10.01.2014 Views

BF961 N–Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion ...

BF961 N–Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion ...

BF961 N–Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

N–Channel <strong>Dual</strong> <strong>Gate</strong> <strong>MOS</strong>-<strong>Fieldeffect</strong> <strong>Tetrode</strong>,<br />

<strong>Depletion</strong> Mode<br />

Electrostatic sensitive device.<br />

Observe precautions for handling.<br />

<strong>BF961</strong><br />

Vishay Semiconductors<br />

Applications<br />

Input- and mixer stages especially for FM- and VHF TV-tuners up to 300 MHz.<br />

Features<br />

<br />

<br />

<br />

Integrated gate protection diodes<br />

High cross modulation performance<br />

Low noise figure<br />

<br />

<br />

<br />

High AGC-range<br />

Low feedback capacitance<br />

Low input capacitance<br />

3<br />

4<br />

G 2<br />

D<br />

2<br />

G 1<br />

94 9307 96 12647<br />

1<br />

<strong>BF961</strong> Marking: <strong>BF961</strong><br />

Plastic case (TO 50)<br />

1=Drain, 2=Source, 3=<strong>Gate</strong> 1, 4=<strong>Gate</strong> 2<br />

12623<br />

S<br />

Absolute Maximum Ratings<br />

T amb = 25 C, unless otherwise specified<br />

Parameter Test Conditions Type Symbol Value Unit<br />

Drain - source voltage V DS 20 V<br />

Drain current I D 30 mA<br />

<strong>Gate</strong> 1/<strong>Gate</strong> 2 - source peak current ±I G1/G2SM 10 mA<br />

Total power dissipation T amb ≤ 60 C P tot 200 mW<br />

Channel temperature T Ch 150 C<br />

Storage temperature range T stg –55 to +150 C<br />

Maximum Thermal Resistance<br />

T amb = 25 C, unless otherwise specified<br />

Parameter Test Conditions Symbol Value Unit<br />

Channel ambient on glass fibre printed board (40 x 25 x 1.5) mm 3<br />

plated with 35m Cu<br />

R thChA 450 K/W<br />

Document Number 85002<br />

www.vishay.com<br />

Rev. 3, 20-Jan-99 1 (7)


<strong>BF961</strong><br />

Vishay Semiconductors<br />

Electrical DC Characteristics<br />

T amb = 25 C, unless otherwise specified<br />

Parameter Test Conditions Type Symbol Min Typ Max Unit<br />

Drain - source I D = 10 A, –V G1S = –V G2S = 4 V V (BR)DS 20 V<br />

breakdown voltage<br />

<strong>Gate</strong> 1 - source ±I G1S = 10 mA, V G2S = V DS = 0 ±V (BR)G1SS 8 14 V<br />

breakdown voltage<br />

<strong>Gate</strong> 2 - source ±I G2S = 10 mA, V G1S = V DS = 0 ±V (BR)G2SS 8 14 V<br />

breakdown voltage<br />

<strong>Gate</strong> 1 - source ±V G1S = 5 V, V G2S = V DS = 0 ±I G1SS 100 nA<br />

leakage current<br />

<strong>Gate</strong> 2 - source ±V G2S = 5 V, V G1S = V DS = 0 ±I G2SS 100 nA<br />

leakage current<br />

Drain current V DS = 15 V, V G1S = 0, V G2S = 4 V <strong>BF961</strong> I DSS 4 20 mA<br />

<strong>BF961</strong>A I DSS 4 10.5 mA<br />

<strong>BF961</strong>B I DSS 9.5 20 mA<br />

<strong>Gate</strong> 1 - source V DS = 15 V, V G2S = 4 V, I D = 20 A –V G1S(OFF) 3.5 V<br />

cut-off voltage<br />

<strong>Gate</strong> 2 - source<br />

cut-off voltage<br />

V DS = 15 V, V G1S = 0, I D = 20 A –V G2S(OFF) 3.5 V<br />

Electrical AC Characteristics<br />

V DS = 15 V, I D = 10 mA, V G2S = 4 V, f = 1 MHz , T amb = 25 C, unless otherwise specified<br />

Parameter Test Conditions Symbol Min Typ Max Unit<br />

Forward transadmittance ⏐y 21s ⏐ 12 15 mS<br />

<strong>Gate</strong> 1 input capacitance C issg1 3.7 pF<br />

<strong>Gate</strong> 2 input capacitance V G1S = 0, V G2S = 4 V C issg2 1.6 pF<br />

Feedback capacitance C rss 25 fF<br />

Output capacitance C oss 1.6 pF<br />

Power gain G S = 2 mS, G L = 0.5 mS, f = 200 MHz G ps 20 dB<br />

AGC range V G2S = 4 to –2 V, f = 200 MHz G ps 50 dB<br />

Noise figure G S = 2 mS, G L = 0.5 mS, f = 200 MHz F 1.8 2.5 dB<br />

www.vishay.com<br />

2 (7)<br />

Document Number 85002<br />

Rev. 3, 20-Jan-99


Typical Characteristics (T amb = 25 C unless otherwise specified)<br />

<strong>BF961</strong><br />

Vishay Semiconductors<br />

P tot – Total Power Dissipation ( mW )<br />

96 12159<br />

I D – Drain Current ( mA )<br />

96 12160<br />

Y 21S – Forward Transadmittance ( mS )<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 20 40 60 80 100 120 140 160<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

T amb – Ambient Temperature ( °C )<br />

Figure 1. Total Power Dissipation vs.<br />

Ambient Temperature<br />

V G1S = 0.6V<br />

0.4V<br />

0.2V<br />

8<br />

–0.2V<br />

6<br />

–0.4V<br />

4<br />

–0.6V<br />

2<br />

–0.8V<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20 22 24<br />

V DS – Drain Source Voltage ( V )<br />

Figure 2. Drain Current vs. Drain Source Voltage<br />

96 12161<br />

24<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

V DS =15V<br />

I DS =10mA<br />

–2 –1 0 1 2 3 4 5 6<br />

V G2S – <strong>Gate</strong> 2 Source Voltage ( V )<br />

0<br />

V G1S =0.5V<br />

0V<br />

–0.5V<br />

Figure 3. Forward Transadmittance vs.<br />

<strong>Gate</strong> 2 Source Voltage<br />

Y 21S – Forward Transadmittance ( mS )<br />

96 12162<br />

C issg1 – <strong>Gate</strong> 1 Input Capacitance ( pF )<br />

96 12163<br />

C issg2 – <strong>Gate</strong> 2 Input Capacitance ( pF )<br />

96 12164<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

V DS =15V<br />

f=1MHz V G2S =5V<br />

8<br />

4V<br />

6<br />

4<br />

0V<br />

3V<br />

2<br />

2V<br />

1V<br />

0<br />

–2.0–1.5–1.0–0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5<br />

V G1S – <strong>Gate</strong> 1 Source Voltage ( V )<br />

Figure 4. Forward Transadmittance vs.<br />

<strong>Gate</strong> 1 Source Voltage<br />

V DS =15V<br />

V G2S =4V<br />

f=1MHz<br />

0<br />

–2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0<br />

4.0<br />

3.6<br />

3.2<br />

2.8<br />

2.4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

V G1S – <strong>Gate</strong> 1 Source Voltage ( V )<br />

Figure 5. <strong>Gate</strong> 1 Input Capacitance vs.<br />

<strong>Gate</strong> 1 Source Voltage<br />

V DS =15V<br />

V G1S =0<br />

f=1MHz<br />

0<br />

–2 –1 0 1 2 3 4 5 6 7<br />

V G2S – <strong>Gate</strong> 2 Source Voltage ( V )<br />

Figure 6. <strong>Gate</strong> 2 Input Capacitance vs.<br />

<strong>Gate</strong> 2 Source Voltage<br />

Document Number 85002<br />

www.vishay.com<br />

Rev. 3, 20-Jan-99 3 (7)


<strong>BF961</strong><br />

Vishay Semiconductors<br />

C oss – Output Capacitance ( pF )<br />

96 12165<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

V G2S =4V<br />

f=1MHz<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20 22<br />

V DS – Drain Source Voltage ( V )<br />

Figure 7. Output Capacitance vs. Drain Source Voltage<br />

Im ( y 11 ) ( mS )<br />

96 12166<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

600MHz<br />

300MHz<br />

200MHz<br />

100MHz<br />

400MHz<br />

f=700MHz<br />

500MHz<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Re (y 11 ) ( mS )<br />

V DS =15V<br />

V G2S =4V<br />

I D =5...20mA<br />

f=50...700MHz<br />

Figure 8. Short Circuit Input Admittance<br />

Im ( y 21 ) ( mS )<br />

96 12167<br />

10<br />

5<br />

0<br />

V DS =15V<br />

V G2S =4V<br />

f=50...700MHz<br />

–5<br />

I D =5mA<br />

100MHz<br />

10mA<br />

–10 20mA<br />

200MHz<br />

300MHz<br />

–15<br />

400MHz<br />

–20<br />

500MHz<br />

–25<br />

600MHz<br />

700MHz<br />

–30<br />

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28<br />

Re (y 21 ) ( mS )<br />

f=50MHz<br />

Figure 9. Short Circuit Forward Transfer Admittance<br />

Im ( y 22 ) ( mS )<br />

96 12168<br />

7.0<br />

6.5<br />

6.0<br />

5.5<br />

5.0<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0<br />

I D =5mA<br />

300MHz<br />

200MHz<br />

100MHz<br />

400MHz<br />

500MHz<br />

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4<br />

Re (y 22 ) ( mS )<br />

f=700MHz<br />

600MHz<br />

I D =20mA<br />

V DS =15V<br />

V G2S =4V<br />

I D =5...20mA<br />

f=50...700MHz<br />

Figure 10. Short Circuit Output Admittance<br />

www.vishay.com<br />

4 (7)<br />

Document Number 85002<br />

Rev. 3, 20-Jan-99


V DS = 15 V, I D = 5 to 20 mA, V G2S = 4 V , Z 0 = 50 <br />

<strong>BF961</strong><br />

Vishay Semiconductors<br />

j0.5<br />

j<br />

j2<br />

j0.2<br />

j5<br />

S 11<br />

–j0.2<br />

S 12<br />

120°<br />

90°<br />

60°<br />

150°<br />

300<br />

30°<br />

0<br />

0.2 0.5 1 ÁÁÁÁ<br />

ÁÁ<br />

ÁÁÁ<br />

ÁÁÁ<br />

2 ÁÁ<br />

ÁÁ<br />

5<br />

100<br />

ÁÁ<br />

<br />

50<br />

180°<br />

700MHz<br />

600<br />

0.04 0.08<br />

0°<br />

ÁÁÁ<br />

700 MHz<br />

500<br />

ÁÁ<br />

300<br />

–j5<br />

–150°<br />

–30°<br />

–j0.5<br />

–j2<br />

12 920<br />

–j<br />

Figure 11. Input reflection coefficient<br />

–120° –60°<br />

12 921<br />

–90°<br />

Figure 13. Reverse transmission coefficient<br />

90°<br />

120° 60°<br />

j0.5<br />

j<br />

j2<br />

200<br />

400<br />

30°<br />

j0.2<br />

j5<br />

180°<br />

–150°<br />

50<br />

S 21<br />

0°<br />

700MHz<br />

0.8 1.6<br />

I D = 20mA<br />

10mA<br />

5mA –30°<br />

–30°<br />

S 22<br />

12 923<br />

0<br />

–j0.2<br />

0.2 0.5 1 2 5 ÁÁ ÁÁ ÁÁ ÁÁÁ ÁÁÁ<br />

700 MHz<br />

100<br />

300<br />

500<br />

–j5<br />

<br />

–120° –60°<br />

12 922<br />

–90°<br />

Figure 12. Forward transmission coefficient<br />

–j0.5<br />

–j2<br />

–j<br />

Figure 14. Output reflection coefficient<br />

Document Number 85002<br />

www.vishay.com<br />

Rev. 3, 20-Jan-99 5 (7)


<strong>BF961</strong><br />

Vishay Semiconductors<br />

Dimensions in mm<br />

96 12242<br />

www.vishay.com<br />

6 (7)<br />

Document Number 85002<br />

Rev. 3, 20-Jan-99


<strong>BF961</strong><br />

Vishay Semiconductors<br />

Ozone Depleting Substances Policy Statement<br />

It is the policy of Vishay Semiconductor GmbH to<br />

1. Meet all present and future national and international statutory requirements.<br />

2. Regularly and continuously improve the performance of our products, processes, distribution and operating<br />

systems with respect to their impact on the health and safety of our employees and the public, as well as their<br />

impact on the environment.<br />

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as<br />

ozone depleting substances (ODSs).<br />

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and<br />

forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban<br />

on these substances.<br />

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of<br />

ODSs listed in the following documents.<br />

1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively<br />

2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental<br />

Protection Agency (EPA) in the USA<br />

3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.<br />

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting<br />

substances and do not contain such substances.<br />

We reserve the right to make changes to improve technical design and may do so without further notice.<br />

Parameters can vary in different applications. All operating parameters must be validated for each customer application<br />

by the customer. Should the buyer use Vishay-Semiconductors products for any unintended or unauthorized application, the<br />

buyer shall indemnify Vishay-Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or<br />

indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.<br />

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany<br />

Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423<br />

Document Number 85002<br />

www.vishay.com<br />

Rev. 3, 20-Jan-99 7 (7)


This datasheet has been download from:<br />

www.datasheetcatalog.com<br />

Datasheets for electronics components.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!