19.08.2013 Views

Scanning Beam Interference Lithography - Space Nanotechnology ...

Scanning Beam Interference Lithography - Space Nanotechnology ...

Scanning Beam Interference Lithography - Space Nanotechnology ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Scanning</strong> <strong>Beam</strong> <strong>Interference</strong> <strong>Lithography</strong><br />

Paul T. Konkola<br />

Carl G. Chen<br />

Ralf K. Heilmann<br />

Chulmin Joo<br />

Mark L. Schattenburg<br />

Massachusetts Institute of Technology<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory


Objective and motivation<br />

System concept<br />

System overview<br />

Error sources and error budget<br />

Short term and long term phase stability results<br />

System electronic architecture<br />

Conclusions<br />

Outline<br />

ptk-outline-103102.eps<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory


<strong>Lithography</strong><br />

metrology.<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory<br />

ptk-applications-110601.eps<br />

Application of Fiducial Grids to Metrology<br />

Moire<br />

camera<br />

Reticle<br />

grating<br />

Wafer<br />

grating<br />

Encoder<br />

Plate<br />

Encoder<br />

Plate<br />

Stage<br />

encoders.<br />

Encoder<br />

Plate<br />

Reticle<br />

Stage<br />

Encoder<br />

Plate<br />

Read<br />

Head<br />

Wafer<br />

Stage<br />

Reference for electron<br />

beam lithography<br />

<strong>Beam</strong><br />

Control<br />

<strong>Scanning</strong><br />

E-beam<br />

Detector<br />

Scintillating<br />

Fiducial Grid<br />

E-beam Resist<br />

Substrate<br />

Signal<br />

Processing<br />

Feedback<br />

Signal<br />

t<br />

Pattern


Variable<br />

attenuator<br />

Mirror<br />

Traditional <strong>Interference</strong> <strong>Lithography</strong><br />

<strong>Beam</strong>splitter<br />

<strong>Beam</strong>splitter<br />

Spatial Filters<br />

Grating period, = λ<br />

2sinθ <br />

2θ<br />

Laser beam<br />

λ = 351.1 nm<br />

ptk-il-110901.eps<br />

Phase displacement actuator<br />

Substrate<br />

Phase error<br />

sensor<br />

Mirror<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory


ptk-distortion-111101.eps<br />

Phase Distortion of Interfered Spherical Waves<br />

<br />

<br />

y (mm)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

<br />

<br />

<br />

<br />

<br />

-10<br />

-10 -8 -6 -4 -2 0 2 4 6 8 10<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

λ <br />

<br />

<br />

x (mm)<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory


Stage distance<br />

measuring<br />

interferometer<br />

<strong>Beam</strong> pickoff<br />

SBIL System Concept<br />

Mirror<br />

2<br />

Laser<br />

Phase<br />

error<br />

sensor<br />

Stage<br />

error<br />

+<br />

<br />

+<br />

Substrate<br />

Controller<br />

Phase<br />

displacement<br />

actuator<br />

Much smaller beams<br />

than traditional IL<br />

Air bearing<br />

XY stage<br />

ptk-sbil-110201.eps<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory<br />

G


Y direction<br />

X direction<br />

Grating <strong>Scanning</strong> Method<br />

<strong>Scanning</strong><br />

grating<br />

image<br />

Air-bearing<br />

XY stage<br />

Resistcoated<br />

substrate<br />

Intensity<br />

Overlapping scans closely approximate<br />

a uniform intensity distribution<br />

Intensity<br />

<strong>Scanning</strong> grating image<br />

Summed<br />

intensity of<br />

scans 1-6<br />

Individual<br />

scan<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory<br />

X<br />

ptk-scanmethod-110201.eps<br />

Grating<br />

period, <br />

X


Optical Bench<br />

with IL Optics<br />

Phase<br />

Measurement<br />

Optics<br />

Wafer<br />

Stage<br />

SBIL System, Front View<br />

Laser (λ=351.1 nm)<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory<br />

Xcc_SBIL_front.eps<br />

Metrology<br />

Optics<br />

X-Axis<br />

Interferometer


All-Welded<br />

Stainless Steel<br />

Optical Bench<br />

Air Bearing<br />

Granite Block<br />

Active<br />

Vibration-Isolation<br />

System<br />

SBIL System, Rear View<br />

Laser (Λ=351.1 nm)<br />

<strong>Beam</strong> Steering<br />

System<br />

Y-Axis<br />

Interferometer<br />

ptk-sbil-rear.eps<br />

Magnetically Preloaded<br />

XY airbearing<br />

stage<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory


Super invar chuck<br />

flexure mounted<br />

to stage<br />

Zerodur mirrors<br />

bonded to chuck<br />

SBIL Metrology Frames<br />

Super invar mounts<br />

for optics<br />

ptk-metrologyframes-103102.eps<br />

Zerodur metrology block flexure<br />

mounted to bench. Super invar<br />

inserts. Column reference and<br />

refractometer mirrors bonded.<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory


SBIL Environmental Enclosure<br />

Specifications: 20±.005K critical zone temperature.<br />

20±.025K full volume temperature.<br />

40±0.8% relative humidity.<br />

16 Pa/m max pressure gradient.<br />

Acoustic SPL < 60 dB re 20 µPa<br />

in critcal octaves.<br />

Chamber<br />

Air Handlers<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory<br />

ptk-enclosure-103102.eps


2 plate<br />

Polarizer<br />

Spatial<br />

filter and<br />

collimating<br />

assembly<br />

SBIL <strong>Beam</strong> Conditioning Optics<br />

+1/-1 order grating<br />

AOM, 3 AOM, 2<br />

Camera<br />

UV Laser<br />

ptk-beamconditioning-110201.eps<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory


Picomotor<br />

driven<br />

mirrors<br />

SBIL Alignment Optics<br />

Alignment splitter<br />

2<br />

AOM's shutter<br />

beams<br />

<strong>Beam</strong><br />

overlap<br />

PSD<br />

From<br />

splitter<br />

UV Laser<br />

Angle<br />

PSD<br />

Position<br />

PSD<br />

0 and -1 order reflections<br />

from grating on chuck<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory<br />

ptk-alignment-111001.eps


MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory<br />

ptk-fringelocking-111001.eps


SBIL Metrology Block optics<br />

4-in-1 monolithic beam splitter<br />

Fiber receiver (1 of 3) Nominally 0 thermal<br />

expansion coefficient<br />

mount assemblies<br />

ptk-metrologyblockoptics-103102.eps<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory


M M<br />

Stage and <strong>Lithography</strong> Metrology<br />

Phase sensing<br />

optics<br />

Chuck<br />

Y, column reference<br />

interferometers<br />

Column<br />

references<br />

Section M-M<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory<br />

ptk-metrology-110201.eps<br />

HeNe laser<br />

(Zygo)<br />

X, column<br />

reference<br />

interferometers


Chuck with Metrology References<br />

Reference grating<br />

for length scale<br />

calibration<br />

Substrate<br />

Vacuum<br />

chuck<br />

Image<br />

metrology<br />

grating<br />

Image<br />

metrology<br />

fiber<br />

Alignment and period<br />

calibration splitter<br />

Interferometer<br />

mirrors<br />

mm<br />

<strong>Beam</strong> overlap<br />

PSD<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory<br />

ptk-chuck-110201.eps


SBIL Chuck System<br />

ptk-chuck-40202.eps<br />

Performance issues:<br />

1) Heat sink<br />

2) Thermally stable<br />

3) Rigid constraint of substrate<br />

4) Coupling to interferometer mirrors even<br />

at high frequency<br />

5) Repeatable substrate clamping distortions<br />

6) Critical metrology frame alignments<br />

7) Light weight<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory


Period Measurement with a <strong>Beam</strong>splitter<br />

L R<br />

Writing<br />

<strong>Beam</strong>s<br />

Stage<br />

Motion<br />

<strong>Beam</strong>splitter<br />

Mounted on Stage<br />

Position Sensing<br />

Detector (PSD)<br />

Grating Period = D/N<br />

D = Distance Travelled<br />

by the Stage<br />

<strong>Interference</strong> Signal Detected<br />

as Stage Moves<br />

N Fringes<br />

ptk-PMprinciple-111001.eps<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory


Left<br />

beam<br />

Substrate<br />

System Errors<br />

2θ<br />

<strong>Interference</strong><br />

pattern<br />

x s<br />

x d<br />

Error Categories<br />

Stage interferometer (xd) Fringe locking and metrology frame(xf) Substrate frame (xs) Period Control<br />

Image Distortion<br />

x f<br />

Right<br />

beam<br />

Column<br />

mirror<br />

Stage<br />

mirror<br />

ptk-errors-110201.eps<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory


Error Budget Summary for SBIL<br />

Error Category<br />

error<br />

budget, e<br />

[±m]<br />

Non-plane wave 2.24E-09<br />

Period control 2.00E-09<br />

Substrate and Metrology Frame 3.01E-09<br />

Displacement Interferometer 3.45E-09<br />

<strong>Lithography</strong> Interferometer Phase 2.25E-09<br />

rss error 5.91E-09<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory<br />

ptk_3_16_01_error_budget.eps


Fringe - substrate phase, Λ=401.3021(nm)<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

Long term fringe to substrate phase stability<br />

(1 hour, 0.3 mHz to 1.4 Hz)<br />

-3<br />

0 500 1000 1500 2000 2500 3000 3500<br />

Time (s), resampled timer period=360 ms.<br />

Phase error 3σ=1.8 nm<br />

ptk-longtermphase-103102.eps<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory


Fringe - substrate phase (nm)<br />

Refractometer (∆n/n), ppm<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

0 500 1000 1500 2000 2500 3000 3500 4000<br />

Time (s), resampled timer period=360 ms.<br />

0.04<br />

0.02<br />

0<br />

-0.02<br />

-0.04<br />

-0.06<br />

-0.08<br />

Long term fringe to substrate phase stability<br />

with and without refractometer compensation<br />

Compensated Uncompensated<br />

Refractometer Data<br />

Door to<br />

cleanroom open<br />

-0.1<br />

0 500 1000 1500 2000 2500 3000 3500 4000<br />

Time (s), resampled timer period=360 ms.<br />

ptk-longtermphaserefrac-110102.eps<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory


ptk-shorttermphi4-110102.eps<br />

Short term fringe to substrate phase stability and estimated specifications<br />

using placement accuracy filter. (5 sec, 0.2 Hz to 5000 Hz)<br />

φ 4 (nm), Λ=401.3021nm<br />

Dose Amplitude fluctuation (%)<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

φ 4 raw, 3σ=3.94e+000 nm<br />

φ 4 , 3σ=2.07e+000 nm, T ave =1.00e-002 s<br />

-6<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Time (s), Timer period=0.1 ms.<br />

0<br />

-0.01<br />

-0.02<br />

-0.03<br />

-0.04<br />

Estimated dose amplitude fluctuation due to phase jitter<br />

-0.05<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Time (s), Timer period=0.1 ms.<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory


ptk-shorttermphi4psd-110102.eps<br />

Power spectrum of the short term fringe to substrate<br />

phase stability and the estimated placement accuracy.<br />

Power spectrum of φ 4 (nm/sqrt(Hz))<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

φ 4 raw, 3σ=3.94e+000 nm<br />

φ 4 , 3σ=2.07e+000 nm, T ave =1.00e-002 s<br />

0 1000 2000 3000 4000 5000 6000<br />

Frequency (Hz), resolution=2.4414Hz, nfft = 4096<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory


X axis stage error (nm),<br />

cross axis<br />

Y axis stage error (nm),<br />

scan direction, ≈parallel<br />

to gratings<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Time (s), Timer period=0.1 ms.<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

Stage position errors for X and Y axes<br />

X err, µ=-1.66e-001 nm, 3σ=2.43e+001 nm<br />

-15<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Time (s), Timer period=0.1 ms.<br />

Y err, µ=3.62e-002 nm, 3σ=1.07e+001 nm<br />

ptk-stageerrors-103102.eps<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory


Analog input:<br />

<strong>Beam</strong>overlap PSD.<br />

Power sensors.<br />

Sensors, general.<br />

D/A PMC<br />

A/D PMC<br />

IXC6 Master/<br />

DSP/Power PC<br />

Analog output:<br />

Stage linear amplifiers.<br />

Vibration isolation feedforward.<br />

Analog test points.<br />

PC<br />

host<br />

MI 2002<br />

SBIL System Architecture<br />

VME Bus<br />

MI 2002<br />

MI 2002<br />

MI 2002<br />

VME Rack<br />

Digital Change<br />

of State Board<br />

TL Digital<br />

Input/Output<br />

TL Digital<br />

Input/Output<br />

MI 2001<br />

Power<br />

Supply<br />

Digital frequency sythesizer<br />

(to AOM's).<br />

I 6508<br />

Digital I/O<br />

I 6034E<br />

Analog I/O<br />

I 6034E<br />

Analog I/O<br />

ptk-controlarch-102901.eps<br />

Realtime control platform Labview based I/O<br />

Refractometer.<br />

<strong>Lithography</strong><br />

interferometers.<br />

Stage<br />

interferometers.<br />

Reference clock from Zygo laser<br />

Stage position limits.<br />

Air bearing pressure limit.<br />

Labview PC control lines.<br />

Communication to Labview PC<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory<br />

PC<br />

Internal PCI Bus<br />

PSD's.<br />

Picomotor driver.<br />

Communication to<br />

IXC6.


VMIVME-1181-000,<br />

32bit digital change-of-state<br />

input board.<br />

VMIVME-2510B,<br />

64bit TTL digital output I/O<br />

VMIVME-2510B,<br />

64bit TTL digital output I/O<br />

ZMI 2001, Interferometer<br />

Card, 1 axis<br />

ZMI 2002, Interferometer<br />

Card, 2 axes<br />

ZMI 2002, Interferometer<br />

Card, 2 axes<br />

ZMI 2002, Interferometer<br />

Card, 2 axes<br />

ZMI 2002, Interferometer<br />

Card, 2 axes<br />

SBIL Realtime Control Platform<br />

PC with Windows NT 4.0, Micron<br />

400 Mhz, Pentium II. 128 Mb DRAM<br />

Development tools: Code Composer<br />

Studio (TI), IXCtools (Ixthos),<br />

Tornado II (Wind River Systems).<br />

512 Kbytes<br />

SBSRAM<br />

83 Mhz<br />

PMC<br />

Site #1<br />

Ethernet<br />

Port<br />

DSP A<br />

C6701, 167 Mhz<br />

16 Mbytes<br />

SDRAM<br />

83MHz<br />

IXStar<br />

PCI - DSP<br />

Serial<br />

Port<br />

DSP B<br />

C6701, 167 Mhz<br />

512 Kbytes<br />

SBSRAM<br />

83 Mhz<br />

16 bit Host Port Bus<br />

Host Port<br />

Interface<br />

4 Mbytes<br />

Flash<br />

MPC 8240<br />

IOPlus<br />

250 Mhz<br />

64 Mbytes<br />

SDRAM<br />

100 Mhz<br />

32 Bit 32 Bit 32 Bit 32 Bit<br />

64 Bit PCI - PCI 64 Bit 66 MHz PCI - PCI<br />

64 Bit<br />

66 MHz Bridge<br />

Bridge 66 MHz<br />

PMC-16AO-12-2022,<br />

12 Channel, 16bit DA<br />

64 Bit, User<br />

Defined I/O<br />

to P0*<br />

16 Mbytes<br />

SDRAM<br />

83MHz<br />

XDS510<br />

ISA-JTAG emulator<br />

JTAG to<br />

DSP Chain<br />

64 Bit<br />

PCI - PCI<br />

Bridge<br />

33 MHz<br />

Universe II<br />

PCI-VMEbus<br />

VME64x Backplane<br />

(11 Mbytes/s)<br />

DSP C<br />

C6701, 167 Mhz<br />

512 Kbytes<br />

SBSRAM<br />

83 Mhz<br />

IXC6 Quad DSP Board<br />

16 Mbytes<br />

SDRAM<br />

83MHz<br />

IXStar<br />

PCI - DSP<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory<br />

ptk-052601-control.eps<br />

512 Kbytes<br />

SBSRAM<br />

83 Mhz<br />

PMC-16AIO-88-31,<br />

8 Channel, 16bit DA and<br />

8 Channel, 16bit AD<br />

DSP D<br />

C6701, 167 Mhz<br />

64 Bit, User<br />

Defined I/O<br />

to P2<br />

16 Mbytes<br />

SDRAM<br />

83MHz<br />

PMC<br />

Site #2


Conclusions<br />

SBIL is a novel patterning tool for producing gratings and<br />

grids with nanometer level distortions.<br />

The system must satisfy challenging requirements for<br />

placement repeatibility, beam conditioning, and alignment.<br />

We have demonstrated long term placement stability of<br />

1.8 nm 3σ and short term placement stability of 2.1 nm 3σ.<br />

We can pattern large area gratings with unprecedented<br />

repeatibility.<br />

Future work will focus on self calibration to achieve nanometer<br />

level accuracy.<br />

MIT <strong>Space</strong> <strong>Nanotechnology</strong> Laboratory<br />

ptk-conclusions-103102.eps

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!