10.01.2014 Views

IRLZ24N data sheet - International Rectifier

IRLZ24N data sheet - International Rectifier

IRLZ24N data sheet - International Rectifier

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

l<br />

l<br />

l<br />

l<br />

l<br />

l<br />

Logic-Level Gate Drive<br />

Advanced Process Technology<br />

Dynamic dv/dt Rating<br />

175°C Operating Temperature<br />

Fast Switching<br />

Fully Avalanche Rated<br />

Description<br />

Fifth Generation HEXFETs from <strong>International</strong> <strong>Rectifier</strong><br />

utilize advanced processing techniques to achieve the<br />

lowest possible on-resistance per silicon area This benefit,<br />

combined with the fast switching speed and ruggedized<br />

device design that HEXFET Power MOSFETs are well<br />

known for, provides the designer with an extremely efficient<br />

device for use in a wide variety of applications<br />

G<br />

PD - 91357C<br />

<strong>IRLZ24N</strong><br />

HEXFET ® Power MOSFET<br />

D<br />

S<br />

V DSS = 55V<br />

R DS(on) = 006Ω<br />

I D = 18A<br />

The TO-220 package is universally preferred for all<br />

commercial-industrial applications at power dissipation<br />

levels to approximately 50 watts The low thermal resistance<br />

TO-220AB<br />

and low package cost of the TO-220 contribute to its wide<br />

acceptance throughout the industry<br />

Absolute Maximum Ratings<br />

Parameter Max Units<br />

I D @ T C = 25°C Continuous Drain Current, V GS @ 10V 18<br />

I D @ T C = 100°C Continuous Drain Current, V GS @ 10V 13 A<br />

I DM Pulsed Drain Current 72<br />

P D @T C = 25°C Power Dissipation 45 W<br />

Linear Derating Factor 030 W/°C<br />

V GS Gate-to-Source Voltage ±16 V<br />

E AS Single Pulse Avalanche Energy ‚ 68 mJ<br />

I AR Avalanche Current 11 A<br />

E AR Repetitive Avalanche Energy 45 mJ<br />

dv/dt Peak Diode Recovery dv/dt ƒ 50 V/ns<br />

T J Operating Junction and -55 to + 175<br />

T STG Storage Temperature Range °C<br />

Soldering Temperature, for 10 seconds<br />

300 (16mm from case)<br />

Mounting torque, 6-32 or M3 screw<br />

10 lbf•in (11N•m)<br />

Thermal Resistance<br />

Parameter Min Typ Max Units<br />

R θJC Junction-to-Case –––– –––– 33<br />

R θCS Case-to-Sink, Flat, Greased Surface –––– 050 –––– °C/W<br />

R θJA Junction-to-Ambient –––– –––– 62<br />

07/12/02


<strong>IRLZ24N</strong><br />

Electrical Characteristics @ T J = 25°C (unless otherwise specified)<br />

Parameter Min Typ Max Units Conditions<br />

V (BR)DSS Drain-to-Source Breakdown Voltage 55 ––– ––– V V GS = 0V, I D = 250µA<br />

∆V (BR)DSS/∆T J Breakdown Voltage Temp Coefficient ––– 0061 ––– V/°C Reference to 25°C, I D = 1mA<br />

––– ––– 0060 V GS = 10V, I D = 11A „<br />

R DS(on) Static Drain-to-Source On-Resistance ––– ––– 0075 Ω V GS = 50V, I D = 11A „<br />

––– ––– 0105 V GS = 40V, I D = 90A „<br />

V GS(th) Gate Threshold Voltage 10 ––– 20 V V DS = V GS , I D = 250µA<br />

g fs Forward Transconductance 83 ––– ––– S V DS = 25V, I D = 11A<br />

I DSS Drain-to-Source Leakage Current<br />

––– ––– 25 V DS = 55V, V GS = 0V<br />

µA<br />

––– ––– 250 V DS = 44V, V GS = 0V, T J = 150°C<br />

I GSS<br />

Gate-to-Source Forward Leakage ––– ––– 100 V GS = 16V<br />

nA<br />

Gate-to-Source Reverse Leakage ––– ––– -100 V GS = -16V<br />

Q g Total Gate Charge ––– ––– 15 I D = 11A<br />

Q gs Gate-to-Source Charge ––– ––– 37 nC V DS = 44V<br />

Q gd Gate-to-Drain ("Miller") Charge ––– ––– 85 V GS = 50V, See Fig 6 and 13 „<br />

t d(on) Turn-On Delay Time ––– 71 ––– V DD = 28V<br />

t r Rise Time ––– 74 ––– I D = 11A<br />

ns<br />

t d(off) Turn-Off Delay Time ––– 20 ––– R G = 12Ω, V GS = 50V<br />

t f Fall Time ––– 29 ––– R D = 24Ω, See Fig 10 „<br />

Between lead,<br />

L D Internal Drain Inductance ––– 45 –––<br />

6mm (025in)<br />

nH<br />

from package<br />

L S Internal Source Inductance ––– 75 –––<br />

and center of die contact<br />

C iss Input Capacitance ––– 480 ––– V GS = 0V<br />

C oss Output Capacitance ––– 130 ––– pF V DS = 25V<br />

C rss Reverse Transfer Capacitance ––– 61 ––– ƒ = 10MHz, See Fig 5<br />

G<br />

D<br />

S<br />

Source-Drain Ratings and Characteristics<br />

Parameter Min Typ Max Units Conditions<br />

I S Continuous Source Current MOSFET symbol<br />

––– ––– 18<br />

(Body Diode)<br />

showing the<br />

A<br />

G<br />

I SM Pulsed Source Current integral reverse<br />

––– ––– 72<br />

(Body Diode)<br />

p-n junction diode<br />

V SD Diode Forward Voltage ––– ––– 13 V T J = 25°C, I S = 11A, V GS = 0V „<br />

t rr Reverse Recovery Time ––– 60 90 ns T J = 25°C, I F = 11A<br />

Q rr Reverse RecoveryCharge ––– 130 200 nC di/dt = 100A/µs „<br />

t on Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by L S +L D )<br />

D<br />

S<br />

Notes:<br />

Repetitive rating; pulse width limited by<br />

max junction temperature ( See fig 11 )<br />

‚ V DD = 25V, starting T J = 25°C, L = 790µH<br />

R G = 25Ω, I AS = 11A (See Figure 12)<br />

ƒ I SD ≤ 11A, di/dt ≤ 290A/µs, V DD ≤ V (BR)DSS ,<br />

T J ≤ 175°C<br />

„ Pulse width ≤ 300µs; duty cycle ≤ 2%


<strong>IRLZ24N</strong><br />

I D , Drain-to-Source Current (A)<br />

100<br />

10<br />

1<br />

VGS<br />

TOP 15V<br />

12V<br />

10V<br />

8.0V<br />

6.0V<br />

4.0V<br />

3.0V<br />

BOTTOM 2.5V<br />

2.5V<br />

20µs PULSE WIDTH<br />

0.1<br />

T J = 25°C<br />

A<br />

0.1 1 10 100<br />

V DS , Drain-to-Source Voltage (V)<br />

I D , Drain-to-Source Current (A)<br />

100<br />

10<br />

1<br />

VGS<br />

TOP 15V<br />

12V<br />

10V<br />

8.0V<br />

6.0V<br />

4.0V<br />

3.0V<br />

BOTTOM 2.5V<br />

2.5V<br />

20µs PULSE WIDTH<br />

0.1<br />

T J = 175°C<br />

A<br />

0.1 1 10 100<br />

V DS , Drain-to-Source Voltage (V)<br />

Fig 1 Typical Output Characteristics<br />

Fig 2 Typical Output Characteristics<br />

I D , Drain-to-Source Current (A)<br />

100<br />

10<br />

1<br />

T = 25°C J<br />

T = 175°C<br />

J<br />

V DS= 15V<br />

20µs PULSE WIDTH<br />

0.1<br />

A<br />

2 3 4 5 6 7 8 9 10<br />

V GS , Gate-to-Source Voltage (V)<br />

R DS(on) , Drain-to-Source On Resistance<br />

(Normalized)<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

I D = 18A<br />

V GS = 10V<br />

0.0<br />

A<br />

-60 -40 -20 0 20 40 60 80 100 120 140 160 180<br />

T J , Junction Temperature (°C)<br />

Fig 3 Typical Transfer Characteristics<br />

Fig 4 Normalized On-Resistance<br />

Vs Temperature


<strong>IRLZ24N</strong><br />

C, Capacitance (pF)<br />

800<br />

600<br />

400<br />

200<br />

V GS = 0V, f = 1MHz<br />

C iss = C gs + C gd , C ds SHORTED<br />

C rss = Cgd<br />

C oss = C ds + Cgd<br />

C iss<br />

C oss<br />

C rss<br />

0<br />

V GS , Gate-to-Source Voltage (V)<br />

15<br />

12<br />

9<br />

6<br />

3<br />

I D = 11A<br />

V DS = 44V<br />

V DS = 28V<br />

0<br />

A<br />

1 10 100<br />

V DS , Drain-to-Source Voltage (V)<br />

FOR TEST CIRCUIT<br />

SEE FIGURE 13<br />

0 4 8 12 16 20<br />

Q , Total Gate Charge (nC)<br />

G<br />

A<br />

Fig 5 Typical Capacitance Vs<br />

Drain-to-Source Voltage<br />

Fig 6 Typical Gate Charge Vs<br />

Gate-to-Source Voltage<br />

I SD , Reverse Drain Current (A)<br />

100<br />

10<br />

T = 175°C J<br />

T = 25°C J<br />

V GS = 0V<br />

1<br />

A<br />

0.4 0.8 1.2 1.6 2.0<br />

V SD , Source-to-Drain Voltage (V)<br />

I D , Drain Current (A)<br />

1000<br />

OPERATION IN THIS AREA LIMITED<br />

BY RDS(on)<br />

100<br />

10µs<br />

10<br />

100µs<br />

T C = 25°C<br />

1ms<br />

T J = 175°C<br />

Single Pulse<br />

10ms<br />

1<br />

A<br />

1 10 100<br />

V DS , Drain-to-Source Voltage (V)<br />

Fig 7 Typical Source-Drain Diode<br />

Forward Voltage<br />

Fig 8 Maximum Safe Operating Area


<strong>IRLZ24N</strong><br />

20<br />

V DS<br />

R D<br />

I D , Drain Current (Amps)<br />

16<br />

12<br />

8<br />

4<br />

0<br />

A<br />

25 50 75 100 125 150 175<br />

T C, Case Temperature (°C)<br />

10<br />

Fig 9 Maximum Drain Current Vs<br />

Case Temperature<br />

Fig 10a Switching Time Test Circuit<br />

V DS<br />

90%<br />

R G<br />

V GS<br />

50V<br />

Pulse Width ≤ 1 µs<br />

Duty Factor ≤ 0.1 %<br />

DUT<br />

10%<br />

V GS<br />

t d(on) t r t d(off) t f<br />

Fig 10b Switching Time Waveforms<br />

+<br />

- V DD<br />

Thermal Response (Z thJC )<br />

1<br />

0.1<br />

D = 0.50<br />

0.20<br />

0.10<br />

0.05<br />

0.02<br />

0.01<br />

SINGLE PULSE<br />

(THERMAL RESPONSE)<br />

2. Peak T J = P DMx Z thJC + T<br />

C<br />

0.01<br />

0.00001 0.0001 0.001 0.01 0.1 1<br />

t , Rectangular Pulse Duration (sec)<br />

1<br />

Notes:<br />

1. Duty factor D = t / t<br />

1 2<br />

P<br />

DM<br />

t<br />

1<br />

t 2<br />

A<br />

Fig 11 Maximum Effective Transient Thermal Impedance, Junction-to-Case


<strong>IRLZ24N</strong><br />

L<br />

V DS<br />

D.U.T.<br />

R G +<br />

V<br />

- DD<br />

50 V<br />

I AS<br />

t p 0.01Ω<br />

Fig 12a Unclamped Inductive Test Circuit<br />

V (BR)DSS<br />

t p<br />

E AS , Single Pulse Avalanche Energy (mJ)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

I D<br />

TOP 4.5A<br />

7.8A<br />

BOTTOM 11A<br />

V DD = 25V<br />

0<br />

A<br />

25 50 75 100 125 150 175<br />

Starting T J , Junction Temperature (°C)<br />

V DS<br />

V DD<br />

Fig 12c Maximum Avalanche Energy<br />

Vs Drain Current<br />

I AS<br />

Fig 12b Unclamped Inductive Waveforms<br />

Current Regulator<br />

Same Type as D.U.T.<br />

50KΩ<br />

Q G<br />

12V<br />

.2µF<br />

.3µF<br />

50 V<br />

Q GS<br />

Q GD<br />

D.U.T.<br />

+<br />

V<br />

- DS<br />

V GS<br />

V G<br />

3mA<br />

Charge<br />

I G I D<br />

Current Sampling Resistors<br />

Fig 13a Basic Gate Charge Waveform<br />

Fig 13b Gate Charge Test Circuit


<strong>IRLZ24N</strong><br />

Peak Diode Recovery dv/dt Test Circuit<br />

DUT<br />

+<br />

ƒ<br />

-<br />

Circuit Layout Considerations<br />

• Low Stray Inductance<br />

• Ground Plane<br />

• Low Leakage Inductance<br />

Current Transformer<br />

+<br />

‚<br />

-<br />

-<br />

„<br />

+<br />

R G<br />

• dv/dt controlled by R G<br />

• Driver same type as DUT<br />

• I SD controlled by Duty Factor "D"<br />

• DUT - Device Under Test<br />

+<br />

-<br />

V DD<br />

Driver Gate Drive<br />

Period<br />

P.W.<br />

D =<br />

P.W.<br />

Period<br />

V GS =10V<br />

*<br />

D.U.T. I SD Waveform<br />

Reverse<br />

Recovery<br />

Current<br />

Body Diode Forward<br />

Current<br />

di/dt<br />

D.U.T. V DS Waveform<br />

Diode Recovery<br />

dv/dt<br />

V DD<br />

Re-Applied<br />

Voltage<br />

Inductor Curent<br />

Body Diode<br />

Forward Drop<br />

Ripple ≤ 5%<br />

I SD<br />

* V GS = 5V for Logic Level Devices<br />

Fig 14 For N-Channel HEXFETS


<strong>IRLZ24N</strong><br />

Package Outline<br />

TO-220AB Outline<br />

Dimensions are shown in millimeters (inches)<br />

2.87 (.113)<br />

2.62 (.103)<br />

10.54 (.415)<br />

10.29 (.405)<br />

3.78 (.149)<br />

3.54 (.139)<br />

- A -<br />

4.69 (.185)<br />

4.20 (.165)<br />

- B -<br />

1.32 (.052)<br />

1.22 (.048)<br />

15.24 (.600)<br />

14.84 (.584)<br />

4<br />

6.47 (.255)<br />

6.10 (.240)<br />

1 2 3<br />

1.15 (.045)<br />

MIN<br />

LEAD ASSIGNMENTS<br />

1 - GATE<br />

2 - DRAIN<br />

3 - SOURCE<br />

4 - DRAIN<br />

14.09 (.555)<br />

13.47 (.530)<br />

4.06 (.160)<br />

3.55 (.140)<br />

3X<br />

1.40 (.055)<br />

1.15 (.045)<br />

2.54 (.100)<br />

2X<br />

NOTES:<br />

3X<br />

0.93 (.037)<br />

0.69 (.027)<br />

0.36 (.014) M B A M<br />

0.55 (.022)<br />

3X<br />

0.46 (.018)<br />

2.92 (.115)<br />

2.64 (.104)<br />

1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220-AB.<br />

2 CONTROLLING DIMENSION : INCH 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.<br />

Part Marking Information<br />

TO-220AB<br />

EXAMPLE : THIS IS AN IRF1010<br />

WITH ASSEMBLY<br />

LOT CODE 9B1M<br />

INTERNATIONAL<br />

RECTIFIER<br />

LOGO<br />

ASSEMBLY<br />

LOT CODE<br />

IRF1010<br />

9246<br />

9B 1M<br />

A<br />

PART NUMBER<br />

DATE CODE<br />

(YYWW)<br />

YY = YEAR<br />

WW = WEEK<br />

Data and specifications subject to change without notice.<br />

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105<br />

TAC Fax: (310) 252-7903<br />

Visit us at www.irf.com for sales contact information. 07/02


Note: For the most current drawings please refer to the IR website at:<br />

http://www.irf.com/package/

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!