19.08.2013 Views

Design and analysis of a Scanning Beam Interference Lithography ...

Design and analysis of a Scanning Beam Interference Lithography ...

Design and analysis of a Scanning Beam Interference Lithography ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ptk-title-121202.eps<br />

<strong>Design</strong> <strong>and</strong> <strong>analysis</strong> <strong>of</strong> a <strong>Scanning</strong> <strong>Beam</strong><br />

<strong>Interference</strong> <strong>Lithography</strong> system for patterning<br />

gratings with nanometer-level distortions<br />

by<br />

Paul T. Konkola<br />

April 3, 2003<br />

Ph.D. Thesis Defense<br />

Department <strong>of</strong> Mechanical Engineering<br />

Massachusetts Institute <strong>of</strong> Technology<br />

Committee:<br />

Dr. Mark L. Schattenburg (Advisor)<br />

Pr<strong>of</strong>essor David L. Trumper (Chair)<br />

Pr<strong>of</strong>essor Alex<strong>and</strong>er H. Slocum<br />

MIT Space Nanotechnology Laboratory


Acknowledgments<br />

Committee: Dr. Mark L. Schattenburg (Advisor)<br />

Pr<strong>of</strong>essor David L. Trumper (Chair)<br />

Pr<strong>of</strong>essor Alex<strong>and</strong>er H. Slocum<br />

ptk-acknowledgements-121202.eps<br />

Carl Chen<br />

Ralf Heilmann, Bob Fleming, Ed Murphy, Chulmin Joo, Chi Chang,<br />

Craig Forest, Andy Lapsa, Juan Montoya, G.S. Pati, Yanxia Sun, Shi Yue,<br />

David Carter, Jimmy Carter, Jim Daley, Juan Ferrera, Todd Hastings,<br />

Dario Gil, Mike McGuirck, Mark Mondol, Euclid Moon, Tim Savas, Mike<br />

Walsh<br />

Space Nanotechnology Laboratory<br />

Nanostructures Laboratory, Pr<strong>of</strong> Henry Smith<br />

Sponsors: DARPA <strong>and</strong> NASA<br />

MIT Space Nanotechnology Laboratory


Research Objectives<br />

Develop interference lithography, gratings, <strong>and</strong> fiducial<br />

grids as metrological tools.<br />

Research <strong>and</strong> develop methods for patterning <strong>and</strong><br />

measuring gratings with nanometer-level phase errors<br />

over large areas (up to 300 mm diameter).<br />

ptk-objective-033103.eps<br />

MIT Space Nanotechnology Laboratory


Outline<br />

• Contributions<br />

• Motivation<br />

• System concept<br />

• System overview<br />

• Error sources<br />

• System performance <strong>and</strong> <strong>analysis</strong><br />

• Electronic architecture<br />

• Error budget summary<br />

• Conclusions<br />

• Q&A<br />

ptk-outline-033103.eps<br />

MIT Space Nanotechnology Laboratory


Contributions (I)<br />

MIT Space Nanotechnology Laboratory<br />

ptk-contributions-033103.eps<br />

• <strong>Design</strong>, <strong>analysis</strong>, <strong>and</strong> demonstration <strong>of</strong> the first patterning<br />

machine based on an interference image <strong>and</strong> a scanned<br />

substrate. The system can pattern <strong>and</strong> measure large-area<br />

gratings with nanometer-level repeatability.


Contributions (II)<br />

• Experimental results <strong>and</strong> models that enhance the<br />

underst<strong>and</strong>ing <strong>of</strong> ultra-precision patterning.<br />

• System <strong>of</strong> stage control <strong>and</strong> acousto-optic fringe<br />

locking that achieves fringe phase control to the limits<br />

<strong>of</strong> quantization <strong>and</strong> sampling rate.<br />

MIT Space Nanotechnology Laboratory<br />

ptk-contributions2-033103.eps


Moire<br />

camera<br />

<strong>Lithography</strong><br />

metrology<br />

Application <strong>of</strong> Fiducial Grids<br />

<strong>and</strong> Gratings to Metrology<br />

Reticle<br />

grating<br />

Wafer<br />

grating<br />

Stage encoders<br />

Linear<br />

Encoder<br />

Linear<br />

Encoder<br />

Read<br />

Head<br />

Encoder systems<br />

Grating<br />

direction<br />

Linear<br />

Encoder<br />

Linear<br />

Encoder<br />

Linear<br />

Encoder<br />

Linear<br />

Encoder<br />

Linear<br />

Encoder<br />

Wafer<br />

Stage<br />

Reticle<br />

Stage<br />

<strong>Beam</strong><br />

Control<br />

<strong>Scanning</strong><br />

E-beam<br />

Detector<br />

Scintillating<br />

Fiducial Grid<br />

E-beam Resist<br />

Substrate<br />

ptk-applications-032703.eps<br />

Reference for electron<br />

beam lithography<br />

Signal<br />

Processing<br />

Feedback<br />

Signal<br />

MIT Space Nanotechnology Laboratory<br />

t<br />

Pattern


Variable<br />

attenuator<br />

Mirror<br />

Traditional <strong>Interference</strong> <strong>Lithography</strong><br />

<strong>Beam</strong>splitter<br />

<strong>Beam</strong>splitter<br />

Spatial Filters<br />

Grating period, = λ<br />

2sinθ <br />

2θ<br />

Laser beam<br />

λ = 351.1 nm<br />

ptk-il-110901.eps<br />

Phase displacement actuator<br />

Substrate<br />

Phase error<br />

sensor<br />

Mirror<br />

MIT Space Nanotechnology Laboratory


ptk-distortion-111101.eps<br />

Phase Distortion <strong>of</strong> Interfered Spherical Waves<br />

<br />

<br />

y (mm)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

<br />

<br />

<br />

<br />

<br />

-10<br />

-10 -8 -6 -4 -2 0 2 4 6 8 10<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

λ <br />

<br />

<br />

x (mm)<br />

MIT Space Nanotechnology Laboratory


Stage distance<br />

measuring<br />

interferometer<br />

<strong>Beam</strong> pick<strong>of</strong>f<br />

SBIL System Concept<br />

Mirror<br />

2<br />

Laser<br />

Phase<br />

error<br />

sensor<br />

Stage<br />

error<br />

+<br />

<br />

+<br />

Substrate<br />

Controller<br />

Phase<br />

displacement<br />

actuator<br />

Much smaller beams<br />

than traditional IL<br />

Air bearing<br />

XY stage<br />

ptk-sbil-110201.eps<br />

MIT Space Nanotechnology Laboratory<br />

G


Y direction<br />

X direction<br />

Grating <strong>Scanning</strong> Method<br />

<strong>Scanning</strong><br />

grating<br />

image<br />

Air-bearing<br />

XY stage<br />

Resistcoated<br />

substrate<br />

Intensity<br />

Overlapping scans closely approximate<br />

a uniform intensity distribution<br />

Intensity<br />

<strong>Scanning</strong> grating image<br />

Summed<br />

intensity <strong>of</strong><br />

scans 1-6<br />

Individual<br />

scan<br />

MIT Space Nanotechnology Laboratory<br />

X<br />

ptk-scanmethod-040203.eps<br />

Grating<br />

period, Λ<br />

X


<strong>Scanning</strong> Electron Micrograph <strong>of</strong> a SBIL<br />

Written Grating<br />

Λ = 400 nm<br />

Silicon<br />

Resist<br />

ARC<br />

Definition <strong>of</strong> grating phase: φ(x 1 ) - φ(x 0 ) = 2 π!<br />

1<br />

Λ(x) dx<br />

ptk-semlines-032803.eps<br />

MIT Space Nanotechnology Laboratory<br />

x 0<br />

x 1<br />

x


Metrology block with<br />

phase measurement<br />

optics<br />

Wafer<br />

Chuck<br />

X-Y air bearing<br />

stage<br />

Front <strong>of</strong> System<br />

Receiving tower<br />

for UV laser<br />

(λ = 351.1 nm)<br />

MIT Space Nanotechnology Laboratory<br />

ptk-frontsystem-032703.eps<br />

Optical bench with<br />

interference lithography<br />

optics<br />

Refractometer<br />

interferometer<br />

X-axis interferometer<br />

Granite base<br />

Isolation system


SBIL Environmental Enclosure<br />

Environmental parameters: Temperature<br />

Pressure<br />

Humidity<br />

Particles<br />

Acoustics<br />

Air H<strong>and</strong>lers<br />

Chamber<br />

MIT Space Nanotechnology Laboratory<br />

ptk-enclosure-032903.eps


SBIL <strong>Beam</strong> Conditioning Optics<br />

ptk-beamconditioning-033003.eps<br />

Optical parameters: polarization, beam size, wavefront curvature, power<br />

λ/2 plate<br />

Polarizer<br />

Spatial<br />

filter <strong>and</strong><br />

collimating<br />

assembly<br />

AOM AOM<br />

+1/-1 order grating<br />

Camera<br />

UV Laser<br />

MIT Space Nanotechnology Laboratory


SBIL Alignment Optics<br />

Set interference angle for desired image period: Λ= λ<br />

2sinθ<br />

Picomotor<br />

driven<br />

mirrors<br />

Alignment splitter<br />

2θ<br />

AOM's shutter<br />

beams<br />

<strong>Beam</strong><br />

overlap<br />

PSD<br />

From<br />

splitter<br />

UV Laser<br />

Angle<br />

PSD<br />

Position<br />

PSD<br />

0 <strong>and</strong> -1 order reflections<br />

from grating on chuck<br />

MIT Space Nanotechnology Laboratory<br />

ptk-alignment-033003.eps


Period Measurement <strong>and</strong> <strong>Beam</strong> Alignment<br />

L R<br />

Photodiode<br />

Stage<br />

Motion<br />

⇒<br />

<strong>Beam</strong>splitter<br />

Mounted on Stage<br />

Grating Period Λ = D/N<br />

D = Distance Travelled<br />

by the Stage<br />

N Fringes<br />

MIT Space Nanotechnology Laboratory<br />

Xcc_PM_BA.eps<br />

<strong>Interference</strong> signal detected at<br />

the photodiode as stage moves.


Stage<br />

Control<br />

DSP<br />

System<br />

Frequency<br />

Synthesizer<br />

AOM2<br />

AOM1<br />

f = 100Mhz<br />

2<br />

f = 100Mhz<br />

1<br />

PM2<br />

Wafer<br />

X-Y Stage<br />

PM1<br />

AOM3<br />

f = 120Mhz<br />

3<br />

Writing Mode<br />

Fringe locking error<br />

ptk-writing-033003.eps<br />

x fle = (PM1 - PM2)Λ/p - x die<br />

{<br />

Phase instability<br />

above pick <strong>of</strong>f<br />

Displacement interferometer<br />

error perpendicular to fringes<br />

Λ: image period<br />

p: phase meter counts per period<br />

MIT Space Nanotechnology Laboratory


DSP<br />

System<br />

AOM2<br />

AOM1<br />

f = 90Mhz<br />

2<br />

f = 110Mhz<br />

1<br />

Reflected 0 order<br />

<strong>and</strong> diffracted -1<br />

order<br />

PM4<br />

Stage<br />

Control<br />

Frequency<br />

Synthesizer<br />

PM3<br />

Grating<br />

X-Y Stage<br />

(b) Reading Mode<br />

Reading Mode<br />

Unobservable error<br />

ptk-reading-033003.eps<br />

x ue = PM4 Λ/p - PM3 Λ/p - x die<br />

{<br />

Fringe-to-grating motion<br />

{<br />

Phase instability<br />

above pick <strong>of</strong>f<br />

Displacement interferometer<br />

error perpendicular to fringes<br />

Λ: image period<br />

p: phase meter counts per period<br />

MIT Space Nanotechnology Laboratory


Acousto-Optic<br />

Modulator No.3<br />

(AOM3)<br />

(AOM2)<br />

Spatial Filter<br />

Assembly for<br />

Left Arm<br />

Collimating Lens<br />

for Left Arm<br />

Metrology Block with<br />

Heterodyne Phase<br />

Measurement Optics<br />

<strong>Beam</strong> Pick<strong>of</strong>f<br />

Window<br />

Super-Invar<br />

Chuck<br />

{<br />

Front Optics<br />

Metrology Grating<br />

<strong>Beam</strong> Diverting Mirror<br />

Laser (λ=351.1 nm)<br />

MIT Space Nanotechnology Laboratory<br />

ptk-frontoptics-032703.eps<br />

Polarizer<br />

Position PSD<br />

Angle PSD<br />

CCD Camera<br />

Neutral Density<br />

Filters<br />

HeNe Stage<br />

Interferometer<br />

Laser (Thermally<br />

Enclosed)<br />

X-Axis Stage<br />

Interferometer


A A<br />

Stage <strong>and</strong> <strong>Lithography</strong> Metrology<br />

Phase sensing<br />

optics, 4-in-1<br />

monolithic splitter<br />

<strong>Beam</strong> pick<strong>of</strong>f<br />

Chuck<br />

Y interferometer<br />

Column<br />

reference<br />

Section A-A<br />

MIT Space Nanotechnology Laboratory<br />

ptk-metrology-032903.eps<br />

HeNe laser<br />

X, θ column<br />

reference<br />

interferometers


(Chuck)<br />

Nominally zero CTE<br />

mount assemblies


Super invar chuck<br />

flexure mounted<br />

to stage<br />

Super invar<br />

mounts for optics<br />

Zerodur mirrors<br />

bonded to chuck<br />

Metrology Frames<br />

Zerodur metrology block flexure<br />

mounted to bench, super invar<br />

inserts<br />

ptk-metrologyframes-032903.eps<br />

Refractometer<br />

cavity, bonded<br />

mirrors<br />

x-axis column<br />

reference mirror<br />

MIT Space Nanotechnology Laboratory


ptk-chucksys-032903.eps<br />

SBIL Chuck System with Metrology References<br />

<strong>Beam</strong> overlap<br />

position sensitive<br />

detector (PSD)<br />

Period measurement<br />

beamsplitter<br />

Reference grating<br />

for length scale<br />

calibration<br />

Wafer chuck compatible<br />

with 100 mm, 150mm,<br />

200 mm <strong>and</strong> 300 mm<br />

diameter wafers<br />

Interferometer mirrors<br />

MIT Space Nanotechnology Laboratory


SBIL Chuck System<br />

Performance issues:<br />

1) Heat sink<br />

2) Thermally stable<br />

3) Vibration sensitivity<br />

4) Repeatable substrate clamping distortions<br />

5) Critical metrology frame alignments<br />

6) Light weight<br />

Mirror<br />

alignment<br />

mounts (6X)<br />

Flexures (3X)<br />

Alignment <strong>and</strong> bonding features<br />

Theaded hole for<br />

leveling screw (3X)<br />

MIT Space Nanotechnology Laboratory<br />

ptk-chuck-032903.eps<br />

Epoxy injection<br />

ports (8X)


Ducts from AOM's<br />

Air flow paths<br />

ULPA filters<br />

Air h<strong>and</strong>ler B Air h<strong>and</strong>ler A<br />

ptk-airflow-033103.eps<br />

MIT Space Nanotechnology Laboratory


Left<br />

beam<br />

Substrate<br />

System Errors<br />

2θ<br />

<strong>Interference</strong><br />

pattern<br />

x s<br />

x d<br />

x f<br />

Right<br />

beam<br />

Column<br />

mirror<br />

Stage<br />

mirror<br />

Errors by subsystems Errors by physics<br />

• Displacement interferometer (x d)<br />

• Fringe locking interferometer (x f)<br />

• Metrology-block frame(x f)<br />

• Substrate frame (x s)<br />

• Rigid body motions (x s <strong>and</strong> x f)<br />

• Period Control<br />

• Image Distortion<br />

ptk-errors-033003.eps<br />

• Thermal expansion<br />

• Air index, wavelength<br />

• Interferometric periodic<br />

• Electronic<br />

• Vibration<br />

• Substrate clamping distortion<br />

• Control<br />

MIT Space Nanotechnology Laboratory


Gain, Dose error/ phase error<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -1 10 -4<br />

Dose error transfer functions<br />

10 0<br />

¥<br />

Dose = ! Intensity(t) dt<br />

-¥<br />

f n<br />

Moving average (slit illumination)<br />

Envelope<br />

Gaussian weighted average (SBIL)<br />

10 1<br />

f n<br />

ptk-doseerror-033003.eps<br />

Moving average,<br />

decade/decade roll <strong>of</strong>f<br />

f n<br />

Gaussian filter has<br />

very fast cut <strong>of</strong>f.<br />

= f τ, slit illumination<br />

where<br />

τ = integration time<br />

= 0.8 f d/v, Gaussian<br />

MIT Space Nanotechnology Laboratory


Gain, Dose error/ phase error<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -1 10 -4<br />

Dose error transfer functions<br />

10 0<br />

¥<br />

Dose = ! Intensity(t) dt<br />

-¥<br />

f n<br />

Moving average (slit illumination)<br />

Envelope<br />

Gaussian weighted average (SBIL)<br />

10 1<br />

f n<br />

ptk-doseerror-033003.eps<br />

Moving average,<br />

decade/decade roll <strong>of</strong>f<br />

f n<br />

Gaussian filter has<br />

very fast cut <strong>of</strong>f<br />

= f τ, slit illumination<br />

where<br />

τ = integration time<br />

= 0.8 f d/v, Gaussian<br />

MIT Space Nanotechnology Laboratory


Short Term Fringe-to-Substrate Stability<br />

Dose(x, y) = B + A(y) sin(2π(x -x4 (y))/Λ)<br />

where y = v t + yo Normalize dose amplitude<br />

error, eA (%)<br />

x 4 (nm)<br />

6<br />

-0.01<br />

-0.015<br />

-0.02<br />

-0.025<br />

Fringe-to-Substrate Stability<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

Time (s), Timer period=0.1 ms.<br />

-0.03<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

Time (s), Timer period=0.1 ms.<br />

MIT Space Nanotechnology Laboratory<br />

ptk-shorttermx4-033103.eps<br />

x 4 raw, 3σ=3.89 nm<br />

x 4 , 3σ=1.94 nm, d/v=0.02 s<br />

Estimated Dose Amplitude Error Due to Phase Jitter<br />

-0.005


DSP<br />

System<br />

AOM2<br />

AOM1<br />

f = 90Mhz<br />

2<br />

f = 110Mhz<br />

1<br />

Reflected 0 order<br />

<strong>and</strong> diffracted -1<br />

order<br />

PM4<br />

Stage<br />

Control<br />

Frequency<br />

Synthesizer<br />

PM3<br />

Grating<br />

X-Y Stage<br />

(b) Reading Mode<br />

Reading Mode<br />

Unobservable error<br />

ptk-reading-033003.eps<br />

x ue = PM4 Λ/p - PM3 Λ/p - x die<br />

{<br />

Fringe-to-grating motion<br />

{<br />

Phase instability<br />

above pick <strong>of</strong>f<br />

Displacement interferometer<br />

error perpendicular to fringes<br />

Λ: image period<br />

p: phase meter counts per period<br />

MIT Space Nanotechnology Laboratory


Short term unobservable error (x ue)<br />

Fringe-to-substrate stability is very close to the unobservable error<br />

for the Gaussian filtered data.<br />

x ue (nm)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

x ue raw, 3σ=3.34 nm<br />

x ue , 3σ=1.95 nm, d/v=20 ms<br />

-5<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

Time (s), Timer period=0.1 ms.<br />

MIT Space Nanotechnology Laboratory<br />

ptk-shorttermxue-033103.eps


x ue (nm)<br />

Unobservable error over 56 seconds<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

x ue raw, 3σ=3.12 nm<br />

x ue , 3σ=2.12 nm, d/v=20 ms<br />

-5<br />

0 10 20 30 40 50<br />

Time (s), Resampled timer period=0.7 ms.<br />

Data b<strong>and</strong>limited from 0 to 714 Hz<br />

MIT Space Nanotechnology Laboratory<br />

ptk-midtermxue-033103.eps


ptk-xuepsd-033103.eps<br />

Power Spectral Density <strong>of</strong> the Unobservable Error<br />

Power spectrum <strong>of</strong> x ue (nm/sqrt(Hz))<br />

10 0<br />

10 -1<br />

10 -2<br />

60 Hz electrical, 3σ=1.1 nm<br />

for 59.5 Hz to 60.5 Hz.<br />

3σ=1.8 nm for 100 Hz to 714 Hz.<br />

Thermal expansion, 0 to ≈0.04 Hz.<br />

Vibrations<br />

x ue raw, 3σ=3.12 nm<br />

x ue , 3σ=2.12 nm, d/v=20 ms<br />

Air index nonuniformity, 3σ=2.3 nm for 0 Hz to 59.5 Hz.<br />

10<br />

0 100 200 300 400 500 600 700<br />

-3<br />

Frequency (Hz), resolution=0.35 Hz<br />

MIT Space Nanotechnology Laboratory


x ue compensated (nm)<br />

x ue uncompensated (nm)<br />

Refractometer<br />

(∆n/n), ppm<br />

MIT Space Nanotechnology Laboratory<br />

ptk-longtermxue-033103.eps<br />

Long term stability over one hour (0 to 1.4 Hz)<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-5<br />

-10<br />

-15<br />

0 500 1000 1500 2000 2500 3000 3500<br />

Time (s), resampled timer period=360 ms.<br />

-20<br />

0 500 1000 1500 2000 2500 3000 3500<br />

0.1<br />

0.05<br />

0<br />

-0.05<br />

Unobservable error after refractometer compensation (3σ= 1.4 nm)<br />

Uncompensated unobservable errror.<br />

Time (s), resampled timer period=360 ms.<br />

Refractometer data<br />

-0.1<br />

0 500 1000 1500 2000 2500 3000 3500<br />

Time (s), resampled timer period=360 ms.<br />

Interferometer phase:<br />

φ =<br />

2π deadpath<br />

λ


Power Spectrum <strong>of</strong> Long Term Unobservable<br />

Error <strong>and</strong> Refractometer Data<br />

Power spectrums (nm)/sqrt(Hz)<br />

10 1<br />

10 0<br />

10 -1<br />

Thermal expansion<br />

0.7 nm, 3σ for 0 to 0.04 Hz.<br />

10 -2<br />

x ue uncompensated, 3σ= 8.3 nm<br />

x ue compensated, 3σ= 1.4 nm<br />

Refractometer correction, 3σ= 8.2 nm<br />

10 -1<br />

Refractometer correction<br />

effective up to 0.04 Hz.<br />

Frequency (Hz), resolution=0.0027Hz<br />

10 0<br />

ptk-refracpsd-033103.eps<br />

MIT Space Nanotechnology Laboratory


Refractometer (∆n/n), ppm<br />

x ue (nm)<br />

10<br />

5<br />

0<br />

-5<br />

Refractometer calibration<br />

-10<br />

0 20 40 60 80 100 120<br />

Time (s), resampled timer period=12 ms.<br />

-0.04<br />

-0.06<br />

-0.08<br />

-0.1<br />

-0.12<br />

-0.14<br />

-0.16<br />

Stage x position: 0.12 m<br />

Calculated refractometer coefficient: 107 nm/ppm<br />

Inner door<br />

opened<br />

Outer door<br />

opened<br />

x ue uncompensated<br />

x ue compensated<br />

Outer door<br />

closed<br />

Inner door<br />

closed<br />

-0.18<br />

0 20 40 60 80 100 120<br />

Time (s), resampled timer period=12 ms.<br />

MIT Space Nanotechnology Laboratory<br />

ptk-refraccalib-033103.eps


Refractometer coefficient<br />

(nm/ppm)<br />

Refractometer coefficient<br />

error from fit (nm/ppm)<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

Refractometer performance<br />

Refractometer calibration data<br />

40<br />

0.12 0.13 0.14 0.15 0.16 0.17 0.18<br />

Stage x position (m)<br />

10<br />

5<br />

0<br />

Zero deadpath at x = 0.229 m<br />

-5<br />

2<br />

0.12 0.13 0.14 0.15 0.16 0.17 0.18<br />

Stage x position (m)<br />

data<br />

fit<br />

3.5<br />

2.5<br />

MIT Space Nanotechnology Laboratory<br />

3<br />

ptk-refraccoef-033103.eps<br />

Refractometer coefficient error is attributed to refractometer periodic error.<br />

Residual error increases as sqrt(deadpath).<br />

x ue after compensation<br />

(3σ, nm)


x fle (nm)<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

Fringe locking error (x fle)<br />

Raw data, µ = -0.01, 3 σ=2.45 nm.<br />

Dose phase error µ = -0.01, 3 σ =0.35 nm, d/v = 10 ms.<br />

-4<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

time(s)<br />

ptk-fle-040103.eps<br />

MIT Space Nanotechnology Laboratory


Gain<br />

Phase (deg)<br />

10 4<br />

10 2<br />

10 0<br />

10 -2<br />

10 -4<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

-200<br />

-250<br />

10 1<br />

10 1<br />

PMr<br />

10 2<br />

10 2<br />

Fringe locking control<br />

fr<br />

Σ G(z)<br />

fc<br />

H(z) P(zz )<br />

PMe<br />

Controller Synthesizer<br />

Zygo<br />

Digital<br />

Filter<br />

+<br />

-<br />

+ +<br />

Σ<br />

PMu<br />

-1<br />

-PM1<br />

f (Hz)<br />

f (Hz)<br />

10 3<br />

10 3<br />

1600 Hz Loop Transmission<br />

cross over<br />

Experimental loop transmission<br />

Chan2/Chan1 same data<br />

Zygo filter, 15 Khz B<strong>and</strong>width<br />

Synthesizer w/ discrete time effects<br />

Discrete time controller<br />

Sum <strong>of</strong> components<br />

ptk-fringecontrol-040103.eps<br />

MIT Space Nanotechnology Laboratory


Vibration <strong>and</strong> dynamic errors<br />

x1<br />

Stationary<br />

refererence<br />

for ω


x ue corrected for grating nonlinearity (nm)<br />

Unobservable error during a scan<br />

No noticeable increase in unobservable<br />

error during constant velocity scan.<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

Scan start Scan stop<br />

5nm/0.1 g vibration<br />

sensitivity for the chuck<br />

Constant velocity<br />

-6<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2<br />

time (s)<br />

y r -y o (m)<br />

Velocity<br />

ref (m/s)<br />

Acceleration<br />

ref (m/s 2 )<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0.05<br />

Stage Reference Pr<strong>of</strong>ile<br />

ptk-scan100-040103.eps<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

0.1<br />

time(s)<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

0.5<br />

0<br />

-0.5<br />

Scan length = 8cm<br />

Max velocity=<br />

0.1 m/s<br />

time(s)<br />

Max acceleration = 0.1g<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

time(s)<br />

MIT Space Nanotechnology Laboratory


X axis acceleration error (g's)<br />

Y axis acceleration error (g's)<br />

4<br />

2<br />

0<br />

x 10-3<br />

Stage acceleration errors<br />

X accel err, µ=-6.0e-8 g, 3σ=2.0e-3 g<br />

X accel err, d/v = 20 ms, 3σ=6.6e-5 g<br />

-2<br />

CV accelerations<br />

85 µg max. Static accelerations<br />

-4<br />

0 0.2 0.4 0.6 0.8 1<br />

25 µg max.<br />

1.2 1.4 1.6 1.8 2<br />

Time (s), Timer period=0.2 ms.<br />

4<br />

2<br />

0<br />

-2<br />

x 10-3<br />

CV accelerations<br />

240 µg max.<br />

Y accel err, µ=4.2e-8 g, 3σ=1.3e-3 g<br />

Y accel err, d/v = 20 ms, 3σ=3.6e-4 g<br />

Static accelerations<br />

15 µg max.<br />

-4<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2<br />

Time (s), Timer period=0.2 ms.<br />

Scan start<br />

Scan stop<br />

MIT Space Nanotechnology Laboratory<br />

ptk-stageaccel-040103.eps


X axis stage error (nm)<br />

Y axis stage error (nm)<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

Stage Error During the Scan<br />

-300<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2<br />

1000<br />

Time (s), Timer period=0.2 ms.<br />

Y axis<br />

500<br />

0<br />

-500<br />

-1000<br />

-1500<br />

X axis<br />

-2000<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2<br />

Time (s), Timer period=0.2 ms.<br />

ptk-stageerrr-040103.eps<br />

MIT Space Nanotechnology Laboratory


Power Spectrum (units/Hz 1/2 )<br />

Vibration Errors are Proportional to the<br />

Metrology Block Accelerations<br />

10 0<br />

10 -1<br />

10 -2<br />

1nm/1mg vibration sensitivity<br />

10<br />

100 150 200 250 300 350 400 450 500<br />

-3<br />

f (Hz)<br />

X acceleration (mg/rtHz)<br />

x ue (nm/rtHz)<br />

MIT Space Nanotechnology Laboratory<br />

ptk-xerrxuepsd-040103.eps


Power spectrum <strong>of</strong><br />

x (nm/sqrt(Hz)<br />

nl<br />

Ratio <strong>of</strong> Power spectrums.<br />

moving/stationary<br />

10 0<br />

10 -1<br />

10 -2<br />

Power spectrum <strong>of</strong> unobservable error<br />

for a static stage <strong>and</strong> a slow scan<br />

Static stage<br />

stage moving at 127 µm/s<br />

10<br />

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000<br />

-3<br />

Frequency (Hz), resolution=2.44 Hz<br />

Ratio <strong>of</strong> power spectrums for moving stage/stationary stage<br />

10 2<br />

10 1<br />

10 0<br />

Error removed from low frequencies.<br />

10<br />

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000<br />

-1<br />

630 Hz 800 Hz 1260 Hz 1600 Hz<br />

Frequency (Hz), resolution=2.44 Hz<br />

ptk-nonlinearityratios-040103.eps<br />

x phase meter<br />

fundamental at<br />

800 Hz<br />

(=4 (127µm/s)/(.633µm))<br />

PM4 fundamental at<br />

315 Hz<br />

(=(127µm/s)/(.401µm))<br />

MIT Space Nanotechnology Laboratory


ptk-periodicpmx-040103.eps<br />

Periodic error <strong>of</strong> x axis interferometer (±0.6nm P-V)<br />

Periodic error (nm)<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

Experimental data<br />

Reconstruction using DC <strong>and</strong> first two harmonics<br />

0 50 100 150 200 250 300 350 400 450 500<br />

mod(PM x , p) (counts)<br />

MIT Space Nanotechnology Laboratory


ptk-periodicpm4-040103.eps<br />

Periodic error <strong>of</strong> phase meter 4 interferometer<br />

(±0.4nm P-V)<br />

Periodic error (nm)<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

Experimental data<br />

Reconstruction using DC, second, <strong>and</strong> fourth harmonics<br />

0 50 100 150 200 250 300 350 400 450 500<br />

mod(PM 4 , p) (counts)<br />

MIT Space Nanotechnology Laboratory


Power spectrum <strong>of</strong><br />

θ (µrad/sqrt(Hz)<br />

Ratio <strong>of</strong> Power spectrums.<br />

moving/stationary<br />

ptk-thetascanpsd-040103.eps<br />

Power spectrum <strong>of</strong> the theta interferometer<br />

for a static stage <strong>and</strong> a slow scan<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10<br />

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000<br />

-5<br />

Frequency (Hz), resolution=2.44 Hz<br />

10 2<br />

10 1<br />

10 0<br />

Stationary stage<br />

stage moving at 127 µm/s<br />

Ratio <strong>of</strong> power spectrums for moving stage/stationary stage<br />

Periodic error observed when there is no OPD change!<br />

10<br />

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000<br />

Frequency (Hz), resolution=2.44 Hz<br />

-1<br />

400 Hz 800 Hz 1600 Hz<br />

MIT Space Nanotechnology Laboratory


ptk-waferphasemap-012103.eps<br />

Wafer phase mapping repeatability (2.9 nm, 3σ)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

60<br />

-4<br />

50<br />

40<br />

30<br />

20<br />

y (mm)<br />

10<br />

0<br />

0<br />

20<br />

40<br />

x (mm)<br />

60<br />

MIT Space Nanotechnology Laboratory<br />

80<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3


MIT Space Nanotechnology Laboratory<br />

ptk-readingmapcontf-040103.eps<br />

Nonlinearity <strong>of</strong> a grating written by SBIL<br />

0 10 20 30 40 50 60<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

x (mm)<br />

y (mm)<br />

x nl (nm)<br />

-5<br />

-5<br />

-5<br />

-2.5<br />

-2.5<br />

-2.5<br />

-2.5<br />

-2.5<br />

-2.5<br />

-2.5<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0 0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0 0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

2.5<br />

2.5<br />

2.5<br />

2.5<br />

2.5<br />

2.5<br />

2.5<br />

2.5<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

-2.5<br />

-2.5<br />

-2.5<br />

-2.5<br />

-2.5<br />

-2.5<br />

-2.5<br />

-2.5<br />

-2.5<br />

-2.5<br />

0<br />

0<br />

0<br />

0<br />

0<br />

2.5<br />

2.5<br />

2.5<br />

2.5<br />

2.5<br />

2.5<br />

2.5<br />

2.5<br />

0<br />

0<br />

0 0<br />

0<br />

2.5<br />

2.5<br />

5<br />

5<br />

-2.5<br />

-2.5<br />

-2.5<br />

2.5<br />

2.5<br />

2.5<br />

2.5<br />

2.5<br />

2.5<br />

2.5<br />

-2.5<br />

-2.5<br />

-2.5<br />

2.5<br />

2.5<br />

2.5<br />

2.5<br />

2.5<br />

-2.5<br />

5<br />

-5<br />

-5<br />

2.5<br />

5<br />

2.5<br />

-2.5<br />

-2.5<br />

2.5<br />

-5<br />

2.5<br />

5<br />

-7.5<br />

-2.5<br />

0<br />

0<br />

0<br />

-2.5<br />

-5<br />

2.5<br />

7.5<br />

-2.5<br />

2.5<br />

-2.5<br />

5<br />

-7.5<br />

5<br />

-10<br />

2.5<br />

-2.5<br />

5<br />

0<br />

7.5<br />

5<br />

5<br />

-2.5<br />

0<br />

5<br />

10<br />

-10<br />

0<br />

2.5<br />

-2.5<br />

-2.5<br />

0<br />

7.5<br />

2.5<br />

2.5<br />

2.5<br />

5<br />

-5<br />

5<br />

-5<br />

-2.5<br />

-2.5<br />

5<br />

2.5<br />

5<br />

2.5<br />

-2.5<br />

-5<br />

-5<br />

5<br />

2.5<br />

0<br />

-2.5<br />

2.5<br />

7.5<br />

-2.5<br />

-5<br />

0<br />

-2.5<br />

-2.5<br />

0<br />

5<br />

0<br />

-5<br />

0<br />

0<br />

-5<br />

2.5<br />

2.5<br />

2.5<br />

7.5<br />

5<br />

0<br />

-2.5<br />

2.5<br />

-2.5<br />

2.5<br />

-5<br />

0<br />

-5<br />

0<br />

5<br />

7.5<br />

5<br />

0<br />

2.5<br />

7.5<br />

5<br />

0<br />

-5<br />

5<br />

5<br />

10<br />

2.5<br />

7.5<br />

5<br />

5<br />

7.5<br />

0<br />

-5<br />

5<br />

2.5<br />

5<br />

0<br />

5<br />

2.5<br />

0<br />

2.5<br />

-5<br />

-5<br />

2.5<br />

-2.5<br />

5<br />

5<br />

7.5<br />

5<br />

0<br />

0<br />

0<br />

0<br />

2.5<br />

0<br />

-5<br />

2.5<br />

-5<br />

-5<br />

0<br />

-5<br />

0<br />

2.5<br />

5<br />

-5<br />

5<br />

-5<br />

5<br />

5<br />

-5<br />

5<br />

5<br />

-5<br />

5<br />

5<br />

5<br />

-5<br />

5<br />

0<br />

-5<br />

-5<br />

-5<br />

0<br />

5<br />

0<br />

0<br />

5<br />

5<br />

0<br />

5<br />

5<br />

5<br />

0<br />

0<br />

0<br />

0<br />

5<br />

0<br />

0<br />

0<br />

0<br />

5<br />

0<br />

0<br />

0<br />

0<br />

0<br />

5<br />

5<br />

0<br />

0<br />

5<br />

0<br />

5<br />

5<br />

0<br />

0<br />

5<br />

0<br />

0<br />

0<br />

5<br />

0<br />

0<br />

5<br />

0<br />

Particle defects<br />

Particle defects


y (mm)<br />

y (mm)<br />

25<br />

24<br />

23<br />

22<br />

21<br />

20<br />

19<br />

18<br />

17<br />

16<br />

15<br />

-5<br />

-5<br />

-10<br />

-10<br />

-15<br />

-15<br />

-20<br />

-5<br />

Errors Caused by Particles Between<br />

the Wafer <strong>and</strong> the Chuck<br />

-5<br />

-20<br />

-10<br />

-10<br />

-5<br />

-15<br />

-5<br />

43 44 45 46 47 48 49 50 51<br />

42 52<br />

x (mm)<br />

Calculated out-<strong>of</strong>-plane distortion (nm)<br />

25<br />

24<br />

23<br />

22<br />

21<br />

20<br />

19<br />

18<br />

17<br />

16<br />

15<br />

0<br />

0<br />

0<br />

0<br />

0<br />

42<br />

Grating nonlinearity (nm)<br />

0<br />

0<br />

50<br />

0<br />

100<br />

50<br />

150<br />

50<br />

200<br />

100<br />

0<br />

150<br />

250<br />

200<br />

0<br />

0<br />

5<br />

0 0<br />

100<br />

250<br />

10<br />

0<br />

5<br />

0<br />

20<br />

43 44 45 46 47 48 49 50 51<br />

200<br />

150<br />

x (mm)<br />

150<br />

50<br />

15<br />

15<br />

100<br />

0<br />

10<br />

10<br />

5<br />

0<br />

-5<br />

5<br />

100<br />

0<br />

100<br />

150<br />

50<br />

0<br />

0<br />

-5<br />

0<br />

0<br />

52<br />

ptk-particles-040103.eps<br />

White light interferogram formed between<br />

a quartz wafer <strong>and</strong> the chuck<br />

Rings around a particle<br />

MIT Space Nanotechnology Laboratory


Analog Input:<br />

Power Sensors.<br />

Sensors, general.<br />

D/A PMC<br />

A/D PMC<br />

IXC6 Master/<br />

DSP/Power PC<br />

Analog Output:<br />

Stage Linear Amplifiers<br />

Vibration Isolation Feedforward.<br />

Analog Test Points.<br />

PC<br />

Host<br />

ZMI 2002<br />

VME Bus<br />

ZMI 2002<br />

Control Architecture<br />

Realtime Control Platform LabVIEW-Based I/O<br />

ZMI 2002<br />

ZMI 2002<br />

VME Rack<br />

Digital Change<br />

<strong>of</strong> State Board<br />

TTL Digital<br />

Input/Output<br />

TTL Digital<br />

Input/Output<br />

ZMI 2001<br />

Refractometer.<br />

<strong>Lithography</strong><br />

Interferometers<br />

Stage<br />

Interferometers<br />

Power<br />

Supply<br />

Stage Position Limits<br />

Air-bearing Pressure Limit<br />

LabVIEW PC Control Lines<br />

Digital Frequency<br />

Sythesizer<br />

Reference clock from Zygo laser<br />

Comm. to LabVIEW PC<br />

Acousto-Optic<br />

Modulators<br />

NI IMAQ 1424<br />

Frame Grabber<br />

NI PCI-DIO-96<br />

Digital I/O<br />

NI 6034E<br />

Analog I/O<br />

NI 6034E<br />

Analog I/O<br />

MIT Space Nanotechnology Laboratory<br />

PC<br />

Internal PCI Bus<br />

Position Sensing<br />

Detectors<br />

Picomotor Driver<br />

Communication to<br />

IXC6.<br />

Picomotors<br />

ptk-controlarch-040103.eps<br />

Wavefront<br />

Metrology<br />

CCD


VMIVME-1181-000,<br />

32bit digital change-<strong>of</strong>-state<br />

input board.<br />

VMIVME-2510B,<br />

64bit TTL digital output I/O<br />

VMIVME-2510B,<br />

64bit TTL digital output I/O<br />

ZMI 2001, Interferometer<br />

Card, 1 axis<br />

ZMI 2002, Interferometer<br />

Card, 2 axes<br />

ZMI 2002, Interferometer<br />

Card, 2 axes<br />

ZMI 2002, Interferometer<br />

Card, 2 axes<br />

ZMI 2002, Interferometer<br />

Card, 2 axes<br />

SBIL Realtime Control Platform<br />

PC with Windows NT 4.0, Micron<br />

400 Mhz, Pentium II. 128 Mb DRAM<br />

Development tools: Code Composer<br />

Studio (TI), IXCtools (Ixthos),<br />

Tornado II (Wind River Systems).<br />

512 Kbytes<br />

SBSRAM<br />

83 Mhz<br />

PMC<br />

Site #1<br />

Ethernet<br />

Port<br />

DSP A<br />

C6701, 167 Mhz<br />

16 Mbytes<br />

SDRAM<br />

83MHz<br />

IXStar<br />

PCI - DSP<br />

Serial<br />

Port<br />

DSP B<br />

C6701, 167 Mhz<br />

512 Kbytes<br />

SBSRAM<br />

83 Mhz<br />

16 bit Host Port Bus<br />

Host Port<br />

Interface<br />

4 Mbytes<br />

Flash<br />

MPC 8240<br />

IOPlus<br />

250 Mhz<br />

64 Mbytes<br />

SDRAM<br />

100 Mhz<br />

32 Bit 32 Bit 32 Bit 32 Bit<br />

64 Bit PCI - PCI 64 Bit 66 MHz PCI - PCI<br />

64 Bit<br />

66 MHz Bridge<br />

Bridge 66 MHz<br />

PMC-16AO-12-2022,<br />

12 Channel, 16bit DA<br />

64 Bit, User<br />

Defined I/O<br />

to P0*<br />

16 Mbytes<br />

SDRAM<br />

83MHz<br />

XDS510<br />

ISA-JTAG emulator<br />

JTAG to<br />

DSP Chain<br />

64 Bit<br />

PCI - PCI<br />

Bridge<br />

33 MHz<br />

Universe II<br />

PCI-VMEbus<br />

VME64x Backplane<br />

(11 Mbytes/s)<br />

DSP C<br />

C6701, 167 Mhz<br />

512 Kbytes<br />

SBSRAM<br />

83 Mhz<br />

IXC6 Quad DSP Board<br />

16 Mbytes<br />

SDRAM<br />

83MHz<br />

IXStar<br />

PCI - DSP<br />

MIT Space Nanotechnology Laboratory<br />

ptk-052601-control.eps<br />

512 Kbytes<br />

SBSRAM<br />

83 Mhz<br />

PMC-16AIO-88-31,<br />

8 Channel, 16bit DA <strong>and</strong><br />

8 Channel, 16bit AD<br />

DSP D<br />

C6701, 167 Mhz<br />

64 Bit, User<br />

Defined I/O<br />

to P2<br />

16 Mbytes<br />

SDRAM<br />

83MHz<br />

PMC<br />

Site #2


Error Budget Summary*<br />

Errors by Subsystems<br />

Error Category<br />

Error<br />

budget,<br />

static<br />

[±nm]<br />

Error<br />

budget,<br />

worst case<br />

[±nm]<br />

Displacement interferometer 1.66 4.87<br />

Fringe locking interferometer 1.58 1.58<br />

Metrology block frame 0.51 0.51<br />

Substrate frame 0.40 2.79<br />

Rigid body error motions 0.12 0.12<br />

rss error 2.38 5.86<br />

Errors by Physics<br />

Error category<br />

Error<br />

budget,<br />

static<br />

[±nm]<br />

Error<br />

budget,<br />

worst case<br />

[±nm]<br />

Thermal expansion 0.68 2.46<br />

Air index 2.00 5.00<br />

Periodic error 1.02 1.02<br />

Electronic 0.12 0.12<br />

Vibration 0.08 0.08<br />

Substrate clamping distortion 0 1.41<br />

Control 0.40 0.40<br />

rss error 2.38 5.86<br />

*Assumes particle problem resolved. Does not include errors due to<br />

image distortion <strong>and</strong> period control.<br />

ptk-errorsummary-040103.eps<br />

MIT Space Nanotechnology Laboratory


Conclusions<br />

• I designed <strong>and</strong> analyzed the first patterning machine<br />

based on an interference image <strong>and</strong> a scanned<br />

substrate. I developed a method for patterning <strong>and</strong><br />

measuring gratings with nanometer level errors.<br />

• I described <strong>and</strong> applied the SBIL metrology system.<br />

The experimental results <strong>and</strong> models enhance the underst<strong>and</strong>ing<br />

<strong>of</strong> ultra-precision patterning.<br />

• Analysis suggests the following improvements:<br />

Improvements<br />

Error budget<br />

static [±nm]<br />

Error budget<br />

worst case [±nm]<br />

Error without improvements 2.38 5.86<br />

Error without thermal expansion <strong>and</strong> index<br />

terms 1.11 1.79<br />

Error without periodic term 2.15 5.77<br />

Error without thermal expansion, index, <strong>and</strong><br />

periodic terms 0.43 1.48<br />

• Application <strong>of</strong> self calibration techniques will lead to<br />

gratings with nanometer level accuracy.<br />

MIT Space Nanotechnology Laboratory<br />

ptk-conclusions-040103.eps

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!