19.08.2013 Views

The Critical Role of Metrology in Nanofabrication - Space ...

The Critical Role of Metrology in Nanofabrication - Space ...

The Critical Role of Metrology in Nanofabrication - Space ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>Critical</strong> <strong>Role</strong> <strong>of</strong> <strong>Metrology</strong> <strong>in</strong> Nan<strong>of</strong>abrication<br />

Mark L. Schattenburg<br />

<strong>Space</strong> Nanotechnology Laboratory<br />

~<br />

Center for <strong>Space</strong> Research<br />

~<br />

Massachusetts Institute <strong>of</strong> Technology<br />

Microlunch Sem<strong>in</strong>ar<br />

MIT Microsystems Technology Laboratories<br />

April 8, 2003<br />

<br />

Massachusetts Institute <strong>of</strong> Technology


MLS-2001-05-11.01eps<br />

NASA Chandra X-ray Observatory<br />

High Energy Transmission Grat<strong>in</strong>g Spectrometer (HETGS)<br />

HETGS <strong>in</strong>strument.<br />

1.1 meter<br />

Invar grat<strong>in</strong>g frame.<br />

3 cm<br />

Scann<strong>in</strong>g electron micrograph <strong>of</strong> gold grat<strong>in</strong>g.<br />

100 nm<br />

550 nm


<strong>Metrology</strong> Frames<br />

• <strong>Metrology</strong> frames underp<strong>in</strong> all planar dimensional metrology.<br />

• A key set <strong>of</strong> semiconductor manufactur<strong>in</strong>g tools depend on metrology frames:<br />

Coord<strong>in</strong>ate measur<strong>in</strong>g tools.<br />

Diamond turn<strong>in</strong>g mach<strong>in</strong>es<br />

Lithography mask (reticle) writers.<br />

Lithography scanners/steppers.<br />

CD metrology tools.<br />

Pattern placement and overlay metrology tools.<br />

Circuit and mask repair tools.<br />

• A metrology frame consists <strong>of</strong> three components:<br />

Stable structure.<br />

Length scale (e.g., wavelength <strong>of</strong> light).<br />

Means to compare workpiece with length scale (e.g., microscope).<br />

• <strong>The</strong> heterodyne laser <strong>in</strong>terferometer is the de facto length scale.<br />

<br />

Massachusetts Institute <strong>of</strong> Technology


MLS-2001-03-23.01.eps<br />

Computer<br />

Traditional Heterodyne<br />

Displacement Measur<strong>in</strong>g Interferometer (DMI)<br />

Laser<br />

Fiber-optic<br />

Cables<br />

RS-232 / GBIP<br />

50%<br />

Beamsplitter<br />

Fiber-optic<br />

Pickup<br />

Electronics<br />

Two-axis<br />

Stage with<br />

Mirrors<br />

Interferometer<br />

Head<br />

DMI Limitations<br />

Mov<strong>in</strong>g arms create<br />

time-dependant cos<strong>in</strong>e,<br />

Abbe, diffraction<br />

& other path errors.<br />

Air paths <strong>in</strong>troduce large<br />

errors due to atmospheric<br />

disturbances:<br />

-> Temperature, Pressure<br />

-> Humidity, Turbulence<br />

System is bulky<br />

and expensive.<br />

Heavy stage mirrors<br />

limit stage scann<strong>in</strong>g<br />

speed & accuracy.


Zygo-Interferometer.eps<br />

Wafer<br />

Reticle<br />

Lens<br />

Measurement<br />

Beams<br />

Lithography Scanner<br />

Substrate and Reticle Stages<br />

Collimated UV<br />

Light Beam<br />

Reticle Stage<br />

Mirrors<br />

Wafer Stage<br />

Mirrors<br />

Laser Head<br />

Scanner Mechanics<br />

Reticle is imaged onto wafer<br />

with ~4x reduction.<br />

Reticle and wafer stages<br />

are synchronously scanned<br />

dur<strong>in</strong>g exposure.<br />

Tight pattern overlay (~30% CD)<br />

requires extremely high<br />

stage performance.<br />

Interferometer is significant<br />

drag on stage accuracy and<br />

performance.


MLS-1997-05-01.01.eps<br />

Diode<br />

Laser<br />

Diffraction<br />

Grat<strong>in</strong>g Region <strong>of</strong><br />

Interference<br />

Collimat<strong>in</strong>g<br />

Lens<br />

+1<br />

-1<br />

Pr<strong>in</strong>cipal <strong>of</strong> Optical Encoder<br />

S<strong>in</strong>usoidal<br />

Fr<strong>in</strong>ges Detector<br />

Array<br />

4-B<strong>in</strong><br />

Output<br />

Encoder Advantages<br />

Short, balanced arms are<br />

immune to atmosphere.<br />

Arms have constant length.<br />

Elim<strong>in</strong>ates path errors.<br />

Grat<strong>in</strong>g can be patterned on<br />

stiff, low-CTE substrate.<br />

Elim<strong>in</strong>ates mov<strong>in</strong>g<br />

<strong>in</strong>terferometer mirrors.<br />

Problem<br />

Accurate encoder plates<br />

unavailable.


Encoder-Stage.eps<br />

Reticle<br />

Encoder<br />

Plate<br />

Reticle<br />

Lens<br />

Wafer<br />

Encoder<br />

Plate<br />

Wafer<br />

Lithography Scanner<br />

With Optical Encoder <strong>Metrology</strong><br />

Reticle<br />

Encoder<br />

Plate<br />

Wafer<br />

Encoder<br />

Plate<br />

Wafer<br />

Stage<br />

Reticle<br />

Stage<br />

Read<br />

Head<br />

Stage <strong>Metrology</strong> with<br />

Grid Optical Encoder<br />

Stationary encoder plates.<br />

Read heads fixed to stage.<br />

Lighter stage has higher speed,<br />

<strong>in</strong>creased accuracy.<br />

Encoder essentially<br />

immune to atmosphere.


MLS-1997-01-20.08.eps<br />

Resist<br />

Left<br />

Beam<br />

Interference Lithography<br />

2<br />

Substrate<br />

Grat<strong>in</strong>g Period p=/(2s<strong>in</strong>)<br />

Right<br />

Beam


MLS-2000-04-03.01.eps<br />

Spherical waves cause<br />

hyperbolic distortion.<br />

Hyperbolic Phase<br />

Traditional Interference Lithography<br />

laser<br />

Optics figure & defects<br />

limit grat<strong>in</strong>g accuracy.<br />

L<strong>in</strong>ear Phase<br />

laser


MLS-1999-05-26.03.eps<br />

Variable<br />

Attenuator<br />

Mirror<br />

Beamsplitter<br />

p = λ<br />

2s<strong>in</strong>θ<br />

Interference Lithography<br />

Beamsplitter<br />

Spatial Filters<br />

2θ<br />

Pockels Cell<br />

Substrate<br />

Laser Beam<br />

λ = 351.1 nm<br />

Phase Error<br />

Sensor<br />

Mirror


MLS-2000-04-04.02.eps<br />

Optical<br />

Bench<br />

Interferometer<br />

Scann<strong>in</strong>g-Beam Interference Lithography<br />

Laser<br />

XY Stage<br />

Air Bear<strong>in</strong>g Granite Block<br />

Substrate<br />

Y Direction<br />

Y Direction<br />

X Direction<br />

Parallel Scann<strong>in</strong>g<br />

X Direction<br />

Doppler Scann<strong>in</strong>g<br />

Scann<strong>in</strong>g<br />

Grat<strong>in</strong>g<br />

Image<br />

Air-Bear<strong>in</strong>g<br />

X-Y Stage<br />

Resist-<br />

Coated<br />

Substrate<br />

Scann<strong>in</strong>g<br />

Grat<strong>in</strong>g<br />

Image


PTK-99-01-09-1<br />

Y Direction<br />

X Direction<br />

(a) Scann<strong>in</strong>g Scheme<br />

Intensity<br />

Scan<br />

1<br />

Grat<strong>in</strong>g Scann<strong>in</strong>g Method<br />

Grat<strong>in</strong>g<br />

Image<br />

Air-Bear<strong>in</strong>g<br />

Stage<br />

Substrate<br />

Summed Intensity<br />

<strong>of</strong> Scans 1-6<br />

Scan<br />

2 Scan<br />

3<br />

Scan<br />

4<br />

Scan<br />

5<br />

Intensity<br />

Scan<br />

6<br />

(b) Image Intensity Pr<strong>of</strong>ile<br />

(c) Overlapp<strong>in</strong>g Scans<br />

Closely Approximate<br />

a Uniform Intensity<br />

Distribution<br />

X<br />

Grat<strong>in</strong>g<br />

Period<br />

p=λ/(2s<strong>in</strong>θ)<br />

X


RKH-01-01-02.3<br />

(a) Writ<strong>in</strong>g Mode<br />

SBIL Read<strong>in</strong>g and Writ<strong>in</strong>g Modes<br />

DSP/<br />

Frequency<br />

Comparator Synthesizer<br />

AOM1<br />

DSP/<br />

Comparator<br />

Stage<br />

Control<br />

f L<br />

AOM2<br />

PM1<br />

Wafer<br />

X-Y Stage<br />

PM2<br />

AOM3<br />

f R<br />

f H<br />

Stage<br />

Control<br />

PM4<br />

AOM2<br />

f L<br />

Frequency<br />

Synthesizer<br />

PM3<br />

Grat<strong>in</strong>g<br />

X-Y Stage<br />

AOM3<br />

f R<br />

(b) Read<strong>in</strong>g Mode<br />

CCD


RKH-2000-04-06<br />

D<br />

L<br />

f 0 f 0 +F C<br />

θ B<br />

Pr<strong>in</strong>ciple <strong>of</strong><br />

Acousto-Optic Diffraction<br />

Λ<br />

RF Transducer<br />

Quartz<br />

v<br />

F C<br />

Sound Wave<br />

λ<br />

2θB = −<br />

Λ<br />

f 0


<strong>Metrology</strong> block with<br />

phase measurement<br />

optics<br />

Wafer<br />

Chuck<br />

X-Y air bear<strong>in</strong>g<br />

stage<br />

Front <strong>of</strong> System<br />

Receiv<strong>in</strong>g tower<br />

for UV laser<br />

(λ = 351.1 nm)<br />

MIT <strong>Space</strong> Nanotechnology Laboratory<br />

ptk-frontsystem-032703.eps<br />

Optical bench with<br />

<strong>in</strong>terference lithography<br />

optics<br />

Refractometer<br />

<strong>in</strong>terferometer<br />

X-axis <strong>in</strong>terferometer<br />

Granite base<br />

Isolation system


Super <strong>in</strong>var chuck<br />

flexure mounted<br />

to stage<br />

Super <strong>in</strong>var<br />

mounts for optics<br />

Zerodur mirrors<br />

bonded to chuck<br />

<strong>Metrology</strong> Frames<br />

Zerodur metrology block flexure<br />

mounted to bench, super <strong>in</strong>var<br />

<strong>in</strong>serts<br />

ptk-metrologyframes-032903.eps<br />

Refractometer<br />

cavity, bonded<br />

mirrors<br />

x-axis column<br />

reference mirror<br />

MIT <strong>Space</strong> Nanotechnology Laboratory


SBIL Environmental Enclosure<br />

Environmental parameters: Temperature<br />

Pressure<br />

Humidity<br />

Particles<br />

Acoustics<br />

Air Handlers<br />

Chamber<br />

MIT <strong>Space</strong> Nanotechnology Laboratory<br />

ptk-enclosure-032903.eps


Analog Input:<br />

Power Sensors.<br />

Sensors, general.<br />

D/A PMC<br />

A/D PMC<br />

IXC6 Master/<br />

DSP/Power PC<br />

Analog Output:<br />

Stage L<strong>in</strong>ear Amplifiers<br />

Vibration Isolation Feedforward.<br />

Analog Test Po<strong>in</strong>ts.<br />

PC<br />

Host<br />

ZMI 2002<br />

VME Bus<br />

ZMI 2002<br />

Control Architecture<br />

Realtime Control Platform LabVIEW-Based I/O<br />

ZMI 2002<br />

ZMI 2002<br />

VME Rack<br />

Digital Change<br />

<strong>of</strong> State Board<br />

TTL Digital<br />

Input/Output<br />

TTL Digital<br />

Input/Output<br />

ZMI 2001<br />

Refractometer.<br />

Lithography<br />

Interferometers<br />

Stage<br />

Interferometers<br />

Power<br />

Supply<br />

Stage Position Limits<br />

Air-bear<strong>in</strong>g Pressure Limit<br />

LabVIEW PC Control L<strong>in</strong>es<br />

Digital Frequency<br />

Sythesizer<br />

Reference clock from Zygo laser<br />

Comm. to LabVIEW PC<br />

Acousto-Optic<br />

Modulators<br />

NI IMAQ 1424<br />

Frame Grabber<br />

NI PCI-DIO-96<br />

Digital I/O<br />

NI 6034E<br />

Analog I/O<br />

NI 6034E<br />

Analog I/O<br />

MIT <strong>Space</strong> Nanotechnology Laboratory<br />

PC<br />

Internal PCI Bus<br />

Position Sens<strong>in</strong>g<br />

Detectors<br />

Picomotor Driver<br />

Communication to<br />

IXC6.<br />

Picomotors<br />

ptk-controlarch-040103.eps<br />

Wavefront<br />

<strong>Metrology</strong><br />

CCD


VMIVME-1181-000,<br />

32bit digital change-<strong>of</strong>-state<br />

<strong>in</strong>put board.<br />

VMIVME-2510B,<br />

64bit TTL digital output I/O<br />

VMIVME-2510B,<br />

64bit TTL digital output I/O<br />

ZMI 2001, Interferometer<br />

Card, 1 axis<br />

ZMI 2002, Interferometer<br />

Card, 2 axes<br />

ZMI 2002, Interferometer<br />

Card, 2 axes<br />

ZMI 2002, Interferometer<br />

Card, 2 axes<br />

ZMI 2002, Interferometer<br />

Card, 2 axes<br />

SBIL Realtime Control Platform<br />

PC with W<strong>in</strong>dows NT 4.0, Micron<br />

400 Mhz, Pentium II. 128 Mb DRAM<br />

Development tools: Code Composer<br />

Studio (TI), IXCtools (Ixthos),<br />

Tornado II (W<strong>in</strong>d River Systems).<br />

512 Kbytes<br />

SBSRAM<br />

83 Mhz<br />

PMC<br />

Site #1<br />

Ethernet<br />

Port<br />

DSP A<br />

C6701, 167 Mhz<br />

16 Mbytes<br />

SDRAM<br />

83MHz<br />

IXStar<br />

PCI - DSP<br />

Serial<br />

Port<br />

DSP B<br />

C6701, 167 Mhz<br />

512 Kbytes<br />

SBSRAM<br />

83 Mhz<br />

16 bit Host Port Bus<br />

Host Port<br />

Interface<br />

4 Mbytes<br />

Flash<br />

MPC 8240<br />

IOPlus<br />

250 Mhz<br />

64 Mbytes<br />

SDRAM<br />

100 Mhz<br />

32 Bit 32 Bit 32 Bit 32 Bit<br />

64 Bit PCI - PCI 64 Bit 66 MHz PCI - PCI<br />

64 Bit<br />

66 MHz Bridge<br />

Bridge 66 MHz<br />

PMC-16AO-12-2022,<br />

12 Channel, 16bit DA<br />

64 Bit, User<br />

Def<strong>in</strong>ed I/O<br />

to P0*<br />

16 Mbytes<br />

SDRAM<br />

83MHz<br />

XDS510<br />

ISA-JTAG emulator<br />

JTAG to<br />

DSP Cha<strong>in</strong><br />

64 Bit<br />

PCI - PCI<br />

Bridge<br />

33 MHz<br />

Universe II<br />

PCI-VMEbus<br />

VME64x Backplane<br />

(11 Mbytes/s)<br />

DSP C<br />

C6701, 167 Mhz<br />

512 Kbytes<br />

SBSRAM<br />

83 Mhz<br />

IXC6 Quad DSP Board<br />

16 Mbytes<br />

SDRAM<br />

83MHz<br />

IXStar<br />

PCI - DSP<br />

MIT <strong>Space</strong> Nanotechnology Laboratory<br />

ptk-052601-control.eps<br />

512 Kbytes<br />

SBSRAM<br />

83 Mhz<br />

PMC-16AIO-88-31,<br />

8 Channel, 16bit DA and<br />

8 Channel, 16bit AD<br />

DSP D<br />

C6701, 167 Mhz<br />

64 Bit, User<br />

Def<strong>in</strong>ed I/O<br />

to P2<br />

16 Mbytes<br />

SDRAM<br />

83MHz<br />

PMC<br />

Site #2


x ue (nm)<br />

Unobservable error over 56 seconds<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

x ue raw, 3σ=3.12 nm<br />

x ue , 3σ=2.12 nm, d/v=20 ms<br />

-5<br />

0 10 20 30 40 50<br />

Time (s), Resampled timer period=0.7 ms.<br />

Data bandlimited from 0 to 714 Hz<br />

MIT <strong>Space</strong> Nanotechnology Laboratory<br />

ptk-midtermxue-033103.eps


ptk-xuepsd-033103.eps<br />

Power Spectral Density <strong>of</strong> the Unobservable Error<br />

Power spectrum <strong>of</strong> x ue (nm/sqrt(Hz))<br />

10 0<br />

10 -1<br />

10 -2<br />

60 Hz electrical, 3σ=1.1 nm<br />

for 59.5 Hz to 60.5 Hz.<br />

3σ=1.8 nm for 100 Hz to 714 Hz.<br />

<strong>The</strong>rmal expansion, 0 to ≈0.04 Hz.<br />

Vibrations<br />

x ue raw, 3σ=3.12 nm<br />

x ue , 3σ=2.12 nm, d/v=20 ms<br />

Air <strong>in</strong>dex nonuniformity, 3σ=2.3 nm for 0 Hz to 59.5 Hz.<br />

10<br />

0 100 200 300 400 500 600 700<br />

-3<br />

Frequency (Hz), resolution=0.35 Hz<br />

MIT <strong>Space</strong> Nanotechnology Laboratory


x fle (nm)<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

Fr<strong>in</strong>ge lock<strong>in</strong>g error (x fle)<br />

Raw data, µ = -0.01, 3 σ=2.45 nm.<br />

Dose phase error µ = -0.01, 3 σ =0.35 nm, d/v = 10 ms.<br />

-4<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

time(s)<br />

ptk-fle-040103.eps<br />

MIT <strong>Space</strong> Nanotechnology Laboratory


y (mm)<br />

y (mm)<br />

25<br />

24<br />

23<br />

22<br />

21<br />

20<br />

19<br />

18<br />

17<br />

16<br />

15<br />

-5<br />

-5<br />

-10<br />

-10<br />

-15<br />

-15<br />

-20<br />

-5<br />

Errors Caused by Particles Between<br />

the Wafer and the Chuck<br />

-5<br />

-20<br />

-10<br />

-10<br />

-5<br />

-15<br />

-5<br />

43 44 45 46 47 48 49 50 51<br />

42 52<br />

x (mm)<br />

Calculated out-<strong>of</strong>-plane distortion (nm)<br />

25<br />

24<br />

23<br />

22<br />

21<br />

20<br />

19<br />

18<br />

17<br />

16<br />

15<br />

0<br />

0<br />

0<br />

0<br />

0<br />

42<br />

Grat<strong>in</strong>g nonl<strong>in</strong>earity (nm)<br />

0<br />

0<br />

50<br />

0<br />

100<br />

50<br />

150<br />

50<br />

200<br />

100<br />

0<br />

150<br />

250<br />

200<br />

0<br />

0<br />

5<br />

0 0<br />

100<br />

250<br />

10<br />

0<br />

5<br />

0<br />

20<br />

43 44 45 46 47 48 49 50 51<br />

200<br />

150<br />

x (mm)<br />

150<br />

50<br />

15<br />

15<br />

100<br />

0<br />

10<br />

10<br />

5<br />

0<br />

-5<br />

5<br />

100<br />

0<br />

100<br />

150<br />

50<br />

0<br />

0<br />

-5<br />

0<br />

0<br />

52<br />

ptk-particles-040103.eps<br />

White light <strong>in</strong>terferogram formed between<br />

a quartz wafer and the chuck<br />

R<strong>in</strong>gs around a particle<br />

MIT <strong>Space</strong> Nanotechnology Laboratory


Acknowledgements<br />

Students<br />

Mireille Akilian, Graduate Research Assistant, Mechanical Eng<strong>in</strong>eer<strong>in</strong>g<br />

Chih-Hao Chang, Graduate Research Assistant, Mechanical Eng<strong>in</strong>eer<strong>in</strong>g<br />

Carl G. Chen, Graduate Research Assistant, Electrical Eng<strong>in</strong>eer<strong>in</strong>g<br />

Craig Forest, Graduate Research Assistant, Mechanical Eng<strong>in</strong>eer<strong>in</strong>g<br />

Chulm<strong>in</strong> Joo, Graduate Research Assistant, Mechanical Eng<strong>in</strong>eer<strong>in</strong>g<br />

Paul T. Konkola, Graduate Research Assistant, Mechanical Eng<strong>in</strong>eer<strong>in</strong>g<br />

Juan Montoya, Graduate Research Assistant, Electrical Eng<strong>in</strong>eer<strong>in</strong>g<br />

Yanxia Sun, Graduate Research Assistant, Mechanical Eng<strong>in</strong>eer<strong>in</strong>g<br />

Jenny You, Eng<strong>in</strong>eer<strong>in</strong>g (UROP)<br />

Research Staff<br />

James M. Carter, Research Specialist, RLE<br />

Robert C. Flem<strong>in</strong>g, Semiconductor Process Eng<strong>in</strong>eer, CSR (Lab Manager)<br />

Dr. Ralf K. Heilmann, Research Scientist, CSR (Lab Assistant Director)<br />

Dr. Michael McGuirk, Sponsored Research Technical Staff, CSR<br />

Edward Murphy, Project Technician, CSR<br />

Lab Web Site<br />

http://snl.mit.edu<br />

We are grateful to DARPA and NASA for support <strong>of</strong> this research.<br />

<br />

Massachusetts Institute <strong>of</strong> Technology


SIA-Roadmap-2001.eps<br />

2001<br />

INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS<br />

LITHOGRAPHY<br />

YEAR 2001 2002 2003 2004 2005 2006 2007 2010 2013 2016<br />

CD (nm) 130 115 100 90 80 70 65 45 32 22<br />

OVERLAY (nm, mean+3 sigma) 45 40 35 32 28 25 23 18 13 9<br />

MASK IMAGE PLACEMENT (nm) 27 24 21 19 17 15 14 11 8 6<br />

Solutions Solutions Be<strong>in</strong>g No Known<br />

Exist Pursued Solutions<br />

METROLOGY FRAME ERROR (nm) 11 10 8.8 8.0 7.0 6.3 5.8 4.5 3.3 2.3<br />

LENGTH SCALE ERROR (nm) 2.8 2.5 2.2 2.0 1.8 1.6 1.4 1.1 0.8 0.6<br />

MIT Effort


MLS-2002-02-28.02.eps<br />

Many nanophotonic structures<br />

depend on the coherent superpostion<br />

<strong>of</strong> scatter<strong>in</strong>g from sub-wavelength features.<br />

• Integrated Optical Bragg Grat<strong>in</strong>g Devices<br />

• Photonic Crystals<br />

• DFB Lasers<br />

>1 mm<br />

Nanoaccuracy <strong>in</strong> Nanophotonics<br />

Bragg Waveguide Channel Add-Drop Filter<br />

Accuracy Calculus<br />

Grat<strong>in</strong>g period = 244.4 nm<br />

period/50 ~5 nm placement accuracy<br />

~ 1 nm metrology frame accuracy<br />

Best-available e-beam tools<br />

have ~20 nm accuracy.<br />

244.4 nm<br />

InGaAsP Waveguide<br />

(Hermann Haus and Henry Smith, MIT)


MLS-2002-02-28.01.eps<br />

Nickel<br />

Pillars<br />

Read/Write<br />

Head<br />

Nanoaccuracy <strong>in</strong> Patterned Nanomagnetic Media<br />

Nanomagnets beat the "superparamagnetic limit."<br />

100 nm<br />

Electron Micrograph Magnetic Force Topograph<br />

Patterned<br />

Nanomagnets<br />

Patterned Magnetic Disk<br />

(Carol<strong>in</strong>e Ross and Henry Smith, MIT)<br />

Mag Field<br />

Up<br />

Mag Field<br />

Down<br />

Accuracy Calculus<br />

25 nm nanomagnets (200 Gbit/<strong>in</strong> 2 )<br />

~5 nm magnet placement accuracy<br />

~1 nm metrology frame accuracy

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!