19.08.2013 Views

Metrology for Nanometer Scale Science and Technology - Space ...

Metrology for Nanometer Scale Science and Technology - Space ...

Metrology for Nanometer Scale Science and Technology - Space ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Metrology</strong> <strong>for</strong> <strong>Nanometer</strong> <strong>Scale</strong><br />

<strong>Science</strong> <strong>and</strong> <strong>Technology</strong><br />

Mark L. Schattenburg, Ralf Heilmann <strong>and</strong> Henry I. Smith<br />

<strong>Space</strong> Nanotechnology Laboratory<br />

NanoStructures Laboratory<br />

~<br />

Massachusetts Institute of <strong>Technology</strong><br />

Cambridge, Massachusetts.<br />

China-US Symposium on Nano <strong>Science</strong> <strong>and</strong> <strong>Technology</strong><br />

Beijing, China<br />

May 17-20, 2004<br />

<strong>Space</strong> Nanotechnology Laboratory<br />

SNL<br />

Massachusetts Institute of <strong>Technology</strong>


Nanotechnology<br />

The Next Industrial<br />

Revolution?


<strong>Metrology</strong> <strong>and</strong> Industrial Revolutions<br />

Revolution<br />

1st Industrial Revolution<br />

~1750 - 1830<br />

2nd Industrial Revolution<br />

~1860 - 1920<br />

Semiconductor Revolution<br />

~1960 - 2015(?)<br />

Nanotechnology Revolution<br />

~2000 - ???<br />

Industry<br />

textile mills,<br />

trains, guns<br />

heavy industry<br />

mass production<br />

integrated circuits,<br />

computers, internet<br />

mass-produced<br />

nanosystems<br />

<strong>Space</strong> Nanotechnology Laboratory<br />

SNL<br />

Massachusetts Institute of <strong>Technology</strong><br />

<strong>Metrology</strong><br />

no interchangeable<br />

parts<br />

vernier calipers,<br />

gauge blocks<br />

~25 - 100 µm<br />

laser interferometer<br />

~100 nm - 1 µm<br />

nanometer-accurate<br />

length scales<br />

(encoders)<br />

~1 nm


MLS-2001-03-23.01.eps<br />

Computer<br />

Traditional Heterodyne<br />

Displacement Measuring Interferometer (DMI)<br />

Laser<br />

Fiber-optic<br />

Cables<br />

RS-232 / GBIP<br />

50%<br />

Beamsplitter<br />

Fiber-optic<br />

Pickup<br />

Electronics<br />

Two-axis<br />

Stage with<br />

Mirrors<br />

Interferometer<br />

Head<br />

DMI Limitations<br />

Moving arms create<br />

time-dependant cosine,<br />

Abbe, diffraction<br />

& other path errors.<br />

Air paths introduce large<br />

errors due to atmospheric<br />

disturbances:<br />

-> Temperature, Pressure<br />

-> Humidity, Turbulence<br />

System is bulky<br />

<strong>and</strong> expensive.<br />

Heavy stage mirrors<br />

limit stage scanning<br />

speed & accuracy.


Zygo-Interferometer.eps<br />

Wafer<br />

Reticle<br />

Lens<br />

Measurement<br />

Beams<br />

Lithography Scanner<br />

Substrate <strong>and</strong> Reticle Stages<br />

Collimated UV<br />

Light Beam<br />

Reticle Stage<br />

Mirrors<br />

Wafer Stage<br />

Mirrors<br />

Laser Head<br />

Scanner Mechanics<br />

Reticle is imaged onto wafer<br />

with ~4x reduction.<br />

Reticle <strong>and</strong> wafer stages<br />

are synchronously scanned<br />

during exposure.<br />

Tight pattern overlay (~30% CD)<br />

requires extremely high<br />

stage per<strong>for</strong>mance.<br />

Interferometer mirrors are<br />

drag on stage accuracy <strong>and</strong><br />

per<strong>for</strong>mance.<br />

Long, variable, unbalanced<br />

interferometer beam paths


Nanoscale Microscopy <strong>and</strong> Pattern Generators<br />

• Optical <strong>and</strong> electron microscopes<br />

• Proximal probes (AFM, STM, etc.)<br />

• Electron <strong>and</strong> laser beam writers, etc.<br />

Probe resolution Field size Stage accuracy?<br />

0.1 - 500 nm 1 µm - 1 mm > 30 nm - microns<br />

Stitching errors due to<br />

• Sample stage inaccuracies<br />

• Intra-field distortions<br />

Need metrology frame with sub-nm accuracy over many fields<br />

<strong>Space</strong> Nanotechnology Laboratory<br />

SNL<br />

Massachusetts Institute of <strong>Technology</strong>


2003 International <strong>Technology</strong> Roadmap <strong>for</strong> Semiconductors<br />

Year 2003 2004 2007 2010 2013 2016 2018<br />

CD (nm) 100 90 65 45 32 22 18<br />

dense line CD control (nm) 12 11 8 5.5 3.9 2.7 2.2<br />

Wafer Overlay Control (nm) 35 32 23 18 13 9 7<br />

W. Overlay <strong>Metrology</strong> Prec. (nm) 3.5 3.2 2.3<br />

1.8 1.3 0.9 0.7<br />

Solutions Exist Solutions Being No Known<br />

Pursued Solutions


MLS-2002-02-28.02.eps<br />

Nanoaccuracy in Nanophotonics<br />

Many nanophotonic structures<br />

depend on the coherent superpostion<br />

of scattering from sub-wavelength features.<br />

Integrated Optical Bragg Grating Devices<br />

Photonic Crystals<br />

DFB Lasers<br />

>1 mm<br />

Bragg Waveguide Channel Add-Drop Filter<br />

Accuracy Calculus<br />

Grating period = 244.4 nm<br />

period/50 ~5 nm placement accuracy<br />

~ 1 nm metrology frame accuracy<br />

Best-available e-beam tools<br />

have ~20 nm accuracy.<br />

244.4 nm<br />

InGaAsP Waveguide<br />

(M.H. Lim et al., JVST B 17, 3208 (1999))


Spatial-Phase-Locked E-beam Lithography<br />

SE detector<br />

electrontransparent<br />

fiducial grid<br />

electron beam<br />

e -<br />

e-beam resist<br />

X<br />

Y<br />

e -<br />

Signal<br />

Processing<br />

Feedback<br />

Loop<br />

secondary<br />

electrons<br />

substrate<br />

Grid Signal<br />

raster scan direction<br />

exposed pattern<br />

Field stitching errors <strong>and</strong> global placement accuracy<br />

relative to fiducial grid < 1.3 nm (1σ)<br />

(J.T. Hastings, F. Zhang, <strong>and</strong> H.I. Smith, JVST B 21, 2650 (2003))


2<br />

Patterned Magnetic Media<br />

(a)<br />

57 x 115 nm pillars<br />

Hc = 710 Oe<br />

100 nm<br />

1.20<br />

0.80<br />

0.40<br />

0.00<br />

-4000 -2000 0 2000 4000<br />

-0.40<br />

-0.80<br />

-1.20<br />

Applied Field, Oe<br />

out of plane<br />

in plane<br />

C.A. Ross et al., JVST B 17, 3168 (1999)<br />

Goal:<br />

Higher areal data storage density<br />

Problem:<br />

Superparamagnetic limit (KV > 40 kT)<br />

One solution:<br />

Patterned media<br />

Pitch 50 nm - 10 nm<br />

areal density 40 Gb/cm 2 - 1 Tb/cm 2<br />

Pattern placement metrology < 1 nm


Self-Assembly<br />

small pitch (< 25 nm)<br />

short-range order<br />

Joy Y. Cheng, C. A. Ross,<br />

E. L. Thomas, H. I. Smith,<br />

<strong>and</strong> G. J. Vancso,<br />

Adv. Mat. 15, 1599 (2003)<br />

"Templated Self-Assembly<br />

of Block Copolymers:<br />

Effect of Substrate<br />

Topography"<br />

Template-Assisted Self-Assembly<br />

small pitch, templateimposed<br />

long-range order<br />

Control defects: Template placement accuracy


v<br />

Displacement Measuring<br />

Interferometer<br />

Substrate Mirror<br />

Stage<br />

f f D<br />

- Long, unbalanced, timedependant<br />

optical paths in air<br />

- heavy stage mirrors<br />

- non-linearities<br />

- precision ~ 200 nm (lab)<br />

to ~ 2 nm (vacuum)<br />

<strong>Metrology</strong> Frames<br />

f<br />

v<br />

Substrate<br />

Optical Encoder<br />

Stage<br />

Stationary Grating<br />

f D<br />

θ<br />

f<br />

Optical<br />

Fiber<br />

- Short (sub-mm), constant<br />

optical paths<br />

- lightweight stage optics<br />

- accuracy depends on<br />

encoder plate accuracy<br />

(> 100 nm today)<br />

d<br />

f


Manufacture of Large Gratings<br />

Mechanical ruling:<br />

slow (weeks - months)<br />

inaccurate<br />

E-beam lithography:<br />

faster (days)<br />

stitching errors<br />

Interference lithography:<br />

fast<br />

problems? <br />

MIT 'B' Engine, Richardson Grating Labs<br />

(Courtesy Spectra-Physics)


MLS-2000-04-03.01.eps<br />

Spherical waves cause<br />

hyperbolic phase.<br />

Hyperbolic Phase<br />

Traditional Interference Lithography<br />

laser<br />

laser<br />

Figure errors & defects<br />

in collimating optics cause noise.<br />

Linear Phase + Noise


Optical<br />

Bench<br />

Interferometer<br />

Intensity<br />

Scanning-Beam Interference Lithography<br />

θ<br />

θ<br />

Laser<br />

XY Stage<br />

Air Bearing<br />

Granite Slab<br />

Grating<br />

Period<br />

p=λ/(2sinθ)<br />

X<br />

Substrate<br />

Y Direction<br />

Intensity<br />

X Direction<br />

Scan<br />

1<br />

Summed Intensity<br />

of Scans 1-6<br />

Scan<br />

2 Scan<br />

3<br />

Scan<br />

4<br />

Scan<br />

5<br />

Scan<br />

6<br />

Scanning<br />

Grating<br />

Image<br />

Air-Bearing<br />

X-Y Stage<br />

Resistcoated<br />

Substrate<br />

X


cc_readwrite3.eps<br />

DSP/<br />

Phase Meters<br />

Stage Error<br />

Frequency<br />

Synthesizer<br />

AOM2<br />

AOM3<br />

PM2<br />

Nanoruler Reading <strong>and</strong> Writing Modes<br />

Wafer<br />

XY Stage<br />

UV Laser Beam<br />

PM1<br />

f 3 =120 MHz<br />

AOM1<br />

DSP/<br />

Phase Meters<br />

PM4<br />

AOM2<br />

f2 =100 MHz f1 =100 MHz<br />

f2 =90 MHz<br />

Stage Error<br />

PM3<br />

XY Stage<br />

UV Laser Beam<br />

Writing Mode Reading Mode<br />

Frequency<br />

Synthesizer<br />

AOM1 AO<br />

f 1 =110 MHz


ptk-frontsystem-032703.eps<br />

The Nanoruler - A Scanning Beam Interference Lithography Tool<br />

<strong>for</strong> Large-Area Gratings<br />

<strong>Metrology</strong> block with<br />

phase measurement<br />

optics<br />

Wafer<br />

Chuck<br />

X-Y air bearing<br />

stage<br />

Receiving tower<br />

<strong>for</strong> UV laser<br />

(λ = 351.1 nm)<br />

Optical bench with<br />

interference lithography<br />

optics<br />

Refractometer<br />

interferometer<br />

X-axis interferometer<br />

Granite base<br />

Isolation system


ptk-enclosure-032903.eps<br />

Nanoruler Environmental Enclosure<br />

Temperature Control ±0.005 C<br />

Humidity Control ±1% RH


Grating written with MIT Nanoruler on 300 mm wafer:<br />

pattern placement repeatability < 3 nm (3σ)<br />

"ruling" time ~ 30 min.


Summary<br />

The nanotechnology revolution needs a metrology<br />

infrastructure that does not exist yet.<br />

Ultra-high accuracy encoders will enable a new<br />

dimensional metrology paradigm<br />

MIT is developing a novel grating patterning <strong>and</strong> metrology<br />

tool - the Nanoruler - based on Scanning-Beam Interference<br />

Lithography


Massachusetts Institute of <strong>Technology</strong><br />

Acknowledgments<br />

Graduate Students:<br />

Paul Konkola (Ph.D.'03)<br />

Carl Chen (Ph.D.'03)<br />

Juan Montoya<br />

Chulmin Joo<br />

Chih-Hao Chang<br />

Mireille Akilian<br />

Staff:<br />

Robert Fleming (SNL)<br />

James Carter (NSL)<br />

Sponsors:<br />

NASA, DARPA<br />

<strong>Space</strong> Nanotechnology Laboratory


ptk-xuepsd-033103.eps<br />

Power Spectral Density of the Unobservable Error -<br />

the Effect of Averaging through Scanning<br />

Power spectrum of x ue (nm/sqrt(Hz))<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

60 Hz electrical, 3σ = 1.1 nm<br />

from 59.5 to 60.5 Hz<br />

3σ = 1.8 nm from 100 to 714 Hz<br />

x ue raw, 3σ=3.12 nm<br />

x ue , 3σ=2.12 nm, d/v=20 ms<br />

Thermal expansion, 0 to ~0.04 Hz<br />

Air index non-uni<strong>for</strong>mity, 3σ = 2.3 nm from 0 to 59.5 Hz<br />

Vibrations<br />

Gaussian<br />

filtered data<br />

0 100 200 300 400 500 600 700<br />

Frequency (Hz), resolution=0.35 Hz<br />

Gaussian<br />

filtered data


Super invar chuck<br />

flexure mounted<br />

to stage<br />

Super invar<br />

mounts <strong>for</strong> optics<br />

Zerodur mirrors<br />

bonded to chuck<br />

<strong>Metrology</strong> Frames<br />

Zerodur metrology block flexure<br />

mounted to bench, super invar<br />

inserts<br />

ptk-metrologyframes-032903.eps<br />

Refractometer<br />

cavity, bonded<br />

mirrors<br />

x-axis column<br />

reference mirror<br />

MIT <strong>Space</strong> Nanotechnology Laboratory


p =<br />

Interference of Spherical Waves<br />

Phase discrepancy from a perfect linear grating<br />

λ 5<br />

-300 nm<br />

-100 nm d = 1 m,<br />

2 sin θ<br />

y (mm)<br />

10<br />

0<br />

-5<br />

300 nm<br />

500 nm<br />

100 nm<br />

θ θ<br />

0 nm<br />

-10<br />

-10 -5 0<br />

x (mm)<br />

5 10<br />

d<br />

-500 nm<br />

x<br />

cc_intro_priorart3.eps<br />

z<br />

y<br />

λ = 351.1 nm,<br />

p = 400 nm.


Coordinate Measuring Machines<br />

Shaping, assembly, alignment, <strong>and</strong> characterization of<br />

large-scale parts with sub-micron<br />

tolerances<br />

Examples:<br />

Diamond turning<br />

Grazing-incidence<br />

x-ray optics (astronomy)<br />

EUV lithography optics<br />

Need nanometer accuracy<br />

over meter scales<br />

1.6 m<br />

Spectroscopy<br />

X-Ray<br />

Telescope<br />

concept <strong>for</strong><br />

future x-ray<br />

telescope<br />

(J. Stewart et al.,<br />

NASA GSFC)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!