27.12.2013 Views

Book of Proof - Amazon S3

Book of Proof - Amazon S3

Book of Proof - Amazon S3

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

214 Functions<br />

If you continue your mathematical studies, you are likely to encounter<br />

the following result in the future. For now, you are asked to prove it in<br />

the exercises.<br />

Theorem 12.4 Suppose f : A → B is a function. Let W, X ⊆ A, and Y , Z ⊆ B.<br />

Then:<br />

1. f (W ∩ X) ⊆ f (W) ∩ f (X)<br />

2. f (W ∪ X) = f (W) ∪ f (X)<br />

3. f −1 (Y ∩ Z) = f −1 (Y ) ∩ f −1 (Z)<br />

4. f −1 (Y ∪ Z) = f −1 (Y ) ∪ f −1 (Z)<br />

5. X ⊆ f −1 (f (X))<br />

6. Y ⊆ f (f −1 (Y ))<br />

Exercises for Section 12.6<br />

1. Consider the function f : R → R defined as f (x) = x 2 + 3. Find f ([−3,5]) and<br />

f −1 ([12,19]).<br />

2. Consider the function f : { 1,2,3,4,5,6,7 } → { 0,1,2,3,4,5,6,7,8,9 } given as<br />

f = { (1,3),(2,8),(3,3),(4,1),(5,2),(6,4),(7,6) } .<br />

Find: f ({ 1,2,3 }) , f ({ 4,5,6,7 }) , f (), f −1({ 0,5,9 }) and f −1({ 0,3,5,9 }) .<br />

3. This problem concerns functions f : { 1,2,3,4,5,6,7 } → { 0,1,2,3,4 } . How many<br />

such functions have the property that ∣ ∣ f<br />

−1 ({ 3 })∣ ∣ = 3?<br />

4. This problem concerns functions f : { 1,2,3,4,5,6,7,8 } → { 0,1,2,3,4,5,6 } . How<br />

many such functions have the property that ∣ ∣ f<br />

−1 ({ 2 })∣ ∣ = 4?<br />

5. Consider a function f : A → B and a subset X ⊆ A. We observed in Section 12.6<br />

that f −1 (f (X)) ≠ X in general. However X ⊆ f −1 (f (X)) is always true. Prove this.<br />

6. Given a function f : A → B and a subset Y ⊆ B, is f (f −1 (Y )) = Y always true?<br />

Prove or give a counterexample.<br />

7. Given a function f : A → B and subsets W, X ⊆ A, prove f (W ∩ X) ⊆ f (W) ∩ f (X).<br />

8. Given a function f : A → B and subsets W, X ⊆ A, then f (W ∩ X) = f (W) ∩ f (X) is<br />

false in general. Produce a counterexample.<br />

9. Given a function f : A → B and subsets W, X ⊆ A, prove f (W ∪ X) = f (W) ∪ f (X).<br />

10. Given f : A → B and subsets Y , Z ⊆ B, prove f −1 (Y ∩ Z) = f −1 (Y ) ∩ f −1 (Z).<br />

11. Given f : A → B and subsets Y , Z ⊆ B, prove f −1 (Y ∪ Z) = f −1 (Y ) ∪ f −1 (Z).<br />

12. Consider a function f : A → B. Prove that f is invertible if and only if X =<br />

f −1 (f (X)) for every X ⊆ A.<br />

13. Let f : A → B be a function, and X ⊆ A. Prove or disprove: f ( f −1 (f (X)) ) = f (X).<br />

14. Letf : A → B be a function, and Y ⊆ B. Prove or disprove: f −1( f (f −1 (Y )) ) = f −1 (Y ).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!