14.01.2014 Views

Cell-based kinase assays in HTS Benjamin Bader

Cell-based kinase assays in HTS Benjamin Bader

Cell-based kinase assays in HTS Benjamin Bader

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Cell</strong>-<strong>based</strong> <strong>k<strong>in</strong>ase</strong> <strong>assays</strong> <strong>in</strong> <strong>HTS</strong><br />

Potential and limitations for primary and secondary screen<strong>in</strong>g<br />

Benjam<strong>in</strong> <strong>Bader</strong><br />

HTRF-symposium Avignon 25. April 2013<br />

1 HTRF-symposium 2013<br />

11<br />

1


• Introduction<br />

• General considerations cell-<strong>based</strong> <strong>k<strong>in</strong>ase</strong> <strong>assays</strong><br />

• EFC-<strong>assays</strong> for Tyr-K<strong>in</strong>ases<br />

• TR-FRET systems: HTRF and Lanthascreen<br />

<strong>assays</strong> for the PI3K / Akt / mTOR pathway<br />

• Summary & conclusions<br />

2 HTRF-symposium 2013<br />

21<br />

2


K<strong>in</strong>ases as drug targets<br />

cAbl and Gleevec (Noble 2004)<br />

(Fabbro 2012)<br />

recent additions<br />

Vandetanib VEGFR, EGFR, RET thyroid AstraZeneca<br />

Vemurafenib B-RafV600E melanoma Roche/Plexxikon<br />

Regorafenib multiK<strong>in</strong>ase colorectal Bayer<br />

Critoz<strong>in</strong>ib ALK, ROS1 NSCLC Pfizer<br />

Bosut<strong>in</strong>ib BCR/Abl CLL Pfizer<br />

Ruxolit<strong>in</strong>ib JAK1/2 Myelofibrose Incyte/Novartis<br />

• human k<strong>in</strong>ome: 518 prote<strong>in</strong> <strong>k<strong>in</strong>ase</strong>s<br />

+ 20 lipid <strong>k<strong>in</strong>ase</strong>s (Mann<strong>in</strong>g 2002)<br />

• currently, ~150 <strong>k<strong>in</strong>ase</strong> targeted drugs are<br />

<strong>in</strong> cl<strong>in</strong>cal development (Fabbro 2012)<br />

• most registered <strong>k<strong>in</strong>ase</strong> drugs target<br />

Tyros<strong>in</strong>e <strong>k<strong>in</strong>ase</strong>s, with more Ser/Thr<br />

<strong>k<strong>in</strong>ase</strong> targetd drugs <strong>in</strong> the pipel<strong>in</strong>e<br />

• most <strong>k<strong>in</strong>ase</strong> drugs target the ATP-pocket<br />

• ma<strong>in</strong> <strong>in</strong>dication: oncology<br />

3 HTRF-symposium 2013<br />

31<br />

3


K<strong>in</strong>ase Inhibitors <strong>in</strong> the BAYER Development Pipel<strong>in</strong>e<br />

4 HTRF-symposium 2013<br />

41<br />

4


Features of a typical early <strong>k<strong>in</strong>ase</strong> drug discovery project<br />

u<strong>HTS</strong> phase<br />

1°u<strong>HTS</strong><br />

• Biochemical target <strong>k<strong>in</strong>ase</strong> assay<br />

Retest confirmation<br />

• Biochemical target <strong>k<strong>in</strong>ase</strong> assay<br />

• specificity detection control assay<br />

Dose response<br />

• Biochemical target <strong>k<strong>in</strong>ase</strong> assay<br />

• Off-target assay, selectivity assay<br />

• Mode-of-action <strong>assays</strong>: competitive<br />

ATP, slow b<strong>in</strong>d<strong>in</strong>g<br />

# compounds<br />

3 Mio<br />

30.000<br />

3.000<br />

(<strong>HTS</strong>-hitlist)<br />

cell-<strong>based</strong> mechanistic assay<br />

correlation mechanistic – biochemical<br />

hit-to-lead phase<br />

<strong>Cell</strong>-<strong>based</strong> mechanistic assay<br />

downstream substrate phosphorylation<br />

or def<strong>in</strong>ed cellular phenotype<br />

<strong>Cell</strong>-<strong>based</strong> functional <strong>assays</strong><br />

proliferation, cytok<strong>in</strong>es, migration etc.<br />

Pharmacok<strong>in</strong>etics<br />

In vivo efficacy<br />

lead compound<br />

300-1000<br />

300-1000<br />

30-100<br />

3<br />

biochemical <strong>k<strong>in</strong>ase</strong> assay<br />

• specific cell-<strong>based</strong> <strong>k<strong>in</strong>ase</strong> <strong>assays</strong><br />

are essential for hit profil<strong>in</strong>g dur<strong>in</strong>g<br />

hit-to-lead phase<br />

• <strong>in</strong>tegration of cell-<strong>based</strong> <strong>k<strong>in</strong>ase</strong><br />

<strong>assays</strong> as early as possible, best<br />

case even before hitlist delivery<br />

5 HTRF-symposium 2013<br />

51<br />

5


Requirements for efficient assay support <strong>in</strong> <strong>HTS</strong><br />

and Hit-to-lead phase @ BAYER<br />

Key objectives for every assay<br />

automated preparation of<br />

assay-ready plates<br />

(except HCA sta<strong>in</strong><strong>in</strong>g procedures)<br />

- assay-ready plates<br />

- 1536 well format, at least 384 well<br />

cells and reagent<br />

dispens<strong>in</strong>g <strong>in</strong>to 1536 well<br />

plates addition-only<br />

- homogenous addition only<br />

- endpo<strong>in</strong>t <strong>assays</strong><br />

- frozen cells<br />

- short<br />

- robust<br />

endpo<strong>in</strong>t detection<br />

with imag<strong>in</strong>g-<strong>based</strong><br />

multimode-readers<br />

6 HTRF-symposium 2013<br />

61<br />

6


General options for cell-<strong>based</strong> <strong>k<strong>in</strong>ase</strong> <strong>assays</strong><br />

Assay technology Provider comments critical tools<br />

Western Blot various heterogenous<br />

low throughput<br />

phospho-antibody<br />

Incell Western various high content imag<strong>in</strong>g phospho-antibody<br />

ELISA-type various heterogenous antibody pair<br />

Lum<strong>in</strong>ex Millipore heterogenous antibody pair<br />

Surefire / ALPHAscreen Perk<strong>in</strong>Elmer homogenous antibody pair<br />

HTRF Cisbio homogenous antibody pair<br />

Lanthascreen LifeSciences homogenous phospho-antibody<br />

recomb<strong>in</strong>ant cell-l<strong>in</strong>e<br />

EFC - Enzyme Fragment<br />

Complementation<br />

Survival assay<br />

DiscoveRx homogenous antibody-free<br />

recomb<strong>in</strong>ant cell-l<strong>in</strong>e<br />

Advanced <strong>Cell</strong>ular<br />

Dynamics / Carna<br />

Tyr-<strong>k<strong>in</strong>ase</strong> activity restores<br />

survival of Ba/F3 cells<br />

antibody-free<br />

recomb<strong>in</strong>ant cell-l<strong>in</strong>e<br />

Pathway reporter <strong>assays</strong> various downstream gene activation antibody-free<br />

recomb<strong>in</strong>ant cell-l<strong>in</strong>e<br />

7 HTRF-symposium 2013<br />

71<br />

7


EFC-<strong>assays</strong> for Tyr-K<strong>in</strong>ases (DiscoveRx)<br />

Technology EFC (enzyme fragment complementation)<br />

EphB4 cellular <strong>k<strong>in</strong>ase</strong> activity assayed us<strong>in</strong>g an enzymatic prote<strong>in</strong> <strong>in</strong>teraction system<br />

(Wehrman et al. 2013 ADT)<br />

Agonist stimulation Validation with <strong>k<strong>in</strong>ase</strong> <strong>in</strong>hibitors Frozen cell and direct assay format<br />

EFC<br />

modified from www.discoverx.com<br />

• EFC-<strong>k<strong>in</strong>ase</strong> technology is suitable for m<strong>in</strong>iaturized frozen cell <strong>assays</strong><br />

• limitations: largely restricted to Tyros<strong>in</strong>e <strong>k<strong>in</strong>ase</strong>s, requires recomb<strong>in</strong>ant cells<br />

8 HTRF-symposium 2013<br />

81<br />

8


TR-FRET systems: HTRF and Lanthascreen<br />

Activation<br />

Lysis<br />

P<br />

P<br />

cell l<strong>in</strong>e<br />

express<strong>in</strong>g GFP-X<br />

(<strong>k<strong>in</strong>ase</strong> target)<br />

Tb<br />

Detection of<br />

phosphorylated prote<strong>in</strong><br />

P<br />

modified from www.htrf.com<br />

modified from www.<strong>in</strong>vitrogen.com<br />

HTRF<br />

• endogenous phospho-prote<strong>in</strong><br />

• any cell l<strong>in</strong>e express<strong>in</strong>g prote<strong>in</strong><br />

• antibody pair required<br />

• HTRF-detection at 620/665 nm<br />

Lanthascreen<br />

• overexpressed GFP-phospho-prote<strong>in</strong><br />

• stable cell l<strong>in</strong>e or BacMam transient<br />

• only phospho antibody required<br />

• Lanthascreen detection at 490/520<br />

9 HTRF-symposium 2013<br />

91<br />

9


HTRF and Lanthascreen <strong>assays</strong> for<br />

the PI3K / Akt / mTOR pathway<br />

10 HTRF-symposium 2013<br />

101<br />

10


Introduc<strong>in</strong>g the PI3K / Akt / mTOR pathway<br />

• PI3K / Akt pathway is central to cancer formation<br />

• Chemotherapeutic approaches aga<strong>in</strong>st multiple<br />

targets are <strong>in</strong> the pipel<strong>in</strong>es<br />

Liu 2009 Nat. Rev Drug Discovery<br />

11 HTRF-symposium 2013<br />

111<br />

11


Assay<strong>in</strong>g the PI3K / Akt / mTOR pathway<br />

Lanthascreen study goals:<br />

• Evaluate BacMam Lanthascreen technology<br />

• GFP-Akt @ two sites (pT308 and pS473)<br />

• GFP-PRAS40 @ two sites (S183 and T246)<br />

• test different cell backgrounds<br />

• validate with reference <strong>in</strong>hibitors<br />

HTRF study goals:<br />

• set up cell-<strong>based</strong> mTOR <strong>k<strong>in</strong>ase</strong> activity<br />

assay for <strong>HTS</strong><br />

• identify optimal cancer cell background<br />

• validate with reference <strong>in</strong>hibitors<br />

validate <strong>HTS</strong>-compatibility with<br />

both formats us<strong>in</strong>g a m<strong>in</strong>iaturized<br />

384 well focussed screen<br />

(modified from Carlson 2009)<br />

12 HTRF-symposium 2013<br />

121<br />

12


Lanthascreen Assay Development<br />

BacMam technology comb<strong>in</strong>ed with<br />

Lanthascreen <strong>Cell</strong>ular assay<br />

mammalian<br />

cells<br />

(modified from Kost 2007, Carlson 2010)<br />

13 HTRF-symposium 2013<br />

131<br />

13


Lanthascreen – cellular background<br />

Lanthascreen study goals:<br />

• Evaluate BacMam Lanthascreen technology<br />

• GFP-Akt @ two sites (pT308 and pS473)<br />

• GFP-PRAS40 @ two sites (S183 and T246)<br />

• test different cell backgrounds<br />

• validate with reference <strong>in</strong>hibitors<br />

<strong>Cell</strong> l<strong>in</strong>e Type PI3K Pathway<br />

mutation<br />

PC-3<br />

MCF-7<br />

MDA-MB-<br />

453<br />

KPL-4<br />

HEK-293<br />

U2-OS<br />

Human prostate<br />

cancer<br />

Human breast<br />

cancer<br />

Human embryonal<br />

kidney<br />

Human<br />

osteosarcoma<br />

PTEN negative<br />

PI-3-K<strong>in</strong>ase<br />

mutation<br />

E545K<br />

PI-3-K<strong>in</strong>ase<br />

mutation<br />

H1047R<br />

WT<br />

WT<br />

Ratio Stimulated / <strong>in</strong>hibited<br />

10.0<br />

9.0<br />

8.0<br />

7.0<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

Akt-pS473 Akt-pT308<br />

PRAS40-pT246 PRAS40 pS183<br />

MCF7 PRAS40-pT246 selected for<br />

further optimization work<br />

14 HTRF-symposium 2013<br />

141<br />

14


Lanthascreen – virus efficiency<br />

30% virus<br />

S/B max = 7<br />

1% virus<br />

S/B max = 9<br />

10% virus<br />

S/B max = 2<br />

1% virus<br />

S/B max = 3<br />

• different virus efficiency: PRAS40 with highly efficient expression (S/B max reached at 1%)<br />

• differences between phosphosites antibody quality (?)<br />

15 HTRF-symposium 2013<br />

151<br />

15


Lanthascreen – cellular background<br />

PTEN negative<br />

PI3K E545K<br />

• PC3-cells - <strong>in</strong> contrast to MCF7 - have fully stimulated pathway<br />

cave different pathway mutations have different impact on basal activation<br />

16 HTRF-symposium 2013<br />

161<br />

16


Lanthascreen - optimization<br />

• stimulation time<br />

• stimulation temperature<br />

• antibody concentration<br />

• time cell lysis read<br />

• DMSO sensitivity<br />

• Volume 10 µl 5 µl<br />

• frozen cells<br />

17 HTRF-symposium 2013<br />

171<br />

17


Lanthascreen - optimized assay protocol<br />

day 1:<br />

seed cells <strong>in</strong>to of MCF7 cells T-flask (frozen or cont<strong>in</strong>uous culture)<br />

day 2:<br />

transduce MCF7 cells with 1% PRAS40 virus <strong>in</strong> T-flask<br />

day 3:<br />

harvest transduced cells and prepare cell suspension <strong>in</strong> medium + 1% FCS<br />

dispense 3 µl (5000 cells/well) <strong>in</strong>to assay-ready MTP conta<strong>in</strong><strong>in</strong>g 50 nl cpd.<br />

2 h @ 37°C<br />

add 1 µl lysis/detection mix<br />

2 h @ RT<br />

read TR-FRET<br />

18 HTRF-symposium 2013<br />

181<br />

18


Lanthascreen - <strong>in</strong>hibitor validation PRAS40-pT246<br />

MK-2206<br />

allosteric Akt <strong>in</strong>hibitor<br />

PI-103<br />

PI3K <strong>k<strong>in</strong>ase</strong> <strong>in</strong>hibitor<br />

4000<br />

4000<br />

3000<br />

3000<br />

Ratio<br />

2000<br />

Ratio<br />

2000<br />

1000<br />

1000<br />

0<br />

10 -10 10 -9 10 -8 10 -7 10 -6 10 -5<br />

MK-2206 [M]<br />

• potency of pathway<br />

<strong>in</strong>hibitors depends on<br />

<strong>in</strong>cubation time<br />

• Akt and mTOR <strong>in</strong>hibitors<br />

improved IC50 after 2 h<br />

Ratio<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

10 -10 10 -9 10 -8 10 -7 10 -6 10 -5<br />

PI-103 [M]<br />

AZD-8055<br />

mTOR <strong>k<strong>in</strong>ase</strong> <strong>in</strong>hibitor<br />

0<br />

10 -10 10 -9 10 -8 10 -7 10 -6<br />

AZD-8055 [M]<br />

19 HTRF-symposium 2013<br />

191<br />

19


HTRF – assay<br />

HTRF study goals:<br />

• set up cell-<strong>based</strong> mTOR <strong>k<strong>in</strong>ase</strong> activity<br />

assay for <strong>HTS</strong> us<strong>in</strong>g pAkt Ser473 readout<br />

• identify optimal cancer cell background<br />

• validate with reference <strong>in</strong>hibitors<br />

Detection<br />

(modified from Carlson 2009)<br />

(from Cisbio product <strong>in</strong>sert)<br />

20 HTRF-symposium 2013<br />

201<br />

20


HTRF – cell l<strong>in</strong>es<br />

18000<br />

Ratio<br />

16000<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

cont<strong>in</strong>uous<br />

culture<br />

frozen<br />

cells<br />

• MCF7 cells strongest S/B<br />

• frozen cell assay<br />

• suspension cell format<br />

• m<strong>in</strong>iaturized to 1536 well<br />

2000<br />

0<br />

10 -10 10 -9 10 -8 10 -7 10 -6<br />

AZD 8055 [M]<br />

21 HTRF-symposium 2013<br />

211<br />

21


HTRF - optimized assay protocol<br />

day 1:<br />

thaw frozen MCF7 cells and prepare cell suspension <strong>in</strong> medium + 1% FCS<br />

dispense 3 µl (4000 cells/well) <strong>in</strong>to assay-ready MTP conta<strong>in</strong><strong>in</strong>g 50 nl cpd.<br />

30 m<strong>in</strong> @ 37°C<br />

add 1 µl lysis buffer<br />

1 h @ RT shake<br />

add 4 µl antibody detection mix<br />

20 h @ RT<br />

day 2:<br />

read TR-FRET<br />

22 HTRF-symposium 2013<br />

221<br />

22


HTRF – pathway <strong>in</strong>hibitor validation<br />

MCF7 cells<br />

AKT <strong>in</strong>hibitor<br />

MK-2206<br />

PI3K <strong>in</strong>hibitor<br />

PI-103<br />

IC50 = 635nM<br />

IC50 = 79nM<br />

mTORC1 <strong>in</strong>hibitor<br />

Rapamyc<strong>in</strong><br />

mTOR <strong>in</strong>hibitor<br />

Ku-0063794<br />

mTOR <strong>in</strong>hibitor<br />

AZD 8055<br />

no effect<br />

IC50 = 163nM<br />

IC50 = 7nM<br />

23 HTRF-symposium 2013<br />

231<br />

23


Focussed medium throughput screen:<br />

• BacMAM Lantha PRAS40-pT246<br />

• HTRF Akt-pS473<br />

• 24.300 compounds, <strong>k<strong>in</strong>ase</strong> targeted library<br />

• 384 well s<strong>in</strong>gle format<br />

• 69 MTPs<br />

• 5 parallel assay runs (Lantha and HTRF)<br />

24 HTRF-symposium 2013<br />

241<br />

24


Focussed medium throughput screen<br />

28000<br />

26000<br />

24000<br />

22000<br />

20000<br />

shape by assay:<br />

HTRF<br />

Ratio<br />

18000<br />

16000<br />

14000<br />

12000<br />

Lanthascreen<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

HTRF<br />

color by run<br />

5000<br />

10 -10 10 -9 10 -8 10 -7 10 -6<br />

AZD-8055 [M]<br />

4000<br />

3000<br />

Ratio<br />

2000<br />

1000<br />

0<br />

Lantha<br />

10 -10 10 -9 10 -8 10 -7 10 -6<br />

AZD-8055 [M]<br />

• Similar sensitivity of both <strong>assays</strong> ag<strong>in</strong>st mTORi<br />

• HTRF: stable and robust assay performance<br />

• Lanthascreen: day-to-day variability <strong>in</strong> S/B<br />

25 HTRF-symposium 2013<br />

251<br />

25


Focussed medium throughput screen<br />

Distribution neutral controls:<br />

Distribution compounds / donor <strong>in</strong>terference:<br />

• Neutral controls: similar distribution for both <strong>assays</strong><br />

• Compounds: strong <strong>in</strong>terference <strong>in</strong> BacMAM donor channel<br />

26 HTRF-symposium 2013<br />

261<br />

26


Focussed medium throughput screen<br />

Lantha<br />

Assay<br />

common<br />

hits<br />

HTRF<br />

Assay<br />

<strong>in</strong>terference<br />

4686 cpds / 19%<br />

24.228<br />

<strong>in</strong>terference<br />

282 cpds / 1%<br />

Lantha<br />

HTRF<br />

Hits > 30% @ 10 µM<br />

(1.6%)<br />

294<br />

15<br />

(0.3%)<br />

63<br />

available for retest<br />

255 5 34<br />

Interference<br />

Hit rate<br />

high<br />

(19%)<br />

high<br />

(1.6%)<br />

low<br />

(1%)<br />

low<br />

(0.3%)<br />

Confirmed hits<br />

(12%) confirmation rate (62%)<br />

24 5 18<br />

Confirmation rate<br />

low<br />

(12%)<br />

high<br />

(62%)<br />

available for IC50<br />

28 3 11<br />

(31%) confirmation rate (57%)<br />

IC50 hits<br />

7 2 6<br />

27 HTRF-symposium 2013<br />

271<br />

27


Summary & Conclusions<br />

• K<strong>in</strong>ases rema<strong>in</strong> <strong>in</strong>terest<strong>in</strong>g target class <strong>in</strong> pharmaceutical research<br />

• Specific and efficient cell-<strong>based</strong> <strong>k<strong>in</strong>ase</strong> <strong>assays</strong> are essential <strong>in</strong> pharma<br />

research projects<br />

• Homogenous assay systems fit best to Bayers lead discovery platform<br />

• Positive experience at Bayer with EFC-technology, HTRF and<br />

Lanthascreen<br />

• EFC-technology <strong>in</strong>terest<strong>in</strong>g for Tyr-K<strong>in</strong>ase u<strong>HTS</strong><br />

• Lanthascreen technology positioned for secondary test<strong>in</strong>g<br />

• HTRF positioned for u<strong>HTS</strong> and secondary test<strong>in</strong>g<br />

28 HTRF-symposium 2013<br />

281<br />

28


Acknowledgements<br />

Anja Kretzschmar<br />

Sabr<strong>in</strong>a Reimann<br />

Katr<strong>in</strong> Nowak-Reppel<br />

Dagmar Zeggert-Spr<strong>in</strong>ger<br />

Karsten Parczyk<br />

Monika Gross (Beuth University of Applied Science)<br />

data published <strong>in</strong> master thesis of Anja Kretzschmar, November 2011<br />

29 HTRF-symposium 2013<br />

291<br />

29


Thank you!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!