05.09.2013 Views

Avio innovation network for Green Engine

Avio innovation network for Green Engine

Avio innovation network for Green Engine

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CONFERENCE GREEN AIRCRAFT<br />

OCTOBER, 29 2009 TORINO, ITALY<br />

<strong>Avio</strong> <strong>innovation</strong> <strong>network</strong><br />

<strong>for</strong> <strong>Green</strong> <strong>Engine</strong><br />

Franco Tortarolo<br />

Head of R&TD<br />

1


1903 …<br />

Wright Flyer<br />

…last century…<br />

Today …<br />

A380<br />

Tomorrow …<br />

<strong>Green</strong> Aircraft<br />

2


• No. 1 in the world:<br />

– Accessory Gearbox<br />

<strong>Avio</strong><br />

– Power Transmission <strong>for</strong> helicopter<br />

and turboprop (independent)<br />

• No. 1 in Europe <strong>for</strong> Solid Space<br />

Propulsion<br />

• Eccellence in Turbines and Combustors<br />

3


<strong>Avio</strong> is involved in main civil programs<br />

TRENT 900 GENx 2B<br />

(A380)<br />

PW4000<br />

(in competition with CF6-80)<br />

SaM146<br />

(Sukoi Superjet 100)<br />

GE90<br />

(B777)<br />

PW2000<br />

(B757, C17 military transport)<br />

PW308 (Raytheon Hawker Horizon,<br />

Dassault Falcon 2000EX BizJets)<br />

CF6-80<br />

CFM-56<br />

(B747, B767, A330, A300, MD11) (B737, A320 family)<br />

V2500<br />

(A320 family)<br />

PW150<br />

(Bombardier Q400)<br />

GENx<br />

Boeing 787 Dreamliner<br />

PW100<br />

(ATR 42)<br />

4


…and main military programs<br />

EJ200 T700/CT7 TP400 F136/F135<br />

Eurofighter/Typhoon Apache, Black Hawk,<br />

EH101, NH90, Cobra<br />

RB199<br />

F119<br />

A400M F-35<br />

F110<br />

TORNADO F-22 Raptor F-16 and F-15<br />

5


ACARE 2020 and<br />

the “green” challenge<br />

6


From ACARE Goals to <strong>Green</strong> <strong>Engine</strong><br />

NOx+CO+UHC+Particles<br />

ATM Contribution<br />

Aircraft Contribution<br />

<strong>Engine</strong> Contribution<br />

• Reduce specific fuel consumption by 20%<br />

• Reduce NOx by 60% to 80%<br />

• Reduce noise by 6 dB<br />

• Reduce accident rate by x5<br />

• Reduce operational cost<br />

• Halve time to market<br />

<strong>Engine</strong> Configuration Driven by:<br />

Low Noise, Low Emissions, and<br />

Low Cost of Ownership<br />

7


Which is the way?<br />

Conventional Turbofan Radical Architectures<br />

To increase the<br />

By-Pass-Ratio<br />

• New engine architectures<br />

• Technological Step Change<br />

• Integration with airframers<br />

~2.2 m<br />

~ 3.5 m<br />

CFM-56 Open Rotor<br />

8


Radical Architectures<br />

“duct”<br />

GEARED<br />

Turbofan<br />

Low Speed Fan, driven by<br />

LPT via reduction gearbox<br />

Lower Noise<br />

Conventional<br />

Puller<br />

“unduct”<br />

OPEN ROTOR<br />

Pusher<br />

Contro-rotanting propellers driven by turbine:<br />

• “high speed” via a reduction gearbox<br />

or<br />

• “low speed” contro-rotanting (Pusher only)<br />

Lower SFC<br />

9


Impact and opportunities<br />

<strong>for</strong> <strong>Avio</strong> products<br />

10


Ultra low NOx<br />

Combustor<br />

New <strong>Engine</strong> Architectures Needs<br />

High Power Density<br />

Transmission Systems<br />

High Reliability<br />

Light Weight - Low<br />

Noise - High<br />

Efficiency Turbines<br />

11


Power Gearbox Research Drivers<br />

INNOVATIVE GEAR DESIGN METHOD<br />

Innovative Gear Design Method <strong>for</strong> full use<br />

of material capabilities to increase power<br />

density, efficiency and reliability<br />

SYSTEM DYNAMICS<br />

Fully integrated Transmission<br />

System Dynamics Simulation<br />

HIGH LOAD CAPACITY BEARINGS<br />

Journal Bearings, Integral Bearing<br />

Race, Ultra High Hardness Materials<br />

HEALTH MONITORING AND PROGNOSTIC<br />

Incipient gears and bearing failure using<br />

oil debris and vibration monitoring<br />

12


Low Pressure Turbine: Research Drivers<br />

MULTIDISCIPLINARY OPTIMIZATION<br />

LPT Per<strong>for</strong>mance through multidisciplinary<br />

design optimization and 3D CFD Calculation<br />

LOW NOISE DESIGN<br />

Turbine Noise by design, through integrated<br />

Aerodynamic & Acoustic approach<br />

ACTIVE THERMAL CONTROLS<br />

Active clearance control has a strong impact<br />

on engine per<strong>for</strong>mance improvement and<br />

reduction of engine to engine SFC variation<br />

LIGHT MATERIALS<br />

Low density alloy with good specific strength,<br />

corrosion/oxidation resistance and low cost<br />

manufactoring process<br />

AERODYNAMIC DESIGN DAMPING AND VIBRATIONS<br />

13


Combustion: Research Drivers<br />

Ultra Low NOx (ULN) Injection System<br />

Alternative fuels characterization<br />

<strong>for</strong> ULN Combustion stability<br />

Challenge: Reduce Emissions<br />

Thermo-acoustic numerical /<br />

experimental investigation<br />

Powder Sintering<br />

High Temperature Material<br />

14


<strong>Avio</strong> approaching the “green”<br />

challenge<br />

15


<strong>Avio</strong> approach to R&TD<br />

Since many years <strong>Avio</strong> research has been based on:<br />

– National and European Programs (FP 5,6,7; CleanSky)<br />

– National / International collaborations with Universities and<br />

Research Centers<br />

Un, KARLSRUHE GERMANIA<br />

UNIVERSITA’ MONACO GERMANIA<br />

Design Unit Un. NewCastle UK<br />

QINETIQ INGHILTERRA<br />

CRANFIELD INGHILTERRA<br />

ONERA Biarritz FRANCIA<br />

CEPR FRANCIA<br />

CNSR FRANCIA<br />

GEAR RESEARCH INST. - PEN. STATE<br />

OHIO STATE UNIVERSITY - OHIO<br />

VON KARMAN INST. OLANDA<br />

DELFT UNIVERSITY<br />

Un, GRAZ AUSTRIA<br />

CIAM MOSCA VIAM MOSCA<br />

Poland<br />

16


Politecnico Torino<br />

Turbomachinery,<br />

Aeromechanics, Materials<br />

Univ. Genova<br />

Experimental<br />

Fluidodynamics<br />

Univ. Pisa<br />

Mechanical<br />

Transmission<br />

Univ. Firenze<br />

Computational<br />

Fluidodynamics<br />

Univ. Roma<br />

Space Propuls.<br />

Univ. Cassino<br />

Creep<br />

Politecnico Milano<br />

Lifing<br />

Univ. Napoli/CIRA<br />

Combustor<br />

Nanofab<br />

Nanotech<br />

Univ. Lecce<br />

E-<strong>Engine</strong>ering<br />

Manufact. Process<br />

17


The <strong>Green</strong> Challenge requires<br />

• Radical thinking<br />

• New technologies & skills<br />

• Significant research ef<strong>for</strong>t (af<strong>for</strong>dability)<br />

• Many key ingredients locally available:<br />

– Excellent Academia<br />

– Historical aerospace presence on the territory<br />

– Many active and high tech SME’s<br />

– Support from local Authorities<br />

18


From single Collaborations to Partnership<br />

Pragmatic approach towards:<br />

• Research Network based on partnership:<br />

– <strong>Avio</strong><br />

– Research Institutes / Universities<br />

–SME’s<br />

• Selective collaboration:<br />

– Proven competencies<br />

– Stability<br />

– Cost sharing and returns among Partners<br />

• Common “green” objectives<br />

• Science Technology Application<br />

AVIO<br />

NEEDS CONTINOUS GROWTH IN KNOWLEDGE<br />

RESEARCH INSTITUTIONS<br />

NEEDS TO TEST KNOWLEDGE ON “REAL” CASES<br />

SME’s<br />

NEED “BRIDGES” TOWARDS LARGER WORLDS<br />

EXPECTATIONS & ROLES<br />

• “ENGINE” OF THE SYSTEM<br />

• BRIDGE TOWARDS BUSINESS<br />

OPPORTUNITIES<br />

• PATH TOWARDS EUROPE<br />

• BASIC RESEARCH SEAT<br />

• SOURCE FOR KNOWLEDGE AND<br />

SKILLED PEOPLE<br />

• IT NEEDS TO TEST THE KNOWLEDGE<br />

ON “REAL” CASE<br />

• “NICHE” KNOWLEDGE<br />

• FAST RACTION TIME<br />

• FELXIBILITY<br />

19


Two “GREAT GREAT” ” Initiatives<br />

GReen <strong>Engine</strong> <strong>for</strong> Air Transportation 2020<br />

To develop key technologies <strong>for</strong> next generation aircraft engines, supporting the local Aero-<strong>Engine</strong><br />

Industry to design and produce high-per<strong>for</strong>mance, low noise and low emission aero-engine<br />

subsystems<br />

• Regional Research Program<br />

• Start: early 2009; Duration: 3 years; Ef<strong>for</strong>t:15M€<br />

• Partnership: Politecnico (7 Depts.), CNR; 24 SME’s; 3 Large Comp.’s<br />

• Share: 1/3; 1/3; 1/3<br />

• Joint Lab between <strong>Avio</strong> – Politecnico<br />

• Partnership agreement: signed middle 2008; duration 10 years<br />

• <strong>Avio</strong> driving technologies <strong>for</strong> <strong>Green</strong> <strong>Engine</strong><br />

• PhD’s & Researchers funding evenly shared between partners<br />

To develop “teaming” relationships and strong interaction with Politecnico to concentrate<br />

academic expertise on solving issues of critical technical importance to green engine, to promote<br />

technology transition, to enhance engineering education and to provide channel <strong>for</strong> employing topquality<br />

students<br />

GREAT LAB<br />

20


Two “GREAT GREAT” ” Initiatives<br />

GReen <strong>Engine</strong> <strong>for</strong> Air Transportation 2020<br />

To develop key technologies <strong>for</strong> next generation aircraft engines, supporting the local Aero-<strong>Engine</strong><br />

Industry to design and produce high-per<strong>for</strong>mance, low noise and low emission aero-engine<br />

subsystems<br />

To develop “teaming” relationships and strong interaction with University to concentrate academic<br />

expertise on solving issues of critical technical importance to green engine needs, to promote<br />

technology transition, to enhance engineering education and to provide channel <strong>for</strong> employing topquality<br />

students<br />

GREAT LAB<br />

21


GREAT2020<br />

• Aggregated around 6 laboratories<br />

• One <strong>Avio</strong> coordinator <strong>for</strong> Lab (Lab Leader)<br />

• Differente SME’s and Depts. configuration <strong>for</strong> Lab<br />

• Different projects <strong>for</strong> Labs (18 in total)<br />

Mechatronics<br />

Combustion Low<br />

Emissions Systems<br />

Advanced Gears<br />

Technology<br />

ZEC ECOPROLAB<br />

AGEADES<br />

AVIO<br />

MCLAB<br />

POLITO POLITO<br />

LIFT<br />

SMEs<br />

AERONFLUX<br />

Light Innovative Structures & Materials<br />

Eco-friendly<br />

Manufacturing<br />

Aerothermal<br />

Technologies<br />

22


GREATLAB<br />

Joint Lab between Politecnico Torino & <strong>Avio</strong> <strong>for</strong> <strong>Green</strong> <strong>Engine</strong><br />

Cittadella Politecnica<br />

• Knowledge community<br />

• Research & complex development problems<br />

• High tecnological sponsorship<br />

• Link to University Labs<br />

• Training / Recruitment<br />

Great Lab: sponsorship<br />

5 Dicembre 2008<br />

GM CoE (diesel, Hybrid)<br />

Microsoft<br />

SME’s Incubator<br />

GREATLAB<br />

23


Example of achievements<br />

24


Example 1: Rapid Manufacturing<br />

LIFT Lab<br />

Need<br />

LIGHT MATERIALS<br />

<strong>Avio</strong><br />

Low density alloy with good specific<br />

strength, corrosion/oxidation resistance<br />

and low cost manufactoring process<br />

Scientific Support<br />

Polito - DISMIC<br />

• Powder characteristics<br />

• Process improvements<br />

• Thermal treatment<br />

• Chemical/Metallurgic<br />

Analysis<br />

Technological Niche<br />

Protocast SME<br />

Electron Beam Melting<br />

Testing Facilities<br />

Bytest<br />

Mechanical Test<br />

SME<br />

Win-Win<br />

• Low weight<br />

• Alternative Low Cost<br />

manufacturing process to<br />

casting <strong>for</strong> TiAl Blades<br />

• Very competitive blades<br />

• Potential large business<br />

• Possible NewCo<br />

• Leading edge research<br />

25


Example 2: Eco-Manufactoring<br />

ECOPRO Lab<br />

Goal 1: Development of Eco-friendly machining processes capable of maintaining the<br />

highest level of geometrical accuracy and surface integrity<br />

Bio Coolant<br />

Micro Lubrication<br />

Surface<br />

Integrity<br />

APR, NOVATEA, PROTOCAST, SILMAX, URMAROLLS; POLITO, ISTEC<br />

26


Example 2: Eco-Manufactoring (cont.)<br />

ECOPRO Lab<br />

Goal 2: Development of world-class grinding machine capable of profiling intricate<br />

3D shapes of jet engine turbine components<br />

Win-Win<br />

Eco benefits:<br />

• enabling production of lightweight, high efficiency turbine<br />

components with minimum need and waste of expensive<br />

‘exotic’ materials<br />

• reduction in usage/disposal of machining coolant<br />

- from 10000 ml/h of water+oil moisture<br />

- down to


Example 3: Reverse <strong>Engine</strong>ering<br />

LIFT Lab<br />

• Reverse engineering of casting components<br />

• Non destructive geometric inspections<br />

• Reverse engineering of foundery tools (cores,<br />

molds)<br />

Polito - DISPEA<br />

Blu-<strong>Engine</strong>ering; Bytest; Getti Speciali; Polito<br />

28


• Big (& Great!) challenges:<br />

– <strong>Engine</strong> is changing<br />

– Culture is changing<br />

Conclusion<br />

• People, skills (scientific,<br />

technology, application), teaming,<br />

common objectives are essential<br />

• Building up togheter a new model<br />

of research collaboration<br />

• Emerging promising results<br />

• Model open to wider collaboration<br />

29


Thank you <strong>for</strong> the<br />

attention<br />

30

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!