29.12.2013 Views

ADF4251 Dual Fractional-N/Interger-N Frequency ... - Analog Devices

ADF4251 Dual Fractional-N/Interger-N Frequency ... - Analog Devices

ADF4251 Dual Fractional-N/Interger-N Frequency ... - Analog Devices

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Dual</strong> <strong>Fractional</strong>-N/Integer-N<br />

<strong>Frequency</strong> Synthesizer<br />

<strong>ADF4251</strong><br />

FEATURES<br />

3.0 GHz <strong>Fractional</strong>-N/1.2 GHz Integer-N<br />

2.7 V to 3.3 V Power Supply<br />

Separate V P Allows Extended Tuning Voltage to 5 V<br />

Programmable <strong>Dual</strong> Modulus Prescaler<br />

RF: 4/5, 8/9<br />

IF: 8/9, 16/17, 32/33, 64/65<br />

Programmable Charge Pump Currents<br />

3-Wire Serial Interface<br />

Digital Lock Detect<br />

Power-Down Mode<br />

Programmable Modulus on <strong>Fractional</strong>-N Synthesizer<br />

Trade-Off Noise versus Spurious Performance<br />

Software and Hardware Power-Down<br />

APPLICATIONS<br />

Base Stations for Mobile Radio (GSM, PCS, DCS,<br />

CDMA, WCDMA)<br />

Wireless Handsets (GSM, PCS, DCS, CDMA, WCDMA,<br />

PHS)<br />

Wireless LANs<br />

Communications Test Equipment<br />

CATV Equipment<br />

GENERAL DESCRIPTION<br />

The <strong>ADF4251</strong> is a dual fractional-N/integer-N frequency<br />

synthesizer that can be used to implement local oscillators<br />

(LO) in the upconversion and downconversion sections of<br />

wireless receivers and transmitters. Both the RF and IF synthesizers<br />

consist of a low noise digital PFD (phase frequency<br />

detector), a precision charge pump, and a programmable reference<br />

divider. The RF synthesizer has a - based fractional<br />

interpolator that allows programmable fractional-N division.<br />

The IF synthesizer has programmable integer-N counters. A<br />

complete PLL (phase-locked loop) can be implemented if the<br />

synthesizer is used with an external loop filter and VCO (voltage<br />

controlled oscillator).<br />

Control of all the on-chip registers is via a simple 3-wire interface.<br />

The devices operate with a power supply ranging from<br />

2.7 V to 3.3 V and can be powered down when not in use.<br />

FUNCTIONAL BLOCK DIAGRAM<br />

V DD 1 V DD 2 V DD 3 DV DD V P 1 V P 2 R SET<br />

<strong>ADF4251</strong><br />

REFERENCE<br />

4-BIT R<br />

REF<br />

2<br />

IN COUNTER<br />

DOUBLER<br />

PHASE<br />

FREQUENCY<br />

DETECTOR<br />

CHARGE<br />

PUMP<br />

CE<br />

CP RF<br />

MUXOUT<br />

OUTPUT<br />

MUX<br />

LOCK<br />

DETECT<br />

CLK<br />

DATA<br />

LE<br />

FROM<br />

REFIN<br />

24-BIT<br />

DATA<br />

REGISTER<br />

FRACTIONAL N<br />

RF DIVIDER<br />

INTEGER N<br />

IF DIVIDER<br />

RF IN A<br />

RF IN B<br />

IF IN B<br />

IF IN A<br />

2<br />

DOUBLER<br />

15-BIT R<br />

COUNTER<br />

PHASE<br />

FREQUENCY<br />

DETECTOR<br />

CHARGE<br />

PUMP<br />

CP IF<br />

A GND 1 A GND 2 D GND CP GND 1 CP GND 2<br />

REV. 0<br />

Information furnished by <strong>Analog</strong> <strong>Devices</strong> is believed to be accurate and<br />

reliable. However, no responsibility is assumed by <strong>Analog</strong> <strong>Devices</strong> for its<br />

use, nor for any infringements of patents or other rights of third parties that<br />

may result from its use. No license is granted by implication or otherwise<br />

under any patent or patent rights of <strong>Analog</strong> <strong>Devices</strong>. Trademarks and<br />

registered trademarks are the property of their respective owners.<br />

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.<br />

Tel: 781/329-4700<br />

www.analog.com<br />

Fax: 781/326-8703 © 2003 <strong>Analog</strong> <strong>Devices</strong>, Inc. All rights reserved.


<strong>ADF4251</strong>–SPECIFICATIONS 1 (V DD 1 = V DD 2 = V DD 3 = DV DD = 3 V 10%, V P 1 = V P 2 = 5 V 10%, GND = 0 V,<br />

R SET = 2.7 k, dBm referred to 50 , T A = T MIN to T MAX , unless otherwise noted.)<br />

Parameter B Version Unit Test Conditions/Comments<br />

RF CHARACTERISTICS<br />

RF Input <strong>Frequency</strong> (RF IN A, RF IN B) 2 0.25/3.0 GHz min/max<br />

RF Input Sensitivity –10/0 dBm min/max<br />

RF Input <strong>Frequency</strong> (RF IN A, RF IN B) 2 0.1/3.0 GHz min/max Input Level = –8/0 dBm min/max<br />

RF Phase Detector <strong>Frequency</strong> 30 MHz max Guaranteed by Design<br />

Allowable Prescaler Output <strong>Frequency</strong> 375 MHz max<br />

IF CHARACTERISTICS<br />

IF Input <strong>Frequency</strong> (IF IN A, IF IN B) 2 50/1200 MHz min/max<br />

IF Input Sensitivity –10/0 dBm min/max<br />

IF Phase Detector <strong>Frequency</strong> 55 MHz max Guaranteed by Design<br />

Allowable Prescaler Output <strong>Frequency</strong> 150 MHz max<br />

REFERENCE CHARACTERISTICS<br />

REF IN Input <strong>Frequency</strong> 250 MHz max For f < 10 MHz, use dc-coupled square<br />

wave (0 to V DD ).<br />

REF IN Input Sensitivity 0.5/V DD 1 V p-p min/max AC-coupled. When dc-coupled, use<br />

0 to V DD max (CMOS compatible).<br />

REF IN Input Current ±100 µA max<br />

REF IN Input Capacitance 10 pF max<br />

CHARGE PUMP<br />

RF I CP Sink/Source High Value 4.375 mA typ See Table V<br />

Low Value 625 µA typ<br />

IF I CP Sink/Source High Value 5 mA typ See Table IX<br />

Low Value 625 µA typ<br />

I CP Three-State Leakage Current 1 nA typ<br />

RF Sink and Source Current Matching 2 % typ 0.5 V < V CP < V P – 0.5<br />

IF Sink and Source Current Matching 2 % typ<br />

I CP vs. V CP 2 % typ 0.5 V < V CP < V P – 0.5<br />

I CP vs. Temperature 2 % typ V CP = V P /2<br />

LOGIC INPUTS<br />

V INH , Input High Voltage 1.35 V min<br />

V INL , Input Low Voltage 0.6 V max<br />

I INH /I INL , Input Current ±1 µA max<br />

C IN Input Capacitance 10 pF max<br />

LOGIC OUTPUTS<br />

V OH , Output High Voltage V DD – 0.4 V min I OH = 0.2 mA<br />

V OL , Output Low Voltage 0.4 V max I OL = 0.2 mA<br />

POWER SUPPLIES<br />

V DD 1 , V DD 2, V DD 3 2.7/3.3 V min/V max<br />

DV DD V DD 1<br />

V P 1, V P 2 V DD 1/5.5 V min/V max<br />

3<br />

I DD RF + IF 13 mA typ 16 mA max<br />

RF Only 10 mA typ 13 mA max<br />

IF Only 4 mA typ 5.5 mA max<br />

Low Power Sleep Mode/Power-Down 10 pA typ<br />

RF NOISE AND SPURIOUS CHARACTERISTICS<br />

Noise Floor –141 dBc/Hz typ @ 20 MHz PFD <strong>Frequency</strong><br />

In-Band Phase Noise Performance 4<br />

@ VCO Output<br />

Lowest Spur Mode –90 dBc/Hz typ RF OUT = 1.8 GHz, PFD = 20 MHz<br />

Low Noise and Spur Mode –95 dBc/Hz typ RF OUT = 1.8 GHz, PFD = 20 MHz<br />

Lowest Noise Mode –103 dBc/Hz typ RF OUT = 1.8 GHz, PFD = 20 MHz<br />

Spurious Signals<br />

See Typical Performance Characteristics<br />

NOTES<br />

1 Operating Temperature Range (B Version): –40°C to +85°C.<br />

2 Use a square wave for frequencies less than F MIN .<br />

3 RF = 1 GHz, RF PFD = 10 MHz, MOD = 4095, IF = 500 MHz, IF PFD = 200 kHz, REF = 10 MHz, V DD = 3 V, V P1 = 5 V, and V P2 = 3 V.<br />

4 The in-band phase noise is measured with the EVAL-<strong>ADF4251</strong>EB2 Evaluation Board and the HP5500E Phase Noise Test System. The spectrum analyzer provides the<br />

REF IN for the synthesizer (f REFOUT = 10 MHz @ 0 dBm). F OUT = 1.74 GHz, F REF = 20 MHz, N = 87, MOD = 100, Channel Spacing = 200 kHz, V DD = 3.3 V, and V P = 5 V.<br />

Specifications subject to change without notice.<br />

–2–<br />

REV. 0


TIMING CHARACTERISTICS *<br />

Limit at<br />

T MIN to T MAX<br />

Parameter (B Version) Unit Test Conditions/Comments<br />

t 1 10 ns min LE Setup Time<br />

t 2 10 ns min DATA to CLOCK Setup Time<br />

t 3 10 ns min DATA to CLOCK Hold Time<br />

t 4 25 ns min CLOCK High Duration<br />

t 5 25 ns min CLOCK Low Duration<br />

t 6 10 ns min CLOCK to LE Setup Time<br />

t 7 20 ns min LE Pulsewidth<br />

*Guaranteed by design but not production tested.<br />

<strong>ADF4251</strong><br />

(V DD 1 = V DD 2 = V DD 3 = DV DD = 3 V 10%, V P 1 = V P 2 = 5 V 10%, GND = 0 V, unless otherwise noted.)<br />

CLOCK<br />

t 2<br />

t 3<br />

t 4 t 5<br />

DATA<br />

DB23<br />

(MSB)<br />

DB22<br />

DB2<br />

DB1<br />

(CONTROL BIT C2)<br />

DB0 (LSB)<br />

(CONTROL BIT C1)<br />

LE<br />

t 1<br />

t 7<br />

t 6<br />

LE<br />

Figure 1. Timing Diagram<br />

REV. 0<br />

–3–


<strong>ADF4251</strong><br />

ABSOLUTE MAXIMUM RATINGS 1, 2<br />

(T A = 25°C, unless otherwise noted.)<br />

V DD 1, V DD 2, V DD 3, DV DD to GND 3 . . . . . . . . –0.3 V to +4 V<br />

REF IN , RF IN A, RF IN B to GND . . . . . . –0.3 V to V DD + 0.3 V<br />

V P 1, V P 2 to GND . . . . . . . . . . . . . . . . . . . . . –0.3 V to +5.8 V<br />

V P 1, V P 2 to V DD 1 . . . . . . . . . . . . . . . . . . . . . –3.3 V to +3.5 V<br />

Digital I/O Voltage to GND . . . . . . . . –0.3 V to V DD + 0.3 V<br />

<strong>Analog</strong> I/O Voltage to GND . . . . . . . . –0.3 V to V DD + 0.3 V<br />

Operating Temperature Range<br />

Industrial (B Version) . . . . . . . . . . . . . . . . –40°C to +85°C<br />

Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C<br />

Maximum Junction Temperature . . . . . . . . . . . . . . . . . 150°C<br />

LFCSP JA Thermal Impedance . . . . . . . . . . . . . . . . 122°C/W<br />

Soldering Reflow Temperature<br />

Vapor Phase (60 sec max) . . . . . . . . . . . . . . . . . . . . . 240°C<br />

IR Reflow (20 sec max) . . . . . . . . . . . . . . . . . . . . . . . 240°C<br />

NOTES<br />

1 Stresses above those listed under Absolute Maximum Ratings may cause permanent<br />

damage to the device. This is a stress rating only and functional operation of<br />

the device at these or any other conditions above those listed in the operational<br />

sections of this specification is not implied. Exposure to absolute maximum rating<br />

conditions for extended periods may affect device reliability.<br />

2 This device is a high performance RF integrated circuit with an ESD rating<br />

of


<strong>ADF4251</strong><br />

PIN FUNCTION DESCRIPTIONS<br />

Mnemonic<br />

CP RF<br />

CP GND 1<br />

RF IN A<br />

RF IN B<br />

A GND 1<br />

MUXOUT<br />

REF IN<br />

CE<br />

D GND<br />

CLK<br />

DATA<br />

LE<br />

R SET<br />

A GND 2<br />

IF IN B<br />

IF IN A<br />

DV DD<br />

CP GND 2<br />

CP IF<br />

V P 2<br />

V DD 2<br />

V DD 3<br />

V DD 1<br />

V P 1<br />

Function<br />

RF Charge Pump Output. This is normally connected to a loop filter that drives the input to an external VCO.<br />

RF Charge Pump Ground<br />

Input to the RF Prescaler. This small signal input is normally taken from the VCO.<br />

Complementary Input to the RF Prescaler<br />

<strong>Analog</strong> Ground for the RF Synthesizer<br />

This multiplexer output allows either the RF or IF lock detect, the scaled RF or IF, or the scaled reference frequency<br />

to be accessed externally.<br />

Reference Input. This is a CMOS input with a nominal threshold of V DD /2 and an equivalent input resistance of<br />

100 kW. This input can be driven from a TTL or CMOS crystal oscillator.<br />

Chip Enable. A Logic Low on this bit powers down the device and puts the charge pump outputs into three-state.<br />

A Logic High on this pin powers up the device, depending on the status of the software power-down bits.<br />

Digital Ground for the <strong>Fractional</strong> Interpolator<br />

Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is latched into the<br />

shift register on the CLK rising edge. This input is a high impedance CMOS input.<br />

Serial Data Input. The serial data is loaded MSB first with the three LSBs being the control bits. This input is a<br />

high impedance CMOS input.<br />

Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into one of the<br />

seven latches, the latch being selected using the control bits.<br />

Connecting a resistor between this pin and ground sets the minimum charge pump output current. The relationship<br />

between I CP and R SET is:<br />

ICP MIN = 1.<br />

6875<br />

RSET<br />

Therefore, with R SET = 2.7 kW, I CP MIN = 0.625 mA.<br />

Ground for the IF Synthesizer<br />

Complementary Input to the IF Prescaler<br />

Input to the IF Prescaler. This small signal input is normally taken from the IF VCO.<br />

Positive Power Supply for the <strong>Fractional</strong> Interpolator Section. Decoupling capacitors to the ground plane should<br />

be placed as close as possible to this pin. DV DD must have the same voltage as V DD 1, V DD 2, and V DD 3.<br />

IF Charge Pump Ground<br />

IF Charge Pump Output. This is normally connected to a loop filter that drives the input to an external VCO.<br />

IF Charge Pump Power Supply. Decoupling capacitors to the ground plane should be placed as close as possible<br />

to this pin. This voltage should be greater than or equal to V DD 2.<br />

Positive Power Supply for the IF Section. Decoupling capacitors to the ground plane should be placed as close as<br />

possible to this pin. V DD 2 has a value 3 V ± 10%. V DD 2 must have the same voltage as V DD 1, V DD 3, and DV DD .<br />

Positive Power Supply for the RF Digital Section. Decoupling capacitors to the ground plane should be placed as close<br />

as possible to this pin. V DD 3 has a value 3 V ± 10%. V DD 3 must have the same voltage as V DD 1, V DD 2, and DV DD .<br />

Positive Power Supply for the RF <strong>Analog</strong> Section. Decoupling capacitors to the ground plane should be placed as close<br />

as possible to this pin. V DD 1 has a value 3 V ± 10%. V DD 1 must have the same voltage as V DD 2, V DD 3, and DV DD .<br />

RF Charge Pump Power Supply. Decoupling capacitors to the ground plane should be placed as close as possible<br />

to this pin. This voltage should be greater than or equal to V DD 1.<br />

REV. 0<br />

–5–


<strong>ADF4251</strong><br />

V DD 1 V DD 2 V DD 3 DV DD V P 1 V P 2 R SET<br />

<strong>ADF4251</strong><br />

REFERENCE<br />

4-BIT R<br />

REF<br />

2<br />

IN COUNTER<br />

DOUBLER<br />

PHASE<br />

FREQUENCY<br />

DETECTOR<br />

CHARGE<br />

PUMP<br />

CE<br />

CP RF<br />

MUXOUT<br />

OUTPUT<br />

MUX<br />

LOCK<br />

DETECT<br />

CLK<br />

DATA<br />

LE<br />

FROM<br />

REFIN<br />

24-BIT<br />

DATA<br />

REGISTER<br />

FRACTIONAL N<br />

RF DIVIDER<br />

INTEGER N<br />

IF DIVIDER<br />

RF IN A<br />

RF IN B<br />

IF IN B<br />

IF IN A<br />

2<br />

DOUBLER<br />

15-BIT R<br />

COUNTER<br />

PHASE<br />

FREQUENCY<br />

DETECTOR<br />

CHARGE<br />

PUMP<br />

CP IF<br />

A GND 1 A GND 2 D GND CP GND 1 CP GND 2<br />

Figure 2. Detailed Functional Block Diagram<br />

–6–<br />

REV. 0


Typical Performance Characteristics–<strong>ADF4251</strong><br />

OUTPUT POWER – dB<br />

0<br />

–10<br />

–20<br />

–30<br />

–40<br />

–50<br />

–60<br />

–70<br />

V DD = 3V, V P = 5V<br />

I CP = 1.875mA<br />

PFD FREQUENCY = 10MHz<br />

CHANNEL STEP = 200kHz<br />

LOOP BANDWIDTH = 20kHz<br />

FRACTION = 59/100<br />

RBW = 10Hz<br />

REFERENCE<br />

LEVEL = – 4.2dBm<br />

OUTPUT POWER – dB<br />

0<br />

–10<br />

–20<br />

–30<br />

–40<br />

–50<br />

–60<br />

–70<br />

V DD = 3V, V P = 5V<br />

I CP = 1.875mA<br />

PFD FREQUENCY = 10MHz<br />

CHANNEL STEP = 200kHz<br />

LOOP BANDWIDTH = 20kHz<br />

FRACTION = 59/100<br />

RBW = 1kHz<br />

–50dBc@<br />

100kHz<br />

REFERENCE<br />

LEVEL = – 4.2dBm<br />

–80<br />

–99.19dBc/Hz<br />

–80<br />

–90<br />

–90<br />

–100<br />

–2kHz<br />

–1kHz 1.7518GHz 1kHz 2kHz<br />

FREQUENCY<br />

–100<br />

–400kHz –200kHz 1.7518GHz 200kHz 400kHz<br />

FREQUENCY<br />

TPC 1. Phase Noise Plot, Lowest Noise Mode,<br />

1.7518 GHz RF OUT , 10 MHz PFD <strong>Frequency</strong>,<br />

200 kHz Channel Step Resolution<br />

TPC 4. Spurious Plot, Lowest Noise Mode,<br />

1.7518 GHz RF OUT , 10 MHz PFD <strong>Frequency</strong>,<br />

200 kHz Channel Step Resolution<br />

OUTPUT POWER – dB<br />

0<br />

–10<br />

–20<br />

–30<br />

–40<br />

–50<br />

–60<br />

–70<br />

V DD = 3V, V P = 5V<br />

I CP = 1.875mA<br />

PFD FREQUENCY = 10MHz<br />

CHANNEL STEP = 200kHz<br />

LOOP BANDWIDTH = 20kHz<br />

FRACTION = 59/100<br />

RBW = 10Hz<br />

REFERENCE<br />

LEVEL = – 4.2dBm<br />

–90.36dBc/Hz<br />

OUTPUT POWER – dB<br />

0<br />

–10<br />

–20<br />

–30<br />

–40<br />

–50<br />

–60<br />

–70<br />

V DD = 3V, V P = 5V<br />

I CP = 1.875mA<br />

PFD FREQUENCY = 10MHz<br />

CHANNEL STEP = 200kHz<br />

LOOP BANDWIDTH = 20kHz<br />

FRACTION = 59/100<br />

RBW = 1kHz<br />

–51dBc@<br />

100kHz<br />

REFERENCE<br />

LEVEL = – 4.2dBm<br />

–80<br />

–80<br />

–90<br />

–90<br />

–100<br />

–2kHz<br />

–1kHz 1.7518GHz 1kHz 2kHz<br />

FREQUENCY<br />

–100<br />

–400kHz<br />

–200kHz 1.7518GHz 200kHz 400kHz<br />

FREQUENCY<br />

TPC 2. Phase Noise Plot, Low Noise and Spur<br />

Mode, 1.7518 GHz RF OUT , 10 MHz PFD <strong>Frequency</strong>,<br />

200 kHz Channel Step Resolution<br />

TPC 5. Spurious Plot, Low Noise and Spur Mode,<br />

1.7518 GHz RF OUT , 10 MHz PFD <strong>Frequency</strong>,<br />

200 kHz Channel Step Resolution<br />

OUTPUT POWER – dB<br />

0<br />

–10<br />

–20<br />

–30<br />

–40<br />

–50<br />

–60<br />

–70<br />

V DD = 3V, V P = 5V<br />

I CP = 1.875mA<br />

PFD FREQUENCY = 10MHz<br />

CHANNEL STEP = 200kHz<br />

LOOP BANDWIDTH = 20kHz<br />

FRACTION = 59/100<br />

RBW = 10Hz<br />

REFERENCE<br />

LEVEL = – 4.2dBm<br />

–85.86dBc/Hz<br />

OUTPUT POWER – dB<br />

0<br />

–10<br />

–20<br />

–30<br />

–40<br />

–50<br />

–60<br />

–70<br />

V DD = 3V, V P = 5V<br />

I CP = 1.875mA<br />

PFD FREQUENCY = 10MHz<br />

CHANNEL STEP = 200kHz<br />

LOOP BANDWIDTH = 20kHz<br />

FRACTION = 59/100<br />

RBW = 1kHz<br />

–72dBc@<br />

100kHz<br />

REFERENCE<br />

LEVEL = – 4.2dBm<br />

–80<br />

–80<br />

–90<br />

–90<br />

–100<br />

–2kHz<br />

–1kHz 1.7518GHz 1kHz 2kHz<br />

FREQUENCY<br />

–100<br />

–400kHz<br />

–200kHz 1.7518GHz 200kHz 400kHz<br />

FREQUENCY<br />

TPC 3. Phase Noise Plot, Lowest Spur Mode,<br />

1.7518 GHz RF OUT , 10 MHz PFD <strong>Frequency</strong>,<br />

200 kHz Channel Step Resolution<br />

TPC 6. Spurious Plot, Lowest Spur Mode,<br />

1.7518 GHz RF OUT , 10 MHz PFD <strong>Frequency</strong>,<br />

200 kHz Channel Step Resolution<br />

TPCs 1–12 attained using EVAL-ADF4252EB1 Evaluation Board; measurements from HP8562E spectrum analyzer.<br />

REV. 0<br />

–7–


<strong>ADF4251</strong><br />

OUTPUT POWER – dB<br />

0<br />

–10<br />

–20<br />

–30<br />

–40<br />

–50<br />

–60<br />

–70<br />

–80<br />

V DD = 3V, V P = 5V<br />

I CP = 1.875mA<br />

PFD FREQUENCY = 20MHz<br />

CHANNEL STEP = 200kHz<br />

LOOP BANDWIDTH = 20kHz<br />

FRACTION = 59/100<br />

RBW = 10Hz<br />

REFERENCE<br />

LEVEL = – 4.2dBm<br />

–102dBc/Hz<br />

OUTPUT POWER – dB<br />

0<br />

–10<br />

–20<br />

–30<br />

–40<br />

–50<br />

–60<br />

–70<br />

–80<br />

V DD = 3V, V P = 5V<br />

I CP = 1.875mA<br />

PFD FREQUENCY = 20MHz<br />

CHANNEL STEP = 200kHz<br />

LOOP BANDWIDTH = 20kHz<br />

FRACTION = 59/100<br />

RBW = 1kHz<br />

–53dBc@<br />

100kHz<br />

REFERENCE<br />

LEVEL = – 4.2dBm<br />

–90<br />

–90<br />

–100<br />

–2kHz<br />

–1kHz 1.7518GHz 1kHz 2kHz<br />

FREQUENCY<br />

–100<br />

–400kHz –200kHz 1.7518GHz 200kHz 400kHz<br />

FREQUENCY<br />

TPC 7. Phase Noise Plot, Lowest Noise Mode,<br />

1.7518 GHz RF OUT , 20 MHz PFD <strong>Frequency</strong>,<br />

200 kHz Channel Step Resolution<br />

TPC 10. Spurious Plot, Lowest Noise Mode,<br />

1.7518 GHz RF OUT , 20 MHz PFD <strong>Frequency</strong>,<br />

200 kHz Channel Step Resolution<br />

OUTPUT POWER – dB<br />

0<br />

–10<br />

–20<br />

–30<br />

–40<br />

–50<br />

–60<br />

–70<br />

V DD = 3V, V P = 5V<br />

I CP = 1.875mA<br />

PFD FREQUENCY = 20MHz<br />

CHANNEL STEP = 200kHz<br />

LOOP BANDWIDTH = 20kHz<br />

FRACTION = 59/100<br />

RBW = 10Hz<br />

REFERENCE<br />

LEVEL = – 4.2dBm<br />

–93.86dBc/Hz<br />

OUTPUT POWER – dB<br />

0<br />

–10<br />

–20<br />

–30<br />

–40<br />

–50<br />

–60<br />

–70<br />

V DD = 3V, V P = 5V<br />

I CP = 1.875mA<br />

PFD FREQUENCY = 20MHz<br />

CHANNEL STEP = 200kHz<br />

LOOP BANDWIDTH = 20kHz<br />

FRACTION = 59/100<br />

RBW = 1kHz<br />

–63.2dBc@<br />

100kHz<br />

REFERENCE<br />

LEVEL = – 4.2dBm<br />

–80<br />

–80<br />

–90<br />

–90<br />

–100<br />

–2kHz<br />

–1kHz 1.7518GHz 1kHz 2kHz<br />

FREQUENCY<br />

–100<br />

–400kHz<br />

–200kHz 1.7518GHz 200kHz 400kHz<br />

FREQUENCY<br />

TPC 8. Phase Noise Plot, Low Noise and Spur<br />

Mode, 1.7518 GHz RF OUT , 20 MHz PFD <strong>Frequency</strong>,<br />

200 kHz Channel Step Resolution<br />

TPC 11. Spurious Plot, Low Noise and Spur Mode,<br />

1.7518 GHz RF OUT , 20 MHz PFD <strong>Frequency</strong>, 200 kHz<br />

Channel Step Resolution<br />

OUTPUT POWER – dB<br />

0<br />

–10<br />

–20<br />

–30<br />

–40<br />

–50<br />

–60<br />

–70<br />

V DD = 3V, V P = 5V<br />

I CP = 1.875mA<br />

PFD FREQUENCY = 20MHz<br />

CHANNEL STEP = 200kHz<br />

LOOP BANDWIDTH = 20kHz<br />

FRACTION = 59/100<br />

RBW = 10Hz<br />

REFERENCE<br />

LEVEL = – 4.2dBm<br />

–89.52dBc/Hz<br />

OUTPUT POWER – dB<br />

0<br />

–10<br />

–20<br />

–30<br />

–40<br />

–50<br />

–60<br />

–70<br />

V DD = 3V, V P = 5V<br />

I CP = 1.875mA<br />

PFD FREQUENCY = 20MHz<br />

CHANNEL STEP = 200kHz<br />

LOOP BANDWIDTH = 20kHz<br />

FRACTION = 59/100<br />

RBW = 1kHz<br />

–72.33dBc@<br />

100kHz<br />

REFERENCE<br />

LEVEL = – 4.2dBm<br />

–80<br />

–80<br />

–90<br />

–90<br />

–100<br />

–2kHz<br />

–1kHz 1.7518GHz 1kHz 2kHz<br />

FREQUENCY<br />

–100<br />

–400kHz<br />

–200kHz 1.7518GHz 200kHz 400kHz<br />

FREQUENCY<br />

TPC 9. Phase Noise Plot, Lowest Spur Mode,<br />

1.7518 GHz RF OUT , 20 MHz PFD <strong>Frequency</strong>,<br />

200 kHz Channel Step Resolution<br />

TPC 12. Spurious Plot, Lowest Spur Mode,<br />

1.7518 GHz RF OUT , 20 MHz PFD <strong>Frequency</strong>,<br />

200 kHz Channel Step Resolution<br />

–8–<br />

REV. 0


<strong>ADF4251</strong><br />

–70<br />

–20<br />

–75<br />

–30<br />

–80<br />

–40<br />

PHASE NOISE – dBc/Hz<br />

–85<br />

–90<br />

–95<br />

–100<br />

–105<br />

LOWEST SPUR MODE<br />

LOW NOISE AND SPUR MODE<br />

SPURIOUS LEVEL – dBc<br />

–50<br />

–60<br />

–70<br />

–80<br />

–90<br />

LOWEST NOISE MODE<br />

–110<br />

LOWEST NOISE MODE<br />

–100<br />

–115<br />

–110<br />

LOWEST SPUR MODE<br />

–120<br />

1.430 1.435 1.440 1.445 1.450 1.455 1.460<br />

FREQUENCY – GHz<br />

TPC 13. In-Band Phase Noise vs. <strong>Frequency</strong>*<br />

–120<br />

1.430 1.435 1.440 1.445 1.450 1.455 1.460<br />

FREQUENCY – GHz<br />

TPC 16. 400 kHz Spur vs. <strong>Frequency</strong>*<br />

–10<br />

–20<br />

–30<br />

–20<br />

–30<br />

–40<br />

SPURIOUS LEVEL – dBc<br />

–40<br />

–50<br />

–60<br />

–70<br />

–80<br />

LOWEST NOISE MODE<br />

SPURIOUS LEVEL – dBc<br />

–50<br />

–60<br />

–70<br />

–80<br />

–90<br />

LOWEST NOISE MODE<br />

–90<br />

–100<br />

–100<br />

LOWEST SPUR MODE<br />

–110<br />

1.430 1.435 1.440 1.445 1.450 1.455 1.460<br />

FREQUENCY – GHz<br />

TPC 14. 100 kHz Spur vs. <strong>Frequency</strong>*<br />

–110<br />

LOWEST SPUR MODE<br />

–120<br />

1.430 1.435 1.440 1.445 1.450 1.455 1.460<br />

FREQUENCY – GHz<br />

TPC 17. 600 kHz Spur vs. <strong>Frequency</strong>*<br />

–20<br />

–30<br />

–40<br />

–20<br />

–30<br />

–40<br />

SPURIOUS LEVEL – dBc<br />

–50<br />

–60<br />

–70<br />

–80<br />

–90<br />

LOWEST NOISE MODE<br />

SPURIOUS LEVEL – dBc<br />

–50<br />

–60<br />

–70<br />

–80<br />

–90<br />

–100<br />

–110 LOWEST SPUR MODE<br />

–120<br />

1.430 1.435 1.440 1.445 1.450 1.455 1.460<br />

FREQUENCY – GHz<br />

TPC 15. 200 kHz Spur vs. <strong>Frequency</strong>*<br />

–100 LOWEST NOISE MODE<br />

–110<br />

LOWEST SPUR MODE<br />

–120<br />

1.430 1.435 1.440 1.445 1.450 1.455 1.460<br />

FREQUENCY – GHz<br />

TPC 18. 3 MHz Spur vs. <strong>Frequency</strong>*<br />

*TPCs 13–18: Across all fractional channel steps from f = 0/130 to f = 129/130.<br />

RF OUT = 1.45 GHz, Int Reg = 55, Ref = 26 MHz, and LBW = 40 kHz. TPCs 13–24 attained using EVAL-ADF4252EB2 Evaluation Board.<br />

REV. 0<br />

–9–


<strong>ADF4251</strong><br />

0<br />

–5<br />

–120<br />

–130<br />

V DD = 3V<br />

V P = 3V<br />

AMPLITUDE – dBm<br />

–10<br />

–15<br />

–20<br />

–25<br />

PRESCALER = 4/5<br />

PRESCALER = 8/9<br />

PHASE NOISE – dB/Hz<br />

–140<br />

–150<br />

–160<br />

–30<br />

–170<br />

–35<br />

0 1 2 3 4 5 6<br />

FREQUENCY –GHz<br />

TPC 19. RF Input Sensitivity<br />

–180<br />

10k 100k<br />

1M<br />

10M<br />

PHASE DETECTOR FREQUENCY – Hz<br />

TPC 22. Phase Noise (Referred to CP Output) vs.<br />

PFD <strong>Frequency</strong>, IF Side<br />

0<br />

5<br />

V DD = 3V<br />

V P 2 = 3V<br />

6<br />

4<br />

IF INPUT POWER – dBm<br />

10<br />

15<br />

20<br />

25<br />

30<br />

35<br />

I CP – mA<br />

2<br />

0<br />

–2<br />

–4<br />

V DD = 3V<br />

V P 1 = 5.5V<br />

40<br />

–0.4 0.1<br />

0.6 1.1<br />

1.6<br />

IF INPUT FREQUENCY – GHz<br />

TPC 20. IF Input Sensitivity<br />

–6<br />

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5<br />

V CP – V<br />

TPC 23. RF Charge Pump Output Characteristics<br />

–120<br />

–130<br />

V DD = 3V<br />

V P = 5V<br />

6<br />

4<br />

PHASE NOISE – dB/Hz<br />

–140<br />

–150<br />

–160<br />

I CP – mA<br />

2<br />

0<br />

–2<br />

V DD = 3V<br />

V P 2 = 3V<br />

–170<br />

–4<br />

–180<br />

10k 100k<br />

1M<br />

10M<br />

PHASE DETECTOR FREQUENCY – Hz<br />

–6<br />

0 0.5<br />

1.0 1.5 2.0 2.5 3.0<br />

V CP – V<br />

TPC 21. Phase Noise (Referred to CP Output) vs.<br />

PFD <strong>Frequency</strong>, RF Side<br />

TPC 24. IF Charge Pump Output Characteristics<br />

–10–<br />

REV. 0


<strong>ADF4251</strong><br />

CIRCUIT DESCRIPTION<br />

Reference Input Section<br />

The reference input stage is shown in Figure 3. SW1 and SW2<br />

are normally closed switches. SW3 is normally open. When<br />

power-down is initiated, SW3 is closed and SW1 and SW2 are<br />

opened. This ensures that there is no loading of the REF IN pin<br />

on power-down.<br />

REF IN = the reference input frequency, D = RF REF IN Doubler<br />

Bit, R = the preset divide ratio of the binary 4-bit programmable<br />

reference counter (1 to 15), INT = the preset divide ratio of<br />

the binary 8-bit counter (31 to 255), MOD = the preset modulus<br />

ratio of binary 12-bit programmable FRAC counter (2 to 4095),<br />

and FRAC = the preset fractional ratio of the binary 12-bit<br />

programmable FRAC counter (0 to MOD).<br />

POWER-DOWN<br />

CONTROL<br />

RF N DIVIDER<br />

N = INT + FRAC/MOD<br />

REF IN NC<br />

NC<br />

SW2<br />

SW1<br />

SW3<br />

NO<br />

100k<br />

BUFFER<br />

XOEB<br />

TO R<br />

COUNTER<br />

REF OUT<br />

FROM RF<br />

INPUT STAGE<br />

N-COUNTER<br />

THIRD-ORDER<br />

FRACTIONAL<br />

INTERPOLATOR<br />

TO PFD<br />

NC = NORMALLY CLOSED<br />

NO = NORMALLY OPEN<br />

INT<br />

REG<br />

MOD<br />

REG<br />

FRAC<br />

VALUE<br />

Figure 3. Reference Input Stage<br />

RF and IF Input Stage<br />

The RF input stage is shown in Figure 4. The IF input stage is<br />

the same. It is followed by a two-stage limiting amplifier to<br />

generate the CML clock levels needed for the N counter.<br />

RF IN A<br />

RF IN B<br />

BIAS<br />

GENERATOR<br />

2k<br />

1.6V<br />

2k<br />

Figure 4. RF Input Stage<br />

V DD 1<br />

A GND<br />

RF INT Divider<br />

The RF INT CMOS counter allows a division ratio in the PLL<br />

feedback counter. Division ratios from 31 to 255 are allowed.<br />

INT, FRAC, MOD, and R Relationship<br />

The INT, FRAC, and MOD values, in conjunction with the<br />

RF R counter, make it possible to generate output frequencies<br />

that are spaced by fractions of the RF phase frequency detector<br />

(PFD). The equation for the RF VCO frequency (RF OUT ) is<br />

Ê<br />

RF F INT FRAC ˆ<br />

OUT = PFD ¥ Á +<br />

Ë MOD<br />

˜ (1)<br />

¯<br />

where RF OUT is the output frequency of external voltage controlled<br />

oscillator (VCO).<br />

F<br />

PFD<br />

= REF ¥<br />

IN<br />

( )<br />

1 + D<br />

R<br />

(2)<br />

Figure 5. N Counter<br />

RF R Counter<br />

The 4-bit RF R counter allows the input reference frequency<br />

(REF IN ) to be divided down to produce the reference clock to<br />

the RF PFD. Division ratios from 1 to 15 are allowed.<br />

IF R Counter<br />

The 15-bit IF R counter allows the input reference frequency<br />

(REF IN ) to be divided down to produce the reference clock to<br />

the IF PFD. Division ratios from 1 to 32767 are allowed.<br />

IF Prescaler (P/P + 1)<br />

The dual modulus IF prescaler (P/P + 1), along with the IF A<br />

and B counters, enables the large division ratio, N, to be realized<br />

(N = PB + A). Operating at CML levels, it takes the clock from<br />

the IF input stage and divides it down to a manageable frequency<br />

for the CMOS IF A and CMOS IF B counters.<br />

IF A and B Counters<br />

The IF A CMOS and IF B CMOS counters combine with the<br />

dual modulus IF prescaler to allow a wide ranging division ratio<br />

in the PLL feedback counter. The counters are guaranteed to<br />

work when the prescaler output is 150 MHz or less.<br />

Pulse Swallow Function<br />

The IF A and IF B counters, in conjunction with the dual modulus<br />

IF prescaler, make it possible to generate output frequencies<br />

that are spaced only by the reference frequency divided by R.<br />

See the Device Programming after Initial Power-Up section for<br />

examples. The equation for the IF VCO (IF OUT ) frequency is<br />

IF = P ¥ B A F<br />

OUT<br />

[( ) + ] ¥ PFD<br />

(3)<br />

where IF OUT = the output frequency of the external voltage controlled<br />

oscillator (VCO), P = the preset modulus of the IF dual modulus<br />

prescaler, B = the preset divide ratio of the binary 12-bit counter<br />

(3 to 4095), and A = the preset divide ratio of the binary 6-bit<br />

swallow counter (0 to 63). F PFD is obtained using Equation 2.<br />

REV. 0<br />

–11–


<strong>ADF4251</strong><br />

Phase <strong>Frequency</strong> Detector (PFD) and Charge Pump<br />

The PFD takes inputs from the R counter and N counter and<br />

produces an output proportional to the phase and frequency<br />

difference between them. Figure 6 is a simplified schematic. The<br />

PFD includes a delay element that controls the width of the<br />

antibacklash pulse. This pulse ensures that there is no dead zone<br />

in the PFD transfer function and minimizes phase noise and<br />

reference spurs.<br />

+IN<br />

–IN<br />

HI<br />

HI<br />

D1<br />

D2<br />

U1<br />

CLR1<br />

CLR2<br />

U2<br />

Q1<br />

Q2<br />

UP<br />

DELAY<br />

ELEMENT<br />

DOWN<br />

U3<br />

CHARGE<br />

PUMP<br />

Figure 6. PFD Simplified Schematic<br />

MUXOUT and Lock Detect<br />

The output multiplexer on the <strong>ADF4251</strong> allows the user to<br />

access various internal points on the chip. The state of MUXOUT<br />

is controlled by M4, M3, M2, and M1 in the Master Register.<br />

Table VI shows the full truth table. Figure 7 shows the MUXOUT<br />

section in block diagram format.<br />

LOGIC LOW<br />

IF ANALOG LOCK DETECT<br />

IF R DIVIDER OUTPUT<br />

IF N DIVIDER OUTPUT<br />

RF ANALOG LOCK DETECT<br />

IF/RF ANALOG LOCK DETECT<br />

IF DIGITAL LOCK DETECT<br />

LOGIC HIGH<br />

RF R DIVIDER OUTPUT<br />

RF N DIVIDER OUTPUT<br />

THREE STATE OUTPUT<br />

RF DIGITAL LOCK DETECT<br />

RF/IF DIGITAL LOCK DETECT<br />

LOGIC HIGH<br />

LOGIC LOW<br />

DV DD<br />

CP<br />

MUX CONTROL MUXOUT<br />

D GND<br />

Lock Detect<br />

MUXOUT can be programmed for two types of lock detect: digital<br />

and analog. Digital is active high. The N-channel open-drain<br />

analog lock detect should be operated with an external pull-up<br />

resistor of 10 kW nominal. When lock has been detected, this<br />

output will be high with narrow low going pulses.<br />

Hardware Power-Down/Chip Enable<br />

In addition to the software power-down methods described on<br />

pages 21 and 22, the <strong>ADF4251</strong> also has a hardware powerdown<br />

feature. This is accessed via the Chip Enable (CE) pin.<br />

When this pin is Logic High, the device is in normal operation.<br />

Bringing the CE pin Logic Low will power down the device.<br />

When this happens, the following events occur:<br />

1. All active dc current paths are removed.<br />

2. The RF and IF counters are forced to their load<br />

state conditions.<br />

3. The RF and IF charge pumps are forced into three-state mode.<br />

4. The digital lock detect circuitry is reset.<br />

5. The RF IN and IF IN inputs are debiased.<br />

6. The REF IN input buffer circuitry is disabled.<br />

7. The serial interface input register remains active and capable<br />

of loading and latching data.<br />

Bringing the CE pin back up again to Logic High will reinstate<br />

normal operation, depending on the software power-down settings.<br />

Input Shift Register<br />

Data is clocked in on each rising edge of CLK. The data is<br />

clocked in MSB first. Data is transferred from the input register<br />

to one of seven latches on the rising edge of LE. The destination<br />

latch is determined by the state of the three control bits (C2, C1,<br />

and C0) in the shift register. These are the three LSBs: DB2,<br />

DB1, and DB0, as shown in Figure 1. The truth table for these<br />

bits is shown in Table I. Table II shows a summary of how the<br />

registers are programmed.<br />

Table I. Control Bit Truth Table<br />

C2 C1 C0 Data Latch<br />

0 0 0 RF N Divider Reg<br />

0 0 1 RF R Divider Reg<br />

0 1 0 RF Control Reg<br />

0 1 1 Master Reg<br />

1 0 0 IF N Divider Reg<br />

1 0 1 IF R Divider Reg<br />

1 1 0 IF Control Reg<br />

Figure 7. MUXOUT Circuit<br />

–12–<br />

REV. 0


<strong>ADF4251</strong><br />

Table II. Register Summary<br />

RF N DIVIDER REG<br />

RESERVED<br />

8-BIT RF INTEGER VALUE (INT)<br />

12-BIT RF FRACTIONAL VALUE (FRAC)<br />

CONTROL<br />

BITS<br />

DB23 DB22 DB21<br />

DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0<br />

P1 N8 N7 N6 N5 N4 N3 N2 N1 F12 F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 C3 (0)<br />

C2 (0) C1 (0)<br />

RF R DIVIDER REG<br />

PRESCALER<br />

RF REF IN<br />

DOUBLER<br />

4-BIT RF R COUNTER<br />

12-BIT INTERPOLATOR MODULUS VALUE (MOD)<br />

CONTROL<br />

BITS<br />

DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0<br />

P3<br />

P2<br />

R4<br />

R3<br />

R2<br />

R1<br />

M12<br />

M11<br />

M10<br />

M9<br />

M8<br />

M7<br />

M6<br />

M5<br />

M4<br />

M3<br />

M2<br />

M1<br />

C3 (0)<br />

C2 (0) C1 (1)<br />

RF CONTROL REG<br />

NOISE AND<br />

SPUR<br />

SETTING 3<br />

RESERVED<br />

NOISE AND<br />

SPUR<br />

SETTING 2<br />

RF CP<br />

CURRENT<br />

SETTING<br />

RESERVED<br />

RF PD<br />

POLARITY<br />

NOISE AND<br />

SPUR<br />

SETTING 1<br />

RF<br />

POWER-<br />

DOWN<br />

RF CP<br />

THREE-<br />

STATE<br />

RF<br />

COUNTER<br />

RESET<br />

CONTROL<br />

BITS<br />

DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0<br />

N3<br />

T3<br />

T2<br />

T1<br />

N2<br />

CP2<br />

CP1<br />

0<br />

P8<br />

N1<br />

P6<br />

P5<br />

P4<br />

C3 (0)<br />

C2 (1) C1 (0)<br />

MASTER REG<br />

MUXOUT<br />

RESERVED<br />

POWER-<br />

DOWN<br />

CP THREE-<br />

STATE<br />

COUNTER<br />

RESET<br />

CONTROL<br />

BITS<br />

DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0<br />

M4<br />

M3<br />

M2<br />

M1<br />

P11<br />

P10<br />

P9<br />

C3 (0)<br />

C2 (1) C1 (1)<br />

IF N DIVIDER REG<br />

IF CP GAIN<br />

IF PRESCALER<br />

12-BIT IF B COUNTER<br />

6-BIT IF A COUNTER<br />

CONTROL<br />

BITS<br />

DB23<br />

DB22<br />

DB21<br />

DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0<br />

P15 P14 P13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 A6 A5 A4 A3 A2 A1 C3 (1)<br />

C2 (0) C1 (0)<br />

IF R DIVIDER REG<br />

IF REF IN<br />

DOUBLER<br />

15-BIT IF R COUNTER<br />

CONTROL<br />

BITS<br />

DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0<br />

P16<br />

R15<br />

R14<br />

R13<br />

R12<br />

R11<br />

R10<br />

R9<br />

R8<br />

R7<br />

R6<br />

R5<br />

R4<br />

R3<br />

R2<br />

R1<br />

C3 (1)<br />

C2 (0) C1 (1)<br />

IF CONTROL REG<br />

RF PHASE<br />

RESYNC<br />

RESERVED<br />

RF PHASE<br />

RESYNC<br />

IF CP CURRENT<br />

SETTING<br />

IF PD<br />

POLARITY<br />

IF LDP<br />

IF POWER-<br />

DOWN<br />

IF CP<br />

THREE-<br />

STATE<br />

IF<br />

COUNTER<br />

RESET<br />

CONTROL<br />

BITS<br />

DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0<br />

PR3<br />

PR2<br />

T8<br />

T7<br />

PR1<br />

CP3<br />

CP2<br />

CP1<br />

P21<br />

P20<br />

P19<br />

P18<br />

P17<br />

C3 (1)<br />

C2 (1) C1 (0)<br />

REV. 0<br />

–13–


<strong>ADF4251</strong><br />

Table III. RF N Divider Register Map<br />

RESERVED<br />

8-BIT RF INTEGER VALUE (INT)<br />

12-BIT RF FRACTIONAL VALUE (FRAC)<br />

CONTROL<br />

BITS<br />

DB23 DB22 DB21<br />

DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0<br />

P1 N8 N7 N6 N5 N4 N3 N2 N1 F12 F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 C3 (0) C2 (0) C1 (0)<br />

P1<br />

RESERVED<br />

0 RESERVED<br />

F12 F11 F10 F3 F2 F1 FRACTIONAL VALUE (FRAC)<br />

0 0 0 .......... 0 0 0 0<br />

0 0 0 .......... 0 0 1 1<br />

0 0 0 .......... 0 1 0 2<br />

0 0 0 .......... 0 1 1 3<br />

. . . .......... . . . .<br />

. . . .......... . . . .<br />

. . . .......... . . . .<br />

1 1 1 .......... 1 0 0 4092<br />

1 1 1 .......... 1 0 1 4093<br />

1 1 1 .......... 1 1 0 4094<br />

1 1 1 .......... 1 1 1 4095<br />

RF INTEGER<br />

N8 N7 N6 N5 N4 N3 N2 N1 VALUE (INT)*<br />

0 0 0 1 1 1 1 1 31<br />

0 0 1 0 0 0 0 0 32<br />

0 0 1 0 0 0 0 1 33<br />

0 0 1 0 0 0 1 0 34<br />

. . . . . . . . .<br />

. . . . . . . . .<br />

. . . . . . . . .<br />

1 1 1 1 1 1 0 1 253<br />

1 1 1 1 1 1 1 0 254<br />

1 1 1 1 1 1 1 1 255<br />

*WHEN P = 8/9, N MIN = 91<br />

–14–<br />

REV. 0


<strong>ADF4251</strong><br />

Table IV. RF R Divider Register Map<br />

PRE-<br />

SCALER<br />

RF REF IN<br />

DOUBLER<br />

4-BIT RF R COUNTER<br />

12-BIT INTERPOLATOR MODULUS VALUE (MOD)<br />

CONTROL<br />

BITS<br />

DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0<br />

P3<br />

P2<br />

R4<br />

R3<br />

R2<br />

R1<br />

M12<br />

M11<br />

M10<br />

M9<br />

M8<br />

M7<br />

M6<br />

M5<br />

M4<br />

M3<br />

M2<br />

M1<br />

C3 (0)<br />

C2 (0) C1 (1)<br />

P2<br />

RF REF IN<br />

DOUBLER<br />

0 DISABLED<br />

1 ENABLED<br />

INTERPOLATOR MODULUS<br />

M12 M11 M10 M3 M2 M1 VALUE (MOD) DIVIDE RATIO<br />

0 0 0 .......... 0 1 0 2<br />

0 0 0 .......... 0 1 1 3<br />

0 0 0 .......... 1 0 0 4<br />

. . . .......... . . . .<br />

. . . .......... . . . .<br />

. . . .......... . . . .<br />

1 1 1 .......... 1 0 0 4092<br />

P3<br />

RF PRESCALER<br />

1 1 1 .......... 1 0 1 4093<br />

0 4/5<br />

1 8/9<br />

1 1 1 .......... 1 1 0 4094<br />

1 1 1 .......... 1 1 1 4095<br />

RF R COUNTER<br />

R4 R3 R2 R1 DIVIDE RATIO<br />

0 0 0 1 1<br />

0 0 1 0 2<br />

0 0 1 1 3<br />

. . . . .<br />

. . . . .<br />

. . . . .<br />

1 1 0 1 13<br />

1 1 1 0 14<br />

1 1 1 1 15<br />

REV. 0<br />

–15–


<strong>ADF4251</strong><br />

Table V. RF Control Register Map<br />

NOISE AND<br />

SPUR<br />

SETTING 3<br />

RESERVED<br />

NOISE AND<br />

SPUR<br />

SETTING 2<br />

RF CP<br />

CURRENT<br />

SETTING<br />

RESERVED<br />

RF PD<br />

POLARITY<br />

NOISE AND<br />

SPUR<br />

SETTING 1<br />

RF POWER-<br />

DOWN<br />

RF CP<br />

THREE-<br />

STATE<br />

RF<br />

COUNTER<br />

RESET<br />

CONTROL<br />

BITS<br />

DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0<br />

N3<br />

T3<br />

T2<br />

T1<br />

N2<br />

CP2<br />

CP1<br />

0<br />

P8<br />

N1<br />

P6<br />

P5<br />

P4<br />

C3 (0)<br />

C2 (1) C1 (0)<br />

THESE BITS SHOULD<br />

EACH BE SET TO 0 FOR<br />

NORMAL OPERATION<br />

P4 RF COUNTER<br />

RESET<br />

0 DISABLED<br />

1 ENABLED<br />

N3 N2 N1 NOISE AND SPUR<br />

SETTING<br />

0 0 0 LOWEST SPUR<br />

0 0 1 LOW NOISE AND SPUR<br />

1 1 1 LOWEST NOISE<br />

P5 RF CP THREE-STATE<br />

0 DISABLED<br />

1 THREE-STATE<br />

I CP (mA)<br />

CP2 CP1 1.5k 2.7k 5.6k<br />

0 0 1.125 0.625 0.301<br />

0 1 3.375 1.875 0.904<br />

1 0 5.625 3.125 1.506<br />

1 1 7.7875 4.375 2.109<br />

P6 RF POWER-DOWN<br />

0 DISABLED<br />

1 ENABLED<br />

P8 RF PD POLARITY<br />

0 NEGATIVE<br />

1 POSITIVE<br />

–16–<br />

REV. 0


<strong>ADF4251</strong><br />

Table VI. Master Register Map<br />

MUXOUT<br />

RESERVED<br />

POWER-<br />

DOWN<br />

CP THREE-<br />

STATE<br />

COUNTER<br />

RESET<br />

CONTROL<br />

BITS<br />

DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0<br />

M4<br />

M3<br />

M2<br />

M1<br />

P11<br />

P10<br />

P9<br />

C3 (0)<br />

C2 (1) C1 (1)<br />

M4<br />

M3<br />

M2<br />

M1<br />

MUXOUT<br />

P9<br />

COUNTER RESET<br />

0 0 0 0 LOGIC LOW<br />

0 0 0 1 IF ANALOG LOCK DETECT<br />

0 0 1 0 IF R DIVIDER OUTPUT<br />

0 0 1 1 IF N DIVIDER OUTPUT<br />

0 1 0 0 RF ANALOG LOCK DETECT<br />

0 1 0 1 RF/IF ANALOG LOCK DETECT<br />

0 1 1 0 IF DIGITAL LOCK DETECT<br />

0 1 1 1 LOGIC HIGH<br />

1 0 0 0 RF R DIVIDER OUTPUT<br />

1 0 0 1 RF N DIVIDER OUTPUT<br />

1 0 1 0 THREE-STATE OUTPUT<br />

1 0 1 1 LOGIC LOW<br />

1 1 0 0 RF DIGITAL LOCK DETECT<br />

1 1 0 1 RF/IF DIGITAL LOCK DETECT<br />

1 1 1 0 LOGIC HIGH<br />

1 1 1 1 LOGIC LOW<br />

P12<br />

P11<br />

0<br />

1<br />

P10<br />

0<br />

1<br />

RESERVED<br />

0<br />

1<br />

POWER-DOWN<br />

DISABLED<br />

ENABLED<br />

DISABLED<br />

ENABLED<br />

CP THREE-STATE<br />

DISABLED<br />

THREE-STATE<br />

0 THIS BIT SHOULD BE SET TO “0” FOR<br />

NORMAL OPERATION.<br />

REV. 0<br />

–17–


<strong>ADF4251</strong><br />

Table VII. IF N Divider Register Map<br />

IF CP<br />

GAIN<br />

IF<br />

PRESCALER*<br />

12-BIT IF B COUNTER*<br />

6-BIT IF A COUNTER*<br />

CONTROL<br />

BITS<br />

DB23<br />

DB22<br />

DB21<br />

DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0<br />

P15 P14 P13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 A6 A5 A4 A3 A2 A1 C3 (1)<br />

C2 (0) C1 (0)<br />

P15<br />

P14 P13 PRESCALER VALUE<br />

0 0 8/9<br />

0 1 16/17<br />

1 0 32/33<br />

1 1 64/65<br />

IF CP GAIN<br />

A COUNTER<br />

A6 A5 .......... A2 A1 DIVIDE RATIO<br />

0 0 .......... 0 0 0<br />

0 0 .......... 0 1 1<br />

0 0 .......... 1 0 2<br />

0 0 .......... 1 1 3<br />

. . .......... . . .<br />

. . .......... . . .<br />

. . .......... . . .<br />

1 1 .......... 0 0 60<br />

0 DISABLED<br />

1 ENABLED<br />

1 1 .......... 0 1 61<br />

1 1 .......... 1 0 62<br />

1 1 .......... 1 1 63<br />

B12 B11 B10 B3 B2 B1 B COUNTER DIVIDE RATIO<br />

0 0 0 .......... 0 1 1 3<br />

0 0 0 .......... 1 0 0 4<br />

. . . .......... . . . .<br />

. . . .......... . . . .<br />

. . . .......... . . . .<br />

1 1 1 .......... 1 0 0 4092<br />

1 1 1 .......... 1 0 1 4093<br />

1 1 1 .......... 1 1 0 4094<br />

1 1 1 .......... 1 1 1 4095<br />

*N = BP + A, P IS PRESCALER VALUE. B MUST BE GREATER THAN OR EQUAL TO A FOR CONTIGUOUS VALUES OF N, N MIN IS (P 2 – P) .<br />

–18–<br />

REV. 0


<strong>ADF4251</strong><br />

Table VIII. IF R Divider Register Map<br />

IF REF IN<br />

DOUBLER<br />

15-BIT IF R COUNTER<br />

CONTROL<br />

BITS<br />

DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0<br />

P16<br />

R15<br />

R14<br />

R13<br />

R12<br />

R11<br />

R10<br />

R9<br />

R8<br />

R7<br />

R6<br />

R5<br />

R4<br />

R3<br />

R2<br />

R1<br />

C3 (1)<br />

C2 (0) C1 (1)<br />

P16 IF REF IN<br />

DOUBLER<br />

0 DISABLED<br />

1 ENABLED<br />

R15<br />

0<br />

0<br />

0<br />

0<br />

.<br />

.<br />

.<br />

32764<br />

32765<br />

32766<br />

32767<br />

R14 R13 R12 .......... R3 R2 R1 DIVIDE RATIO<br />

0 0 0 .......... 0 0 1 1<br />

0 0 0 .......... 0 1 0 2<br />

0 0 0 .......... 0 1 1 3<br />

0 0 0 .......... 1 0 0 4<br />

. . . .......... . . . .<br />

. . . .......... . . . .<br />

. . . .......... . . . .<br />

1 1 1 .......... 1 0 0 16380<br />

1 1 1 .......... 1 0 1 16381<br />

1 1 1 .......... 1 1 0 16382<br />

1 1 1 .......... 1 1 1 16383<br />

REV. 0<br />

–19–


<strong>ADF4251</strong><br />

Table IX. IF Control Register Map<br />

RF PHASE<br />

RESYNC<br />

RESERVED<br />

RF PHASE<br />

RESYNC<br />

IF CP CURRENT<br />

SETTING<br />

IF PD<br />

POLARITY<br />

IF LDP<br />

IF POWER-<br />

DOWN<br />

IF CP<br />

THREE-<br />

STATE<br />

IF<br />

COUNTER<br />

RESET<br />

CONTROL<br />

BITS<br />

DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0<br />

PR3<br />

PR2<br />

T8<br />

T7<br />

PR1<br />

CP3<br />

CP2<br />

CP1<br />

P21<br />

P20<br />

P19<br />

P18<br />

P17<br />

C3 (1)<br />

C2 (1) C1 (0)<br />

THESE BITS<br />

SHOULD BE SET<br />

TO 0 FOR NORMAL<br />

OPERATION<br />

P17 IF COUNTER RESET<br />

0 DISABLED<br />

1 ENABLED<br />

PR3 PR2 PR1 RF PHASE RESYNC<br />

0 0 0 DISABLED<br />

1 1 1 ENABLED<br />

P18 IF CP THREE-STATE<br />

0 DISABLED<br />

1 THREE-STATE<br />

I CP (mA)<br />

IF CP3 IF CP2 IF CP1 1.5k 2.7k 5.6k<br />

0 0 0 1.125 0.625 0.301<br />

0 0 1 2.25 1.25 0.602<br />

0 1 0 3.375 1.875 0.904<br />

0 1 1 4.5 2.5 1.205<br />

1 0 0 5.625 3.125 1.506<br />

1 0 1 6.75 3.75 1.808<br />

1 1 0 7.7875 4.375 2.109<br />

1 1 1 9 5.0 2.411<br />

P19 IF POWER-DOWN<br />

0 DISABLED<br />

1 ENABLED<br />

P20 IF LDP<br />

0 3<br />

1 5<br />

P21 IF PD POLARITY<br />

0 NEGATIVE<br />

1 POSITIVE<br />

–20–<br />

REV. 0


<strong>ADF4251</strong><br />

RF N DIVIDER REGISTER<br />

(Address R0)<br />

With R0[2, 1, 0] set to [0, 0, 0], the on-chip RF N Divider register<br />

will be programmed. Table III shows the input data format for<br />

programming this register.<br />

8-Bit RF INT Value<br />

These eight bits control what is loaded as the INT value. This is<br />

used to determine the overall feedback division factor. It is used in<br />

Equation 1.<br />

12-Bit RF FRAC Value<br />

These 12 bits control what is loaded as the FRAC value into the<br />

fractional interpolator. This is part of what determines the overall<br />

feedback division factor. It is used in Equation 1. The FRAC<br />

value must be less than or equal to the value loaded into the<br />

MOD register.<br />

RF R DIVIDER REGISTER<br />

(Address R1)<br />

With R1[2, 1, 0] set to [0, 0, 1], the on-chip RF R Divider register<br />

will be programmed. Table IV shows the input data format for<br />

programming this register.<br />

RF Prescaler (P/P + 1)<br />

The RF dual-modulus prescaler (P/P +1), along with the INT,<br />

FRAC, and MOD counters, determine the overall division ratio<br />

from the RF IN to the PFD input. Operating at CML levels, it<br />

takes the clock from the RF input stage and divides it down to<br />

amanageable frequency for the CMOS counters. It is based on<br />

a synchronous 4/5 core (see Table IV).<br />

RF REF IN Doubler<br />

Setting this bit to 0 feeds the REF IN signal directly to the 4-bit<br />

RF R counter, disabling the doubler. Setting this bit to 1 multiplies<br />

the REF IN frequency by a factor of 2 before feeding into the 4-<br />

bit RF R counter. When the doubler is disabled, the REF IN<br />

falling edge is the active edge at the PFD input to the fractional-N<br />

synthesizer. When the doubler is enabled, both the rising and<br />

falling edges of REF IN become active edges at the PFD input.<br />

When the doubler is enabled and lowest spur mode is chosen,<br />

the in-band phase noise performance is sensitive to the REF IN<br />

duty cycle. The phase noise degradation can be as much as 5 dB<br />

for REF IN duty cycles outside a 45% to 55% range. The phase<br />

noise is insensitive to REF IN duty cycle in the lowest noise mode<br />

and in low noise and spur mode. The phase noise is insensitive<br />

to REF IN duty cycle when the doubler is disabled.<br />

4-Bit RF R Counter<br />

The 4-bit RF R counter allows the input reference frequency<br />

(REF IN ) to be divided down to produce the reference clock to<br />

the phase frequency detector (PFD). Division ratios from 1 to<br />

15 are allowed.<br />

12-Bit Interpolator Modulus<br />

This programmable register sets the fractional modulus. This is<br />

the ratio of the PFD frequency to the channel step resolution on<br />

the RF output.<br />

RF CONTROL REGISTER<br />

(Address R2)<br />

With R2[2, 1, 0] set to [0, 1, 0], the on-chip RF control register<br />

will be programmed. Table V shows the input data format for<br />

programming this register. Upon initialization, DB15–DB11<br />

should all be set to 0.<br />

Noise and Spur Setting<br />

The noise and spur setting (R2[15, 11, 06]) is a feature that<br />

allows the user to optimize his or her design either for improved<br />

spurious performance or for improved phase noise performance.<br />

When set to [0, 0, 0], the lowest spurs setting is chosen. Here,<br />

dither is enabled. This randomizes the fractional quantization<br />

noise so that it looks more like white noise than spurious noise.<br />

This means that the part is optimized for improved spurious<br />

performance. This operation would normally be used when the<br />

PLL closed-loop bandwidth is wide 1 for fast-locking applications.<br />

A wide loop filter does not attenuate the spurs to a level that a<br />

narrow 2 loop bandwidth would. When this bit is set to [0, 0, 1],<br />

the low noise and spur setting is enabled. Here, dither is disabled.<br />

This optimizes the synthesizer to operate with improved noise<br />

performance. However, the spurious performance is degraded in<br />

this mode compared to lowest spurs setting. To improve noise<br />

performance even further, another option is available that reduces<br />

the phase noise. This is the lowest noise setting [1, 1, 1]. As well<br />

as disabling the dither, it also ensures the charge pump is operating<br />

in an optimum region for noise performance. This setting is<br />

extremely useful where a narrow loop filter bandwidth is available.<br />

The synthesizer ensures extremely low noise and the filter attenuates<br />

the spurs. The Typical Performance Characteristics (TPCs)<br />

give the user an idea of the trade-off in a typical WCDMA setup<br />

for the different noise and spur settings.<br />

RF Counter Reset<br />

DB3 is the RF counter reset bit for the <strong>ADF4251</strong>. When this is<br />

1, the RF synthesizer counters are held in reset. For normal<br />

operation, this bit should be 0.<br />

RF Charge Pump Three-State<br />

This bit puts the charge pump into three-state mode when programmed<br />

to a 1. It should be set to 0 for normal operation.<br />

RF Power-Down<br />

DB5 on the <strong>ADF4251</strong> provides the programmable power-down<br />

mode. Setting this bit to a 1 will perform a power-down on both<br />

the RF and IF sections. Setting this bit to 0 will return the RF<br />

and IF sections to normal operation. While in software powerdown,<br />

the part will retain all information in its registers. Only<br />

when supplies are removed will the register contents be lost.<br />

When a power-down is activated, the following events occur:<br />

1. All active RF dc current paths are removed.<br />

2. The RF synthesizer counters are forced to their load state<br />

conditions.<br />

3. The RF charge pump is forced into three-state mode.<br />

4. The RF digital lock detect circuitry is reset.<br />

5. The RF IN input is debiased.<br />

6. The input register remains active and capable of loading and<br />

latching data.<br />

NOTES<br />

1 Wide loop bandwidth is seen as a loop bandwidth greater than 1/10th of the<br />

RF OUT channel step resolution (F RES ).<br />

2 Narrow loop bandwidth is seen as a loop bandwidth less than 1/10th of the<br />

RF OUT channel step resolution (F RES ).<br />

REV. 0<br />

–21–


<strong>ADF4251</strong><br />

RF Phase Detector Polarity<br />

DB7 in the <strong>ADF4251</strong> sets the RF phase detector polarity.<br />

When the VCO characteristics are positive, this should be set to 1.<br />

When they are negative, it should be set to 0.<br />

RF Charge Pump Current Setting<br />

DB9 and DB10 set the RF charge pump current setting. This<br />

should be set to whatever charge pump current the loop filter<br />

has been designed with (see Table V).<br />

RF Test Modes<br />

These bits should be set to 0, 0, 0 for normal operation.<br />

MASTER REGISTER<br />

(Address R3)<br />

With R3[2, 1, 0] set to 0, 1, 1, the on-chip master register will be<br />

programmed. Table VI shows the input data format for programming<br />

the Master Register.<br />

RF and IF Counter Reset<br />

DB3 is the counter reset bit for the <strong>ADF4251</strong>. When this is 1,<br />

both the RF and IF R, INT, and MOD counters are held in reset.<br />

For normal operation, this bit should be 0. Upon powering up, the<br />

DB3 bit needs to be disabled, the INT counter resumes counting<br />

in “close” alignment with the R counter. (The maximum error is<br />

one prescaler cycle).<br />

Charge Pump Three-State<br />

This bit puts both the RF and IF charge pump into three-state<br />

mode when programmed to a 1. It should be set to 0 for normal<br />

operation.<br />

Power-Down<br />

R3[3] on the <strong>ADF4251</strong> provides the programmable power-down<br />

mode. Setting this bit to a 1 will perform a power-down on both<br />

the RF and IF sections. Setting this bit to 0 will return the RF<br />

and IF sections to normal operation. While in software powerdown,<br />

the part will retain all information in its registers. Only<br />

when supplies are removed will the register contents be lost.<br />

When a power-down is activated, the following events occur:<br />

1. All active dc current paths are removed.<br />

2. The RF and IF counters are forced to their load state conditions.<br />

3. The RF and IF charge pumps are forced into three-state mode.<br />

4. The digital lock detect circuitry is reset.<br />

5. The RF IN input and IF IN input are debiased.<br />

6. The oscillator input buffer circuitry is disabled.<br />

7. The input register remains active and capable of loading and<br />

latching data.<br />

MUXOUT Control<br />

The on-chip multiplexer is controlled by R3[10–7] on the<br />

<strong>ADF4251</strong>. Table VI shows the truth table.<br />

If the user updates the RF control register or the IF control<br />

register, the MUXOUT contents will be lost. To retrieve the<br />

MUXOUT signal, the user must write to the Master Register.<br />

IF N DIVIDER REGISTER<br />

(Address R4)<br />

With R4[2, 1, 0] set to [1, 0, 0], the on-chip IF N divider register<br />

will be programmed. Table VII shows the input data format for<br />

programming this register.<br />

IF CP Gain<br />

When set to 1, this bit changes the IF charge pump current<br />

setting to its maximum value. When the bit is set to 0, the charge<br />

pump current reverts back to its previous state.<br />

IF Prescaler<br />

The dual-modulus prescaler (P/P + 1), along with the IF A and<br />

IF B counters, determine the overall division ratio, N, to be realized<br />

(N = PB + A) from the IF IN to the IF PFD input. Operating<br />

at CML levels, it takes the clock from the IF input stage and divides<br />

it down to a manageable frequency for the CMOS counters. It<br />

is based on a synchronous 4/5 core. See Equation 2 and Table VII.<br />

IF B and A Counter<br />

The IF A and IF B counters, in conjunction with the dual modulus<br />

prescaler, make it possible to generate output frequencies<br />

that are spaced only by the reference frequency (REF IN ), divided<br />

by R. The equation for the IF OUT VCO frequency is given in<br />

Equation 2.<br />

IF R DIVIDER REGISTER<br />

(Address R5)<br />

With R5[2, 1, 0] set to 1, 0, 1, the on-chip IF R divider register<br />

will be programmed. Table VIII shows the input data format for<br />

programming this register.<br />

IF REF IN Doubler<br />

Setting this bit to 0 feeds the REF IN signal directly to the 15-bit<br />

IF R counter. Setting this bit to 1 multiplies the REF IN<br />

frequency by a factor of 2 before feeding into the 15-bit IF R<br />

counter.<br />

15-Bit IF R Counter<br />

The 15-bit IF R counter allows the input reference frequency<br />

(REF IN ) to be divided down to produce the reference clock to<br />

the IF phase frequency detector (PFD). Division ratios from<br />

1 to 32767 are allowed.<br />

IF CONTROL REGISTER<br />

(Address R6)<br />

With R6[2, 1, 0] set to 1, 1, 0, the on-chip IF control register<br />

will be programmed. Table IX shows the input data format for<br />

programming this register. Upon initialization, DB15–DB11<br />

should all be set to 0.<br />

IF Counter Reset<br />

DB3 is the IF counter reset bit for the <strong>ADF4251</strong>. When this is<br />

1, the IF synthesizer counters are held in reset. For normal<br />

operation, this bit should be 0.<br />

IF Charge Pump Three-State<br />

This bit puts the IF charge pump into three-state mode when programmed<br />

to a 1. It should be set to 0 for normal operation.<br />

IF Power-Down<br />

DB5 on the <strong>ADF4251</strong> provides the programmable power-down<br />

mode. Setting this bit to a 1 will perform a power-down on the IF<br />

section. Setting this bit to 0 will return the section to normal<br />

operation. While in software power-down, the part will retain all<br />

information in its registers. Only when supplies are removed will<br />

the register contents be lost.<br />

–22–<br />

REV. 0


<strong>ADF4251</strong><br />

When a power-down is activated, the following events occur:<br />

1. All active IF dc current paths are removed.<br />

2. The IF synthesizer counters are forced to their load state<br />

conditions.<br />

3. The IF charge pump is forced into three-state mode.<br />

4. The IF digital lock detect circuitry is reset.<br />

5. The IF IN input is debiased.<br />

6. The input register remains active and capable of loading and<br />

latching data.<br />

IF Phase Detector Polarity<br />

DB7 in the <strong>ADF4251</strong> sets the IF phase detector polarity. When<br />

the VCO characteristics are positive, this should be set to 1.<br />

When they are negative, it should be set to 0.<br />

IF Charge Pump Current Setting<br />

DB8, DB9, and DB10 set the IF charge pump current setting.<br />

This should be set to whatever charge pump current the loop<br />

filter has been designed with (see Table VII).<br />

IF Test Modes<br />

These bits should be set to 0, 0 for normal operation.<br />

RF Phase Resync<br />

Setting the Phase Resync Bits [15, 14, 11] to 1, 1, 1 enables<br />

the phase resync feature. With a fractional modulus of M, a<br />

fractional-N PLL can settle with any one of (2 )/M valid<br />

phase offsets with respect to the reference input. This is different<br />

to integer-N (where the RF output always settles to the same<br />

static phase offset with respect to the input reference, which is<br />

zero ideally), but does not matter in most applications where all<br />

that is required is consistent frequency lock.<br />

For applications where a consistent phase relationship between<br />

the output and reference is required (i.e., digital beamforming),<br />

the <strong>ADF4251</strong> fractional-N synthesizer can be used with the phase<br />

resync feature enabled. This ensures that if the user programs<br />

the PLL to jump from frequency (and Phase) A to frequency<br />

(and Phase) B and back again to frequency A, the PLL will return<br />

to the original phase (Phase A).<br />

When enabled, it will activate every time the user programs<br />

register R0 or R1 to set a new output frequency. However, if a<br />

cycle slip occurs in the settling transient after the phase re-resync<br />

operation, the phase resync will be lost. This can be avoided by<br />

delaying the resync activation until the locking transient is close<br />

to its final frequency. In the IF R Divider register, Bits R5[17–3]<br />

are used to set a time interval from when the new channel is programmed<br />

to the time the resync is activated. Although the time<br />

interval resolution available from the 15-bit IF R register is one<br />

REF IN clock cycle, IF R should be programmed to be a value that<br />

is an integer multiple of the programmed MOD value to set a<br />

time interval that is at least as long as the RF PLL loop’s lock time.<br />

For example, if REF IN = 26 MHz, MOD = 130 to give 200 kHz<br />

output steps (F RES ), and the RF loop has a settling time of 150 µs,<br />

then IF R should be programmed to 3900, as:<br />

26 MHz ¥ 150 ms<br />

= 3900<br />

Note that if it is required to use the IF synthesizer with phase<br />

resync enabled on the RF synth, the IF synth must operate with<br />

a PFD frequency of 26 MHz/3900. In an application where the<br />

IF synth is not required, the user should ensure that registers R4<br />

and R6 are not programmed so that the rest of the IF circuitry<br />

remains in power-down.<br />

DEVICE PROGRAMMING AFTER INITIAL POWER-UP<br />

After initially applying power to the supply pins, there are three<br />

ways to operate the device.<br />

RF and IF Synthesizers Operational<br />

All registers must be written to when powering up both the RF<br />

and IF synthesizer.<br />

RF Synthesizer Operational, IF Power-Down<br />

It is necessary to write to registers R3, R2, R1, and R0 only<br />

when powering up the RF synthesizer only. The IF side will<br />

remain in power-down until registers R6, R5, R4, and R3 are<br />

written to.<br />

IF Synthesizer Operational, RF Power-Down<br />

It is necessary to write only to registers R6, R5, R4, and R3 when<br />

powering up the IF synthesizer only. The RF side will remain in<br />

power-down until registers R3, R2, R1, and R0 are written to.<br />

RF Synthesizer: An Example<br />

The RF synthesizer should be programmed as follows:<br />

Ê<br />

RF INT FRAC ˆ<br />

OUT = Á + FPFD<br />

Ë MOD<br />

˜ ¥ (4)<br />

¯<br />

where RF OUT = the RF frequency output, INT = the integer division<br />

factor, FRAC = the fractionality, and MOD = the modulus.<br />

D<br />

FPFD<br />

= Ê 1<br />

REFIN<br />

¥ + ˆ<br />

Á<br />

Ë R<br />

˜<br />

(5)<br />

¯<br />

where REF IN = the reference frequency input, D = the RF<br />

REF IN Doubler Bit, and R = the RF reference division factor.<br />

For example, in a GSM 1800 system where 1.8 GHz RF frequency<br />

output (RF OUT ) is required, a 13 MHz reference frequency input<br />

(REF IN ) is available and a 200 kHz channel resolution (F RES ) is<br />

required on the RF output.<br />

MOD<br />

REF IN<br />

=<br />

FRES<br />

13 MHz<br />

MOD = = 65<br />

200 kHz<br />

So, from Equation 5:<br />

FPFD = MHz ¥ 1 + 0<br />

13<br />

= 13 MHz<br />

1<br />

= ¥ Ê Ë Á ˆ<br />

18 . GHz 13MHz INT + FRAC<br />

65<br />

˜<br />

¯<br />

where INT = 138 and FRAC = 30.<br />

IF Synthesizer: An Example<br />

The IF synthesizer should be programmed as follows:<br />

IF = P ¥ B A F<br />

OUT<br />

[( ) + ] ¥ PFD<br />

(6)<br />

where IF OUT = the output frequency of external voltage controlled<br />

oscillator (VCO), P = the IF prescaler, B = the B counter value,<br />

and A = the A counter value.<br />

Equation 5 applies in this example as well.<br />

REV. 0<br />

–23–


<strong>ADF4251</strong><br />

For example, in a GSM1800 system, where 540 MHz IF frequency<br />

output (IF OUT ) is required, a 13 MHz reference frequency<br />

input (REF IN ) is available and a 200 kHz channel resolution<br />

(F RES ) is required on the IF output. The prescaler is set to 16/17.<br />

IF REF IN doubler is disabled.<br />

By Equation 5:<br />

if R = 65.<br />

By Equation 6:<br />

if B = 168 and A = 12.<br />

1 0<br />

200 kHz = 13 MHz ¥ + R<br />

[( ) + A]<br />

540 MHz = 200 kHz ¥ 16 ¥ B<br />

Modulus<br />

The choice of modulus (MOD) depends on the reference signal<br />

(REF IN ) available and the channel resolution (F RES ) required at<br />

the RF output. For example, a GSM system with 13 MHz<br />

REF IN would set the modulus to 65. This means that the RF<br />

output resolution (F RES ) is the 200 kHz (13 MHz/65) necessary<br />

for GSM.<br />

Reference Doubler and Reference Divider<br />

There is a reference doubler on-chip. This allows the input<br />

reference signal to be doubled. This is useful for increasing the<br />

PFD comparison frequency. Making the PFD frequency higher<br />

improves the noise performance of the system. Doubling the<br />

PFD frequency will usually result in an improvement in noise<br />

performance of 3 dB. It is important to note that the PFD cannot<br />

be operated above 30 MHz. This is due to a limitation in<br />

the speed of the - circuit of the N divider.<br />

12-Bit Programmable Modulus<br />

Unlike most other fractional-N PLLs, the <strong>ADF4251</strong> allows the<br />

user to program the modulus over a 12-bit range. This means<br />

that the user can set up the part in many different configurations<br />

for his or her application, when combined with the reference<br />

doubler and the 4-bit R counter.<br />

Take for example an application that requires 1.75 GHz RF and<br />

200 kHz channel step resolution. The system has a 13 MHz<br />

reference signal.<br />

One possible setup is feeding the 13 MHz directly to the PFD<br />

and programming the modulus to divide by 65. This would result<br />

in the required 200 kHz resolution.<br />

Another possible setup is using the reference doubler to create<br />

26 MHz from the 13 MHz input signal. This 26 MHz is then<br />

fed into the PFD. The modulus is now programmed to divide by<br />

130. This also results in 200 kHz resolution. This would offer<br />

superior phase noise performance over the previous setup.<br />

The programmable modulus is also very useful for multistandard<br />

applications. If a dual-mode phone requires PDC and GSM1800<br />

standards, the programmable modulus is of huge benefit. PDC<br />

requires 25 kHz channel step resolution, whereas GSM1800<br />

requires 200 kHz channel step resolution. A 13 MHz reference<br />

signal could be fed directly to the PFD. The modulus would be<br />

programmed to 520 when in PDC mode (13 MHz /520 = 25 kHz).<br />

The modulus would be reprogrammed to 65 for GSM1800<br />

operation (13 MHz/65 = 200 kHz). It is important that the PFD<br />

frequency remains constant (13 MHz). This allows the user to<br />

design one loop filter that can be used in both setups without<br />

running into stability issues. It is the ratio of the RF frequency<br />

to the PFD frequency that affects the loop design. Keeping this<br />

relationship constant and instead changing the modulus factor,<br />

results in a stable filter.<br />

Spurious Optimization and Fastlock<br />

As mentioned in the Noise and Spur Setting section, the part can<br />

be optimized for spurious performance. However, in fast-locking<br />

applications, the loop bandwidth needs to be wide.<br />

Therefore, the filter does not provide much attenuation of the<br />

spurious. The programmable charge pump can be used to get<br />

around this issue. The filter is designed for a narrow loop bandwidth<br />

so that steady-state spurious specifications are met. This is<br />

designed using the lowest charge pump current setting. To<br />

implement fastlock during a frequency jump, the charge pump<br />

current is set to the maximum setting for the duration of the jump.<br />

This has the effect of widening the loop bandwidth, which improves<br />

lock time. When the PLL has locked to the new frequency,<br />

the charge pump is again programmed to the lowest charge pump<br />

current setting. This will narrow the loop bandwidth to its original<br />

cutoff frequency to allow for better attenuation of the<br />

spurious than the wide loop bandwidth.<br />

Spurious Signals—Predicting Where They Will Appear<br />

Just as in integer-N PLLs, spurs will appear at PFD frequency<br />

offsets on either side of the carrier (and multiples of the PFD<br />

frequency). In a fractional-N PLL, spurs will also appear at<br />

frequencies equal to the RF OUT channel step resolution (F RES ).<br />

The <strong>ADF4251</strong> uses a high order fractional interpolator engine.<br />

This results in spurious signals also appearing at frequencies equal<br />

to 1/2 of the channel step resolution. For example, examine the<br />

GSM-1800 setup with a 26 MHz PFD and 200 kHz resolution.<br />

Spurs will appear at ±26 MHz from the RF carrier (at an extremely<br />

low level due to filtering). Also, there will be spurs at ±200 kHz from<br />

the RF carrier. Due to the fractional interpolator architecture<br />

used in the <strong>ADF4251</strong>, spurs will also appear at ±100 kHz from<br />

the RF carrier. Harmonics of all spurs mentioned will also appear.<br />

With lowest spur setting enabled, the spurs will be attenuated<br />

into the noise floor.<br />

Prescaler<br />

The prescaler limits the INT value. With P = 4/5, N MIN = 31.<br />

With P = 8/9, N MIN = 91.<br />

The prescaler can also influence the phase noise performance.<br />

If INT < 91, a prescaler of 4/5 should be used. For applications<br />

where INT > 91, P = 8/9 should be used for optimum noise<br />

performance.<br />

Filter Design: ADIsimPLL<br />

A filter design and analysis program is available to help users<br />

implement their PLL design. Visit www.analog.com/pll for a<br />

free download of the ADIsimPLL software. The software<br />

designs, simulates, and analyzes the entire PLL frequency<br />

domain and time domain response. Various passive and active<br />

filter architectures are allowed.<br />

–24–<br />

REV. 0


IF Side Not In Use<br />

If the IF side is not being used, the following pinout is recommended<br />

for the IF side:<br />

SCLOCK<br />

SCLK<br />

<strong>ADF4251</strong><br />

Pin No. Mnemonic Description<br />

14 A GND 2 Short to all other ground pins.<br />

15 IF IN B Leave open circuit. (This is biased<br />

up to V DD /2 internally.)<br />

16 IF IN A Leave open circuit. (This is biased<br />

up to V DD /2 internally.)<br />

19 CP_IF Leave open circuit. (This is internally<br />

three-stated until power-up.)<br />

20 V P 2 Short to V P 1. (V P 1 is the RF CP<br />

supply.)<br />

21 V DD 2 Short to V DD 1 (V DD 1 is the RF V DD<br />

supply.)<br />

INTERFACING<br />

The <strong>ADF4251</strong> has a simple SPI compatible serial interface for<br />

writing to the device. SCLK, SDATA, and LE control the data<br />

transfer. When LE (Latch Enable) goes high, the 24 bits that have<br />

been clocked into the input register on each rising edge of SCLK<br />

will be transferred to the appropriate latch. See Figure 1 for the<br />

Timing Diagram and Table I for the Control Bit Truth Table.<br />

The maximum allowable serial clock rate is 20 MHz. This means<br />

that the maximum update rate possible for the device is 833 kHz<br />

or one update every 1.2 µs. This is certainly more than adequate<br />

for systems that will have typical lock times in hundreds of<br />

microseconds.<br />

ADuC812<br />

MOSI<br />

I/O PORTS<br />

SDATA<br />

LE<br />

CE<br />

MUXOUT<br />

(LOCK DETECT)<br />

<strong>ADF4251</strong><br />

Figure 8. ADuC812 to <strong>ADF4251</strong> Interface<br />

ADuC812 Interface<br />

Figure 8 shows the interface between the <strong>ADF4251</strong> and the<br />

ADuC812 microconverter. Since the ADuC812 is based on<br />

an 8051 core, this interface can be used with any 8051-based<br />

microcontroller. The microconverter is set up for SPI Master<br />

mode with CPHA = 0. To initiate the operation, the I/O port<br />

driving LE is brought low. Each latch of the <strong>ADF4251</strong> needs<br />

(at most) a 24-bit word. This is accomplished by writing three<br />

8-bit bytes from the microconverter to the device. When the third<br />

byte has been written, the LE input should be brought high to<br />

complete the transfer.<br />

I/O port lines on the ADuC812 are also used to control powerdown<br />

(CE input) and to detect lock (MUXOUT configured as<br />

lock detect and polled by the port input).<br />

When operating in the mode described, the maximum SCLOCK<br />

rate of the ADuC812 is 4 MHz. This means that the maximum<br />

rate at which the output frequency can be changed will be 166 kHz.<br />

POWER-DOWN CONTROL<br />

S V DD<br />

ADG702<br />

IN<br />

RF OUT<br />

100pF<br />

D<br />

GND<br />

100pF<br />

18<br />

18<br />

IF OUT<br />

100pF<br />

18<br />

V CC<br />

GND<br />

IF VCO<br />

IF LOOP<br />

FILTER<br />

V DD<br />

V P<br />

CE<br />

V DD DV DD V P<br />

IF CP RF CP<br />

R SET<br />

<strong>ADF4251</strong><br />

2.7k<br />

RF LOOP<br />

FILTER<br />

V CC<br />

GND<br />

RF VCO<br />

100pF<br />

18<br />

18<br />

18<br />

REF IN<br />

REFIN<br />

51<br />

100pF<br />

IF IN A<br />

IF IN B<br />

RF IN A<br />

RF IN B<br />

100pF<br />

51<br />

100pF<br />

CP GND<br />

A GND<br />

D GND<br />

100pF<br />

DECOUPLING CAPACITORS AND INTERFACE SIGNALS<br />

HAVE BEEN OMITTED FROM THE DIAGRAM IN THE<br />

INTERESTS OF GREATER CLARITY.<br />

Figure 9. Power-Down Circuit<br />

REV. 0<br />

–25–


<strong>ADF4251</strong><br />

ADSP-21xx<br />

SCLK<br />

I/O FLAGS<br />

DT<br />

TFS<br />

SCLK<br />

SDATA<br />

LE<br />

CE<br />

MUXOUT<br />

(LOCK DETECT)<br />

<strong>ADF4251</strong><br />

Figure 10. ADSP-21xx to <strong>ADF4251</strong> Interface<br />

ADSP-2181 Interface<br />

Figure 10 shows the interface between the <strong>ADF4251</strong> and the<br />

ADSP-21xx digital signal processor. Each latch of the <strong>ADF4251</strong><br />

needs (at most) a 24-bit word. The easiest way to accomplish this<br />

using the ADSP-21xx family is to use the autobuffered transmit<br />

mode of operation with alternate framing. This provides a means<br />

for transmitting an entire block of serial data before an interrupt is<br />

generated. Set up the word length for eight bits and use three memory<br />

locations for each 24-bit word. To program each 24-bit latch, store<br />

the three 8-bit bytes, enable the autobuffered mode, and then write<br />

to the transmit register of the DSP. This last operation initiates the<br />

autobuffer transfer.<br />

Powerdown Circuit<br />

The attached circuit in Figure 10 shows how to shut down the<br />

<strong>ADF4251</strong> and the accompanying RF and IF VCO. The<br />

ADG701 switch goes closed circuit when a Logic High is applied<br />

to the IN input. The low cost switch is available in SOT-23 and<br />

SOIC packages.<br />

PCB DESIGN GUIDELINES FOR CHIP-SCALE<br />

PACKAGE<br />

The leads on the chip-scale package (CP-24) are rectangular. The<br />

printed circuit board pad for these should be 0.1 mm longer than<br />

the package land length and 0.05 mm wider than the package land<br />

width. The land should be centered on the pad. This will ensure<br />

that the solder joint size is maximized.<br />

The bottom of the chip-scale package has a central thermal pad.<br />

The thermal pad on the printed circuit board should be at least<br />

as large as this exposed pad. On the printed circuit board, there<br />

should be a clearance of at least 0.25 mm between the thermal<br />

pad and the inner edges of the pad pattern. This will ensure that<br />

shorting is avoided.<br />

Thermal vias may be used on the printed circuit board thermal pad<br />

to improve thermal performance of the package. If vias are used,<br />

they should be incorporated in the thermal pad at 1.2 mm pitch<br />

grid. The via diameter should be between 0.3 mm and 0.33 mm,<br />

and the via barrel should be plated with 1 oz copper to plug the via.<br />

VVCO<br />

V P<br />

V DD<br />

V P<br />

VVCO<br />

6.3V<br />

C3<br />

22F<br />

R48<br />

0<br />

6.3V<br />

C9<br />

22F<br />

R44<br />

0<br />

6.3V<br />

C5<br />

22F<br />

R1<br />

20<br />

VDD’<br />

R43<br />

0<br />

6.3V<br />

C7<br />

22F<br />

6.3V<br />

C11<br />

22F<br />

R49<br />

0<br />

6.3V<br />

C29<br />

22F<br />

IF OUT<br />

J6<br />

C4<br />

10pF<br />

C10<br />

10pF<br />

C6<br />

10pF<br />

C8<br />

10pF<br />

C12<br />

10pF<br />

C30<br />

10pF<br />

RF OUT<br />

J7<br />

C15<br />

100pF<br />

R12<br />

18<br />

R13<br />

18<br />

R14<br />

18<br />

R15<br />

51<br />

C17<br />

100pF<br />

R45<br />

0<br />

R46<br />

0<br />

C46<br />

22F<br />

C16<br />

100pF<br />

5V<br />

3V<br />

14<br />

VCC<br />

10<br />

RF OUT<br />

REF IN<br />

J5<br />

C45<br />

10pF<br />

2<br />

V IN<br />

VCO2<br />

VCO190–540T<br />

4<br />

B+<br />

T13<br />

R47<br />

0<br />

3<br />

O/P<br />

Y3<br />

C13<br />

1nF<br />

GND<br />

R11<br />

51<br />

2<br />

R17<br />

13k<br />

C20<br />

82pF<br />

C14<br />

1nF<br />

C19<br />

2.2nF<br />

R16<br />

7.5k<br />

DATA<br />

CLK<br />

C18<br />

270pF<br />

LE<br />

C43<br />

100pF<br />

R27<br />

2.7k<br />

T14<br />

V DD 1<br />

V P 2<br />

CP IF<br />

IF IN A<br />

V DD 2<br />

V DD 3<br />

DV DD<br />

U1<br />

<strong>ADF4251</strong>BCP<br />

V P 1<br />

CP RF<br />

CP GND 1<br />

RF IN A<br />

RF IN B<br />

MUXOUT<br />

A GND 1<br />

D GND<br />

A GND 2<br />

CP GND 2<br />

C23<br />

10nF<br />

C44<br />

100pF<br />

C24<br />

100nF<br />

R19<br />

270<br />

R20<br />

470<br />

C25<br />

3.3nF<br />

R27<br />

T16 R28<br />

10k 10k<br />

R29<br />

10k<br />

D4<br />

14<br />

VCC<br />

2<br />

V IN RF<br />

10 OUT<br />

V DD<br />

VCO1<br />

VCO190–1730T<br />

C26<br />

100pF<br />

C27<br />

100pF<br />

R22<br />

18<br />

R21<br />

18<br />

R23<br />

18<br />

R24<br />

51<br />

C28<br />

100pF<br />

Figure 11. Typical PLL Circuit Schematic<br />

–26–<br />

REV. 0


<strong>ADF4251</strong><br />

OUTLINE DIMENSIONS<br />

24-Lead Frame Chip Scale Package [LFCSP]<br />

4 mm 4 mm Body<br />

(CP-24)<br />

Dimensions shown in millimeters<br />

PIN 1<br />

INDICATOR<br />

1.00<br />

0.90<br />

0.85<br />

12 MAX<br />

0.25<br />

REF<br />

SEATING<br />

PLANE<br />

4.0<br />

0.60 MAX<br />

BSC SQ 0.25<br />

0.60 MAX<br />

MIN PIN INDICATOR<br />

1<br />

19<br />

24 1<br />

0.50 18<br />

BSC<br />

TOP<br />

VIEW<br />

1.00 MAX<br />

0.65 NOM<br />

0.30<br />

0.23<br />

0.18<br />

3.75<br />

BSC SQ<br />

0.20 REF<br />

0.05 MAX<br />

0.02 NOM<br />

0.50<br />

0.40<br />

0.30<br />

COPLANARITY<br />

0.08<br />

13<br />

12<br />

BOTTOM<br />

VIEW<br />

2.50<br />

REF<br />

6<br />

7<br />

2.25<br />

1.70 SQ<br />

0.75<br />

COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-2<br />

REV. 0<br />

–27–


–28–<br />

C03269–0–10/03(0)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!