27.12.2013 Views

Book of Proof - Amazon S3

Book of Proof - Amazon S3

Book of Proof - Amazon S3

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

278 Solutions<br />

(2) Now assume the statement is true for some integer n = k ≥ 0, that is, assume<br />

6 | (k 3 − k). This means k 3 − k = 6a for some integer a. We need to show that<br />

6 | ((k + 1) 3 − (k + 1)). Observe that<br />

(k + 1) 3 − (k + 1) = k 3 + 3k 2 + 3k + 1 − k − 1<br />

= (k 3 − k) + 3k 2 + 3k<br />

= 6a + 3k 2 + 3k<br />

= 6a + 3k(k + 1).<br />

Thus we have deduced (k +1) 3 −(k +1) = 6a +3k(k +1). Since one <strong>of</strong> k or (k +1)<br />

must be even, it follows that k(k + 1) is even, so k(k + 1) = 2b for some integer<br />

b. Consequently (k + 1) 3 − (k + 1) = 6a + 3k(k + 1) = 6a + 3(2b) = 6(a + b). Since<br />

(k + 1) 3 − (k + 1) = 6(a + b) it follows that 6 | ((k + 1) 3 − (k + 1)).<br />

Thus the result follows by mathematical induction.<br />

15. If n ∈ N, then 1<br />

1·2 + 1<br />

2·3 + 1<br />

3·4 + 1<br />

4·5 + ··· + 1<br />

n(n+1) = 1 − 1<br />

n+1 .<br />

Pro<strong>of</strong>. The pro<strong>of</strong> is by mathematical induction.<br />

1<br />

(1) When n = 1, the statement is<br />

1(1+1) = 1 − 1<br />

1+1 , which simplifies to 1 2 = 1 2 .<br />

(2) Now assume the statement is true for some integer n = k ≥ 1, that is assume<br />

1<br />

1·2 + 1<br />

2·3 + 1<br />

3·4 + 1<br />

4·5 + ··· + 1<br />

k(k+1) = 1 − 1<br />

k+1<br />

. Next we show that the statement for<br />

n = k + 1 is true. Observe that<br />

1<br />

1 · 2 + 1<br />

2 · 3 + 1<br />

3 · 4 + 1<br />

4 · 5 + ··· + 1<br />

k(k + 1) + 1<br />

(k + 1)((k + 1) + 1)<br />

( 1<br />

1 · 2 + 1<br />

2 · 3 + 1<br />

3 · 4 + 1<br />

)<br />

4 · 5 + ··· + 1<br />

1<br />

+<br />

k(k + 1) (k + 1)(k + 2)<br />

(<br />

1 − 1 )<br />

1<br />

+<br />

k + 1 (k + 1)(k + 2)<br />

1 − 1<br />

k + 1 + 1<br />

(k + 1)(k + 2)<br />

k + 2<br />

1 −<br />

(k + 1)(k + 2) + 1<br />

(k + 1)(k + 2)<br />

k + 1<br />

1 −<br />

(k + 1)(k + 2)<br />

1 − 1<br />

k + 2<br />

1<br />

1 −<br />

(k + 1) + 1 .<br />

This establishes 1<br />

1·2 + 1<br />

2·3 + 1<br />

3·4 + 1<br />

4·5 +···+ 1<br />

(k+1)((k+1)+1 = 1− 1<br />

that the statement is true for n = k + 1.<br />

(k+1)+1<br />

=<br />

=<br />

=<br />

=<br />

=<br />

=<br />

=<br />

■<br />

, which is to say<br />

This completes the pro<strong>of</strong> by mathematical induction.<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!