br />

fibre a 1 ([C]). If the dimension of all such fibres can be controlled, so<br />

can dim Id. A way to ga<strong>in</strong> partial control is the follow<strong>in</strong>g: Let M be a subscheme<br />

of Md,k,n, with dim M ¼ m, and assume that dim a 1 ([C]) ¼ c is<br />

constant on M. Then of course this gives rise to a part a 1 (M) ofIdwhich has dimension c þ m. Ifcþm dim G, one concludes that, for a general<br />

po<strong>in</strong>t [g] ofG, there is only a f<strong>in</strong>ite set of po<strong>in</strong>ts from a 1 (M) <strong>in</strong>b 1 ([g]).<br />

More ref<strong>in</strong>ed arguments may reveal that <strong>in</strong> many such cases a 1 (M) is<br />

irreducible.<br />

An obvious argument shows that if M is the subscheme of<br />

M(d, k, n) correspond<strong>in</strong>g to rational normal curves of degree d, then<br />

dim a 1 ([C]) is constant on M. Moreover the constant value is<br />

c ¼ dim G dim Md,k,n ¼ dim G ((n þ 1)d þ (k þ 1)(n k) 3). Of course<br />

the rational normal curves for fixed n, k only occur for (low) d N r,<br />

where G(k, n) is embedded <strong>in</strong> P N ,andris the number of i with ai ¼ 1.<br />

(One observes that N r ¼ maxfdjdim G dim Md,k,n 0g for the cases<br />

<strong>in</strong> category (a), but N r < maxfdjdim G dim Md,k,n 0g for the cases<br />

<strong>in</strong> category (b).)<br />

For d ¼ 1, 2, 3 the only smooth rational curves of degree d are the<br />

rational, normal ones. In Osland (2001) it was shown for all five cases<br />

that Id is irreducible for d ¼ 1, 2, 3, and that on a general F there is no s<strong>in</strong>gular<br />

(plane) cubic curve on F. In a similar way, one can show that on a<br />

general F there is no pair of <strong>in</strong>tersect<strong>in</strong>g l<strong>in</strong>es, and no l<strong>in</strong>e <strong>in</strong>tersect<strong>in</strong>g a<br />

conic and no double l<strong>in</strong>e. For the complete <strong>in</strong>tersection types of category<br />

(b), one then has:<br />

Proposition 3.1. (i) Let d 3, and let F be a general threefold of a given<br />

type as described above. In the Hilbert scheme of F, form the open subscheme<br />

of rational, smooth and irreducible curves C of degree d. Then this<br />

subscheme is f<strong>in</strong>ite, nonempty, and reduced; <strong>in</strong> fact, each C is embedded <strong>in</strong> F<br />

with normal bundle OP1( 1) OP1( 1). Moreover, there are no s<strong>in</strong>gular<br />

curves (reducible or irreducible) of degree d <strong>in</strong> F. We have dim Id ¼ dim G,<br />

and Id is irreducible.


<strong>Rational</strong> <strong>Curves</strong> <strong>in</strong> <strong>Calabi</strong>-<strong>Yau</strong> <strong>Threefolds</strong> 3923<br />

(ii) For all natural numbers d the <strong>in</strong>cidence Id conta<strong>in</strong>s a component of<br />

dimension dim G, and this component dom<strong>in</strong>ates G by the second projection<br />

map b.<br />

Proof. Part (i) follows from the irreducibility of Id, for d ¼ 1, 2, 3, and the<br />

existence result <strong>in</strong> Knutsen (2001b), us<strong>in</strong>g Katz (1986, p. 152–153). Part<br />

(ii) follows from the same results, focus<strong>in</strong>g only on one particular component<br />

of Id, correspond<strong>in</strong>g to the curve found <strong>in</strong> Knutsen (2001b). &<br />

In Batyrev et al. (prepr<strong>in</strong>t), one f<strong>in</strong>ds virtual numbers of rational<br />

curves of degree d on a generic threefold of each of the five types<br />

described. For the ones of category (b), there should be no problem <strong>in</strong><br />

<strong>in</strong>terpret<strong>in</strong>g these numbers as actual numbers of smooth rational curves<br />

of degree d <strong>in</strong> a generic F, for d ¼ 1, 2, 3, but it is a challenge to prove the<br />

analogue of Part (i) for higher d.<br />

3.1. An Analysis of the Incidence Id<br />

For each of the five types one might ask whether it is reasonable to<br />

believe that dim Id ¼ dim G (or equivalently: dim Id dim G) for many<br />

more d, or even for all d. We will po<strong>in</strong>t out below that the number of such<br />

d is very limited.<br />

We recall that <strong>in</strong> the well known case of the hyperqu<strong>in</strong>tics <strong>in</strong> P 4 we<br />

have I d irreducible and of dimension 125 ¼ dim G, for d 9, reducible<br />

for d ¼ 12, and reducible with at least one component of dimension at<br />

least 126 for d 13. The cases d ¼ 10, 11 seem to represent ‘‘open territory’’,<br />

while it is also open whether some component has dimension at<br />

least 126 for d ¼ 12. See Johnsen and Kleiman (1997). (None of these<br />

pieces of <strong>in</strong>formation contradict the Clemens conjecture, which predicts<br />

that all components of dimension at least 126 project to some subset of<br />

G of positive codimension).<br />

In each of the five types of complete <strong>in</strong>tersection with Grassmannians<br />

G(k, n), a similar phenomenon occurs. The most transparent example is<br />

perhaps that of threefolds of <strong>in</strong>tersection type (1 7 )ofG(1, 6) <strong>in</strong> P 20 .<br />

We now will show that <strong>in</strong> this case dim Id > dim G for all d 4:<br />

For all po<strong>in</strong>ts P of P 6 , look at HP ¼ P 5 <strong>in</strong> G(1, 6) parametriz<strong>in</strong>g all l<strong>in</strong>es<br />

through P. The subset of Md,k,n parametriz<strong>in</strong>g curves <strong>in</strong> HP, only spann<strong>in</strong>g<br />

a P 3 (<strong>in</strong>side HP <strong>in</strong>side G(1, 6) <strong>in</strong>side P 20 ) has dimension 4d þ 8. There is a<br />

70-dimensional family of 13-planes <strong>in</strong> P 20 conta<strong>in</strong><strong>in</strong>g a given P 3 . Hence<br />

dim I d 6 þ (4d þ 8) þ 70 ¼ 4d þ 84. Clearly this exceeds 98 for d 4.<br />

Let J be the subset of Id thus obta<strong>in</strong>ed. The set of 3-spaces<br />

conta<strong>in</strong>ed <strong>in</strong> some HP has dimension 6 þ dim G(3, 5) ¼ 14, so


3924 Johnsen and Knutsen<br />

dim b(J) 14 þ 70 ¼ 84 < 98. Hence J, although big, gives no contradiction<br />

to the analogue of the Clemens conjecture.<br />

To complete the picture we will also exhibit another part of the <strong>in</strong>cidence<br />

I d of dimension 4d þ 69. This is larger than 98 for d 8. We will<br />

study the part of I d that arises from curves C <strong>in</strong> G(1, 6), such that its associated<br />

ruled surface <strong>in</strong> P 6 only spans a P 3 <strong>in</strong>side that P 6 . Each such curve<br />

is conta<strong>in</strong>ed <strong>in</strong> a G(1, 3) <strong>in</strong> a P 5 <strong>in</strong>side P 20 , and a simple dimension count<br />

gives dimension 4d þ 69.<br />

On the other hand, it is for example clear that a general P 13 <strong>in</strong>side P 20<br />

(correspond<strong>in</strong>g to a general (1 7 )ofG(1, 6)) does not conta<strong>in</strong> a P 5 spanned<br />

by a sub-G(1, 3) of G(1, 6). This means that the subsets of Id, correspond<strong>in</strong>g<br />

to curves C conta<strong>in</strong>ed <strong>in</strong> a G(1, 3), such that C and G(1, 3) span the<br />

same P 5 , project by b to subsets of G of positive codimension. Some<br />

Schubert calculus reveals that the same is true for the part of Id correspond<strong>in</strong>g<br />

to those C conta<strong>in</strong>ed <strong>in</strong> a G(1, 3) and spann<strong>in</strong>g at most a P 4<br />

also. Hence the ‘‘problematic’’ part of Id <strong>in</strong> consideration here does not<br />

give a contradiction to the analogue of the Clemens conjecture.<br />

For d 12, the part of Id aris<strong>in</strong>g from curves such that its associated<br />

ruled surface spans a P 4 <strong>in</strong>side P 6 will have dimension at least 5d þ 41,<br />

which is larger than 98. As above we see that general P 13 <strong>in</strong>side P 20 does<br />

not conta<strong>in</strong> a P 9 spanned by a sub-G(1, 4) of G(1, 6).<br />

For d 15, the part of Id aris<strong>in</strong>g from curves such that their associated<br />

ruled surfaces spans a P 5 <strong>in</strong>side P 6 will have dimension at least 99.<br />

Let J be the subset of Id thus obta<strong>in</strong>ed. The set of 3-spaces conta<strong>in</strong>ed<br />

<strong>in</strong> some HP has dimension 6 þ dim G(3, 5) ¼ 14, so dim b(J) 14 þ 70 ¼<br />

84 < 98. Hence J gives no contradiction to the analogue of the Clemens<br />

conjecture.<br />

A similar phenomenon occurs for the case of threefolds of <strong>in</strong>tersection<br />

type (1 6 )ofG(2, 5) <strong>in</strong> P 19 . We recall dim G ¼ 84 <strong>in</strong> this case. For a<br />

given C <strong>in</strong> G(2, 5), the associated ruled threefold <strong>in</strong> P 5 may span a<br />

3-space, a 4-space, or all of P 5 . The former ones give rise to a part of<br />

the <strong>in</strong>cidence of dimension 4d þ 68. This is equal to dim G for d ¼ 4,<br />

and Id is reducible then. For d 5 we see that dim Id > dim G.<br />

4. RATIONAL CURVES IN SOME CY THREEFOLDS<br />

IN FOUR-DIMENSIONAL RATIONAL<br />

NORMAL SCROLLS<br />

In this section we state the ma<strong>in</strong> result of this paper, Theorem 4.3, and<br />

we sketch the ma<strong>in</strong> steps of its proof. We also give some supplementary


<strong>Rational</strong> <strong>Curves</strong> <strong>in</strong> <strong>Calabi</strong>-<strong>Yau</strong> <strong>Threefolds</strong> 3925<br />

results, and remark on the possibility of f<strong>in</strong>d<strong>in</strong>g analogues of our ma<strong>in</strong><br />

result.<br />

We start by review<strong>in</strong>g some basic facts about rational normal scrolls.<br />

Def<strong>in</strong>ition 4.1. Let E ¼ O P 1(e 1) O P 1(e d), with e 1 e d 0<br />

and f ¼ e1 þ þed 2. Consider the l<strong>in</strong>e bundle L ¼ OP(E)(1) on the correspond<strong>in</strong>g<br />

P d 1 -bundle P(E) over P 1 . We map P(E) <strong>in</strong>to P N with the<br />

complete l<strong>in</strong>ear system jLj, where N ¼ f þ d 1. The image T is by<br />

def<strong>in</strong>ition a rational normal scroll of type (e1, ...,ed). The image is smooth,<br />

and isomorphic to P(E), if and only if ed 1.<br />

Def<strong>in</strong>ition 4.2. Let T be a rational normal scroll of type (e 1, ...,e d). We<br />

say that T is a scroll of maximally balanced type if e 1 e d 1.<br />

Denote by H the hyperplane section of a rational normal scroll T,<br />

and let C be a (rational) curve <strong>in</strong> T. We say that the bidegree of C is (d, a)<br />

if deg C ¼ C.H ¼ d, considered as a curve on projective space, and<br />

C F ¼ a, where F is the fiber of the scroll.<br />

From now on we will let T be a rational normal scroll of dimension<br />

4<strong>in</strong>P N , and of type (e 1, ..., e 4), where the e i are ordered <strong>in</strong> an non<strong>in</strong>creas<strong>in</strong>g<br />

way, and e 1 e 3 1. Hence the subscroll P(O P 1(e 1) O P 1(e 2)<br />

OP 1(e3)) is of maximally balanced type. We will show that for positive a,<br />

and d exceed<strong>in</strong>g a lower bound depend<strong>in</strong>g on a, a general 3-dimensional<br />

(anti-canonical) divisor of type 4H (N 5)F will conta<strong>in</strong> an isolated<br />

rational curve of bidegree (d, a). To be more precise, we will show:<br />

Theorem 4.3. Let T be a rational normal scroll of dimension 4 <strong>in</strong> P N with<br />

a balanced subscroll of dimension 3 as decribed. Assume this subscroll spans<br />

a P g (so g ¼ e 1 þ e 2 þ e 3 þ 2) Let d 1, and a 1, be <strong>in</strong>tegers satisfy<strong>in</strong>g the<br />

follow<strong>in</strong>g conditions:<br />

(i)<br />

(ii)<br />

If g 1(mod 3), then either ðd; aÞ 2fð3 ; 1Þ; ð2ðg 1Þ=3; 2Þg;<br />

ðg 1Þa 3<br />

or d > 3 a , (d, a) 6¼ (2(g 1)=3 1, 2) and 3d 6¼ (g 1)a.<br />

If g 2(mod 3), then either (d, a) 2f(g 1, 3), (2g 2, 6)g;<br />

ðg 1Þa 3<br />

or d > 3 a , (d, a)62f(2(g<br />

((7g 8)=3, 7)g and 3d 6¼ (g 1)a.<br />

2)=3, 2), ((4g 5)=3, 4),<br />

(iii) If g 0(mod 3), then either (d, a) 2f((g 3)=3, 1), ((2g 3)=3, 2)g;<br />

or d ga=3.<br />

Then the zero scheme of a general section of 4H (N 5)F will be a<br />

smooth <strong>Calabi</strong>-<strong>Yau</strong> threefold and conta<strong>in</strong> an isolated rational curve of<br />

bidegree (d, a).<br />

g 1


3926 Johnsen and Knutsen<br />

This theorem will be proved <strong>in</strong> several steps. The fact that a general<br />

section is smooth follows from Bert<strong>in</strong>i’s theorem, and s<strong>in</strong>ce the divisor is<br />

anti-canonical and of dimension 3, it will be a <strong>Calabi</strong>-<strong>Yau</strong> threefold. Here<br />

are the ma<strong>in</strong> steps <strong>in</strong> the proof of the statement about the existence of an<br />

isolated curve as described:<br />

(I) Set g :¼ e1 þ e2 þ e3 þ 2. Us<strong>in</strong>g lattice-theoretical considerations<br />

we f<strong>in</strong>d a (smooth) K3 surface S <strong>in</strong> P g with Pic S ’ ZH ZD ZG,<br />

where H is the hyperplane section class, D is the class of a smooth<br />

elliptic curve of degree 3 and G is a smooth rational curve of bidegree<br />

(d, a). Let T ¼ T S be the 3-dimensional scroll <strong>in</strong> P g swept out by the l<strong>in</strong>ear<br />

spans of the divisors <strong>in</strong> jDj on S. The rational normal scroll T will be of<br />

maximally balanced type and of degree e 1 þ e 2 þ e 3.<br />

(II) Embed T ¼ P(OP 1(e1) OP 1(e2) OP 1(e3)) (<strong>in</strong> the obvious way)<br />

<strong>in</strong> a 4-dimensional scroll T ¼ P(O P 1(e 1) O P 1(e 4)) of type (e 1, ...,<br />

e 4). Hence T corresponds to the divisor class H e 4F <strong>in</strong> T, and S corresponds<br />

to a ‘‘complete <strong>in</strong>tersection’’ of divisors of type H e4F and<br />

3H (g 4)F on T. We now deform the complete <strong>in</strong>tersection <strong>in</strong> a<br />

rational family (i.e., parametrized by P 1 ) <strong>in</strong> a general way. For ‘‘small<br />

values’’ of the parameter we obta<strong>in</strong> a K3 surface with Picard group of<br />

rank 2 and no rational curve on it.<br />

(III) Take the union over P 1 of all the K3 surfaces described <strong>in</strong> (II).<br />

This gives a threefold V, which is a section of the anti-canonical divisor<br />

4H (g 4 þ e4)F ¼ 4H (N 5)F on T. For a general complete<br />

<strong>in</strong>tersection deformation the threefold will have only f<strong>in</strong>itely many s<strong>in</strong>gularities,<br />

none of them on G. Then G will be isolated on V.<br />

(IV) Deform V as a section of 4H (g 4 þ e4)F ¼ 4H (N 5)F<br />

F on T. Then a general deformation W will be smooth and have an isolated<br />

curve GW of bidegree (d, a).<br />

This strategy is analogous to the one used <strong>in</strong> Clemens (1983) to show<br />

the existence of isolated rational curves of <strong>in</strong>f<strong>in</strong>itely many degrees <strong>in</strong> the<br />

generic qu<strong>in</strong>tic <strong>in</strong> P 4 , and <strong>in</strong> Ekedahl et al. (1999) to show the existence of<br />

isolated rational curves of bidegree (d, 0) <strong>in</strong> general complete <strong>in</strong>tersection<br />

<strong>Calabi</strong>-<strong>Yau</strong> threefolds <strong>in</strong> some specific biprojective spaces.<br />

Step (I) will be proved <strong>in</strong> Secs. 5 and 6, and Steps (II)–(IV) <strong>in</strong> Sec. 6.<br />

4.1. F<strong>in</strong>iteness Questions<br />

Let us say a few words about f<strong>in</strong>iteness. Let T be a rational, normal<br />

scroll of dimension 4 <strong>in</strong> P N . A divisor of type 4H (N 5)F corresponds


<strong>Rational</strong> <strong>Curves</strong> <strong>in</strong> <strong>Calabi</strong>-<strong>Yau</strong> <strong>Threefolds</strong> 3927<br />

to a quartic hypersurface Q conta<strong>in</strong><strong>in</strong>g N 5 given 3-spaces <strong>in</strong> the Ffibration<br />

of T. Then, for general such Q, we see that Q \ T is the union<br />

of a <strong>Calabi</strong>-<strong>Yau</strong> threefold and the N 5 given 3-spaces. Each rational<br />

curve C of type (d, a) for a 1 <strong>in</strong>tersects each 3-space <strong>in</strong> at most a, and<br />

hence a f<strong>in</strong>ite number of, po<strong>in</strong>ts. For a given rational curve C 0 we want<br />

to study the follow<strong>in</strong>g subset<br />

p 1<br />

1 ð½C0ŠÞ ¼ fð½C0Š; ½FŠÞjC0 2 Fg<br />

of the <strong>in</strong>cidence I ¼ Id,a.<br />

F<strong>in</strong>d<strong>in</strong>g the dimension of p 1<br />

1 ([C0]) is essentially, as we shall see<br />

below, equivalent to f<strong>in</strong>d<strong>in</strong>g h 0 (J(4)) (or (h 1 (J(4))), where J is the ideal<br />

sheaf <strong>in</strong> P N of the union X of C0 and the N 5 disjo<strong>in</strong>t, l<strong>in</strong>ear 3-spaces,<br />

each <strong>in</strong>tersect<strong>in</strong>g C0 as described. We then have the follow<strong>in</strong>g result,<br />

which is Corollary 1.9 of Sidman (2001):<br />

Lemma 4.4. Let J be the ideal sheaf of a projective scheme X that consists<br />

of the union of d schemes X1, ...,Xd <strong>in</strong> P N , whose pairwise <strong>in</strong>tersections<br />

are f<strong>in</strong>ite sets of po<strong>in</strong>ts. Let mi be the regularity of Xi. Then J is<br />

P d<br />

i¼1 mi-regular.<br />

We will use this result. Look at the follow<strong>in</strong>g exact sequence:<br />

0 ! J X=Tð4HÞ !OTð4HÞ !OX ð4HÞ !0:<br />

This gives rise to the exact cohomology sequence<br />

0 ! H 0 ðJX=Tð4HÞÞ ! H 0 ðOTð4HÞÞ<br />

! H 0 ðOX ð4HÞÞ ! H 1 ðJX=Tð4HÞÞ ! 0:<br />

This gives:<br />

h 0 ðJX=Tð4HÞÞ ¼ h 1 ðJX=Tð4HÞÞ þ h 0 ðOTð4HÞÞ h 0 ðOX ð4HÞÞ<br />

¼ h 1 ðJX=Tð4HÞÞ þ 35ðN 2Þ ð35ðN 5Þþ4d þ 1 ðN 5ÞaÞ<br />

¼ h 1 ðJX=Tð4HÞÞ þ 105 ð4d þ 1 þð5 NÞaÞ:<br />

Hence we see that<br />

dim p 1 ð½C0ŠÞ ¼ h 1 ðJX=Tð4HÞÞ þ 104 dim Md;a<br />

¼ h 1 ðJX=Tð4HÞÞ þ dim G dim Md;a;


3928 Johnsen and Knutsen<br />

if 4e4 (N 5) 2. If we work with a stratum W of M ¼ Md,a<br />

where h 1 (JX=T(4H)) is constant, say c, then the <strong>in</strong>cidence stratum<br />

p 1 (W) has dimension c þ dim G codim(W, M). Now it is clear that<br />

h 1 (J X=T(4H)) ¼ h 1 (J X=P N(4)) ¼ h 1 (J(4)), s<strong>in</strong>ce h 1 (J T=P N (4)) ¼ 0, which<br />

is true because rational normal scrolls are projectively normal. Moreover<br />

h 1 (J(4)) ¼ 0ifX is 5-regular, by the def<strong>in</strong>ition of m-regularity <strong>in</strong><br />

general. By Theorem 1.1 of Gruson et al. (1983) we have:<br />

Lemma 4.5. A non-degenerate, reduced, irreducible curve of degree d <strong>in</strong> P r<br />

is (d þ 2 r)-regular.<br />

Moreover <strong>in</strong> Corollary 1.10 of Sidman (2001) one has:<br />

Lemma 4.6. The ideal sheaf of s l<strong>in</strong>ear k-spaces meet<strong>in</strong>g (pairwise) <strong>in</strong><br />

f<strong>in</strong>itely many (or no) po<strong>in</strong>ts is s-regular.<br />

Putt<strong>in</strong>g these two results together, we observe that if C0 spans an<br />

r-space, then X is (d þ 2 r þ N 5) ¼ (d r þ N 3)-regular. In particular,<br />

if C0 is a rational normal curve, then X is (N 3)-regular, and, <strong>in</strong> particular,<br />

5-regular if N is 7 or 8 (and of course d N then). Also, curves<br />

spann<strong>in</strong>g a (d 1)-space are 5-regular if N ¼ 7 (for d 8). We then have:<br />

Corollary 4.7. On a general F <strong>in</strong> T of type (1, 1, 1, 1) <strong>in</strong> P 7 there are only<br />

f<strong>in</strong>itely many smooth rational curves of degree at most 4. On a general F <strong>in</strong><br />

T of scroll type (2, 1, 1, 1) <strong>in</strong> P 8 there are only f<strong>in</strong>itely many smooth<br />

rational curves of degree at most 3.<br />

Proof. We deduce that all X <strong>in</strong> question are 5-regular, so h 1 (J X=P N(4H)) ¼ 0<br />

for all X, and hence all non-empty <strong>in</strong>cidence varieties I d, a have dimension<br />

equal to dim G, and hence the second projection map p2 has f<strong>in</strong>ite<br />

fibres over general po<strong>in</strong>ts of G. &<br />

4.2. Analogous Questions for Other <strong>Threefolds</strong><br />

We would like to remark on the possibility of f<strong>in</strong>d<strong>in</strong>g an analogue of<br />

Theorem 4.3. Is it possible to produce isolated, rational curves of bidegree<br />

(d, a) for many (d, a), also on general CY threefolds of <strong>in</strong>tersection<br />

type (2H c1F, 3H c2F) on five-dimensional rational normal scrolls<br />

<strong>in</strong> P N ? Here we obviously look at fixed (c1, c2) such that c1 þ c2 ¼ N 6.<br />

A natural strategy, analogous to that <strong>in</strong> the previous section,<br />

would be to limit oneself to work with rational normal scrolls


<strong>Rational</strong> <strong>Curves</strong> <strong>in</strong> <strong>Calabi</strong>-<strong>Yau</strong> <strong>Threefolds</strong> 3929<br />

P(OP1(e1) OP1(e5)) such that P(OP1(e1) OP1(e4)) is maximally<br />

balanced given its degree (that is: e1 e4 1).<br />

A natural analogue to Step (I) <strong>in</strong> the proof of Theorem 4.3 <strong>in</strong> the<br />

previous section is: Set g ¼ e1 þ þ e4 þ 3. Us<strong>in</strong>g lattice-theoretical<br />

considerations aga<strong>in</strong>, and with certa<strong>in</strong> conditions on n, d and a, we<br />

f<strong>in</strong>d a (smooth) K3 surface S <strong>in</strong> P g with Pic S ’ ZH ZD ZG, where<br />

H is the hyperplane section class, D is the class of a smooth elliptic curve<br />

of degree 4 and C is a smooth rational curve of bidegree (d, a). In particular,<br />

S has Clifford <strong>in</strong>dex 2. (See Sec. 5.1 for the def<strong>in</strong>ition of the Clifford<br />

<strong>in</strong>dex of a K3 surface.) Let T ¼ TS be the 4-dimensional scroll <strong>in</strong> P g swept<br />

out by the l<strong>in</strong>ear spans of the divisors <strong>in</strong> jDj on S. The rational normal<br />

scroll T will be maximally balanced of degree e1 þ e2 þ e3 þ e4. In other<br />

words we should f<strong>in</strong>d an analogue of Proposition 6.2. It seems clear that<br />

we can do this.<br />

The natural analogue of Step (II) <strong>in</strong> the previous section is:<br />

Embed T ¼ P(OP1(e1) OP1(e4)) (<strong>in</strong> the obvious way) <strong>in</strong> a<br />

5-dimensional scroll T ¼ P(OP1(e1) OP1(e5)) of type (e1, ..., e5).<br />

Hence T corresponds to the divisor class H e5F <strong>in</strong> T.<br />

If g is odd, one would like to show that S is a ‘‘complete <strong>in</strong>tersection’’<br />

g 5<br />

of 2 divisors, both of type 2H 2 F restricted to T. Therefore, it is a<br />

‘‘complete <strong>in</strong>tersection’’ of three divisors Z5, Q1, Q2, the first of type<br />

g 5<br />

H e5F, and the two Qi of type 2H 2 F on T. At the moment<br />

we have no watertight argument for this.<br />

If g is even, one can show that S is a ‘‘complete <strong>in</strong>tersection’’ of 2<br />

g 4<br />

g 6<br />

divisors, of types 2H 2 F and 2H 2 F, restricted to T. Therefore,<br />

it is a ‘‘complete <strong>in</strong>tersection’’ of three divisors Z5, Q1, Q2, of types<br />

g 4<br />

g 6<br />

H e5F, 2H 2 F, and 2H 2 F on T.<br />

If one really obta<strong>in</strong>s a complete <strong>in</strong>tersection as described above, one<br />

might deform it <strong>in</strong> a rational family (i.e., parametrized by P 1 ). If S is<br />

given by equations Q1 ¼ Q2 ¼ 0, one looks at deformations<br />

or<br />

Q1 þ sQ 0 1 ¼ Q2 ¼ Z5 sBðt; u; Z1; ...; Z5Þ ¼0;<br />

Q1 ¼ Q2 þ sQ 0 2 ¼ Z5 sBðt; u; Z1; ...; Z5Þ ¼0:<br />

Here the B correspond to sections of H e5F. For ‘‘small values’’ of the<br />

parameter one would like to obta<strong>in</strong> a K3 surface with Picard group of<br />

rank 2, Clifford <strong>in</strong>dex 1 (see Sec. 5.1 for the def<strong>in</strong>ition of the Clifford<br />

<strong>in</strong>dex of a K3 surface), and no rational curve on it. For g odd, there is<br />

no essential difference between the two types of deformations. For g even,<br />

the two deformations are different.


3930 Johnsen and Knutsen<br />

An analogue of Step (III) is: Elim<strong>in</strong>at<strong>in</strong>g s from the first set of equations,<br />

we obta<strong>in</strong>:<br />

Q1B þ Z5Q 0 1 ¼ Q2 ¼ 0:<br />

Elim<strong>in</strong>at<strong>in</strong>g s from the second set of equations, we obta<strong>in</strong>:<br />

Q1 ¼ Q2B þ Z5Q 0 2 ¼ 0:<br />

If g is odd, we obta<strong>in</strong> <strong>in</strong> both cases a ‘‘complete <strong>in</strong>tersection’’ threefold<br />

of type<br />

2H<br />

g 5<br />

g 5<br />

F; 3H<br />

2 2 þ e5 F :<br />

If g is even, the first threefold is of type<br />

2H<br />

g 6<br />

g 4<br />

F; 3H<br />

2 2 þ e5 F ;<br />

while the second is of type<br />

2H<br />

g 4<br />

g 6<br />

F; 3H<br />

2 2 þ e5 F ;<br />

S<strong>in</strong>ce g ¼ N 1 e5, we see that <strong>in</strong> all cases we have <strong>in</strong>tersection type<br />

(2H c1F, 3H c2H), such that c1 þ c2 ¼ N 6.<br />

The analogue of Step (IV) seems doable for g odd, but here Step (II),<br />

as remarked, is unclear. The details of this analogue for g even are also<br />

not quite clear to us.<br />

5. K3 SURFACE COMPUTATIONS<br />

The purpose of the section is to make the necessary technical preparations<br />

to complete Step (I) of the proof of Theorem 4.3. First we will<br />

recall some useful facts about K3 surfaces and rational normal scrolls.<br />

In Lemma 5.3 we <strong>in</strong>troduce a specific K3 surface which will be essential<br />

<strong>in</strong> the proof of Step (I). In the last part of the section we make some<br />

K3-theoretical computations related to the Picard lattice of this particular<br />

K3 surface.


<strong>Rational</strong> <strong>Curves</strong> <strong>in</strong> <strong>Calabi</strong>-<strong>Yau</strong> <strong>Threefolds</strong> 3931<br />

5.1. Some General Facts About K3 Surfaces<br />

Recall that a K3 surface is a (reduced and irreducible) surface S with<br />

trivial canonical bundle and such that H 1 (OS) ¼ 0. In particular h 2 (OS) ¼ 1<br />

and w(OS) ¼ 2.<br />

We will use l<strong>in</strong>e bundles and divisors on a K3 surface with little or no<br />

dist<strong>in</strong>ction, as well as the multiplicative and additive notation, and denote<br />

l<strong>in</strong>ear equivalence of divisors by .<br />

Before cont<strong>in</strong>u<strong>in</strong>g, we briefly recall some useful facts and some of the<br />

ma<strong>in</strong> results <strong>in</strong> Johnsen and Knutsen (2001) which will be used <strong>in</strong> the<br />

proof of Theorem 4.3.<br />

Let C be a smooth irreducible curve of genus g 2 and A a l<strong>in</strong>e<br />

bundle on C. The Clifford <strong>in</strong>dex of A (<strong>in</strong>troduced by Martens (1968) is<br />

the <strong>in</strong>teger<br />

Cliff A ¼ deg A 2ðh 0 ðAÞ 1Þ:<br />

If g 4, then the Clifford <strong>in</strong>dex of C itself is def<strong>in</strong>ed as<br />

Cliff C ¼ m<strong>in</strong>fCliff Ajh 0 ðAÞ 2; h 1 ðAÞ 2g:<br />

Clifford’s theorem then states that Cliff C 0 with equality if and only<br />

if C is hyperelliptic and Cliff C ¼ 1 if and only if C is trigonal or a smooth<br />

plane qu<strong>in</strong>tic.<br />

At the other extreme, we obta<strong>in</strong> from Brill-Noether theory (cf.<br />

g 1<br />

Arbarello et al., 1985, Chapter V) that Cliff C b c. For the general<br />

curve of genus g, we have Cliff C ¼b<br />

g 1<br />

2 c.<br />

We say that a l<strong>in</strong>e bundle A on C contributes to the Clifford <strong>in</strong>dex of<br />

C if h 0 (A), h 1 (A) 2 and that it computes the Clifford <strong>in</strong>dex of C if <strong>in</strong><br />

addition Cliff C ¼ Cliff A.<br />

Note that Cliff A ¼ Cliff oC A 1 .<br />

It was shown by Green and Lazarsfeld (1987) that the Clifford <strong>in</strong>dex<br />

is constant for all smooth curves <strong>in</strong> a complete l<strong>in</strong>ear system jLj on a K3<br />

surface. Moreover, they also showed that if Cliff C < b<br />

2<br />

g 1<br />

2<br />

c (where g<br />

denotes the sectional genus of L, i.e., L 2 ¼ 2g 2), then there exists a l<strong>in</strong>e<br />

bundle M on S such that MC :¼ M OC computes the Clifford <strong>in</strong>dex of C<br />

for all smooth irreducible C 2jLj.<br />

This was <strong>in</strong>vestigated further <strong>in</strong> Johnsen and Knutsen (2001), where<br />

we def<strong>in</strong>ed the Clifford <strong>in</strong>dex of a base po<strong>in</strong>t free l<strong>in</strong>e bundle L on a K3<br />

surface to be the Clifford <strong>in</strong>dex of all the smooth curves <strong>in</strong> jLj and<br />

denoted it by Cliff L. Similarly, if (S, L) is a polarized K3 surface, we<br />

def<strong>in</strong>ed the Clifford <strong>in</strong>dex of S, denoted by CliffL(S) tobeCliffL.


3932 Johnsen and Knutsen<br />

The follow<strong>in</strong>g is a summary of the results obta<strong>in</strong>ed <strong>in</strong> Johnsen and<br />

Knutsen (2001) that we will need <strong>in</strong> the follow<strong>in</strong>g. S<strong>in</strong>ce we only need<br />

those results for ample L, we restrict to this case and refer the reader<br />

to Johnsen and Knutsen (2001) for the results when L is only assumed<br />

to be base po<strong>in</strong>t free.<br />

Proposition 5.1. Let L be an ample l<strong>in</strong>e bundle of sectional genus g 4on<br />

g 1<br />

a K3 surface S and let c :¼ Cliff L. Assume that c < b 2 c. Then c is equal to<br />

the m<strong>in</strong>imal <strong>in</strong>teger k 0 such that there is a l<strong>in</strong>e bundle D on S satisfy<strong>in</strong>g<br />

the numerical conditions:<br />

ðiÞ<br />

2<br />

2D L:D ¼ D 2 þ k þ 2 ðiiÞ<br />

2k þ 4<br />

with equality <strong>in</strong> (i) or (ii) if and only if L 2D and L 2 ¼ 4k þ 8. (In particular,<br />

D 2<br />

c þ 2, with equality if and only if L 2D and L 2 ¼ 4c þ 8, and<br />

by the Hodge <strong>in</strong>dex theorem<br />

D 2 L 2<br />

ðL:DÞ 2 ¼ðD 2 þ c þ 2Þ 2 :Þ<br />

Moreover, any such D satisfies (with M :¼ L D and R :¼ L 2D):<br />

(i) D.M ¼ c þ 2.<br />

(ii) D.L M.L (equivalently D 2 M 2 ).<br />

(iii) h 1 (D) ¼ h 1 (M) ¼ 0.<br />

(iv) jDj and jMj are base po<strong>in</strong>t free and their generic members are<br />

smooth curves.<br />

(v) h 1 (R) ¼ 0, R 2<br />

4, and h 0 (R) > 0 if and only if R 2<br />

2.<br />

(vi) If R R1 þ R2 is a nontrivial effective decomposition, then<br />

R1.R2 > 0.<br />

Proof. The first statement is Knutsen (2001a, Lemma 8.3). The properties<br />

(i)–(iv) are the properties (C1)–(C5) <strong>in</strong> Johnsen and Knutsen (2001,<br />

p. 9–10), under the additional condition that L is ample. The fact that<br />

h 1 (R) ¼ 0 <strong>in</strong> (v) follows from Johnsen and Knutsen (2001, Prop. 5.5)<br />

(where D ¼ 0 s<strong>in</strong>ce L is ample), and the rest of (v) is then an immediate<br />

consequence of Riemann-Roch. F<strong>in</strong>ally, (vi) follows from Johnsen and<br />

Knutsen (2001, Prop. 6.6) s<strong>in</strong>ce L is ample. &<br />

Now denote by fL the morphism<br />

f L : S !P g


<strong>Rational</strong> <strong>Curves</strong> <strong>in</strong> <strong>Calabi</strong>-<strong>Yau</strong> <strong>Threefolds</strong> 3933<br />

def<strong>in</strong>ed by jLj and pick a subpencil fDlg jDj ’P 1 2D2þ1 generated by<br />

two smooth curves (so that, <strong>in</strong> particular, fDlg is without fixed components,<br />

and with exactly D 2 base po<strong>in</strong>ts). Each fL(Dl) will span a<br />

(h 0 (L) h 0 (L D) 1)-dimensional subspace of P g , which is called the<br />

l<strong>in</strong>ear span of fL(Dl) and denoted by Dl. Note that Dl ¼ P cþ1þ1 2D2 .<br />

The variety swept out by these l<strong>in</strong>ear spaces,<br />

T ¼ [<br />

Dl P g ;<br />

l2P 1<br />

is a rational normal scroll (see Schreyer, 1986) of type (e1, ..., ed), where<br />

with<br />

ei ¼ #fjjdj ig 1; ð1Þ<br />

d ¼ d0 :¼ h 0 ðLÞ h 0 ðL DÞ;<br />

d1 :¼ h 0 ðL DÞ h 0 ðL 2DÞ;<br />

.<br />

.<br />

di :¼ h 0 ðL iDÞ h 0 ðL ði þ 1ÞDÞ;<br />

.<br />

Furthermore, T has dimension dim T ¼ d0 ¼ h 0 ðLÞ h 0 ðFÞ ¼cþ<br />

2 þ 1 2 D2 and degree deg T ¼ h 0 ðFÞ ¼g c 1 1 2 D 2 .<br />

We will need the follow<strong>in</strong>g.<br />

Lemma 5.2. Assume that L is ample, D 2 ¼ 0, and h 1 (L iD) ¼ 0 for all<br />

i 0 such that L iD 0. Then the scroll T def<strong>in</strong>ed by jDj as described<br />

above is smooth and of maximally balanced scroll type. Furthermore,<br />

dim T ¼ c þ 2 and deg T ¼ g c 1.<br />

Proof. Let r :¼ maxfijL iD 0g. Then by Riemann-Roch, and our<br />

hypothesis that h 1 (L<br />

f<strong>in</strong>ds r ¼b<br />

iD) ¼ 0 for all i 0 such that L iD 0, one easily<br />

g<br />

cþ2c and<br />

d0 ¼ ¼dr 1 ¼ L:D ¼ c þ 2;<br />

1 dr ¼ g þ 1 ðc þ 2Þr c þ 2;<br />

di ¼ 0 for i r þ 1;<br />

whence the scroll T is smooth and of maximally balanced scroll type. The<br />

assertions about its dimension and degree are immediate. &


3934 Johnsen and Knutsen<br />

5.2. Some Specific K3 Surface Computations<br />

In the follow<strong>in</strong>g lemma we <strong>in</strong>troduce a specific K3 surface with a<br />

specific Picard lattice, which will be <strong>in</strong>strumental <strong>in</strong> prov<strong>in</strong>g Theorem<br />

4.3. The element G <strong>in</strong> the lattice will correspond to a curve of bidegree<br />

(d, a) as described <strong>in</strong> that theorem.<br />

Lemma 5.3. Let n 4, d > 0 and a > 0 be <strong>in</strong>tegers satisfy<strong>in</strong>g d > na<br />

Then there exists an algebraic K3 surface S with Picard group<br />

Pic S ’ ZH ZD ZG with the follow<strong>in</strong>g <strong>in</strong>tersection matrix:<br />

H2 D:H<br />

H:D<br />

D<br />

H:G<br />

2 D:G<br />

G:H G:D G 2<br />

2<br />

4<br />

3 2<br />

2n<br />

5 ¼ 4 3<br />

3<br />

0<br />

d<br />

a<br />

3<br />

5<br />

d a 2<br />

and such that the l<strong>in</strong>e bundle L :¼ H b<br />

n 4<br />

3 cD is nef.<br />

Proof. The signature of the matrix above is (1, 2) under the given conditions.<br />

By a result of Nikul<strong>in</strong> (1980) (see also Morrison, 1984, Theorem<br />

2.9(i)) there exists an algebraic K3 surface S with Picard group<br />

Pic S ¼ ZH ZD ZG and <strong>in</strong>tersection matrix as <strong>in</strong>dicated.<br />

S<strong>in</strong>ce L 2 > 0, we can, by us<strong>in</strong>g Picard-Lefschetz tranformations,<br />

assume that L is nef (see e.g., Oguiso, 1994 or Knutsen, 2002). &<br />

Note now that<br />

L 2 8<br />

< 8 if n 4 mod 3;<br />

¼ 10<br />

:<br />

12<br />

if n<br />

if n<br />

5<br />

6<br />

mod 3;<br />

mod 3:<br />

We will from now on write L 2 ¼ 2m, for<br />

m :¼ n 3b<br />

3<br />

3<br />

a .<br />

ð2Þ<br />

n 4<br />

c¼4; 5or6 ð3Þ<br />

3<br />

(<strong>in</strong> other words n m (mod 3)) and def<strong>in</strong>e<br />

d0 :¼ G:L ¼ d<br />

n 4<br />

b ca > 0:<br />

3<br />

ð4Þ<br />

Note that the condition d > na<br />

3<br />

d0 > ma<br />

3<br />

3<br />

a is equivalent to<br />

3<br />

: ð5Þ<br />

a


<strong>Rational</strong> <strong>Curves</strong> <strong>in</strong> <strong>Calabi</strong>-<strong>Yau</strong> <strong>Threefolds</strong> 3935<br />

Also note that Pic S ’ ZL ZD ZG, and that<br />

d :¼ jdiscðL; D; GÞj ¼ jdiscðH; D; GÞj<br />

¼j2að3d naÞþ18j ¼j2að3d0 maÞþ18j ð6Þ<br />

divides jdisc(A, B, C)j for any A, B, C 2 Pic S.<br />

Now we will study the K3 surface def<strong>in</strong>ed <strong>in</strong> Lemma 5.3 <strong>in</strong> further<br />

detail.<br />

Lemma 5.4. Let S, H, D, G and L be as <strong>in</strong> Lemma 5.3. Then L is base<br />

po<strong>in</strong>t free and Cliff L ¼ 1. Furthermore, L is ample (whence very ample)<br />

if and only if we are not <strong>in</strong> any of the follow<strong>in</strong>g cases:<br />

(i) ma ¼ 3d 0 and 9jma,<br />

(ii) m ¼ 4 and (d0, a)¼ (2, 2), (5, 4) or (9, 7),<br />

(iii) m ¼ 5 and (d0, a)¼ (2, 2), (6, 4) or (13, 8),<br />

(iv) m ¼ 6 and (d0, a)¼ (3, 2).<br />

Moreover, if L is ample, then jDj is a base po<strong>in</strong>t free pencil, L D is also<br />

base po<strong>in</strong>t free and h 1 (L D) ¼ h 1 (L 2D) ¼ 0.<br />

Proof. S<strong>in</strong>ce D.L ¼ 3, we have Cliff L 1 by Proposition 5.1. To prove<br />

the two first statements, it suffices to show (by classical results on l<strong>in</strong>e<br />

bundles on K3 surfaces such as <strong>in</strong> Sa<strong>in</strong>t-Donat (1974) and by Proposition<br />

5.1) that there is no smooth curve E satisfy<strong>in</strong>g E 2 ¼ 0 and E.L ¼ 1, 2.<br />

S<strong>in</strong>ce E is base po<strong>in</strong>t free, be<strong>in</strong>g a smooth curve of non-negative self<strong>in</strong>tersection<br />

(see Sa<strong>in</strong>t-Donat, 1974), we must have E.D 0. If E.D ¼ 0,<br />

then the divisor B :¼ 3E (E.L)D satisfies B 2 ¼ 0 and B.L ¼ 0, whence<br />

by the Hodge <strong>in</strong>dex theorem we have 3E (E.L)D, contradict<strong>in</strong>g that<br />

D is part of a basis of Pic S. IfE.D 2, the Hodge <strong>in</strong>dex theorem gives<br />

the contradiction<br />

32 2L 2 ðE:DÞ ¼L 2 ðE þ DÞ 2<br />

ðL:ðE þ DÞÞ 2<br />

We now treat the case E.D ¼ 1. If E.L ¼ 1, we get<br />

16 2L 2 ¼ L 2 ðE þ DÞ 2<br />

ðL:ðE þ DÞÞ 2 ¼ 16;<br />

whence by the Hodge <strong>in</strong>dex theorem L 2(E þ D), which is impossible,<br />

s<strong>in</strong>ce L is part of a basis of Pic S. So we have E.L ¼ 2. Write<br />

E xL þ yD þ zG. From E.L ¼ 2andE.D ¼ 1, we get<br />

x ¼ 1<br />

3<br />

a 2ma 3d0<br />

z and y ¼ z<br />

3 9<br />

2ðm 3Þ<br />

:<br />

9<br />

25:<br />

ð7Þ


3936 Johnsen and Knutsen<br />

Insert<strong>in</strong>g <strong>in</strong>to 1<br />

2 E2 ¼ 0 ¼ mx 2 z 2 þ 3xy þ d0xz þ ayz, we f<strong>in</strong>d<br />

½aðma 3d0Þ 9Šz 2 ¼ m 6: ð8Þ<br />

If m ¼ 4, we get from (8) that z ¼ ±1 and a(4a 3d0) ¼ 7. S<strong>in</strong>ce d0 > 0,<br />

we must have (d0, a) ¼ (9, 7), which is present <strong>in</strong> case (b). (From (7) we get<br />

the <strong>in</strong>teger solution (x, y, z) ¼ ( 2, 3, 1).)<br />

If m ¼ 5, we get from (8) that z ¼ ±1 and a(5a 3d0) ¼ 8. S<strong>in</strong>ce d0 > 0,<br />

we must have (d 0, a) ¼ (2, 2), (6, 4) or (13, 8), which are present <strong>in</strong> case (c).<br />

(We can however check from (7) that (2, 2) and (13, 8) do not give any<br />

<strong>in</strong>teger solutions for x and y, whereas (6, 4) gives the <strong>in</strong>teger solution<br />

(x, y, z) ¼ ( 1, 2, 1).)<br />

If m ¼ 6, we get from (8) that either z ¼ 0ora(2a d0) ¼ 3. In the first<br />

case, we get the absurdity x ¼ 1=3 from (7), and <strong>in</strong> the latter we get the<br />

only solution (d0, a) ¼ (5, 3), which <strong>in</strong>serted <strong>in</strong> (7) gives the absurdity<br />

x ¼ 1=3 z. We have therefore shown that L is base po<strong>in</strong>t free and that<br />

Cliff L ¼ 1.<br />

To show that L is ample we have to show by the Nakai criterion<br />

that there is no smooth curve E satisfy<strong>in</strong>g E 2 ¼ 2 and E.L ¼ 0.<br />

By the Hodge <strong>in</strong>dex theorem aga<strong>in</strong> we have<br />

2L 2 ð E:D 1Þ ¼L 2 ðD EÞ 2<br />

ðL:ðD EÞÞ 2 ¼ 9;<br />

giv<strong>in</strong>g 1 E.D 1. The cases E.D ¼ ±1 are symmetric by <strong>in</strong>terchang<strong>in</strong>g<br />

E and E, so we can restrict to treat<strong>in</strong>g the cases E.D ¼ 0 and E.D ¼ 1.<br />

We can write E xL þ yD þ zG. We get<br />

x ¼ a E:D<br />

z þ : ð9Þ<br />

3 3<br />

Comb<strong>in</strong><strong>in</strong>g this with E.L ¼ 0 ¼ 2mx þ 3y þ d0z, we get<br />

y ¼<br />

2ma 3d0<br />

z<br />

9<br />

2mðE:DÞ<br />

:<br />

9<br />

Now we use 1 2 E2 ¼ 1 ¼ mx 2 z 2 þ 3xy þ d0xz þ ayz, and f<strong>in</strong>d<br />

½aðma 3d0Þ 9Šz 2 ¼ mðE:DÞ 2<br />

We first treat the case E.D ¼ 0. We get<br />

ð10Þ<br />

9: ð11Þ<br />

½aðma 3d0Þ 9Šz 2 ¼ 9; ð12Þ<br />

which means that z ¼ ±1 or z ¼ ±3.


<strong>Rational</strong> <strong>Curves</strong> <strong>in</strong> <strong>Calabi</strong>-<strong>Yau</strong> <strong>Threefolds</strong> 3937<br />

If z ¼ ±1, we f<strong>in</strong>d from (12) that ma 3d0 ¼ 0, and from (9) we f<strong>in</strong>d<br />

x ¼ a<br />

3 , whence 3ja. If <strong>in</strong> addition 9ja or m ¼ 6, then (x, y, z) ¼ ±( a=3,<br />

ma=9, 1) def<strong>in</strong>es an effective divisor E with E 2 ¼ 2andE.L¼E.D¼0. If z ¼ ±3, we f<strong>in</strong>d from (10) that 3j2ma. But s<strong>in</strong>ce a(ma 3d0) ¼ 8, we<br />

get the absurdity 3j16.<br />

We now treat the case E.D ¼ 1. Then we have<br />

½aðma 3d0Þ 9Šz 2 ¼ m 9: ð13Þ<br />

We now divide <strong>in</strong>to the three cases m ¼ 4, 5, and 6.<br />

If m ¼ 4, then (13) reads<br />

½að4a 3d0Þ 9Šz 2 ¼ 5; ð14Þ<br />

which means that z ¼ ±1 and a(4a 3d0) ¼ 4, <strong>in</strong> particular a ¼ 1, 2 or 4.<br />

S<strong>in</strong>ce d 0 > 0 we only get the solutions<br />

ða; d0Þ ¼ð2; 2Þ or ða; d0Þ ¼ð4; 5Þ: ð15Þ<br />

From (9) we get x ¼ 1<br />

3 ð1 azÞ ¼1<br />

3 ð1 aÞ, which means that we only<br />

have the possibilities (x, z, a, d0) ¼ (1, 1, 2, 2) and (x, z, a, d0) ¼<br />

( 1, 1, 4, 5). Insert<strong>in</strong>g <strong>in</strong>to (10) we get<br />

y ¼ 1<br />

9 ½ð8a 3d0Þz 8Š ¼ 2 and 1; ð16Þ<br />

respectively, whence (x, y, z, a, d0) ¼ (1,<br />

are the only solutions.<br />

If m ¼ 5, then (13) reads<br />

2, 1, 2, 2) and ( 1, 1, 1, 4, 5)<br />

½að5a 3d0Þ 9Šz 2 ¼ 4; ð17Þ<br />

which means that z ¼ ±1 or z ¼ ±2. If z ¼ ±1, we have a(5a 3d0) ¼ 5, and<br />

s<strong>in</strong>ce d0 > 0, there is no solution. So z ¼ ±2 and a(5a 3d0) ¼ 8. Aga<strong>in</strong>,<br />

s<strong>in</strong>ce d 0 > 0, we only get the solutions<br />

ða; d0Þ ¼ð2; 2Þ; ða; d0Þ ¼ð4; 6Þ or ða; d0Þ ¼ð8; 13Þ: ð18Þ<br />

From (9) we get x ¼ 1<br />

3 ð1 azÞ ¼1<br />

3 ð1 2aÞ, which means that we only<br />

have the possibilities (x, z, a, d0) ¼ ( 1, 2, 2, 2), (3, 2, 4, 6) or ( 5, 2,<br />

8, 13). Insert<strong>in</strong>g <strong>in</strong>to (10) we get<br />

y ¼ 1<br />

9 ½ð10a 3d0Þz 10Š ¼2; 6or8; ð19Þ<br />

respectively, whence (x, y, z, a, d 0) ¼ ( 1, 2, 2, 2, 2), (3, 6, 2, 4, 6) and<br />

( 5, 8, 2, 8, 13) are the only solutions.


3938 Johnsen and Knutsen<br />

If m ¼ 6, then (13) reads<br />

½að6a 3d0Þ 9Šz 2 ¼ 3z 2 ½að2a d0Þ 3Š ¼ 3: ð20Þ<br />

We obta<strong>in</strong> z 2 [a(2a d0) 3] ¼ 1, which gives z ¼ ±1 and a(2a d0) ¼ 2.<br />

S<strong>in</strong>ce d0 > 0, the latter yields (a, d0) ¼ (2, 3). If z ¼ 1, then (9) gives the<br />

absurdity x ¼ 1<br />

3 . For z ¼ 1 we obta<strong>in</strong> (x, y) ¼ (1, 3) from (9) and<br />

(10). Hence (x, y, z, a, d0) ¼ (1, 3, 1, 2, 3) is the only solution for m ¼ 6.<br />

So we have proved that L is ample except for the cases (a)–(d).<br />

It is well-known (see e.g., Sa<strong>in</strong>t-Donat, 1974 or Knutsen, 2001a) that<br />

an ample l<strong>in</strong>e bundle with Cliff L ¼ 1 is very ample.<br />

If L is ample, it follows from Proposition 5.1 that jDj and jL Dj are<br />

base po<strong>in</strong>t free and h 1 (L D) ¼ h 1 (L 2D) ¼ 0. &<br />

We get the correspond<strong>in</strong>g statement for H:<br />

Lemma 5.5. Assume n, d and g do not satisfy any of the follow<strong>in</strong>g conditions:<br />

(i) na ¼ 3d, with 9ja ifn 1, 2 (mod 3), and 3ja ifn 0(mod 3).<br />

(ii) n 0(mod 3), a ¼ 2 and d ¼ 3 þ 2<br />

(iii)<br />

3 ðn 6Þ.<br />

n 1(mod 3) and d ¼ d0 þ 2<br />

3 ðn 4Þ, for (d0, a)¼ (2, 2), (5, 4) or<br />

(9, 7).<br />

(iv) n 2(mod 3) and d ¼ d0 þ 2<br />

3 ðn 5Þ, for (d0,<br />

(13, 8).<br />

a)¼ (2, 2), (6, 4) or<br />

Then H is very ample and Cliff H ¼ 1. Moreover, h 1 (H iD) ¼ 0 for all<br />

i 0 such that H iD 0.<br />

Denote by T the scroll def<strong>in</strong>ed by D. Then T is smooth and of maximally<br />

balanced scroll type.<br />

Proof. The first two statements are clear s<strong>in</strong>ce D.H ¼ 3andH¼Lþ n 4 b 3 cD, with Cliff L ¼ 1 and D nef, s<strong>in</strong>ce the cases (i), (ii), (iii) and (iv)<br />

are direct translations of the cases (a), (d), (b) and (c), respectively, <strong>in</strong><br />

Lemma 5.4 above.<br />

We now prove that h 1 (H iD) ¼ 0 for all i 0 such that H iD 0.<br />

By Lemma 5.4 we have that h 1 (L D) ¼ h 1 (L 2D) ¼ 0. S<strong>in</strong>ce D is nef we<br />

have h 1 (L þ iD) ¼ 0 for all i 0. Now let R :¼ L 2D. Then R 2 ¼ 4, 2<br />

or 0, correspond<strong>in</strong>g to L 2 ¼ 8, 10 or 12. S<strong>in</strong>ce we have h 1 (R) ¼ 0weget<br />

h 0 (R) ¼ 0, 1 or 2 respectively. In the first case we are therefore done,<br />

and <strong>in</strong> the second, we clearly have h 0 (R D) ¼ 0, and now we also want


<strong>Rational</strong> <strong>Curves</strong> <strong>in</strong> <strong>Calabi</strong>-<strong>Yau</strong> <strong>Threefolds</strong> 3939<br />

to show this for L 2 ¼ 12. Assume that h 0 (R D) > 0. Then, we have<br />

R ¼ D þ D;<br />

where jDj is the mov<strong>in</strong>g part of jRj and D is the fixed part. S<strong>in</strong>ce R.D ¼ 3,<br />

we get D.D ¼ 3, and s<strong>in</strong>ce D 2 ¼ 0 we get D 2 ¼ 6. Moreover D.L ¼<br />

(L 3D).L ¼ 3. This yields<br />

D ¼ G1 þ G2 þ G3;<br />

where the Gi’s are smooth non-<strong>in</strong>tersect<strong>in</strong>g rational curves satisfy<strong>in</strong>g<br />

Gi.L ¼ Gi.D ¼ 1 for i ¼ 1, 2, 3. Writ<strong>in</strong>g Gi ¼ xiL þ yiD þ ziG, the three<br />

equations Gi.L ¼ 1, Gi.D ¼ 1 and G 2 i ¼ 2 yield at most two <strong>in</strong>teger solutions<br />

(xi, yi, zi), whence at least two of the Gis have to be equal, a contradiction.<br />

So we have proved that h 1 (H iD) ¼ 0 for all i 0 such that<br />

H iD 0. By Lemma 5.2 it follows that the scroll T is of maximally<br />

balanced type, whence smooth. &<br />

In the next section we will describe under what conditions G is a<br />

smooth rational curve. We end this section with two helpful lemmas.<br />

Lemma 5.6. Assume L is ample. Let D xL þ yD þ zG be a divisor on S<br />

such that D 2 ¼ 2 and set d 0 :¼jdisc(L, D, D)j.<br />

Then d 0 ¼ z 2 d, and is zero if and only if D L 2D and m ¼ 5.<br />

Proof. It is an easy computation to show that d 0 ¼ z 2 d. Hence it is zero if<br />

and only if z ¼ 0. It is then an easy exercise to f<strong>in</strong>d that D L 2D and<br />

m ¼ 5. &<br />

Lemma 5.7. Let B :¼ 3L mD. (We have B 2 ¼ 0 and B.D ¼ 9, whence by<br />

Riemann-Roch B > 0.) If D is a smooth rational curve satisfy<strong>in</strong>g D 2 ¼ 2<br />

and D.B 0, then we only have the follow<strong>in</strong>g possibilities:<br />

m ¼ 4 and ðD:L; D:D; D:BÞ ¼ ð1; 1; 1Þ; ð4; 3; 0Þ; ð4; 4; 4Þ;<br />

ð5; 4; 1Þ; ð6; 5; 2Þ; ð8; 6; 0Þ;<br />

ð9; 7; 1Þ<br />

m ¼ 5 and ðD:L; D:D; D:BÞ ¼ ð1; 1; 2Þ; ð3; 2; 1Þ; ð4; 3; 3Þ<br />

m ¼ 6 and ðD:L; D:D; D:BÞ ¼ ð1; 1; 3Þ; ð2; 1; 0Þ; ð3; 2; 3Þ;<br />

ð4; 2; 0Þ:


3940 Johnsen and Knutsen<br />

Proof. Set as before R :¼ L 2D. We have 3D.R ¼ D.(3L 6D)<br />

D.(3L mD) 0, whence D.R 0, with equality only if m ¼ 6.<br />

If equality occurs, we have D < R (s<strong>in</strong>ce R 2 ¼ 0andR > 0 by Proposition<br />

5.1), whence we have a nontrivial effective decomposition<br />

R D þ D0. S<strong>in</strong>ce R.L ¼ 6 and L is ample, we have D.L 5, whence<br />

(D.L, D.D) ¼ (4, 4) and (2, 1) are the only possibilities.<br />

If D ¼ R, then R 2 ¼ 2, whence m ¼ 5and(D.L, D.D, D.B) ¼ (4, 3, 3).<br />

So for the rest of the proof, we can assume that D.R < 0 with D 6¼ R.<br />

If R 2 ¼ 2 or 0 (i.e., m ¼ 5 or 6), then R > 0 by Proposition 5.1,<br />

whence D < R. IfD.R 2, we get a nontrivial effective decomposition<br />

R D þ D0 with D.D0 0. But this contradicts Proposition 5.1. So<br />

D.R ¼ 1. S<strong>in</strong>ce R.L ¼ 4 and 6 for m ¼ 5 and 6 respectively, and L is<br />

ample, we have D.L 3and5 respectively. If m ¼ 6 and D.L ¼ 5, we<br />

get D.D ¼ 3 and we calculate jdisc(L, D, D)j¼0, contradict<strong>in</strong>g Lemma<br />

5.6. This leaves us with the possibilities listed above for m ¼ 5 and 6.<br />

Now we treat the case R 2 ¼ 4, i.e., m ¼ 4. Then we have<br />

h 0 (R) ¼ h 1 (R) ¼ 0.<br />

If D.R ¼ 1, then, s<strong>in</strong>ce D.B ¼ 3D.R þ 2D.D ¼ 3 þ 2D.D and D is<br />

nef, we get the only possibility (D.L, D.D) ¼ (1, 1).<br />

If D.R 2, we get (R D) 2<br />

2, whence by Riemann-Roch either<br />

R D > 0 or D R > 0. In the first case we get the contradiction<br />

R > D > 0, so we must have L 2D < D < 3L 4D (the latter <strong>in</strong>equality<br />

due to the fact that B 2 ¼ 0, B > 0 and D.B 0). S<strong>in</strong>ce L is ample, we therefore<br />

get<br />

3 D:L 11; ð21Þ<br />

and from the Hodge <strong>in</strong>dex theorem<br />

that is,<br />

16ð D:B 1Þ ¼ðB DÞ 2 L 2<br />

ððB DÞ:LÞ 2 ¼ð12 D:LÞ 2 ;<br />

ð12 D:LÞ2 ð12 3Þ2<br />

D:B b þ 1c b þ 1c ¼6: ð22Þ<br />

16<br />

16<br />

If D.B ¼ 0, then D:D ¼ 3D:L<br />

4 , which means by (21) that (D.L, D.D) ¼ (4, 3)<br />

or (8, 6).<br />

If D.B ¼ 1, then D:D ¼ 3D:Lþ1<br />

4 , which means by (21) that (D.L,<br />

D.D) ¼ (5, 4) or (9, 7).<br />

If D.B ¼ 2, then (21) and (22) gives 3 D.L 8 and D:D ¼ 3D:Lþ2<br />

4 ,<br />

which means that (D.L, D.D) ¼ (6, 5).


<strong>Rational</strong> <strong>Curves</strong> <strong>in</strong> <strong>Calabi</strong>-<strong>Yau</strong> <strong>Threefolds</strong> 3941<br />

Cont<strong>in</strong>u<strong>in</strong>g this way up to D.B ¼ 6, one ends up with the choices<br />

listed <strong>in</strong> the lemma. &<br />

6. PROOF OF THEOREM 4.3<br />

We will now complete the four steps of the proof of Theorem 4.3.<br />

6.1. Proof of Step (I)<br />

We start with some further <strong>in</strong>vestigations of the K3 surface with the<br />

Picard lattice <strong>in</strong>troduced <strong>in</strong> Lemma 5.3:<br />

Lemma 6.1. Assume L is ample. Then G is a smooth rational curve if and<br />

only if none of these special cases occurs:<br />

(a) m ¼ 4, 3d0 ¼ 4a and a > 9, <strong>in</strong> which case G (3L 4D) þ<br />

(G 3L þ 4D) is a nontrivial effective decomposition.<br />

(b) m ¼ 5 and 4 < d 0 < 2a, <strong>in</strong> which case G (L 2D) þ (G L þ 2D)<br />

is a nontrivial effective decomposition.<br />

(c) m ¼ 6, d0 ¼ 2a and a > 3, <strong>in</strong> which case G (L 2D) þ (G L þ 2D)<br />

is a nontrivial effective decomposition.<br />

Proof. S<strong>in</strong>ce G 2 ¼ 2andG.H > 0 we only need to show that G is irreducible.<br />

Consider B ¼ 3L mD as def<strong>in</strong>ed above. Then<br />

d :¼ jdiscðL; D; GÞj ¼ j2ðG:DÞðG:BÞþ18j: ð23Þ<br />

Case I. G.B > 0. Then d > 18. Assume that G is not irreducible. Then<br />

there has to exist a smooth rational curve g < G such that g.B G.B.<br />

We also have g.D G.D by nefness of D. Set D :¼ G g > 0. If g.B ¼ G.B,<br />

then D.B ¼ 3D.L mD.D ¼ 0, whence D.D > 0, s<strong>in</strong>ce L is ample, and<br />

hence g.D < G.D. In other words we always have (g.D)(g.B) < (G.D)(G.B),<br />

whence<br />

discðL; D; gÞ ¼2ðg:DÞðg:BÞþ18 < d: ð24Þ<br />

If now g.B < 0, we get from Lemma 5.7 that (g.D)(g.B) 16, whence<br />

discðL; D; gÞ ¼2ðg:DÞðg:BÞþ18 32 þ 18 14 > d: ð25Þ<br />

So we must have disc(L, D, g) ¼ 0, whence by Lemma 5.6 we have<br />

m ¼ 5 and g L 2D ¼: R. By ampleness of L we must have


3942 Johnsen and Knutsen<br />

0 < D.L ¼ (G L þ 2D).L ¼ d0 10 þ 6 ¼ d0 4, whence d0 > 4. We will<br />

now show that d0 < 2a as well, so that we end up <strong>in</strong> case (b) above.<br />

To get a contradiction, assume that d0 2a. Write G kR þ Dk, for an<br />

<strong>in</strong>teger k 1 such that Dk > 0 and R ä Dk. By our assumption we have<br />

D 2<br />

k ¼ 2(k2 þ 1 þ k(d0 2a)) 2, so Dk must have at least one smooth<br />

rational curve <strong>in</strong> its support. S<strong>in</strong>ce we have just shown that the only<br />

smooth rational curve g such that g.B 0isR, we have g0.B > 0 for<br />

any smooth rational curve g0 Dk. Pick one such g0 Dk such that<br />

g0.B Dk.B ¼ G.B þ 3k. Then, s<strong>in</strong>ce also 0 g0.D Dk.D ¼ G.D 3k,<br />

and G.B ¼ 3d0<br />

tion<br />

5a a ¼ G.D by our assumptions, we get the contradic-<br />

0 < discðL; D; g0Þ¼2ðg0:DÞðg0:BÞþ18 2ðG:D 3ÞðG:B þ 3Þ<br />

þ 18 < 2ðG:DÞðG:BÞþ18 ¼ d:<br />

So we are <strong>in</strong> case (b). Conversely, if m ¼ 5 and 4 < d0 < 2a, one sees<br />

that (G L þ 2D) 2<br />

2 and (G L þ 2D).L > 0, whence by Riemann-<br />

Roch (G L þ 2D) > 0andG (L 2D) þ (G L þ 2D) is a nontrivial<br />

effective decomposition.<br />

Case II. G.B ¼ 0. Then d ¼ 18 and 3d0 ¼ ma. S<strong>in</strong>ce we assume that L is<br />

ample, we have that 9 does not divide a if m ¼ 4 or 5 and 3 does not divide<br />

a if m ¼ 6 by Lemma 5.4. Assume that G is not irreducible. Then there has<br />

to exist a smooth rational curve g < G such that g.B 0. If g.B < 0, then<br />

g.D > 0 by Lemma 5.7, and we can argue as <strong>in</strong> Case I above. We end<br />

up <strong>in</strong> the case m ¼ 5andg¼L 2D, and s<strong>in</strong>ce d0 ¼ 5a<br />

3 < 2a this is a<br />

special case of (b).<br />

So we can assume that g.B ¼ 0 for any smooth rational curve <strong>in</strong> the<br />

support of B. By Lemma 5.7 aga<strong>in</strong>, for any such g we have the possibilities<br />

ðm; g:L; g:DÞ ¼ð4; 4; 3Þ; ð4; 8; 6Þ; ð6; 2; 1Þ or ð6; 4; 2Þ; ð26Þ<br />

whence the case m ¼ 5 is ruled out. To prove that we end up <strong>in</strong> the cases<br />

(a) and (c) above, we have to show that a 6¼ 3, 6 when m ¼ 4 and a 6¼ 1, 2<br />

when m ¼ 6.<br />

So assume m ¼ 4and(d0, a) ¼ (4, 3) or (8, 6). S<strong>in</strong>ce g.L < G.L ¼ d, we<br />

see from (26) that (d0, a) ¼ (8, 6) and (g.L, g.D) ¼ (4, 3) for any g < G. For<br />

any such g, consider D :¼ G g > 0. Then (D.L, D.D) ¼ (4, 3). If D 2<br />

2, we<br />

get the contradiction from the Hodge <strong>in</strong>dex theorem:<br />

64 ¼ 8L 2<br />

L 2 ðD þ DÞ 2<br />

ðL:ðD þ DÞÞ 2 ¼ 49:


<strong>Rational</strong> <strong>Curves</strong> <strong>in</strong> <strong>Calabi</strong>-<strong>Yau</strong> <strong>Threefolds</strong> 3943<br />

If D 2 ¼ 0, we write D xL þ yD þ zG and use the three equations<br />

D:L ¼ 8x þ 3y þ 8z ¼ 4;<br />

D:D ¼ 3x þ 6z ¼ 3;<br />

D 2 ¼ 8x 2 2z 2 þ 6xy þ 16xz þ 12yz ¼ 0:<br />

to f<strong>in</strong>d the absurdity (x, y, z) ¼ (1, 4=3, 0).<br />

So D 2<br />

2, which means that D 2 ¼ 2, s<strong>in</strong>ce for any smooth rational<br />

curve g0 <strong>in</strong> its support we must have (g0.L, g0.D) ¼ (4, 3). But then<br />

D.G ¼ g.G ¼ 1, and D and g have the same <strong>in</strong>tersection numbers with<br />

all three generators of Pic S. But then g ¼ D and G would be divisible, a<br />

contradiction.<br />

Assume now that m ¼ 6 and (d0, a) ¼ (2, 1) or (4, 4). As above we end<br />

up with the only possibility (d0, a) ¼ (4, 4) and (g.L, g.D) ¼ (2, 1). Now<br />

also (D.L, D.D) ¼ (2, 1), and D 2 ¼<br />

as above.<br />

2 and we reach the same contradiction<br />

So we have proved that we end up <strong>in</strong> cases (a) and (c) above. Conversely,<br />

if m ¼ 4 and d0 and a satisfy the conditions <strong>in</strong> (a), one easily<br />

checks that G (3L 4D) þ (G 3L þ 4D) is a nontrivial effective decomposition,<br />

s<strong>in</strong>ce both the components have self-<strong>in</strong>tersection 2 and<br />

positive <strong>in</strong>tersection with L. The same holds for the decomposition<br />

G (L 2D) þ (G L þ 2D) ifm¼6andd0and a satisfy the conditions<br />

<strong>in</strong> (c).<br />

Case III. G.B < 0. As <strong>in</strong> the proof of Lemma 5.7 we have G.R < 0. If<br />

m ¼ 4 and G.R ¼ 1, we aga<strong>in</strong> end up with the possibility (G.L, G.D) ¼<br />

(1, 1), <strong>in</strong> which case G is irreducible.<br />

In all other cases, we have (R G) 2<br />

2, whence by Riemann-Roch<br />

either R G > 0orG R > 0.<br />

Case III(a). R > G. We must have m ¼ 5 or 6, s<strong>in</strong>ce h 0 (R) ¼ 0ifm ¼ 4by<br />

Proposition 5.1. We proceed as <strong>in</strong> the proof of Lemma 5.7, with G <strong>in</strong> the<br />

place of D, and show that G.R ¼ 1, which gives the cases:<br />

ðm; d0; aÞ ¼ð5; 1; 1Þ; ð5; 3; 2Þ; ð5; 4; 3Þ; ð6; 1; 1Þ or ð6; 3; 2Þ:<br />

We consider m ¼ 5 first. If d0 ¼ 1, then G is irreducible, and if (d0, a) ¼<br />

(4, 3), we get d ¼ 0, whence the absurdity G L 2D by Lemma 5.6. So we<br />

must have (d0, a) ¼ (3, 2) and G.B ¼ 1. If G is reducible, there exists a<br />

smooth rational curve g < G such that g.B < 0. S<strong>in</strong>ce g.L < G.L ¼ 3, we<br />

get by look<strong>in</strong>g at the list <strong>in</strong> Lemma 5.7 that (g.L, g.D, g.B) ¼ (1, 1, 2).<br />

S<strong>in</strong>ce then disc(L, D, g) ¼ disc(L, D, G) ¼ 14, we get from Lemma 5.6 that


3944 Johnsen and Knutsen<br />

g xL þ yD þ zG, for z ¼ ± 1. Us<strong>in</strong>g g.L ¼ 1 ¼ 10x þ 3y þ 3z and<br />

g.D ¼ 1 ¼ 3x þ 2z, we f<strong>in</strong>d the <strong>in</strong>teger solution (x, y, z) ¼ (1, 2, 1), which<br />

yields D 2 ¼ 6, where D :¼ G g as usual. However D.L ¼ 2, whence D has<br />

at most two components, contradict<strong>in</strong>g its self-<strong>in</strong>tersection number.<br />

We next consider m ¼ 6. If d 0 ¼ 1, then G is irreducible, so we must<br />

have (d0, a) ¼ (3, 2) and G.B ¼ 3. This yields d ¼ 6. If G is reducible,<br />

there exists a smooth rational curve g < G such that g.B < 0. S<strong>in</strong>ce<br />

g.L < G.L ¼ 3, we get by look<strong>in</strong>g at the list <strong>in</strong> Lemma 5.7 that (g.L,<br />

g.D, g.B) ¼ (1, 1, 3) or (2, 1, 0), yield<strong>in</strong>g respectively disc(L, D, g) ¼ 12<br />

or 18, contradict<strong>in</strong>g Lemma 5.6, which gives z 2 ¼ 2 or 3 respectively.<br />

Case III(b). G > R. We have<br />

9<br />

a < 3d0 ma ¼ G:B < 0;<br />

and (G R).D ¼ a 3 0, whence<br />

3 a 8 and ma<br />

3<br />

3<br />

a < d0 < ma<br />

: ð27Þ<br />

3<br />

We leave it to the reader to verify that there are no <strong>in</strong>teger solutions to<br />

(27) for m ¼ 6 and that the only solutions for m ¼ 4 and 5 are<br />

m ¼ 4 : ðd0; aÞ ¼ð5; 4Þ; ð9; 7Þ;<br />

m ¼ 5 : ðd0; aÞ ¼ð6; 4Þ; ð8; 5Þ; ð13; 8Þ:<br />

The cases with m ¼ 5 belong to case (b) above. We now show that we can<br />

rule out the cases with m ¼ 4.<br />

Assume that G is reducible. Then there has to exist a smooth rational<br />

curve g < G such that g.B < 0, and we can use Lemma 5.7 aga<strong>in</strong>.<br />

Assume first that (d 0, a) ¼ (5, 4), which gives d ¼ 10. Then g.L < 5,<br />

whence by Lemma 5.7 we get the possibilities (g.L, g.D, g.B) ¼ (1, 1, 1)<br />

or (4, 4, 4), yield<strong>in</strong>g, respectively, disc(L, D, g) ¼ 16 or 14, none of which<br />

are divisible by d ¼ 10, a contradiction.<br />

Assume now that (d0, a) ¼ (9, 7), which gives d ¼ 4. Then g.L < 9 and<br />

by Lemma 5.7 we get the possibilities (g.L, g.D, g.B) ¼ (1, 1, 1), (5, 4, 1),<br />

(6, 5, 2) or (4, 4, 4) yield<strong>in</strong>g, respectively, disc(L, D, g) ¼ 16, 10, 2 or 14.<br />

By Lemma 5.6 the only possibility is therefore (g.L, g.D, g.B) ¼<br />

(1, 1, 1) with g xL þ yD þ zG, for z ¼ ±2.Ifz ¼ 2 we get the absurdity<br />

1 ¼ g.D ¼ 3x þ 14. If z ¼ 2, we get from the two equations 1 ¼ g.D ¼<br />

3x 14 and 1 ¼ g.L ¼ 8x þ 3y 18 the solution (x, y, z) ¼ (5, 7, 2),<br />

so g 5L 7D 2G, which yields g.G ¼ 0. S<strong>in</strong>ce we have just shown that


<strong>Rational</strong> <strong>Curves</strong> <strong>in</strong> <strong>Calabi</strong>-<strong>Yau</strong> <strong>Threefolds</strong> 3945<br />

g is the only smooth rational curve satisfy<strong>in</strong>g g < G and g.B < 0, we can<br />

write:<br />

G kg þ D<br />

for an <strong>in</strong>teger k 1 and D > 0 satisfy<strong>in</strong>g<br />

g 0 :B 0 for any smooth rational curve g 0 < D; ð28Þ<br />

D 2 ¼ 2ðk 2 þ 1Þ; ð29Þ<br />

D:L ¼ 9 k; whence k 8; ð30Þ<br />

D:B ¼ k 1: ð31Þ<br />

Now we claim that there has to exist a smooth rational curve g0 < D such<br />

that g0.B ¼ 0. Indeed, write D ¼ D0 þ D1, where D0 is the (possibly zero)<br />

mov<strong>in</strong>g part of jDj, and D1 its fixed part. (Note that D1 6¼ 0 by (29).) Then<br />

D 2<br />

0 0 and D0.D1 0, whence D 2<br />

1 D2 ¼ 2(k 2 þ 1). Now D1 is a f<strong>in</strong>ite sum<br />

of smooth rational curves, and let l denote the number of such curves,<br />

counted with multiplicities. One easily f<strong>in</strong>ds that D 2<br />

1 2l 2 (29)<br />

ffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

, whence by<br />

l k2 p<br />

þ 1 > D:B ¼ k 1;<br />

and it follows that there is a smooth rational curve g 0 < D such that<br />

g 0.B ¼ 0, as claimed. But then disc(L, D, g 0) ¼ 18, which is not divisible<br />

by d ¼ 4, a contradiction. &<br />

Now we summarize the numerical conditions obta<strong>in</strong>ed <strong>in</strong> Lemmas<br />

5.5 and 6.1. We need d0 > ma 3<br />

3 a and want L to be very ample with<br />

Cliff L ¼ 1 and such that the rational normal scroll T S def<strong>in</strong>ed by the<br />

pencil jDj is smooth and of maximally balanced scroll type. Moreover,<br />

we need G to be smooth and irreducible.<br />

If m ¼ 4 this is satisfied if d0 > 4a 3<br />

3 a ,(d0, a) 6¼ (2, 2), (5, 4), (9, 7) and<br />

3d0 6¼ 4a when a 9. The latter means that the tuples (d0, a) ¼ (4, 3) and<br />

(8, 6) are allowed. We therefore obta<strong>in</strong> the follow<strong>in</strong>g values:<br />

For m ¼ 4 : ðd0; aÞ2fð4; 3Þ; ð8; 6Þg; or<br />

d0 > 4a<br />

3<br />

3<br />

a ; ðd0; aÞ 62fð2; 2Þ; ð5; 4Þ; ð9; 7Þg and 3d0 6¼ 4a:<br />

If m ¼ 5 this is satisfied if (d0, a) 6¼ (2, 2) and either d0 4ord0 2a<br />

(s<strong>in</strong>ce the cases (d0, a) ¼ (6, 4) and (13, 8) from Lemma 5.5 satisfy<br />

4 < d0 < 2a and s<strong>in</strong>ce also d0 2a implies d0 > 5a<br />

3<br />

3<br />

a ). We also f<strong>in</strong>d that


3946 Johnsen and Knutsen<br />

the only pairs (d0, a) satisfy<strong>in</strong>g 5a 3<br />

3 a < d0 4 and (d0, a) 6¼ (2, 2) are<br />

(d0, a) ¼ (1, 1) and (3, 2). We therefore obta<strong>in</strong> the follow<strong>in</strong>g values:<br />

For m ¼ 5 : ðd0; aÞ 2fð1; 1Þ; ð3; 2Þg; or d0 2a<br />

If m ¼ 6 this is satisfied if d0 > 2a 3<br />

a ,(d0, a) 6¼ (3, 2) and d0 6¼ 2a when<br />

a 3. The latter means that the tuples (d0, a) ¼ (2, 1) and (4, 4) are<br />

allowed. We therefore obta<strong>in</strong> the follow<strong>in</strong>g values:<br />

For m ¼ 6 : ðd0; aÞ 2fð2; 1Þ; ð4; 4Þg; or<br />

d0 > 2a<br />

3<br />

a ; ðd0; aÞ 6¼ ð3; 2Þ; and d0 6¼ 2a:<br />

Us<strong>in</strong>g (3) and (4) we obta<strong>in</strong>:<br />

Proposition 6.2. Let n 4, d > 0 and a > 0 be <strong>in</strong>tegers satisfy<strong>in</strong>g the follow<strong>in</strong>g<br />

conditions:<br />

(1) If n 0 (mod 3), then either (d, a) 2f(n=3, 1), (2n=3, 2)g; or<br />

d > na<br />

(2)<br />

3<br />

3 a , (d, a) 6¼ (2n=3 1, 2) and 3d 6¼ na.<br />

If n 1(mod 3), then either (d, a) 2f(n, 3), (2n, 6)g;ord > na 3<br />

3 a ,<br />

(d, a) 62f(2(n 1)=3, 2), ((4n 1)=3, 4), ((7n 1)=3, 7)g and<br />

3d 6¼ na.<br />

(3) If n 2(mod 3), then either (d, a) 2f((n 2)=3, 1), ((2n 1)=3, 2)g;<br />

or d (n þ 1)a=3.<br />

Then there exists a (smooth) K3 surface of degree 2n <strong>in</strong> P nþ1 , conta<strong>in</strong><strong>in</strong>g a<br />

smooth elliptic curve D of degree 3 and a smooth rational curve G of degree<br />

d with D.G ¼ a, and such that<br />

Pic S ’ ZH ZD ZG;<br />

where H is the hyperplane section class. Furthermore, the rational normal<br />

scroll T S def<strong>in</strong>ed by the pencil jDj is smooth and of maximally balanced<br />

scroll type.<br />

We now set g ¼ n þ 1.<br />

At this po<strong>in</strong>t, for each g 5, we have found a 17-dimensional family<br />

of (smooth) projective K3 surfaces <strong>in</strong> P g (s<strong>in</strong>ce the rank of the Picard<br />

lattices are 3), each with Clifford <strong>in</strong>dex 1, and with a rational curve as<br />

described on it. Moreover, for each member of the family, the associated<br />

3-dimensional rational scroll T is of maximally balanced type. Moreover<br />

it is a standard fact that any polarized K3 surface S <strong>in</strong> a 3-dimensional


<strong>Rational</strong> <strong>Curves</strong> <strong>in</strong> <strong>Calabi</strong>-<strong>Yau</strong> <strong>Threefolds</strong> 3947<br />

rational normal scroll T is such that S is an anticanonical divisor of type<br />

3HT (g 4)FT on T, where HT and FT denote the hyperplane section<br />

and the P 1 -fibre of the scroll, respectively. The notation H and F will be<br />

used for correspond<strong>in</strong>g divisors on a larger, four-dimensional scroll H<br />

<strong>in</strong>to which T will be embedded.<br />

For all g 5 a 3-dimensional rational scroll T of maximally balanced<br />

type <strong>in</strong> P g is isomorphic to one such, say T 0 <strong>in</strong> P c , with c ¼ 5, 6, or 7. Here<br />

g ¼ c þ 3b, where c ¼ m þ 1 ¼ 5, 6 or 7, and b positive. We let HT (as<br />

written above) and H 0 be the divisors on this scroll correspond<strong>in</strong>g to<br />

the hyperplane divisors on T and T 0 , respectively. Then HT ¼ H 0 þ bFT.<br />

Observe that 3H 0 (c 4)FT ¼ 3H (g 4)FT, so that we can<br />

translate any question about sections of 3H T (g 4)F T on scrolls of<br />

maximally balanced type for g 5 to one where g ¼ 5, 6, or 7.<br />

6.2. Proof of Step (II)<br />

Let us perform Step (II). Assume first for simplicity c ¼ 5, so g ¼ c þ 3b,<br />

for some non-negative b. We use so-called roll<strong>in</strong>g factors coord<strong>in</strong>ates<br />

(see for example Stevens, 2000) Z1, Z2, Z3 for each fibre of T ¼ TS, which<br />

is isomorphic to P(OP 1(e1) OP 1(e2) OP 1(e3)), and (t, u) for the P 1 , over<br />

which T is fibered. Then the equation of S, be<strong>in</strong>g a zero scheme of a section<br />

of 3HT (g 4)FT on T, is<br />

Q ¼ p1ðt; uÞZ 3 1 þ p2ðt; uÞZ 2 1Z2 þ þp10ðt; uÞZ 3 3 ¼ 0:<br />

Here the pi(t, u) are quadratic polynomials <strong>in</strong> (t, u). If c ¼ 6 or 7, then the<br />

correspond<strong>in</strong>g expression is:<br />

Q ¼ X<br />

i1þi2þi3¼3<br />

p ði1;i2;i3Þðt; uÞZ i1<br />

1 Zi2<br />

3<br />

2<br />

Zi 3 ;<br />

where deg p(i 1,i 2,i 3) ¼ 2i1 þ i2 þ i3 2ifc ¼ 6, and 2i1 þ 2i2 þ i3 3, if c ¼ 7.<br />

In the larger scroll T ¼ P(O P 1(e 1) O P 1(e 4)) the equation of S is given<br />

by the additional equation Z 4 ¼ 0. Let P 1 ¼ Proj(k[u, v]), and look at the<br />

follow<strong>in</strong>g two equations:<br />

vðQ þ Z4AÞþuQ1 ¼ 0; ð32Þ<br />

vZ4 uB ¼ 0 ð33Þ<br />

Here Q1 has the same form as Q, while<br />

B ¼ q1ðt; uÞZ1 þ q2ðt; uÞZ2 þ q3ðt; uÞZ3;


3948 Johnsen and Knutsen<br />

where deg qi(t, u) ¼ ei e4, for i ¼ 1, 2, 3, and<br />

A ¼ X<br />

ri; jðt; uÞZiZj;<br />

i; j<br />

where deg ri, j(t, u) ¼ ei þ ej (g 4 e4).<br />

For ‘‘small’’ values of s ¼ u v Eq. (33) cuts out a 3-dimensional subscroll<br />

of T, while Eq. (32) cuts out a ‘‘deformed’’ K3 surface with<strong>in</strong> this<br />

subscroll. For s ¼ 0 we get our well-known situation with S and T <strong>in</strong> T.<br />

We may <strong>in</strong>sert Z4 ¼ sB, obta<strong>in</strong>ed from Eq. (33) <strong>in</strong> Eq. (32), and then we<br />

get:<br />

Q þ sðBAðt; u; Z1; Z2; Z3; sLÞþQ1ðt; u; Z1; Z2; Z3; sBÞÞ ¼ 0:<br />

By choos<strong>in</strong>g Q 1, A, B <strong>in</strong> a convenient way, we may express any Q þ sQ 0 <strong>in</strong><br />

this way, for all Q 0 of the same form as Q (We can choose Q1 not to<br />

<strong>in</strong>volve Z4 if we like). Hence we can obta<strong>in</strong> all possible deformations<br />

of the equation Q this way, that is we can obta<strong>in</strong> all possible deformations<br />

as sections of 3HT (g 4)FT on T (We move T too, but <strong>in</strong> a<br />

familiy of isomorphic rational normal scrolls, and t, u, Z1, Z2, Z3 are<br />

coord<strong>in</strong>ates for all these scrolls, simultaneously). By choos<strong>in</strong>g Q1 (and<br />

B and A if we like) <strong>in</strong> a convenient way, we then deform the K3 surface<br />

to one with Picard lattice generated by a pair of generators L i and D i<br />

only, all with the same <strong>in</strong>tersection matrix. This is true s<strong>in</strong>ce a zero<br />

scheme of a general section of 3HT (g 4)FT on T gives a general<br />

member of an 18-dimensional family of polarized K surfaces, all hav<strong>in</strong>g<br />

Picard lattice generated by such Li and Di.<br />

6.3. Proof of Step (III)<br />

If we elim<strong>in</strong>ate (u, v) from the two equations above, and thus form<br />

the union of all the deformed surfaces, for vary<strong>in</strong>g (u, v) we obta<strong>in</strong> a<br />

threefold V with equation:<br />

ðQ þ Z4AÞB þ Z4Q1 ¼ 0:<br />

By, for example, study<strong>in</strong>g the description on p. 3 <strong>in</strong> Stevens (2000), one<br />

sees that V is the zero scheme of a section of KT ¼ 4H (N 5)F,<br />

where N ¼ e1 þ þe4 þ 3 ¼ g þ e4 þ 1 is the dimension of the projective<br />

space spanned by T. Moreover, one argues as <strong>in</strong> Ekedahl et al. (1999)<br />

that for a general choice of A, B, Q1 the threefold V is only s<strong>in</strong>gular at<br />

the f<strong>in</strong>itely many po<strong>in</strong>ts given by Q ¼ Q 1 ¼ Z 4 ¼ B ¼ 0, and that none of


<strong>Rational</strong> <strong>Curves</strong> <strong>in</strong> <strong>Calabi</strong>-<strong>Yau</strong> <strong>Threefolds</strong> 3949<br />

these po<strong>in</strong>ts is conta<strong>in</strong>ed <strong>in</strong> G. The number of po<strong>in</strong>ts is:<br />

ð3H ðg 4ÞFÞ 2 ðH e4FÞ 2 ¼ 9H 4<br />

¼ 9ðg 3Þ ð2g þ 2e4 8Þ ¼7g 19 2e4<br />

ð2g 8 2e4ÞH 3 F<br />

<strong>in</strong> the numerical r<strong>in</strong>g of T.<br />

The essential result, <strong>in</strong>spired from Ekedahl et al. (1999), is the<br />

follow<strong>in</strong>g:<br />

Lemma 6.3. Let V be a rational normal scroll, and let S ¼ Z(Q0, L0) \ V<br />

be a smooth codimension 2 subvariety of V, where Q0, and L0 are effective<br />

divisors on V, which are sections of base po<strong>in</strong>t free l<strong>in</strong>e bundles of type<br />

aH þ bF on V. Let L be the l<strong>in</strong>ear system fQ0L1 Q1L0g on V, where<br />

L1 varies through all elements of jL0j and Q1 varies through all elements<br />

of jQ0j. Then for a general element l of L, S<strong>in</strong>g(l) ¼ Z(Q0, Q1, L0, L1).<br />

In general, Z(Q0, Q1, L0, L1) \ V will be of numerical type Q2 0L2 0 on V.<br />

Proof. A straightforward generalization of the proof of Lemma 5.3 of<br />

Ekedahl et al. (1999). In that lemma one expresses the elements of Q0,<br />

and L 0 as hypersurfaces <strong>in</strong> the projective space where V sits. In our case<br />

this is true locally each po<strong>in</strong>t. S<strong>in</strong>ce the proof is local, it works also<br />

here. &<br />

Remark 6.4. It is also clear that Z(Q0, Q1, L0, L1) \ V ¼ Z(Q1, L1) \ S<br />

will <strong>in</strong>tersect C <strong>in</strong> an empty set for general Q1, L1, s<strong>in</strong>ce Q0, andL0 are<br />

base po<strong>in</strong>t free divisors. Hence Z(l) will conta<strong>in</strong> C and be non-s<strong>in</strong>gular<br />

at all po<strong>in</strong>ts of C for general Q1, L1.<br />

Just as <strong>in</strong> the proofs of Lemmas 2.4 and 2.7 of Oguiso (1994), or <strong>in</strong><br />

Theorem 4.3 and part 5.1 of Ekedahl et al. (1999), we see that for an arbitrary<br />

such deformation of Q the curve G is isolated <strong>in</strong> V. The essential<br />

argument is already given on pp. 22–23 <strong>in</strong> Clemens (1983).<br />

6.4. Proof of Step (IV)<br />

This follows as on pp. 25–26 <strong>in</strong> Clemens (1983), or as <strong>in</strong> the proof of<br />

Theorem 3.4 of Ekedahl et al. (1999). Let M ¼ Md,a ¼f[C] j C has bidegree(d,<br />

a)g, and let G be the parameter space of ‘‘hypersurfaces’’ of type<br />

4H (N 5)F <strong>in</strong> T, where N ¼ e 1 þ þe 4 þ 3 is the dimension of the


3950 Johnsen and Knutsen<br />

projective space P N spanned by T. Study the <strong>in</strong>cidence I ¼ Id, a ¼f([C],<br />

[F]) 2 M G j C Fg. Then one easily shows:<br />

Lemma 6.5. Every component of I has dimension at least dim G, and<br />

dim G ¼ 104 if 4e 4 (N 5) 2.<br />

Proof. Let t, u, Z1, ..., Z4 as usual be coord<strong>in</strong>ates of T. Let r, s be<br />

homogeneous coord<strong>in</strong>ates of the C ¼ P 1 which is mapped <strong>in</strong>to T as a<br />

rational curve of bidegree (d, a). This map corresponds to some (not<br />

uniquely def<strong>in</strong>ed) parametrization<br />

t ¼ Tðr; sÞ; u ¼ Uðr; sÞ; Z1 ¼ S1ðr; sÞ; ...; Z4 ¼ S4ðr; sÞ:<br />

Here deg T ¼ deg U ¼ a, and deg Si ¼ d aei, for i ¼ 1, 2, 3, 4. (A set of<br />

coord<strong>in</strong>ates for P n are of the form Z j<br />

i ¼ Zit j u ei j<br />

. Each coord<strong>in</strong>ate is then<br />

of degree d <strong>in</strong> the variables r, s. See for example Stevens (2000, p. 3), or<br />

Reid (1997). The 6-tuples<br />

ðTðr; sÞ; Uðr; sÞ; S1ðr; sÞ; ...; S4ðr; sÞÞ<br />

depend on 2(a þ 1) þ (d ae1 þ 1) þ þ(d ae4 þ 1) ¼ 4d þ a(5 N) þ 6<br />

variables. Let N ¼ Nd, a be the set of such 6-tuples. (An open subset of)<br />

N can be viewed as a parameter space for ‘‘Parametrized rational curves<br />

of bidegree (d, a) <strong>in</strong>T’’. The parameter space M can be viewed as a quotient<br />

of N. Likewise J ¼ J d, a is def<strong>in</strong>ed as the correspond<strong>in</strong>g <strong>in</strong>cidence<br />

<strong>in</strong> N G, and can be viewed as a quotient of I. The fibres of these quotients<br />

have dimension 5 ¼ dim PGL(2) þ 2 (We have two multiplicative<br />

factors, one for (T, U), and one for (S1, ..., S4)). Hence dim M ¼ 4d þ<br />

a(5 N) þ 1, and dim I ¼ 4d þ a(5 N) þ 1 þ dim G ( ¼ 4d þ a(5 N) þ<br />

105 if T is of reasonably well balanced type). Study the <strong>in</strong>cidence<br />

R ¼f(P, [F ]) 2 T GjP 2 F g. Then R has an equation, which is sett<strong>in</strong>g<br />

equal to zero a sum of monomials of type:<br />

pi1;...;i4ðt; uÞZi1 1<br />

Z i4<br />

4 :<br />

The dim G þ 1 coefficients of the p i1, ..., i4 can be viewed as homogeneous<br />

coord<strong>in</strong>ates of G. In this equation we now <strong>in</strong>sert the parametrizations<br />

T(r, s), U(r, s), S1(r, s), ..., S4(r, s). This gives an equation <strong>in</strong>volv<strong>in</strong>g the<br />

coord<strong>in</strong>ates of G and the dim N coefficients of these 6-tuples, and <strong>in</strong><br />

addition r, s. We may view this as a homogeneous polynomial of degree<br />

4d þ a(5 N) <strong>in</strong>r, s, s<strong>in</strong>ce deg pi 1, ..., i4(t, u) ¼ i1e1 þ þi4e4 (N 5).<br />

The equation of the <strong>in</strong>cidence J <strong>in</strong> N G is obta<strong>in</strong>ed by sett<strong>in</strong>g all the<br />

4d þ a(5 N) þ 1 coefficients of this polynomial equal to zero. S<strong>in</strong>ce this


<strong>Rational</strong> <strong>Curves</strong> <strong>in</strong> <strong>Calabi</strong>-<strong>Yau</strong> <strong>Threefolds</strong> 3951<br />

number of coefficients is equal to dim M, we get dim M equations <strong>in</strong> an<br />

ambient space N G of dimension dim M þ dim G þ 6. Hence all components<br />

of J have dimension at least dim G þ 6, and consequently all<br />

components of I have dimension at least dim G. Now we simply differentiate<br />

the second projection map p 2 : I ! G. If the kernel of the tangent<br />

space map is zero at a po<strong>in</strong>t of I, then the tangent map is <strong>in</strong>jective, and<br />

therefore surjective, s<strong>in</strong>ce dim I dim G at all po<strong>in</strong>ts of I. Now this kernel<br />

is zero at ([G], [V ]), s<strong>in</strong>ce h 0 (NG=V) ¼ 0, s<strong>in</strong>ce G is isolated <strong>in</strong> V. Hence the<br />

tangent map is <strong>in</strong>jective and surjective <strong>in</strong> an open neighborhood of<br />

([G], [V ]) on a component of I of dimension dim G, and the conclusion<br />

about the existence of an isolated rational curve of degree d holds for a<br />

general section of 4H (N 5)F. &<br />

At this po<strong>in</strong>t the proof of Theorem 4.3 is complete.<br />

ACKNOWLEDGMENTS<br />

We thank the referee for helpful remarks, and the organizers of the<br />

Kleiman’s 60th Birthday Conference for mak<strong>in</strong>g this volume possible.<br />

The second author was supported by a grant from the Research Council<br />

of Norway.<br />

REFERENCES<br />

Arbarello, E., Cornalba, M., Griffiths, P. A., Harris, J. (1985). Geometry<br />

of algebraic curves. In: Grundlehren der Mathematischen<br />

Wissenschaften. Vol. I. Berl<strong>in</strong>, Heidelberg, New York, Tokyo:<br />

Spr<strong>in</strong>ger Verlag, 267.<br />

Batyrev, V., Ciocan-Fontan<strong>in</strong>e, I., Kim, B., van Straten, D. (1998). Conifold<br />

Transitions and Mirror Symmetry for <strong>Calabi</strong>-<strong>Yau</strong> Intersections<br />

<strong>in</strong> Grassmannians. Nuclear Phys. B 514(3):640–666.<br />

Clemens, H. (1983). Homological equivalence, modulo algebraic equivalence,<br />

is not f<strong>in</strong>itely generated. Publ. Math. IHES 58:19–38.<br />

Ekedahl, T., Johnsen, T., Sommervoll, D. E. (1999). Isolated rational<br />

curves on K3-fibered <strong>Calabi</strong>-<strong>Yau</strong> threefolds. Manuscripta Math.<br />

99:111–133.<br />

Green, M., Lazarsfeld, R. (1987). Special divisors on curves on a K3<br />

surface. Invent. Math. 89:357–370.


3952 Johnsen and Knutsen<br />

Gruson, L., Lazarsfeld, R., Pesk<strong>in</strong>e, C. (1983). On a theorem of castelnuovo<br />

and the equations def<strong>in</strong><strong>in</strong>g space curves. Invent. Math.<br />

72:491–506.<br />

Johnsen, T., Knutsen, A. L. (2001). K3 projective models <strong>in</strong> scrolls,<br />

math.AG/0108183.<br />

Johnsen, T., Kleiman, S. (1996). <strong>Rational</strong> curves of degree at most 9 on a<br />

general qu<strong>in</strong>tic threefold. Comm. Algebra. 24(8):2721–2753.<br />

Johnsen, T., Kleiman, S. (1997). Toward clemens’ conjecture <strong>in</strong> degrees<br />

between 10 and 24. Serdica Math. J. 23:131–142.<br />

Jordanger, L. (1999), Om glatte rasjonale kurver pa˚ calabi-yau’ar. Cand.<br />

Sci. thesis, University of Bergen.<br />

Katz, S. (1986). On the f<strong>in</strong>iteness of rational curves on qu<strong>in</strong>tic threefolds.<br />

Compositio Math. 60(2):151–162.<br />

Kley, H. (1999). On the existence of curves <strong>in</strong> K-trivial threefolds.<br />

alg-geom/981109.<br />

Kley, H. (2000). Rigid curves <strong>in</strong> complete <strong>in</strong>tersection calabi-yau threefolds.<br />

Compositio Math. 123(2):185–208.<br />

Knutsen, A. L. (2001a). On kth order embedd<strong>in</strong>gs of K3 surfaces and<br />

Enriques surfaces. Manuscripta Math. 104:211–237.<br />

Knutsen, A. L. (2001b). Smooth curves <strong>in</strong> families of <strong>Calabi</strong>-<strong>Yau</strong> threefolds.<br />

math.AG/0110220.<br />

Knutsen, A. L. (2002). Smooth curves on projective K3 surfaces. Math.<br />

Scand. 90(2):215–231.<br />

Martens, H. H. (1968). On the varieties of special divisors on a curve, II.<br />

J. re<strong>in</strong>e und angew. Math. 233:89–100.<br />

Mori, S. (1984). On degrees and genera of curves on smooth quartic<br />

surfaces <strong>in</strong> P 3 . Nagoya Math. J. 96:127–132.<br />

Morrison, D. R. (1984). On K3 surfaces with large picard number. Invent.<br />

Math. 75:105–121.<br />

Nikul<strong>in</strong>, V. (1980). Integral symmetric bil<strong>in</strong>ear forms and some of their<br />

applications. Math. USSR-Izv. 14:103–167.<br />

Nijsse, P. (1995). Clemens’ conjecture for octic and nonic curves. Indag.<br />

Math.(N.S.) 6(2):213–221.<br />

Oguiso, K. (1994). Two remarks on <strong>Calabi</strong>-<strong>Yau</strong> Moishezon threefolds.<br />

J. Re<strong>in</strong>e und Angew. Math 452:153–161.<br />

Osland, T. M. (2001). <strong>Rational</strong> <strong>Curves</strong> <strong>in</strong> Grassmann Varieties. Cand.<br />

Sci. thesis, University of Bergen.<br />

Reid, M. (1997). Chapters on algebraic surfaces. In: Complex Algebraic<br />

Geometry (Park City, 1993). IAS/Park City Math. ser. Vol. 3.<br />

pp. 3–159.<br />

Sa<strong>in</strong>t-Donat, B. (1974). Projective models of K3 surfaces. Amer. J. Math.<br />

96:602–639.


<strong>Rational</strong> <strong>Curves</strong> <strong>in</strong> <strong>Calabi</strong>-<strong>Yau</strong> <strong>Threefolds</strong> 3953<br />

Schreyer, F. O. (1986). Syzygies of canonical curves and special l<strong>in</strong>ear<br />

series. Math. Ann. 275:105–137.<br />

Sidman, J. (2001). On the Castelnuovo-Mumford regularity of products of<br />

ideal sheaves. math.AG/0110184.<br />

Stevens, J. (2000). Roll<strong>in</strong>g Factors Deformations and Extensions of Canonical<br />

<strong>Curves</strong>. math.AG/0006189.<br />

Strømme, S. A. (1987). On parametrized rational curves <strong>in</strong> Grassmann<br />

varieties. In: ‘‘Space <strong>Curves</strong>’’ (Rocca di Papa 1985). Spr<strong>in</strong>ger,<br />

Lecture Notes <strong>in</strong> Math., Vol. 1266, pp. 251–272.<br />

Va<strong>in</strong>sencher, I. (1995). Enumeration of n-fold tangent hyperplanes to a<br />

surface. J. of Alg. Geom. 4:503–526.<br />

Received June 2002<br />

Revised February 2003

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!