24.08.2013 Views

Project Deliverable D50 Report on Best Practices ... - ESONET NoE

Project Deliverable D50 Report on Best Practices ... - ESONET NoE

Project Deliverable D50 Report on Best Practices ... - ESONET NoE

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Project</str<strong>on</strong>g> c<strong>on</strong>tract no. 036851<br />

<strong>ESONET</strong> European Seas Observatory Network<br />

Instrument: Network of Excellence (<strong>NoE</strong>)<br />

Thematic Priority: 1.1.6.3 – Climate Change and Ecosystems<br />

Sub Priority: III – Global Change and Ecosystems<br />

<str<strong>on</strong>g>Project</str<strong>on</strong>g> <str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> <str<strong>on</strong>g>D50</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Report</str<strong>on</strong>g> <strong>on</strong> <strong>Best</strong> <strong>Practices</strong> Workshop n°2<br />

Due date of deliverable: m<strong>on</strong>th 33<br />

Actual submissi<strong>on</strong> date of report: m<strong>on</strong>th 33<br />

Start of project: March 2007 Durati<strong>on</strong>: 48 m<strong>on</strong>ths<br />

<str<strong>on</strong>g>Project</str<strong>on</strong>g> Coordinator: Roland PERSON Coordinator<br />

organisati<strong>on</strong> name: IFREMER, France<br />

Work Package 2<br />

Organizati<strong>on</strong> name of lead c<strong>on</strong>tractor for this deliverable: UniHB<br />

Lead Authors for this deliverable: Christoph Waldmann<br />

Other c<strong>on</strong>tributing authors: Jean-François Rolin, Ingrid Puillat, Jean-François Drogou,<br />

Dominique Choqueuse, Henry Ruhl, Jens Greinert, Jérôme Blandin, Joaquim Del Rio,<br />

Jean-Pierre Hermand, Michel André, Johannes Karstensen, Jean Marvaldi, Marck Smit,<br />

Eric Delory, Volker Ratmeyer and all participants<br />

<str<strong>on</strong>g>Project</str<strong>on</strong>g> co-funded by the European Commissi<strong>on</strong> within the Sixth Framework Programme (2002-2006)<br />

Disseminati<strong>on</strong> Level<br />

PU Public X<br />

PP Restricted to other programme participants (including the Commissi<strong>on</strong> Services)<br />

RE Restricted to a group specified by the c<strong>on</strong>sortium (including the Commissi<strong>on</strong> Services)<br />

CO C<strong>on</strong>fidential, <strong>on</strong>ly for members of the c<strong>on</strong>sortium (including the Commissi<strong>on</strong> Services)<br />

Update October 2010


<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 2


CONTENT<br />

1 Executive summary ...................................................................................... 5<br />

2 Introducti<strong>on</strong> .................................................................................................. 6<br />

3 Organizati<strong>on</strong> ................................................................................................. 6<br />

4 Sessi<strong>on</strong>s .......................................................................................................... 7<br />

4.1 General indicati<strong>on</strong>s for the panel sessi<strong>on</strong>s ................................................................. 7<br />

4.2 Generic Instrumentati<strong>on</strong>............................................................................................. 7<br />

4.2.1 Physico-chemical sensors, Metrology................................................................ 7<br />

4.2.1.1 Introductory text............................................................................................. 7<br />

4.2.1.2 Panel sessi<strong>on</strong>s................................................................................................. 8<br />

4.2.1.3 Debriefing....................................................................................................... 8<br />

4.2.2 Acoustic sensors................................................................................................. 9<br />

4.2.2.1 Introductory text............................................................................................. 9<br />

4.2.2.2 Panel sessi<strong>on</strong>s................................................................................................. 9<br />

4.2.2.3 Debriefing..................................................................................................... 10<br />

4.3 Infrastructure ............................................................................................................ 11<br />

4.3.1 Design comparis<strong>on</strong> – Cabled observatories ..................................................... 11<br />

4.3.1.1 Introductory text........................................................................................... 11<br />

4.3.1.2 Panel sessi<strong>on</strong>s............................................................................................... 12<br />

4.3.1.3 Debriefing..................................................................................................... 13<br />

4.3.2 Design comparis<strong>on</strong> – Stand al<strong>on</strong>e observatories.............................................. 13<br />

4.3.2.1 Introductory text........................................................................................... 13<br />

4.3.2.2 Panel sessi<strong>on</strong>s............................................................................................... 13<br />

4.3.2.3 Debriefing..................................................................................................... 14<br />

4.4 Standardisati<strong>on</strong> and Interoperability ........................................................................ 14<br />

4.4.1 Time series and images: treatment and qualificati<strong>on</strong> ....................................... 14<br />

4.4.1.1 Introductory text........................................................................................... 14<br />

4.4.1.2 Panel sessi<strong>on</strong>s............................................................................................... 15<br />

4.4.1.3 Key note speeches, practices from <str<strong>on</strong>g>Project</str<strong>on</strong>g>s and case study from<br />

dem<strong>on</strong>strati<strong>on</strong> missi<strong>on</strong>s:............................................................................................... 19<br />

4.4.1.4 Debriefing and c<strong>on</strong>clusi<strong>on</strong>s.......................................................................... 27<br />

4.4.1.5 References .................................................................................................... 27<br />

4.4.2 Smart sensors and other interface issues.......................................................... 29<br />

4.4.2.1 Introductory text........................................................................................... 29<br />

4.4.2.2 Panel sessi<strong>on</strong>s............................................................................................... 29<br />

4.4.2.3 Debriefing..................................................................................................... 34<br />

4.4.3 Underwater interventi<strong>on</strong> and 20 year plus materiel choice.............................. 34<br />

4.4.3.1 Introductory texts ......................................................................................... 34<br />

4.4.3.2 White papers................................................................................................. 35<br />

4.4.3.3 Panel sessi<strong>on</strong>s............................................................................................... 39<br />

4.4.3.4 Debriefing..................................................................................................... 40<br />

Annex A - Agenda ......................................................................................................................<br />

Annex B - List of attendees.........................................................................................................<br />

Annex C - Slides from Anders Tengberg....................................................................................<br />

Annex D - Earth sea science in KM3Net neutrino telescope......................................................<br />

Annex E - Stand al<strong>on</strong>e observatories<br />

Annex F ......................................................................................................................................<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 3


<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 4


1 Executive summary<br />

The main goal of <strong>ESONET</strong> <strong>NoE</strong> is to build up a community of experts in Europe for the different<br />

fields of interest related to deep ocean observatories. In the technical field the limits of what is<br />

technical feasible today will be reached when c<strong>on</strong>structing and operating an ocean observatory and<br />

therefore there is a significant incentive for the ocean science community to bring all the European<br />

experts in this field together. Before <strong>on</strong>e can start talking <strong>on</strong> standard procedures <strong>on</strong>e has to compile<br />

all the knowledge that is presently available and subsequently provide this to the user community as<br />

the so called “<strong>Best</strong> <strong>Practices</strong>”. <strong>Best</strong> <strong>Practices</strong> in this case means that methods and procedures are<br />

discussed and identified to provide a coherent and efficient approach in the c<strong>on</strong>text of ocean<br />

observatory systems. The following scientific/technical areas have been addressed:<br />

Experience with existing cabled observati<strong>on</strong> systems<br />

Scientific sensor systems with high relevance for ocean observatories like acoustic and<br />

biochemical sensors<br />

Sensor interfaces standardisati<strong>on</strong><br />

Underwater interventi<strong>on</strong>, like instrument deployment, servicing and maintenance procedures<br />

Although in Europe a significant knowledge and competence in the field of ocean observati<strong>on</strong>s exists<br />

the anticipated activities should be embedded into an internati<strong>on</strong>al framework. That will allow a more<br />

efficient and focussed exchange of informati<strong>on</strong> worldwide and <strong>on</strong> the l<strong>on</strong>g run also the shared use of<br />

the established systems. The ARGO project can be seen as a template for a global observing system<br />

although the technical infrastructure is much simpler. The interoperability in that case was enforced by<br />

introducing strict standards <strong>on</strong> the hardware and the data processing. For ocean observatories it will<br />

not be that straightforward but the discussi<strong>on</strong>s have to be started now.<br />

The 2 nd <strong>Best</strong> <strong>Practices</strong> Workshop was split into three thematic groups, instrumentati<strong>on</strong>, infrastructure,<br />

and interoperability.<br />

With the choice of acoustic and physico-chemical sensors two groups have been selected that differ<br />

str<strong>on</strong>gly in regard to the collected experience and the deployment c<strong>on</strong>siderati<strong>on</strong>s that have to be taken<br />

into account. For biochemical sensors stability and comm<strong>on</strong> calibrati<strong>on</strong> procedures is a major issue.<br />

Acoustic sensing is very well suited for l<strong>on</strong>g-term observati<strong>on</strong>s. However, the large amount of data<br />

that accrue is calling for pre-processing algorithms that have to be well defined and made transparent<br />

to the user.<br />

In Europe there are already cabled ocean infrastructures in place that allow for testing equipment,<br />

instrument deployment and data processing procedures. The sessi<strong>on</strong> has been used to exchange<br />

informati<strong>on</strong> with other <strong>on</strong>going EU projects like KM3NET. Stand- Al<strong>on</strong>e observatory will have a role<br />

in open ocean observati<strong>on</strong>s. They can be seen as extensi<strong>on</strong>s to mooring systems where new c<strong>on</strong>cepts<br />

have to be found to extend communicati<strong>on</strong> and power supply capabilities.<br />

The interoperability theme group c<strong>on</strong>sisted of a sessi<strong>on</strong> <strong>on</strong> data analysis methods, the sensor interface<br />

standardizati<strong>on</strong> sessi<strong>on</strong> where an observatory reference model has been defined and the underwater<br />

interventi<strong>on</strong> sessi<strong>on</strong>. This last sessi<strong>on</strong> will have a great importance to guarantee the functi<strong>on</strong>ality of<br />

ocean observatories over l<strong>on</strong>g time spans. The discussi<strong>on</strong>s were focussing <strong>on</strong> training and simulati<strong>on</strong><br />

methods that will allow for an interoperability of European deep-sea interventi<strong>on</strong> tools.<br />

The 2 nd <strong>Best</strong> <strong>Practices</strong> Workshop was held <strong>on</strong> the 8 th and 9 th of October at IFREMER in Brest. Beside<br />

the discussi<strong>on</strong> in the sessi<strong>on</strong>s attendees had the opportunity to visit the facilities and use this to<br />

stimulate the discussi<strong>on</strong>s.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 5


2 Introducti<strong>on</strong><br />

Background:<br />

Within the <strong>ESONET</strong> <strong>NoE</strong> project all major European research groups and manufacturers being<br />

engaged in l<strong>on</strong>g-term, deep-sea observati<strong>on</strong>s came together to plan for and promote ocean<br />

observatories, and to investigate related scientific and technical topics. The series of best practices<br />

workshops within <strong>ESONET</strong> are the forum to present the state of the art in the technical field and to set<br />

up links to and get groups from observatory initiatives in other countries outside Europe engaged in<br />

the discussi<strong>on</strong>s.<br />

Ocean observatories are new types of infrastructure that are capable of providing l<strong>on</strong>g-term, highresoluti<strong>on</strong><br />

observati<strong>on</strong>s of critical envir<strong>on</strong>mental parameters. Although a number of basic instruments<br />

are ready for l<strong>on</strong>g-term deployment, other important parameters cannot be measured over l<strong>on</strong>g time<br />

periods with adequate accuracy. This has to do with the fact that not enough experience with<br />

according instruments or comp<strong>on</strong>ents and particular technical limitati<strong>on</strong>s exist. Deployment of<br />

infrastructure for l<strong>on</strong>g-term deployment requires specific cares.<br />

The potential scope of instrumentati<strong>on</strong> needs and readiness for ocean observing is very broad, bey<strong>on</strong>d<br />

what could be covered in a single workshop. Therefore the <strong>ESONET</strong> <strong>Best</strong> <strong>Practices</strong> Workshop will<br />

focus <strong>on</strong> the most pressing issues where by bringing according experts together an accelerated<br />

informati<strong>on</strong> exchange process shall be generated.<br />

Workshop topics:<br />

In particular the following aspects shall be addressed:<br />

o Learning from templates where instruments have been well investigated<br />

o Learning from particular instrument issues with certain parameters<br />

o Harm<strong>on</strong>izing procedures of handling instruments<br />

o Addressing platform specific issues and related interventi<strong>on</strong> procedures<br />

o Establish quality assurance and standardizati<strong>on</strong> procedures<br />

o Identify future sensor development needs<br />

One of the aims of <strong>ESONET</strong> is to define a label that can be assigned to instruments and procedures to<br />

assure compliance with the developed requirements of l<strong>on</strong>g-term observati<strong>on</strong> systems. The <strong>Best</strong><br />

<strong>Practices</strong> Workshop #2 will c<strong>on</strong>tribute to this discussi<strong>on</strong>. Within nine working groups few selected<br />

presentati<strong>on</strong>s will stimulate discussi<strong>on</strong>s <strong>on</strong> according topics. Case studies will help to dem<strong>on</strong>strate the<br />

developed procedures. The outcome of the workshop will c<strong>on</strong>sist of reports that describe<br />

recommendati<strong>on</strong>s for the according field.<br />

3 Organizati<strong>on</strong><br />

The workshop was organized immediately after the All Regi<strong>on</strong>s workshop #2 (5-6-7 October in Paris).<br />

It was c<strong>on</strong>vened in Brest at IFREMER campus <strong>on</strong> October 8 th and 9 th 2009.<br />

The plenary sessi<strong>on</strong>s were targeted <strong>on</strong> a presentati<strong>on</strong> of the status of <strong>ESONET</strong> <strong>NoE</strong> and its<br />

Dem<strong>on</strong>strati<strong>on</strong> missi<strong>on</strong>s (Roland Pers<strong>on</strong>), an introducti<strong>on</strong> and presentati<strong>on</strong> of <strong>Best</strong> <strong>Practices</strong> workshop<br />

#1 in Bremen (Christoph Waldmann). The three groups (Generic Instrumentati<strong>on</strong>, Infrastructure and<br />

Standardisati<strong>on</strong> and interoperability) were presented (see the agenda in Annex A).<br />

Most presentati<strong>on</strong>s are available with videos <strong>on</strong> the <strong>ESONET</strong> website http://www.es<strong>on</strong>etnoe.org/news_and_events/es<strong>on</strong>et_workshops_and_meetings/2009_11_20_best_practices_2_oral_prese<br />

ntati<strong>on</strong>s.<br />

70 pers<strong>on</strong>s from 11 European countries and USA attended the workshop (see Annex B).<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 6


4 Sessi<strong>on</strong>s<br />

4.1 General indicati<strong>on</strong>s for the panel sessi<strong>on</strong>s<br />

Presentati<strong>on</strong>s of the state of the art and examples from <strong>ESONET</strong>.<br />

Discussi<strong>on</strong> of presentati<strong>on</strong>s should focus <strong>on</strong>:<br />

o Comparis<strong>on</strong> of methodical approaches in various applicati<strong>on</strong>s and in different<br />

instituti<strong>on</strong>s.<br />

o Overarching tools and methods.<br />

o Identificati<strong>on</strong> of gaps and strategies for remedies.<br />

Use cases could for instance cover:<br />

o Missi<strong>on</strong> based descripti<strong>on</strong>s.<br />

o Descripti<strong>on</strong> of an applicati<strong>on</strong> within demo missi<strong>on</strong>.<br />

o Applicati<strong>on</strong> of discussed methods to particular scenarios.<br />

o Use cases should have broad relevance.<br />

Summary of sessi<strong>on</strong>s within report:<br />

o Updating of <strong>ESONET</strong> reports.<br />

o Split of writing tasks for workshop reports.<br />

o Recommendati<strong>on</strong>s of next steps within <strong>ESONET</strong>.<br />

Foreseen time schedule:<br />

Thursday 8 October.<br />

11:30-12:30: Introducti<strong>on</strong> to the panel sessi<strong>on</strong><br />

14:00-15:30: Key note speeches and practices from projects<br />

16:00-18:00: Infrastructure visit<br />

Friday 9 th October<br />

09:00-11:30: Case studies from Dem<strong>on</strong>strati<strong>on</strong> Missi<strong>on</strong>s<br />

11:30-12:30: Debriefing by groups: sharing of case studied by sessi<strong>on</strong><br />

14:00-15:00: Establishing or update of reference documents<br />

15:15-16:00: Plenary: report from chairpers<strong>on</strong>s<br />

4.2 Generic Instrumentati<strong>on</strong><br />

4.2.1 Physico-chemical sensors, Metrology<br />

4.2.1.1 Introductory text<br />

The previous <strong>Best</strong> Practice Workshop in Bremen led to the definiti<strong>on</strong> of the generic<br />

instrumentati<strong>on</strong> in <strong>ESONET</strong> (see <str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> D6 - Sessi<strong>on</strong> 4 - Scientific needs in regard to<br />

generic and specific instrument packages - page 34). A report was issue by the project as<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> 13 - <str<strong>on</strong>g>Report</str<strong>on</strong>g> <strong>on</strong> science modules, written by Henry Ruhl et al.<br />

Biofouling protecti<strong>on</strong> and calibrati<strong>on</strong> methods need to be discussed again in order to<br />

determine additi<strong>on</strong>al tests or intercomparis<strong>on</strong> workshops to be performed.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 7


The list of sensors issued by the <strong>ESONET</strong> working group (D13) menti<strong>on</strong>s two level of<br />

priorities: the minimum list and an extended list.<br />

This new meeting is intending to finalize the specificati<strong>on</strong>s of the "minimum list" and proceed<br />

in the recommendati<strong>on</strong>s for the sensors of the extended list.<br />

This sessi<strong>on</strong> specifically addresses the qualificati<strong>on</strong> and deployment procedures of the<br />

individual measuring system. Equipment testing complying with standards such as NFX 10-<br />

800 or similar must be performed for the qualificati<strong>on</strong>. The group should propose a way to<br />

ensure that all qualificati<strong>on</strong>s are performed.<br />

The sessi<strong>on</strong> specifically addresses the qualificati<strong>on</strong> and deployment c<strong>on</strong>straints of the<br />

individual measuring system. The metrology necessary before and between each deployment<br />

will be discussed. The metrology procedures must be related to the internati<strong>on</strong>al standards and<br />

agreements of reference laboratories, ensuring l<strong>on</strong>g-term traceability and interoperability.<br />

Objectives:<br />

Prepare final specificati<strong>on</strong>s. Issue recommendati<strong>on</strong>s according to the recognized state of the<br />

art. Recommend comparative tests and qualificati<strong>on</strong> tests. Evaluate costs for the purchase and<br />

operati<strong>on</strong> of these instruments.<br />

It appears that these issues are an integrating activity inside <strong>ESONET</strong>, which might last after<br />

the end of the project as a service part the European infrastructure.<br />

4.2.1.2 Panel sessi<strong>on</strong>s<br />

Panel P1.1 – “Physico-chemical sensors, Metrology” led by Jens Greinert (NIOZ) and Anders<br />

Tengberg (AADI).<br />

Infrastructure visit : Calibrati<strong>on</strong> facilities and tour of IFREMER.<br />

Participants list :<br />

Names Surnames Instituti<strong>on</strong>s Emails<br />

Lénaig Caradec Illipack noemie.claval@illipack.com<br />

Jens Greinert NIOZ greinert@nioz.nl<br />

Noémie Claval Illipack noemie.claval@illipack.com<br />

Laurent Coppola CNRS-LOV coppola@obs-vlfr.fr<br />

Laurent Delauney IFREMER laurent.delauney@ifremer.fr<br />

Marc Le Menn SHOM lemenn@shom.fr<br />

Dominique Lefevre CNRS-LMGEM dominique.lefevre@univmed.fr<br />

Jean Marvaldi IFREMER jean.marvaldi@ifremer.fr<br />

Li<strong>on</strong>el Paofai Illipack noemie.claval@illipack.com<br />

Florence Salvetat IFREMER florence.salvetat@ifremer.fr<br />

Pierre Marie Sarradin IFREMER pierre.marie.sarradin@ifremer.fr<br />

Anders Tengberg Aanderaa Data Instruments Anders.tengberg@aadi.no<br />

Séverine Thomas Europôle Mer severine.thomas@univ-brest.fr<br />

Frank Wenzhoefer MPIMM fwenzhoe@mpi-bremen.de<br />

4.2.1.3 Debriefing<br />

See Annex C<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 8


4.2.2 Acoustic sensors<br />

4.2.2.1 Introductory text<br />

Acoustic sensors like ADCP and s<strong>on</strong>ar systems are forming the backb<strong>on</strong>e for ocean science<br />

missi<strong>on</strong>s. This sessi<strong>on</strong> will focus <strong>on</strong> best practices developed within this c<strong>on</strong>text in particular<br />

in regard to signal processing techniques and data verificati<strong>on</strong> strategies for acoustic systems.<br />

Although ADCPs are based <strong>on</strong> a very straightforward measuring principle the data processing<br />

is quite intricate often leaving scientific users in the role of simply applying predefined<br />

processing steps. A coherent approach <strong>on</strong> this appears necessary so that users of the data can<br />

judge <strong>on</strong> the reliability of the collected data.<br />

The following issues will be discussed during this sessi<strong>on</strong>:<br />

o Applicati<strong>on</strong> of acoustic systems in different scenarios (ADCPs for currents and<br />

waves).<br />

o Known issues of the instruments.<br />

o Existing or newly developed quality c<strong>on</strong>trol and assurance procedures.<br />

o Interacti<strong>on</strong> with manufacturer to derive recommendati<strong>on</strong>s for the user.<br />

Giving reference to a use case selected from demo missi<strong>on</strong> activities like the detecti<strong>on</strong> and<br />

classificati<strong>on</strong> of marine mammals by recording acoustic signals the applicati<strong>on</strong> of discussed<br />

methods will be highlighted.<br />

4.2.2.2 Panel sessi<strong>on</strong>s<br />

Panel P1.2 – “Acoustic sensors” led by Jean-Pierre Hermand (ULB) and Michel André<br />

(UPC).<br />

Infrastructure visit : Calibrati<strong>on</strong> facilities and tour of IFREMER.<br />

Participants list :<br />

Names Surnames Instituti<strong>on</strong>s Emails<br />

Michel André UPC michel.andre@upc.edu<br />

Patrice Brehmer IRD pbrehmer@ifremer.fr<br />

Sylvain Buss<strong>on</strong> ENSIETA sylvain.buss<strong>on</strong>@ensieta.fr<br />

Gunay Cifci DEU-IMST gunay.cifci@deu.edu.tr<br />

Jens Greinert NIOZ greinert@nioz.nl<br />

Michel Ham<strong>on</strong> IFREMER michel.ham<strong>on</strong>@ifremer.fr<br />

Jean-Pierre Hermand ULB jhermand@ulb.ac.be<br />

Olivier Peden IFREMER olivier.peden@ifremer.fr<br />

Olivier Pot IPGP pot@ipgp.fr<br />

Carla Scalabrin IFREMER carla.scalabrin@ifremer.fr<br />

Cyril Chailloux ENSIETA cyril.chailloux@ensieta.fr<br />

Seda Okay DEU-IMST seda.okay@deu.edu.tr<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 9


4.2.2.3 Debriefing<br />

The following text was issued by the participants to the sessi<strong>on</strong>s.<br />

Some acoustic sensing physical and technological c<strong>on</strong>straints<br />

Abstract: The main distinctive feature of acoustic sensing is the producti<strong>on</strong> of a very large<br />

volume of data in comparis<strong>on</strong> with other standard oceanographic sensors. In additi<strong>on</strong>, active<br />

sensing requires a higher power supply than passive sensing.<br />

The co-existence of the above acoustic applicati<strong>on</strong>s may pose the problem of overlapping<br />

frequency band occupati<strong>on</strong> that must be addressed by synchr<strong>on</strong>izati<strong>on</strong> processes, spatial<br />

separati<strong>on</strong> and software based-soluti<strong>on</strong>s.<br />

The sensing strategy will be driven by the spatial and temporal scales of investigati<strong>on</strong>, e.g.<br />

from l<strong>on</strong>g-term acoustical tomography applicati<strong>on</strong>s to the detecti<strong>on</strong> of geohazard events, from<br />

the detecti<strong>on</strong> of individual zooplankt<strong>on</strong> specimens to the imaging of the scattering layers.<br />

In the case of standal<strong>on</strong>e observatories, the power supply, computati<strong>on</strong>al load, data storage<br />

and transmissi<strong>on</strong> (acoustic modem, satellite link, etc.) may be limiting factors for quasi realtime,<br />

l<strong>on</strong>g time series acquisiti<strong>on</strong> and processing for the whole sensor package.<br />

In the case of cabled observatories, the raw and/or processed data streams generated by the<br />

simultaneous use of different acoustic and n<strong>on</strong>-acoustic sensors to land-based or moored<br />

platform servers may be limited by the data link capacities (copper or optic fiber cables),<br />

related to the distance and the envir<strong>on</strong>ment.<br />

Other issues to be addressed:<br />

- Calibrati<strong>on</strong> procedures (standardizati<strong>on</strong>, auto-calibrati<strong>on</strong>, in situ).<br />

- Standardizati<strong>on</strong> of raw and processed data format (standardized by ICES).<br />

- Bio-fouling, fouling.<br />

Propositi<strong>on</strong> of input from dem<strong>on</strong>strati<strong>on</strong> missi<strong>on</strong>s<br />

Abstract: The DM output will provide informati<strong>on</strong> and knowledge to be implemented in<br />

<strong>ESONET</strong>. Nevertheless, they cannot cover the full spectrum of acoustic applicati<strong>on</strong>s such as<br />

passive acoustic tomography, geoacoustic characterizati<strong>on</strong> of gas loaded sediment, active<br />

tracking of marine mammals or plankt<strong>on</strong> and fish m<strong>on</strong>itoring.<br />

INPUT from LIDO DM: implementing a modular architecture for a real-time acoustic data<br />

management in <strong>ESONET</strong> observatories.<br />

The objectives of PAM (Passive Acoustic M<strong>on</strong>itoring) in LIDO, in terms of acoustic and<br />

bioacoustic data management is the l<strong>on</strong>g term m<strong>on</strong>itoring and assessment of the<br />

anthropogenic sources <strong>on</strong> marine organisms, especially cetaceans, implying the real-time<br />

detecti<strong>on</strong>, classificati<strong>on</strong> and tracking of the sources.<br />

The stream of data coming from the observatory is directed to a server that distributes it to<br />

preprocessing servers where the first filters are applied as well as where a further specific<br />

analysis of the data is performed. A dedicated server compresses and stores the raw data. The<br />

processed data is then sent to another stati<strong>on</strong> where <strong>on</strong>e server allows the safe public access to<br />

the low-resoluti<strong>on</strong> data (compressed in MP3 format for <strong>on</strong>line display and outreach) and<br />

another <strong>on</strong>e offers the access to high-resoluti<strong>on</strong> data to registered users. Both servers are<br />

separated for safety reas<strong>on</strong>s and spam/virus protecti<strong>on</strong>.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 10


In the marine envir<strong>on</strong>ment a diversity of sounds is typically found. Physical processes, marine<br />

organisms and human activities generally c<strong>on</strong>tribute to produce these sound sources.<br />

This c<strong>on</strong>stitutes a challenging envir<strong>on</strong>ment for automated classifiers because (1) the target<br />

sources are often embedded in background noise (2) n<strong>on</strong>-target sources can cause false<br />

detecti<strong>on</strong>s or c<strong>on</strong>versely attenuate the detecti<strong>on</strong> of the target sources. There is a need of<br />

developing a system for the detecti<strong>on</strong> of many acoustic events relevant to the m<strong>on</strong>itoring and<br />

study of the interacti<strong>on</strong>s between cetaceans and anthropogenic sounds. The system is to be<br />

used for the l<strong>on</strong>g-term data (several m<strong>on</strong>ths or years) assessment. It should tag segments that<br />

c<strong>on</strong>tain acoustic events of a particular class, allowing for example (1) mitigati<strong>on</strong> acti<strong>on</strong>s to be<br />

undertaken, (2) to obtain l<strong>on</strong>g time series of the occurrence of a particular sound, (3) to avoid<br />

the unnecessary storage or transmissi<strong>on</strong> of data that c<strong>on</strong>tains n<strong>on</strong>e of the events of interest.<br />

The output of the Dem<strong>on</strong>strati<strong>on</strong> Missi<strong>on</strong> LIDO is providing such a system in the form of a<br />

modular architecture that is ensuring the real-time process of the data. The challenge is here to<br />

be able to find a reliable set of filters or detectors able to extract the interesting informati<strong>on</strong><br />

that would be superimposed to background-noise, like dolphin calls and s<strong>on</strong>ar, sperm and<br />

beaked whale clicks, or noise produced by ship engine.<br />

A schematic overview of the classificati<strong>on</strong> system is described in the following text. The<br />

audio data stream is processed by segments of 22 sec<strong>on</strong>ds. The output of the system takes the<br />

form of tags, which are appended to a segment if the corresp<strong>on</strong>ding acoustic event is detected.<br />

The first stage of the system detects broad classes of events. The sec<strong>on</strong>d stage classifies<br />

segments into more specific classes. The system’s modules can be run independently, thereby<br />

allowing to implement smaller and faster versi<strong>on</strong>s, aimed at specific classes of sounds or<br />

mitigati<strong>on</strong> scenarios, like the detecti<strong>on</strong> and tracking of specific whale species, the presence of<br />

ships or other human activities. New modules can be incorporated into the system.<br />

The system is being specifically designed to be adapted to different scenarios, shallow vs.<br />

deep waters, different background noise, different human activities, different marine mammal<br />

species, etc., following standard procedures in compliance with the GEOSS guidelines for<br />

interoperability, the standard sensor registrati<strong>on</strong> and discoverability of acoustic sensors.<br />

4.3 Infrastructure<br />

4.3.1 Design comparis<strong>on</strong> – Cabled observatories<br />

4.3.1.1 Introductory text<br />

Several subsea cabled observatories are operated or under final c<strong>on</strong>structi<strong>on</strong>. Some elements<br />

were presented during the First <strong>Best</strong> Practice Workshop in Bremen. This panel will update<br />

this informati<strong>on</strong>.<br />

The cost evaluati<strong>on</strong> performed by <strong>ESONET</strong> WP5 group will be reviewed and compared with<br />

standal<strong>on</strong>e soluti<strong>on</strong>s. The panel will look more carefully at <strong>on</strong>e case, taking into account the<br />

scientific objectives presented earlier in the week at the All Regi<strong>on</strong>s Workshop 2 in Paris.<br />

System engineering issues for the various comp<strong>on</strong>ents of the infrastructure will be addressed.<br />

For the remaining integrati<strong>on</strong> budget in <strong>ESONET</strong>, the Steering Committee decided to open a<br />

call for the partners. The main objective of the call is to promote test of equipment and<br />

instruments <strong>on</strong> cabled subsea observatory sites. The results of the two Dem<strong>on</strong>strati<strong>on</strong> Missi<strong>on</strong><br />

Calls of <strong>ESONET</strong> showed a lack in the field of cabled observatories experiment.<br />

A unified proposal for test <strong>on</strong> cabled sites is under final acceptance process. It will be<br />

presented to the panel for discussi<strong>on</strong> and suggesti<strong>on</strong> according to the practices of the<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 11


attendants.<br />

Objectives:<br />

One objective is to identify the technical and cost related topics to be addressed either through<br />

internati<strong>on</strong>al cooperati<strong>on</strong>, through the direct input of Antares, Nemo (European project<br />

operating cabled observatories) or through additi<strong>on</strong>al activities proposed as a reply to the “test<br />

call” issued in spring 2009 by <strong>ESONET</strong>.<br />

This panel will determine the needed studies necessary to establish what are the comm<strong>on</strong><br />

practices and corresp<strong>on</strong>ding recommendati<strong>on</strong>s and write a short report <strong>on</strong> this matter (report<br />

to EMSO Preparatory Phase).<br />

4.3.1.2 Panel sessi<strong>on</strong>s<br />

Panel P2.1 – “Design comparis<strong>on</strong>-Cabled observatories” led by Jaume Piera (UPC) and Jean<br />

Marvaldi (IFREMER).<br />

Infrastructure visit: Prototype facilities, marine materials labs and tour of IFREMER.<br />

Participants list:<br />

Names Surnames Instituti<strong>on</strong>s Emails<br />

Jean Marvaldi IFREMER jean.marvaldi@ifremer.fr<br />

Jaume Piera CSIC jpiera@cmima.csic.es<br />

Jean-François Rolin IFREMER jrolin@ifremer.fr<br />

Paris Pag<strong>on</strong>is HCMR ppag<strong>on</strong>is@ath.hcmr.gr<br />

Carl Gojak CNRS-DT-INSU gojak@dt.insu.cnrs.fr<br />

Christoph Waldman KDM-UNIHB-MARUM waldmann@marum.de<br />

Shahram Shariat-Panahi UPC<br />

G Bazile Kinda ENSIETA kindaba@ensieta.fr<br />

Benedicte Ferré UIT bferre@ig.uit.no<br />

No representative of Sicily <strong>ESONET</strong> Node (Nemo site for KM3Net) were present.<br />

a) After a presentati<strong>on</strong> of the experience of the attending pers<strong>on</strong>s, the sessi<strong>on</strong>s were devoted<br />

to two major case studies. First case is the Snohvit gas field infrastructure where a cable<br />

c<strong>on</strong>necti<strong>on</strong> is foreseen through a cooperati<strong>on</strong> with Statoil.<br />

b) The sec<strong>on</strong>d case is the KM3Net earth-sea science extensi<strong>on</strong>. Three <strong>ESONET</strong> sites are also<br />

KM3Net sites where neutrino telescope c<strong>on</strong>structi<strong>on</strong> is planned. The final document of<br />

KM3Net must reflect this comm<strong>on</strong> interest.<br />

The panel worked <strong>on</strong> a preliminary versi<strong>on</strong> of the TDR (Technical Design <str<strong>on</strong>g>Report</str<strong>on</strong>g>) chapter <strong>on</strong><br />

Earth-Sea science (author Univ. Aberdeen – KM3Net Design study WP9) and an IFREMER<br />

c<strong>on</strong>tributi<strong>on</strong> dated September 2009.<br />

c) The experiments <strong>on</strong> cabled observatories have been limited during the first part of<br />

<strong>ESONET</strong>. That is why the Steering Committee decided to open a call for tests <strong>on</strong> cabled<br />

observatories. The testing areas range from coastal (OBSEA, Koljofjord) to deep sea<br />

(Antares, NEMO). As a general reflecti<strong>on</strong> <strong>on</strong> the plans for these experiments, the status of the<br />

proposals to the “Test Call” was reviewed. The group provided comments in order to improve<br />

the final program of the <strong>ESONET</strong> test experiments <strong>on</strong> cabled sites.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 12


4.3.1.3 Debriefing<br />

- A document was issued as a c<strong>on</strong>tributi<strong>on</strong> of <strong>ESONET</strong> to the KM3Net. See Annex D.<br />

- The technological tests to be performed by the “Test Call” merged proposal of<br />

<strong>ESONET</strong> were presented as a handout. This document was used for the meeting in<br />

Barcel<strong>on</strong>a held by the coordinator to define a merged proposal. This work is reported<br />

in the <str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> D58.<br />

- The case study <strong>on</strong> Snohvit would need more input from Statoil to provide<br />

recommendati<strong>on</strong>s from <strong>ESONET</strong>.<br />

4.3.2 Design comparis<strong>on</strong> – Stand al<strong>on</strong>e observatories<br />

4.3.2.1 Introductory text<br />

This panel benefits from the experience of previous and/ or running projects (Animate<br />

EuroSites/PAP, Var cany<strong>on</strong>, Pirata buoys,…) and Dem<strong>on</strong>strati<strong>on</strong> Missi<strong>on</strong>s of <strong>ESONET</strong>. It is<br />

assumed that <strong>on</strong> some sites, the stand al<strong>on</strong>e observatories will be deployed to c<strong>on</strong>stitute a<br />

deep sea observatory infrastructure prior to cabled observatories.<br />

Am<strong>on</strong>g the topics of the panel:<br />

o General design issues (e.g. Rating of comp<strong>on</strong>ents, knock-down preventi<strong>on</strong>,<br />

materiel in use, software, corrosi<strong>on</strong>),<br />

o Protecti<strong>on</strong> of surface elements: Bio-Invasi<strong>on</strong>s (e.g. birds, mussels), Vandalism,<br />

Safety,<br />

o Data telemetry issues: underwater & surface ocean<br />

o Energy management,<br />

o Extensi<strong>on</strong> of deployment durati<strong>on</strong>,<br />

o Deployment and maintenance procedures,<br />

o Implementati<strong>on</strong> and exploitati<strong>on</strong> costs,<br />

o On shore organizati<strong>on</strong>: remote sensor c<strong>on</strong>trol, emergency interventi<strong>on</strong>s,<br />

o Synergy with other observatory comp<strong>on</strong>ents (e.g. AUV use for battery exchange,<br />

data retrieval).<br />

Two cost analysis have been performed inside <strong>ESONET</strong> WP5, <strong>on</strong>e for stand al<strong>on</strong>e winch<br />

observatories, established by AWI for the ARCTIC c<strong>on</strong>diti<strong>on</strong>s, and another <strong>on</strong>e for the stand<br />

al<strong>on</strong>e acoustic observatories.<br />

Objectives:<br />

One objective is to identify the technical and cost related topics to be followed up specifically<br />

in the Dem<strong>on</strong>strati<strong>on</strong> Missi<strong>on</strong>s using stand-al<strong>on</strong>e observatories and corresp<strong>on</strong>ding to<br />

communicati<strong>on</strong>. This panel will prepare a paper <strong>on</strong> comm<strong>on</strong> practices and give<br />

recommendati<strong>on</strong>s <strong>on</strong> technical implementati<strong>on</strong>s.<br />

4.3.2.2 Panel sessi<strong>on</strong>s<br />

Panel P2.2 – “Design comparis<strong>on</strong>-Stand al<strong>on</strong>e observatories” led by Johannes Karstensen<br />

(KDM-IFM-GEOMAR) and Jérôme Blandin (IFREMER).<br />

Infrastructure visit: Prototype facilities, marine materials labs and tour of IFREMER.<br />

Participants list:<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 13


Names Surnames Instituti<strong>on</strong>s Emails<br />

Di<strong>on</strong>ysios Ballas HCMR dballas@ath.hcmr.gr<br />

Jérôme Blandin IFREMER jerome.blandin@ifremer.fr<br />

J<strong>on</strong> Campbell NOCS joc@noc.sot<strong>on</strong>.ac.uk<br />

Johannes Karstensen KDM-IFM-GEOMAR jkarstensen@ifm-geomar.de<br />

Christophe Laot Telecom Bretagne Christophe.laot@telecom-bretagne.eu<br />

Benoît Lecomte IPGP blecomte@ipgp.jussieu.fr<br />

Presentati<strong>on</strong> of experiences were open for discussi<strong>on</strong>:<br />

J<strong>on</strong> Campbell (NOCS): PAP site deployment / telemetry issues<br />

Di<strong>on</strong>ysis Ballas (HCMR): Tsunami detecti<strong>on</strong> platform<br />

Johannes Karstensen (IFM-Geomar): Overview of Eurosite moorings<br />

Jérôme Blandin –Julien Legrand (IFREMER): COMMODAC - a comparis<strong>on</strong> of<br />

acoustic modems.<br />

On day two, discussi<strong>on</strong>s were held <strong>on</strong> several design issues, including energy<br />

management, <strong>on</strong>-shore organizati<strong>on</strong>, deployment procedures and extensi<strong>on</strong> of<br />

deployment durati<strong>on</strong>s.<br />

4.3.2.3 Debriefing<br />

Several design issues, including energy management, <strong>on</strong>-shore organizati<strong>on</strong>, deployment<br />

procedures and extensi<strong>on</strong> of deployment durati<strong>on</strong>s have already been addressed by members<br />

of the <strong>ESONET</strong> community in the framework of time series stati<strong>on</strong>s (PAP, ESTOC etc.).<br />

A number of comm<strong>on</strong> c<strong>on</strong>cerns were indentified and the group agreed to keep updated <strong>on</strong> the<br />

progress of the next or <strong>on</strong>-going experiments, in particular the <strong>ESONET</strong> demo missi<strong>on</strong>s.<br />

(see appendix E)<br />

4.4 Standardisati<strong>on</strong> and Interoperability<br />

4.4.1 Time series and images: treatment and qualificati<strong>on</strong><br />

4.4.1.1 Introductory text<br />

The purpose of this sub-sessi<strong>on</strong> is to give an overview <strong>on</strong> most comm<strong>on</strong>ly used<br />

methods for l<strong>on</strong>g time-series analysis of data acquired in the framework of deep-sea<br />

observatories.<br />

The sequence of topics discussi<strong>on</strong>s will start with data qualificati<strong>on</strong>, after the<br />

systematic quality assurance, when the expertise of the specialists is needed to<br />

definitively qualify the data, for instance:<br />

How to detect a slow and low trend <strong>on</strong> a l<strong>on</strong>g time series?<br />

How to c<strong>on</strong>duct pre and post-deployment calibrati<strong>on</strong>s and apply post-deployment<br />

correcti<strong>on</strong>s?<br />

How to apply various signal-processing methods to different kinds of data and<br />

objectives?<br />

How to address gap in time series for signal processing methods?<br />

We will discuss examples from parameters to be collected by the generic sensor module, as<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 14


defined by <strong>ESONET</strong> deliverables D11 and D13 including c<strong>on</strong>ductivity, temperature, pressure,<br />

and currents, as well as a set of rather specific examples including seismic, marine acoustics,<br />

biogeochemical flux, and time-series photography, and ecological community data.<br />

Objectives:<br />

An objective of this sessi<strong>on</strong> will be to document what are the expected products and the best<br />

practices of time-series data analysis in a report, according to the science objectives and case<br />

studies.<br />

This sessi<strong>on</strong> must be understood as a starting point for further disciplinary or interdisciplinary<br />

workshops supported by <strong>ESONET</strong> (participati<strong>on</strong> to existing <strong>on</strong>es, co-organizati<strong>on</strong> or<br />

organizati<strong>on</strong>).<br />

4.4.1.2 Panel sessi<strong>on</strong>s<br />

Panel P3.1 – “Time series & images: treatment and qualificati<strong>on</strong>” led by Ingrid Puillat<br />

(IFREMER) and Henry Ruhl (NOCS).<br />

Infrastructure visit: Coriolis data center and tour of IFREMER.<br />

Participants list:<br />

Names Surnames Instituti<strong>on</strong>s Emails<br />

Puillat Ingrid IFREMER Es<strong>on</strong>et-coordinator@ifremer.fr<br />

Ruhl Henry NERS NOCS h.ruhl@noc.sot<strong>on</strong>.ac.uk<br />

Vinci Stefano INGV Stefano.vinci@ingv.it<br />

Doumaz Fawzi INGV doumaz@ingv.it<br />

Maurin Aurélien CNRS/CPPM maurin@cppm.in2p3.fr<br />

Curtil Christian CNRS/ CPPM curtil@cppm.in2p3.fr<br />

Brosolo Laetitia CNRS/DTINSU brosolo@dt.insu.cnrs.fr<br />

Ammann Jérôme CNRS/IUEM Jerome.ammann@univ-brest.fr<br />

Lebl<strong>on</strong>d Isabelle IFREMER Isabelle.lebl<strong>on</strong>d@ifremer.fr<br />

Chailloux Cyril ENSIETA Cyril.chailloux@ensieta.fr<br />

Gautier Olivier IUEM Gautier.olivier@gmail.com<br />

Pierre Marie Sarradin IFREMER Pierre.Marie.Sarradin@ifremer.fr<br />

Jozé Sarrazin IFREMER Jozee.Sarrazin@ifremer.fr<br />

4.4.1.2.1 Introducti<strong>on</strong> talks<br />

An outline document (§4.4.1.1) was sent a few weeks before the panel sessi<strong>on</strong> to the<br />

participants. This document c<strong>on</strong>solidated the c<strong>on</strong>tributi<strong>on</strong>s of involved partners. The panel<br />

sessi<strong>on</strong> started with a general introducti<strong>on</strong> speech presented by I. Puillat (IFREMER) and a<br />

specific introducti<strong>on</strong> speech presented by H. Ruhl (NOCS). Introducti<strong>on</strong>s talks are<br />

summarized hereafter.<br />

4.4.1.2.2 General Introducti<strong>on</strong><br />

During the first best practices workshop held in Bremen (5th Feb. 2008) a sessi<strong>on</strong> was<br />

dedicated to <strong>ESONET</strong> data management and a first plan was issued (Figure 1). This<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 15


c<strong>on</strong>tributed in launching this activity, which is well <strong>on</strong> the way now and managed by WP9.<br />

C<strong>on</strong>sequently this is not the topic of this sessi<strong>on</strong>. Indeed we will go <strong>on</strong>e step bey<strong>on</strong>d data<br />

management: we are dealing with data analysis by scientists.<br />

Figure 1: data management plan after the 1 st <strong>Best</strong> practices workshop held in Bremen, Feb.<br />

2008<br />

The purpose of this sub-sessi<strong>on</strong> is to give an overview <strong>on</strong> most comm<strong>on</strong>ly used methods for<br />

l<strong>on</strong>g time-series analysis of data acquired in the framework of deep-sea observatories.<br />

4.4.1.2.3 Specific introducti<strong>on</strong> to Generic sensor package descripti<strong>on</strong><br />

Generic sensors and parameters have been defined in the define in the <strong>ESONET</strong> deliverable<br />

D13 Secti<strong>on</strong> III “Generic Sensor Module”<br />

Taking <strong>on</strong>ly those sensors that are rated to operate at the deepest <strong>ESONET</strong> sites, have an<br />

established endurance of approximately a year or more, and are commercially available, the<br />

remaining sensors make up a rather minimal subset of sensors now available for deep-sea<br />

research. This minimal set of instruments has been widely accepted by the General Assembly,<br />

a meeting <strong>ESONET</strong> workpackage 3 and 5 members, <strong>Best</strong> Practice workshops, and the<br />

<strong>ESONET</strong> Science Council as the best soluti<strong>on</strong>.<br />

Defining a list of ‘generic sensors’ or ‘the’ generic sensor immediately gives rise to<br />

discussi<strong>on</strong>s between members of different research disciplines (biology, geophysics,<br />

microbiology, oceanography) and working areas (shallow or deep, open ocean or coastal)<br />

about what a generic sensor should be able to measure. However, defining a list of generic<br />

sensors and variables is important to ensure a c<strong>on</strong>sistent set of data is acquired at the<br />

<strong>ESONET</strong> sites. Defining these sensors will help in setting up accuracy, calibrati<strong>on</strong>, and data<br />

handling standards for specific purposes.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 16


The generic sensor should be available to a very wide group with as little effort as possible<br />

with respect to purchasing and operating the sensor. Thus, commercially available sensors<br />

that reliably measure over a l<strong>on</strong>g period of time are the most suitable sensors to be used in a<br />

generic sense. In this respect, a platinum resistance thermometer (PRT) linked to a simple<br />

logging unit is possibly the most generic sensor. Systems that combine these thermometers<br />

with other basic sensors are already available from several companies in several countries and<br />

are frequently used in the scientific community. These are multi-probe, CTD-type<br />

(c<strong>on</strong>ductivity temperature, and depth [pressure]) systems which often come with a basic set of<br />

sensors and possibilities to add a wide variety of other sensors. The advantage of such<br />

systems is that data acquisiti<strong>on</strong> modules and power supply units already provide basic<br />

compliance with existing standards.<br />

The generic variables cover several of the Global Climate Observing System (GCOS)<br />

Essential Climate Variables to c<strong>on</strong>tribute to the UN Framework C<strong>on</strong>venti<strong>on</strong> <strong>on</strong> Climate<br />

Change (UNFCCC) and the IPCC. C<strong>on</strong>tinued interest for these variables is noted in the<br />

proceedings of the OceanObs’09 C<strong>on</strong>ference (www.OceanObs09.net). To account for the<br />

different research areas and needs outlined in the scientific objectives of <strong>ESONET</strong>, a first list<br />

of sensors/variables has been compiled based <strong>on</strong> the criteria “most comm<strong>on</strong>ly needed",<br />

"availability", "ease of use", “deep sea compatible” and "capability for l<strong>on</strong>g-term m<strong>on</strong>itoring<br />

(corrosi<strong>on</strong>, calibrati<strong>on</strong> periodicity, stability…)" of the water column (Table 1). The presented<br />

list shows basically a CTD c<strong>on</strong>figurati<strong>on</strong> plus a few additi<strong>on</strong>al variables. These operati<strong>on</strong> of<br />

these sensors will need to meet some basic criteria (Table 2) which are currently met by a<br />

variety of manufacturers (Table 3, This table will be updated as more opti<strong>on</strong>s are identified).<br />

Table 1. GCOS Essential Climate Variables.<br />

Surface Sub-surface<br />

Sea-surface temperature Temperature<br />

Sea-surface salinity Salinity<br />

Sea level Current<br />

Sea state (how is this quantified?) Nutrients<br />

Sea ice Carb<strong>on</strong> (what types?)<br />

Current Ocean tracers (which <strong>on</strong>es?)<br />

Ocean colour (for biological activity) Phytoplankt<strong>on</strong> (via Chl-al<strong>on</strong>e?)<br />

Carb<strong>on</strong> dioxide partial pressure<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 17


Table 2: Generic <strong>ESONET</strong> variables in the water column and at the seafloor surface.<br />

Variable Geosciences Physical Biogeochemistry Marine<br />

Oceanography<br />

Ecology<br />

Temperature X X X X<br />

C<strong>on</strong>ductivity X X X X<br />

Pressure X X X X<br />

Dissolved O2 X X X X<br />

Turbidity X X X X<br />

Ocean currents X X X X<br />

Passive acoustics X X<br />

Table3: <strong>ESONET</strong> Sensor requirements (Please indicate if these need revisi<strong>on</strong>).<br />

Type of sensor Range Accuracy Sampling frequency<br />

C<strong>on</strong>ductivity 0 to 9 S/m 0.001 S/m 4 Hz*<br />

Temperature -5 to +35°C 0.01 K 4 Hz*<br />

Pressure 0 to 600 bar 0.1 % FSR 4 Hz*<br />

Dissolved oxygen 0 to 500μM 5% 0.01 Hz<br />

Turbidity 0 to 150 NTU 10% 1 Hz<br />

Currents 0 to 2 m/s 2% 1 Hz*<br />

Passive acoustics 50 - 180 dB re 1 μPa +/-3dB 96 KHz<br />

* high-frequency <strong>on</strong>ly needed for a few applicati<strong>on</strong>s (i.e. those related to turbulence)<br />

These generic sensors scan be used to directly address a wide range of geo-hazard warning<br />

and scientific applicati<strong>on</strong>s related to understanding natural and anthropogenic variati<strong>on</strong> and<br />

the possible impacts of climate change. The generic systems will also provide supporting data<br />

to a number of other users. Firstly these systems will be able to detect passing tsunami waves<br />

and associated low frequency sounds related to earth moti<strong>on</strong>s. In the observatory setting these<br />

data can then be relayed back to shore via seafloor cable satellite telemetry within minutes.<br />

Because nearly all tide gauges are al<strong>on</strong>g shorelines, offshore data can improve warning time.<br />

The system will be able to detect storm and tide wave loading, sedimentati<strong>on</strong> dynamics that<br />

influence turbidity such as resuspensi<strong>on</strong>, and benthic boundary layer (BBL) dynamics. By<br />

linking the tide, turbidity, and current meter readings the interacti<strong>on</strong> strengths and thresholds<br />

for resuspensi<strong>on</strong> and sediment transport can be further described. Furthermore determinati<strong>on</strong><br />

of these parameters at the seabed and in the water column can help determine how seabed<br />

processes interact with ocean circulati<strong>on</strong>, biogeochemistry, and ecological parameters.<br />

Combining the generic sensors with specific sensors such as seismometers, geodesy, bubble<br />

flux observing systems, hydrothermal flow meters and piezometers the remaining key<br />

questi<strong>on</strong>s outlined in <str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> 11 can be addressed. These questi<strong>on</strong>s include; how are<br />

seismic activity, fluid pore chemistry and pressure, and gas-hydrate stability, and slope failure<br />

related? And, what are the feedbacks between deformati<strong>on</strong>, volcanism, seismic, and<br />

hydrothermal activity?<br />

The generic sensors can address fully the questi<strong>on</strong>s related to physical oceanography.<br />

However, a generic sensor module at the surface, midwater and/or at the seafloor can <strong>on</strong>ly<br />

answer these questi<strong>on</strong>s partially. The use of salinity and c<strong>on</strong>ductivity sensors spaced regularly<br />

al<strong>on</strong>g strings and additi<strong>on</strong>al ADCP coverage can, however, fully capture the themes related to<br />

ocean physics. These include understanding wind driven and deep-ocean circulati<strong>on</strong>,<br />

planetary waves, and interacti<strong>on</strong>s between the BBL and seabed. Mobile systems used in<br />

c<strong>on</strong>juncti<strong>on</strong> with the fixed infrastructures can also augment the impact of the generic sensors.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 18


The oxygen sensor in the generic specificati<strong>on</strong> can address several aspects of<br />

biogeochemistry. Oxygen itself is important for aerobic life in the ocean which includes all<br />

metazoans (e.g. zooplankt<strong>on</strong>, fish, and benthic invertebrates). Oxygen is primarily replenished<br />

in the ocean by inputs related to photosynthesis and equilibrati<strong>on</strong> at the air-sea interface. By<br />

making some crude assumpti<strong>on</strong>s <strong>on</strong>e can estimate how much oxygen has been utilized by<br />

measuring how much remains compared to saturati<strong>on</strong> levels (apparent oxygen utilisati<strong>on</strong><br />

[AOU]), Garcia et al. 2006). So, variati<strong>on</strong>s in oxygen minimum z<strong>on</strong>es, as well as oxygen<br />

dynamics in the rest of the water column are of interest. The generic module will also be able<br />

to make sensitive measurements of how oxygen c<strong>on</strong>secrati<strong>on</strong>s relate to turbidity and<br />

temperature, which both have c<strong>on</strong>necti<strong>on</strong>s to time variant respirati<strong>on</strong> and/or remineralisati<strong>on</strong>.<br />

As sensor technology develops biogeochemical sensors will likely transiti<strong>on</strong> from specialized<br />

to generic in the coming m<strong>on</strong>ths and years. This will include Chl-a, pCO2, pCH4 and pH.<br />

Moreover the more specialized measurement of particulate fluxes greatly augments the<br />

breadth of biogeochemical themes that can be addressed. The most elemental of these themes<br />

is oceanic carb<strong>on</strong> and greenhouse gas uptake and storage dynamics and estimating how<br />

anthropogenic change might alter the efficiency of the biological pump.<br />

The key ecological sensor in the generic specificati<strong>on</strong> is the hydroph<strong>on</strong>e(s) which will be<br />

capable of detecting marine mammals. Currently there are hydroph<strong>on</strong>e based systems that can<br />

detect the positi<strong>on</strong> and species of mammal sounds and thus come up with estimates of density<br />

and distributi<strong>on</strong>. Other sounds can also be detected including anthropogenic sounds like those<br />

of passing ships, rain, and the sounds of certain plankt<strong>on</strong> and fish. Including these systems<br />

with other ecology systems will provide verificati<strong>on</strong> data that is need to improve the detecti<strong>on</strong><br />

more sounds. ADCP systems are sensitive to zooplankt<strong>on</strong> and fish distributi<strong>on</strong>s, as well as<br />

currents. For example the relative density variati<strong>on</strong>s associative with diurnal vertical<br />

migrati<strong>on</strong>s and their variati<strong>on</strong> from hours to decades can be quantified and calibrated (Flagg<br />

and Smith 1989, Kaufmann et al. 1995). The additi<strong>on</strong> of cameras and active acoustic systems<br />

like scanning s<strong>on</strong>ar or synthetic aperture systems can greatly augment the quantificati<strong>on</strong> of<br />

abundances. Fluorometers, zooplankt<strong>on</strong> samplers, and advanced microbial sensing systems<br />

also add to the impact of the generic system to address the diverse set of ecological questi<strong>on</strong><br />

in <str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> 11.<br />

4.4.1.2.4 Introducti<strong>on</strong> to specific sensors examples<br />

Several examples have been presented in key notes speeches and case study during the<br />

workshop.<br />

Specific sensors and parameters are those that are not listed as generic <strong>on</strong>es in the previous<br />

secti<strong>on</strong>. They are specific to the scientific objectives of the studied area, for instance OBS for<br />

seismic z<strong>on</strong>es like in Marmara Sea. Typical output data are acoustic data, HD video and<br />

photos, biogeochemical fluxes, and biological and ecological parameters such as populati<strong>on</strong><br />

density and biodiversity. Several examples have been presented in keynote speeches and case<br />

studies during the workshop. Many examples are given in the <strong>ESONET</strong> document “D13 -<br />

Science Modules of the European Seas Observatory NETwork (<strong>ESONET</strong>).”<br />

4.4.1.3 Key note speeches, practices from <str<strong>on</strong>g>Project</str<strong>on</strong>g>s and case study from dem<strong>on</strong>strati<strong>on</strong><br />

missi<strong>on</strong>s:<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 19


4.4.1.3.1 Instrument setup<br />

This topic is dealt in the generic instrumentati<strong>on</strong> sessi<strong>on</strong> (G1 - §4.2))<br />

4.4.1.3.2 Scientific Data qualificati<strong>on</strong>: steps after automated methods<br />

The data analysis methods vary according to the data acquisiti<strong>on</strong> methods, to the supporting<br />

infrastructure, the sensors and, of course the parameters. For instance CTD data acquired <strong>on</strong> a<br />

profiler and <strong>on</strong> a mooring will be analysed in different ways. Current-meters data acquired for<br />

global scale current study will not be processed in the same way as for turbulence study.<br />

Seismology and bioacoustics studies generate huge amount of acoustic data, which are not<br />

used in the same way. Noise for <strong>on</strong>e scientific community is data for another community.<br />

High definiti<strong>on</strong> camera and video camera also generate a huge amount of data with many<br />

applicati<strong>on</strong>s.<br />

Data analysis in marine deep-sea observatory science covers a wide list of topics;<br />

c<strong>on</strong>sequently, methods have to be applied according to the sciences objectives and their<br />

related scale of studied phenomena (Large scale (global), Mesoscale, Small scale and<br />

Turbulence). Moreover, data can feed several kinds of platforms: for a direct analysis or for<br />

modelizati<strong>on</strong> needs. In this last case there is a need to guaranty a c<strong>on</strong>tinuous sampling step.<br />

Most of the data analysis supposes to apply signal processing methods, an introductory paper<br />

(Schmitt et al,. 2008) has been distributed and H. Ruhl (NOCS), presented comm<strong>on</strong> tools for<br />

time series analysis.<br />

Then several cases of data analysis have been presented during the panel sessi<strong>on</strong>:<br />

o Examples of data acquired <strong>on</strong> mooring (bottom fixed platform), by I. Puillat,<br />

IFREMER<br />

o Antares: a network of moorings and related data processing, by C. Curtil<br />

(CNRS/CPPM)<br />

o Vulcanology data processing, by F. Doumaz<br />

o Ecological communities by H. Ruhl, NOCS<br />

o Hydrothermal ecosystems from video imagery and temperature time-series, in the<br />

framework of MOMAR-, by J. Sarrazin et al.<br />

o Acoustic method for Methane bubbles detecti<strong>on</strong> in the framework of MARMARA<br />

dem<strong>on</strong>strati<strong>on</strong> missi<strong>on</strong>, by I. Lebl<strong>on</strong>d, IFREMER<br />

o Acoustic data processing and management by M. André<br />

Tools for time series analysis<br />

For most of the data analyses approaches signal processing methods based <strong>on</strong> spectral<br />

analysis with FFT (Fast Fourier Transform) are applied. This requires c<strong>on</strong>tinuously sampled<br />

data, which is not well suitable for l<strong>on</strong>g term time series acquired <strong>on</strong> deep sea observatories.<br />

Indeed, 10-20 year measurements in deep ocean are rare as they are affected byoutage<br />

because of routine maintenance operati<strong>on</strong>s, vandalism, removal of biofouling, failure of the<br />

instruments, etc…. C<strong>on</strong>sequently data gap filling is needed. Several methods are available,<br />

the most comm<strong>on</strong>ly used are data averaging but it degrades the data, or data interpolati<strong>on</strong> but<br />

it introduces additi<strong>on</strong>al hypothesis <strong>on</strong> the data structure. Schmitt et al. 2008 presented the<br />

methodology to extract the frequency informati<strong>on</strong> even if the data is not evenly distributed.<br />

Their method is based <strong>on</strong> the Fourier transform of the autocorrelati<strong>on</strong> functi<strong>on</strong> to directly<br />

compute the power spectrum density. This topic and the article were presented during the<br />

panel sessi<strong>on</strong> but not discussed.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 20


Comm<strong>on</strong> topics <strong>on</strong> time series analysis (Henry Ruhl)<br />

•Comm<strong>on</strong> issues to c<strong>on</strong>sider when analysing time-series data include comparing results from<br />

studies that look at different scales (e.g. seas<strong>on</strong>al versus interannual); secular trends and<br />

detrending time series; trends over sub-secti<strong>on</strong>s of time series; aliasing such as when data is<br />

unevenly distributed across time; gap filling; empirical, dynamical, hindcasting, forecasting,<br />

and jackknife modelling techniques; correcting for calibrati<strong>on</strong>; serial autocorrelati<strong>on</strong>; n<strong>on</strong>linear<br />

vs. linear behaviour in observati<strong>on</strong>s; parametric and n<strong>on</strong>-parametric assumpti<strong>on</strong>s;<br />

multidimensi<strong>on</strong>al analysis; and understanding the spatial applicability of times-series data<br />

from <strong>on</strong>e or a network of instruments (e.g. Sokal and Rohlf 1981, Hurlbert 1984, Heikkilai<br />

1988, Clarke 1993, Pyper and Peterman 1998, Clarke Warwick 2001, Perry and Liebhold<br />

2002, Quinn and Keough 2002, Buckland et al. 2007)<br />

An example of gap filling can be found in Smith et al. (2009). The figure 2 below illustrates<br />

particulate organic carb<strong>on</strong> flux measured using sediment traps (food supply for benthic<br />

community) in the northeast Pacific where black, green, orange, and blue time-series lines<br />

representing a composite of POCF estimates from 50 mab (black) and 600 mab (green)<br />

sediment traps, as well as model-estimated flux combining climate indicators, the Laws<br />

(2004) export flux model and the vertically generalized producti<strong>on</strong> model (Behrenfeld and<br />

Falkowski 1997) (orange) and the carb<strong>on</strong>-based producti<strong>on</strong> model (Behrenfeld et al. 2006)<br />

(blue) where possible. The red dashed line is model data that is unincorporated into the<br />

composite (sensu Smith et al. 2006). The difference between the red dashed line and the black<br />

line indicates how well the model estimates corresp<strong>on</strong>d to measured POC flux values at 50<br />

mab, thus are an indicator of gap filling quality.<br />

Examples of data acquired <strong>on</strong> mooring (bottom fixed platform)<br />

Author: Ingrid Puillat (IFREMER)<br />

Full versi<strong>on</strong> in Annex F1<br />

Abstract: The example of ELISA <strong>on</strong>e-year sub surface mooring data is presented. This<br />

mooring fixed <strong>on</strong> the bottom was reaching the surface layer near 20m depths. Four<br />

aut<strong>on</strong>omous CTD + fluorimeter and a current-meter acquired data during <strong>on</strong>e year between<br />

the surface and ~100m. The time series were interrupted several times due to 2 mooring<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 21


maintenances, and deviati<strong>on</strong>s of the instruments. The data retrieval showed unexpected<br />

sinking of instruments greater than 50 m and until 80-90m due to important mean current.<br />

Superimposed with the effect of inertial oscillati<strong>on</strong>s, the probes acted like a yoyo drawing<br />

vertical profiles every 18h. Data and sensors could be intercompared and corrected. Here the<br />

method was presented.<br />

ANTARES: a mooring network and related data processing<br />

Author: C. Curtil (CNRS-CPPM)<br />

Abstract: no abstract, see Slides in Annex F2<br />

Data management system architecture for multiparameter scientific data: A prototype<br />

for seafloor observatories<br />

Authors: F. Doumaz, S. Vinci, L. Beranzoli and P. Favali (INGV)<br />

Slides in Annex E3<br />

Abstract: During the last ten years, with the extensi<strong>on</strong> of local and regi<strong>on</strong>al geophysical<br />

m<strong>on</strong>itoring networks and the development of new scientific projects, INGV has experienced a<br />

significant growing of its data patrim<strong>on</strong>y in terms of quantity and variety. Financial and<br />

human resources have been invested in order to make the data reachable and obtainable via<br />

queries. The first step included the creati<strong>on</strong> of a data repository as a unique access point<br />

where to upload and store the data according to a predefined format. The scientist collecting<br />

measurements have been then requested to respect a strict organizati<strong>on</strong> and c<strong>on</strong>versi<strong>on</strong> of<br />

their datasets that usually come from different instruments and experiments. In a further step<br />

the repository has been transformed into an advanced structure such as a Relati<strong>on</strong>al DataBase<br />

Management System (RDBMS) providing logical links am<strong>on</strong>g datasets originally<br />

independent.<br />

The first prototype of the overall management system has been developed around Italian<br />

vulcanological time series respecting all the described organisati<strong>on</strong>al steps. The prototype<br />

allows for the first time, the simultaneous visualisati<strong>on</strong> and cross-check of various time series<br />

for Italian volcanoes in a given interval.<br />

The system is full-web architecture and can be joined using a web browser <strong>on</strong>ly,<br />

independently from any operating system. A user-friendly interface has been designed for the<br />

data upload, query and graphic outputs.<br />

As the prototype system was c<strong>on</strong>ceived to manage a large variety of geophysical time-series,<br />

it so<strong>on</strong> appeared easily adaptable to the marine data management and a useful tool to<br />

investigate possible relati<strong>on</strong>s am<strong>on</strong>g Earth processes occurring at the Benthic Boundary Layer<br />

and al<strong>on</strong>g the water column. Accordingly, a new versi<strong>on</strong> of the data management prototype is<br />

now under development around the time-series acquired during the experiments with<br />

GEOSTAR-class observatories.<br />

A descripti<strong>on</strong> of the prototype system is presented and a dem<strong>on</strong>strati<strong>on</strong> of the progressing<br />

'marine data specific prototype' is shown to point out its capabilities.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 22


Ecological communities<br />

Author: H. Ruhl (NOCS)<br />

Slides in Annex F4<br />

Abstract: (extracted from Gillooly et al. 2010) Marine life is widely regarded for its diverse<br />

array of form, splendour, and renewable food resources, but marine organisms also have<br />

critical biogeochemical and ecosystem functi<strong>on</strong>s. Marine ecosystem functi<strong>on</strong> maintains key<br />

services like primary producti<strong>on</strong>, climate regulati<strong>on</strong>, carb<strong>on</strong> sequestrati<strong>on</strong> and storage, and<br />

living resources like fisheries and natural molecular products. Specimens collected from<br />

marine habitats during observatory operati<strong>on</strong> in deep-sea and extreme envir<strong>on</strong>ments could<br />

have potential for cancer, antibacterial, extreme envir<strong>on</strong>ment enzymes, and other beneficial<br />

molecular products.<br />

The oceans are filled with natural and biological sounds, although many artificial sources<br />

have c<strong>on</strong>tributed increasingly to its overall noise budget. How these anthropogenic sources<br />

are affecting marine life c<strong>on</strong>stitutes an issue of c<strong>on</strong>siderable interest both to the scientific and<br />

public community. The design and implementati<strong>on</strong> of research <strong>on</strong> the effects and c<strong>on</strong>trol of<br />

man-made noise in the marine envir<strong>on</strong>ment will be interdisciplinary and will use informati<strong>on</strong><br />

provided by existing and future underwater observatories.<br />

The pace and scale of anthropogenic changes occurring in the oceans and the impact of these<br />

changes <strong>on</strong> marine biodiversity and ecosystems are cause for serious c<strong>on</strong>cern. Ocean<br />

observatory research efforts to better understand marine biodiversity will provide the<br />

knowledge necessary to inform an adaptive management process by linking variati<strong>on</strong>s in<br />

biodiversity, its functi<strong>on</strong>, and the ecological and envir<strong>on</strong>mental forcing that drive change in a<br />

comprehensive way.<br />

The persistent discovery of life in envir<strong>on</strong>ments that were previously thought to be relatively<br />

devoid of life c<strong>on</strong>tinues to redefine the fundamental abundance, distributi<strong>on</strong>, and functi<strong>on</strong> of<br />

life <strong>on</strong> earth. The discovery of microbial life in hypersaline brine in sediments several<br />

hundred meters below the seafloor and chemosynthesis-based communities at the seafloor<br />

c<strong>on</strong>tinue to redefine understanding of life and ecosystem tolerances. While chemosynthetic<br />

systems are spatially isolated compared to photosynthetically-driven systems, they provide<br />

excellent opportunities to study systems which are partly independent from solar energy.<br />

Quantifying the diversity of form and metabolic functi<strong>on</strong> in these extraordinary communities<br />

c<strong>on</strong>tinues to be a major research focus with direct links to geoscience (see also <str<strong>on</strong>g>Deliverable</str<strong>on</strong>g>s<br />

11 and 46 of <strong>ESONET</strong> <strong>NoE</strong>).<br />

References :<br />

K. L. Smith, H. A. Ruhl, B. J. Bett, D. S. M. Billett, R. S. Lampitt, and R. S. Kaufmann,<br />

2009, Climate, carb<strong>on</strong> cycling, and deep-ocean ecosystems, Proceedings of the Nati<strong>on</strong>al<br />

Academy of Sciences of the United States of America, vol. 106, no. 46, pp19211–19218.<br />

Ruhl HA, et al. Societal need for improved understanding of climate change, anthropogenic<br />

impacts, and geo-hazard warning drive development of ocean observatories in European Seas,<br />

Progress in Oceanography (submitted), (<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> 11 (EU Sixth Framework <str<strong>on</strong>g>Project</str<strong>on</strong>g><br />

<strong>ESONET</strong> <strong>NoE</strong> c<strong>on</strong>tract no. 036851. 2010).<br />

Gillooly, M, et al., <str<strong>on</strong>g>Report</str<strong>on</strong>g> to EMSO <strong>on</strong> Implementati<strong>on</strong> Model. <str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> 46 (EU Sixth<br />

Framework <str<strong>on</strong>g>Project</str<strong>on</strong>g> <strong>ESONET</strong> <strong>NoE</strong> c<strong>on</strong>tract no. 036851. 2010).<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 23


Hydrothermal ecosystems from video imagery and temperature time-series<br />

Authors: J. Sarrazin, P-M. Sarradin, O. Gauthier (IFREMER) and M. Grégoire (Telecom<br />

Bretagne)<br />

Abstract: Located <strong>on</strong> oceanic ridges, hydrothermal ecosystems are characterized by str<strong>on</strong>g<br />

physico-chemical gradients and the presence of a unique fauna, sustained by microbial<br />

chemosynthesis. Several studies have shown that the spatial distributi<strong>on</strong> and compositi<strong>on</strong> of<br />

vent faunal assemblages were str<strong>on</strong>gly correlated to geological, physical and chemical<br />

processes at different spatial and temporal scales but almost no data are available <strong>on</strong> the<br />

temporal dynamics of these ecosystems. The major objective of this research project is to<br />

develop a video processing platform to analyze the temporal dynamics of hydrothermal<br />

ecosystems. This data al<strong>on</strong>g with abiotic data measured within the envir<strong>on</strong>ment (temperature,<br />

ir<strong>on</strong> and oxygen c<strong>on</strong>centrati<strong>on</strong>s) will be analyzed and compared using multivariate statistics<br />

including PCNM and cluster analyses. Finally, all the data will be fed within a GIS that will<br />

allow for a graphical representati<strong>on</strong> of all the observed temporal variati<strong>on</strong>s. More specifically,<br />

we are looking to answer the following questi<strong>on</strong>s: (i) What biological and geological data can<br />

be automatically extracted from video imagery to feed the temporal data base, (ii) what are<br />

the different scales of variati<strong>on</strong>s of envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s (e.g. temperature) and (iii) what<br />

are the links between envir<strong>on</strong>mental changes and faunal dynamics in hydrothermal<br />

ecosystems ?<br />

Methane bubbles analysis in the framework of MARMARA dem<strong>on</strong>strati<strong>on</strong> missi<strong>on</strong><br />

Author: I. Lebl<strong>on</strong>d (IFREMER)<br />

Slides in Annex F5<br />

Abstract: Observati<strong>on</strong>s of fluid plumes in the water column, bubbles of methane for<br />

example, show an increasing interest since several years. The study of the l<strong>on</strong>g-term<br />

variability of the emitted quantities could be linked to varied works: we can cite preventi<strong>on</strong> of<br />

natural risks (earthquakes, tsunamis, etc), impact of the methane discharge to climate change,<br />

etc. So, a bubbles detector dem<strong>on</strong>strator, with acoustic sensor, has been deployed in 2009 in<br />

the Marmara sea. The principle of the engine is as follow: the module, named BOB (Bubbles<br />

OBservatory Module) is put <strong>on</strong> the seafloor. It’s an aut<strong>on</strong>omous module, and we can expect a<br />

c<strong>on</strong>tinuous recording during about <strong>on</strong>e m<strong>on</strong>th. At the top of the instrument, we find the<br />

acoustic sensor (a 120 kHz split-beam echo-sounder, as used in fisheries acoustics), placed <strong>on</strong><br />

a pan & tilt system. With this system, the positi<strong>on</strong> of the sounder (geographical sectors for<br />

example) can be easily changed. The principle of acquisiti<strong>on</strong> data is as follow: an acoustic<br />

signal is emitted by the echo-sounder, in an horiz<strong>on</strong>tally positi<strong>on</strong> according to previously<br />

chosen sectors, and the backscattering signal is recorded.<br />

Post-processing is realised a posteriori, after the recovery of the module. It c<strong>on</strong>sists at first to<br />

compute the volume backscattering vs time (echo-integrati<strong>on</strong> principle, used in fisheries<br />

acoustics).<br />

A particular attenti<strong>on</strong> is made to guaranty quantitative measures and a certain interoperability:<br />

o Data are recorded in an internati<strong>on</strong>al format “Hac” (Descripti<strong>on</strong> of the ICES HAC<br />

standard data exchange format – ICES Cooperative Research <str<strong>on</strong>g>Report</str<strong>on</strong>g>. 278,<br />

December 2005).<br />

o Data are calibrated, which allow quantitative measures and comparis<strong>on</strong>s with other<br />

acoustic sensors.<br />

o Data are georeferenced, which allow comparis<strong>on</strong>s with several sensors (acoustic or<br />

others) or with other surveys.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 24


Pan & tilt<br />

system, to find<br />

the right sector<br />

Figure 1: Presentati<strong>on</strong> of BOB module<br />

BOB<br />

module<br />

Echo-sounder<br />

Batteries and<br />

electr<strong>on</strong>ic module<br />

Acoustic beam<br />

Figure 4: Principle of data acquisiti<strong>on</strong> with BOB module<br />

Distance<br />

from sensor<br />

(in number<br />

of samples)<br />

Figure 5: Example of echogram data with bubbles layers<br />

time<br />

(in number<br />

of ping)<br />

bubbles<br />

dB<br />

bubbles<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 25


References:<br />

http://www.alphagalileo.org/ViewItem.aspx?ItemId=62519&CultureCode=en<br />

http://www2.cnrs.fr/presse/communique/1709.htm<br />

http://www.physorg.com/news177394319.html<br />

LIDO: acoustic data processing and management<br />

Authors: M. André, M. Van der Schaar, S. Zaugg, L. Houégnigan (UPC)<br />

Abstract: The objectives of LIDO in terms of acoustic and bioacoustics data management are<br />

summarised in Stage 3. Stage 1 and 2 are preliminary steps that must ensure the real-time<br />

process of the data. We already said that in undersea recordings background noise is always<br />

present (sea noise). Most of the time, this sea-noise presents little interest but fills terabytes of<br />

unnecessary storage. The challenge is here to be able to find a reliable set of filters or<br />

detectors able to extract the interesting informati<strong>on</strong> that would be superimposed to this<br />

background-noise, like dolphin calls and s<strong>on</strong>ar, sperm and beaked whale clicks, or noise<br />

produced by ship engine. A detector is an algorithm that accepts a segment of audio as input<br />

and gives a single number as output. The output number is usually designed such that (1) It is<br />

equal or close to zero if <strong>on</strong>ly sea-noise is present in the segment (2) it takes larger values if an<br />

additi<strong>on</strong>al signal is present. By applying a threshold <strong>on</strong> the output number, the detector can<br />

take a decisi<strong>on</strong>, that is: automatically label the segments as "sea-noise-<strong>on</strong>ly" vs "presence of<br />

interesting signal".<br />

The c<strong>on</strong>cept of the broad categories returned by Stage 1 is to narrow the amount of data<br />

supplied to the more sophisticated algorithms of Stage 2. These Stage 2 algorithms are<br />

slightly slower. Hence, narrowing the input in quantity favours the speed of the analysis and<br />

improves the overall robustness of the system by having a well-defined input.<br />

Figure 6: LIDO – Audiodata stream<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 26


References :<br />

http://www.listentothedeep.com/<br />

André, M., van der Schaar, M., Zaugg, S., Houégnigan, L., Sánchez, A., Mas, A., Morell, M.,<br />

Solé, M., Castell, J.V., Listening to the deep, Proceedings of the 24th C<strong>on</strong>ference of the<br />

European Cetacean Society, Stralsund, Germany, 22nd to 24th of March 2010, p.120, Mar<br />

2010<br />

Zaugg, S., van der Schaar, M., Houégnigan, L., Gervaise, C., André, M. 2010. Real-time<br />

acoustic classificati<strong>on</strong> of sperm whale clicks and shipping impulses from deep-sea<br />

observatories, Applied Acoustics, issue doi:10.1016/j.apacoust.2010.05.005<br />

Zaugg, S., van der Schaar, M., Houégnigan, L., André, M., 2009. Real time classificati<strong>on</strong> of<br />

sperm whale clicks and shipping impulses from a deep sea observatory 4th Internati<strong>on</strong>al<br />

Workshop <strong>on</strong> Detecti<strong>on</strong>, Classificati<strong>on</strong> and Localizati<strong>on</strong> of Marine Mammals Using Passive<br />

Acoustics, Sep 2009<br />

van der Schaar, M., Zaugg, S., Houégnigan, L., André, M., 2009, Real-time processing and<br />

management of acoustic data streams in LIDO 4th Internati<strong>on</strong>al Workshop <strong>on</strong> Detecti<strong>on</strong>,<br />

Classificati<strong>on</strong> and Localizati<strong>on</strong> of Marine Mammals using Passive Acoustics, Sep 2009<br />

4.4.1.4 Debriefing and c<strong>on</strong>clusi<strong>on</strong>s<br />

o After the panel discussi<strong>on</strong>s and presentati<strong>on</strong>s, a short debriefing has been given in<br />

plenary sessi<strong>on</strong>. (Annex E6). We c<strong>on</strong>cluded that the first editi<strong>on</strong> of this panel sessi<strong>on</strong><br />

gave an overview of the possible topics related to time series acquired <strong>on</strong> to deep sea<br />

multidisciplinary observatories:<br />

Time series mathematical c<strong>on</strong>siderati<strong>on</strong>s: statistics and signal<br />

processing tools<br />

Various kinds of data sets: photo/video, Acoustic data (passive and<br />

active sensors), volcanology data, generic sensor data, ecology data.<br />

But the list cannot be exhaustive, it is needed to proceed step by step to establish best<br />

practices in most comm<strong>on</strong> acquired data by <strong>ESONET</strong> Deep sea observatories: with Generic<br />

data first. A handbook could gather the practices related to methods presented in this panel<br />

sessi<strong>on</strong> and would be enriched in the future.<br />

o Next steps:<br />

Other data analysis examples are expected for the next steps. For instance data acquired <strong>on</strong><br />

the bottom, from fixed platform, in order to discuss envir<strong>on</strong>ment c<strong>on</strong>strain coming from the<br />

bottom: turbidity, fluid flow, etc. It would be of interest to explain data acquisiti<strong>on</strong> problems<br />

and soluti<strong>on</strong>/methods for sensors put <strong>on</strong> the ground (for instance OBS, etc).<br />

4.4.1.5 References<br />

André, M., van der Schaar, M., Zaugg, S., Houégnigan, L., Sánchez, A., Mas, A., Morell, M.,<br />

Solé, M., Castell, J.V., Listening to the deep, Proceedings of the 24th C<strong>on</strong>ference of the<br />

European Cetacean Society, Stralsund, Germany, 22nd to 24th of March 2010, p.120, Mar<br />

2010<br />

Behrenfeld MJ, Boss E, Siegel DA, Shea DM (2005) Carb<strong>on</strong>-based ocean productivity and<br />

phytoplankt<strong>on</strong> physiology from space. Glob Biogeochem Cycl, 10.1029/2004GB002299.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 27


Behrenfeld MJ, Falkowski PG (1997) Photosynthetic rates derived from satellite-based<br />

chlorophyll c<strong>on</strong>centrati<strong>on</strong>. Limnol Oceanogr 42: 1–20.<br />

Buckland, ST et al. (2007) Advanced distance sampling. Oxford Uni. Pr., New York. xvii +<br />

416 p.<br />

Clarke, KR (1993) N<strong>on</strong>-parametric multivariate analyses of changes in community structure.<br />

Aust. J. Ecology 18: 117-143.<br />

Clarke, KR, RM Warwick (2001) Change in marine communities: an approach to statistical<br />

analysis and interpretati<strong>on</strong>, 2nd editi<strong>on</strong>. PRIMER-E, Plymouth, UK.<br />

Flagg, CN, and SL Smith, (1989) On the use of the acoustic Doppler current profiler to<br />

measure zooplankt<strong>on</strong> abundance. Deep-Sea Research 36: 455–474,<br />

Heikkilai E (1988) Multicollinearity in regressi<strong>on</strong> models with multiple distance measures. J.<br />

Regi<strong>on</strong>al Sci. 28: 345-362.<br />

Hurlbert, S., (1984) Pseudoreplicati<strong>on</strong> and the design of ecological field experiments.<br />

Ecological M<strong>on</strong>ographs 54:187-211.<br />

Kaufmann, R., et al. The effects of seas<strong>on</strong>al pack ice <strong>on</strong> the distributi<strong>on</strong> of macrozooplankt<strong>on</strong><br />

and micr<strong>on</strong>ekt<strong>on</strong> in the northwestern Weddell sea. Mar. Biol. 124, 387.<br />

Laws EA (2004) Export flux and stability as regulators of community compositi<strong>on</strong> in pelagic<br />

marine biological communities: Implicati<strong>on</strong>s from regime shifts. Prog Oceanogr 60:343–354.<br />

Perry, JN, AM Liebhold, et al. (2002) Illustrati<strong>on</strong> and guidelines for selecting statistical<br />

methods for quantifying spatial patterns in ecological data. Ecography 25:578-600.<br />

Pyper, BJ, and RM Peterman. (1998). Comparis<strong>on</strong> of methods to account for autocorrelati<strong>on</strong><br />

in correlati<strong>on</strong> analyses of fish data. Can. J. Fish. Aquat. Sci. 55: 2127–2140.<br />

Quinn, GP, MJ Keough (2002) Experimental design and data analysis for biologists.<br />

Cambridge University Press, Cambridge.<br />

Smith KL, Jr, et al. (2006) Climate effect <strong>on</strong> food supply to depths greater than 4,000 meters<br />

in the northeast Pacific. Limnol Oceanogr 51:166–176.<br />

Schmitt FG, G. Dur, S. Souissi, S.B. Z<strong>on</strong>go, Statistical properties of turbidity, oxygen and pH<br />

fluctuati<strong>on</strong>s in the Seine river estuary (France), Physica A, 387, 6613-6623, 2008<br />

Sokal RR, and FJ Rohlf (1981) Biometry. WH Freeman and Co., San Francisco, 859pp.<br />

Van der Schaar, M., Zaugg, S., Houégnigan, L., André, M., 2009, Real-time processing and<br />

management of acoustic data streams in LIDO 4th Internati<strong>on</strong>al Workshop <strong>on</strong> Detecti<strong>on</strong>,<br />

Classificati<strong>on</strong> and Localizati<strong>on</strong> of Marine Mammals using Passive Acoustics, Sep 2009<br />

Zaugg, S., van der Schaar, M., Houégnigan, L., Gervaise, C., André, M. 2010. Real-time<br />

acoustic classificati<strong>on</strong> of sperm whale clicks and shipping impulses from deep-sea<br />

observatories, Applied Acoustics, issue doi:10.1016/j.apacoust.2010.05.005<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 28


Zaugg, S., van der Schaar, M., Houégnigan, L., André, M., 2009. Real time classificati<strong>on</strong> of<br />

sperm whale clicks and shipping impulses from a deep sea observatory 4th Internati<strong>on</strong>al<br />

Workshop <strong>on</strong> Detecti<strong>on</strong>, Classificati<strong>on</strong> and Localizati<strong>on</strong> of Marine Mammals Using Passive<br />

Acoustics, Sep 2009<br />

4.4.2 Smart sensors and other interface issues<br />

4.4.2.1 Introductory text<br />

The c<strong>on</strong>tributi<strong>on</strong> of <strong>on</strong>going activities within <strong>ESONET</strong> to OGC/IEEE standardizati<strong>on</strong><br />

initiatives will be discussed. The following topics are in the foreground:<br />

o Field bus systems like CAN bus and the CanOpen protocol.<br />

o IEEE 1451.<br />

o IEEE 1451/SWE harm<strong>on</strong>izati<strong>on</strong>.<br />

o Hardware implementati<strong>on</strong>s of standards.<br />

Links to other EU projects/initiatives like KM3NET, EMODNET will be presented.<br />

As use cases the implementati<strong>on</strong> of IEEE 1451 as part of the OGC Interoperability<br />

experiments will be dem<strong>on</strong>strated and discussed. Furthermore the approach towards achieving<br />

IEEE/SWE harm<strong>on</strong>izati<strong>on</strong> will be presented.<br />

4.4.2.2 Panel sessi<strong>on</strong>s<br />

Panel P3.2 – “Smart sensors and other interface issues” led by Eric Delory (DBSCALE) and<br />

Joaquim Del Rio (UPC).<br />

Infrastructure visit: Coriolis data center and tour of IFREMER.<br />

Participants list:<br />

Names Surnames Instituti<strong>on</strong>s Emails<br />

Christoph Waldmann KDM-UNIHB-MARUM waldmann@marum.de<br />

Aurélien Maurin CNRS-CPPM maurin.aurelien@gmail.com<br />

Eric Delory BDSCALE eric.delory@dbscale.com<br />

Feng Tao NOCS bt2000@gmail.com<br />

Carl Gojak CNRS-DT-INSU gojak@dt.insu.cnrs.fr<br />

Jesper Zedlitz University of Kiel jze@informatik.uni-kiel.de<br />

Joaquim Del Rio UPC joaquin.del.rio@upc.edu<br />

J<strong>on</strong> Campbell NOCS joc@noc.sot<strong>on</strong>.ac.uk<br />

Klaus Schleisiek SEND Off-Shore kschleisiek@send.de<br />

Michel Ham<strong>on</strong> IFREMER michel.ham<strong>on</strong>@ifremer.fr<br />

Oussama Kassem Zein ENSIETA oussama.zein@ensieta.fr<br />

Olivier Peden IFREMER olivier.peden@ifremer.fr<br />

Tom O’Reilly MBARI oreilly@mbari.org<br />

Yannick Lenault CNRS-DT-INSU lenault@dt.insu.cnrs.fr<br />

Yves Auffret IFREMER yauffret@ifremer.fr<br />

During the panel discussi<strong>on</strong>s it became clear that the foremost task of this group meeting<br />

should be to define a reference model for ocean observatories. This would allow a more<br />

efficient discussi<strong>on</strong> <strong>on</strong> standard interfaces and also allows the identificati<strong>on</strong> of possible gaps.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 29


This Reference Model has the objective to take in account a wide range of possible<br />

implementati<strong>on</strong>s. In real world, we will find more simplified observatories where some of the<br />

blocks can be bypassed.<br />

The following descripti<strong>on</strong>s apply to figure 7.<br />

Standards and protocols are proposed to communicate different main blocks or sec<strong>on</strong>dary<br />

blocs:<br />

Main Blocks: Sec<strong>on</strong>dary Blocks<br />

Instrument Sensor, ADC, Processing, Calibrati<strong>on</strong>, Storage<br />

C<strong>on</strong>centrator<br />

Sea Stati<strong>on</strong> C<strong>on</strong>troller, Buffer<br />

Node or Juncti<strong>on</strong> Box Switch, Modem<br />

Shore Stati<strong>on</strong> Modem, C<strong>on</strong>troller<br />

Crystal, CLK<br />

Operators<br />

Clients<br />

Archive<br />

Main communicati<strong>on</strong> protocols and initiatives to take into account in order to communicate<br />

different blocs are:<br />

RS232, CAN, RS485, RS422, Ethernet, USB, RF, Acoustic, Satellite and over this physical<br />

layers CANopen, TCP/IP, UDP, 1451.0, PUCK, Sensor Web Enable (SWE), Sensor<br />

Observati<strong>on</strong> Service(SOS), Sensor Alert Services(SAS), Sensor Planning Services (SPS),<br />

ZeroC<strong>on</strong>f, NMEA, PPS; IEEE1588 and NTP.<br />

Reference Model brief Descripti<strong>on</strong><br />

An instrument is composed by theses main blocs: primary sensors, ADC functi<strong>on</strong>,<br />

Calibrati<strong>on</strong>, Processing, storage, and/or Power Supply.<br />

a: c<strong>on</strong>necti<strong>on</strong> a represents communicati<strong>on</strong> between primary sensor to ADC. It will be mainly<br />

analog communicati<strong>on</strong> even if could be digital if the primary sensor is digital or quasi-digital.<br />

Different Instruments can be c<strong>on</strong>nected point to point or in a multi-drop network to a<br />

c<strong>on</strong>centrator.<br />

b: c<strong>on</strong>necti<strong>on</strong> b represents this point to point or multi-drop network to a c<strong>on</strong>centrator.<br />

Different C<strong>on</strong>centrators can be c<strong>on</strong>nected to a Main C<strong>on</strong>troller (Sea Stati<strong>on</strong>) where a buffer<br />

memory can be used to assure data storage while communicati<strong>on</strong> with shore stati<strong>on</strong> is off.<br />

c: c<strong>on</strong>necti<strong>on</strong> c represents the c<strong>on</strong>necti<strong>on</strong> between different c<strong>on</strong>centrator and the Sea Stati<strong>on</strong><br />

C<strong>on</strong>troller.<br />

Different Sea Stati<strong>on</strong> C<strong>on</strong>trollers will communicate with shore stati<strong>on</strong> through a Node or<br />

Juncti<strong>on</strong> Box, composed by a switch and a modem.<br />

d: c<strong>on</strong>necti<strong>on</strong> d represents the c<strong>on</strong>necti<strong>on</strong> between Sea Stati<strong>on</strong> C<strong>on</strong>trollers and a<br />

communicati<strong>on</strong> Switch.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 30


e: c<strong>on</strong>necti<strong>on</strong> e represents the c<strong>on</strong>necti<strong>on</strong> between the communicati<strong>on</strong> Switch and a<br />

communicati<strong>on</strong> Modem. In some cases, Switch block and Modem block could be a single<br />

block.<br />

f: c<strong>on</strong>necti<strong>on</strong> f represents the c<strong>on</strong>necti<strong>on</strong> between marine node or Juncti<strong>on</strong> Box and the shore<br />

stati<strong>on</strong>. It can be wired or wireless.<br />

g: c<strong>on</strong>necti<strong>on</strong> g represents communicati<strong>on</strong> between communicati<strong>on</strong> Modem and Main<br />

C<strong>on</strong>troller at Shore Stati<strong>on</strong>.<br />

h: c<strong>on</strong>necti<strong>on</strong> h represents communicati<strong>on</strong> between the Shore Stati<strong>on</strong> C<strong>on</strong>troller and a<br />

Memory Buffer. This buffer doesn’t represent a full database or main archive.<br />

i: c<strong>on</strong>necti<strong>on</strong> i represents how different clients could be accessed C<strong>on</strong>troller Shore Stati<strong>on</strong><br />

j: c<strong>on</strong>necti<strong>on</strong> j represents how an Operator or various Operators communicate with Shore<br />

Stati<strong>on</strong> C<strong>on</strong>troller.<br />

L. c<strong>on</strong>necti<strong>on</strong> L represents how the c<strong>on</strong>troller saves data into a full database or Archive.<br />

k: c<strong>on</strong>necti<strong>on</strong> k represent communicati<strong>on</strong> between Clients to main Archive.<br />

m&n: c<strong>on</strong>necti<strong>on</strong>s m and n represents how a timing clock gets the C<strong>on</strong>trollers at Shore or Sea<br />

stati<strong>on</strong>s<br />

Proposed and most comm<strong>on</strong> standards or initiatives used per c<strong>on</strong>necti<strong>on</strong><br />

Different standards and protocols have been tested with different observatories topologies.<br />

Other are well known and comm<strong>on</strong>ly used in nowadays observatories.<br />

Link Standards, Protocols or initiatives to take into account<br />

a Analog<br />

b RS232, RS485, RS422, CAN, 1451.X, PUCK, ETH,USB, SWE, ZeroC<strong>on</strong>f<br />

c Eth, RS485, RS422, CAN, USB, ZeroC<strong>on</strong>f<br />

d Eth, RS232, CAN, USB, RS422, ZeroC<strong>on</strong>f<br />

e<br />

f Eth, RF, Acoustic, Satellite, IEEE1451.0, SWE,ZeroC<strong>on</strong>f<br />

g Eth, RS232,CAN, USB, RS422, ZeroC<strong>on</strong>f<br />

h<br />

i SWE, SOS, DataTurbine, ZeroC<strong>on</strong>f<br />

j SWE, SPS, SAS, ZeroC<strong>on</strong>f<br />

k SWE, SOS<br />

L SWE, ZeroC<strong>on</strong>f<br />

m PPS+NMEA, IEEE1588 PTP<br />

n PPS+NMEA, IEEE1588 PTP<br />

Other standards that may apply<br />

Time synchr<strong>on</strong>izati<strong>on</strong><br />

IEEE1588 PTP and NTP over TCP/IP Network<br />

NMEA over RS232, RS485 and Eth<br />

PPS over TTL, RS232, RS485<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 31


Instrument<br />

A/D<br />

Calibrati<strong>on</strong><br />

Processing<br />

a<br />

Sensor<br />

Storage<br />

Instrument<br />

Instrument<br />

A/D<br />

A/D<br />

Calibrati<strong>on</strong><br />

Calibrati<strong>on</strong><br />

Processing<br />

Processing<br />

a a<br />

Sensor<br />

Sensor<br />

Storage<br />

Instrument<br />

Instrument<br />

A/D<br />

A/D<br />

Calibrati<strong>on</strong><br />

Calibrati<strong>on</strong><br />

Processing<br />

Processing<br />

a a<br />

Sensor<br />

Sensor<br />

Storage<br />

Instrument<br />

Instrument<br />

A/D<br />

A/D<br />

Calibrati<strong>on</strong><br />

Calibrati<strong>on</strong><br />

Processing<br />

Processing<br />

a a<br />

Sensor<br />

Sensor<br />

Storage<br />

b<br />

b<br />

b<br />

b<br />

Instrument<br />

A/D<br />

Calibrati<strong>on</strong><br />

Processing<br />

a<br />

Sensor<br />

C<strong>on</strong>centrator<br />

C<strong>on</strong>centrator<br />

C<strong>on</strong>centrator<br />

C<strong>on</strong>centrator<br />

Figure 7 : The suggested observatory Reference Model<br />

Storage<br />

Storage<br />

Storage<br />

Storage<br />

c<br />

c<br />

GPS, Crystal<br />

CLK<br />

m<br />

Sea Stati<strong>on</strong><br />

C<strong>on</strong>troller<br />

Buffer<br />

GPS, Crystal<br />

CLK<br />

m<br />

Sea Stati<strong>on</strong><br />

C<strong>on</strong>troller<br />

Buffer<br />

d<br />

Node or Juncti<strong>on</strong> Box<br />

Switch<br />

Modem<br />

GPS, Crystal<br />

CLK<br />

Shore Stati<strong>on</strong><br />

Modem<br />

e f g<br />

h<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 32<br />

Buffer<br />

n<br />

Archive<br />

j<br />

C<strong>on</strong>troller<br />

L<br />

Operator<br />

i<br />

Clients<br />

k


Case Study<br />

In order to test the Reference Model, it has been used to represent Obsea Observatory as is shown in the next figure.<br />

This exercise will also be d<strong>on</strong>e for other observatories, to find out whether this Reference Model is also applicable to represent many different<br />

marine infrastructures.<br />

Instrument CTD<br />

A/D<br />

Calibrati<strong>on</strong><br />

Processing<br />

a<br />

Sensor<br />

www.obsea.es Western Mediterranean Observatory<br />

OBSEA observatory Simplified schema using the Reference Model<br />

Storage<br />

Instrument IP Camera<br />

Instrument IP Hydroph<strong>on</strong>e<br />

A/D<br />

A/D<br />

Calibrati<strong>on</strong><br />

Calibrati<strong>on</strong><br />

Processing<br />

Processing<br />

a a<br />

Sensor<br />

Sensor<br />

Storage<br />

b<br />

b<br />

RS232 - PUCK C<strong>on</strong>centrator<br />

Etherent<br />

Storage<br />

c<br />

Ethernet<br />

GPS, Crystal<br />

CLK<br />

M, IEEE1588<br />

Sea Stati<strong>on</strong><br />

C<strong>on</strong>troller<br />

uC ColdFire<br />

Based System<br />

Buffer<br />

Bateries<br />

Ethernet<br />

Node or Juncti<strong>on</strong> Box<br />

Switch<br />

e<br />

Modem<br />

Ethernet – f<br />

Cable: Power and Optical<br />

GPS, Crystal<br />

CLK<br />

GPS, IEEE1588<br />

Shore Stati<strong>on</strong><br />

Modem<br />

G Eth<br />

H Eth<br />

Buffer<br />

Archive<br />

J Eth, IEEE 1451.0<br />

SNMP, Zabbix<br />

C<strong>on</strong>trollers<br />

L Ethernet<br />

SEA LINK SHORE<br />

Figure 8 : The Reference Model applied to the OBSEA observatory in Spain<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 33<br />

I IEEE1451 .0<br />

Operator<br />

Clients<br />

K IEEE1451 .0<br />

SWE-SOS<br />

DataTurbine<br />

Zabbix


References:<br />

[1] Duane R. Edgingt<strong>on</strong>, Daniel Davis. “Sensors: Ocean Observing System Instrument<br />

Network Infrastructure”. A <str<strong>on</strong>g>Report</str<strong>on</strong>g> of the NSF/ORION Workshop. 13-15, 2004. MBARI.<br />

4.4.2.3 Debriefing<br />

A practical approach was chosen to map structural elements of the ocean observatory<br />

acquisiti<strong>on</strong> chain with currently available standards that solve the interoperability problem in<br />

smart sensing. To the best of the participants knowledge, such approach was lacking and is a<br />

necessary step in order to harm<strong>on</strong>ise future developments and foster the use of such standards<br />

in <strong>ESONET</strong> and other ocean observatory initiatives. Sec<strong>on</strong>d, this effort covers from the<br />

physical layer to data presentati<strong>on</strong> layer, when most approaches in interoperability generally<br />

<strong>on</strong>ly focus <strong>on</strong> <strong>on</strong>e or few elements of that chain. Finally, the obtained c<strong>on</strong>sensus is more than<br />

satisfactory as representatives from different initiatives as well as different interests (academic<br />

and commercial) were present.<br />

One of the practical follow-ups will c<strong>on</strong>sist in the OBSEA test within <strong>ESONET</strong> <strong>NoE</strong>, where<br />

the above c<strong>on</strong>cepts will be tested in real-time <strong>on</strong> a cabled infrastructure.<br />

4.4.3 Underwater interventi<strong>on</strong> and 20 year plus materiel choice<br />

4.4.3.1 Introductory texts<br />

Underwater interventi<strong>on</strong><br />

They are no standards or recommended practises covering globally the subject of ROV<br />

interventi<strong>on</strong>, apart form the NORSOK "U-102 Remotely Operated Vehicles (ROV) services".<br />

Most of the know-how is retained by each individual operator, and is hardly exchanged within<br />

the industry, for obvious reas<strong>on</strong>s of commercial competiti<strong>on</strong>.<br />

However, it would be advisable for the scientific community for which commercial<br />

competiti<strong>on</strong> is a far less present parameter, to build up a database related to ROV<br />

interventi<strong>on</strong>, collecting data <strong>on</strong> vehicles performances, tooling and sensors usage feed-back,<br />

break down statistics, operati<strong>on</strong>al hazards, crew manning, maintenance tricks, etc., which<br />

could lately be the base for a general recommended practise <strong>on</strong> underwater diverless<br />

interventi<strong>on</strong>. The work should also cover ultimately the AUV operati<strong>on</strong>s, for which the<br />

underwater community in general, still misses a real feedback.<br />

The existing interventi<strong>on</strong> equipment (Submarines, ROV and AUV, hybrid vehicles) available<br />

within the scientific community will govern the early days of interventi<strong>on</strong> procedures <strong>on</strong><br />

underwater observatories (methodology and operati<strong>on</strong>al procedures are largely dependant <strong>on</strong><br />

the interventi<strong>on</strong> equipment specificati<strong>on</strong>s), it will be beneficial in the l<strong>on</strong>g term to work out<br />

the specificati<strong>on</strong>s of standard vehicles, which will offer both performances and versatility, and<br />

would allow the various laboratories to exchange hardware, operators and know how.<br />

Objectives:<br />

The objective of the working group would be to provide the scientific users with proper<br />

guidelines <strong>on</strong> what equipment to use for each type of missi<strong>on</strong>s, and recommended practices to<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 34


operate it in a safe and productive way. As a case study, it would be interesting to compare<br />

how an observatory deployed during a dem<strong>on</strong>strati<strong>on</strong> missi<strong>on</strong> (LOOME, MomarD, Lido,<br />

MODOO...?) would be deployed using existing ROVs. At least two cases are to c<strong>on</strong>sider.<br />

20 years + lifetime material choice<br />

In the definiti<strong>on</strong> of subsea observatories, from the scientific visi<strong>on</strong> to the cost estimates, the<br />

l<strong>on</strong>g term durable operati<strong>on</strong> is a key issue and probably a limitati<strong>on</strong>. Any improvement in the<br />

limitati<strong>on</strong> of ageing of materials and comp<strong>on</strong>ents is worth being analysed.<br />

The choice of material and its protecti<strong>on</strong> towards corrosi<strong>on</strong> has not yet been addressed<br />

directly inside <strong>ESONET</strong>. The panel will start from a white paper issued before the Workshop<br />

(from <strong>ESONET</strong> CA Final report). It will work with the practices of the oceanography partners<br />

but also from offshore oil and gas industry and Navy experience.<br />

Topics intended:<br />

1. corrosi<strong>on</strong> protecti<strong>on</strong> of steel - cathodic protecti<strong>on</strong>,<br />

2. choices of materials and strength after ageing corrosi<strong>on</strong> due to neighbouring<br />

materials (comp<strong>on</strong>ents such as c<strong>on</strong>nectors, actuators, cables),<br />

3. thermoplastics and composites - ageing issues.<br />

<strong>ESONET</strong> partners already designed equipment for the Dem<strong>on</strong>strati<strong>on</strong> Missi<strong>on</strong>s. One or two<br />

of these equipments could be used as a case study for analysis of the material choice, other<br />

possible choices and other practices.<br />

Objectives:<br />

The first meeting of this panel intends to establish an initial reference paper. Whenever<br />

possible, the group will recommend rules or standards, check lists and material ageing test<br />

methods. It will determine the additi<strong>on</strong>al work or experiments <strong>ESONET</strong> could support.<br />

A questi<strong>on</strong>: Can all the <strong>ESONET</strong>-EMSO equipments (infrastructure and instruments) have a<br />

life time of 20 to 30 years with state of the art material design? What attendance/ checking<br />

/maintenance will be needed?<br />

4.4.3.2 White papers<br />

White Paper for the Panel 3-3 – Underwater Interventi<strong>on</strong><br />

Author: J-F. Drogou (IFREMER)<br />

(Based <strong>on</strong> a summary of the first versi<strong>on</strong> of the D27 deliverable)<br />

Abstract: In the frame of <strong>ESONET</strong> <strong>NoE</strong> WP2, the D27 deliverable aims to provide the<br />

scientific users and operators with standard qualified procedures or recommended<br />

practices to operate equipment in a safe and productive way.<br />

The c<strong>on</strong>structi<strong>on</strong> and maintenance phases of an underwater observatory follows various steps,<br />

each step calling for specific competences.<br />

- Site surveys<br />

- Module lifting and lowering to seabed<br />

- Cable laying and underwater c<strong>on</strong>necti<strong>on</strong>s<br />

- Inspecti<strong>on</strong> and maintenance works<br />

The document is structured by these various steps, and includes three axes of development:<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 35


• (i) Review of existing <strong>Best</strong> <strong>Practices</strong> and standards in offshore industry<br />

and the possible benefits for the scientific community.<br />

The Offshore industry has a l<strong>on</strong>g and comprehensive experience in designing, installing and<br />

maintaining underwater structures, which stay <strong>on</strong> seabed for extended periods of time (20<br />

years +), in water depths not accessible to human diving.<br />

Various organisati<strong>on</strong>s and committees, such as API, ISO and DNV, have developed a certain<br />

number of standards and recommended practises for the design and the diverless installati<strong>on</strong><br />

and maintenance of these subsea infrastructures.<br />

A complete survey of these standards and their possible benefit to the scientific community<br />

desiring to design, build, install and maintain large scale seafloor observatories in deep<br />

waters, was analysed.<br />

A separate document presents the complete report of this analysis, with an overview in<br />

appendix 1 and appendix 2 of the D27, which summarizes the main c<strong>on</strong>clusi<strong>on</strong>s.<br />

• (ii) Review of company or institute specificati<strong>on</strong>s<br />

In working practise, the scientific institutes d<strong>on</strong>’t use (or not directly) this source of<br />

recommendati<strong>on</strong>s and standards, and use their own specificati<strong>on</strong>s.<br />

These internally prepared documents are part of “c<strong>on</strong>tract” documents and serve as<br />

c<strong>on</strong>tractual standards during executi<strong>on</strong>. They specify performances and acceptance criteria,<br />

and usually refer to Institute, internati<strong>on</strong>al or nati<strong>on</strong>al standards.<br />

Some of them can be very specific, some others remain pretty general. They are two levels of<br />

company specificati<strong>on</strong>s:<br />

General specificati<strong>on</strong>s: they reflect Company philosophy and expectati<strong>on</strong>s <strong>on</strong> generic<br />

subjects.<br />

Detailed specificati<strong>on</strong>s: they are usually project specific. They are issued by Company’s<br />

technical departments to support a specific aspect of a project, which is either new or more<br />

challenging than usual. Detailed specificati<strong>on</strong>s can also reflect particular c<strong>on</strong>diti<strong>on</strong>s such as<br />

envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s, special design or logistic c<strong>on</strong>straints.<br />

It is in working practise, the first reference documents for the engineers, operators and users<br />

of scientific institutes.<br />

Although the detailed specificati<strong>on</strong>s represent an endless source of recommendati<strong>on</strong>s and<br />

good practises, they are generally not outside edited and available, and <strong>on</strong>ly issued as<br />

particular operati<strong>on</strong>s documents.<br />

In c<strong>on</strong>sequence, the document presents, but n<strong>on</strong> exhaustive and without detailed procedures,<br />

different existing experiences, with different marine means, company crew experience and<br />

rules.<br />

• (iii) General recommendati<strong>on</strong>s for marine science observatory interventi<strong>on</strong>.<br />

It is more than obvious that the existing interventi<strong>on</strong> equipment (Submarines, ROVs, AUVs)<br />

available within the scientific community will govern the early days of interventi<strong>on</strong><br />

procedures <strong>on</strong> underwater observatories.<br />

A direct transfer of the offshore philosophy to the installati<strong>on</strong> of underwater scientific<br />

modules could be detrimental to the scientific community in terms of equipment availability<br />

and installati<strong>on</strong> costs. As opposed to the offshore philosophy which offers no compromise to<br />

equipment performance, a more flexible approach should be taken by the scientific<br />

community by evaluating performances of alternative methods such as smart rigging and<br />

lower cost of the support ships, versus sea state capability and global cost.<br />

The document presents general recommendati<strong>on</strong>s, taking into account the elements of (i) and<br />

(ii), giving a guide for general requirements for marine operati<strong>on</strong>s.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 36


White Paper for the Panel 3-3 – 20 years plus comp<strong>on</strong>ents, mechanical issues.<br />

Author: I.G. Priede (UNIABDN), J.F. Rolin and R.Pers<strong>on</strong> (IFREMER)<br />

Abstract: Although the material choice for l<strong>on</strong>g time deployment has not been addressed<br />

since the beginning of the <strong>ESONET</strong> NetWork of Excellence, it is a key questi<strong>on</strong> as can be<br />

seen in the excerpt of the <strong>ESONET</strong> C<strong>on</strong>certed Acti<strong>on</strong> final (2004) report hereunder:<br />

Materials for subsea observatories<br />

The material choices were a difficult issue for the telecommunicati<strong>on</strong> cable industry. Cable<br />

thread protecti<strong>on</strong>, polyethylene sheathing, glass epoxy composite repeaters were developed<br />

and now allow high performances. The material choice for l<strong>on</strong>g-term underwater deployment<br />

requires the experience of specialized designers and in some cases analysis of experts. A lot<br />

of knowledge was acquired through offshore, academic and military projects. The material<br />

providers are seldom aware of the behaviour of their products in l<strong>on</strong>g-term seawater<br />

exposure: the quantity produced for this market is most of the time negligible with respect to<br />

the overall producti<strong>on</strong>. Research is active in the field of materials in marine envir<strong>on</strong>ment. The<br />

processes of corrosi<strong>on</strong> and especially biofouling are requiring tests and theoretical studies.<br />

Some projects such as Neptune Canada are planning R&D activities <strong>on</strong> materials in parallel to<br />

the subsea observatory design and first deployments. EC funded projects have been devoted<br />

to materials in Marine envir<strong>on</strong>ment: Composite Housing, BRIE, BRIMON. The hydrothermal<br />

envir<strong>on</strong>ment is very corrosive. High temperature and high-pressure systems may be<br />

encountered with black or white smokers. Hydrogen sulphide, a vast host of metal-rich<br />

sulphide minerals, carb<strong>on</strong> dioxide, methane and hydrogen are present. Other places are rich in<br />

chlorides and metals. The m<strong>on</strong>itoring by seafloor observatories will bring very interesting<br />

scientific data <strong>on</strong> biodiversity, ecological processes, and time related variati<strong>on</strong>s of chemical or<br />

physical parameters. Specific tests are required to check the design of the observatory. The<br />

EC FP6 project Exocet/D includes such tests. The deployment of subsea observatories in the<br />

c<strong>on</strong>tinental margins means a l<strong>on</strong>g immersi<strong>on</strong> at pressures of 2000 to 6000 dbar. This is<br />

c<strong>on</strong>sidered as “ultra-deep” because it exceeds the usual offshore oil industry standards. Under<br />

such pressures, some design parameters and some material behaviours have not been tested<br />

yet. Therefore, extra tests and studies may be required.<br />

Future Observatory Designs<br />

.Use of metals For subsea observatories intended to be deployed during more than 10 years,<br />

the choice of metallic materials for structural design is limited.<br />

Steel with cathodic protecti<strong>on</strong> is the standard soluti<strong>on</strong>. Rules of the offshore industry may be<br />

applied. For the deep sea, cathodic protecti<strong>on</strong> parameters have to be modified: Joint Industry<br />

<str<strong>on</strong>g>Project</str<strong>on</strong>g>s between oil industry companies and research institutes are addressing this matter.<br />

The cathodic protecti<strong>on</strong> required must be limited by a preliminary protecti<strong>on</strong> by Zn and<br />

painting according to a process guaranteed by the manufacturer. The c<strong>on</strong>trol and exchange of<br />

anodes will represent a maintenance cost that must be accounted for in the operating costs.<br />

Stainless steel. Comm<strong>on</strong> stainless steel is liable of cavernous corrosi<strong>on</strong> and must be<br />

prohibited. Some minor pieces may be built with 316L. Grades designed for seawater<br />

corrosi<strong>on</strong> (904, superduplex…) are not so comm<strong>on</strong> and are quite expensive.<br />

Nickel alloys.Several grades of Nickel based alloys are available and c<strong>on</strong>stitute safe<br />

soluti<strong>on</strong>s: Inc<strong>on</strong>el 625, Hastelloy C22,…<br />

Titanium alloys The Titanium alloys have been <strong>on</strong>e of the technical enhancements allowing<br />

deep underwater interventi<strong>on</strong>. Their extensive use is <strong>on</strong>ly limited by the cost. For subsea<br />

observatories, the experience of Geostar housings designed by IFREMER and built by<br />

Tecnomare with a Russian manufacturer is a good example. Unalloyed titanium (T40) is used<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 37


when the mechanical requirements are not stringent. Alloys in alpha-beta phase such as 6%<br />

Aluminium and 4% Vanadium (or equivalent Russian grades) are a reliable soluti<strong>on</strong>. One<br />

drawback of titanium alloys is their electrochemical potential which may corrode other<br />

metals. It is suggested to protect it by painting for instance to limit its active surface.<br />

Br<strong>on</strong>ze. Am<strong>on</strong>g copper alloys, some have a good behaviour for l<strong>on</strong>g time exposure to<br />

seawater. They may have the advantage of intrinsic biofouling protecti<strong>on</strong> by release of copper<br />

i<strong>on</strong>s.<br />

Aluminium alloys of several kinds are a soluti<strong>on</strong> for underwater comp<strong>on</strong>ents. The serie 5000<br />

(according to Aluminium Associati<strong>on</strong> standard nomenclature) is not pr<strong>on</strong>e to heavy corrosi<strong>on</strong><br />

and may be used unprotected. The powder produced by corrosi<strong>on</strong> may be a disturbance for<br />

some very precise measurements of particles in the abyss. The 6000 serie and to some extend<br />

7000 serie (with better mechanical performances) are used with hard anodizing specified for<br />

marine applicati<strong>on</strong>. A cathodic protecti<strong>on</strong> with Aluminium-Indium alloys anodes is ensuring<br />

l<strong>on</strong>g-term endurance.<br />

Use of thermoplastic materials Thermoplastic materials have the great advantage to suffer no<br />

electrochemical corrosi<strong>on</strong>. Their limitati<strong>on</strong> of use is due to the water ingress and creep.<br />

Thermoplastics with brittle behaviour can <strong>on</strong>ly be used in special c<strong>on</strong>figurati<strong>on</strong>s. They are<br />

used in cable sheathing and overmoulding, for light mechanical pieces, electrical insulati<strong>on</strong>,<br />

o-rings view ports for cameras and water-tightness comp<strong>on</strong>ents. Due to the creep<br />

characteristics, the load must not be permanent for equipments immersed a l<strong>on</strong>g time such as<br />

subsea observatories. PEEK or PCTFE have excepti<strong>on</strong>al behaviours but are quite expensive,<br />

they are <strong>on</strong>ly manufactured into small pieces in sensors and instrumentati<strong>on</strong>. Polyurethane is<br />

comm<strong>on</strong>ly used, but its formula must be especially suited for l<strong>on</strong>g-term seawater exposure.<br />

The polyether type of molecule has acceptable performances. The comp<strong>on</strong>ents of<br />

polyurethane and of most thermoplastic materials are changing quite often due to envir<strong>on</strong>ment<br />

regulati<strong>on</strong>s and medical regulati<strong>on</strong>s for the workers. This may lead to perform again<br />

acceptance tests or tests <strong>on</strong> mechanical characteristics. In general, characteristics for underwater<br />

ageing is dependent <strong>on</strong> the crystalline to amorphous ratio.<br />

However, the improvement of these materials is very promising and may lead to light weight<br />

equipments with l<strong>on</strong>g immersi<strong>on</strong> potentials.<br />

Use of composite materials The high mechanical characteristics of composite materials and<br />

the lack of corrosi<strong>on</strong> are excellent arguments for their use at sea. In l<strong>on</strong>g-term sea floor<br />

deployments, these performances have been dem<strong>on</strong>strated. In the telecom cable industry,<br />

repeaters in glass epoxy have been produced and used for the last twenty years by Alcatel for<br />

instance. Comp<strong>on</strong>ents of sensor strings implemented in underwater wells, by industrial<br />

companies such as Schlumberger or academic institutes like IFREMER, have shown their<br />

cost effectiveness. In these applicati<strong>on</strong>s, thick glass epoxy is machined and used as any<br />

material. Resin The plastic matrix to be reinforced by fibres must be well tested. The criteria<br />

are, as such, a R&D issue in: water ingress, creep, shock, ageing of matrix-fibre interface. The<br />

choice of epoxy and vinyl-esther is acceptable. Other matrices such as polyester are not<br />

recommended. The producti<strong>on</strong> methods (resp<strong>on</strong>sible of the void ratio) and chemical<br />

comp<strong>on</strong>ents are changing according to the manufacturer. The qualificati<strong>on</strong> is specific,<br />

unfortunately existing standards are not sufficient. A good example of methodology was<br />

given by the EC project Composite Housing. Glass fibres. The reinforcement by glass fibre is<br />

providing good performances for the l<strong>on</strong>g term. The high glass/matrix ratios are giving better<br />

hydrostatic pressure and compressive strength (70 - 80 % in mass). The use of S or R glass for<br />

the fibre and the choice of manufacturing method such as filament winding, fabric prepreg,<br />

injecti<strong>on</strong> have been qualified in several design of underwater equipment. The lander MAP 2<br />

using a glass-epoxy hull and several glass-epoxy comp<strong>on</strong>ents such as amplificating flexural<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 38


springs for release has shown its performances for two years deployments in the deep sea (EC<br />

funded Mast - Alipor project). On offshore oil producti<strong>on</strong> templates, more and more<br />

equipments include glass-epoxy elements. Carb<strong>on</strong> fibres Lighter structures may be designed<br />

using carb<strong>on</strong> fibres. Under tensile or flexural strength design criteria, the additi<strong>on</strong>al cost finds<br />

good arguments. It is more limited for structures dimensi<strong>on</strong>ed by the compressive strength.<br />

The feasibility of carb<strong>on</strong> epoxy pressure hulls has been dem<strong>on</strong>strated by the EC project<br />

Composite Housing. Syntactic foam A composite material made up with very small hollow<br />

glass spheres inside a plastic matrix is able to provide buoyant material. It has been qualified<br />

for full water depth floats as well as pipe insulati<strong>on</strong> material. PAGE 231<br />

Use of brittle materials Brittle materials such as glass or ceramics have excepti<strong>on</strong>al<br />

compressive strength. But any tensile or shear stress may lead to rupture. They are used for<br />

electric insulati<strong>on</strong> in c<strong>on</strong>nectors with a very stringent manufacturing process. Glass spheres<br />

are often used for the buoyancy necessary during deployment phases of subsea observatories.<br />

They are a major comp<strong>on</strong>ent of landers and used as instrument c<strong>on</strong>tainers (<strong>on</strong> seismometers<br />

of GEOSTAR, neutrino detectors of ANTARES…). The rules for deep-sea manned<br />

submersibles from the internati<strong>on</strong>al committee PVHO (Pressure Vessels for Human<br />

Occupancy vehicles) have banned the glass spheres in the vicinity of a submersible. It is still<br />

the rule for submersible Nautile, Alvin and Shinkai and a few ROV such as ROPOS in<br />

Canada. Brittle materials may be used provided a reliability study based <strong>on</strong> their probability<br />

of failure. The Weibull coefficient must be determined for this purpose. The complete<br />

interoperability of deep-sea interventi<strong>on</strong> underwater vehicles will have to address the<br />

acceptance or not of glass spheres.<br />

Biofouling Any material immersed in seawater will be covered by a first biofilm layer. From<br />

this layer and thanks to its b<strong>on</strong>ding characteristics, a microscopic fauna will initiate<br />

col<strong>on</strong>izati<strong>on</strong> by all kind of living species. This phenomen<strong>on</strong> is site dependent and must be<br />

analyzed case by case for l<strong>on</strong>g-term deployment of subsea observatories. The EC project<br />

Mispec has proposed a method of evaluati<strong>on</strong> of biofilm <strong>on</strong> optical comp<strong>on</strong>ents: the Biopam.<br />

EC projects BRIE and BRIMON have developped and tested protecti<strong>on</strong>s for oceanographic<br />

instruments. The main idea is to release biocide from a coating or by active producti<strong>on</strong>. The<br />

limitati<strong>on</strong> is to avoid the use of forbiden substances such as TBT. When biofouling is a main<br />

issue for the instruments <strong>on</strong> a subsea observatory, a specific study with in-situ tests is<br />

necessary: it has been d<strong>on</strong>e for neutrino observatories sites such as Antares and is underway<br />

in EC FP6 project Exocet/D.<br />

4.4.3.3 Panel sessi<strong>on</strong>s<br />

Panel P3.3 – Underwater interventi<strong>on</strong>” led by Volker Ratmeyer (KDM-UNIHB-MARUM),<br />

Marck Smit (NIOZ), Dominique Choqueuse (IFREMER) and Jean-François Drogou<br />

(IFREMER).<br />

Infrastructure visit: Qualificati<strong>on</strong> facilities and tour of IFREMER.<br />

Participants list:<br />

Names Surnames Instituti<strong>on</strong>s Emails<br />

Friedrich Abegg KDM-IFM-GEOMAR fabegg@ifm-geomar.de<br />

Dominique Choqueuse IFREMER dominique.choqueuse@ifremer.fr<br />

Jean-François Drogou IFREMER jfdrogou@ifremer.fr<br />

Nadine Lanteri IFREMER nadine.lanteri@ifremer.fr<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 39


Names Surnames Instituti<strong>on</strong>s Emails<br />

Nicolas Nowald KDM-UNIHB-MARUM nnowald@marum.de<br />

Volker Ratmeyer KDM-UNIHB-MARUM ratmeyer@marum.de<br />

Marck Smit NIOZ msmit@nioz.nl<br />

The panel sessi<strong>on</strong> devoted to material choice included:<br />

- Objective - General overview D. Choqueuse (IFREMER)<br />

Envir<strong>on</strong>ment<br />

Material in deep sea<br />

Protecti<strong>on</strong><br />

Deep Offshore experience<br />

- NIOZ field experiences M. Smit (NIOZ)<br />

- Cathodic protecti<strong>on</strong> D.Festy (Corrosi<strong>on</strong> Institute) & D. Leflour (IFREMER)<br />

Certificati<strong>on</strong><br />

Modeling<br />

- Polymers and Composites P. Davies (IFREMER)<br />

Polymer in seawater<br />

Case studies<br />

Buoyancy Materials D. Choqueuse (IFREMER)<br />

- Cables, C<strong>on</strong>nectors, Moorings, Glass…<br />

4.4.3.4 Debriefing<br />

20 year plus Material Choice.<br />

A final text was issued; it proposes to establish guidelines.<br />

LONG-TERM DEPLOYMENT: MATERIALS FOR SUBSEA OBSERVATORIES<br />

In the definiti<strong>on</strong> of subsea observatories, from the scientific visi<strong>on</strong> to cost estimates, l<strong>on</strong>g-term<br />

sustainable operati<strong>on</strong> is a key issue and probably c<strong>on</strong>stitutes a limitati<strong>on</strong>. Any improvement in<br />

ageing of materials and comp<strong>on</strong>ents merits further study.<br />

Based <strong>on</strong> the experience gained mainly in the offshore industry [1] where materials are<br />

exposed in deep sea (up to 2000 m) for l<strong>on</strong>g time (up to 25 years), in the framework of<br />

<strong>ESONET</strong>/EMSO program guideline for the choice and selecti<strong>on</strong> of materials for l<strong>on</strong>g-term,<br />

deep-sea exposure was proposed.<br />

These guidelines, based <strong>on</strong> existing literature [2], feedback from previous experiences and the<br />

<strong>Best</strong> <strong>Practices</strong> Workshop 2 white paper of this sessi<strong>on</strong> are under preparati<strong>on</strong>. The following<br />

points are addressed:<br />

• Descripti<strong>on</strong> of the deep-sea envir<strong>on</strong>ment highlighting the influence of parameters<br />

behind acting <strong>on</strong> the degradati<strong>on</strong> process (pressure, oxygen c<strong>on</strong>centrati<strong>on</strong>,<br />

fouling, etc.)<br />

• Review of materials used in service deep sea applicati<strong>on</strong>s:<br />

Metallic material<br />

N<strong>on</strong> metallic materials<br />

• Associated protecti<strong>on</strong><br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 40


Cathodic protecti<strong>on</strong>, including the choice and design of cathodic protecti<strong>on</strong><br />

systems<br />

Paints and coatings<br />

• Assembly<br />

• Sub-comp<strong>on</strong>ents: moorings, landers, c<strong>on</strong>nectors, juncti<strong>on</strong> boxes, pressure houses,<br />

buoyancy, etc.<br />

• Guide for performance evaluati<strong>on</strong><br />

It must be menti<strong>on</strong>ed that experience feedback is of primary importance for the use of most of<br />

the materials. Attenti<strong>on</strong> must be paid <strong>on</strong> the assembly of dissimilar material where galvanic<br />

corrosi<strong>on</strong> could be initiated.<br />

Design of structure, choice of material and associated protecti<strong>on</strong> method should be<br />

performed by skilled people in order to avoid reinventing soluti<strong>on</strong>s already evaluated.<br />

In general, the l<strong>on</strong>g-term behavior of the material is not or is <strong>on</strong>ly weakly affected by<br />

pressure. While pressure loading must be taken into account in terms of mechanical loading<br />

<strong>on</strong> hulls for instance, the intrinsic properties of the material are generally not affected by<br />

pressure. Materials subject to creep such as some thermoplastics can be easily replaced with<br />

materials having more suitable characteristics.<br />

In order to avoid most of the problems of corrosi<strong>on</strong> the use of cathodic protecti<strong>on</strong> for metallic<br />

structure is str<strong>on</strong>gly recommended and that will limit the use of “exotic” and “expensive”<br />

materials, which could be proposed.<br />

For polymer and composite materials [3] good knowledge of behavior in water has to be<br />

c<strong>on</strong>sidered in order to limit the risk of l<strong>on</strong>g-term detrimental degradati<strong>on</strong> processes<br />

(hydrolysis, etc.). However, it must be noted that degradati<strong>on</strong> of such material is generally<br />

thermally activated and except in really specific areas (black smokers, etc.), temperature is<br />

low enough (around 4°C) to avoid initiati<strong>on</strong> of degradati<strong>on</strong> processes.<br />

An approach based <strong>on</strong> accelerated test using time-temperature equivalence can be used to<br />

predict l<strong>on</strong>g-term performance of polymeric materials [4][5] however good knowledge of<br />

degradati<strong>on</strong> phenomena is needed in order to guarantee pertinence of the accelerated test.<br />

For specific materials as syntactic foam, synthetic fiber for mooring cable, knowledge of<br />

l<strong>on</strong>g-term behavior has already been addressed through specific program related to offshore<br />

industry [6][7].<br />

[1] M. Roche, Protecti<strong>on</strong> c<strong>on</strong>tre la corrosi<strong>on</strong> des ouvrages maritimes pétroliers (1978)<br />

[2] Materials for marine systems and structures, editor D F. Hass<strong>on</strong> (1988)<br />

[3] D. Choqueuse, P. Davies, Durabilité des polymères et composites pour applicati<strong>on</strong> sous marine, Revue des composites et<br />

des matériaux avancés, (2002)<br />

[4] D. Choqueuse, P. Davies, Ageing of composites in underwater applicati<strong>on</strong>s, in Ageing of composites, Woodhead<br />

publishing in materials, editor R. Martin, (2008)<br />

[5] P. Davies, G. Evrard, Accelerated ageing of polyurethanes for marine applicati<strong>on</strong>s - Polymer Degradati<strong>on</strong> and Stability,<br />

Volume 92, Issue 8, August 2007, Pages 1455-1464<br />

[6] F. Grosjean, N. Bouch<strong>on</strong>neau, D. Choqueuse, V. Sauvant, Comprehensive analyses of syntactic foam behaviour in<br />

deepwater envir<strong>on</strong>ment – Journal of materials science 2009; 44 (6) 1462-1468<br />

[7] G. Desrombise, L Van Scoors, P. Davies, L. Dussud, Durability of aramid ropes in a marine envir<strong>on</strong>ment, OMAE 2008-<br />

57199<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 41


Annex A<br />

AGENDA<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 42


Thursday 8 October<br />

Time Topic<br />

09:00 REGISTRATION Auditorium<br />

09:30<br />

10:30<br />

10:30<br />

11:00<br />

11:00<br />

11:15<br />

11.15<br />

12.30<br />

12.30<br />

14:00<br />

14:00<br />

16:30<br />

16:30<br />

16:45<br />

16:45<br />

18:30<br />

Plenary<br />

Groups<br />

Presentati<strong>on</strong><br />

Introducti<strong>on</strong> - Short presentati<strong>on</strong> of the <strong>ESONET</strong> Dem<strong>on</strong>strati<strong>on</strong> missi<strong>on</strong>s ...................................................................................................... Roland Pers<strong>on</strong><br />

Results of <strong>Best</strong> <strong>Practices</strong> Workshop <strong>on</strong>e in Bremen ..................................................................................................................................Christoph Waldmann<br />

Auditorium<br />

G1 – Generic Instrumentati<strong>on</strong><br />

Presentati<strong>on</strong> of Panels and reference<br />

documents - Auditorium<br />

Coffee Break/ Despatching to panels - Auditorium<br />

Introducti<strong>on</strong> to<br />

Panels<br />

Lunch in IFREMER<br />

Key note<br />

speeches and<br />

<strong>Practices</strong> from<br />

projects<br />

P1 – 1<br />

Armor Room<br />

P1 – 1<br />

Armor Room<br />

Henry Ruhl<br />

P1 – 2<br />

Argoat Room<br />

P1 – 2<br />

Argoat Room<br />

Coffee Break / Despatching to visits – Auditorium<br />

Visits<br />

G1 – Generic Instrumentati<strong>on</strong><br />

Armor/Argoat Rooms<br />

G2 – Infrastructure<br />

Presentati<strong>on</strong> of Panels and reference<br />

documents - Auditorium<br />

Jean-François Rolin<br />

P2 - 1<br />

GM Room<br />

P2 - 1<br />

GM Room<br />

G2 – Infrastructure<br />

EEP Room<br />

P2 – 2<br />

EEP Room<br />

P2 – 2<br />

EEP Room<br />

G3 – Standardisati<strong>on</strong> and interoperability<br />

Presentati<strong>on</strong> of Panels and reference documents –<br />

Auditorium<br />

Christoph Waldmann<br />

P3 – 1<br />

Auditorium<br />

P3 – 1<br />

Auditorium<br />

P3 – 2<br />

NSE Room<br />

P3 – 2<br />

NSE Room<br />

G3 – Standardisati<strong>on</strong><br />

and interoperability<br />

Auditorium / NSE Room<br />

P3 – 3<br />

Ocean Lounge<br />

P3 – 3<br />

Ocean Lounge<br />

G3 – Standardisati<strong>on</strong><br />

and interoperability<br />

Ocean Lounge<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 43


Calibrati<strong>on</strong> facilities and tour of<br />

IFREMER Brest<br />

Laurent Delauney<br />

Prototype facilities, marine materials lab<br />

and tour of IFREMER Brest<br />

Jean-François Rolin<br />

Coriolis data center and tour<br />

of IFREMER Brest<br />

Gilbert Maudire<br />

18:30 Shuttle to Hotels (2 stops: Rue M<strong>on</strong>ge, near square Loir et Cher and Place de la Liberté, near Office du Tourisme) – download the Brest map<br />

19:45 Shuttle from Hotels to Oceanopolis<br />

20:15 Dinner – Oceanopolis Aquarium<br />

22:30 Shuttle to Hotels<br />

Qualificati<strong>on</strong> facilities<br />

and tour of IFREMER<br />

Brest<br />

Philippe Warnier<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 44


Friday 9 October<br />

Time Topic<br />

08:15 Shuttle to IFREMER (2 stops: Rue M<strong>on</strong>ge,near square Loir et Cher and Place de la Liberté, near Office du Tourisme) – download the Brest map<br />

Groups G1 – Generic Instrumentati<strong>on</strong> G2 – Infrastructure G3 – Standardisati<strong>on</strong> and interoperability<br />

09:00<br />

10:15<br />

10.15<br />

10.30<br />

10.30<br />

11.30<br />

11.30<br />

12.30<br />

12.30<br />

14:00<br />

14:00<br />

15:00<br />

15:00<br />

15:15<br />

15:15<br />

16:00<br />

Panels<br />

Panel case studies<br />

for instance from<br />

Demo Missi<strong>on</strong>s<br />

P1 – 1<br />

Armor Room<br />

P1 – 1<br />

Armor Room<br />

Coffee Break in meeting rooms<br />

Panel case studies<br />

for instance from<br />

Demo Missi<strong>on</strong>s<br />

Debriefing by<br />

groups<br />

Lunch in IFREMER<br />

Panel work –<br />

Update/establish<br />

reference<br />

document<br />

P1 – 1<br />

Armor Room<br />

P1 – 2<br />

Argoat Room<br />

P1 – 2<br />

Argoat Room<br />

P1 – 2<br />

Argoat Room<br />

G1 – Generic Instrumentati<strong>on</strong><br />

Sharing case studies<br />

Armor Room<br />

P1 – 1<br />

Armor Room<br />

Coffee Break - Auditorium<br />

Plenary<br />

<str<strong>on</strong>g>Report</str<strong>on</strong>g> from animators<br />

Auditorium<br />

16:00 Shuttle to Airport<br />

P1 – 2<br />

Argoat Room<br />

P2 – 1<br />

GM Room<br />

P2 – 1<br />

GM Room<br />

P2 – 1<br />

GM Room<br />

G2 – Infrastructure<br />

Sharing case studies<br />

GM Room<br />

P2 – 1<br />

GM Room<br />

P2 – 2<br />

EEP Room<br />

P2 – 2<br />

EEP Room<br />

P2 – 2<br />

EEP Room<br />

P2 – 2<br />

EEP Room<br />

P3 – 1<br />

Auditorium<br />

P3 – 1<br />

Auditorium<br />

P3 – 1<br />

Auditorium<br />

P3 – 2<br />

NSE Room<br />

P3 – 2<br />

NSE Room<br />

P3 – 2<br />

NSE Room<br />

G3 – Standardisati<strong>on</strong> and interoperability<br />

Sharing case studies<br />

Auditorium<br />

P3 – 1<br />

Auditorium<br />

P3 – 2<br />

NSE Room<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 45<br />

P3 – 3<br />

Ocean Lounge<br />

P3 – 3<br />

Ocean Lounge<br />

P3 – 3<br />

Ocean Lounge<br />

P3 – 3<br />

Ocean Lounge


Working<br />

Groups<br />

Panels<br />

Chair<br />

pers<strong>on</strong>s<br />

Presentati<strong>on</strong> of Panels<br />

G1 – Generic Instrumentati<strong>on</strong> G2 - Infrastructure G3 – Standardisati<strong>on</strong> and interoperability<br />

5.1.14.4.4<br />

1 – 1<br />

Physico-chemical<br />

sensors,<br />

Metrology:<br />

CTD from physical<br />

oceanography projects<br />

Oxygen , metrology<br />

and standards.<br />

J. Greinert (NIOZ)<br />

and A. Tengberg<br />

(AADI)<br />

P2 – 1<br />

P1 – 2<br />

Acoustic sensors: Design<br />

comparis<strong>on</strong> –<br />

Cabled<br />

observatories:<br />

ADCP,<br />

Hydroph<strong>on</strong>es.<br />

JP. Hermand<br />

(ULB)<br />

and<br />

M. André (UPC)<br />

Antares, Nemo, Mars,<br />

Venus, Neptune CDN,<br />

Koeri/ Marmara.<br />

J. Piera (UPC)<br />

and<br />

J. Marvaldi<br />

(Ifremer)<br />

P2 – 2<br />

Design comparis<strong>on</strong><br />

– Stand al<strong>on</strong>e<br />

observatories:<br />

Momar, Var Cañ<strong>on</strong>,<br />

Animate,<br />

Acoustic telemetry<br />

issues.<br />

J. Karstensen (IFM)<br />

and J. Blandin<br />

(Ifremer)<br />

P3 – 1<br />

Time series and<br />

images: treatment<br />

and qualificati<strong>on</strong>:<br />

Time series. Pore<br />

pressure, seismic data.<br />

H. Ruhl (NOCS)<br />

and<br />

I. Puillat (Ifremer)<br />

Nota: Two sessi<strong>on</strong>s will be filmed.<br />

Organisati<strong>on</strong> Committee (as decided during Steering Committee in L<strong>on</strong>d<strong>on</strong>)<br />

Christoph Waldmann (Marum - Bremen), Michel André (UPC Barcel<strong>on</strong>a), Mark Smit (NIOZ Texel),<br />

Jean-François Rolin (Ifremer Brest), Klaus Schleisick (Send Hamburg).<br />

External support for n<strong>on</strong>-<strong>ESONET</strong> members: Séverine Thomas (GIS - Europôle Mer Brest)<br />

P3 – 2<br />

Smart sensors<br />

and other<br />

interface issues:<br />

UPC, Ifremer/Ensieta,<br />

Marum.<br />

E. Delory<br />

(DBSCALE) and<br />

J.Del Rio (UPC)<br />

P3 – 3<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 46<br />

Underwater<br />

interventi<strong>on</strong> and<br />

20years plus<br />

material choice:<br />

Ropos, Victor 6000,<br />

Quest,<br />

Kiel 6000,<br />

Pegaso.<br />

Choice of<br />

thermoplastics and<br />

protecti<strong>on</strong> of steel.<br />

V. Ratmeyer<br />

(MARUM),<br />

M. Smit (NIOZ)<br />

D. Choqueuse<br />

(Ifremer) and<br />

JF. Drogou<br />

(Ifremer)


Generic sessi<strong>on</strong> scheme<br />

Presentati<strong>on</strong>s of the state of the art and examples from<br />

<strong>ESONET</strong>.<br />

Discussi<strong>on</strong> of presentati<strong>on</strong>s should focus <strong>on</strong>:<br />

Comparis<strong>on</strong> of methodical approaches in various<br />

applicati<strong>on</strong>s and in different instituti<strong>on</strong>s.<br />

Overarching tools and methods.<br />

Identificati<strong>on</strong> of gaps and strategies for remedies.<br />

Use cases could for instance cover:<br />

Missi<strong>on</strong> based descripti<strong>on</strong>s.<br />

Descripti<strong>on</strong> of an applicati<strong>on</strong> within demo missi<strong>on</strong>.<br />

Applicati<strong>on</strong> of discussed methods to particular scenarios.<br />

Use cases should have broad relevance.<br />

Summary of sessi<strong>on</strong>s within report:<br />

Updating of <strong>ESONET</strong> reports.<br />

Split of writing tasks for workshop reports.<br />

Recommendati<strong>on</strong>s of next steps within <strong>ESONET</strong>.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 47


Working Group G1 – Generic Instrumentati<strong>on</strong><br />

Panel 1-1 : Physico-chemical sensors, Metrology<br />

Chairs: Anders Tengberg (AADI) and Jens Greinert (NIOZ)<br />

The previous <strong>Best</strong> Practice Workshop in Bremen led to the definiti<strong>on</strong> of the generic instrumentati<strong>on</strong> in<br />

<strong>ESONET</strong> (see <str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> D6 - Sessi<strong>on</strong> 4 - Scientific needs in regard to generic and specific<br />

instrument packages - page 34). A report was issue by the project as <str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> 13 - <str<strong>on</strong>g>Report</str<strong>on</strong>g> <strong>on</strong><br />

science modules, written by Henry Ruhl et al.<br />

Bio fouling protecti<strong>on</strong> and calibrati<strong>on</strong> methods need to be discussed again in order to determine<br />

additi<strong>on</strong>al tests or intercomparis<strong>on</strong> workshops to be performed.<br />

The list of sensors issued by the <strong>ESONET</strong> working group (D13) menti<strong>on</strong>s two level of priorities: the<br />

minimum list and an extended list.<br />

This new meeting is intending to finalize the specificati<strong>on</strong>s of the "minimum list" and proceed in the<br />

recommendati<strong>on</strong>s for the sensors of the extended list.<br />

This sessi<strong>on</strong> specifically addresses the qualificati<strong>on</strong> and deployment procedures of the individual<br />

measuring system. Equipment testing complying with standards such as NFX 10-800 or similar must<br />

be performed for the qualificati<strong>on</strong>. The group should propose a way to ensure that all qualificati<strong>on</strong> are<br />

performed.<br />

The sessi<strong>on</strong> specifically addresses the qualificati<strong>on</strong> and deployment c<strong>on</strong>straints of the individual<br />

measuring system. The metrology necessary before and between each deployment will be discussed.<br />

The metrology procedures must be related to the internati<strong>on</strong>al standards and agreements of reference<br />

laboratories, ensuring l<strong>on</strong>g term traceability and interoperability.<br />

Objectives:<br />

Prepare final specificati<strong>on</strong>s. Issue recommendati<strong>on</strong>s according to the recognized state of the art.<br />

Recommend comparative tests and qualificati<strong>on</strong> tests. Evaluate costs for the purchase and operati<strong>on</strong> of<br />

these instruments.<br />

It appears that this issue corresp<strong>on</strong>ds to an integrating activity inside Es<strong>on</strong>et which might last after the<br />

end of the project as a service part the European infrastructure.<br />

How could such a group c<strong>on</strong>tinue its activities (training, qualificati<strong>on</strong> of new sensors ,metrology<br />

reference, data treatment,...)?<br />

What are the processes to implement in the Quality management Plan.: recommendati<strong>on</strong>, <strong>ESONET</strong><br />

Label,....<br />

Panel 1-2 : Acoustic sensors<br />

Chairs: Jean-Pierre Hermand (ULB) and Michel André (UPC)<br />

Acoustic sensors like ADCP and s<strong>on</strong>ar systems are forming the backb<strong>on</strong>e for ocean science missi<strong>on</strong>s.<br />

This sessi<strong>on</strong> will focus <strong>on</strong> best practices developed within this c<strong>on</strong>text in particular in regard to signal<br />

processing techniques and data verificati<strong>on</strong> strategies for acoustic systems. Although ADCPs are<br />

based <strong>on</strong> a very straightforward measuring principle the data processing is quite intricate often leaving<br />

scientific users in the role of simply applying predefined processing steps. A coherent approach <strong>on</strong> this<br />

appears necessary so that users of the data can judge <strong>on</strong> the reliability of the collected data.<br />

The following issues will be discussed during this sessi<strong>on</strong>:<br />

o Applicati<strong>on</strong> of acoustic systems in different scenarios (ADCPs for currents and waves).<br />

o Known issues of the instruments.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 48


o Existing or newly developed quality c<strong>on</strong>trol and assurance procedures.<br />

o Interacti<strong>on</strong> with manufacturer to derive recommendati<strong>on</strong>s for the user.<br />

Giving reference to a use case selected from demo missi<strong>on</strong> activities like the detecti<strong>on</strong> and<br />

classificati<strong>on</strong> of marine mammals by recording acoustic signals the applicati<strong>on</strong> of discussed methods<br />

will be highlighted.<br />

Working Group G2 – Infrastructure<br />

Panel 2-1 : Cabled observatories: design comparis<strong>on</strong> and tests<br />

Chairs: Jaume Piera (UPC) and Jean Marvaldi (Ifremer)<br />

Several subsea cabled observatories are operated or under final c<strong>on</strong>structi<strong>on</strong>. Some elements were<br />

presented during the First <strong>Best</strong> Practice Workshop in Bremen. This panel will update this informati<strong>on</strong>.<br />

The cost evaluati<strong>on</strong> performed by <strong>ESONET</strong> WP5 group will be reviewed and compared with<br />

standal<strong>on</strong>e soluti<strong>on</strong>s. The panel will look more carefully at <strong>on</strong>e case, taking into account the scientific<br />

objectives presented earlier in the week at the All Regi<strong>on</strong>s Workshop 2 in Paris. System engineering<br />

issues for the various comp<strong>on</strong>ents of the infrastructure will be addressed.<br />

For the remaining integrati<strong>on</strong> budget in <strong>ESONET</strong>, the Steering Committee decided to open a call for<br />

the partners. The main objective of the call is to promote test of equipment and instruments <strong>on</strong> cabled<br />

subsea observatory sites. The results of the two Dem<strong>on</strong>strati<strong>on</strong> Missi<strong>on</strong>s of Es<strong>on</strong>et showed a lack in<br />

the field of cabled observatories experiment.<br />

A unified proposal for test <strong>on</strong> cabled sites is under final acceptance process. It will be presented to the<br />

panel for discussi<strong>on</strong> and suggesti<strong>on</strong> according to the practices of the attendants.<br />

Objectives:<br />

One objective is to identify the technical and cost related topics to be addressed either through<br />

internati<strong>on</strong>al cooperati<strong>on</strong>, through the direct input of Antares, Nemo (European project operating<br />

cabled observatories) or through additi<strong>on</strong>al activities proposed as a reply to the “test call” issued in<br />

spring 2009 by Es<strong>on</strong>et.<br />

This panel will determine the needing studies necessary to establish what are the comm<strong>on</strong> practices<br />

and corresp<strong>on</strong>ding recommendati<strong>on</strong>s and write a short report <strong>on</strong> this matter (report to EMSO<br />

Preparatory Phase).<br />

Panel 2-2 : Stand al<strong>on</strong>e observatories: design comparis<strong>on</strong><br />

Chairs: Johannes Karstensen (IFM-GEOMAR) Jérôme Blandin (Ifremer)<br />

This panel benefits from the experience of a large community (Animate, Var cany<strong>on</strong>, Pirata buoys,…)<br />

and Dem<strong>on</strong>strati<strong>on</strong> Missi<strong>on</strong>s of <strong>ESONET</strong>. It is assumed that <strong>on</strong> some sites, the stand al<strong>on</strong>e<br />

observatories will be deployed to c<strong>on</strong>stitute a deep sea observatory infrastructure prior to cabled<br />

observatories.<br />

Am<strong>on</strong>g the topics of the panel:<br />

o General design issues (e.g. Rating of comp<strong>on</strong>ents, knock-down preventi<strong>on</strong>, materiel in use,<br />

software, corrosi<strong>on</strong>),<br />

o Protecti<strong>on</strong> of surface elements: Bio-Invasi<strong>on</strong>s (e.g. birds, mussels), Vandalism, Safety,<br />

o Data telemetry issues: underwater & surface ocean<br />

o Energy management,<br />

o Extensi<strong>on</strong> of deployment durati<strong>on</strong>,<br />

o Deployment and maintenance procedures,<br />

o Implementati<strong>on</strong> and exploitati<strong>on</strong> costs,<br />

o On shore organizati<strong>on</strong>: remote sensor c<strong>on</strong>trol, emergency interventi<strong>on</strong>s,<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 49


o Synergy with other observatory comp<strong>on</strong>ents (e.g. AUV use for battery exchange, data<br />

retrieval).<br />

Two cost analysis have been performed inside <strong>ESONET</strong> WP5, <strong>on</strong>e for stand al<strong>on</strong>e winch<br />

observatories, established by AWI for the ARCTIC c<strong>on</strong>diti<strong>on</strong>s, and another <strong>on</strong>e for the stand al<strong>on</strong>e<br />

acoustic observatories.<br />

Objectives:<br />

One objective is to identify the technical and cost related topics to be followed up specifically in the<br />

Dem<strong>on</strong>strati<strong>on</strong> Missi<strong>on</strong>s using stand al<strong>on</strong>e observatories and corresp<strong>on</strong>ding to communicati<strong>on</strong>. This<br />

panel will tend establish what are the comm<strong>on</strong> practices to be recommended and write a paper <strong>on</strong><br />

these issues.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 50


Working group G3 – Standardisati<strong>on</strong> and Interoperability<br />

Panel 3-1 : Time series and images: treatment and scientific<br />

validati<strong>on</strong><br />

Chairs: Henry Ruhl (NOCS) and Ingrid Puillat (Ifremer)<br />

The purpose of this sub-sessi<strong>on</strong> is to give an overview <strong>on</strong> most comm<strong>on</strong>ly used methods for l<strong>on</strong>g timeseries<br />

analysis of data acquired in the framework of deep-sea observatories.<br />

The sequence of topics discussi<strong>on</strong>s will start with data qualificati<strong>on</strong>, after the systematic quality<br />

assurance, when the eyes and know how of the specialists is needed to definitively qualify the data, for<br />

instance:<br />

How to detect a slow and low trend <strong>on</strong> a l<strong>on</strong>g time series?<br />

How to c<strong>on</strong>duct pre and post-deployment calibrati<strong>on</strong>s and apply post-deployment<br />

correcti<strong>on</strong>s?<br />

How to apply various signal processing methods to different kinds of data and objectives?<br />

How to address gap in time series for signal processing methods?<br />

We will discuss examples from parameters to be collected by the generic sensor module, as defined by<br />

<strong>ESONET</strong> deliverables D11 and D13 (ref.) including c<strong>on</strong>ductivity, temperature, pressure, and currents,<br />

as well as a set of rather specific examples including seismic, marine acoustics, biogeochemical flux,<br />

and time-series photography, and ecological community data.<br />

Objectives:<br />

An objective of this sessi<strong>on</strong> will be to document what are the expected products and the best practices<br />

of time-series data analysis in a report, according to the science objectives and cases studies.<br />

This sessi<strong>on</strong> must be understood as a starting point for further disciplinary or interdisciplinary<br />

workshops supported by <strong>ESONET</strong> (participati<strong>on</strong> to existing <strong>on</strong>es, co-organizati<strong>on</strong> or organizati<strong>on</strong>).<br />

A questi<strong>on</strong>:<br />

What is the effort in man-years necessary in each discipline to reach a level of data analysis<br />

capacities in adequacy to dataflow and science objectives?<br />

Panel 3-2 : Smart sensors and other interface issues<br />

Chairs: Joaquin del Rio (UPC) and Eric Delory (DBSCALE)<br />

The c<strong>on</strong>tributi<strong>on</strong> of <strong>on</strong>going activities within <strong>ESONET</strong> to OGC/IEEE standardizati<strong>on</strong> initiatives will<br />

be discussed. The following topics are in the foreground:<br />

o Field bus systems like CAN bus and the CanOpen protocol.<br />

o IEEE 1451.<br />

o IEEE 1451/SWE harm<strong>on</strong>izati<strong>on</strong>.<br />

o Hardware implementati<strong>on</strong>s of standards.<br />

Links to other EU projects/initiatives like KM3NET, SANY(?), EMODNET will be presented.<br />

As use cases the implementati<strong>on</strong> of IEEE 1451 as part of the OGC Interoperability experiments will be<br />

dem<strong>on</strong>strated and discussed. Furthermore the approach towards achieving IEEE/SWE harm<strong>on</strong>izati<strong>on</strong><br />

will be presented.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 51


Panel 3-3 : Underwater interventi<strong>on</strong> and 20years plus material<br />

choice<br />

Chairs : Jean-François Drogou (Ifremer), Volker Ratmeyer (Marum)<br />

Dominique Choqueuse (Ifremer) and Marck Smit (NIOZ)<br />

Thursday 8th - Underwater interventi<strong>on</strong><br />

They are no standards or recommended practises covering globally the subject of ROV interventi<strong>on</strong>,<br />

apart form the NORSOK "U-102 Remotely Operated Vehicles (ROV) services".<br />

Most of the know how is retained by each individual operator, and is hardly exchanged within the<br />

industry, for obvious reas<strong>on</strong>s of commercial competiti<strong>on</strong>.<br />

However, it would be advisable for the scientific community for which commercial competiti<strong>on</strong> is a<br />

far less present parameter, to build up a database related to ROV interventi<strong>on</strong>, collecting data <strong>on</strong><br />

vehicles performances, tooling and sensors usage feed-back, break down statistics, operati<strong>on</strong>al<br />

hazards, crew manning, maintenance tricks, etc. , which could lately be the base for a general<br />

recommended practise <strong>on</strong> underwater diverless interventi<strong>on</strong>. The work should also cover ultimately<br />

the AUV operati<strong>on</strong>s, for which the underwater community in general, still misses a real feed-back.<br />

The existing interventi<strong>on</strong> equipment (Submarines, ROV and AUV, hybrid vehicles ) available within<br />

the scientific community will govern the early days of interventi<strong>on</strong> procedures <strong>on</strong> underwater<br />

observatories (methodology and operati<strong>on</strong>al procedures are largely dependant <strong>on</strong> the interventi<strong>on</strong><br />

equipment specificati<strong>on</strong>s), it will be beneficial in the l<strong>on</strong>g term to work out the specificati<strong>on</strong>s of<br />

standard vehicles, which will offer both performances and versatility, and would allow the various<br />

laboratories to exchange hardware, operators and know how.<br />

Objectives:<br />

The objective of the working group would be to provide the scientific users with proper guidelines <strong>on</strong><br />

what equipment to use for each type of missi<strong>on</strong>s, and recommended practices to operate it in a safe<br />

and productive way. As a case study, it would be interesting to compare how an observatory deployed<br />

during a dem<strong>on</strong>strati<strong>on</strong> missi<strong>on</strong> (LOOME, MomarD, Lido, MODOO...?) would be deployed using<br />

existing ROVs. At least two cases are to c<strong>on</strong>sider.<br />

Friday 9th - 20 years + lifetime material choice<br />

In the definiti<strong>on</strong> of subsea observatories, from the scientific visi<strong>on</strong> to the cost estimates, the l<strong>on</strong>g term<br />

durable operati<strong>on</strong> is a key issue and probably a limitati<strong>on</strong>. Any improvement in the limitati<strong>on</strong> of<br />

ageing of materials and comp<strong>on</strong>ents is worth being analysed.<br />

The choice of material and its protecti<strong>on</strong> towards corrosi<strong>on</strong> has not yet been addressed directly inside<br />

Es<strong>on</strong>et. The panel will start from a white paper issued before the Workshop (from Es<strong>on</strong>et CA Final<br />

report). It will work with the practices of the oceanography partners but also from offshore oil and gas<br />

industry and Navy experience.<br />

Topics intended:<br />

1. corrosi<strong>on</strong> protecti<strong>on</strong> of steel - cathodic protecti<strong>on</strong>,<br />

2. choices of materials and strength after ageing corrosi<strong>on</strong> due to neighbouring materials<br />

(comp<strong>on</strong>ents such as c<strong>on</strong>nectors, actuators, cables),<br />

3. thermoplastics and composites - ageing issues.<br />

<strong>ESONET</strong> partners already designed equipment for the Dem<strong>on</strong>strati<strong>on</strong> Missi<strong>on</strong>s. One or two of these<br />

equipments could be used as a case study for analysis of the material choice, other possible choices<br />

and other practices.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 52


Objectives:<br />

The first meeting of this panel intends to establish an initial reference paper. Whenever possible, the<br />

group will recommend rules or standards, check lists and material ageing test methods. It will<br />

determine the additi<strong>on</strong>al work or experiments <strong>ESONET</strong> could support.<br />

A questi<strong>on</strong>: Can all the <strong>ESONET</strong>-EMSO equipments (infrastructure and instruments) have a life time<br />

of 20 to 30 years with state of the art material design? What attendance/ checking /maintenance will<br />

be needed?<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 53


Annex B<br />

List of attendees<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 54


Firstname Lastname Instituti<strong>on</strong> Country Email<br />

Friedrich Abegg IFM-GEOMAR Germany fabegg@ifm-geomar.de<br />

Jérome Ammann CNRS-IUEM France jerome.ammann@univ-brest.fr<br />

Michel André UPC Spain michel.andre@upc.edu<br />

Yves Auffret IFREMER France yauffret@ifremer.fr<br />

Di<strong>on</strong>ysios Ballas HCMR Greece dballas@ath.hcmr.gr<br />

Jérôme Blandin IFREMER France Jerome.Blandin@ifremer.fr<br />

Isabelle Bl<strong>on</strong>d IFREMER France isabelle.bl<strong>on</strong>d<br />

Patrice Brehmer IRD France pbrehmer@ifremer.fr<br />

Laetitia Brosolo CNRS-DT INSU France brosolo@dt.insu.cnrs.fr<br />

Sylvain Buss<strong>on</strong> ENSIETA France sylvain.buss<strong>on</strong>@ensieta.fr<br />

J<strong>on</strong> Campbell NOCS United Kingdom joc@noc.sot<strong>on</strong>.ac.uk<br />

Lénaig Caradec ILLIPACK France noemie.Claval@illipack.com<br />

Cyril Chailloux ENSIETA France cyril.chailloux@ensieta.fr<br />

Dominique Choqueuse IFREMER France dominique.choqueuese@ifremer.fr<br />

Gunay Cifci DEU-IMST Turkey gunay.cifci@deu.edu.tr<br />

Noémie Claval ILLIPACK France noemie.Claval@illipack.com<br />

Pierre Coch<strong>on</strong>at IFREMER France pierre.coch<strong>on</strong>at@ifremer.fr<br />

Laurent Coppola CNRS-LOV France coppola@obs-vlfr.fr<br />

Christian Curtil CNRS-CPPM France curtil@cppm.in2p3.fr<br />

Peter Davies IFREMER France Peter.Davies@ifremer.fr<br />

Joaquin Del Rio Fernandez UPC Spain joaquin.del.rio@upc.edu<br />

Laurent Delauney IFREMER France laurent.delauney@laposte.net<br />

Eric Delory dBscale Spain eric.delory@dbscale.com<br />

Jean-Francois D'Eu CNRS-IUEM France deu@univ-brest.fr<br />

Fawzi Doumaz INGV Italy fawzi.doumaz@ingv.it<br />

Jean-François Drogou IFREMER France jfdrogou@ifremer.fr<br />

Ebmen Elbek DEU-IMST Turkey selbek@comu.edu.tr<br />

Benedicte Ferre UiT Norway bferre@ig.uit.no<br />

Xavier Garcia CSIC Spain xgarcia@cmima.csic.es<br />

Olivier Gauthier IUEM France gauthier.olivier@gmail.com<br />

Carl Gojak CNRS-DT INSU France gojak@dt.insu.cnrs.fr<br />

Jens Greinert NIOZ Netherlands greinert@nioz.nl<br />

Michel Ham<strong>on</strong> IFREMER France michel.ham<strong>on</strong>@ifremer.fr<br />

Jean-Pierre Hermand ULB Belgium jhermand@ulb.ac.be<br />

Romain Jan IFREMER France romain.jan@ifremer.fr<br />

Johannes Karstensen IFM-GEOMAR Germany jkarstensen@ifm-geomar.de<br />

Oussama Kassem Zein ENSIETA France oussama.zein@ensieta.fr<br />

G. Bazile Kinda ENSIETA France kindaba@ensieta.fr<br />

Nadine Lanteri IFREMER France nadine.lanteri@ifremer.fr<br />

Christophe Laot TELECOM Bretagne France christophe.laot@telecom-bretagne.eu<br />

Pierre Yves Le Gac IFREMER France pierre.yves.le.gac@ifremer.fr<br />

Vér<strong>on</strong>ique Le Guen IFREMER France ver<strong>on</strong>ique.le.guen@ifremer.fr<br />

Marc Le Menn SHOM France lemenn@shom.fr<br />

Benoît Lecomte IPGP France blecomte@ipgp.jussieu.fr<br />

Dominique Lefevre CNRS-LMGEM France dominique.lefevre@univmed.fr<br />

Julien Legrand IFREMER France julien.legrand@ifremer.fr<br />

Yannick Lenault CNRS-DT INSU France lenault@dt.insu.cnrs.fr<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 55


Firstname Lastname Instituti<strong>on</strong> Country Email<br />

Cécile Lietard ALTRAN France cecile.lietard@altran.com<br />

Jean Marvaldi IFREMER France Jean.Marvaldi@ifremer.fr<br />

Aurelien Maurin CPPM-CNRS France maurin.aurelien@gmail.com<br />

Nicolas Nowald UniHB Germany nnowald@marum.de<br />

Seda Okay DEU-IMST Turkey seda.okay@deu.edu.tr<br />

Tom O'Reilly MBARI USA oreilly@mbari.org<br />

Paris Pag<strong>on</strong>is HCMR Greece ppag<strong>on</strong>is@ath.hcmr.gr<br />

Albert Palanques CSIC Spain albertp@icm.csic.es<br />

Li<strong>on</strong>el Paofai ILLIPACK France noemie.Claval@illipack.com<br />

Olivier Peden IFREMER France olivier.peden@ifremer.fr<br />

Jaume Piera CSIC Spain jpiera@cmima.csic.es<br />

Olivier Pot IPGP France pot@ipgp.fr<br />

Ingrid Puillat IFREMER France ingrid.puillat@ifremer.fr<br />

Volker Ratmeyer UniHB Germany ratmeyer@marum.de<br />

Jean-François Rolin IFREMER France jrolin@ifremer.fr<br />

Jean-Yves Royer IUEM-CNRS France jyroyer@univ-brest.fr<br />

Henry Ruhl NOCS United Kingdom h.ruhl@noc.sot<strong>on</strong>.ac.uk<br />

Florence Salvetat IFREMER France florence.salvetat@ifremer.fr<br />

Pierre Marie Sarradin IFREMER France Pierre.Marie.Sarradin@ifremer.fr<br />

Carla Scalabrin IFREMER France carla.scalabrin<br />

Klaus Schleisiek SEND Germany kschleisiek@send.de<br />

Shahram Shariat-Panahi UPC Spain<br />

Marck Smit NIOZ Netherlands msmit@nioz.nl<br />

Feng Tao NOCS United Kingdom bt2000@gmail.com<br />

Anders Tengberg Aanderaa Data Instruments Norway anders.tengberg@aadi.no<br />

Séverine Thomas Europôle Mer France Severine.Thomas@univ-brest.fr<br />

Stefano Vinci INGV Italy stefano.vinci@ingv.it<br />

Christoph Waldmann UniHB Germany waldmann@marum.de<br />

Frank Wenzhoefer MPIMM Germany fwenzhoe@mpi-bremen.de<br />

Jesper Zedlitz<br />

Christian-Albrechts-<br />

University Kiel<br />

Germany jze@informatik.uni-kiel.de<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 56


Annex C<br />

Slides from Anders Tendberg<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 57


Fiber optic cable<br />

Criteria for Observatory Sensors<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 58


Criteria for Observatory Sensors<br />

Fiber optic cable<br />

•LONG TERM STABILITY<br />

•Detailed knowledge about sensor behavior<br />

•Detailed knowledge about the measured parameter<br />

•Parallel sensors (different makes)<br />

•Mass produced with industrial quality c<strong>on</strong>trol<br />

•Based <strong>on</strong> modern industrial standards<br />

•Traceability (sensor registry)<br />

•Established reference methods<br />

•Detailed knowledge about the quality of reference methods<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 59


Argo floats = observatories<br />

http://www.argo.ucsd.edu/<br />

What can we observe?<br />

Quality c<strong>on</strong>trol crucial: Use high quality ship data. 1<br />

year from collected data to quality assured profile.<br />

Quality should be an important issue for observatories<br />

http://www.coriolis.eu.org/<br />

2-6 year deployments<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 60


Possible sensor technology for observatories<br />

Sal, Temp & Pres<br />

Seismic<br />

Electrochemical<br />

•O 2<br />

•pH<br />

•H 2 S<br />

Colorimetric, wet chemistry<br />

•Nutrients<br />

•pH<br />

•PCO 2<br />

•Mass Spectrometry<br />

•Raman Spectroscopy<br />

•Surface Plasm<strong>on</strong> Res<strong>on</strong>ance<br />

Optical with membrane<br />

•Methane<br />

•Nutrients (FIA)<br />

•PCO 2<br />

Voltametric<br />

I<strong>on</strong> selective<br />

•O2<br />

•pH<br />

•NH 4<br />

•PCO 2<br />

•Density<br />

•Light<br />

•Particle size<br />

Yellow=not ready Green=go for it<br />

Absolute Meas Relative Meas<br />

Optical<br />

•NO 3<br />

•Sulfide<br />

Acoustic<br />

•Currents<br />

•Density<br />

•Fish & plankt<strong>on</strong><br />

•Hydroph<strong>on</strong>es<br />

•Turb<br />

•Chl<br />

•Pigments<br />

•PAH<br />

•CDOM<br />

•Various<br />

cameras<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 61


Possible sensor technology for observatories<br />

Sal, Temp & Pres<br />

Seismic<br />

Electrochemical<br />

•O 2<br />

•pH<br />

•H 2 S<br />

Colorimetric, wet •Ochemistry 2<br />

•Nutrients<br />

•pH<br />

•PCO 2<br />

•Mass Spectrometry<br />

•Raman Spectroscopy<br />

•Surface Plasm<strong>on</strong> Res<strong>on</strong>ance<br />

•O2<br />

•pH<br />

•NH 4<br />

•PCO 2<br />

<strong>ESONET</strong> GENERIC SENSORS PACKAGE<br />

•C<strong>on</strong>ductivity<br />

•Temperature<br />

•Pressure<br />

•Turbidity<br />

•Currents<br />

•Passive acoustics<br />

•Methane<br />

•Nutrients (FIA)<br />

•PCO 2<br />

•Acoustic backscatter<br />

Optical with membrane<br />

Voltametric<br />

I<strong>on</strong> selective<br />

•Density<br />

•Light<br />

•Particle size<br />

Yellow=not ready Green=go for it<br />

Absolute Meas Relative Meas<br />

Optical<br />

•NO 3<br />

•Sulfide<br />

Acoustic<br />

•Currents<br />

•Density<br />

•Fish & plankt<strong>on</strong><br />

•Hydroph<strong>on</strong>es<br />

•Turb<br />

•Chl<br />

•Pigments<br />

•PAH<br />

•CDOM<br />

•Various<br />

cameras<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 62


http://www.act-us.info/<br />

EURO ACT, l<strong>on</strong>g term stability, open ocean?<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 63


Traceable to SI units ?<br />

Temp Pr Current O2 pH Sal Turb Fluo<br />

YES YES YES -> ? YES -> ? NO NO NO NO<br />

Regulated<br />

bath + Pt25<br />

reference<br />

thermometer<br />

Relative<br />

pressure<br />

balance<br />

(generator +<br />

reference<br />

value)<br />

No norm in<br />

technology<br />

Towing canal<br />

Mixed<br />

freshwater /<br />

seawater bath<br />

+ Winkler<br />

reference<br />

Parameters<br />

pH standard<br />

soluti<strong>on</strong><br />

Salinometer<br />

calibrated by<br />

IAPSO<br />

standard<br />

Calibrati<strong>on</strong>s at IFREMER<br />

Formazin<br />

soluti<strong>on</strong>s<br />

Fluorescein<br />

soluti<strong>on</strong>s<br />

No representativeness (substance matrix, …)<br />

No relati<strong>on</strong> to SI units<br />

Not universal in regard to the different technologies<br />

No reference material or No reference method<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 64


Calibrati<strong>on</strong> methods<br />

Temp Pr Current O2 pH Sal Turb Fluo<br />

Regulated<br />

bath + Pt25<br />

reference<br />

thermometer<br />

Relative<br />

pressure<br />

balance<br />

(generator +<br />

reference<br />

value)<br />

Towing canal<br />

Mixed<br />

freshwater /<br />

seawater bath<br />

+ Winkler<br />

reference<br />

Parameters<br />

Procedures<br />

pH standard<br />

soluti<strong>on</strong><br />

Salinometer<br />

calibrated by<br />

IAPSO<br />

standard<br />

Formazin<br />

soluti<strong>on</strong>s<br />

Fluorescein<br />

soluti<strong>on</strong>s<br />

7 3 1 1 1 1 1 1<br />

Protocols<br />

4 1 - 3 3 3 3 3<br />

Needed: Nati<strong>on</strong>al or internati<strong>on</strong>al inter-comparis<strong>on</strong>s projects<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 65


Major evoluti<strong>on</strong>s :<br />

• The SCOR/IAPSO WG 127 (UNESCO) decided that :<br />

- Absolute salinity S A must be used to process thermodynamic properties of<br />

seawater.<br />

-S A is recognise to be more accurate that practical salinity S.<br />

- A reference salinity has been defined from a determined compositi<strong>on</strong> of dissolved<br />

substances. It is calculated with :<br />

SR = (35,165 04/35). S en g/kg<br />

- S is always derived from c<strong>on</strong>ductivity measurements and from the PSS-78.<br />

- Absolute salinity is defined by :<br />

SA = SR + δSA(ϕ, λ, p)<br />

Where : ϕ = latitude, λ = l<strong>on</strong>gitude, p = pressure.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 66


Which problems remain to be solved ?<br />

-Mc Dougall, Jackett et Millero published an algorithm to calculate δSA(ϕ, λ, p) for<br />

Atlantic, Pacific, and Indian ocean from density analyses, S and SiO2, of 811 oceanic<br />

samples.<br />

They assessed a typical uncertainty of 0,0048 g/kg to this approach, but it is very rough<br />

because :<br />

- In some areas, correlati<strong>on</strong> between SiO2 and the other n<strong>on</strong>-i<strong>on</strong>ic molecules (CO2 ,<br />

dissolved organic matter…) is bad ;<br />

- There are oceanic areas where SiO2 c<strong>on</strong>centrati<strong>on</strong>s are not well knowned : Arctic<br />

ocean, limits between oceans …<br />

- 811 samples, that’s not a lot, compared to the ocean volume. Atlas are needed to<br />

extrapolate in depth…<br />

- Silicates c<strong>on</strong>centrati<strong>on</strong>s varies with organic matters dissoluti<strong>on</strong>, rivers sediments<br />

transports. Then, what behave these correcti<strong>on</strong>s ?<br />

- Do we make samples and analyses for each salinity measurement ?<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 67


Is refractive index the soluti<strong>on</strong> to all these problems ?<br />

-Yes… according to the WG127 of the SCOR/IAPSO (Meeting 6-10 May 2007,<br />

Italy):<br />

-‘The refractive index of seawater is the currently most promising parameter to be<br />

measured for this purpose. The resoluti<strong>on</strong> achieved with prototype instruments, the<br />

accuracy of related experimental data and the feasibility of c<strong>on</strong>structing in-situ<br />

optical field sensors support this approach. The refractive index can recognise the<br />

presence of n<strong>on</strong>-dissociated dissolved species like organic silicate which do not<br />

influence the c<strong>on</strong>ductivity of seawater.’<br />

-This document gives the requirements to built refractometers:<br />

-‘The resoluti<strong>on</strong> of refractive index measurements as well as the corresp<strong>on</strong>ding<br />

uncertainties of theoretical formulas are required to be 1 ppm at atmospheric<br />

pressure, and 3 ppm at high pressures…’.<br />

-But, it is written also that, relati<strong>on</strong>s index – S – pressure – Temperature must be<br />

improved.<br />

-And more : it misses a sensor usable in situ.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 68


Tests :<br />

• Fluorescence sensors :<br />

- Scufa Turner Designs - Millport island, island,<br />

Scotland<br />

- microFlu-chl<br />

microFlu chl TriOS - Helgoland, Germany<br />

- Seapoint - Brest - France<br />

• Transmissometer : Optisens<br />

- Tr<strong>on</strong>dheim, Norway<br />

• Turbidity : TBD 35 NKE<br />

- Sainte Anne du Portzic Brest,<br />

France<br />

- M<strong>on</strong>t Saint Michel Bay, Bay,<br />

France<br />

• Oxygène Oxyg ne : Optode Aanderaa<br />

- Sainte Anne du Portzic Brest, France<br />

Various<br />

places for test<br />

Various<br />

instrumentals<br />

technologies<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 69


Copper Biofouling protecti<strong>on</strong><br />

Fluorimeter Seapoint + Hobilabs Hydroshutter<br />

Ifremer (FR) L. Delauney<br />

• Copper shutter was mechanically reliable but is quite fragile to to<br />

handle.<br />

• Biofouling development has been observed <strong>on</strong> copper surfaces.<br />

• Bubbles formati<strong>on</strong> is inherent to the copper oxydati<strong>on</strong> process and<br />

can be trapped inside the measurement cell.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 70


Local Protecti<strong>on</strong> by electrochlorinati<strong>on</strong><br />

In situ biofouling preventi<strong>on</strong> efficiency test<br />

56 days durati<strong>on</strong> March - May Mt St Michel Bay<br />

Unprotected<br />

Protected<br />

Turbidity Measurement - Micrel instrument<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 71


Summary <strong>on</strong> fouling protecti<strong>on</strong><br />

• Various techniques are now available to protect windows :<br />

- Wipers<br />

- Copper shutter<br />

- Bleach<br />

- Local biocide generati<strong>on</strong><br />

• The choice can be driven by different aspects :<br />

Hardware matter :<br />

- Robustness (depth of use)<br />

- Mechanical complexity<br />

- Easiness of adaptati<strong>on</strong> to the existing instrument<br />

- Level of integrati<strong>on</strong><br />

Metrological aspect :<br />

- Adverse effect to the measured parameter.<br />

- Is system can be turned <strong>on</strong> and off.<br />

Ec<strong>on</strong>omical aspect :<br />

- Availability <strong>on</strong> the market.<br />

- Price.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 72


WG 1 GENERIC INSTRUMENTATION<br />

PANEL 1-2 Acoustic Sensors<br />

Michel André UPC<br />

Jean Pierre Hermand ULB<br />

Jean Yves Royer IUEM/CNRS<br />

Sylvain Buss<strong>on</strong> ENSIETA<br />

Cyril Chailloux ENSIETA<br />

Patrice Brehmer IRD/Ifremer/GIS Europole Mer Bretagne<br />

Carla Scalabrin Ifremer<br />

Michel Ham<strong>on</strong> Ifremer/LPO<br />

Olivier Peden Ifremer/LPO<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 73


Acoustics <strong>on</strong> observatories<br />

Co-existence of a set of sensors:<br />

• Functi<strong>on</strong>al acoustics<br />

– Positi<strong>on</strong>ing, communicati<strong>on</strong>, remote c<strong>on</strong>trol,…<br />

• Passive sensing<br />

– Arrays of hydroph<strong>on</strong>es, geoph<strong>on</strong>es,…<br />

• Active sensing<br />

– ADCPs, s<strong>on</strong>ars, echosounders,…<br />

• may cause problems of overlapping frequency band<br />

occupati<strong>on</strong><br />

• requires synchr<strong>on</strong>izati<strong>on</strong> process and software basedsoluti<strong>on</strong>s<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 74


Physical and Technological<br />

c<strong>on</strong>straints<br />

• large volume of data in comparis<strong>on</strong> with other standard oceanographic<br />

sensors<br />

• active sensing requires a higher power supply than passive sensing<br />

• sensing strategy will be driven by the spatial and temporal scales of<br />

investigati<strong>on</strong><br />

• standal<strong>on</strong>e observatories:<br />

– the power supply, computati<strong>on</strong>al load, data storage and transmissi<strong>on</strong> (acoustic<br />

modem, satellite link, etc.) may be limiting factors for l<strong>on</strong>g time series acquisiti<strong>on</strong><br />

and processing for the whole sensor package<br />

• cabled observatories:<br />

– the raw and/or processed data streams generated by the simultaneous use of<br />

different acoustic and n<strong>on</strong>-acoustic sensors to land-based or moored platform<br />

servers may be limited by the data link capacities (copper or optic fiber cables),<br />

related to the distance and the envir<strong>on</strong>ment<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 75


Other issues (cf. other panels)<br />

• Calibrati<strong>on</strong> procedures (standardizati<strong>on</strong>,<br />

auto-calibrati<strong>on</strong>, in situ).<br />

• Standardizati<strong>on</strong> of raw and processed<br />

data format (e.g. HAC format Simard et<br />

al., 1997).<br />

• Bio-fouling, fouling<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 76


Annex D<br />

EARTH SEA SCIENCE IN KM3Net<br />

NEUTRINO TELESCOPE<br />

INFRASTRUCTURE<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 77


C<strong>on</strong>tributi<strong>on</strong> of <strong>ESONET</strong> <strong>Best</strong> <strong>Practices</strong> Workshop 2 to the KM3Net from a versi<strong>on</strong> of the<br />

TDR chapter <strong>on</strong> Earth-Sea science (author Univ. Aberdeen – KM3Net Design study WP9)<br />

and an IFREMER c<strong>on</strong>tributi<strong>on</strong> dated September 2009.<br />

What is devoted to Astrophysics infrastructure and what is devoted to Earth-sea<br />

science infrastructure?<br />

From an earth-sea science point of view (as represented in Europe by the <strong>ESONET</strong> Network<br />

of Excellence and the EMSO infrastructure project), the segments of the network of KM3Net<br />

used for their community are complying with the comp<strong>on</strong>ent definiti<strong>on</strong> and functi<strong>on</strong>al<br />

definiti<strong>on</strong> of <strong>ESONET</strong>.<br />

The “piggy back” relati<strong>on</strong> with the telescope infrastructure must be an advantage for the<br />

whole scientific community.<br />

The list of functi<strong>on</strong>s of an <strong>ESONET</strong> EMSO subsea observatory will be either shared with<br />

KM3Net telescope (Shared/Telescope) or ensured by the KM3Net telescope (telescope) or<br />

specific to the Earth-Sea science segments (Specific):<br />

A – Implement subsea instruments from any scientific discipline <strong>on</strong> geographically positi<strong>on</strong>ed<br />

sites of key interest, <strong>on</strong> and under the seafloor and up al<strong>on</strong>g the water column.<br />

A1 – Survey (Shared/Telescope)<br />

A2 - Design and get agreements (Shared/telescope)<br />

A3 – Build (Shared/telescope)<br />

B – Bring data/images to shore from those instruments (Specific optic fibers in a<br />

shared/telescope cabled backb<strong>on</strong>e infrastructure)<br />

C – Provide energy for these instruments. (Shared/telescope)<br />

D – Coordinate instrument acquisiti<strong>on</strong>. (Specific)<br />

D1 - Provide time stamping for the data and images (Specific)<br />

D2 - Coordinate acquisiti<strong>on</strong> for distributed sensor packages (Specific)<br />

D3- Coordinate acquisiti<strong>on</strong> for complementary sensors (Specific)<br />

E – Ensure calibrati<strong>on</strong> and registrati<strong>on</strong> of instruments. (Specific)<br />

E1 - Calibrati<strong>on</strong> cycle <strong>on</strong>shore (Specific)<br />

E2 - Sensor registry (Specific)<br />

E3 - In-situ calibrati<strong>on</strong> (Specific)<br />

E4 - Anti-fouling protecti<strong>on</strong> (Specific)<br />

F – Install in the deep sea and <strong>on</strong>shore. (Specific)<br />

F1 - Ship operati<strong>on</strong> (Shared/telescope)<br />

F2 - ROV operati<strong>on</strong> (Shared/telescope)<br />

F3 - Shore installati<strong>on</strong> (telescope)<br />

G – Maintain.<br />

G1- Remotely in real time. (Specific)<br />

G2 - Visit periodically and modify instrument setting and ensure safety.<br />

(Shared/telescope)<br />

G3 - Refurbish periodically (Specific)<br />

G4 - Spare parts. (Specific)<br />

H – Decommissi<strong>on</strong> <strong>on</strong> sustainable basis. (Shared/telescope)<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 78


I – Manage data from the above. (Specific)<br />

J – Build knowledge from the above and train staff. (Specific)<br />

K – Ensure ec<strong>on</strong>omical operati<strong>on</strong>. (Shared/telescope)<br />

The comp<strong>on</strong>ents of the system c<strong>on</strong>sidered as a subsea observatory are:<br />

0 – Management of the infrastructure (Specific)<br />

1- Disseminati<strong>on</strong> and user interfaces (Specific)<br />

2- Data bases (Specific)<br />

3 - Technical supervisi<strong>on</strong> infrastructure (Specific)<br />

4 - Onshore network (Specific)<br />

5 - Land Base terminati<strong>on</strong> of sea infrastructure (telescope)<br />

6 - Land sea communicati<strong>on</strong> segment (Shared/telescope)<br />

7 - Node from branching unit to Main juncti<strong>on</strong> box (Shared/telescope)<br />

8 - Branch extensi<strong>on</strong> of the network - uplink (Specific)<br />

9 – Sec<strong>on</strong>dary juncti<strong>on</strong> box (Specific)<br />

10 - Link to instruments - downlink (Specific)<br />

11 - Individual instrument (Specific)<br />

Data management issues<br />

The dataflow from the Earth-sea science sensing to the user and the storage must:<br />

- allow versatility , easy update, l<strong>on</strong>g term preservati<strong>on</strong> and publicati<strong>on</strong><br />

- be open to all disciplines and therefore able to enrich data archive centres of<br />

these disciplines,<br />

- allow sensor registry facilities according to <strong>ESONET</strong> requirements<br />

- provide data to operati<strong>on</strong>al services, compatible with GMES and integrated<br />

with GEOSS related earth observati<strong>on</strong> systems,<br />

- comply with Inspire directives and ease access to envir<strong>on</strong>ment data,<br />

- provide real time data (according for instance to Sensor Observati<strong>on</strong> Service)<br />

and interacti<strong>on</strong> with instruments<br />

- provide alarm and real time warning for geohazard<br />

- ensure a safety storage at the Land Base terminati<strong>on</strong> level<br />

- disseminate data to the <strong>ESONET</strong>/EMSO community of scientists thanks to<br />

data integrati<strong>on</strong> and portal tools which ensure harm<strong>on</strong>isati<strong>on</strong> of collected data<br />

and allow access of data in a comm<strong>on</strong> way.<br />

The group could not establish a precise drawing of the dataflow <strong>on</strong> October 9 th 2009, as some<br />

tasks in <strong>ESONET</strong> are not finished yet (<strong>ESONET</strong> SWE services complementary to Eurosites<br />

and seaDataNet projects). Due to the importance at European level of the neutrino cabled<br />

observatories in the plans of future subsea Earth-Sea science observatories, such dataflow<br />

explanati<strong>on</strong>s are needed.<br />

Earth-Sea science Underwater Comp<strong>on</strong>ents.<br />

The <strong>ESONET</strong> group working <strong>on</strong> smart sensors (participating to the same <strong>Best</strong> <strong>Practices</strong><br />

Workshop 2 in Brest as Panel 3-2 1 ), proposes an adapted Sec<strong>on</strong>dary Juncti<strong>on</strong> box<br />

specificati<strong>on</strong>. It takes into account the advances of Neptune Canada design, additi<strong>on</strong>al<br />

1 <strong>ESONET</strong> participants: Joaquim Del Rio Fernandez UPC and colleagues, Eric Delory dBscale, Christoph<br />

Waldman Marum, Yves Auffret IFREMER and colleagues, Klaus Schleisieck SEND Offshore invited<br />

participants: Tom O’Reilly from MBARI USA, Oussama Kassem Zein ENSIETA and colleagues<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 79


interoperability c<strong>on</strong>straints and versatility potential. It is a modified versi<strong>on</strong> with respect to an<br />

initial IFREMER proposal included in the KM3Net CDR.<br />

- A major input took its root in the KM3Net project thanks to the technological comparis<strong>on</strong> of<br />

potential technologies for the Sec<strong>on</strong>dary Juncti<strong>on</strong> Box to instrument downlink (cf NIKHEF<br />

studies). Fiber optic communicati<strong>on</strong> and VDSL2 communicati<strong>on</strong> <strong>on</strong> twisted pairs are both<br />

able to cope with the high data rate transmissi<strong>on</strong>.<br />

- A project called DeepSeaNet involving a low cost fiber optic without energy transmissi<strong>on</strong><br />

must also be c<strong>on</strong>sidered for the future. It will allow to collect data from sites situated several<br />

km away from the KM3Net positi<strong>on</strong>, such as geohazard threatened z<strong>on</strong>es. Validati<strong>on</strong> of this<br />

technology is taking place in 2010 <strong>on</strong> Antares site.<br />

- A low cost c<strong>on</strong>necti<strong>on</strong> will be implemented also, allowing to host experiments without<br />

requiring the purchase of expensive c<strong>on</strong>nectors. This feature has been dem<strong>on</strong>strated during<br />

several projects (FP5 Assem for instance) and will be implemented <strong>on</strong> Antares and Neptune<br />

Canada.<br />

- Ancilary functi<strong>on</strong>s are assumed in the juncti<strong>on</strong> box in order to m<strong>on</strong>itor power supply, detect<br />

faults…<br />

- In case of temporary stop of upstream c<strong>on</strong>necti<strong>on</strong> (for instance due to a request by the<br />

neutrino telescope operator), a local storage must be implemented. The implementati<strong>on</strong> of this<br />

feature and the size of the storage will depend <strong>on</strong> the instrumentati<strong>on</strong> setting of the subsea<br />

node.<br />

Node<br />

or<br />

JB 400VDC + Eth<br />

1000LX (fibre)<br />

1 or 2 fibres (fail‐<br />

over, load<br />

balancing,..)<br />

Or<br />

400VDC + xDSL<br />

(few km network<br />

extensi<strong>on</strong>)<br />

October 14th, 2009<br />

Switch(es)<br />

CoS, QoS,<br />

PTP<br />

IEEE 1588<br />

Boundary<br />

clock,<br />

VLAN, LACP,<br />

port<br />

Trunk,…<br />

Extensi<strong>on</strong> module:<br />

RS232/422/485,<br />

CAN Bus,<br />

VDSL2 modem…<br />

Clock synchr<strong>on</strong>izati<strong>on</strong><br />

Ethernet: PTP/IEEE1588 clock client<br />

Other: GPS Emulati<strong>on</strong>‐> PPS + NMEA time code<br />

C<strong>on</strong>troller<br />

Opti<strong>on</strong>al: Data storage<br />

Opti<strong>on</strong>al: Embedded instrument driver<br />

Eth 1000LX (fiber) –400VDC –NTP/PTP IEEE<br />

1588<br />

Eth 1000LX (fiber) –400VDC –NTP/PTP IEEE<br />

1588<br />

Applicati<strong>on</strong>s: Daisy chain for another JB, power<br />

equipments: robotics, vertical profiler…<br />

network extensi<strong>on</strong> up to 20km<br />

Eth 100BT (copper) –48VDC – NTP/PTP IEEE<br />

1588<br />

Eth 100BT (copper) –48VDC – NTP/PTP IEEE<br />

1588<br />

Applicati<strong>on</strong>s: Ethernet scientific instruments,<br />

ex: Seismometer (OBS), still camera , video,<br />

hydroph<strong>on</strong>e, crawler…<br />

RS232/422/485/CAN BUS –48VDC – PPS/NMEA<br />

Applicati<strong>on</strong>s: Serial scientific instruments (with<br />

or without PUCK Protocol) ex: ADCP,<br />

piezometer (pore pressure sensor) ,<br />

seismometer, CTD, chemical analyzer,…<br />

VDSL2 Modem –400VDC – NTP/PTP IEEE 1588<br />

Applicati<strong>on</strong>s: Low cost network extensi<strong>on</strong>,<br />

measurements in water column, instrument or<br />

instrument cluster up to 5‐6km (low cost<br />

extensi<strong>on</strong> (vs. fiber), seismic network, acoustic<br />

network,…<br />

C<strong>on</strong>trol/command<br />

Réseaux câblés et systèmes<br />

power supplies –faults detecti<strong>on</strong><br />

instrumentaux 1<br />

Figure 1: Sec<strong>on</strong>dary juncti<strong>on</strong> box architecture (Smart sensor group – <strong>ESONET</strong>).<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 80


Figure 2: Sec<strong>on</strong>dary juncti<strong>on</strong> box offering various extensi<strong>on</strong> and c<strong>on</strong>necti<strong>on</strong><br />

capabilities. (IFREMER)<br />

C<strong>on</strong>nector Manifold plate<br />

This could be like the ROV tool plate with wet mateable c<strong>on</strong>nectors. Recommendati<strong>on</strong> for the<br />

distance between c<strong>on</strong>nectors, grabbing pressure, etc will be issued for the design and used for<br />

the operati<strong>on</strong> guide.<br />

The c<strong>on</strong>nectors and associated hardware can be spaced at a given distance apart and a given<br />

height above the sea floor. It will require a grab bar for ROV operati<strong>on</strong>s with the grab arm.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 81


Figure 3: Example of docking geometric requirements for the ROV operati<strong>on</strong>.<br />

Docking unit with foundati<strong>on</strong>s<br />

The experience with subsea observatories used for Earth-Sea science as well as neutrino<br />

telescope first generati<strong>on</strong> projects dem<strong>on</strong>strated the need to offer an easy interface for<br />

c<strong>on</strong>necti<strong>on</strong> with an ROV. The c<strong>on</strong>necting phase if utterly critical for the reliability of the<br />

whole infrastructure.<br />

A docking underwater structure is supporting the sec<strong>on</strong>dary Juncti<strong>on</strong> box and allows to reach<br />

any of the c<strong>on</strong>nectors with well defined coordinates, thus enabling to operate the ROV<br />

according to standard procedures.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 82


Docking unit is also the structural support for the Sec<strong>on</strong>dary Juncti<strong>on</strong> Box. Access of the ROV is<br />

possible from two sides. The Juncti<strong>on</strong> Box is retrievable for maintenance.<br />

The foundati<strong>on</strong>s of the juncti<strong>on</strong> box frame must be capable of supporting a mass of<br />

approximately 1000kg and must be capable of resisting accidental impact from an ROV.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 83


Annex E<br />

Stand al<strong>on</strong>e observatories<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 84


Infrastructure / Standal<strong>on</strong>e observatories<br />

Infrastructure / Standal<strong>on</strong>e observatories<br />

P2-2 objectives<br />

Have a clear idea of the state of the art & current practices<br />

Share feedback from recent or <strong>on</strong>going experiments<br />

Identify critical issues requiring R & D<br />

(Identify technical & cost-related issues to be followed-up during<br />

Demo Missi<strong>on</strong>s)<br />

Recommend comm<strong>on</strong> practices<br />

Es<strong>on</strong>et 2 nd BP Workshop, Brest, October 8-9, 2009<br />

P2-2 issues<br />

General design issues (including mooring design)<br />

Data telemetry<br />

Energy management<br />

Extensi<strong>on</strong> of deployment durati<strong>on</strong><br />

Deployment & maintenance procedures<br />

(Implementati<strong>on</strong> and exploitati<strong>on</strong> costs)<br />

On shore organizati<strong>on</strong><br />

Es<strong>on</strong>et 2 nd BP Workshop, Brest, October 8-9, 2009<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 85<br />

1/4<br />

2/4


Infrastructure / Standal<strong>on</strong>e observatories<br />

Infrastructure / Standal<strong>on</strong>e observatories<br />

Preliminary results<br />

P2-2 material<br />

J<strong>on</strong> Campbell (NOCS): PAP site deployment / telemetry issues<br />

Di<strong>on</strong>ysis Ballas (HCMR): Tsunami detecti<strong>on</strong> platform<br />

Johannes Karstensen (IFM-Geomar): Overview of Eurosite moorings<br />

Jérôme Blandin –Julien Legrand (Ifremer): COMMODAC : a comparis<strong>on</strong> of<br />

acoustic modems<br />

tbc Volker Ratmeyer (Marum): The Loome deployment<br />

Es<strong>on</strong>et 2 nd BP Workshop, Brest, October 8-9, 2009<br />

Thursday morning<br />

Thursday afterno<strong>on</strong>: prepared presentati<strong>on</strong>s<br />

Friday<br />

Friday<br />

Eurosite moorings<br />

Telemetry sessi<strong>on</strong><br />

P2-2 schedule<br />

Es<strong>on</strong>et 2 nd BP Workshop, Brest, October 8-9, 2009<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 86<br />

3/4<br />

4/4


Infrastructure / Standal<strong>on</strong>e observatories<br />

Infrastructure / Standal<strong>on</strong>e observatories<br />

P2-2 issues<br />

General design issues (including mooring design)<br />

Classificati<strong>on</strong> of standal<strong>on</strong>e observatory architectures within<br />

Europe:<br />

Without telemetry<br />

With surface telemetry (or pop-up modules)<br />

Plus acoustic telemetry<br />

With sensors cabled <strong>on</strong> the seabed<br />

With bottom-surface EO link<br />

Data telemetry<br />

Satellite: Meteosat, Iridium, Inmarsat-C, Argos, Globalstar…<br />

Cellular: GPRS, GSM<br />

Underwater: acoustic (COMMODAC performance tests),<br />

inductive<br />

Es<strong>on</strong>et 2 nd BP Workshop, Brest, October 8-9, 2009<br />

Energy management<br />

Power c<strong>on</strong>sumpti<strong>on</strong> / Power sources<br />

Extensi<strong>on</strong> of deployment durati<strong>on</strong>: Cf P3-3<br />

Deployment & maintenance procedures<br />

Without ROV as much as possible<br />

When ROV mandatory for deployment, recovery may be d<strong>on</strong>e<br />

without<br />

Legal envir<strong>on</strong>mental c<strong>on</strong>straints<br />

On shore organizati<strong>on</strong><br />

Workflow for regular servicing<br />

Emergency situati<strong>on</strong>s<br />

Updated equipement database<br />

Make deployments possible by other groups (standard<br />

procedures…)<br />

Es<strong>on</strong>et 2 nd BP Workshop, Brest, October 8-9, 2009<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 87<br />

5/4<br />

6/4


Annex F<br />

Stand al<strong>on</strong>e observatories<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 88


Annex F1: processing of ELISA data<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 89


Annex F1: processing of ELISA data<br />

During the ELISA project a 9 subsurface mooring network was deployed for 1 year in the<br />

Algerian Basin. All of them were equipped with current meters and <strong>on</strong> the central <strong>on</strong>e<br />

(mooring n# 8 in figure 1) 4 packages of CTD+ fluorimeter were added in the surface layer.<br />

The central mooring was recovered twice during <strong>on</strong>e year for data upload, cleaning and<br />

rec<strong>on</strong>diti<strong>on</strong>ing. The objective was to study the mesoscale circulati<strong>on</strong> of the z<strong>on</strong>e and its<br />

relati<strong>on</strong> with the biology.<br />

Figure 1: 9 mooring network deployed during ELISA project<br />

This area can be influenced by important current of about 30-60 cm.s -1 in the surface layer as<br />

showed <strong>on</strong> figure 2.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 90<br />

1


Figure 2: currents measured around 100 m depth <strong>on</strong> mooring #8<br />

Increasing of the mean current results in sinking of instruments from 10 m to 70 m for<br />

instance, as shown <strong>on</strong> depth time series of figure 3<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 91<br />

2


Figure 3: Recorded depth by Mooring n# 8 ‘s CTDs<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 92<br />

3


depth (m)<br />

Due to inertial currents with a ~19h period the mooring oscillated and probes were able to<br />

work as a profiler in a ~10-20 m bin for each cycle. Indeed <strong>on</strong> figure 4 each probe (CTD) is<br />

represented by a color and each square figure represents the chlorophyll fluorescence values<br />

recorded each day by the 4 CTDs. Days are indicated in Julian day of July and August 1996.<br />

12/07<br />

19/07<br />

26/07<br />

02/08<br />

09/08<br />

15/08<br />

Figure 4: Chlorophyll fluorescence recorded by 4 fluorimeters (4 colours), 1 profile per day<br />

(4h filtered data)<br />

CTDF were 10-20 m distant each other (nominal depth: 40, 50 , 60, 80 m)<br />

C<strong>on</strong>sidering that probes are 10-20 separated, when <strong>on</strong>e probes deepens more than 10 m during<br />

<strong>on</strong>e cycle it explores the depths of the probes below. C<strong>on</strong>sequently a nominal depth can be<br />

sampled by 2 probes during <strong>on</strong>e cycle and an inter-comparis<strong>on</strong> is possible. For instance<br />

between the 10 and the 15 of August (last line of squatted figures) probes were sampling a 20<br />

m bin of the water column with important overlapping between 2 adjacent probes.<br />

This allow us to detect some offsets and trends.<br />

After correcti<strong>on</strong>s and calibrati<strong>on</strong> by comparis<strong>on</strong> with CTDF profiles driven from <strong>on</strong>board<br />

during each recovering cruise, we were able to build <strong>on</strong>e profile per 19h. This is shown <strong>on</strong><br />

figure 5.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 93<br />

4


Figure 5: corrected fluorescence from CTD F<br />

After what it was possible to work <strong>on</strong> rebuilt time series in 10m bins <strong>on</strong> <strong>on</strong>e hand (figure 6)<br />

and <strong>on</strong> an other hand it was possible to use all profiles to build some time series of depth<br />

interpolated data (figure 7).<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 94<br />

5


Figure 6: Rebuilt Time series of salinity and density between July 1996 and July 1997, filtered<br />

from HF<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 95<br />

6


DEPTH (m)<br />

c/<br />

DEPTH (m)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

Jul<br />

1997<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

Jul<br />

1997<br />

d/<br />

CTDFm: 05 Jul 1997 - 23 Jun 1998.<br />

Aug Sep Oct Nov Dec Jan<br />

1998<br />

Aug Sep Oct Nov Dec<br />

DENSITE<br />

SALINITE<br />

Jan<br />

1998<br />

Feb Mar Apr May Jun Jul<br />

1998<br />

Feb Mar Apr May Jun<br />

Figure V.2 (suite)<br />

Figure 7. Time series of depth interpolated profiles for salinity (top) and density (bottom)<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 96<br />

Jul<br />

1998<br />

38.00<br />

37.90<br />

37.80<br />

37.70<br />

37.60<br />

37.50<br />

37.40<br />

37.30<br />

37.20<br />

37.10<br />

37.00<br />

36.90<br />

36.80<br />

99.00<br />

28.00<br />

27.75<br />

27.50<br />

27.25<br />

27.00<br />

26.75<br />

26.50<br />

26.25<br />

26.00<br />

25.50<br />

25.00<br />

24.50<br />

7


ANNEXE F2 - M. FAUZI's presentati<strong>on</strong><br />

ANTARES : a mooring network and related data processing<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 97


Antares Data, Database<br />

And<br />

Data Management<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 98<br />

C. Curtil. Brest, 8 – 9 Oct 2009


40 km<br />

submarine cable<br />

-2475m depth<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 99


• 12 Lines<br />

• 25 Floors / Line<br />

•3 PMs/ Floor<br />

• 900 PMs<br />

• 1 Inst. Line<br />

14.5 m<br />

~70 m<br />

depth : 2500m<br />

Antares detector<br />

350 m<br />

100 m<br />

One floor<br />

40 km<br />

deep sea<br />

cable<br />

to shore<br />

Interlink cables<br />

Juncti<strong>on</strong><br />

Box<br />

© <str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> F. M<strong>on</strong>tanet #50 - update October 2010 100


CTD<br />

ADCP<br />

Interdisciplinary<br />

Instrumentati<strong>on</strong> line<br />

IL 07<br />

hydroph<strong>on</strong>es CT<br />

Camera<br />

hydroph<strong>on</strong>es<br />

Camera<br />

OM<br />

OM<br />

ADCP<br />

hydroph<strong>on</strong>es C-Star<br />

hydroph<strong>on</strong>e<br />

Sismomètre<br />

SV<br />

14.5m<br />

80m<br />

C-Star<br />

CT<br />

14.5m<br />

O 2<br />

14.5m<br />

80m<br />

98m<br />

ADCP<br />

Pr<br />

6 storeys with :<br />

CTD , SV<br />

ADCP<br />

O 2<br />

C-Star<br />

Cameras<br />

Hydroph<strong>on</strong>es for<br />

acoustic detecti<strong>on</strong><br />

Deployed in July 07<br />

Lines Std<br />

Ligne 12<br />

IODA (F25)<br />

Seismometer (BSS)<br />

Ligne 5<br />

Dead since Oct 07<br />

Courantometer<br />

AquaDopp (F23)<br />

Ligne 4<br />

SV–CTD (F24)<br />

Extensi<strong>on</strong><br />

Sec<strong>on</strong>dary JB<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 101<br />


Some examples of time series<br />

CTD<br />

•ADCP<br />

• AquaDopp<br />

MILOM F1<br />

MILOM F1<br />

L5 F23<br />

IL07 F4<br />

2005 2006 2007 2008<br />

Sea current speed<br />

IL07 F1 & F5<br />

Bioluminescence activity<br />

Temperature<br />

2005 2006 2007 2008 2009<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 102


<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 103


<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 104


Shore Stati<strong>on</strong> : M. Pacha<br />

40km Electro-Optical<br />

Cable<br />

Antares<br />

Data Data Writer Writer<br />

DB DB Writer Writer<br />

DATA BASE<br />

Oracle 10g<br />

CC Ly<strong>on</strong><br />

File Server<br />

- ROOT Files<br />

- Log File<br />

-…<br />

- Detector assembly and integrati<strong>on</strong><br />

- Detector Operati<strong>on</strong><br />

- Detector Setup and C<strong>on</strong>figurati<strong>on</strong><br />

- Detector Alignment and Calibrati<strong>on</strong><br />

- RAW Data<br />

- Parsed Data (Oceano.)<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010<br />

– Each 6 minutes for Acoustic positi<strong>on</strong>ing<br />

– Each 15 minutes for the Oceanographical sensors<br />

(CTD, ADCP, O2…)<br />

105


Recording of the history of each part of the detector (from manufacture to its endof-life)<br />

Recording of all informati<strong>on</strong> about setting of data taking :<br />

We can adjusted all the parameters of the detector.<br />

When a parameter is changed, a track is recorded.<br />

Recording of all informati<strong>on</strong> about neutrinos data :<br />

Run number, size, number of events,<br />

where file is stored, etc…<br />

All data are first store in <strong>on</strong>e table the “RAW Data Table”. One parser reads each<br />

new entry and fills the appropriate table.<br />

For the oceanographical data, we have no QA/QC informati<strong>on</strong> stored in database.<br />

The access to the database is not easy…<br />

Summary<br />

But…<br />

Neutrinos Data<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 106


Antares<br />

Database and Web site project<br />

for interdisciplinary development<br />

Real time<br />

Other<br />

Instrumented line<br />

as AAMIS<br />

Antares<br />

Data Base<br />

Real time<br />

Public<br />

Pages<br />

Meta<br />

Data<br />

Local DB<br />

Data<br />

Data<br />

Quality<br />

Secure and user friendly interface.<br />

Data analyse and work space.<br />

(Analyse tools, elog book, etc…)<br />

Internet<br />

Dedicated<br />

Web Server<br />

To other<br />

Data Base<br />

Administrati<strong>on</strong><br />

interface<br />

–Meta Data<br />

– Data Quality<br />

–Site Administrati<strong>on</strong><br />

–…<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 107


Database<br />

QA/QC informati<strong>on</strong> for each set of data.<br />

Quality level<br />

Life of sensor followed<br />

pers<strong>on</strong> in charge of the sensor (or set of sensors) clearly definite<br />

Recording of the raw data at the level as low as possible (Voltage out put).<br />

To be able to apply calibrati<strong>on</strong>s and cross calibrati<strong>on</strong> a posteriori.<br />

Metadata recording of each sensors. The maximum of metadata will be record<br />

to allow a maximum compatibility with the others dated bases<br />

Dynamic creati<strong>on</strong> of xml file.<br />

Web site<br />

Data management interface.<br />

– Workspace dedicated to the visualizati<strong>on</strong> and/or extracti<strong>on</strong> of the data.<br />

– Including some tools to apply some quick analyses <strong>on</strong>line. Using Matlab <strong>on</strong>line (?)<br />

Interdisciplinary disseminati<strong>on</strong>.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October Research 2010 Engineer for 1 year – WP9 <strong>ESONET</strong>108


<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g>s / Planning :<br />

Durati<strong>on</strong> of c<strong>on</strong>tract for Research engineer: 12 m<strong>on</strong>ths.<br />

– Dem<strong>on</strong>strati<strong>on</strong> of prototype user interface/real time data: September 2009<br />

– Operati<strong>on</strong>al database design descripti<strong>on</strong> M6<br />

– L<strong>on</strong>g term archiving c<strong>on</strong>cept M3<br />

– Data granularity and metadata c<strong>on</strong>cept M6<br />

– Metadata exchange protocols according the <strong>ESONET</strong><br />

data management plan M8<br />

– Real time Web site data management M10<br />

– Data management Handbook M12<br />

– Link with “global database” M14<br />

C. Curtil – Bremen 04/06/2009<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 109<br />

curtil@cppm.in2p3.fr


ANNEXE F3 - E. FAUZI's presentati<strong>on</strong><br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 110


Istituto Nazi<strong>on</strong>ale di Geofisica e Vulcanologia<br />

Data management system architecture for<br />

multiparameter scientific data: A prototype<br />

for seafloor observatories<br />

Authors: F. Doumaz *, S. Vinci *, L. Beranzoli*, P. Favali*<br />

(* INGV , Via di Vigna murata, 605, 000143, Rome Italy )<br />

<strong>Best</strong> <strong>Practices</strong> Workshop #2<br />

October 8 - 9, 2009<br />

Ifremer - Brest Center (France)<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010<br />

October<br />

2009<br />

111


High frequency data (RAW<br />

data)<br />

Huge files<br />

RDBMS<br />

Low frequency data<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 112


Just in time data<br />

c<strong>on</strong>versi<strong>on</strong><br />

Web GUI-Based query<br />

interface<br />

RDBMS<br />

Flat file<br />

MySql<br />

MSql<br />

XML file<br />

based<br />

DB<br />

WEB MAP-Based<br />

query interface<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 113


STUDY PHASE<br />

o Identifying the data type (observatory, instruments, sensor, etc...)<br />

o First data collecti<strong>on</strong> (mail, ftp, etc...)<br />

o Establish the data files c<strong>on</strong>tent, format<br />

o Emissi<strong>on</strong> of data format specificati<strong>on</strong> for data to be uploaded<br />

OPERATIONAL & data collecti<strong>on</strong> PHASE<br />

o Sec<strong>on</strong>d data collecti<strong>on</strong> (Web upload interface)<br />

o Real time data c<strong>on</strong>versi<strong>on</strong><br />

o Real time data integrity check ( Error handling, users notificati<strong>on</strong> )<br />

o XML file storage (Metadata and universal exchange)<br />

o RDBMS <strong>on</strong> the fly populati<strong>on</strong><br />

EXHIBITION PHASE<br />

o Web based query interface<br />

o Web based download interface<br />

o Web base time dependent crosscheck data (Plots, time series<br />

graphics)<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 114


<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 115


<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 116


Let’s see it live<br />

SeaFloor test site<br />

Paroxysm example (a database for Italian volcanoes)<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 117


ANNEXE F4 - H. Ruhl presentati<strong>on</strong><br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 118


Ecological Communities<br />

•Species compositi<strong>on</strong> and community structure<br />

•Trophic levels<br />

•Multidimensi<strong>on</strong>al analysis<br />

•Ecosystem analysis<br />

•External forcing<br />

•Resource use<br />

•Community change<br />

•Feedbacks to external forcing<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 119


~4,100 m<br />

depth<br />

Midwater<br />

ecosystem<br />

dynamics<br />

Primary<br />

producti<strong>on</strong><br />

Carb<strong>on</strong><br />

Export<br />

-<br />

Benthic food<br />

supply<br />

Remineral<br />

-izati<strong>on</strong> Benthic<br />

communities<br />

Climate variati<strong>on</strong><br />

3,500 m-<br />

4,050 m-<br />

Upwelling<br />

Surface<br />

ecosystem<br />

dynamics<br />

Winds<br />

Sediment<br />

traps<br />

ENSO forcing<br />

(NOI)<br />

Upwelling<br />

(m 3 s -1<br />

Net primary prod.<br />

(mg C m -2 d -1 )<br />

Export flux<br />

(mg C m -2 d -1 )<br />

100 m -1 coast)<br />

Food supply<br />

(600 mab POCF)<br />

(mg C m -2 d -1 )<br />

Food supply<br />

(50 mab POCF)<br />

(mg C m -2 d -1 )<br />

Food supply<br />

(seafloor agg. OC)<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

450<br />

350<br />

250<br />

150<br />

50<br />

-50<br />

1500<br />

1000<br />

(mg C m -2 d -1 )<br />

500<br />

0<br />

600<br />

400<br />

200<br />

0<br />

20<br />

15<br />

10<br />

5<br />

0<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

45<br />

35<br />

25<br />

15<br />

5<br />

Jan-89<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G<br />

H<br />

Jan-90<br />

Jan-91<br />

Jan-92<br />

Jan-93<br />

Jan-94<br />

Jan-95<br />

Jan-96<br />

Jan-97<br />

Jan-98<br />

Jan-99<br />

Jan-00<br />

Jan-01<br />

Jan-02<br />

Jan-03<br />

Jan-04<br />

Jan-05<br />

Jan-06<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

100 m -1 coast)<br />

Upwelling<br />

anomaly (m 3 s -1<br />

400<br />

250<br />

Net<br />

100<br />

-50<br />

primary<br />

-200<br />

prod<br />

-350<br />

350<br />

200<br />

50<br />

-100<br />

-250<br />

anomaly<br />

(mg C m -2 d -1 )<br />

Export flux<br />

anomaly<br />

(mg C m -2 d -1 )<br />

15<br />

10<br />

Food<br />

5<br />

0<br />

anomaly<br />

(600 mab POC)<br />

(mg C m -2 d -1 )<br />

-5<br />

15<br />

10<br />

Food<br />

5<br />

0<br />

anomaly<br />

-5<br />

-10<br />

Time-lapse Time-lapse<br />

Burial camera system camera<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 120<br />

-5<br />

50<br />

35<br />

20<br />

5<br />

(mg C m -2 d -1 )<br />

(50 mab POC)<br />

Food anomaly<br />

(seafloor agg. OC)<br />

(mg C m -2 d -1 )


Spatio-Temporal Correlati<strong>on</strong>s<br />

• Time lagged correlati<strong>on</strong>s between global SLPA’s and POC flux to 50<br />

mab indicate that the NOI is good indicator of ENSO scale processes<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 121


Spatio-Temporal Correlati<strong>on</strong>s<br />

• Time lagged correlati<strong>on</strong>s between POC flux to 50 mab and southerly<br />

winds and SST are also sensible.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 122


<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 123


Ecological Communities<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 124


E. minutissima<br />

Ec. rostrata<br />

Density (ind. m -2 )<br />

1.000<br />

0.100<br />

0.010<br />

0.001<br />

1.000<br />

0.100<br />

0.010<br />

0.001<br />

Abundance and Body Size<br />

Jan-89<br />

Jan-90<br />

Jan-91<br />

Jan-92<br />

Jan-93<br />

Jan-94<br />

Jan-95<br />

Abundances are solid circles and body sizes are in open circles<br />

(with 13 m<strong>on</strong>th running means shown for visualizati<strong>on</strong> <strong>on</strong>ly)<br />

Dominant mobile epibenthic megafauna include: E. Minutissima, P. diaphana, P. vitrea, S. globosa,<br />

O. mutabilis, Ps. L<strong>on</strong>gicauda, A. abyssorum, Sy. profundi, O. bathybia, Ec. rostrata<br />

Jan-96<br />

Jan-97<br />

Jan-98<br />

Jan-99<br />

Jan-00<br />

Jan-01<br />

Jan-02<br />

Jan-03<br />

Jan-04<br />

60<br />

40<br />

20<br />

0<br />

100<br />

75<br />

50<br />

25<br />

0<br />

Body Size (mm)<br />

Ruhl & Smith, 2004; Ruhl, 2007<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 125


Community Shifts<br />

20 40 60 80 100<br />

Species compositi<strong>on</strong> similarity (%)<br />

Jul-04<br />

Jun-02<br />

Oct-04<br />

Feb-02<br />

Feb-04<br />

Oct-03<br />

Sep-02<br />

Jun-01<br />

Oct-92<br />

Oct-89<br />

Feb-93<br />

Feb-90<br />

Oct-93<br />

Jul-93<br />

Feb-94<br />

Jun-91<br />

Jun-90<br />

Oct-91<br />

Feb-91<br />

Jun-92<br />

Feb-92<br />

Aug-94<br />

Aug-91<br />

Jul-91<br />

Dec-98<br />

Mar-95<br />

Oct-94<br />

Sep-94<br />

Jun-94<br />

Jul-92<br />

Jun-96<br />

Nov-95<br />

Oct-96<br />

Aug-98<br />

Feb-96<br />

Jun-95<br />

Feb-95<br />

2001-2004<br />

1989- Aug 1994<br />

Sep 1994-1998<br />

(except Jul 1992)<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 126


10-12 m<strong>on</strong>ths for the RAD<br />

(r = 0.38; p < 0.05)<br />

12 m<strong>on</strong>. for evenness<br />

(r = 0.33; p = 0.05)<br />

10-13 m<strong>on</strong>. for sp. comp.<br />

(r = 0.48; p < 0.01)<br />

• Increases in POC flux<br />

lead to decreases in<br />

equitability<br />

• Climatic c<strong>on</strong>necti<strong>on</strong>s<br />

extend to community<br />

levels<br />

Variati<strong>on</strong> Linked to Resources<br />

RAD<br />

(MDS x-ordinate)<br />

Pielou's Evenness ( j)<br />

Species comp.<br />

(MDS x-ordinate)<br />

POC flux (mg C m -2 d -1 )<br />

-2.0<br />

-1.0<br />

0.0<br />

1.0<br />

2.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

2.0<br />

1.0<br />

0.0<br />

-1.0<br />

-2.0<br />

20.0<br />

15.0<br />

10.0<br />

5.0<br />

0.0<br />

Jan-89<br />

Jan-90<br />

Jan-91<br />

Jan-92<br />

Jan-93<br />

Jan-94<br />

Jan-95<br />

Jan-96<br />

Jan-97<br />

Jan-98<br />

Jan-99<br />

Jan-00<br />

Jan-01<br />

Jan-02<br />

Jan-03<br />

Jan-04<br />

A<br />

B<br />

C<br />

D<br />

Ruhl, 2008<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 127


Images by K. Walz<br />

Sediment Macrofauna<br />

Nematoda<br />

(ind. grab -1 )<br />

Arthropoda<br />

(ind. grab -1 )<br />

Annelida<br />

(ind. grab -1 )<br />

Nemertina<br />

(ind. grab -1 )<br />

Mollusca<br />

(ind. grab -1 )<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

200<br />

150<br />

100<br />

50<br />

0<br />

150<br />

100<br />

50<br />

0<br />

8<br />

6<br />

4<br />

2<br />

0<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Jan-89<br />

A<br />

B<br />

C<br />

D<br />

E<br />

Jan-90<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 Ruhl et al., 2008128<br />

Jan-91<br />

Jan-92<br />

Jan-93<br />

Jan-94<br />

Jan-95<br />

Jan-96<br />

Jan-97<br />

Jan-98<br />

Jan-99<br />

0.006<br />

0.004<br />

0.002<br />

0.000<br />

0.06<br />

0.04<br />

0.02<br />

0.00<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

1.00<br />

0.01<br />

0.00<br />

0.00<br />

1.0000<br />

0.1000<br />

0.0100<br />

0.0010<br />

0.0001<br />

Nematoda<br />

(g grab -1 )<br />

Arthropoda<br />

(g grab -1 )<br />

Annelida<br />

(g grab -1 )<br />

Nemertina<br />

(g grab -1 )<br />

Mollusca<br />

(g grab -1 )


Total density (TAD) (ind. grab -1 )<br />

Phyla comp. simil.<br />

(PCD&B) (MDS x-ord.)<br />

RAD simil.<br />

(RADD&B) (MDS x-ord.)<br />

POC flux (mg C m -2 d -1 )<br />

&<br />

SCOC (mg O2 m -1 d -1 )<br />

800<br />

600<br />

400<br />

200<br />

0<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Jan-89<br />

A<br />

B<br />

C<br />

D<br />

Jan-90<br />

Jan-91<br />

Jan-92<br />

Jan-93<br />

Community Shifts<br />

Jan-94<br />

Jan-95<br />

Jan-96<br />

Jan-97<br />

Jan-98<br />

Jan-99<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Total biomass (TA ) B<br />

(g grab -1 )<br />

M<strong>on</strong>thly<br />

POC flux NOI<br />

Macrofuana parameters<br />

Density based<br />

lag n rs p lag n rs p<br />

Phyla comp. (PCD, mds x-ord.) 4 25 0.33 0.112 10 26 0.38 0.053<br />

RAD (RADD, mds x-ord.) 4 25 0.33 0.110 9 26 0.31 0.127<br />

Total abund. (TAD, ind. grab -1 )<br />

Phyla density (ind. grab<br />

4 25 0.38 0.059 9 26 0.36 0.074<br />

-1 )<br />

Nematoda 4 25 0.31 0.135 9 26 0.24 0.246<br />

Arthropoda 3 25 0.41 0.040 9 26 0.49 0.011<br />

Annelida 3 25 0.35 0.090 9 26 0.46 0.019<br />

Nemertina 4 25 -0.28 0.178 9 26 -0.35 0.079<br />

Mollusca 4 25 -0.17 0.410 6 26 -0.33 0.102<br />

Biomass based<br />

Phyla comp. (PC B , mds x-ord.) 7 21 0.45 0.040 10 22 0.32 0.151<br />

RAD (RADD, mds x-ord.) 7 21 0.61 0.003 13 22 0.27 0.219<br />

Total abund. (TAB, g grab -1 )<br />

Phyla biomass (g grab<br />

8 21 0.61 0.004 13 22 0.30 0.179<br />

-1 )<br />

Nematoda 4 22 0.48 0.025 5 22 0.30 0.182<br />

Arthropoda 7 21 0.62 0.003 8 22 0.48 0.025<br />

Annelida 10 22 0.38 0.081 15 22 0.33 0.139<br />

Nemertina 4 22 -0.43 0.044 9 22 -0.58 0.005<br />

Mollusca 8 20 0.33 0.149 19 22 0.73 0.000<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 129


Community Shifts<br />

(a)Scatter plots of total density (TAD) and<br />

total biomass (TAB) vs. observed POC<br />

flux using time lags presented in Table 1<br />

(b) average body size vs. POC flux based <strong>on</strong><br />

time lags in Table 1; and body size<br />

distributi<strong>on</strong>s for the top three most<br />

abundant phyla during an example<br />

(c) higher-than average flux period in June<br />

1990 and<br />

(d) a lower-than-average flux period in June<br />

1992. The Annelida typically were higher<br />

in abundance than the Arthropoda (P<br />

0.05, SI).<br />

Total density<br />

(TA D)(ind. grab -1 )<br />

Total density<br />

(TA D)(ind. grab -1 )<br />

1000<br />

160<br />

120<br />

80<br />

40<br />

0<br />

100<br />

0.0100<br />

0.0010<br />

0.0001<br />

0.0000<br />

a<br />

b<br />

June 1990<br />

(high food supply)<br />

Nematoda<br />

0.01<br />

0 3 6 9 12 15 18<br />

0 3 6 9 12 15<br />

POC flux<br />

c d<br />

Annelida<br />

(mg C m -2 d -1 )<br />

Arthropoda<br />

June 1992<br />

(low food supply)<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 130<br />

Avg. body size<br />

(g grab -1 )<br />

Nematoda<br />

Arthropoda<br />

1<br />

0.1<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Annelida<br />

Total biomass<br />

(TA B )(g grab -1 )<br />

SCOC<br />

(mg O 2 m -2 d -1 )


Total density<br />

(TA D)(ind. grab -1 )<br />

PCD&B & RADD&B similarity (MDS x-ord.)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

a<br />

b<br />

Community Shifts<br />

1989<br />

1990<br />

1991<br />

1992<br />

1993<br />

1994<br />

1995<br />

1996<br />

1997<br />

1998<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

Total biomass<br />

(TA B )(g grab -1 )<br />

Total density<br />

(TA D)(ind. grab -1 )<br />

375<br />

325<br />

275<br />

225<br />

Estimated PCD & RADD similarity (MDS x-ordinate)<br />

-2 -1 0 1 2<br />

e<br />

175<br />

-2<br />

175 250 325 400<br />

Estimated Total density<br />

(TA D)(ind. grab -1 )<br />

Yearly metazoan macrofauna regressi<strong>on</strong> model (y = POC(a)+NOI(c)+ int.) used to estimate<br />

density-based community parameters TA D (dots), and PC D (circles) and RAD D similarity<br />

(crosses).<br />

Model fits evaluated using the F-test:<br />

TA D , n7, r 2 0.90, P = 0.011<br />

PC D , n7, r 2 0.80, P = 0.038<br />

RAD D , n7, r 2 0.85, P = 0.024<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 131<br />

2<br />

1<br />

0<br />

-1<br />

PC & RAD similarity<br />

D D<br />

(MDS x-ordinate)


Stati<strong>on</strong> ALOHA is the Hawaiian<br />

Ocean Time-series (HOT) study<br />

site and has been operating<br />

since 1988.<br />

Karl & Lukas (1996) &<br />

K.L. Smith et al. (2002)<br />

Seas<strong>on</strong>al Shift at ALOHA<br />

Primary producti<strong>on</strong><br />

(mg C m -2 d -1 )<br />

POC flux<br />

(mg C m -2 d -1 )<br />

SCOC<br />

(mg O2 m-2 d-1) Total density<br />

(TA D)(ind grab -1 )<br />

800<br />

600<br />

400<br />

200<br />

0<br />

3<br />

2<br />

1<br />

0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

40<br />

30<br />

20<br />

10<br />

0<br />

a<br />

b<br />

c<br />

d<br />

Aug-1997<br />

Oct-1997<br />

Dec-1997<br />

Feb-1998<br />

Apr-1998<br />

Jun-1998<br />

Aug-1998<br />

Oct-1998<br />

Dec-1998<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

-400<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

2.0<br />

1.0<br />

0.0<br />

-1.0<br />

-2.0<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Primary producti<strong>on</strong><br />

anomaly<br />

SCOC anomaly<br />

Total biomass<br />

(TA B )(g grab -1 ) &<br />

POC flux<br />

anomaly<br />

TA D (ind. grab -1 )<br />

40<br />

36<br />

32<br />

28<br />

24<br />

20<br />

(mg C m<br />

400 500 600 700 800<br />

-2 d -1 )<br />

e<br />

Primary Producti<strong>on</strong><br />

1.0 1.5 2.0 2.5<br />

POC flux<br />

(mg C m -2 d -1 )<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 132


El Niño Southern Oscillati<strong>on</strong>, North Atlantic Oscillati<strong>on</strong> (ENSO, NAO)<br />

Sea Surface C<strong>on</strong>diti<strong>on</strong>s (Winds, Upwelling, SST, etc.)<br />

Surface Productivity & Particulate Organic Carb<strong>on</strong> Export Flux<br />

Time<br />

Atmosphere to the Abyss<br />

POC Flux to the Abyssal Seafloor (food supply)<br />

SCOC Metazoan Mobile Epibenthic<br />

Macrofauna Megafauna<br />

Community Structure<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 133


ANNEXE F5<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 134


Fishery Sciences and Technology Department<br />

www.ifremer.fr<br />

Isabelle Lebl<strong>on</strong>d<br />

BOB project<br />

Bubbles OBservatory<br />

October 2009<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 135


Fishery Sciences and Technology Department<br />

www.ifremer.fr<br />

Isabelle Lebl<strong>on</strong>d<br />

BOB : Bubble OBservatory<br />

• Natural risk assessment (earthquake, tsunami…)<br />

• Impact of seafloor methane discharge <strong>on</strong> climate change<br />

• Locati<strong>on</strong> of hydrogen sources<br />

October 2009<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 136


Fishery Sciences and Technology Department<br />

www.ifremer.fr<br />

Isabelle Lebl<strong>on</strong>d<br />

October 2009<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 137


Fishery Sciences and Technology Department<br />

www.ifremer.fr<br />

Isabelle Lebl<strong>on</strong>d<br />

Principle of data acquisit<strong>on</strong><br />

October 2009<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 138


Fishery Sciences and Technology Department<br />

www.ifremer.fr<br />

Distance<br />

from<br />

sounder<br />

Bubbles<br />

Time<br />

Isabelle Lebl<strong>on</strong>d<br />

Example of echosounding data<br />

October 2009<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 139


Fishery Sciences and Technology Department<br />

www.ifremer.fr<br />

Isabelle Lebl<strong>on</strong>d<br />

Volume reverberati<strong>on</strong> data<br />

October 2009<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 140


Fishery Sciences and Technology Department<br />

www.ifremer.fr<br />

Isabelle Lebl<strong>on</strong>d<br />

Cable observatory : SATRA project<br />

• SATRA : algae acoustic detecti<strong>on</strong> alarm system<br />

• M<strong>on</strong>itoring tool for algae clogging risk in a nuclear<br />

power plant<br />

• Deployed in June 2006<br />

• Three 120 kHz split-beam echo-sounders<br />

• Real time data processing since 2006<br />

October 2009<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 141


Fishery Sciences and Technology Department<br />

www.ifremer.fr<br />

Sa (m 2 nm -2 )<br />

Isabelle Lebl<strong>on</strong>d<br />

SATRA project : algae detecti<strong>on</strong><br />

ALGAE CLOGGING EVENT<br />

Time (ESU = 1 minute)<br />

20 minutes<br />

Distance to sea surface (m)<br />

October 2009<br />

Horiz<br />

Bottom<br />

Surface<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 142


ANNEX F6 - DEBRIEFING :<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 143


Sessi<strong>on</strong> P3.1<br />

<strong>Best</strong> <strong>Practices</strong> Workshop#2<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 144


Introducti<strong>on</strong><br />

• From the first <strong>Best</strong> practices workshop<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 145


Objectives<br />

• to deal with data analysis after first level<br />

data processing according to Scientific<br />

objectives<br />

– What are the expected final products?<br />

– How to reach them: methodologies and<br />

procedures?<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 146


Time-Series Analysis C<strong>on</strong>siderati<strong>on</strong>s<br />

•Scales<br />

•Secular trends<br />

•Trends over specific time periods<br />

•Hind and forecasting<br />

•Gap filling<br />

•Correlati<strong>on</strong>s<br />

•Aliasing<br />

•Detrending<br />

•Calibrati<strong>on</strong> correcti<strong>on</strong><br />

•Parametric vs. n<strong>on</strong>-parametric assumpti<strong>on</strong>s<br />

•Serial autocorrelati<strong>on</strong><br />

•Multidimensi<strong>on</strong>al analysis<br />

•Multidimensi<strong>on</strong>al scaling and principle comp<strong>on</strong>ent analysis<br />

•N<strong>on</strong>-linear vs. linear explanati<strong>on</strong> of variati<strong>on</strong><br />

•Principle coordinates of neighbouring matrices<br />

•Empirical and dynamical modelling<br />

•Spatial c<strong>on</strong>text<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 147


Time-Series Statistics<br />

A gap filling example<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 148


• CTD F, Bio, etc….<br />

Time series<br />

– From subsurface moorings<br />

• Problem of sensor deepening with current<br />

– Example of Antares mooring<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 149


<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 150


<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 151


CTD<br />

ADCP<br />

Interdisciplinary<br />

Instrumentati<strong>on</strong> line<br />

IL 07<br />

hydroph<strong>on</strong>es CT<br />

Camera<br />

hydroph<strong>on</strong>es<br />

Camera<br />

OM<br />

OM<br />

ADCP<br />

hydroph<strong>on</strong>es C-Star<br />

hydroph<strong>on</strong>e<br />

Sismomètre<br />

SV<br />

14.5m<br />

80m<br />

C-Star<br />

CT<br />

14.5m<br />

O 2<br />

14.5m<br />

80m<br />

98m<br />

ADCP<br />

Pr<br />

6 storeys with :<br />

2 CTD , SV<br />

2 ADCP<br />

O 2<br />

2 C-Star<br />

2 Cameras<br />

18 Hydroph<strong>on</strong>es<br />

for acoustic detecti<strong>on</strong><br />

Deployed in July 07<br />

Lines Std<br />

Ligne 12<br />

IODA (F25)<br />

Seismometer (BSS)<br />

Ligne 4<br />

SV–CTD (F24)<br />

Extensi<strong>on</strong><br />

Sec<strong>on</strong>dary JB<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 152<br />


CTD<br />

Some examples of time series<br />

•ADCP<br />

• AquaDopp<br />

MILOM F1<br />

MILOM F1<br />

L5 F23<br />

IL07 F4<br />

2005 2006 2007 2008<br />

Sea current speed<br />

IL07 F1 & F5<br />

Bioluminescence activity<br />

Temperature<br />

2005 2006 2007 2008 2009<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 153


Influences and Correlati<strong>on</strong>s<br />

• Correlati<strong>on</strong> between Sea current speed and Median Bioluminescence Rate<br />

2006 to Now…<br />

W<br />

N<br />

W<br />

N<br />

NE<br />

E<br />

The Mean speed is around 7 cm/s.<br />

Since the summer 2006, most of time, the sea current<br />

speed is lower than the “standard” limit (~15<br />

cm/s) for the data taking.<br />

Under the influence of the<br />

Ligure current<br />

typical speed limit for<br />

the data taking<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 154


Development of an Automated Protocol to Analyse the Temporal Dynamics of Hydrothermal<br />

Ecosystems from Video Imagery and Temperature Time-Series<br />

Sarrazin J., Sarradin P.-M., Gauthier O., Mercier G.<br />

•Scientific objectives<br />

•To study community dynamics and successi<strong>on</strong> patterns <strong>on</strong> high temperature<br />

hydrothermal edifices;To link faunal dynamics to envir<strong>on</strong>mental changes and<br />

catastrophic disturbances;To start evaluating the role of biotic factors <strong>on</strong> community<br />

structure.<br />

•Realized sampling<br />

•Tour Eiffel (Lucky Strike; Mid Atlantic Ridge; 1650 m depth)<br />

•Tempo ecological module: video camera (45 days), [Fe] (6 m<strong>on</strong>ths), T°C (18 m<strong>on</strong>ths)<br />

•High frequency (30 sec) T°C measurements: 24 probes, 11 days<br />

•Ongoing methodological developments<br />

•Data quality verificati<strong>on</strong><br />

•Manual extracti<strong>on</strong> of imagery data & links with envir<strong>on</strong>mental factors<br />

•Automated image analysis (textures, shapes, surfaces...)<br />

•Modelisati<strong>on</strong> of temporal and spatial T°C variati<strong>on</strong><br />

•Trend identificati<strong>on</strong> & extracti<strong>on</strong><br />

•Principal Comp<strong>on</strong>ents of Neighboor Matrices<br />

•Identificati<strong>on</strong> of optimal analysis parameters (reading frames, sampling frequency...)<br />

•Automatisati<strong>on</strong> of T analysis<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 155


Acoustic data analysis<br />

• Methane bubble detecti<strong>on</strong>: BOB example<br />

– Volume backcsattering computati<strong>on</strong><br />

• Marine mamals detecti<strong>on</strong> method (from<br />

LIDO)<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 156


Data management<br />

collaborati<strong>on</strong> with INGV<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 157


Since September 2005:<br />

All the output off all sensors are readout every 3 minutes and stored in the<br />

database in a special “RawData” table.<br />

At the same time, a parser reads this table to fill different tables dedicated to<br />

each sensor, storing the data timestamp, the parameter values and the reference of<br />

the line from where it was extracted from the RawData table.<br />

The typical flow is of 12500 new lines in RawData table per hour (<strong>on</strong>e line per<br />

oceanographic sensor and other slow c<strong>on</strong>trol informati<strong>on</strong>).<br />

All these data are processed in quasi real time.<br />

Current procedure :<br />

− Each sensor was calibrated before deployment.<br />

− The acquisiti<strong>on</strong> of the oceanographical data is synchr<strong>on</strong>ized with the<br />

ANTARES acquisiti<strong>on</strong> data.<br />

− The data readout method depends <strong>on</strong> c<strong>on</strong>necti<strong>on</strong> type of the sensors :<br />

For most of the sensors, the c<strong>on</strong>necti<strong>on</strong> is d<strong>on</strong>e by a serial link RS232.<br />

For them, the data measurement and their recording is d<strong>on</strong>e by slow c<strong>on</strong>trol<br />

request.<br />

The IP camera and the seismometer have an aut<strong>on</strong>omous Ethernet<br />

c<strong>on</strong>necti<strong>on</strong>.<br />

The IODA has its own system of internal data acquisiti<strong>on</strong> and buffering.<br />

Those data are then send to shore by the Slow C<strong>on</strong>trol.<br />

<str<strong>on</strong>g>Deliverable</str<strong>on</strong>g> #50 - update October 2010 158

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!