10.08.2013 Views

Rational Curves in Calabi-Yau Threefolds

Rational Curves in Calabi-Yau Threefolds

Rational Curves in Calabi-Yau Threefolds

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3934 Johnsen and Knutsen<br />

5.2. Some Specific K3 Surface Computations<br />

In the follow<strong>in</strong>g lemma we <strong>in</strong>troduce a specific K3 surface with a<br />

specific Picard lattice, which will be <strong>in</strong>strumental <strong>in</strong> prov<strong>in</strong>g Theorem<br />

4.3. The element G <strong>in</strong> the lattice will correspond to a curve of bidegree<br />

(d, a) as described <strong>in</strong> that theorem.<br />

Lemma 5.3. Let n 4, d > 0 and a > 0 be <strong>in</strong>tegers satisfy<strong>in</strong>g d > na<br />

Then there exists an algebraic K3 surface S with Picard group<br />

Pic S ’ ZH ZD ZG with the follow<strong>in</strong>g <strong>in</strong>tersection matrix:<br />

H2 D:H<br />

H:D<br />

D<br />

H:G<br />

2 D:G<br />

G:H G:D G 2<br />

2<br />

4<br />

3 2<br />

2n<br />

5 ¼ 4 3<br />

3<br />

0<br />

d<br />

a<br />

3<br />

5<br />

d a 2<br />

and such that the l<strong>in</strong>e bundle L :¼ H b<br />

n 4<br />

3 cD is nef.<br />

Proof. The signature of the matrix above is (1, 2) under the given conditions.<br />

By a result of Nikul<strong>in</strong> (1980) (see also Morrison, 1984, Theorem<br />

2.9(i)) there exists an algebraic K3 surface S with Picard group<br />

Pic S ¼ ZH ZD ZG and <strong>in</strong>tersection matrix as <strong>in</strong>dicated.<br />

S<strong>in</strong>ce L 2 > 0, we can, by us<strong>in</strong>g Picard-Lefschetz tranformations,<br />

assume that L is nef (see e.g., Oguiso, 1994 or Knutsen, 2002). &<br />

Note now that<br />

L 2 8<br />

< 8 if n 4 mod 3;<br />

¼ 10<br />

:<br />

12<br />

if n<br />

if n<br />

5<br />

6<br />

mod 3;<br />

mod 3:<br />

We will from now on write L 2 ¼ 2m, for<br />

m :¼ n 3b<br />

3<br />

3<br />

a .<br />

ð2Þ<br />

n 4<br />

c¼4; 5or6 ð3Þ<br />

3<br />

(<strong>in</strong> other words n m (mod 3)) and def<strong>in</strong>e<br />

d0 :¼ G:L ¼ d<br />

n 4<br />

b ca > 0:<br />

3<br />

ð4Þ<br />

Note that the condition d > na<br />

3<br />

d0 > ma<br />

3<br />

3<br />

a is equivalent to<br />

3<br />

: ð5Þ<br />

a

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!