25.12.2013 Views

Tierärztliche Hochschule Hannover Vergleichende Studie zur

Tierärztliche Hochschule Hannover Vergleichende Studie zur

Tierärztliche Hochschule Hannover Vergleichende Studie zur

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Tierärztliche</strong> <strong>Hochschule</strong> <strong>Hannover</strong><br />

<strong>Vergleichende</strong> <strong>Studie</strong> <strong>zur</strong> analgetischen Wirksamkeit<br />

von Inhalationsnarkose sowie Injektions- und<br />

Epiduralanästhesie bei Operationen am Nabel des<br />

Kalbes<br />

INAUGURAL – DISSERTATION<br />

<strong>zur</strong> Erlangung des Grades einer Doktorin<br />

der Veterinärmedizin<br />

- Doctor medicinae veterinariae -<br />

( Dr. med. vet. )<br />

vorgelegt von<br />

Jennifer Offinger<br />

Memmingen<br />

<strong>Hannover</strong> 2010


Wissenschaftliche Betreuung:<br />

Univ.-Prof. Dr. Jürgen Rehage<br />

Klinik für Rinder<br />

1. Gutachter: Univ.-Prof. Dr. Jürgen Rehage<br />

Klinik für Rinder<br />

2. Gutachter: Univ.-Prof. Dr. Manfred Kietzmann<br />

Institut für Pharmakologie, Toxikologie<br />

und Pharmazie<br />

Tag der mündlichen Prüfung: 01. November 2010<br />

Eine Arbeit mit Unterstützung durch die Konrad-Adenauer-Stiftung e.V.


Meinen Eltern


Jennifer Offinger<br />

<strong>Vergleichende</strong> <strong>Studie</strong> <strong>zur</strong> Analgesie der Nabelregion mittels Isofluran-<br />

Inhalationsnarkose, Epiduralanästhesie und Injektionsnarkose und zu den<br />

Auswirkungen dieser drei Methoden auf die intraoperativen Schmerzparameter und<br />

das Herzkreislaufsystem bei Kälbern<br />

Inhaltsverzeichnis<br />

Einleitung und Fragestellung der Arbeit...................................................................... 1<br />

Literatur................................................................................................................. 9<br />

Publikation 1:............................................................................................................ 15<br />

Percutaneous, ultrasonographically guided technique of catheterization of the<br />

abdominal aorta in calves for serial blood sampling and continuous arterial blood<br />

pressure measurement<br />

Publikation 2:............................................................................................................ 17<br />

Comparison of isoflurane inhalation anaesthesia, injection anaesthesia and high<br />

volume caudal epidural anaesthesia in calves; metabolic, endocrine and<br />

cardiopulmonary effects<br />

Publikation 3:............................................................................................................ 56<br />

Case report: Spinal chord infarct in a calf after aortic catheter implantation............<br />

Übergreifende Diskussion......................................................................................... 75<br />

Literatur............................................................................................................... 83<br />

Zusammenfassung ................................................................................................... 86<br />

Summary .................................................................................................................. 89<br />

Danksagungen ......................................................................................................... 92<br />

I


Abkürzungsverzeichnis<br />

A.a.<br />

a<br />

Abb.<br />

ABP<br />

ACTH<br />

AD<br />

AMG<br />

AMV<br />

BE<br />

BW<br />

˚C<br />

C a O 2<br />

CcO 2<br />

CI<br />

C v¯ O 2<br />

cm<br />

CO<br />

D oder d<br />

E<br />

Fig.<br />

g<br />

h<br />

Hb<br />

HCO 3<br />

HPA<br />

HR<br />

ID<br />

Aorta abdominalis (Abdominal aorta)<br />

arteriell (arterial)<br />

Abbildung<br />

arterial blood pressure<br />

Adrenocorticotropes Hormon<br />

Außendurchmesser<br />

Arzneimittelgesetz<br />

Atemminutenvolumen<br />

Basenüberschuss (base excess)<br />

body weight<br />

Grad Celsius<br />

Arterieller Sauerstoffgehalt (arterial oxygen content)<br />

Sauerstoffgehalt in Lungenkapillarblut (oxygen content in<br />

pulmonary capillary blood)<br />

Herzindex (cardiac index)<br />

Gemischt venöser Sauerstoffgehalt (mixed venous oxygen<br />

content)<br />

Zentimeter (centimetres)<br />

Herzzeitvolumen (cardiac output)<br />

Tag (day)<br />

Epinephrin (epinephrine)<br />

Figure<br />

Gramm<br />

Stunden (hours)<br />

Hämoglobin (haemoglobin)<br />

Standard-Bikarbonatgehalt<br />

hypothalamo-hypophysär-andrenerges System<br />

Herzfrequenz (heart rate)<br />

Innendurchmesser (inner diameter)<br />

II


I.E.<br />

internationale Einheit<br />

IM oder i/m intramuskulär<br />

I.U.<br />

international units<br />

IV oder i/v intravenös<br />

kg<br />

Kilogramm<br />

KGW<br />

Körpergewicht<br />

kPa<br />

Kilopascal<br />

L<br />

Liter<br />

MAP<br />

arterieller Mittelduck (mean systemic arterial pressure)<br />

MCVP<br />

zentralvenöser Mitteldruck (mean central venous pressure)<br />

mg<br />

Milligramm<br />

min<br />

Minute<br />

mL<br />

Milliliter<br />

mm<br />

Millimeter<br />

mmHg<br />

Millimeter Quecksilbersäule<br />

mmol<br />

Millimol<br />

MPAP<br />

pulmonalarterieller Mitteldruck (mean pulmonary artery pressure)<br />

µg Mykrogramm<br />

n<br />

Anzahl<br />

NaCl<br />

Natriumchlorid<br />

NE<br />

Norepinephrin (norepinephrine)<br />

NEFA<br />

freie (nicht veresterte) Fettsäuren (non-esterified fatty acids)<br />

ng<br />

Nanogramm<br />

NRS<br />

Numerisches System (numeric rating scale)<br />

NSAID<br />

nichtsteroidales Antiphlogistikum (non-steroidal antiinflammatory<br />

drug)<br />

O 2<br />

OD<br />

op<br />

P<br />

Sauerstoff (oxygen)<br />

outer diameter<br />

operationem<br />

Irrtumswahrscheinlichkeit (probability)<br />

III


p a CO 2<br />

arterieller Kohlendioxidpartialdruck (arteial partal pressure of<br />

carbon dioxide)<br />

p a O 2<br />

arterieller Sauerstoffpartialdruck (arteial partal pressure of<br />

oxygen)<br />

pAO 2<br />

alveolar oxygen tension<br />

PCWP<br />

pulmonalkapillärer Verschlussdruck (pulmonary capillary wedge<br />

pressure)<br />

PVR<br />

pulmonaler Gefäßwiderstand (pulmonary vascular resistance)<br />

Qs/Qt<br />

pulmonärer Shunt (pulmonary shunt)<br />

RR<br />

Atemfrequenz (respiratory rate)<br />

RQ<br />

respiratorischer Quotient (respiratory quotient)<br />

SD<br />

Standardabweichung (standard deviation)<br />

S a O 2<br />

Sauerstoffsättigung (oxygen saturation)<br />

SC oder s/c subkutan (subcutaneous)<br />

sec<br />

Sekunde (second)<br />

SEM<br />

Standardfehler (standard error of the mean)<br />

SV<br />

Schlagvolumen (stroke volume)<br />

SVR<br />

systemischer Gefäßwiderstand (systemic vascular resistance)<br />

Tab.<br />

Tabelle (Table)<br />

v¯<br />

Gemischt venös (mixed venous)<br />

VAS<br />

Visuell Analoges System (visual analogue scale)<br />

Vol.<br />

Volumen (volume)<br />

vs.<br />

Versus<br />

V E<br />

V T<br />

minute ventillation<br />

tidal volume<br />

% Prozent (percent)<br />

Abkürzungen Gruppen:<br />

INH<br />

Inhalationsanästhesie<br />

EPI<br />

Epiduralanästhesie<br />

INJ<br />

Injektionsanästhesie<br />

IV


Einleitung<br />

Einleitung und Fragestellung der Arbeit<br />

Die Herausforderung in der Anästhesie von Nutztieren liegt darin, praxistaugliche<br />

Medikationen im Rahmen des gültigen Arzneimittelgesetzes (AMG) zu etablieren, die<br />

am Tier einen sicheren und weitgehend schmerzfreien operativen Eingriff<br />

ermöglichen und dabei betriebswirtschaftliche Aspekte nicht aus dem Auge verlieren.<br />

Der Verbraucher legt heute zunehmend Wert darauf, dass Produkte tierischer<br />

Herkunft aus Produktionssystemen stammen, die den Aspekten des „Animal Welfare“<br />

angemessen Rechnung tragen. Hierzu zählt auch eine umfassende<br />

Schmerzausschaltung im Rahmen operativer Eingriffe. Es muss daher auch die<br />

Bereitschaft von Seiten der Landwirte bestehen, Mehrkosten für eine adäquate<br />

Schmerzmedikation ihrer Tiere zu tragen. Umfragen ergaben, dass Landwirte bereit<br />

sind, finanzielle Ressourcen in ein adäquates Schmerzmanagement ihrer Tiere zu<br />

investieren, solange der Markt im Gegenzug die Bereitschaft zeigt, die anfallenden<br />

Mehrkosten für die Fleisch- und Milchproduktion zu übernehmen. Die Bereitwilligkeit,<br />

in Verbesserungen des Wohlbefindens der Tiere zu investieren, wurde zwar durch<br />

Konsumentenumfragen deutlich signalisiert, jedoch reflektiert das Kaufverhalten der<br />

Konsumenten jene Werte, die von diesen <strong>Studie</strong>n abgeleitet werden, nicht wider<br />

(Moran and McVittie, 2008).<br />

Durch den Druck des internationalen Wettbewerbes ist die Wirtschaftlichkeit nach wie<br />

vor der entscheidende Faktor in modernen Produktionssystemen. Oftmals rechtfertigt<br />

1


Einleitung<br />

der geringe Wert des Einzeltieres nicht den Gebrauch kostspieliger Medikamente<br />

und die Anschaffung von teuren Apparaturen wie Narkosetowern, OP-Tischen und<br />

Überwachungsgeräten. Anästhesieverfahren müssen einfach, ökonomisch, risikoarm<br />

und wirksam sein. Es liegt in der Verantwortung der Forschung, den Praktikern<br />

wissenschaftlich fundierte Anästhesietechniken aufzuzeigen, die ein verantwortbares<br />

Maß an Ökonomie, Praktikabilität und Sicherheit vereinen und dabei auch ethischen<br />

Anforderungen gerecht werden.<br />

Wesentlicher Bestandteil einer Anästhesie ist das Ausschalten des<br />

Schmerzempfindens (Analgesie) sowie nozizeptiv vermittelter, überschießender<br />

autonomer Reflexe. Die von der International Association for the Study of Pain<br />

(1979) veröffentlichte Arbeitsdefinition lautet: „Schmerz ist eine unangenehme<br />

sensorische und emotionale Erfahrung, die im Zusammenhang steht mit<br />

tatsächlicher oder potentieller Schädigung oder in Form einer solchen Schädigung<br />

beschrieben wird“. Schmerzen haben nicht nur einen signifikant nachteiligen Einfluss<br />

auf das Wohlbefinden von Tieren, sondern auch auf deren physiologischen Zustand,<br />

was die Wundheilung deutlich verzögert (Otto und Short, 1998). Es ist bekannt, dass<br />

bei unter Schmerz stehenden Patienten eine erhöhte Infektionsrate besteht<br />

(Benedetti, 1990), die wahrscheinlich auf die hinlänglich bekannte immunsuppressive<br />

Wirkung von Kortikosteroiden <strong>zur</strong>ückzuführen ist. Allerdings existieren jedoch auch<br />

Beobachtungen, dass Schmerz (Fujiwara and Orita, 1987) und Stress (Jessop et al.,<br />

1987) das Immunsystem stimulieren können. Ferner ist bekannt, dass die<br />

Schmerzunterdrückung nicht nur im Moment der Einwirkung des Traumas einen<br />

positiven Effekt ausübt, sondern auch die Dauer und Qualität der Rekonvaleszenz<br />

2


Einleitung<br />

günstig beeinflusst. Dies wird damit begründet, dass periphere Noxen zu einer<br />

nachhaltigen Hypersensitivität im Zentralnervensystem führen können. Animal<br />

Welfare und Ökonomie stehen somit nicht in einem Konflikt, da sich eine Investition<br />

in adäquate Schmerzausschaltung durch schnellere Rekonvaleszenz auszahlt. So<br />

konnten Pang et al. (2006), Ting et al. (2003) Fisher et al. (1996), sowie Earley and<br />

Crowe (2002) zeigen, dass die Produktionsleistung der Tiere durch eine<br />

angemessene Schmerzbehandlung vor, während und nach schmerzhaften Eingriffen<br />

signifikant gesteigert war.<br />

Das Ziel der Schmerzbekämpfung impliziert nicht notwendigerweise die Eliminierung<br />

aller Schmerzen, sondern vielmehr die Reduktion und Ausschaltung des<br />

pathologischen Schmerzes, der mit einer Verletzung oder einem Eingriff verbunden<br />

ist. Die Schmerzausschaltung kann dabei entweder durch eine lokale Betäubung,<br />

eine Allgemeinnarkose, oder einer Kombination Beider herbeigeführt werden. In den<br />

letzten Jahren ist in dieser Hinsicht die multimodale Schmerztherapie bei Tieren in<br />

den Fokus gerückt. In <strong>Studie</strong>n aus der Humanmedizin zeigte sich durch die<br />

Kombination verschiedener analgetisch wirkender Substanzklassen, die auf<br />

unterschiedlichen Ebenen der Schmerzwahrnehmung und Schmerzleitung ansetzen,<br />

ein synergistischer Effekt, wodurch die jeweiligen Einzeldosen und die damit<br />

verbundenen unerwünschten Nebenwirkungen verringert werden (Kehlet, 1997,<br />

Kehlet and Wilmore, 2002). Während zum multimodalen Schmerzmanagement beim<br />

Kleintier sowie beim Pferd umfangreiche, wissenschaftlich fundierte Erkenntnisse<br />

bestehen, existieren für das Nutztier, insbesondere für das Rind, hierzu kaum auf<br />

einschlägigen <strong>Studie</strong>n basierende Erfahrungen.<br />

3


Einleitung<br />

Naturgemäß können Tiere, anders als der Mensch, erlebte Schmerzen nicht verbal<br />

kommunizieren. Da das nozizeptive System der Tiere dem des Menschen jedoch<br />

sehr ähnlich ist, sind Analogieschlüsse durchaus legitim (Dawkins, 1982, Endenburg<br />

et al., 2001, Otto, 2008). Rückschlüsse auf die Präsenz und die Intensität des<br />

wahrgenommenen Schmerzes bei Tieren erfolgen dabei einerseits indirekt durch<br />

Verhaltensbeobachtung, aber auch durch direkte, mess- und quantifizierbare<br />

Parameter der kardio-respiratorischen- und die metabolisch-hormonellen<br />

Stressresponse sowie der Akuten-Phase-Antwort.<br />

Bei der Interpretation subjektiver Parameter erfolgt die Einschätzung von Schmerz<br />

durch einen Beobachter, welcher Verhaltensmuster, Haltung und andere Hinweise<br />

(z.B. Vokalisation, Zähneknirschen) dem tierindividuellen schmerzspezifischen<br />

Verhalten zuordnet. Das Ausmaß an Schmerz wird dann beispielsweise auf einer<br />

Linie mit den Endpunkten „kein Schmerz“ und „schlimmstes möglichstes<br />

Schmerzerlebnis“ eingetragen (visual analog scale, VAS (Hudson et al., 2008, Firth<br />

and Haldane, 1999)) oder einem vorher festgelegten numerischen Wert zugeordnet<br />

(numeric rating scale, NRS (Reid and Nolan, 1991)). Da die Wiederholbarkeit und<br />

Verlässlichkeit dieser Werte jedoch stark von der Erfahrung im Beobachten sowie<br />

der persönlichen Schmerzerfahrung des Beobachters abhängen (Valverde et al.,<br />

2005), stellt die Verhaltensbeobachtung eine subjektive und mäßig genaue<br />

Annäherung dar, welche zudem keine Vergleichbarkeit von Werten zwischen <strong>Studie</strong>n<br />

ermöglicht (Anil et al., 2002, Gaynor and Muir, 2002). Dennoch ist diese Form der<br />

4


Einleitung<br />

Schmerzbeurteilung bei Tieren nach wie vor unverzichtbar, da sie zwar nicht sehr<br />

genau aber sehr sensitiv ist (Mathews, 2000).<br />

Um objektive Schmerzparameter zu erfassen, bedient man sich einzelner Elemente<br />

der Stressantwort, die im Wesentlichen aus drei Komponenten besteht: der<br />

endokrinen, der metabolischen sowie die kardio-respiratorischen Stressantwort. Die<br />

endokrine Stressantwort basiert auf einer Aktivitätssteigerung des hypothalamohypophysär-adrenergen<br />

Systems (HPA), des sympathisch autonomen<br />

Nervensystems und der Akute-Phase-Reaktion. Dies bietet diverse mess- und<br />

quantifizierbare Parameter wie Atem- und Herzfrequenz (Morton and Griffiths, 1985,<br />

Weary et al., 2007), Blutdruck, Glucose- (Henke et al., 2008), Laktat- (Henke and<br />

Erhard 2001) und freie Fettsäurespiegel (Greco, 2007), Akute Phase Proteine<br />

(Earley and Crowe, 2002, Doherty et al., 2007, Murata et al., 2004), Substanz P<br />

(Coetzee et al., 2008), ACTH, Katecholamin- (Epinephrin und Norepinephrin) und<br />

Cortisolkonzentrationen im Blut (Mormede et al., 2007, Mellor et al., 2002, Herskin et<br />

al., 2004).<br />

Vor dem Hintergrund, einfache, günstige und praxistaugliche Anästhesieverfahren im<br />

Rahmen der gültigen Arzneimittelgesetzgebung zu entwickeln, wurden in dieser<br />

Arbeit drei Anästhesieprotokolle am Modell der Nabeloperation des Kalbes<br />

miteinander verglichen. Dabei wurde anhand einer Reihe von objektiven und<br />

subjektiven Parametern untersucht, welchen Einfluss diese drei Techniken auf das<br />

neuroendokrine und hämodynamische Gleichgewicht der Tiere ausüben. Die<br />

Inhalationsnarkose wird als „Goldstandard“ der Anästhesiemethoden bei Kälbern für<br />

5


Einleitung<br />

abdominalchirurgische Eingriffe angesehen, jedoch limitiert der damit verbundene<br />

finanzielle und technische Aufwand deren Anwendung außerhalb klinischer<br />

Einrichtungen. Die derzeit am häufigsten verwendete Narkoseform der praktischen<br />

Tierärzte in Deutschland ist eine Injektionsnarkose mit Xylazin und Ketamin. Mit<br />

dieser Narkoseform sind jedoch erhebliche Nebenwirkungen auf das Herz-Kreislauf-<br />

System verbundenen und laut Rings and Muir (1982) ist es fraglich, ob diese<br />

Methode eine ausreichende Schmerzausschaltung für Nabeloperationen erzielt. Eine<br />

Epiduralanästhesie mit dem Lokalanästhetikum Procain in Kombination mit dem<br />

Alpha-2-Agonisten Xylazin in einem großen Volumen (0.5 - 0.6 ml kg -1 ) wurde von<br />

Meyer et al. (2007) als effektive, sichere und kostengünstige Alternative für<br />

Nabeloperationen beim Kalb propagiert. Dabei führt die verzögerte Resorption des<br />

epidural applizierten Xylazins zu einer abgeschwächten kardiovaskulären<br />

Beeinträchtigung (Mpanduji et al., 1999, Meyer et al., 2009). Die drei genannten<br />

Verfahren <strong>zur</strong> Schmerzauschaltung wurden im Zuge eines multimodalen<br />

Schmerzmanagements mit der parenteralen Applikation von nichtsteroidalen<br />

Antiphlogistika sowie einer Lokalanästhesie im Bereich des Nabels kombiniert.<br />

In einem Großteil der bekannten <strong>Studie</strong>n über anästhetische und antinozizeptive<br />

Effekte verschiedener Medikamente und deren Kombinationen bei Rindern wurde ein<br />

kontrollierter Schmerzreiz durch elektrische Strömungen oder Nadelstiche gesetzt<br />

(Skarda et al., 1990, Junhold and Schneider, 2002, Prado et al., 1999). Obwohl diese<br />

Methoden gute Annäherungen darstellen, um antinozizeptive Effekte zu studieren,<br />

sind sie dennoch nicht mit einem chirurgischen Trauma gleichzusetzen, da die<br />

endokrine Stressantwort durch die Freisetzung vasoaktiver Substanzen durch den<br />

6


Einleitung<br />

Gewebsschaden potenziert wird (Traynor and Hall, 1981, Madsen et al., 1976,<br />

Goldkuhl et al., 2010). Die Untersuchung zum Vergleich der drei Methoden <strong>zur</strong><br />

Schmerzausschaltung erfolgte daher am Modell der praxis-üblichen und –relevanten<br />

Nabeloperation.<br />

Um während der Operation einen zuverlässigen Zugang zum arteriellen<br />

Gefäßsystem zu schaffen, regelmäßig Blutproben für arterielle Blutgasanalysen zu<br />

nehmen und kontinuierlich Blutdruck zu messen, wurde bereits ein Tag vor der<br />

Operation ein Katheter in die Aorta abdominalis gelegt. Diverse<br />

Zugangsmöglichkeiten <strong>zur</strong> permanenten Implantation von arteriellen Kathetern bei<br />

Rindern wurden beschrieben (Gustin et al., 1988, Kotwica et al., 1990, Parker and<br />

Fitzpatrick, 2006), jedoch ist die Aorta gerade bei Kälbern aufgrund des<br />

annehmbaren Durchmessers und der hohen Blutflussgeschwindigkeit besonders<br />

geeignet. Im Gegensatz dazu sind Messwerte der zu diesem Zwecke ebenfalls<br />

häufig verwendeten A. auricularis durch Bewegungen des Ohres oder des gesamten<br />

Kopfes störanfälliger. Bislang erfolgten Aortenpunktionen „blind“, d.h. ohne Kontrolle<br />

durch bildgebende Untersuchungsverfahren (Junhold and Schneider, 2002, Weber et<br />

al., 1992). Die hiermit verbundenen vorstellbaren Komplikationen, wie z.B. einer<br />

Verletzung der Aorta oder benachbarter Organe, führt zu erheblichen Unsicherheiten<br />

des Untersuchers in der Durchführung (Adams et al., 1991, Nagy et al., 2002). Es<br />

wurde daher eine Methode der ultraschall-kontrollierten Punktion der Aorta<br />

abdominalis bei Kälbern entwickelt.<br />

7


Einleitung<br />

Im Rahmen von <strong>Studie</strong>n zum Schmerzmanagement bei Kälbern wurde in den<br />

vergangenen fünf Jahren bei insgesamt 102 Kälbern ein arterieller Zugang in die<br />

Aorta abdominalis gelegt. Bei einem dieser Kälber führte eine punktiosbedingte<br />

Embolisation spinaler Gefäße zu einer ischämischen Myelopathie des<br />

Rückenmarkes im Lendenbereich, welche sich klinisch in einer Paraplegie äußerte.<br />

Diese Komplikation ist ausführlich in Form eines Fallberichts dokumentiert.<br />

In dieser <strong>Studie</strong> wurde der intraoperative Effekt der drei Anästhesieprotokolle an 30<br />

Kälbern untersucht. Die Langzeitauswirkungen der Anästhesieformen auf die<br />

Rekonvaleszenz, insbesondere die Lungengesundheit, sowie die postoperative<br />

Produktivität dieser Kälber wurden von Fischer et al. 2010 (Manuskript in<br />

Vorbereitung) untersucht und zusammengefasst.<br />

Diese Arbeit gliedert sich somit in drei Abschnitte:<br />

1. Darstellung der ultraschall-geführten Aortenpunktion bei Kälbern,<br />

2. Vergleich der Auswirkungen von Inhalations-, Injektions- und hoher caudaler<br />

Epiduralanästhesie auf die kardiorespiratorischen, metabolischen sowie<br />

hormonellen Stressreaktionen bei Kälbern während einer Nabeloperation,<br />

sowie<br />

3. Fallbericht zum spinalen Infarkt als Komplikation der Aortenpunktion bei einem<br />

Kalb.<br />

8


Literatur<br />

Literatur<br />

ADAMS, R., HOLLAND, M. D., ALDRIDGE, B., GARRY, F. B. & ODDE, K. G. (1991)<br />

Arterial blood sample collection from the newborn calf. Vet Res Commun, 15,<br />

387-94.<br />

ANIL, S. S., ANIL, L. & DEEN, J. (2002) Challenges of pain assessment in domestic<br />

animals. J Am Vet Med Assoc, 220, 313-9.<br />

BENEDETTI, C. (1990) The pathogenic effects of postoperative pain. Advances in<br />

Pain Research & Therapy, 13, 279-285.<br />

COETZEE, J. F., LUBBERS, B. V., TOERBER, S. E., GEHRING, R., THOMSON, D.<br />

U., WHITE, B. J. & APLEY, M. D. (2008) Plasma concentrations of substance<br />

P and cortisol in beef calves after castration or simulated castration. Am J Vet<br />

Res, 69, 751-62.<br />

DAWKINS, M. S. (1982) Leiden und Wohlbefinden bei Tieren. Eugen Ulmer GmbH &<br />

Co., Stuttgart. Ulmer, Stuttgart<br />

DOHERTY, T. J., KATTESH, H. G., ADCOCK, R. J., WELBORN, M. G., SAXTON, A.<br />

M., MORROW, J. L. & DAILEY, J. W. (2007) Effects of a concentrated<br />

lidocaine solution on the acute phase stress response to dehorning in dairy<br />

calves. J Dairy Sci, 90, 4232-9.<br />

EARLEY, B. & CROWE, M. A. (2002) Effects of ketoprofen alone or in combination<br />

with local anesthesia during the castration of bull calves on plasma cortisol,<br />

immunological, and inflammatory responses. J Anim Sci, 80, 1044-52.<br />

9


Literatur<br />

ENDENBURG, N., HARDIE, E. M., HELLEBREKERS, L. J., LASCELLES, B. D.,<br />

MATHEWS, K. A., REDROBE, S., ROLLIN, B. & SCHATZMANN, U. (2001)<br />

Schmerz und Schmerztherapie beim Tier, Schlütersche<br />

FIRTH, A. M. & HALDANE, S. L. (1999) Development of a scale to evaluate<br />

postoperative pain in dogs. J Am Vet Med Assoc, 214, 651-9.<br />

FISHER, A. D., CROWE, M. A., ALONSO DE LA VARGA, M. E. & ENRIGHT, W. J.<br />

(1996) Effect of castration method and the provision of local anesthesia on<br />

plasma cortisol, scrotal circumference, growth, and feed intake of bull calves. J<br />

Anim Sci, 74, 2336-43.<br />

FUJIWARA, R. & ORITA, K. (1987) The enhancement of the immune response by<br />

pain stimulation in mice. I. The enhancement effect on PFC production via<br />

sympathetic nervous system in vivo and in vitro. J Immunol, 138, 3699-703.<br />

GAYNOR & MUIR, W. (2002) Handbook of veterinary pain management, St. Louis,<br />

USA, Mosby.<br />

GOLDKUHL, R., KLOCKARS, A., CARLSSON, H. E., HAU, J. & ABELSON, K. S.<br />

(2010) Impact of surgical severity and analgesic treatment on plasma<br />

corticosterone in rats during surgery. Eur Surg Res, 44, 117-23.<br />

GRECO, D.S. & STABENFELDT, G.H. (2007) Endocrine glands and their function.<br />

IN: Cunningham, J.G., B.G. Klein (Hrsg.), Textbook of veterinary physiology,<br />

4 th ed., Saunders Elsevier, Missouri, Chapter 34<br />

GUSTIN, P., DE GROOTE, A., DHEM, A. R., BAKIMA, M., LOMBA, F. & LEKEUX, P.<br />

(1988) A comparison of pO2, pCO2, pH and bicarbonate in blood from the<br />

carotid and coccygeal arteries of calves. Vet Res Commun, 12, 343-6.<br />

10


Literatur<br />

HENKE, J. & ERHARDT, W. (2001) Schmerzmanagement bei Klein- und Heimtieren.<br />

Verlag Enke, Stuttgart, 22-49.<br />

HENKE, J., ERHARDT, W. & TACKE, S. (2008) Analgesieprotokolle vor, während<br />

und nach der Anästhesie von Hunden und Katzen mit schmerzhaften<br />

Zuständen. Tierärztl. Praxis, 36, 27-34.<br />

HERSKIN, M. S., MUNKSGAARD, L. & LADEWIG, J. (2004) Effects of acute<br />

stressors on nociception, adrenocortical responses and behavior of dairy<br />

cows. Physiol Behav, 83, 411-20.<br />

HUDSON, C., WHAY, H. & HUXLEY, J. (2008) Recognition and management of pain<br />

in cattle. In Practice, 30, 126-134.<br />

JESSOP, J. J., GALE, K. & BAYER, B. M. (1987) Enhancement of rat lymphocyte<br />

proliferation after prolonged exposure to stress. J Neuroimmunol, 16, 261-71.<br />

JUNHOLD, J. & SCHNEIDER, J. (2002) Untersuchungen <strong>zur</strong> Analgetischen Wirkung<br />

des α 2 -Agonisten Xylazin (Rompun ® ) nach epiduraler Applikation beim Rind.<br />

Tierarztl Prax, 30, 1-7.<br />

KEHLET, H. (1997) Multimodal approach to control postoperative pathophysiology<br />

and rehabilitation. Br J Anaesth, 78, 606-17.<br />

KEHLET, H. & WILMORE, D. W. (2002) Multimodal strategies to improve surgical<br />

outcome. Am J Surg, 183, 630-41.<br />

KOTWICA, J., SKARZYNSKI, D. & JAROSZEWSKI, J. (1990) The coccygeal artery<br />

as a route for the administration of drugs into the reproductive tract of cattle.<br />

Vet Rec, 127, 38-40.<br />

MADSEN, S. N., ENGGUIST, A., BADAWI, I. & KEHLET, H. (1976) Cyclic AMP,<br />

glucose and cortisol in plasma during surgery. Horm Metab Res, 8, 483-5.<br />

11


Literatur<br />

MATHEWS, K. A. (2000) Pain assessment and general approach to management.<br />

Vet Clin North Am Small Anim Pract, 30, 729-55, v.<br />

MELLOR, D. J., STAFFORD, K. J., TODD, S. E., LOWE, T. E., GREGORY, N. G.,<br />

BRUCE, R. A. & WARD, R. N. (2002) A comparison of catecholamine and<br />

cortisol responses of young lambs and calves to painful husbandry<br />

procedures. Aust Vet J, 80, 228-33.<br />

MEYER, H., KASTNER, S. B., BEYERBACH, M. & REHAGE, J. (2009)<br />

Cardiopulmonary effects of dorsal recumbency and high-volume caudal<br />

epidural anaesthesia with lidocaine or xylazine in calves. Vet J.<br />

doi:10.1016/j.tvjl.2009.08.020<br />

MEYER, H., STARKE, A., KEHLER, W. & REHAGE, J. (2007) High caudal epidural<br />

anaesthesia with local anaesthetics or alpha(2)-agonists in calves. J Vet Med<br />

A Physiol Pathol Clin Med, 54, 384-9.<br />

MORAN, D. & MCVITTIE, A. (2008) Estimation of the value the public places on<br />

regulations to improve broiler welfare Animal Welfare, 17, Number 1, 43-<br />

52(10).<br />

MORMEDE, P., ANDANSON, S., AUPERIN, B., BEERDA, B., GUEMENE, D.,<br />

MALMKVIST, J., MANTECA, X., MANTEUFFEL, G., PRUNET, P., VAN<br />

REENEN, C. G., RICHARD, S. & VEISSIER, I. (2007) Exploration of the<br />

hypothalamic-pituitary-adrenal function as a tool to evaluate animal welfare.<br />

Physiol Behav, 92, 317-39.<br />

MORTON, D. B. & GRIFFITHS, P. H. (1985) Guidelines on the recognition of pain,<br />

distress and discomfort in experimental animals and an hypothesis for<br />

assessment. Vet Rec, 116, 431-6.<br />

12


Literatur<br />

MPANDUJI, D. G., MGASA, M. N., BITTEGEKO, S. B. & BATAMUZI, E. K. (1999)<br />

Comparison of xylazine and lidocaine effects for analgesia and<br />

cardiopulmonary functions following lumbosacral epidural injection in goats.<br />

Zentralbl Veterinarmed A, 46, 605-11.<br />

MURATA, H., SHIMADA, N. & YOSHIOKA, M. (2004) Current research on acute<br />

phase proteins in veterinary diagnosis: an overview. Vet J, 168, 28-40.<br />

NAGY, O., KOVÁC, G., SEIDEL, H. & PAULÍCOVÁ, I. (2002) Selection of Arteries for<br />

Blood Sampling and Evaluation of Blood Gases and Acid-Base Balance in<br />

Cattle. Acta Vet. Brno, 71, 289-296.<br />

OTTO, K. A. (2008) Intraoperative und postoperative Schmerzerkennung und -<br />

überwachung. Tierärztl Prax 2008, 36 (K), 12-18.<br />

PARKER, A. J. & FITZPATRICK, L. A. (2006) The relationship between arterial and<br />

venous acid-base measurements in normal Bos indicus steers. Aust Vet J, 84,<br />

349-50.<br />

PANG, W. Y., EARLEY, B., SWEENEY, T. & CROWE, M. A. (2006) Effect of<br />

carprofen administration during banding or burdizzo castration of bulls on<br />

plasma cortisol, in vitro interferon-gamma production, acute-phase proteins,<br />

feed intake, and growth. J Anim Sci, 84, 351-9.<br />

PRADO, M. E., STREETER, R. N., MANDSAGER, R. E., SHAWLEY, R. V. &<br />

CLAYPOOL, P. L. (1999) Pharmacologic effects of epidural versus<br />

intramuscular administration of detomidine in cattle. Am J Vet Res, 60, 1242-7.<br />

REID, J. & NOLAN, A. M. (1991) A comparison of the post-operative analgesic and<br />

sedative effects of flunixine and papaveretum in the dog. J Small Anim Prac,<br />

32, 603-608.<br />

13


Literatur<br />

RINGS, D. M. & MUIR, W. W. (1982) Cardiopulmonary effects of intramuscular<br />

xylazine-ketamine in calves. Can J Comp Med, 46, 386-9.<br />

SKARDA, R. T., JEAN, G. S. & MUIR, W. W., 3RD (1990) Influence of tolazoline on<br />

caudal epidural administration of xylazine in cattle. Am J Vet Res, 51, 556-60.<br />

TING, S. T., EARLEY, B. & CROWE, M. A. (2003) Effect of repeated ketoprofen<br />

administration during surgical castration of bulls on cortisol, immunological<br />

function, feed intake, growth, and behavior. J Anim Sci, 81, 1253-64.<br />

TRAYNOR, C. & HALL, G. M. (1981) Endocrine and metabolic changes during<br />

surgery: anaesthetic implications. Br J Anaesth, 53, 153-60.<br />

VALVERDE, A., GUNKELT, C., DOHERTY, T. J., GIGUERE, S. & POLLAK, A. S.<br />

(2005) Effect of a constant rate infusion of lidocaine on the quality of recovery<br />

from sevoflurane or isoflurane general anaesthesia in horses. Equine Vet J,<br />

37, 559-64.<br />

WEARY, D. M., NIEL, L., FLOWER, F. C. & FRASER, D. (2007) Assessing and<br />

preventing pain. North American Verterinary Conference: Large Animals.<br />

Orlando, FL.<br />

WEBER, O., REINHOLD, P., STEINBACH, G. & LACHMANN, G. (1992) Methodical<br />

studies of transmucosal oxygen partial pressure measurement in the calf and<br />

dog. Berl Munch Tierarztl Wochenschr, 105, 267-71.<br />

14


Publikation 1<br />

Publikation 1:<br />

Percutaneous, ultrasonographically guided technique of catheterization of the<br />

abdominal aorta in calves for serial blood sampling and continuous arterial<br />

blood pressure measurement<br />

J. Offinger, J.Fischer, J. Rehage, H. Meyer*<br />

Res. Vet. Sci. (2010), doi:10.1016/j.rvsc.2010.07.016<br />

Clinic for Cattle, University of Veterinary Medicine <strong>Hannover</strong>, Foundation,<br />

Bischofsholer Damm 15, D-30173 <strong>Hannover</strong>, Germany<br />

*Corresponding author. Tel.:+49 511 8567302, fax: +49 511 8567693<br />

E-mail address: henning.meyer@tiho-hannover.de (Henning Meyer)<br />

15


Publikation 1<br />

Abstract<br />

The study describes a technique of ultrasonographically guided transcutaneous<br />

catheter implantation into the abdominal aorta of 29 six- to eight-week-old German<br />

Holstein calves. Catheters were implanted between the left transverse processes of<br />

L3 and L4, left in place for two days and used for serial blood sampling and<br />

continuous measurement of blood pressure. Complete cell counts and clinical<br />

examination were performed before, as well as one and five days after implantation.<br />

Catheterization was successful in all calves. The catheter was patent for blood<br />

sampling and pressure recordings at all times. A significant decrease in red blood<br />

cells was found in all animals after catheterization, which remained reduced for five<br />

days. Clinical signs of anaemia were absent. In conclusion, ultrasonographically<br />

guided catheterization of the abdominal aorta provides a continuous arterial access<br />

in calves, whereby the minimal invasive technique and the ultrasonographical<br />

guidance reduces accidental tissue trauma and pain for the animal.<br />

Keywords: arteriopuncture, aortic catheter, arterial blood pressure, ultrasoundguided,<br />

cattle<br />

16


Publikation 2<br />

Publikation 2:<br />

Comparison of isoflurane inhalation anaesthesia, injection anaesthesia and<br />

high volume caudal epidural anaesthesia in calves; metabolic, endocrine and<br />

cardiopulmonary effects<br />

Jennifer Offinger* ,+ DVM, Henning Meyer * ,+ Dr med vet, Jessica Fischer* DVM,<br />

Sabine B.R. Kästner†, Prof Dr med vet, Diplomate ECVAA, Marion Piechotta* Dr<br />

med vet, Jürgen Rehage*, Prof Dr med vet, Diplomate ECBHM<br />

*Clinic for Cattle, University of Veterinary Medicine <strong>Hannover</strong>, <strong>Hannover</strong>, Germany<br />

†Small Animal Clinic, University of Veterinary Medicine <strong>Hannover</strong>, <strong>Hannover</strong>,<br />

Germany<br />

+ both authors contributed equally to this paper<br />

Correspondence: Jennifer Offinger, Clinic for cattle, University of Veterinary Medicine<br />

<strong>Hannover</strong>, Bischofsholer Damm 15, 30173 <strong>Hannover</strong>, Germany<br />

E-mail: jennifer.offinger@tiho-hannover.de<br />

Tel.:+49 511 856<br />

Fax: +49 511 856 7693<br />

17


Publikation 2<br />

Abstract<br />

Objective To compare three different anaesthetic protocols for umbilical surgery in<br />

calves regarding the quality of analgesia and cardiopulmonary side effects<br />

Study Design Prospective, randomised experimental study<br />

Animals Thirty healthy German Holstein calves.<br />

Methods All calves underwent a standardised umbilical surgery. The inhalationgroup<br />

(INH) received isoflurane in oxygen after induction of anaesthesia with 0.1<br />

mg kg -1 xylazine IM and 2.0 mg kg -1 ketamine IV, the injection-group (INJ) was treated<br />

with 0.2 mg kg -1 xylazine IM and 5.0 mg kg -1 ketamine IV injection, redosed every 10-<br />

15 min with half the initial dose of ketamine, while the epidural-group (EPI)<br />

underwent a high volume caudal epidural anaesthesia of 0.2 mg kg -1 xylazine diluted<br />

to a final volume of 0.6 ml kg -1 with procaine 2%. All calves received a periumbilical<br />

infiltration of procaine and pre-emptive IV application of flunixine (2.2 mg kg -1 ). The<br />

endocrine stress response was determined through analysis of norepinephrine (NE)<br />

and cortisol concentrations at preset intervals up to five hours after surgery. A visual<br />

analogue scale (VAS) was applied to monitor intraoperative nociception. At the same<br />

time, cardiopulmonary variables and arterial blood gases were measured.<br />

Results The highest VAS-scores were recorded for Group INJ, followed by Group<br />

EPI and Group INH. Cortisol and NE-concentrations were significantly lower in Group<br />

EPI compared to Group INH and Group INJ. Partial pressure of oxygen (PaO 2 ) in<br />

Group INJ was significantly decreased during surgery. Calves of Group INH and INJ<br />

developed decreased levels of arterial pH and high levels of partial pressure of<br />

18


Publikation 2<br />

carbon dioxide (signs of respiratory acidosis), mean arterial blood pressure and<br />

systemic vascular resistance.<br />

Conclusion High volume caudal epidural anaesthesia provided a more continuous<br />

antinociception than injection anaesthesia while inducing less cardiopulmonary side<br />

effects.<br />

Clinical relevance For umbilical surgery, high volume caudal epidural anaesthesia<br />

provides a practical, inexpensive and safe anaesthetic protocol for calves undergoing<br />

umbilical surgery.<br />

Key words: epidural anaesthesia, pain management, calf<br />

19


Publikation 2<br />

Introduction<br />

Abdominal surgery in calves is commonly performed under inhalation anaesthesia<br />

(halothane (Steffey & Howland 1979; Trent & Smith 1984; Staller et al. 1995) or<br />

isoflurane (Kerr et al. 2007)) or using intravenous (IV) or intramuscular (IM) injection<br />

of xylazine and ketamine (Waterman 1981; Rings & Muir 1982; Greene & Thurmon<br />

1988). Even though the benefits of inhalative agents are unambiguous, the<br />

requirement of special equipment renders them unsuitable for field-use. Injection<br />

anaesthesia is most frequently employed in farm animal practice, but is associated<br />

with considerable cardiopulmonary side effects (Campbell et al. 1979; Picavet et al.<br />

2004) while not even providing adequate analgesia for umbilical surgery in all cases<br />

(Rings & Muir 1982).<br />

As an alternative to general anaesthesia, high volume caudal epidural anaesthesia<br />

using a combination of spinal local anaesthetics and α 2 -adrenergic agonists has been<br />

utilised in cattle practice in recent years. Epidural application of 0.1 mg kg -1 xylazine<br />

diluted to a final volume of 0.5 - 0.6 ml kg -1 with procaine (2%) proved to be effective,<br />

safe and economic for umbilical surgery in calves (Meyer et al. 2007), while the<br />

delayed manner of systemic resorption of epidural xylazine induced only mild<br />

cardiopulmonary depressant effects in ruminants (Mpanduji et al. 1999; Meyer et al.<br />

2009). While numerous experimental studies have examined the anaesthetic and<br />

antinociceptive effects of different drug combinations in cattle, few have investigated<br />

reactions to actual surgical trauma. Electrical stimulation or pinprick (Skarda et al.<br />

1990; Prado et al. 1999; Junhold & Schneider 2002) are regarded as good<br />

20


Publikation 2<br />

estimations to determine antinociceptive effects, but do not accurately reflect surgical<br />

manipulation, as the endocrine response with release of vasoactive substances<br />

occurs in proportion to the operative trauma (Traynor & Hall 1981; Goldkuhl et al.<br />

2010).<br />

The aim of this study was to compare analgesic quality and cardiopulmonary impact<br />

of three anaesthetical regimes (inhalation anaesthesia, injection anaesthesia and<br />

high volume caudal epidural anaesthesia) for umbilical surgery in calves. To simulate<br />

authentic conditions, a multimodal approach to pain management was chosen<br />

(anaesthesia plus local infiltration of the umbilical area as well as pre-emptive NSAID<br />

application) and calves underwent an actual surgical intervention.<br />

Materials and methods<br />

Animals<br />

Thirty healthy German Holstein calves (7 female, 23 male) with an average age<br />

(mean ± SD) of 45.9 ± 6.4 (range 36 - 59) days and body weight (BW) of 66.1 ± 6.2<br />

(range 57.0 – 83.5) kg were included in this study. The study was conducted under<br />

the guidelines and ethical review of the Research Animal Act of the Lower Saxony<br />

Federal State Office for Consumer Protection and Food Safety (research permit<br />

number 33.9-42502-04-08/1572).<br />

Calves were housed in individual pens on straw bedding, were fed milk (10 % of<br />

BW per day) divided into four feedings and had free access to hay, calf starter and<br />

21


Publikation 2<br />

water. Daily clinical examination commencing two weeks prior to the start of the study<br />

ensured calves were acclimatised to handling.<br />

Study design and drug application<br />

All 30 calves were randomly assigned to one of three anesthetic protocols:<br />

Inhalation- (INH), injection- (INJ) and epidural- (EPI) anaesthesia, before undergoing<br />

a standardised surgical procedure (Baird 2008), whereby the umbilical stalk was<br />

removed. Food was withheld for 12 hours prior to induction of anaesthesia to prevent<br />

intraoperative regurgitation and excessive bloating.<br />

Calves of the Group INH were initially sedated by intramuscular (IM) injection of<br />

0.1 mg kg -1 2% xylazine (Rompun, Bayer Vital GmbH, Leverkusen, Germany),<br />

followed by slow intravenous (IV) administration of 2.0 mg kg -1 ketamine (Ketamin<br />

10%, Selectavet GmbH, Weyarn-Holzolling, Germany) (Tadmor et al. 1979).<br />

Following endotracheal intubation (Tubus, blue line, ID 8.5, Smith Portex Critical<br />

Care GmbH, Grasbrun, Germany) anaesthesia was maintained with isoflurane to<br />

effect with vaporizer settings between 1.5 and 2 Vol.-% (CuraMED Pharma GmbH,<br />

Karlsruhe, Germany) and an oxygen flow rate of 1-2 L min -1 using a circle breathing<br />

system operated in a semi-closed mode (Sulla 808, Dräger, Lübeck, Germany).<br />

Group INJ was treated with IM injection of xylazine at a dose of 0.2 mg kg -1 . After ten<br />

minutes, 5.0 mg kg -1<br />

ketamine IV was slowly injected (Waterman 1981; Carroll &<br />

Hartsfield 1996). Anaesthesia was maintained with intermittent redoses of 2.5 mg kg -<br />

1 ketamine IV at preset 15 min intervals. However, if the depth of anaesthesia<br />

22


Publikation 2<br />

deemed insufficient as assessed by positive nociceptive responses (purposeful<br />

movements of the head, neck, trunk or limb), ketamine re-doses were applied ahead<br />

of schedule. If the duration of the operation exceeded 60 minutes, a follow up dose of<br />

xylazine (0.1 mg kg -1 ) was applied by the IM route. In replicating field conditions, the<br />

animals of Group INJ were not orotracheally intubated and were breathing room air<br />

during surgery.<br />

Calves of Group EPI received a caudal epidural injection of 2% xylazine at a dose of<br />

0.2 mg kg -1 , diluted with 2% procaine solution (Procasel 2%, Selectavet GmbH,<br />

Weyarn-Holzolling, Germany) to a final volume of 0.6 mL kg -1 (equivalent to 12<br />

mg / kg Procaine; modified from Meyer et al. (2007)). The sacrococcygeal area was<br />

surgically prepared and an 18 gauge hypodermic needle (length 40 mm, Braun<br />

Melsungen AG, Melsungen, Germany) was aseptically introduced into the<br />

lumbosacral epidural space. Correct needle placement was confirmed by the hanging<br />

drop technique (Skarda 1986) and loss of resistance to injection. Epidural injection<br />

was performed with a rate of approximately 0.5 mL s -1 with the fluid prewarmed to<br />

body temperature. After epidural injection calves were maintained in sternal<br />

recumbancy for an additional two minutes to facilitate an equal distribution of<br />

anaesthetic within the epidural space.<br />

In addition to all anaesthetic protocols, local anaesthesia of the umbilical region by<br />

rhomboid infiltration with 0.5 ml kg -1<br />

2% procaine was carried out in all animals.<br />

Furthermore, all calves received 2.2 mg kg -1 Flunixine IV (Finadyne RPS, Intervet<br />

GmbH, Germany) 30 minutes prior to surgery. An infusion of warmed 0.9% saline<br />

23


Publikation 2<br />

solution (37°C) at a rate of 0.2 ml kg -1 min -1<br />

and two electrical heating pads<br />

(43 × 38 cm, 37°C, Eickemeyer, Tuttlingen, Germany) were used to reduce<br />

intraoperative hypothermia. All surgeries were carried out at a room temperature of<br />

20-22°C.<br />

Baseline measurements were obtained in the standing calves in the operating theatre<br />

(- 60 min). After administration of the drugs, calves were positioned in dorsal<br />

recumbency. To prevent uncontrolled cranial migration of epidural drugs, the animals<br />

were placed on a table that was cranially elevated (at an angle of 3-5°), so that the<br />

shoulder became the highest point of the spinal column. Furthermore, the muzzle of<br />

the calf was positioned below the pharyngeal area for drainage of fluids such as<br />

saliva or regurgitated ruminal fluid, thus reducing the risk of their aspiration. When<br />

the calf was restrained in dorsal recumbancy, pre-surgical parameters were recorded<br />

(-30 min). Thereafter, intra-operative measurements were taken at incision (0 min)<br />

and 15, 30, 45 min into the operation and at the end of the surgical procedure (65<br />

min). On completion of the surgery, calves were positioned in sternal recumbency<br />

and kept in a calm environment on soft bedding. Calves were no longer restrained,<br />

thus were free to stand up or resume sternal recumbency during this period. Further<br />

measurements were taken 95, 125, 185 and 365 min after commencing the<br />

operation. The calves were then returned to their stalls and visually monitored until<br />

they regained the righting reflex and were able to stand. During recovery, hind limbs<br />

of calves in Group EPI were hobbled to avoid musculoskeletal injuries.<br />

24


Publikation 2<br />

Instrumentation<br />

One day before the operation, a catheter introducer set (8F Walter Veterinär<br />

Instrumente e.K., Germany) was aseptically placed into the left jugular vein using the<br />

Seldinger technique (Seldinger, 1953). An arterial catheter (Cavafix Certo Mono, OD<br />

1.4 mm, ID 0.8 mm, B.Braun Melsungen AG, Melsungen, Germany) was placed<br />

transcutaneously into the abdominal aorta as described in detail elsewhere (Offinger<br />

et al. 2010). The catheters were implanted under local anaesthesia and remained in<br />

place for two days. Calves received 2.5 mg kg -1 10% enrofloxacine (Baytril, Bayer<br />

Vital GmbH, Leverkusen, Germany) for five consecutive days. On the day of the<br />

operation, a 110 cm 7 F Swan-Ganz thermodilution catheter with an in-line<br />

temperature sensor (Citri Cath TD Catheter, Becton, Dickinson Critical Care<br />

Systems, Heidelberg, Germany) was introduced aseptically into the jugular vein and<br />

connected to a fluid-filled transducer (Smith pvb Critical Care GmbH, Grasbrun,<br />

Germany). The level of the scapulohumeral joint was used as the reference zero<br />

level in the standing calf and the centre of the thorax was considered as the<br />

reference zero level in dorsal and sternal recumbency for calibrating the transducer<br />

(Amory et al. 1992; Lewis et al. 1999). The thermodilution catheter was advanced<br />

until the tip of the catheter reached the wedge position in the pulmonary artery.<br />

Characteristic pressure waveforms were used to confirm correct catheter positioning.<br />

The aortic catheter was also connected to a calibrated transducer via a fluid-filled<br />

extension set for continuous measurement of arterial blood pressure. All catheters<br />

were flushed after each sampling with heparinised 0.9% sterile saline solution<br />

(10,000 IU heparin x L -1 , Heparin-Calcium, Ratiopharm, Ulm, Germany) to ensure<br />

patency.<br />

25


Publikation 2<br />

Measured parameters<br />

Analgesia and endocrine stress response<br />

The quality of anaesthesia and analgesia was assessed by observing the calves’<br />

reactions to the following pre-set intra-operative procedures on a visual analogue<br />

scale (VAS) (Anil et al. 2002): Incision of the skin, incision of muscular tissue,<br />

opening of abdominal cavity, exploration of abdominal cavity, umbilical resection,<br />

suture of peritoneum, sutures of muscular tissue and sutures of skin. Responses to<br />

each event were subjectively interpreted and individually recorded on a line ranging<br />

from 0 (no pain) to 100 mm (very severe pain).<br />

Cardiopulmonary parameters<br />

Blood pressures were measured and recorded with a cardiovascular monitor<br />

(IntelliVue MP50, Phillips Medizin Systeme, Hamburg, Germany). Central venous<br />

blood pressures (CVP), pulmonary arterial pressures (Carrick et al. 1989) and central<br />

blood temperature were measured via the different ports of the Swan-Ganz catheter,<br />

and heart rate (HR), as well as systemic arterial blood pressure (MAP), via the aortic<br />

catheter. Cardiac output (CO) was determined using the thermodilution technique<br />

(Sprung et al. 1984) by injecting 5 mL of cold (0–5°C) 5% dextrose solution through<br />

the proximal port of the catheter and recording the change in pulmonary artery<br />

temperature as previously described by Meyer et al. (2009). Respiratory rate (RR)<br />

was measured by visual observations of thoracic excursions over a period of 1 min.<br />

Blood samples for blood-gas analysis were drawn anaerobically from the distal lumen<br />

of the Swan-Ganz- and the aortic catheter for mixed venous ( v¯ ) and arterial ( a ) blood<br />

26


Publikation 2<br />

gases, respectively. The samples were placed on ice and analysed within 10 min of<br />

collection. Blood gas analysis included measurement of blood pH, partial pressure of<br />

oxygen (pO 2 ) and carbon dioxide (pCO 2 ), base excess (BE) as well as oxygen<br />

saturation (S a O 2 ) using an automated blood gas analyser (Rapidlab 348, Bayer<br />

Diagnostics) after prior adjustment for blood temperature and haemoglobin<br />

concentration (Celltax MEK-6108G, Nihon-Kohdan, Rosbach, Germany).<br />

Calculations<br />

Cardiopulmonary parameters were calculated using the following standard equations:<br />

• stroke volume (SV) [mL beat -1 ]: SV= (CO/HR) × 1000 (Amory et al. 1992)<br />

• systemic vascular resistance (SVR) [dynes×s×cm -5 ]: SVR= ((MAP –<br />

CVP)/CO) × 79.9<br />

• pulmonary vascular resistance (PVR) [dynes×s×cm -5 ]: PVR = ((MPAP –<br />

PCWP)/CO) × 79.9 (Amory et al. 1992)<br />

• tidal volume (V T ) [L]: V T = Minute Ventilation (V E )/ RR, whereby V E was<br />

determined by the minute volumeter.<br />

• arterial and venous oxygen content were calculated according to (Wilson et al.<br />

1988) and (Sprung et al. 1983):<br />

o arterial oxygen content (C a O 2 ) [mL dL -1 ]: C a O 2 = [Hb] × S a O 2 × 1.36 + (p a O 2<br />

× 0.003),<br />

o mixed venous oxygen content (C v¯ O 2 ) [mL dL -1 ]: (C v¯ O 2 )= [Hb] × S v¯ O 2 ×<br />

1.36 + (p v¯ O 2 × 0.003)<br />

27


Publikation 2<br />

• alveolar oxygen tension (pAO 2 ) was calculated according to (Uystepruyst et al.<br />

2002):<br />

pAO 2 [mmHg] =: (BP - 47) × FIO 2 – (p a CO 2 /RQ), where BP is the barometric<br />

pressure (in mmHg) on the day of the surgery, RQ is the respiratory quotient<br />

determined as 0.80 by (Vermorel et al. 1989) and FIO 2 is the fraction of<br />

inspired oxygen (0.2095 on room air).<br />

• oxygen content in pulmonary capillary blood (CcO 2 ) [mL dL -1 ]: CcO 2 = [Hb] × 1* ×<br />

1,36 + (pAO 2 × 0,003)<br />

(*As the oxygen saturation in capillary blood is assumed to be 100%, the Hb is<br />

multiplied by the factor 1)<br />

• Pulmonary shunt (Qs/Qt) [%]: Qs/Qt = ((CcO 2 - C a O 2 ) / (CcO 2 - C v¯ O 2 )) x 100<br />

Venous blood samples for determination of serum cortisol (Cortisol-Immulite 1000-<br />

Test ® , Siemens Healthcare Diagnostics GmbH, Eschborn, Germany), plasma<br />

epinephrine and norepinephrine (2 CAT RIA, Labor Diagnostika Nord GmbH & Co.<br />

KG, Nordhorn, Germany) from each calf were collected from the jugular vein (via the<br />

catheter) into serum tubes and EDTA-coated tubes, respectively. For cortisol, the<br />

intra-assay coefficient of variation (CV %) was 6.3-10.0% and the inter-assay CV %<br />

was 5.8-8.8%. For both, epinephrine and norepinephrine, intra-assay coefficients of<br />

variation were 4.6% and the inter-assay CV % were 6.1%. Samples were obtained<br />

synchronous to all other measurements and stored at -80°C before analysis.<br />

Data are presented as mean ± standard deviation (SD). A value of P < 0.05 was<br />

considered significant. Normal distribution of data was tested by determining the<br />

28


Publikation 2<br />

Shapiro-Wilk W and associated P value as well as by screening the normal<br />

probability plots. Values were log transformed whenever necessary to achieve a<br />

normal distribution. A two-way analysis of variance for repeated measurements<br />

(factor group, time and time × group; PROC GLM, Repeated-Statement) was used to<br />

determine the main effects of groups and time as well as the interaction between<br />

group and time. Consecutive tests were used for multiple comparisons of means<br />

whenever the F-test was significant. Within groups paired t-tests were used to<br />

compare means of different time points with baseline (PROC PRT) and a modified t-<br />

test (PROC LSMEANS; TDIFF/PDIFF option) was used to compare means between<br />

treatment groups at different time points. The statistical analysis was conducted<br />

using a statistical software package (SAS 9.1 SAS Institute Inc., Cary, N.C., USA).<br />

Results<br />

All three anaesthetic regimes provided sufficient anaesthesia for umbilical surgery to<br />

be carried out. The resection of umbilical tissue was uncomplicated in all calves and<br />

the mean duration of surgery was 65 min (range 56 – 73 min).<br />

Analgesia and behavioural changes<br />

Maintenance of anaesthesia was uneventful in Group INH. In five of ten calves from<br />

Group EPI intra-operative focal muscle twitching or spontaneous foreleg movement<br />

occurred. However, none of these events occurred simultaneously with the predefined<br />

actions of surgical manipulation. In six out of ten calves in Group INJ,<br />

ketamine had to be redosed ahead of the predetermined interval responses to pre-<br />

29


Publikation 2<br />

set intraoperative procedures indicated an insufficient depth of anaesthesia. Despite<br />

slow IV injection of ketamine, on four occasions the intraoperative administration led<br />

to respiratory arrest for up to two minutes. In these cases intermittent manual<br />

compression of the animals’ thorax was carried out until spontaneous breathing<br />

resumed. At all time points, calves in Group INJ had higher VAS scores compared to<br />

Group EPI. The lowest scores occurred in Group INH (Fig. 1). Recoveries were<br />

smooth and rapid. All animals were able to stand up without assistance within two<br />

hours of completion of the surgery.<br />

Figure 1 near here<br />

Measurements of endocrine and metabolic stress response<br />

Cortisol<br />

During the course of the operation, cortisol concentrations increased successively<br />

until 15 min into the operation, plateaued until the end of the surgery and decreased<br />

from then on, resuming baseline levels 60 min after surgery (Table 1). Mean cortisol<br />

concentrations throughout the surgical period were significantly lower in Group EPI<br />

compared to Group INH but only significantly reduced at 45 min into surgery<br />

compared to INJ.<br />

Catecholamines<br />

A surge in epinephrine from baseline values of < 10 ng mL -1 to values over 200 ng<br />

mL -1 in Group INH and Group INJ and to values of 140 ng mL -1 in Group EPI were<br />

observed directly after surgical incision (Table 1). Epinephrine levels steadily<br />

30


Publikation 2<br />

decreased during surgery, but remained elevated compared to baseline until the end<br />

of the observation period. At the beginning and the end of the surgical period (0 min<br />

and 65 min) mean norepinephrine concentrations of Group INH were significantly<br />

elevated compared to groups INJ and EPI (Table 1).<br />

Table 1 near here<br />

Effects on the cardiopulmonary system<br />

In all calves, the administration of anaesthetics and subsequent positioning into<br />

dorsal recumbency caused an initial significant decrease of HR, SV, CO, MAP, CVP<br />

and BE, whereas SVR, PVR and RR significantly increased in all groups (Tables 2-3;<br />

Fig. 2).<br />

Figure 2 near here<br />

-<br />

The surgical procedure itself led to transient decreases in CVP, BE and HCO 3<br />

(Tables 2-3). For these parameters, no significant differences were detected among<br />

the groups and all parameters returned to baseline after surgery. HR and SV were<br />

initially elevated by the operational stimulus before HR successively decreased and<br />

SV successively increased in course of the surgery. In Group INH p a O 2 was<br />

significantly higher whereas body temperature, PAP and PVR were significantly<br />

lower than in groups INJ and EPI (Tables 2-3). Injection anaesthesia led to a<br />

significant decrease in p a O 2 and SaO 2 , and significantly increased values of PAP and<br />

31


Publikation 2<br />

Qs/Qt (Fig. 3) in comparison to groups INH and EPI. Tidal volume (V T ) of Group INH<br />

gradually increased in the course of the surgery from 0.27 to 0.33 L (data not shown).<br />

Table 2 and Figure 3 near here<br />

Mean body temperatures in all groups decreased over the course of anaesthesia,<br />

whereby the temperature drop of calves of the Group INH was significantly greater<br />

compared to groups INJ and EPI. This difference was sustained until 60 minutes<br />

after the operation (Table 2).<br />

32


Publikation 2<br />

Discussion<br />

All three anaesthetic regimes investigated in this study were suitable for umbilical<br />

surgery in calves. However, according to VAS assessment, most nociceptive<br />

responses to all stages of surgical intervention occurred during ketamine based<br />

injection anaesthesia. Ketamine, as dissociative anaesthetic agent, is known to<br />

induce good somatic, yet poor visceral analgesia (Carroll & Hartsfield 1996). The<br />

overt responses to exploration of the abdominal cavity in the calves might be a<br />

reflection of this, even though it was used in combination with xylazine. Monitoring of<br />

anaesthetic depth in ketamine based injection anaesthesia is difficult because<br />

protective reflexes are maintained and often the occurrence of purposeful<br />

movements is the only parameter indicating inadequate depth of anaesthesia. In the<br />

current study, ketamine re-doses were often necessary ahead of schedule and it was<br />

difficult to accomplish a constant level of anaesthesia. Respiratory depression after<br />

IV redosing of ketamine, as seen in all calves in this study, have also been described<br />

by other authors (Lin 1996; Carroll & Hartsfield 1996) and may, in the extreme cases<br />

of respiratory arrest, lead to severe problems in the field situation, especially if the<br />

surgeon has no qualified assistance.<br />

Regional anaesthesia like epidural anaesthesia represents a type of local<br />

anaesthesia without any influence on consciousness. Even though epidurally<br />

administered xylazine exerts some systemic effects owing to the absorption of the<br />

drug through the longitudinal epidural veins and possibly the lymphatics (Lee et al.<br />

2001), sedative or hypnotic effects are only mild. Therefore, it is difficult to distinguish<br />

33


Publikation 2<br />

whether movement by the animals in Group EPI represent a reaction to an aversive<br />

sensation caused by surgical intervention or if they are an expression of discomfort<br />

being restrained in an unfamiliar proprioceptive state. In an attempt to prevent<br />

misinterpretation of the VAS, we recorded specific reactions only to pre-defined intraoperative<br />

procedures which are commonly regarded as painful (e.g. the incision of<br />

the skin or sutures of muscular tissue).<br />

As expected the INH anaesthesia was rapidly adjustable and an adequate depth of<br />

anaesthesia was easy to maintain, which is supported by the low VAS. By inference,<br />

intra-operative agitations reflect an unpleasant and aversive sensory experience<br />

(pain) suffered by the calf (Anil et al. 2002). According to the VAS, the EPI<br />

anaesthesia did not alleviate intraoperative pain as much as INH anaesthesia, but<br />

provided superior analgesia compared to the INJ anaesthesia. However, low VAS<br />

scores alone are insufficient to indicate low pain sensation, as immobility in inhalation<br />

anaesthesia is due to depression of spinal alpha-motor neurons and not due to<br />

analgesia alone.<br />

Cortisol levels increased in response to the surgical procedure in all three groups,<br />

indicating that neither inhalation anaesthesia, nor injection anaesthesia or epidural<br />

anaesthesia were able to prevent the surgical stress response. A total suppression of<br />

the endocrine stress response is unachievable, because general anaesthesia has<br />

little effect on the direct release of cytokines into the bloodstream (acute phase<br />

response) after local trauma and injury (Imura et al. 1991; Desborough 2000).<br />

Increased cortisol levels are not a specific indicator for pain, as they are also<br />

34


Publikation 2<br />

associated with stress and fear. In ponies under volatile agent anaesthesia,<br />

abdominal surgery did not induce a greater cortisol and catecholamine response than<br />

anaesthesia alone, indicating that the adrenocortical response to anaesthesia is<br />

already maximal and cannot be further increased by additional stimuli (Taylor et al.<br />

1998). Similar results for cattle (Anderson & Muir 2005) suggest that general<br />

anaesthesia itself is intensely distressful despite the absence of nociceptive<br />

stimulation and tissue trauma from surgery. In man, inhalation anaesthesia was less<br />

effective than neuroleptic, spinal or epidural anaesthesia in reducing the endocrine<br />

response to surgery (Kehlet 1979). This may account for the significantly elevated<br />

norepinephrine levels in Group INH observed immediately after incision and 65 min<br />

into surgery.<br />

The rise in cortisol in Group EPI when the calf was placed in dorsal recumbency<br />

again reflects the reaction of a conscious, mildly sedated animal to unfamiliar<br />

manipulations. However, during surgery, when actual noxious stimuli were applied, a<br />

diminished stress response after spinal epidural anaesthesia similar to dogs (Stanek<br />

et al. 1980) and man (Ecoffey et al. 1985; Stevens et al. 1991; Kehlet 2000)<br />

compared to general anaesthesia could be confirmed by this study. The blunted<br />

surgical stress response after epidural administration of xylazine is due to its local<br />

effect on alpha-2-receptors located in the dorsal horn neurons of the spinal cord.<br />

Activation of these receptors inhibits the release of norepinephrine and substance P,<br />

thus decreasing neuronal activity and, in turn, inhibiting rostral transmission of<br />

nociceptive impulses (Caron & LeBlanc 1989; Prado et al. 1999). <strong>Studie</strong>s in man<br />

found the use of epidural anaesthesia to completely suppress the stress response<br />

35


Publikation 2<br />

resulting from procedures below the umbilicus (Kehlet 1984, Kehlet 1988). A<br />

complete sympathetic and somatic blockade of the surgical site, affecting not only the<br />

nociceptive, but also non-nociceptive pathways, such as the sympathetic innervation<br />

to the adrenal glands however, requires an extensive epidural anaesthesia reaching<br />

from T4 to S5 (Engquist et al. 1977). According to Meyer et al. (2007), a caudal<br />

epidural application of 0.4 ml kg -1 BW (20 ml into a 50 kg calf) of contrast medium in a<br />

calf migrated cranially as far as the T12, hence we assume that applying 0.6 ml kg -1<br />

BW as performed in this study, will still be insufficient to induce the anaesthesia<br />

necessary to induce complete sympathetic and somatic blockage. Thus, the local<br />

release of stress response mediators from the surgical site extending cranially of the<br />

umbilicus and the dose related lack of extent of neuronal blockage may explain the<br />

incomplete effects of the EPI-anaesthesia on the stress response to umbilical<br />

surgery. Application of higher volumes risks blocking the phrenical nerve, originating<br />

in the fifth to seventh cervical segment, and thus causing a motor blockage of the<br />

diaphragm, which would in turn require intubation and diligent monitoring by a<br />

qualified assistant.<br />

The effects of dorsal recumbancy in this study are in accordance with results of<br />

Meyer et al. (2009). The change in positioning leads to compression of the caval vein<br />

by abdominal viscera and, in consequence, reduces venous pre-load in all calves.<br />

This, in addition to xylazines’ bradycardic effect and depression of cardiac<br />

contractility (Campbell et al. 1979; Knight 1980) causes an initial significant reduction<br />

in CO and MAP (Antonaccio et al. 1973). Statistically significant differences among<br />

cardiovascular parameters of the three groups after inducing anaesthesia and before<br />

36


Publikation 2<br />

commencing surgery are only apparent in MAP, whereby the severity of hypotension<br />

in the Group INH is greater compared to the Group INJ and EPI. Isofluranes’<br />

vasodilatative and hypotensive effect is described in foals (Read et al. 2002), dogs<br />

(Mutoh et al. 1997) and mice (Janssen et al. 2004), and accounts for the reduced<br />

MAP and SVR in animals of Group INH.<br />

Due to incomplete afferent somatic and sympathetic neural blockage, surgical stress<br />

caused by abdominal surgery inevitably leads to a release of epinephrine and<br />

norepinephrine immediately after incision, regardless of the anaesthetical protocol<br />

used (Bromage et al. 1971; Traynor & Hall 1981). The positive chronotrope, inotrope<br />

and dromotrope effects of these catecholamines on the heart are reflected in all<br />

groups by an instantaneous increase in CO (as a product of HR and SV). In Group<br />

EPI, HR is not elevated during the operation, yet CO is maintained by a<br />

compensatory increase in SV. Vasoconstrictive effects of epinephrine and<br />

norepinephrine lead to an increased SVR and MAP in Group INJ and INH, but<br />

interestingly, not in Group EPI. <strong>Studie</strong>s by Hogan et al. on rabbits (Hogan et al. 1994)<br />

and Bromage et al. (1971) on man suggest a dilatation of capacitance vessels<br />

evoked by sympathetic blockade following high volume caudal epidural anaesthesia.<br />

This vasodilatation is postulated to result from passive distension of the mesenteric<br />

veins by increased CVP, which was also observed in the Group EPI. To the best of<br />

our knowledge, no such studies have been carried out in ruminants. If the same<br />

mechanism applies in cattle, it would account for the reduced SVR and MAP in<br />

Group EPI, compared to Group INH and INJ.<br />

37


Publikation 2<br />

As in this study the RR rate of Group INH increased, but the p a CO 2 remained at a<br />

high level (Fig. 3), we proposed that the central respiratory depressant effect of<br />

isoflurane (Hikasa et al. 1997) may lead to a reduced tidal volume (V T ) or an<br />

increased dead space ventilation, or both. As we did not include pre-anaesthetic<br />

pulmonary function measurements in this study, we had no base value for the<br />

standing unanaesthatised calf for comparison. However, a study on healthy calves of<br />

similar age (Reinhold et al. 2002) determined a V T of 0.64 ± 0.9 L, which is decidedly<br />

above the intra-operative level of Group INH (gradually increasing from 0.27 to<br />

0.33 L), hence we infer that a decrease in V T in Group INH occurred after inducing<br />

anaesthesia and positioning the calves in dorsal recumbancy. It is also known that<br />

the normal stimulation of ventilation caused by increased p a CO 2 is depressed by the<br />

inhalation anaesthetics, presumably due to their direct actions on the medullary and<br />

peripheral chemoreceptors (Hirshman et al. 1977; Knill et al. 1983). The excessive<br />

supply of oxygen may in this case mask an actual ventilation-perfusion mismatch, as<br />

enough oxygen diffuses into the blood, but insufficient CO 2 gets removed from it.<br />

In Group INJ considerable hypoxaemia, reaching mean paO 2 levels of 66.2 mmHg,<br />

was observed. This is well below recommended values of 80 - 110 mmHg<br />

(McDonnell & Kerr 2007). The respiratory depressant effect of xylazine (Rings & Muir<br />

1982) is seen as the cause of the hypoxia, which was further exacerbated by the<br />

respiratory depression following slow IV ketamine redoses. The hypoxaemia and the<br />

significantly increased PVR in Group INJ suggest a definite ventilation-perfusion<br />

mismatch, which is confirmed by the increased pulmonary shunt. It should therefore<br />

be stressed that if no alternative to the combined xylazine and ketamine anaesthesia<br />

38


Publikation 2<br />

can be accomplished, oxygen supplementation is highly recommended during INJ<br />

anaesthesia to provide for adequate oxygenation.<br />

Intra-operatively, calves of Group INH and INJ developed an acute decompensated<br />

respiratory acidosis indicated by acidaemia (Fig. 3) and hypercapnia and almost<br />

unchanged values of BE and HCO - 3 . This is mostly attributed to the respiratory<br />

depressant effects of xylazine, ketamine and isoflurane (Hikasa et al. 1997), but also<br />

due to the change in positioning as described above. In contrast, calves of Group EPI<br />

maintain a stable acid base balance throughout the surgical period. Furthermore, the<br />

influence of the epidural anaesthesia regarding cardiopulmonary parameters was<br />

negligible, emphasizing the limited impact of this anaesthetic protocol on the<br />

cardiovascular system. This is in agreement with the existing opinion that epidurally<br />

applied xylazine unfolds systemic action, yet in a delayed and more moderate<br />

manner than after IV or IM application, therefore creating fewer cardiopulmonary<br />

depression (Junhold & Schneider 2002; Picavet et al. 2004).<br />

Alpha-2-c-receptors mediate hypothermia that accompanies xylazine administration<br />

(Lemke 2007). This anaesthetic drug depression of muscular activity, together with a<br />

reduced metabolism and depression of hypothalamic thermostatic mechanisms,<br />

account for the drop in body temperature in all three groups despite active heating<br />

and infusion of warmed saline solution. Body temperatures of calves in Group INH,<br />

however, remain significantly below those of Group INJ and EPI, from the start of the<br />

surgery until 60 min thereafter. The heat loss in this group is augmented by the<br />

inhalation of cold gases, causing minimal values in individual calves of 36.7°C. This<br />

39


Publikation 2<br />

can definitely be regarded as a disadvantage of INH anaesthesia. In a study on<br />

calves (Olson et al. 1983) found that cold-stressed calves show a linear decrease in<br />

leucocytes and may thus compromise natural host defence capabilities. In man,<br />

hypothermia adversely affects antibody- and cell-mediated immune defences, as well<br />

as the oxygen availability in the peripheral wound tissues. Consequentially,<br />

postoperative hypothermia is known to increase the incidence in surgical wound<br />

infections and is furthermore associated with delayed post-anaesthetic recovery<br />

(Doufas 2003; Polderman 2009).<br />

Increased economic pressures have caused selection against general anaesthesia<br />

and the need for practical, cheap and safe alternatives within the legal framework of<br />

food animal practice is apparent. The inhalation anaesthesia will certainly remain the<br />

gold standard in calf anaesthesia, but from a practical point of view, repeated<br />

ketamine injections are difficult to accomplish when unassisted. However, qualified<br />

assistance definitely becomes a prerequisite when anaesthetic machines are utilised.<br />

Personnel expenditures, acquisition costs and regular maintenance of anaesthetical<br />

machines will, even in the future, limit inhalation anaesthesia subject to use within<br />

large animal clinics. In contrast, high volume caudal epidural anaesthesia requires a<br />

single application and no sophisticated or expensive equipment.<br />

In summary, high volume caudal epidural application of xylazine and procaine in<br />

combination with local rhomboid infiltration of local anaesthetic around the umbilicus<br />

and pre-emptive application of flunixine-meglumine provided a practical, inexpensive<br />

and safe anaesthetic protocol for calves undergoing umbilical surgery, as it has little<br />

40


Publikation 2<br />

effect on cardiopulmonary variables. In comparison to inhalation- and injectionanaesthesia,<br />

intraoperative stress response was reduced and most cardiopulmonary<br />

parameters remained unaltered and within reference ranges. It may therefore be<br />

concluded that for umbilical surgery, high volume caudal epidural anaesthesia can be<br />

promoted as an alternative to inhalation anaesthesia and should definitively be<br />

regarded as superior to injection anaesthesia regarding cardiopulmonary side effects<br />

and analgesic quality.<br />

Aknowledgements<br />

The authors thank Katrin Koslowski for her technical support.<br />

41


Publikation 2<br />

REFERENCES:<br />

Amory H, Linden AS, Desmecht DJ et. al (1992) Technical and methodological<br />

requirements for reliable haemodynamic measurements in the unsedated calf.<br />

Vet Res Commun 16, 391-401.<br />

Anderson DE, Muir WW (2005) Pain management in ruminants. Vet Clin North Am<br />

Food Anim Pract 21, 19-31.<br />

Anil SS, Anil L, Deen J (2002) Challenges of pain assessment in domestic animals. J<br />

Am Vet Med Assoc 220, 313-9.<br />

Antonaccio MJ, Robson RD, Kerwin L (1973) Evidence for increased vagal tone and<br />

enhancement of baroreceptor reflex activity after xylazine (2-(2,6-<br />

dimethylphenylamino)-4-H-5,6-dihydro-1,3-thiazine) in anesthestized dogs.<br />

Eur J Pharmacol 23, 311-6.<br />

Baird AN (2008) Umbilical surgery in calves. Vet Clin North Am Food Anim Pract 24,<br />

467-77, vi.<br />

Bromage PR, Shibata HR, Willoughby HW (1971) Influence of prolonged epidural<br />

blockade on blood sugar and cortisol responses to operations upon the upper<br />

part of the abdomen and the thorax. Surg Gynecol Obstet 132, 1051-6.<br />

Campbell KB, Klavano PA, Richardson P et al. (1979) Hemodynamic effects of<br />

xylazine in the calf. Am J Vet Res 40, 1777-80.<br />

Caron JP & LeBlanc PH (1989) Caudal epidural analgesia in cattle using xylazine.<br />

Can J Vet Res 53, 486-9.<br />

Carrick JB, Papich MG, Middleton DM et al. (1989) Clinical and pathological effects<br />

of flunixin meglumine administration to neonatal foals. Can J Vet Res 53, 195-<br />

201.<br />

42


Publikation 2<br />

Carroll GL, Hartsfield SM (1996) General anesthetic techniques in ruminants. Vet<br />

Clin North Am Food Anim Pract 12, 627-61.<br />

Desborough JP (2000) The stress response to trauma and surgery. Br J Anaesth 85,<br />

109-17.<br />

Doufas AG (2003) Consequences of inadvertent perioperative hypothermia. Best<br />

Pract Res Clin Anaesthesiol 17, 535-49.<br />

Ecoffey C, Edouard A, Pruszczynski W et al. (1985) Effects of epidural anesthesia on<br />

catecholamines, renin activity, and vasopressin changes induced by tilt in<br />

elderly men. Anesthesiology 62, 294-7.<br />

Engquist A, Brandt MR, Fernandes A et al. (1977) The blocking effect of epidural<br />

analgesia on the adrenocortical and hyperglycemic responses to surgery. Acta<br />

Anaesthesiol Scand 21, 330-5.<br />

Goldkuhl R, Klockars A, Carlsson HE et al. (2010) Impact of surgical severity and<br />

analgesic treatment on plasma corticosterone in rats during surgery. Eur Surg<br />

Res 44, 117-23.<br />

Greene SA, Thurmon JC (1988) Xylazine-a review of its pharmacology and use in<br />

veterinary medicine. J Vet Pharmacol Ther 11, 295-313.<br />

Hikasa Y, Ohe N, Takase K et al. (1997) Cardiopulmonary effects of sevoflurane in<br />

cats: comparison with isoflurane, halothane, and enflurane. Res Vet Sci 63,<br />

205-10.<br />

Hirshman CA, Mccullough RE, Cohen PJ et al. (1977) Depression of hypoxic<br />

ventilatory response by halothane, enflurane and isoflurane in dogs. Br J<br />

Anaesth 49, 957-63.<br />

43


Publikation 2<br />

Hogan QH, Stadnicka A, Kampine JP (1994a) Effects of epidural anesthesia on<br />

splanchnic capacitance Adv Pharmacol 31, 471-83.<br />

Hogan QH, Stadnicka A, Stekiel TA et al. (1994b) Mechanism of mesenteric<br />

venodilatation after epidural lidocaine in rabbits. Anesthesiology 81, 939-45.<br />

Imura H, Fukata J, Mori T (1991) Cytokines and endocrine function: an interaction<br />

between the immune and neuroendocrine systems. Clin Endocrinol 35, 107-<br />

15.<br />

Janssen BJ, De Celle T, Debets JJ et al. (2004) Effects of anesthetics on systemic<br />

hemodynamics in mice. Am J Physiol Heart Circ Physiol 287, 1618-24.<br />

Junhold J, Schneider J (2002) Investigation into the analgesic effect of epidural<br />

administration of the α 2 -agonist xylazine (Rompun (R) ) in cattle. Tierarztl Prax<br />

30, 1-7. (In German)<br />

Kehlet H (1979) Stress free anaesthesia and surgery. Acta Anaesthesiol Scand 23,<br />

503-04.<br />

Kehlet H (1984) Epidural analgesia and the endocrine-metabolic response to<br />

surgery. Update and perspectives. Acta Anaesthesiol Scand 28, 125-7.<br />

Kehlet H (1988) The modifying effect of anesthetic technique on the metabolic and<br />

endocrine responses to anesthesia and surgery. Acta Anaesthesiol Belg 39,<br />

143-6.<br />

Kehlet H (2000) Manipulation of the metabolic response in clinical practice. World J<br />

Surg 24, 690-5.<br />

Kerr CL, Windeyer C, Boure LP et al. (2007) Cardiopulmonary effects of<br />

administration of a combination solution of xylazine, guaifenesin, and<br />

44


Publikation 2<br />

ketamine or inhaled isoflurane in mechanically ventilated calves. Am J Vet Res<br />

68, 1287-93.<br />

Knight AP (1980) Xylazine. J Am Vet Med Assoc 176, 454-5.<br />

Knill RL, Kieraszewicz HT, Dodgson BG et al. (1983) Chemical regulation of<br />

ventilation during isoflurane sedation and anaesthesia in humans. Can<br />

Anaesth Soc J 30, 607-14.<br />

Lee I, Soehartono RH, Yamagishi N et al. (2001) Distribution of new methylene blue<br />

injected into the dorsolumbar epidural space in cattle. Vet Anaesth Analg 28,<br />

140-145.<br />

Lemke KA (2007) Anticholinergics and Sedatives. In: Lumb and Jones' Veterinary<br />

Anaesthesia and Analgesia (4 th edn), Tranquilli WJ, Thurmon JC, Grimm KA<br />

(eds), Blackwell Publishing, Oxford, UK, pp 203-240.<br />

Lewis CA, Constable PD, Huhn JC et al. (1999) Sedation with xylazine and<br />

lumbosacral epidural administration of lidocaine and xylazine for umbilical<br />

surgery in calves. J Am Vet Med Assoc 214, 89-95.<br />

Lin HC (1996) Dissociative Anesthetics In: Lumb and Jones' Veterinary Anaesthesia<br />

and Analgesia (4 th<br />

edn), Tranquilli WJ, Thurmon JC, Grimm KA (eds),<br />

Blackwell Publishing, Oxford, UK, pp 301-354.<br />

McDonnell WN, Kerr CL (2007) Respiratory System. In: Lumb and Jones' Veterinary<br />

Anaesthesia and Analgesia (4 th edn) Tranquilli WJ, Thurmon JC, Grimm KA<br />

(eds), Blackwell Publishing, Oxford, UK, pp 117-151.<br />

Meyer, H., et al. Cardiopulmonary effects of dorsal recumbency and high-volume<br />

caudal epidural anaesthesia with lidocaine or xylazine in calves. The<br />

Veterinary Journal (2009), doi:10.1016/j.tvjl.2009.08.020<br />

45


Publikation 2<br />

Meyer H, Starke A, Kehler W et al. (2007) High caudal epidural anaesthesia with<br />

local anaesthetics or alpha(2)-agonists in calves. J Vet Med A Physiol Pathol<br />

Clin Med 54, 384-9.<br />

Mpanduji DG, Mgasa MN, Bittegeko SB et al. (1999) Comparison of xylazine and<br />

lidocaine effects for analgesia and cardiopulmonary functions following<br />

lumbosacral epidural injection in goats. Zentralbl Veterinarmed A 46, 605-11.<br />

Mutoh T, Nishimura R, Kim HY et al. (1997) Cardiopulmonary effects of sevoflurane,<br />

compared with halothane, enflurane, and isoflurane, in dogs. Am J Vet Res<br />

58, 885-90.<br />

Offinger, J., et al. Percutaneous, ultrasonographically guided technique of<br />

catheterization of the abdominal aorta in calvesfor serial blood sampling and<br />

continuous arterial blood pressure measurement. Res. Vet. Sci. (2010),<br />

doi:10.1016/j.rvsc.2010.07.016<br />

Olson DP, South PJ, Hendrix K (1983) Hematologic values in hypothermic and<br />

rewarmed young calves. Am J Vet Res 44, 572-6.<br />

Picavet MT, Gasthuys FM, Laevens HH et al. (2004) Cardiopulmonary effects of<br />

combined xylazine-guaiphenesin-ketamine infusion and extradural (intercoccygeal<br />

lidocaine) anaesthesia in calves. Vet Anaesth Analg 31, 11-9.<br />

Polderman KH (2009) Mechanisms of action, physiological effects, and complications<br />

of hypothermia. Crit Care Med 37, S186-202.<br />

Prado ME, Streeter RN, Mandsager RE et al. (1999) Pharmacologic effects of<br />

epidural versus intramuscular administration of detomidine in cattle. Am J Vet<br />

Res 60, 1242-7.<br />

46


Publikation 2<br />

Read MR, Read EK, Duke T et al. (2002) Cardiopulmonary effects and induction and<br />

recovery characteristics of isoflurane and sevoflurane in foals. J Am Vet Med<br />

Assoc 221, 393-8.<br />

Reinhold P, Rabeling B, Gunther H et al. (2002) Comparative evaluation of<br />

ultrasonography and lung function testing with the clinical signs and pathology<br />

of calves inoculated experimentally with Pasteurella multocida. Vet Rec 150,<br />

109-14.<br />

Rings DM & Muir WW (1982) Cardiopulmonary effects of intramuscular xylazineketamine<br />

in calves. Can J Comp Med 46, 386-9.<br />

Seldinger SI (1953) Catheter replacement of the needle in percutaneous<br />

arteriography; a new technique. Acta radiol 39, 368-76.<br />

Skarda RT (1986) Techniques of local analgesia in ruminants and swine. Vet Clin<br />

North Am Food Anim Pract 2, 621-63.<br />

Skarda RT, Jean GS, Muir WW (1990) Influence of tolazoline on caudal epidural<br />

administration of xylazine in cattle. Am J Vet Res 51, 556-60.<br />

Sprung CL, Elser B, Pons G (1984) Pulmonary artery catheterization. Chest 85, 839-<br />

40.<br />

Sprung CL, Marcial EH, Garcia AA et al. (1983) Prophylactic use of lidocaine to<br />

prevent advanced ventricular arrhythmias during pulmonary artery<br />

catheterization. Prospective double-blind study. Am J Med 75, 906-10.<br />

Staller GS, Tulleners EP, Reef VB et al. (1995) Concordance of ultrasonographic and<br />

physical findings in cattle with an umbilical mass or suspected to have<br />

infection of the umbilical cord remnants: 32 cases (1987-1989). J Am Vet Med<br />

Assoc 206, 77-82.<br />

47


Publikation 2<br />

Stanek B, Schwarz M, Zimpfer M et al. (1980) Plasma concentrations of<br />

noradrenaline and adrenaline and plasma renin activity during extradural<br />

blockade in dogs. Br J Anaesth 52, 305-11.<br />

Steffey EP, Howland D Jr (1979) Halothane anesthesia in calves. Am J Vet Res 40,<br />

372-6.<br />

Stevens RA, Artuso JD, Kao TC et al. (1991) Changes in human plasma<br />

catecholamine concentrations during epidural anesthesia depend on the level<br />

of block. Anesthesiology 74, 1029-34.<br />

Stöber M (1990) Kennzeichen, Anamnese, Grundregeln der Untersuchungstechnik,<br />

Allgemeine Untersuchung (3rd edn) IN: Dirksen G, Gründer H-D, Stöber M,<br />

(eds), Paul Parey, Hamburg, Germany, pp 75-138. (In German).<br />

Tadmor A, Marcus S, Eting E (1979) The use of ketamine hydrochloride for<br />

endotracheal intubation in cattle. Aust Vet J 55, 537-8.<br />

Traynor C, Hall GM (1981) Endocrine and metabolic changes during surgery:<br />

anaesthetic implications. Br J Anaesth 53, 153-60.<br />

Trent AM, Smith DF (1984) Surgical management of umbilical masses with<br />

associated umbilical cord remnant infections in calves. J Am Vet Med Assoc<br />

185, 1531-4.<br />

Uystepruyst C, Coghe J, Dorts T et al. (2002) Sternal recumbency or suspension by<br />

the hind legs immediately after delivery improves respiratory and metabolic<br />

adaptation to extra uterine life in newborn calves delivered by caesarean<br />

section. Vet Res 33, 709-24.<br />

48


Publikation 2<br />

Vermorel M, Vernet J, Dardillat C et al. (1989) Energy metabolism and<br />

thermoregulation in the newborn calf: Variations during the first day of life and<br />

differences between breeds. Can J Anim Sci 69, 103-111.<br />

Waterman AE (1981) Preliminary observations on the use of a combination of<br />

xylazine and ketamine hydrochloride in calves. Vet Rec 109, 464-7.<br />

Wilson DV, Suslak L, Soma LR (1988) Effects of frequency and airway pressure on<br />

gas exchange during interrupted high-frequency, positive-pressure ventilation<br />

in ponies. Am J Vet Res 49, 1263-9.<br />

49


Publikation 2<br />

Figures<br />

b<br />

30 INH<br />

INJ<br />

EPI<br />

b<br />

b<br />

b<br />

VAS<br />

20<br />

ab<br />

b<br />

b<br />

b<br />

c<br />

b<br />

a<br />

10<br />

a<br />

a<br />

a<br />

a<br />

0<br />

Incision of the skin<br />

a<br />

Incision of muscular tissue<br />

Opening of abdominal cavity<br />

Surgical Manipulation<br />

Umbilical resection<br />

Sutures of peritoneum<br />

Intraoperative procedures<br />

Sutures of muscular tissue<br />

a a<br />

Sutures of skin<br />

Figure 1 VAS scores (mean ± SD) of calves undergoing umbilical surgery under<br />

inhalation (INH; n=10), injection (INJ; n=10) and high volume caudal epidural<br />

anaesthesia (EPI; n=10) at pre-determined intraoperative procedures. Different<br />

letters denote significant differences between treatments (p < 0.05).<br />

50


Publikation 2<br />

MAP [mmHg]<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

a<br />

a<br />

a<br />

ab<br />

a<br />

ab<br />

ab<br />

a<br />

a<br />

ab<br />

a<br />

ab<br />

a<br />

b<br />

INH<br />

INJ<br />

EPI<br />

a<br />

b<br />

60<br />

40<br />

20<br />

0<br />

-60<br />

b<br />

-30<br />

0<br />

b<br />

15<br />

b<br />

b<br />

30<br />

b<br />

45<br />

b<br />

65<br />

b<br />

group effect: p = 0.0326<br />

time effect: p < 0.0001<br />

time x group effect: p < 0.0001<br />

95<br />

b<br />

125<br />

Time relative to start of the operation [min]<br />

2400<br />

2200<br />

a<br />

a<br />

INH<br />

INJ<br />

EPI<br />

SVR [dynes s cm -5 ]<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

b<br />

c<br />

a<br />

b<br />

c<br />

600<br />

400<br />

0<br />

-60<br />

b<br />

-30<br />

0<br />

b<br />

15<br />

b<br />

30<br />

b<br />

45<br />

b<br />

65<br />

group effect: p = 0.0002<br />

time effect: p = 0.0002<br />

time x group effect: p < 0.0001<br />

95<br />

125<br />

Time relative to start of operation [min]<br />

Figure 2 Mean arterial blood pressure (MAP) and systemic vascular resistance (SVR)<br />

of calves undergoing umbilical surgery under inhalation (INH; n=10), injection (INJ;<br />

n=10) and high volume caudal epidural anaesthesia (EPI; n=10). Baseline values (-<br />

60) are determined in the standing calf in the operating theatre. Between -60 and -30<br />

min, calves were anaesthatised and positioned into dorsal recumbency (light grey<br />

underlay). The surgical period is marked by a dark grey underlay. Symbols with a dot<br />

differ significantly from baseline (p < 0.05). For each given point in time, significant<br />

differences between experimental groups are indicated by different letters.<br />

51


Publikation 2<br />

SaO 2<br />

[%]<br />

105<br />

100<br />

95<br />

90<br />

85<br />

80<br />

a<br />

ab<br />

b<br />

a a a a a<br />

a<br />

a<br />

ab<br />

ab<br />

ab<br />

b<br />

ab<br />

a<br />

b<br />

INH<br />

INJ<br />

EPI<br />

p a<br />

CO 2<br />

[mmHg]<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

a<br />

b<br />

a<br />

a<br />

a<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

ab<br />

INH<br />

INJ<br />

EPI<br />

75<br />

70<br />

0<br />

-60<br />

-30<br />

0<br />

b<br />

b<br />

15<br />

b<br />

30<br />

b<br />

45<br />

65<br />

group effect: p = 0.0118<br />

time effect: p = 0.1120<br />

time x group effect: p = 0.0052<br />

95<br />

125<br />

185<br />

365<br />

45<br />

40<br />

35<br />

0<br />

-60<br />

c<br />

-30<br />

0<br />

b<br />

c<br />

15<br />

c<br />

30<br />

c<br />

45<br />

b<br />

65<br />

group effect: p = 0.0013<br />

time effect: p < 0.0001<br />

time x group effect: p < 0.0001<br />

95<br />

125<br />

185<br />

365<br />

Time relative to start of operation [min]<br />

Time relative to start of the operation [min]<br />

arterial pH<br />

7,45<br />

7,40<br />

7,35<br />

7,30<br />

7,25<br />

7,20<br />

0,00<br />

-60<br />

a<br />

b<br />

-30<br />

a<br />

0<br />

a<br />

b<br />

b<br />

b<br />

a<br />

15<br />

b<br />

a<br />

b<br />

30<br />

b<br />

a<br />

b<br />

45<br />

b<br />

a<br />

b<br />

65<br />

b<br />

95<br />

a<br />

a<br />

b<br />

125<br />

ab<br />

185<br />

INH<br />

INJ<br />

EPI<br />

group effect: p = 0.0036<br />

time effect: p < 0.0001<br />

time x group effect: p < 0.0001<br />

a<br />

b<br />

a<br />

b<br />

365<br />

ab<br />

Pulmonary Shunt [%]<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-60<br />

-30<br />

b<br />

0<br />

a<br />

b<br />

15<br />

a<br />

b<br />

b<br />

30<br />

45<br />

65<br />

time effect: p = 0.0773<br />

group effect: p = 0.0135<br />

time x group effect: p = 0.0808<br />

95<br />

125<br />

INH<br />

INJ<br />

EPI<br />

185<br />

365<br />

Time relative to start of the operation [min]<br />

Time relative to start of the operation [min]<br />

Figure 3 Oxygen saturation (SaO 2 ), arterial partial pressure of carbon dioxide<br />

(p a CO 2 ), arterial pH and pulmonary shunt (Qs/Qt) of calves undergoing umbilical<br />

surgery under inhalation (INH; n=10), injection (INJ; n=10) and high volume caudal<br />

epidural anaesthesia (EPI; n=10). Baseline values (-60) are determined in the<br />

standing calf in the operating theatre. Between -60 and -30 min, calves were<br />

anaesthatised and positioned into dorsal recumbency (light grey underlay). The<br />

surgical period is marked by a dark grey underlay. Symbols with a dot differ<br />

significantly from baseline (p < 0.05). For each given point in time, significant<br />

differences between experimental groups are indicated by different letters.<br />

52


Publikation 2<br />

Tables<br />

dorsal recumbancy after surgery<br />

surgery<br />

sternal recumbancy or standing<br />

before surgery<br />

Group Stand<br />

Parameter (n) Stable - 60 min -30 min 0 min 15 min 30 min 45 min 65 min 95 min 125 min 185 min 365 min P-values<br />

Cortisol INH (10) 5.1 ± 5.1 10.2 ± 6.5 7.5 ± 4.1a 15.2 ± 9.7a 26.5 ± 7.7a 27.6 ± 7.1a 25.9 ± 8.5a 26.2 ± 7.0a 20.1 ± 8.2 10.4 ± 7.0 6.2 ± 4.3 3.5 ± 1.7 group 0.3577<br />

[ng ml -1 ] INJ (10) 6.8 ± 5.1 10.7 ± 6.0 19.8 ± 13.7b 22.3 ± 10.1b 22.1 ± 11.7ab 25.9 ± 10.2ab 25.5 ± 11.3a 26.1 ± 13.5ab 23.3 ± 11.1 10.6 ± 5.6 8.1 ± 4.3 3.6 ± 2.3 time


Publikation 2<br />

Group Stand<br />

Parameter (n ) - 60 min -30 min 0 min 15 min 30 min 45 min 65 min 95 min 125 min 185 min 365 min P-values<br />

Body<br />

temperature<br />

before surgery<br />

dorsal recumbancy<br />

surgery<br />

after surgery<br />

sternal recumbancy or standing<br />

INH (10) 39.3 ± 0.1 39.1 ± 0.2 38.2 ± 0.2a 38.1 ± 0.2a 38.1 ± 0.2a 38.0 ± 0.2a 38.0 ± 0.2a 37.5 ± 0.2a 37.6 ± 0.2a 37.5 ± 0.7a 37.6 ± 0.7a group 0.0458<br />

INJ (10) 39.2 ± 0.1 39.3 ± 0.1 38.8 ± 0.1b 38.7 ± 0.1b 38.7 ± 0.2b 38.7 ± 0.2b 38.7 ± 0.2b 38.2 ± 0.1b 38.1 ± 0.1b 38.2 ± 0.4b 38.1 ± 0.4b time


Publikation 2<br />

before surgery<br />

Group Stand<br />

dorsal recumbancy<br />

surgery<br />

after surgery<br />

sternal recumbancy or standing<br />

Parameter (n ) - 60 min -30 min 0 min 15 min 30 min 45 min 65 min 95 min 125 min P -values<br />

CO INH (10) 10.3 ± 1.7 7.5 ± 1.5 10.3 ± 1.9 11.1 ± 2.1 10.4 ± 1.9 10.1 ± 1.8 9.7 ± 1.87 9.8 ± 2.3 9.5 ± 2.1 group 0.7922<br />

[L·min -1 ] INJ (10) 11.8 ± 1.6 8.0 ± 0.9 10.8 ± 1.9 10.6 ± 2.0 9.6 ± 1.8 9.5 ± 1.7 9.8 ± 1.6 10.6 ± 1.6 10.1 ± 0.5 time


Publikation 3<br />

Publikation 3:<br />

Case report: Spinal cord infarct in a calf after aortic catheter implantation<br />

Jennifer Offinger a, *, Henning Meyer a , Reiner Ulrich b , Andreas Beineke b , Jessica<br />

Fischer a , Cornelia Flieshardt c , Andrea Tipold c , Jürgen Rehage a ,<br />

a Clinic for Cattle, University of Veterinary Medicine <strong>Hannover</strong>, Foundation,<br />

Bischofsholer Damm 15, D-30173 <strong>Hannover</strong>, Germany<br />

b Department of Pathology, University of Veterinary Medicine <strong>Hannover</strong>,<br />

Bünteweg 17, D-30559 <strong>Hannover</strong>, Germany<br />

c Small Animal Clinic, University of Veterinary Medicine <strong>Hannover</strong>, Foundation,<br />

Bünteweg 9, D-30559 <strong>Hannover</strong>, Germany<br />

*Corresponding author:<br />

Offinger J<br />

Tel.:+49 511 856 7302<br />

Fax: +49 511 856 7693<br />

E-mail address: jennifer.offinger@tiho-hannover.de<br />

56


Publikation 3<br />

An 8-week-old healthy female German-Holstein calf weighing 60 kg underwent<br />

aortic catheterization to facilitate an arterial access for continuous monitoring of blood<br />

pressure and serial arterial blood sampling. Aortic puncture was carried out under<br />

ultrasonographic guidance on the non-sedated, standing animal between the left<br />

transverse processes of the third (L3) and fourth (L4) lumbar vertebrae on the lateral<br />

border of the longissimus lumborum muscle 1 . In brief, the puncture site was surgically<br />

prepared and locally anesthetized. After five minutes the skin was pre-punctured<br />

using a 15 G hypodermic needle. Under ultrasonographic guidance, a 120 mm<br />

needle a was percutaneously directed into the vessel and a 45 cm long polyethylene<br />

catheter b was introduced using a modified Seldinger technique. Finally, the needle<br />

was withdrawn, leaving 15 cm of the catheter in the lumen of the abdominal aorta.<br />

The catheter was connected to a Luer-lock adapter c and a three-way stopcock. In<br />

contrast to Offinger et al. (2010) the catheter and the stopcock were kept in medical<br />

ethanol and flushed with saline before use. Approximately 2 minutes after the<br />

catheter was successfully implanted in the aorta and flushed with heparinized d<br />

(10,000 IU heparin x L -1 ) 0.9% sterile saline, the calf’s hind limbs suddenly collapsed,<br />

the calf could not regain an upright position and remained in sternal recumbency.<br />

Repeated efforts to assist the calf into a standing position failed, as pelvic limbs could<br />

not support the weight. However, if lifted and supported under the trunk, the calf<br />

could hop on the thoracic limbs.<br />

On clinical examination, the animal was bright, alert and responsive,<br />

had a normal appetite and could maintain sternal recumbency. Both pelvic limbs<br />

were flexed at the hip joint while the stifle was hyperextended. Heart and respiratory<br />

57


Publikation 3<br />

rates, as well as body temperature, were within physiological limits. Cardiac and<br />

pulmonary auscultation identified no abnormalities. While consciousness,<br />

examination of the cranial nerves, forelimb postural reactions and forelimb spinal<br />

reflexes appeared normal, a severe paraparesis with a hyperextensive posture of<br />

both stifle joints and a hyperflexion of the hip joints was noted. The tone of the<br />

quadriceps muscles was normal, whereas the tone of the remaining hind limb<br />

muscles was severely reduced. Both hind legs were warm and femoral pulse was<br />

palpable. Neurological examination 2 of the pelvic limbs revealed bilateral reduced<br />

patellar and absent tibialis cranialis and withdrawal reflexes. On exterting pressure<br />

onto the medial areas of the pelvic limb with hemostats, superficial and deep pain<br />

perception was present. However, application of the same noxious stimuli to the<br />

caudal and lateral areas of the distal extremities caused no pain reaction. The<br />

perineal reflex was also absent, the tail was atonic and analgesic, and the bladder<br />

was distended and had to be expressed manually. Haematology and blood<br />

biochemistry results, including serum creatine kinase activity, were considered as<br />

unremarkable in the calf.<br />

Neuroanatomically, the absence of superficial and deep pain sensation in the<br />

area innervated by the sciatic and the pudendal nerves, alongside normal reflexes in<br />

the area innervated by the saphenous nerves suggested a lower motor neuron (LMN)<br />

spinal cord lesion localized between L6 and sacral spinal cord segments. The<br />

decreased patellar reflex was considered to be a result of the hyperextension of the<br />

limbs and, together with pain on the medial side of the leg, indicated that the<br />

segments L4, L5 and the femoral and saphenous nerves were intact. Destruction of<br />

58


Publikation 3<br />

the L6, S1 and S2 segments prevented stimulation of alpha-motoneurons of the<br />

sciatic nerves. Therefore, no active flexion of the stifle, tarsus or digits occurred.<br />

Bladder paralysis occurred as a result of the lesion of the sacral segments. At this<br />

point the tentative diagnosis was an acute vascular accident (thromboembolism or<br />

fibrocartilagenous- or air-embolism) involving the spinal cord, causing ischemic<br />

myelopathy and consequentially paraplegia. Treatment with heparin d (100 IU / kg IV),<br />

enrofloxacin e (2.5 mg / kg IV) and carprofen f (1.4 mg / kg SC) was instituted.<br />

Additionally, a singular epidural injection of 8 mg dexamethasone g combined with<br />

1.200.000 IE benzylpenicillin h dissolved in 20 ml sterile isotonic saline was applied.<br />

The following day, magnetic resonance imaging (MRI) i , Magnetom Impact<br />

Plus, 1.0 Tesla, Siemens, Erlangen, Germany) was carried out. The calf was<br />

premedicated with 0.1 mg/kg 2% xylazine j i/m and 2.0 mg/kg ketamine k i/v.<br />

Anaesthesia was maintained with inhalant isoflurane l and oxygen after intubation.<br />

MRI examination was performed about 48 hours after the onset of clinical signs with<br />

the calf in dorsal recumbency. T2-weighted images in sagittal (TR: 4700 ms, TE 112<br />

ms, slice thickness 3 mm) and transverse planes (TR: 3458 ms, TE 96 ms, slice<br />

thickness 3 mm) from the lumbar vertebral column to the sacrum revealed an<br />

intramedullary hyperintense signal abnormality beginning at vertebral body L4. This<br />

lesion occurred mainly in the grey matter with a right lateralization. The spinal cord<br />

segments caudally to vertebral body L5 showed a severe hyperintensity of both the<br />

grey and white matter. Additional signal changes (T2 weighted, hyperintense) were<br />

identified at the area of the right sided paralumbar muscles adjacent to the fifth and<br />

sixth lumbar vertebrae.<br />

59


Publikation 3<br />

On sagittal and transverse T1-weighted images (TR: 330 ms, TE 12 ms, slice<br />

thickness 3 mm) the described intramedullary lesion was normointense, while the<br />

muscular abnormality showed a mildly hypointense signal. After the administration of<br />

contrast-medium m (0.2 mmol/kg IV) no pathological enhancement of the spinal cord<br />

but missing physiological enhancement of the described paraspinal muscle and the<br />

body of the fifth lumbar vertebra was present. Gradient-echo magnetic resonance<br />

images (TR: 880 ms, TE 26 ms, slice thickness 3 mm) in transverse plane provided<br />

an hyperintensity of the changed spinal cord parenchyma, whereas the described<br />

paraspinal musculature showed an inhomogeneous hyperintens signal with multifocal<br />

hypointense areas as an indication of necrosis within this muscle group. Altogether,<br />

MRI findings supported the clinical differential diagnosis and indicated profound focal<br />

ischemic necrosis, particularly of the grey matter in the caudal lumbar and cranial<br />

sacral segments of the spinal column.<br />

Despite intense physical therapy and continuation of medication for one week,<br />

the calf’s ability to stand did not improve. In consideration of the poor prognosis and<br />

in consent of animal welfare, the calf was thus euthanized and submitted for postmortem<br />

examination.<br />

Pathological examination revealed a mild to moderate, focal subacute<br />

hematoma with necrosis, mineralization, resorptive lymphohistiocytic inflammation,<br />

hemosiderosis and granulation-tissue formation within the muscular and<br />

retroperitoneal tissues along the puncture channel and focally surrounding the<br />

abdominal aorta. On the left side of the abdominal aorta, on the level of the 4 th<br />

60


Publikation 3<br />

lumbar vertebral body, a punctual lesion of less than 1 mm in diameter designated<br />

the puncture site. A small arterial thrombus was firmly attached to the inner surface of<br />

the contralateral vessel wall on an area of approximately 5 mm in diameter and<br />

protruded 1-2 mm into the lumen. Microscopic examination of the arterial thrombus<br />

displayed ongoing organization characterized by infiltrating macrophages<br />

occasionally containing intracytoplasmic brown granular pigment (hemosiderin),<br />

capillary sprouts and fibroblasts. Gross examination of the spinal cord revealed a<br />

locally extensive bilateral malacia and focal hemorrhage of the grey matter extending<br />

from the 4 th lumbar spinal nerve root to the caudal end of the sacral spinal cord<br />

(Figure 2). Microscopically, sections of the affected spinal cord segment contained<br />

extensive bilateral malacia of the grey matter and the adjacent central parts of the<br />

white matter (Figure 3), characterized by necrotic neurons and glial cells,<br />

disintegration of neuropil, myelin sheaths and axons, as well as a peripheral zone of<br />

intercellular edema, multifocal perivascular hemorrhages and infiltrating<br />

macrophages and fewer lymphocytes. Many macrophages / microglia displayed an<br />

enlarged size and foamy cytoplasmic change (“gitter cells”) indicative of phagocytotic<br />

activity. The arteria (A.) spinalis ventralis, and multiple other small to medium sized<br />

arterial vessels (Aa. sulcocomissurales, Aa. radicularis dorsalis; multiple rami<br />

marginales within the white matter) ranging from the area of the 4 th lumbar spinal<br />

nerve root to the caudal end of the sacral cord displayed a multifocal partial to total<br />

occlusion of the vessel lumina by fibrin-rich thrombi, displaying multifocal attachment<br />

to the vessel walls with endothelial necrosis and loss, whereas they exhibited no<br />

contact to the vessel walls in other areas. These thrombi displayed signs of<br />

organization characterized by surface re-endothelization, hyaline change of the fibrin,<br />

61


Publikation 3<br />

formation of internal clefts and sinusoid spaces filled by erythrocytes and encased<br />

necrotic white blood cells (Figure 4). A detailed examination of the affected spinal<br />

cord area employing serial histologic sections with an interval of approximately 6 mm<br />

revealed no embolized exogenous particles, skin or soft-tissue pieces within the<br />

vessels. Furthermore, no mucopolysaccarides or chondroid material, were detected<br />

by alcian blue special staining.<br />

There was a moderate focal ischemic necrosis with mineralization, resorptive<br />

inflammation and granulation tissue formation in the right sided paralumbar<br />

musculature, medial of the tuber coxae, possibly representing a second focus of a<br />

primarily arterial thrombotic lesion. Additionally, the urinary bladder displayed mild<br />

dilatation and a mild multifocal subacute lymphoplasmacytic cystitis. The latter<br />

changes were interpreted as a consequence of a neurological impairment of bladder<br />

function as a sequela of the myelomalacia. The final pathomorphological diagnosis of<br />

a subacute thromboembolic arterial infarct of the lumbar and sacral spinal cord with<br />

ischemic myelomalacia most likely originating from an arterial thrombus within the<br />

lumbar aorta contralateral to the arterial puncture site supported the tentative clinical<br />

diagnosis and the findings in MRI of an ischemic myelopathy of the caudal lumbar<br />

and sacral spinal cord segments. The majority of spinal cord grey matter is supplied<br />

by the ventral spinal artery and, as it has the highest area of vascularity, is most<br />

susceptible to ischemia.<br />

Ischemic myelopathy as a result of acute spinal cord infarction caused by<br />

fibrocartilagineous emboli has been described in several large animal species<br />

including pigs 3 , sheep 4 , a calf 5<br />

and horses 6,7 . Aortic thrombosis and subsequent<br />

62


Publikation 3<br />

embolization has been identified as another major cause of spinal cord ischemia. In<br />

cats and man, the formation of arterial thrombi is strongly associated with underlying<br />

cardiovascular and thromboembolic diseases 8<br />

or abdominal aortic operation 9 . In<br />

calves and horses the origin of occluding thrombi is less clear 10,11 . In the few<br />

described cases, predisposing factors associated with the formation of thrombemboli<br />

were identified to be valvular endocarditis, bacterial endotoxins 12 , immune<br />

complexes 13 , disruption of laminar blood flow 14 , injury to vascular endothelium and<br />

alteration in the coagulability of the blood 15 . However, the clinical and post mortem<br />

examination provided no informative basis for such alterations being the cause for<br />

the ischemic myelopathy and the chronology of events appears highly indicative of a<br />

direct causal relationship to the catheterization process. The application of a recently<br />

published classification system for forensic histological age determination of<br />

thromboses and embolisms in human fatal pulmonary thromboembolism 16 revealed<br />

that both, the aortic arterial thrombus and the spinal cord thrombemboli display<br />

changes characteristic for a 1-7 week-old process, including infiltrating endothelial<br />

sprouts, fibroblasts, and macrophages containing hemosiderin, coalescing ribbons of<br />

fibrin with entrapped necrotic white blood cells, and re-endothelization of the<br />

thrombus surface (phase II; 2 nd to 8 th week) which is in accordance with the one week<br />

period between catheterization and necropsy of the present case.<br />

Trauma to the vascular endothelium at insertion, caused by the needle, the<br />

catheter tip or the guide wire exposes luminal blood to collagen and tissue factors<br />

and may have stimulated thrombus formation through the activation of the platelet<br />

and coagulation cascade. This was further exacerbated by the alterations in normal<br />

63


Publikation 3<br />

blood flow 15 caused by the indwelling catheter. In a murine model, using real-time in<br />

vivo imaging, thrombus formation was demonstrated 15-20 seconds after laserinduced<br />

endothelial injury 17 . In hamsters, thrombi were detected 8 ± 1.1 min after a<br />

trauma was set to the carotid artery by crushing the exposed vessel with a clamp.<br />

The formed thrombi gradually embolized and disintegrated 15 ± 2.1 min after<br />

traumatization 18 . As the onset of neurological symptoms in this case was within<br />

minutes of the puncture, the detachment of thrombemboli must have occurred very<br />

shortly after the procedure. Therefore, even if taking into account inter-species<br />

variances in hemostasis, it appears unlikely that a thrombembolus originating from<br />

endothelial damage contralaterally to the puncture site disintegrated that rapidly and<br />

consequentially led to the infarction of the spinal vessels.<br />

Cutaneous, subcutaneous or muscular material accumulated in the lumen of<br />

the needle may have been introduced into the abdominal aorta whilst threading the<br />

catheter into the vessel. Emboli may have travelled with the aortic bloodstream into<br />

arterial branches supplying the vertebrae. The occurrence of skin tissue emboli<br />

originating from needle punctures 19,20 or catheter fragment embolization have been<br />

reported in studies in man 21,22 . Even though the temporal sequence would support<br />

these explanations, skin tissue or a polyurethrane fragment would have been<br />

detected macroscopically or histologically. Moreover, it appears unlikely that these<br />

emboli would cause multiple arterial embolization.<br />

64


Publikation 3<br />

The three-way stopcock and the catheter were immersed in ethanol before<br />

use. The multiple thrombi in the vessels of the spinal cord may have formed by<br />

remnants of ethanol within the lumen of the stopcock despite flushing with saline<br />

before connection to the catheter. After the catheter was inserted and connected to<br />

the stopcock on flushing with saline these remnants may have entered the aortic<br />

blood stream or, depending on the location of the catheters’ tip, directly into spinal<br />

vessels. Due to the sclerosing properties and local toxic effects related to its protein<br />

denaturant and hydroscopic properties, ethanol is widely used as embolizing agent<br />

for large area tissue destruction 23 . Therapeutic transcatheter arterial embolization is<br />

an established procedure to treat neoplasms and arteriovenous malformations in a<br />

variety of tissues. Major complications described in transcatheter arterial<br />

embolization are spinal cord infarction and distal embolization of particles into the<br />

aorta and its branches 24 . To achieve renal infarction in dogs, 0.2 ml/kg body weight of<br />

pure ethanol was injected into the renal artery, although the authors indicate that a<br />

lower concentration and amount would suffice 25 . It appears unlikely that remnants of<br />

alcohol within the introduced catheter play a role in the pathogenesis of the<br />

thrombembolus since the catheter was flushed with saline before insertion as well as<br />

by aortic blood directly after insertion due to the high arterial blood pressure.<br />

Another cause of embolization may have been small air bubbles, introduced<br />

into the vessel on flushing the catheter. In arterial vessels, cerebral air emboli due to<br />

a patent foramen ovale originating from central venous catheters and resulting in<br />

neurologic manifestations have been described in man 26,27 . However, special<br />

attention was paid on removal of possible air bubbles within the used syringe prior to<br />

65


Publikation 3<br />

flushing with hepatinized saline, thus, it appears unlikely that air bubbles were<br />

intoduced into the aorta. Furthermore, during catheterization, the high blood pressure<br />

within the abdominal aorta immediately forced blood out of the catheter thus resulting<br />

in an immediate retrograde blood flow which did not allow for air bubbles to be<br />

introduced.<br />

The etiology of the multiple thromboembolic arterial infarct of the spinal cord in<br />

the described case is not definitely proven, but it appears highly likely that embolism<br />

was caused by ethanol or possibly air bubbles since histopathological examination<br />

revealed no embolic material. Thus, in order to reduce the risk of thromboembolism<br />

after catheterization of vessels, implementation of sterilized catheter material is<br />

recommended or thorough flushing before use must be guaranteed.<br />

Footnotes<br />

a TSK-Supra Cannula, length 120 mm, OD 2 mm, Tochigi, Japan<br />

b<br />

Polyethylene tube, AD 1.27 mm, Kleinfeld Labortechnik, Gehrden, Germany<br />

c Teflon AD 1.5 mm, Walter Veterinär Instrumente e. K., Baruth/Mark,<br />

Germany<br />

d Heparin-calcium-25000-ratiopharm, Ratiopharm GmbH, Ulm, Germany<br />

e Baytril, Bayer Vital GmbH, Leverkusen, Germany<br />

f Rimadyl Cattle, Pfizer Pharma GmbH, Karlsruhe, Germany.<br />

g Dexamethason-Injektionslösung,CP-Pharma, Burgdorf, Germany<br />

h Penicillin-G-Natrium, Bela-Pharm, Germany<br />

i Magnetom Impact Plus, 1.0 Tesla, Siemens, Erlangen, Germany<br />

66


Publikation 3<br />

j Rompun, Bayer Vital GmbH, Leverkusen, Germany<br />

k<br />

Ketamin 10%, Selectavet GmbH, Weyarn-Holzolling, Germany<br />

l Isofluran-Baxter®, Baxter Deutschland GmbH, Unterschleißheim, Germany<br />

m Gadolinium-Dimeglumine, GdDTPA, Magnevist®, Schering Deutschland<br />

GmbH, Berlin, Germany<br />

67


Publikation 3<br />

References:<br />

1. Offinger J. Percutaneous, ultrasonographically guided technique of<br />

catheterization of the abdominal aorta in calves for serial blood sampling and<br />

continuous arterial blood pressure measurement. Res Vet Sci<br />

2010:doi:10.1016/j.rvsc.2010.1007.1016.<br />

2. Constable PD. Clinical examination of the ruminant nervous system. Vet Clin<br />

North Am Food Anim Pract 2004;20:185-214.<br />

3. Tessaro SV, Doige CE, Rhodes CS. Posterior paralysis due to fibrocartilaginous<br />

embolism in two weaner pigs. Can J Comp Med 1983;47:124-126.<br />

4. Jeffrey M, Wells GA. Multifocal ischaemic encephalomyelopathy associated with<br />

fibrocartilaginous emboli in the lamb. Neuropathol Appl Neurobiol 1986;12:415-<br />

424.<br />

5. Landolfi JA, Saunders GK, Swecker WS. Fibrocartilaginous embolic myelopathy<br />

in a calf. J Vet Diagn Invest 2004;16:360-362.<br />

6. Taylor HW, Vandevelde M, Firth EC. Ischemic myelopathy caused by<br />

fibrocartilaginous emboli in a horse. Vet Pathol 1977;14:479-481.<br />

7. Fuentealba IC, Weeks BR, Martin MT, et al. Spinal cord ischemic necrosis due to<br />

fibrocartilaginous embolism in a horse. J Vet Diagn Invest 1991;3:176-179.<br />

8. Laste NJ, Harpster NK. A retrospective study of 100 cases of feline distal aortic<br />

thromboembolism: 1977-1993. J Am Anim Hosp Assoc 1995;31:492-500.<br />

9. Rosenthal D. Spinal cord ischemia after abdominal aortic operation: is it<br />

preventable? J Vasc Surg 1999;30:391-397.<br />

10. Rolfe DL. Aortic thromboembolism in a calf. Can Vet J 1977;18:321-324.<br />

11. Maxie MG, Physick-Sheard PW. Aortic-iliac thrombosis in horses. Vet Pathol<br />

1985;22:238-249.<br />

12. D'Angelo A, Bellino C, Alborali GL, et al. Aortic thrombosis in three calves with<br />

Escherichia coli sepsis. J Vet Intern Med 2006;20:1261-1263.<br />

13. Louis J, Salmon J, Betz C. [Pathogenesis of the intravascular coagulation<br />

syndrome induced by immunologic reactions: role of the antigen-antibody ratio<br />

in the activation of the phenomenon]. C R Seances Soc Biol Fil 1971;165:1484-<br />

1487.<br />

68


Publikation 3<br />

14. Goldsmith HL. The flow of model particles and blood cells and its relation to<br />

thrombogenesis. Prog Hemost Thromb 1972;1:97-127.<br />

15. Morley PS, Allen AL, Woolums AR. Aortic and iliac artery thrombosis in calves:<br />

nine cases (1974-1993). J Am Vet Med Assoc 1996;209:130-136.<br />

16. Fineschi V, Turillazzi E, Neri M, et al. Histological age determination of venous<br />

thrombosis: a neglected forensic task in fatal pulmonary thrombo-embolism.<br />

Forensic Sci Int 2009;186:22-28.<br />

17. Falati S, Gross P, Merrill-Skoloff G, et al. Real-time in vivo imaging of platelets,<br />

tissue factor and fibrin during arterial thrombus formation in the mouse. Nat Med<br />

2002;8:1175-1181.<br />

18. Stockmans F, Stassen JM, Vermylen J, et al. A technique to investigate mural<br />

thrombus formation in small arteries and veins: I. Comparative morphometric<br />

and histological analysis. Ann Plast Surg 1997;38:56-62.<br />

19. Andrew JH. Pulmonary skin embolism: a case report. Pathology 1976;8:185-187.<br />

20. Donhuijsen K, Schmidt U. [Iatrogenic skin-tissue embolism in the lung]. Schweiz<br />

Med Wochenschr 1983;113:833-834.<br />

21. Doering RB, Stemmer EA, Connolly JE. Complications of indwelling venous<br />

catheters, with particular reference to catheter embolus. Am J Surg<br />

1967;114:259-266.<br />

22. Surov A, Buerke M, John E, et al. Intravenous port catheter embolization:<br />

mechanisms, clinical features, and management. Angiology 2008;59:90-97.<br />

23. Ginat DT, Saad WE, Turba UC. Transcatheter renal artery embolization: clinical<br />

applications and techniques. Tech Vasc Interv Radiol 2009;12:224-239.<br />

24. Miller FJ, Jr., Mineau DE. Transcatheter arterial embolization-major complications<br />

and their prevention. Cardiovasc Intervent Radiol 1983;6:141-149.<br />

25. Ellman BA, Green CE, Eigenbrodt E, et al. Renal infarction with absolute ethanol.<br />

Invest Radiol 1980;15:318-322.<br />

26. Eichhorn V, Bender A, Reuter DA. Paradoxical air embolism from a central<br />

venous catheter. Br J Anaesth 2009;102:717-718.<br />

27. Fathi AR, Eshtehardi P, Meier B. Patent foramen ovale and neurosurgery in<br />

sitting position: a systematic review. Br J Anaesth 2009;102:588-596.<br />

69


Publikation 3<br />

70


Publikation 3<br />

Figure 1: magnet resonance tomography: T2-weighted images in<br />

transverse planes (TR: 3458 ms, TE 96 ms, slice thickness 3 mm) at vertebral<br />

body L5. “x” labels an intramedullary hyperintense signal abnormality in the<br />

grey matter with a right lateralization. “o” labels hyperintense signal changes in<br />

the area of the right sided paralumbar muscles; R = right sided.<br />

71


Publikation 3<br />

Figure 2: Spinal cord. Bovine. Transversal section of the lumbar spinal cord<br />

reveals a focally-extensive bilateral ischemic malacia of the grey matter (stars)<br />

surrounded by a rim of edema and hemorrhage.in the adjacent white matter<br />

(arrows). Furthermore a thrombembolus is present within the arteria spinalis<br />

ventralis (arrowhead). Df = dorsal funiculus of the white matter; dh = dorsal<br />

horn of the grey matter; dr = dorsal spinal nerve root; lf = lateral funiculus of<br />

the white matter; vh = ventral horn of the grey matter; vr = ventral spinal nerve<br />

root.<br />

72


Publikation 3<br />

Figure 3: Spinal cord. Bovine. Light microscopic examination of the<br />

lumbar and sacral spinal cord reveals a marked subacute ischemic malacia of<br />

the grey matter characterized by disintegration of the neuropil, and necrotic<br />

neurons (arrow), surrounded by a peripheral rim of edema (stars), and<br />

infiltrating macrophages / microglia and gitter cells (arrowhead) in the adjacent<br />

white matter. Gm = grey matter; wm = white matter. HE. Bar = 200 µm.<br />

73


Publikation 3<br />

Figure 4: Arteria spinalis ventralis. Bovine. Light microscopy of a<br />

thrombembolus displaying signs of organization characterized by surface reendothelization<br />

(arrows), hyaline change of the fibrin (stars), and encased<br />

necrotic white blood cells. Tm = tunica media; vl = remaining vessel lumen.<br />

HE. Bar = 100 µm.<br />

74


Übergreifende Diskussion<br />

Übergreifende Diskussion<br />

Ziel dieser <strong>Studie</strong> war es, drei Anästhesieprotokolle hinsichtlich ihrer hormonellmetabolischen<br />

Schmerzreaktion sowie kardiovaskulärer und hämodynamischer<br />

Auswirkungen während einer Nabeloperation beim Kalb zu untersuchen. Das<br />

markanteste Ergebnis dieser Arbeit ist, dass die hohe Epiduralanästhesie mit Xylazin<br />

und Procain in Kombination mit einer Lokalanästhesie sowie der präoperativen<br />

Applikation eines nichtsteroidalen Antiphlogistikums (NSAIDs) eine im Vergleich <strong>zur</strong><br />

Inhalationsnarkose, welche als „Goldstandard“ gilt, ebenso überzeugende Form der<br />

gleichmäßig anhaltenden Schmerzausschaltung für die Nabeloperation des Kalbes<br />

darstellte (Kapitel 2). Die Injektionsnarkose mittels Xylazin und Ketamin stellte sich<br />

hinsichtlich der analgetischen Potenz und Narkosetiefe als schwer steuerbar sowie<br />

unzuverlässig heraus. Letzteres entsprach nicht den Erwartungen, da die für diese<br />

<strong>Studie</strong> gewählte Dosierung von 0.2 mg kg -1 Xylazin und 5.0 mg kg -1 Ketamin im<br />

Bereich der üblichen Empfehlungen von Waterman (1981), Thurmon (1986) sowie<br />

Carroll und Hartsfield (1996) lag, um beim Rind eine ausreichende Analgesie für<br />

chirurgische Interventionen zu erreichen. Bei niedrigerer Dosierung (0,088 mg kg -1<br />

Xylazin und 4,4 mg kg -1<br />

Ketamin) machten bereits Rings und Muir (1982) die<br />

Erfahrung einer beim Rind un<strong>zur</strong>eichend herbeigeführten Analgesie. Mit dieser<br />

<strong>Studie</strong> konnte wissenschaftlich belegt werden, dass die Epiduralanästhesie durch die<br />

einfache und kostengünstige Anwendbarkeit eine überzeugende Anästhesiemethode<br />

für abdominalchirurgische Eingriffe bei Kälbern darstellt, die der Inhalationsnarkose<br />

ebenbürtig und der Xylazin/Ketamin Injektionsnarkose deutlich überlegen ist<br />

75


Übergreifende Diskussion<br />

Basierend auf der Beurteilung von typischen schmerzbedingten Verhaltensweisen<br />

wurde in dieser <strong>Studie</strong> die Epiduralanästhesie der Inhalationsnarkose untergeordnet,<br />

jedoch der Injektionsnarkose überlegen angesehen. Diese Einreihung muss jedoch<br />

differenzierter betrachtet werden: Die Epiduralanästhesie wird den Lokalanästhesien<br />

zugeordnet, da sie nicht <strong>zur</strong> Bewusstlosigkeit des Tieres führt. Die systemische<br />

Resorption von epidural appliziertem Xylazin führt zwar zu systemischer Wirkung mit<br />

sedativen Effekten (Lee et al., 2001), ist aber dennoch nicht mit der<br />

ketaminbedingten funktionellen Entkopplung zwischen dem thalamo-neokortikalen<br />

und dem limbischen System (Kochs et al., 1988) oder der <strong>zur</strong> Bewusstlosigkeit<br />

führenden Wirkung des Isoflurans zu vergleichen. Während die<br />

Bewegungsunfähigkeit unter der Inhalationsnarkose auf der muskelrelaxierenden<br />

und hypnotischen Wirkung des Isoflurans basiert, führt die hier durchgeführte hohe<br />

Epiduralanästhesie naturgemäß lediglich <strong>zur</strong> Paralyse der Hintergliedmaßen. Kälber<br />

unter Epiduralanästhesie verfügen jedoch cranial der Anästhesie über das<br />

vollständige Verhaltensrepertoire und können jede Form des Unwohlseins, sei es<br />

operationsbedingt oder durch die ungewohnte Fixierung in Rückenlage, zu erkennen<br />

geben. Damit mögliche Spontanbewegungen von schmerz-induzierten<br />

Verhaltensäußerungen unterschieden werden konnten, erfolgten Aufzeichnungen nur<br />

bei Reaktionen auf zuvor definierte und erfahrungsgemäß schmerzhafte operative<br />

Manipulationen (z.B. Haut- und Muskelinzisionen). Dennoch ist im Fall der<br />

epiduralanästhesierten Tiere die Abgrenzung von wirklichen Schmerzreaktionen und<br />

dem Reflex, sich aus einem ungewohnten propriozeptiven Zustand zu befreien,<br />

kaum zu unterscheiden. Ferner ist bekannt, dass Isofluran nur geringe analgetische<br />

Wirkung besitzt und daher stets mit der Applikation von Analgetika kombiniert<br />

76


Übergreifende Diskussion<br />

werden muss (Pascoe, 2000). Erfolgt dies nur un<strong>zur</strong>eichend oder womöglich nicht,<br />

würde die Isofluran-induzierte Inhalationsnarkose dennoch dem betroffenem Kalb<br />

keinen Ausdruck von Schmerz durch Verhaltensänderungen erlauben. Die im Mittel<br />

leicht erhöhten Scores der Kälber unter Epiduralanästhesie im Vergleich <strong>zur</strong><br />

Inhalationsnarkose lassen sich dadurch erklären, werfen aber gleichzeitig die Frage<br />

auf, inwiefern diese unterschiedlichen Anästhesietechniken hinsichtlich der<br />

intraoperativen Verhaltensbeurteilung überhaupt verglichen werden können.<br />

Verhaltensbeobachtungen <strong>zur</strong> Beurteilung von Schmerzzuständen, die durch<br />

Übertragung in ein VAS oder NRS System zwar statistisch leicht auswertbar werden,<br />

stellen immer eine subjektive Beurteilung dar. Sie gelten als sehr sensitiv und sind<br />

daher auch nicht verzichtbar. Es ist aber stets ratsam, diese mit objektiven,<br />

messbaren Parametern zu kombinieren (Anil et al., 2002). Zu diesen gehört die<br />

hormonelle Stressantwort auf einen nozizeptiven Reiz, der beispielsweise durch ein<br />

operatives Trauma hervorgerufen wird.<br />

Stress und Traumata führen durch die Aktivierung der Hypothalamus-Hypophysen-<br />

Nebennieren-Achse <strong>zur</strong> Erhöhung von Katecholamin- und Kortisolkonzentrationen<br />

(Kehlet, 1991, Mellema et al., 2006, Mellor et al., 2002). Die<br />

Plasmacortisolkonzentrationen stiegen bei den Versuchskälbern bereits mit dem<br />

Verbringen in den Operationsraum, erneut mit der Rückenlagerung und wieder mit<br />

Beginn der Operation an. Im Unterschied zu Verhalten der Plasmacortisolspiegel<br />

konnte erst mit Beginn der chirurgischen Eröffnung der Bauchhöhle eine Erhöhung<br />

der mittleren Epinephrinwerte der Kälber beobachtet werden. Zu diesem Zeitpunkt<br />

erhöhten sich die Epinephrinwerte um ein 20- bis 30-faches gegenüber den<br />

77


Übergreifende Diskussion<br />

Basalwerten, wenn auch nur kurzfristig. Sie fielen rasch im Verlauf des operativen<br />

Eingriffes, blieben aber selbst eine Stunde post-operationem gegenüber dem<br />

Basiswert leicht erhöht. Der erhebliche Anstieg in den Plasma-Catecholamin-<br />

Konzentrationen deutet auf eine inkomplette nozizeptive, sympathische oder<br />

endokrine Blockade aller drei Anästhesieverfahren hin. Auch die bei allen Kälbern<br />

zusätzlich durchgeführte lokale rhomboide Umspritzung des Nabels mit<br />

Lokalanästhetika konnte diese Reaktion offensichtlich nicht unterdrücken. Es ist<br />

bekannt, dass eine operationsbedingte Stressantwort nie komplett durch eine<br />

Narkose unterdrückt werden kann, da eine lokale Reaktion an der Schnittstelle nicht<br />

verhindert werden kann (Desborough, 2000, Imura et al., 1991). Tatsächlich zeigten<br />

<strong>Studie</strong>n an Ponys und Rindern, dass die Inhalationsnarkose per se eine maximale<br />

Stressantwort hervorruft, selbst wenn kein nozizeptiver Stimulus oder Gewebstrauma<br />

auf das Tier einwirkt (Taylor, 1998, Anderson and Muir, 2005).<br />

Mit dem multimodalen Ansatz in dieser <strong>Studie</strong>, d.h. der kombinierten Anwendung von<br />

Analgetika verschiedener Substanzklassen, sollten nozizeptive Reize auf möglichst<br />

allen Ebenen des schmerzleitenden Systems gehemmt werden. Aus der<br />

Humanmedizin ist bekannt, dass allein die Epiduralanästhesie eine komplette<br />

Suppression der endokrinen Stressantwort induzieren kann, allerdings beschränkt<br />

sich diese Aussage auf Eingriffe caudal des Nabels. Um eine komplette<br />

sympathische und somatische Blockade dieses Operationsgebietes zu erreichen, die<br />

nicht nur nozizeptive, sondern auch nicht-nozizeptive Afferenzen umfasst, sollte laut<br />

Engquist et al. (1977) die Epiduralanästhesie eine Ausdehnung von Th4 bis S5<br />

aufweisen. In einer <strong>Studie</strong> von Meyer et al. (2007), welcher mittels epiduraler<br />

78


Übergreifende Diskussion<br />

Applikation eines Kontrastmittels dessen Ausbreitung innerhalb des Epiduralspaltes<br />

untersuchte, wurde mit einem Volumen von 0,4 ml kg -1 KGW eine kraniale Migration<br />

bis zu Th12 beobachtet. Offenbar wurde in der vorliegenden <strong>Studie</strong> trotz epiduraler<br />

Applikation eines größeren Volumens von 0,6 ml kg -1 KGW eine Ausbreitung der<br />

Anästhetika bis Th4 ebenfalls nicht erreicht, da eine komplette sympathische und<br />

somatische Blockade des Operationsfeldes anhand der hormonellen Stressantwort<br />

nicht erkennbar war. Da jedoch mit der Applikation größerer Volumina die Gefahr<br />

steigt, den N. phrenicus, welcher seinen Ursprung im fünften bis siebten<br />

Zervikalsegment hat, mit in die Blockade einzuschließen und somit eine motorische<br />

Blockade der rumpfnahen Atemmuskulatur und des Zwerchfells zu verursachen, war<br />

eine weitere Volumenerhöhung ohne vorherige Prüfung der Verträglichkeit nicht<br />

vertretbar. Weiterhin wäre in diesem Fall eine Intubation und Beatmungseinrichtung<br />

unerlässlich, was wiederum dem praktischen Motivationsgrund der Anästhesie<br />

widerspricht.<br />

Die Epiduralanästhesie führte in dieser <strong>Studie</strong> nicht nur zu einer hoch wirksam<br />

Schmerzausschaltung, sie erwies sich auch als unproblematisch in der<br />

Durchführung. Ein gewisser anästhetikabedingter kardio-respiratorisch depressiver<br />

Effekt wurde durch alle drei Anästhesieprotokolle verzeichnet, jedoch wurden die<br />

signifikant geringsten Auswirkungen auf die Respiration (Atemfrequenz,<br />

Sauerstoffsättigung, pCO 2 , pulmonärer Shunt, pH) und kardiovaskuläre Funktion<br />

(MAP, SVR) bei den epiduralanästhesierten Tieren gemessen. Die Injektionsnarkose<br />

hatte im Gegensatz nicht nur die schwächste analgetische Wirkung, sondern auch<br />

einen klinisch relevanten negativen Effekt auf die Respiration. Im Mittel wurden bei<br />

79


Übergreifende Diskussion<br />

diesen Tieren während der Operation im Vergleich zu den beiden weiteren Gruppen<br />

die niedrigsten arteriellen Sauerstoffsättigungen von deutlich unter 90% gemessen.<br />

Bemerkenswert ist, dass die erforderliche Nachdosierung von 2.5 mg kg -1 Ketamin<br />

bei vier Kälbern trotz konsequent langsamer, intravenöser Verabreichung zu bis zu<br />

zwei minütigen Atemstillständen führte. Aus Sicht der praktischen Durchführung sind<br />

die wiederholten Anästhetika-Gaben der Injektionsnarkose als nachteilig zu<br />

bewerten, da eine wiederholte Applikation unter sterilen Kautelen ein qualifiziertes<br />

Hilfspersonal voraussetzt. Ein solcher gravierender Narkosezwischenfall wie ein<br />

Atemstillstand würde jedoch selbst einen erfahrenen Praktiker intraoperativ in eine<br />

kompromittierende Situation bringen. Eine geringere Dosis zu wählen, wäre<br />

sicherlich eine Möglichkeit, um die Nebenwirkungen zu verringern, jedoch nicht ohne<br />

die Gefahr, dabei gleichzeitig die analgetische Wirkung zu vermindern.<br />

Es wird aus den Ergebnissen geschlussfolgert, dass die Epiduralanästhesie mit<br />

Xylazin und Procain für Operationen am Nabel von Kälbern eine zuverlässige<br />

Schmerzausschaltung herbeiführt. Ferner stellt diese Form der Anästhesie aufgrund<br />

ihrer einfachen Anwendbarkeit, den minimalen unerwünschten Nebenwirkungen und<br />

dem geringen Kostenaufwand bei Nabeloperationen an Kälbern eine hervorragende<br />

Anästhesieform für die Praxis dar. Die Injektionsnarkose mit Xylazin und Ketamin<br />

erscheint schwer steuerbar und damit unzuverlässig für eine gleichmäßige<br />

Schmerzausschaltung. Zudem wird die mit ihr verbundene Atemdepression als<br />

klinisch gravierend eingeschätzt und es ist mit lebensbedrohlichen Komplikationen zu<br />

rechnen. Sie erscheint damit nicht nur un<strong>zur</strong>eichend in ihrer Wirksamkeit, sondern<br />

zudem als unsicher und wird daher <strong>zur</strong> Anwendung in der Praxis nicht empfohlen.<br />

80


Übergreifende Diskussion<br />

Die Inhalationsnarkose hatte gegenüber der Epiduralanästhesie bei Kälbern<br />

hinsichtlich der Wirksamkeit und Sicherheit keine nennenswerten Vor-, aber auch<br />

keine Nachteile. Beim Vorhandensein entsprechender Gerätschaften ist die<br />

Inhalationsnarkose in der hier geprüften Form eine unstrittig adäquate Methode <strong>zur</strong><br />

Schmerzausschaltung.<br />

In dieser <strong>Studie</strong> wurde die Aorta abdominalis als arterieller Zugang für Blutdruck und<br />

Blutgasmessungen gewählt. Die bekannte Punktionstechnik (Junhold and Schneider,<br />

2002, Weber et al., 1992) wurde durch die Sonographie ergänzt und erfolgte somit<br />

unter visueller Kontrolle (Kapitel 1). Trotz dieser Optimierung wurde bei einem Kalb<br />

eine letztlich tödlich verlaufende Komplikation, ein spinaler Infarkt, beobachtet. Da<br />

spinale Infarkte extrem seltene Ereignisse bei Rindern darstellen und eine<br />

vollständige neurologische Aufarbeitung des Falles möglich war, kann dieser in Form<br />

eines Fallberichts präsentiert werden (Kapitel 3). Die Begebenheit erscheint auch<br />

deshalb berichtenswert, da als Ursache eine Verunreinigung des Punktionsmaterials<br />

mit medizinischem Alkohol nahe lag. Katheter und Zubehör wurden bis <strong>zur</strong> Punktion<br />

in 70 Vol-% Ethanol gelagert und vor Anwendung mit Kochsalzlösung gespült,<br />

offenbar jedoch nicht ausreichend. Die Lagerung von chirurgischen Instrumenten ist<br />

in der Nutztierpraxis noch immer übliche Praxis. Deshalb ist die Information, dass bei<br />

Verwendung so gelagerten Kathetermaterials, ohne eine vorherige sorgfältige<br />

Spülung, Embolien möglich sind, für die Praxis aber auch für experimentelle<br />

Anwender von besonderer Bedeutung. Dies war die einzige jemals mit der<br />

Aortenpunktion an der hiesigen Klinik vergesellschaftete Komplikation. Da<br />

inzwischen über 100 Kälber auf diese Weise punktiert wurden, wird die<br />

81


Übergreifende Diskussion<br />

Aortenpunktion dennoch als ausreichend sicher angesehen. Zudem wird an der<br />

hiesigen Klinik als Konsequenz auf die beobachtete Komplikation Kathetermaterial<br />

nicht mehr in Alkohol gelagert.<br />

82


Literatur<br />

Literatur<br />

ANDERSON, D. E. & MUIR, W. W. (2005) Pain management in cattle. Vet Clin North<br />

Am Food Anim Pract, 21, 623-35, v-vi.<br />

ANIL, S. S., ANIL, L. & DEEN, J. (2002) Challenges of pain assessment in domestic<br />

animals. J Am Vet Med Assoc, 220, 313-9.<br />

CARROLL, G. L. & HARTSFIELD, S. M. (1996) General anesthetic techniques in<br />

ruminants. Vet Clin North Am Food Anim Pract, 12, 627-61.<br />

DESBOROUGH, J. P. (2000) The stress response to trauma and surgery. Br J<br />

Anaesth, 85, 109-17.<br />

ENGQUIST, A., BRANDT, M. R., FERNANDES, A. & KEHLET, H. (1977) The<br />

blocking effect of epidural analgesia on the adrenocortical and hyperglycemic<br />

responses to surgery. Acta Anaesthesiol Scand, 21, 330-5.<br />

IMURA, H., FUKATA, J. & MORI, T. (1991) Cytokines and endocrine function: an<br />

interaction between the immune and neuroendocrine systems. Clin Endocrinol<br />

(Oxf), 35, 107-15.<br />

JUNHOLD, J. & SCHNEIDER, J. (2002) Untersuchungen <strong>zur</strong> Analgetischen Wirkung<br />

des a 2 -Agonisten Xylazin (Rompun (R) ) nach epiduraler Applikation beim Rind.<br />

Tierarztl Prax, 30, 1-7.<br />

KEHLET, H. (1991) Neurohumoral response to surgery and pain in man. IN BOND,<br />

M. R., CHARLTON, J. E. & WOOLF, C. J. (Eds.) Proceedings of the 6th World<br />

Congress on Pain. Elsevier, Amsterdam, The Netherlands, Pain.<br />

83


Literatur<br />

KOCHS, E., BLANC, I., WERNER, C. & SCHULTE AM ESCH, J. (1988) [The<br />

electroencephalogram and somatosensory evoked potentials following<br />

intravenous administration of 0.5 mg/Kg ketamine]. Anaesthesist, 37, 625-30.<br />

LEE, I., SOEHARTONO, R. H., YAMAGISHI, N., TAGUCHI, K. & YAMADA, H.<br />

(2001) Distribution of new methylene blue injected into the dorsolumbar<br />

epidural space in cattle. Vet Anaesth Analg, 28, 140-145.<br />

MELLEMA, S. C., DOHERR, M. G., WECHSLER, B., THUEER, S. & STEINER, A.<br />

(2006) Influence of local anaesthesia on pain and distress induced by two<br />

bloodless castration methods in young lambs. Vet J, 172, 274-83.<br />

MELLOR, D. J., STAFFORD, K. J., TODD, S. E., LOWE, T. E., GREGORY, N. G.,<br />

BRUCE, R. A. & WARD, R. N. (2002) A comparison of catecholamine and<br />

cortisol responses of young lambs and calves to painful husbandry<br />

procedures. Aust Vet J, 80, 228-33.<br />

MEYER, H., STARKE, A., KEHLER, W. & REHAGE, J. (2007) High caudal epidural<br />

anaesthesia with local anaesthetics or alpha(2)-agonists in calves. J Vet Med<br />

A Physiol Pathol Clin Med, 54, 384-9.<br />

PASCOE, P. J. (2000) Perioperative pain management. Vet Clin North Am Small<br />

Anim Pract, 30, 917-32.<br />

RINGS, D. M. & MUIR, W. W. (1982) Cardiopulmonary effects of intramuscular<br />

xylazine-ketamine in calves. Can J Comp Med, 46, 386-9.<br />

TAYLOR, P. M. (1998) Effects of surgery on endocrine and metabolic responses to<br />

anaesthesia in horses and ponies. Res Vet Sci, 64, 133-40.<br />

THURMON, J. C. (1986) Injectable anesthetic agents and techniques in ruminants<br />

and swine. Vet Clin North Am Food Anim Pract, 2, 567-91.<br />

84


Literatur<br />

WATERMAN, A. E. (1981) Preliminary observations on the use of a combination of<br />

xylazine and ketamine hydrochloride in calves. Vet Rec, 109, 464-7.<br />

WEBER, O., REINHOLD, P., STEINBACH, G. & LACHMANN, G. (1992) Methodical<br />

studies of transmucosal oxygen partial pressure measurement in the calf and<br />

dog. Berl Munch Tierarztl Wochenschr, 105, 267-71.<br />

85


Zusammenfassung<br />

Jennifer Offinger (2010)<br />

<strong>Vergleichende</strong> <strong>Studie</strong> <strong>zur</strong> Analgesie der Nabelregion mittels Isofluran-<br />

Inhalationsnarkose, Epiduralanästhesie und Injektionsnarkose und zu den<br />

Auswirkungen dieser drei Methoden auf die intraoperativen Schmerzparameter und<br />

das Herzkreislaufsystem bei Kälbern<br />

Zusammenfassung<br />

In einer vergleichenden <strong>Studie</strong> wurden die Auswirkungen dreier Anästhesieformen<br />

(Inhalations-, Injektions- und Epiduralanästhesie) auf die Analgesie sowie auf<br />

kardiorespiratorische- und endokrin-metabolische Parameter während einer<br />

Nabeloperation beim Kalb geprüft.<br />

Die Untersuchungen wurden an 30 Kälbern (7 Kuh- und 23 Bullenkälber) der Rasse<br />

Holstein-Friesian aus dem Bestand der Klinik für Rinder der <strong>Tierärztliche</strong>n<br />

<strong>Hochschule</strong> <strong>Hannover</strong>, mit einem durchschnittlichen Alter von 45,9 ± 6,4 Tagen und<br />

einem mittleren Köpergewicht von 66,1 ± 6,2 kg, durchgeführt. Die Kälber wurden<br />

randomisiert in drei Gruppen mit je 10 Tieren eingeteilt. Die Narkose der Kälber der<br />

Gruppe INH wurden mit Xylazin (0,1 mg kg -1 IM), gefolgt von Ketamin (2,0 mg kg -1 IV)<br />

eingeleitet, und durch eine Isofluran-Inhalation mit einer Sauerstoffflussrate von 2 L<br />

min -1 aufrechterhalten. Gruppe INJ erhielt 0,2 mg kg -1 Xylazin IM sowie 5,0 mg kg -1<br />

Ketamin IV, wobei die Narkose durch regelmäßige Nachdosierungen von Ketamin in<br />

10-15minütigen Abständen mit der Hälfte der Initialdosis aufrechterhalten wurde.<br />

Kälber der Gruppe EPI bekamen 0,2 mg kg -1 Xylazin, welches mit 2%igem Procain<br />

zu einem Gesamtvolumen von 0,6 ml kg -1 verdünnt wurde, kaudal epidural appliziert.<br />

Die rhomboide Infiltration der Schnittlinie erfolgte mit 20 mL 2%igem Procain.<br />

Zusätzlich erhielten alle Kälber 30 min vor Operationsbeginn eine Applikation von 2,2<br />

mg kg -1 Flunixin IV.<br />

Alle Parameter wurden präoperativ am stehenden und (nach Anästhesieeinleitung)<br />

am liegenden Tier ermittelt. Intraoperativ fanden die Messungen in 15minütigen<br />

86


Zusammenfassung<br />

Abständen statt (Tier in Rückenlage). 30, 60 und 120 Minuten post operationem<br />

wurde in vom Tier selbst gewählter Lage (Stand oder Brustlage) gemessen. Die<br />

endokrine Stressantwort wurde durch regelmäßige Bestimmung von Epinephrin-,<br />

Norepinephrin- und Kortisol-Konzentrationen aus venösen Blutproben bestimmt. Eine<br />

Visuell Analoge Skala (VAS) wurde angewandt um die intraoperative Nozizeption zu<br />

beurteilen. Mit Hilfe eines Herzkatheters, eines Aortenkatheters und der<br />

Blutgasanalyse wurden die Herzkreislauffunktionen kontinuierlich überwacht.<br />

Die Epiduralanästhesie hatte, gemessen an Cortsiol und Katecholamin-<br />

Konzentrationen, intraoperativ eine signifikant geringere endokrine Stressantwort als<br />

die Inhalations- und Injektionsnarkose <strong>zur</strong> Folge. Die höchsten VAS-Werte wurden in<br />

Gruppe INJ aufgezeichnet, gefolgt von Gruppe EPI und Gruppe INH. Intraoperativ<br />

sank der Sauerstoffpartialdruck (PaO 2 ) in Gruppe INJ signifikant ab. Kälber der<br />

Gruppen INH und INJ entwickelten im Laufe der Operation eine Hypertonie, eine<br />

respiratorische Azidose (gekennzeichnet durch einen hohen arteriellen pH und<br />

Kohlendioxidpartialdruck), sowie einen erhöhten systemischen Gefäßwiderstand.<br />

Mit den Ergebnissen dieser <strong>Studie</strong> konnte belegt werden, dass die hohe<br />

Epiduralanästhesie aus einer Kombination aus Xylazin und Procain, zusammen mit<br />

einer rhomboiden Infiltration der Schnittstelle und der präoperativen Applikation von<br />

Flunixin eine praktikable, kostengünstige und sichere Anästhesiemethode bietet, um<br />

Kälber einer Nabeloperation zu unterziehen. Im Vergleich <strong>zur</strong> in dieser <strong>Studie</strong><br />

geprüften Inhalations- und Injektionsnarkose zeigten die epiduralanästhesierten Tiere<br />

eine verminderte endokrine Stressantwort und die gemessenen kardio-pulmonären<br />

Parameter wurden durch die Anästhesie kaum beeinträchtigt.<br />

Das bisherige Verfahren der direkten Aortenpunktion am stehenden Tier wurde in<br />

dieser <strong>Studie</strong> durch die ultrasonographische Kontrolle ergänzt. Bei 29 Kälbern<br />

konnten innerhalb 24 Stunden nach der so durchgeführten Aortenpunktion keine<br />

klinischen Anzeichen von Anämie oder Entzündung festgestellt werden. Es war<br />

weiterhin über die nächsten 5 Tage weder eine lokale Entzündungsreaktion, noch ein<br />

87


Zusammenfassung<br />

signifikanter Anstieg von Leukozyten erkennbar. Zwar war durch den dirketen<br />

Blutverlust bei der Punktion ein signifikanter Abfall an Erythrozyten, Hämoglobin,<br />

Hämatokrit und Gesamteiweiß zu vermerken, jedoch blieben diese Werte innerhalb<br />

der Referenzwerte. Die oftmals als riskant eingestufte Methode der direkten<br />

Aortenpunktion ist demnach durch die ultrasonographische Kontrolle bedeutend<br />

effizienter und sicherer geworden. Dennoch ist darauf hinzuweisen, dass die<br />

Punktion arterieller Gefäße stets mit dem Risiko einer Embolie verbunden ist, daher<br />

ist der zusätzliche Nutzen eines invasiven gegenüber eines nicht-invasiven<br />

Verfahrens für die Datenerhebung abzuwägen. In einem von 102 Kälbern trat bei<br />

einem Kalb eine Paraplegie aufgrund multipler Embolien spinaler Gefäße des<br />

Lendenmarkes mit folgender ischämische Myelopathie. Trotz<br />

magnetresonanztomographischer- und pathologisch-histologischer Untersuchung<br />

bleibt die genaue Embolieursache in diesem Fall ungeklärt. Es erscheint aber am<br />

naheliegendsten, dass eine Verunreinigung des Kathetermaterials sowie des<br />

Zubehörs die Embolie auslöste.<br />

88


Summary<br />

Jennifer Offinger (2010)<br />

Comparison of isoflurane inhalation anaesthesia, injection anaesthesia and high<br />

volume caudal epidural anaesthesia in calves; metabolic, endocrine and<br />

cardiopulmonary effects<br />

Summary<br />

In a prospective, randomised study, the effects of three anaesthetic regimes<br />

(inhalation-, injection- and high volume caudal epidural anaesthesia) were compared<br />

regarding analgesic qulatity, cardiorespiratory effect and endocrine-metabolical<br />

parameters in calves undergoing umbilical surgery.<br />

Thirty Holstein-Friesian calves (7 female, 23 male) aged 45.9 ± 6.4 days with a mean<br />

body weight of 66.1 ± 6.2 kg were included in the study. Calves were randomly<br />

allocated to three groups: The inhalation-group (INH) received isoflurane in oxygen<br />

after induction of anaesthesia with 0.1 mg kg -1 xylazine IM and 2.0 mg kg -1 ketamine<br />

IV, the injection-group (INJ) was treated with 0.2 mg kg -1 xylazine IM and 5.0 mg kg -1<br />

ketamine IV injection, redosed every 10-15 min with half the initial dose of ketamine,<br />

while the epidural-group (EPI) underwent a high volume caudal epidural anaesthesia<br />

of 0.2 mg kg -1 xylazine, diluted to a final volume of 0.6 ml kg -1 with procaine 2%. All<br />

calves received a periumbilical infiltration with local anaesthetic and a pre-emptive<br />

application of flunixine IV (2.2 mg kg -1 ).<br />

Preoperative parameters were initially determined in the standing calf. After induction<br />

of anaesthesia, measurements took place in 15 minute intervals with the animal<br />

restrained in dorsal recumbency. During the final measurements taken 30, 60 and<br />

120 minutes after completing the surgery, animals were free to choose standing<br />

position or sternal recumbency.<br />

The endocrine stress response was determined through analysis of epinephrine,<br />

norepinephrine and cortisol concentrations. A visual analogue scale (VAS) was<br />

89


Summary<br />

applied to monitor intraoperative nociception. Additionally, with the help of an aortic<br />

catheter and a Swan-Ganz catheter, cardiopulmonary variables and arterial blood<br />

gases were continuously monitored.<br />

Compared to inhalation- and injection anaesthesia, the high volume caudal epidural<br />

anaesthesia resulted in an intraopertively reduced stress response as determined by<br />

cortisol and catecholamine concentrations. The highest VAS-scores were recorded<br />

for Group INJ, followed by Group EPI and Group INH. During the course of the<br />

operation, partial pressure of oxygen (PaO 2 ) in Group INJ was significantly<br />

decreased. Calves of Groups INH and INJ developed hypertonia and respiratory<br />

acidosis, as well as an increased systemic vascular resistance.<br />

The results of the study indicate that the high volume caudal epidural anaesthesia,<br />

consisting of xylazine and procaine, combined with a periumbilical infiltration of local<br />

anaesthetic and a preoperative NSAID-application provides a practical, inexpensive<br />

and safe anaesthetic protocol for calves undergoing umbilical surgery. Compared to<br />

inhalation and injection anaesthesia, a reduced endocrine stress response was<br />

observed and cardiopulmonary variables were scaresly affected.<br />

The current method of direct aortic puncture on the standing, unsedated animal was<br />

improved by adding ultrasonographical control. Within 24 hours of puncture, no<br />

clinical signs of anaemia or inflammation were observed in 29 punctured animals.<br />

Furthermore, in the following four days, neither local inflammation, nor significant<br />

increases in leucocyte levels were recorded. Nevertheless, the puncture resultet in<br />

highly significant decreases in levels of red blood cells, haemoglobin, packed cell<br />

volume and total protein, albeit all post-catheterization levels stay within reference<br />

ranges established for calves of the same age. In summary, the implementation of<br />

ultrasonographic guidance in this method resulted in improving this technique<br />

regarding safety, efficiency and reliablility.<br />

90


Summary<br />

It should certainly be stressed that catheterisation of arterial vessels is generally<br />

accompanied by the risk of causing an embolus, thus the added value of an invasive<br />

procedure needs to be carefully assessed. Out of 102 calves undergoing aortic<br />

catheterisation, one case of paraplegia caused by multiple emboli in spinal vessels<br />

leading to ischemic myelopathy is described. Despite ancillary studies (MRI),<br />

necropsy and histological examination, the nature of the embolus remains<br />

speculative, although the chronology of events strongly suggests a direct causal<br />

relationship to the catheterisation process.<br />

91


Danksagungen<br />

An erster Stelle gilt mein Dank Herrn Prof. Dr. Jürgen Rehage für die Überlassung<br />

dieser Arbeit, die gute Betreuung während ihrer Fertigstellung und die darüber<br />

hinausgehende Förderung während der gesamten Dissertationszeit.<br />

Besonders danken möchte ich Herrn Dr. Henning Meyer für die aggressiv-produktive<br />

Zusammenarbeit, für seine Geduld und sein Glauben daran, dass trotz aller<br />

beruflichen und privaten Rückschläge am Ende alles gut wird.<br />

Ganz herzlich möchte ich mich bei der Harmoniebeauftragten Jessica Fischer<br />

bedanken. Ihre unerschütterliche gute Laune, ihr Humor und ihre verlässliche<br />

Hilfsbereitschaft machten die einjährige „Kälber-Action“ zu einem Erlebnis.<br />

Der Konrad-Adenauer-Stiftung möchte ich für die finanzielle und ideelle Förderung<br />

danken, die es mir ermöglicht hat, mich auf die Fertigstellung der Dissertation zu<br />

konzentrieren und mir durch die Seminare abwechslungsreiche Einblicke in andere<br />

interessante Themengebiete ermöglichte.<br />

Danken möchte ich auch Frau Prof. Dr. Kästner für kompetente Hilfe bei der<br />

Fertigstellung des Publikationsmanuskriptes.<br />

Ein großes Dankeschön an die Assistenten der Klinik für Rinder für die<br />

Nabeloperationen und Hilfe in Ausnahmesituationen, an die Tierpfleger für die<br />

aufmerksame Betreuung unserer Kälber und an die Mitarbeiter des Labors für ihre<br />

tatkräftige Unterstützung und Motivation.<br />

Für viele unvergessliche, heitere Stunden möchte ich den „Freunden der doppelten<br />

Sohle“, der „Tanzgruppe Nelson“ und allen anderen Mitstreitern im<br />

Doktorandenzimmer danken. Sehr herzlich danke ich Anne List und Ilka Schulze für


ihre hervorragende Einarbeitung und tatkräftige Unterstützung, besonders in der<br />

aufregenden Anfangszeit der Versuche.<br />

Fabienne Ferrara danke ich besonders für ihre Unterstützung in allen Lebenslagen,<br />

ihre konstante Freundschaft über die letzten Jahre, ihre aufmunternden Worte und<br />

für die Sicherheit, jederzeit eine rote Couch vorfinden zu können.<br />

Ein besonderer Dank auch an Anne Sander für die tiefgründigen Gespräche bei<br />

Käse und Rotwein, die schöne und lustige Zeit in- und ausserhalb der Klinik, für ihre<br />

geniale Spontanität und dafür, dass sie mir vermitteln konnte, dass man sich das<br />

Leben auch schön machen muss.<br />

Des Weiteren danke ich Carola und Hubert Dumann fürs Zuhören, für viel gutes<br />

Essen und für ein wunderbares zu Hause in Hemmingen.<br />

Der größte Dank aber gebührt meiner Familie, im Besonderen meinen Eltern, die<br />

mich in den letzten Jahren so selbstverständlich und vertrauensvoll unterstützt<br />

haben. Meinem Vater für sein allzeit offenes Ohr, seinen stets ehrlichen Rat und<br />

seine Mühe, mir den Blick für die wichtigen Dinge im Leben zu schärfen. Meiner<br />

Mutter für ihre Fürsorge und Liebe.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!