20.11.2013 Views

silica dust, crystalline, in the form of quartz or cristobalite - IARC ...

silica dust, crystalline, in the form of quartz or cristobalite - IARC ...

silica dust, crystalline, in the form of quartz or cristobalite - IARC ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>IARC</strong> MONOGRAPHS – 100C<br />

Table 1.1 Nomenclature, CAS numbers, and classification <strong>of</strong> <strong>silica</strong> <strong>f<strong>or</strong>m</strong>s with selected physical<br />

and chemical properties<br />

Name CAS No. Basic<br />

F<strong>or</strong>mula<br />

Classification Synonyms Properties<br />

Silica 7631-86-9 SiO 2<br />

α-<strong>quartz</strong>, β-<strong>quartz</strong>;<br />

α-tridymite,<br />

β1-tridymite,<br />

β2-tridymite;<br />

α-<strong>cristobalite</strong>,<br />

β-<strong>cristobalite</strong>;<br />

coesite; stishovite;<br />

moganite<br />

Crystall<strong>in</strong>e Silica<br />

Cristobalite 14464-46-1 α-<strong>cristobalite</strong>,<br />

β-<strong>cristobalite</strong><br />

Quartz 14808-60-7 α-<strong>quartz</strong>, β-<strong>quartz</strong> α-<strong>quartz</strong>: agate;<br />

chalcedony;<br />

chert; fl<strong>in</strong>t;<br />

jasper;<br />

novaculite;<br />

<strong>quartz</strong>ite;<br />

sandstone; <strong>silica</strong><br />

sand; tripoli<br />

Structure: <strong>crystall<strong>in</strong>e</strong>, am<strong>or</strong>phous,<br />

crypto<strong>crystall<strong>in</strong>e</strong><br />

Molecular weight: 60.1<br />

Solubility: po<strong>or</strong>ly soluble <strong>in</strong> water at 20 °C<br />

and most acids; <strong>in</strong>creases with temperature<br />

and pH<br />

Reactivity: reacts with alkal<strong>in</strong>e aqueous<br />

solutions, with hydr<strong>of</strong>lu<strong>or</strong>ic acid (to<br />

produce silicon tetraflu<strong>or</strong>ide gas), and<br />

catechol<br />

Solubility: 6–11 μg/cm 3 (6–11 ppm) at<br />

room temperature; slightly soluble <strong>in</strong> body<br />

fluids<br />

Thermodynamic properties: melts to a<br />

glass; coefficient <strong>of</strong> expansion by heat—<br />

lowest <strong>of</strong> any known substance<br />

Tripoli 1317-95-9<br />

Tridymite 15468-32-3 α-tridymite,<br />

β1-tridymite, β2-<br />

tridymite<br />

From <strong>IARC</strong> (1997), NIOSH (2002), NTP (2005)<br />

1.3.1 Sand and gravel<br />

Although <strong>silica</strong> sand has been used f<strong>or</strong><br />

many different purposes throughout hist<strong>or</strong>y, its<br />

most ancient and pr<strong>in</strong>cipal use has been <strong>in</strong> <strong>the</strong><br />

manufacture <strong>of</strong> glass (e.g. conta<strong>in</strong>ers, flat plate<br />

and w<strong>in</strong>dow, and fibreglass). Sands are used <strong>in</strong><br />

ceramics (e.g. pottery, brick, and tile), foundry<br />

(e.g. mould<strong>in</strong>g and c<strong>or</strong>e, refract<strong>or</strong>y), abrasive<br />

(e.g. blast<strong>in</strong>g, scour<strong>in</strong>g cleansers, saw<strong>in</strong>g and<br />

sand<strong>in</strong>g), hydraulic fractur<strong>in</strong>g applications, and<br />

many o<strong>the</strong>r uses. Several uses require <strong>the</strong> material<br />

to be ground (e.g. scour<strong>in</strong>g cleansers, some types<br />

<strong>of</strong> fibreglass, certa<strong>in</strong> foundry applications). In<br />

some uses (e.g. sandblast<strong>in</strong>g, abrasives), gr<strong>in</strong>d<strong>in</strong>g<br />

also occurs dur<strong>in</strong>g use. F<strong>or</strong> a m<strong>or</strong>e complete list<br />

<strong>of</strong> end-uses, refer to Table 8 <strong>of</strong> <strong>the</strong> previous <strong>IARC</strong><br />

Monograph (<strong>IARC</strong>, 1997).<br />

Acc<strong>or</strong>d<strong>in</strong>g to <strong>the</strong> US Geological Survey, w<strong>or</strong>ld<br />

production <strong>in</strong> 2008 was estimated to be 121<br />

million metric tons (Dolley, 2009). The lead<strong>in</strong>g<br />

producers were <strong>the</strong> USA (30.4 million metric<br />

tons), Italy (13.8 million metric tons), Germany<br />

(8.2 million metric tons), <strong>the</strong> United K<strong>in</strong>gdom<br />

(5.6 million metric tons), Australia (5.3 million<br />

metric tons), France (5 million metric tons),<br />

Spa<strong>in</strong> (5 million metric tons), and Japan (4.5<br />

million metric tons).<br />

356

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!